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A NOTE ON A GAMMA DISTRIBUTION COMPUTER PROGRAM AND GRAPH PAPER

Harold L. Crutcher,1 Gerald L. Barger,2 and Grady F. McKay1 

Environmental Data Service, NOAA

ABSTRACT. The gamma distribution function may be used as a 
model for many sets of data. The electronic computer pro­
gram in the Formula Translator (FORTRAN) IV for this function 
here provides the analytic solution to a set of data, gives 
the probabilities of exceeding or not exceeding arbitrary 
amounts, and indicates the amounts exceeded or not exceeded 
for arbitrary probabilities.

The developed gamma probability plotting paper serves also 
for the special cases of the chi-squared, the exponential, 
and the Poisson distribution functions. Estimates of the 
scale and shape parameters permit construction of the graph. 
The graph paper may be used to estimate the scale and shape 
parameters.

The program, in its general form, permits a maximum of 52 
entries, which will suffice for those dealing with weekly 
data through the year. In addition, in precipitation 
studies, the user has the option to compute in one pass of 
the data the two duration and three duration period distri­
butions. These computations are done without program 
change but by appropriate changes in the control cards.
This feature is not limited to the study of precipitation 
data.

An option permits the computation of the required proba­
bilities and inverses when only the scale and shape 
parameters are given.

The computer output is designed for easy input to plotter 
routines.

National Climatic Center, EDS, Asheville, N.C.

laboratory for Environmental Data Research, EDS, Washington, D.C.
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I. INTRODUCTION

This paper presents for the gamma distribution function:

1. An electronic computer program in the Formula Translator (FORTRAN) IV to provide an 
analytic solution for a data set.

2. Probability graph paper that furnishes a best fit straight line to the data.

Pearson and Hartley (1954) and others before them indicate that the chi-square integral, 
the incomplete gamma function, the type III distribution integral of Pearson (1894), the 
exponential functions, and the cumulative sum of terms of the Poisson distribution are 
different forms of the same mathematical function. Rayleigh (Strutt 1919) and the 
Maxwellian (1859) densities are special cases of the gamma densities. Therefore, the 
probability plotting paper developed here serves for these distributions as well as the 
exponential. In queuing theory, the Erlangian distribution is a gamma distribution. (For 
symbols used in this report, see table 1.)

II. THE GAMMA DISTRIBUTION FUNCTION

Many processes produce data distributions that the gamma distribution model describes 
well. Naturally, considerable literature exists for this distribution. The model serves 
for reliability life tests and fatigue problems. It offers advantages in the study of many 
multiple component systems where time to failure is an important feature. There are many 
other applications. For example, precipitation is the result of atmospheric processes, and 
the additive features of the gamma distribution parallel the additive features of atmo­
spheric processes in rainfall production.

Pearson (1916) derives the gamma density function (Pearson's type III) as the solution of 
a differential equation. The tables edited by Pearson (1922), with subsequent revision 
through 1957, and those by Pearson and Hartley (1954) permit application of the gamma dis­
tribution model to fit and graduate skew data. The above tables permit interpolation for 
fractional degrees of freedom for the chi-square distribution. Campbell (1923) provides 
perhaps the first tabulation of the inverse gamma function if only for integer values.
These, of course, are equivalent to the chi-square distribution with integer degrees of 
freedom equal to twice the gamma values. Salvosa (1930) also provides useful tables.
Cohen et al. (1969) extend the tables of Salvosa. Birnbaum and Saunders (1958) derive and 
use the gamma distribution as one of the models for material life length, which may be 
likened to the life of a storm or the time to failure of precipitation generating processes. 
Harter (1964, 1969) provides an excellent discussion and extends Pearson's tables. Yet as 

Harter says, Pearson's work has no serious contender.
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Table 1.— Symbols and their meanings

a Gamma distribution variable dependent on second and third moments

b Plotting parameter equal to c

c Plotting parameter with a default option to 0.44

e Exponential; 2.7183

f Function

i (1) sample number

(2) subscript 

j (1) sample number

(2) subscript

k Subscript, such as i or j

n Number of data
p (1) probability of nonzero amounts; NX/NNX

(2) probability level

q (1 - p), probability of zero amounts (NNX-NX)/NNX

t Variable

t Average t; the overbar indicates an averaging process,

dt Derivative of t

x Variable, here generally y - a

x' Transformed x, as (y - a)/8

x Average x; nonzero amounts only

y Variable

y Average y; nonzero amounts only

F Function

G(x) Gamma distribution function for a measured set excluding zeros

H(x) Gamma distribution function for a measured set including zeros

I Sample number
0 (1) number of duration periods

(2) number of data combined 

K Kolmogorov (1933)

K-S Kolmogorov-Smirnov

M Moment; subscripts indicate type of moment.

ML Maximum likelihood

NX Number of data excluding zeros

NNX Number of data including zeros
S Smirnov (1936, 1948)

X Untransformed variable (i.e., an original datum)

Y Untransformed variable (i.e., an original datum)

a Alpha; (1) origin

(2) probability level for rejection 

8 Beta; scale parameter

Y Gamma; shape parameter

8 Beta hat; maximum likelihood estimate of sample scale parameter

Y Gamma hat; maximum likelihood estimate of sample shape parameter

8 Beta star; Thom's (1958, 1968) estimate of scale parameter

$ Gamma star; Thom's (1958, 1968) estimate of shape parameter

r Gamma; gamma function

f Integral

Z Sigma; summation

t Tau; quantile

dT Derivative of T

X2 Chi-square

= Equal to

> Greater than

» Much greater than

< Less than

<_ Less than or equal to

Overbar; averaging process 

°° Infinity
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III. THE GENERAL GAMMA DISTRIBUTION FUNCTION

The general gamma distribution with origin parameter a(- » < a < «>), scale parameter 
b(b > 0), and shape parameter y(y > 0) has the probability density function shown in

f(y:t»,e,y) = B‘Y(r(Y))"1(y-a)Y_1e"^y’01^6, y>a, - ■» < y < + » 

(i)and 
= 0, y <_a.

The distribution function given in

F(y;a,3,y) = f(t;a,3,y)dt (2)
is for all y > a.

Fisher (1922) first develops the maximum likelihood (ML) equation for the solution for 
for the incomplete gamma distribution known commonly as the gamma distribution. It is 
incomplete in the sense that the integral limits of the function do not range from - » to 
+ oo but from some finite point such as a to + k where k is some real number. If the origin 
parameter a is zero, this distribution is a special case of the Pearson type III distribu­
tion. The solution of the ML equation as developed by Fisher is difficult. Therefore,
Thom (1947) develops approximate solutions. Chapman (1956), Greenwood and Durand (1960), 
Gupta (1960), and Wilk et al. (1962) provide methods to estimate the gamma distribution 

parameters. Mooley and Crutcher (1968) discuss the variability of the parameter estimates 
of two gamma distributions. Schickedanz and Krause (1970) present tests for the scale 
parameters.

Thom's work leads to fruitful use of the gamma distribution in meteorological, climato­
logical, and hydrological applications. Barger and Thom (1949) furnish an evaluation of 
drought hazard. Friedman and Janes (1957) provide an estimation of rainfall probabilities. 
Thom (1958) presents a note on the gamma distribution. Barger et al. (1959) give the 
chances of receiving selected amounts of n-week precipitation in the north-central region 
of the United States. The last is the model for a number of subsequent publications. 
Hartley and Lewish (1959) manage the computer hardware and software for the above study. 
Thom and Vestal (1968) provide a study of monthly rainfall in the conterminous United 
States.

IV. PARAMETER ESTIMATION

The gamma distribution (Pearson's type III) includes the chi-square and the exponential 
distributions as special cases. Pearson (1922), Thom (1958), and Hahn and Shapiro (1968) 
discuss this. Most statistical texts briefly discuss this also. The shape parameter y is 
equal to one-half the degrees of freedom for the chi-square distribution and is equal to 1 
for the exponential distribution, while the scale parameter 3 is equal to 1 in the stan­
dardized case as well as the last two cases.
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Barger et al. (1959) provide plotting paper where the arguments are the mean and the 
variate. Overlaid straight lines represent probabilities. Each value of the shape 
parameter y requires a separate graph. In the same paper, Thom's distribution curves, 
also prepared from Pearson's tables in 1957, appear. The probability and the variate 
divided by the scale parameter are the arguments with the shape parameter being overlaid 

in curved lines over the argument plot.

Wilk et al. (1962) provide techniques to estimate the scale and shape parameters, and 
they indicate that computer routines are available to provide graphical plots in terms of 
the quantile probabilities of the distribution and scale units. The theoretical line of 
best fit is then a straight line. These authors provide a brief set of tables that allows 
the person with a desk calculator, slide rule, or paper and pencil to interpolate required 
probability values and scale values and to make a plot of the data against the line ob­
tained from the estimate of the scale and shape parameters. Roy et al. (1971) incorporate 

the above paper.

Thom (1968) presents direct and inverse tables of the gamma distribution. Thom's tables 
fill in areas not covered by the Wilk et al. (1962) tables and repeat other portions for 

verification.

V. ORIGIN

The origin or location parameter a in eq (1) usually is set to zero. However, there are 
cases where the origin is not zero. Elderton (1953) uses Pearson's moments to locate an 
origin from which the other parameters of the distribution may be measured. The necessary 

statements follow:

a = origin = mode - a, 

a = (2M2/M3) - (M3/2M2), 

mode = t - (M3/2M2),
^and 

origin = t - ((2M|)/M3)

where M2 and M3 are the second and third moments from the mean of the distribution. Barger 
(1964) discusses this. The expression t - (2M|/M3) does not ensure a positive location 
estimate even though the observed values are all positive. In some cases, the estimate may 
be higher than the lowest observed and recorded value in the data set.

Pitman's (1938) estimator for the location (origin) parameter is a minimum variance un­
biased estimator if the scale and shape parameters are known. These parameters usually are 
not known and must be estimated. Pitman's technique is not examined further in this report.
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Hastings (1955) provides equations for the estimation of the origin. Greenwood and 
Durand (1960) also study the estimation of the location parameter. Chapman (1956) provides 

a tabular aid for iterative procedures to solve for the origin parameter in the untruncated 
case. He indicates an additional procedure for the truncated case, providing there is 
sufficient supplementary information. These iterative procedures are not examined in this 
report.

Blischke (1971 and in prior studies) pursues the solution to the problem. Blischke 

encountered the same difficulties in the estimation process as is mentioned for the 
Elderton estimator. This, of course, blocks the calculation of maximum likelihood esti­
mators for the shape and scale parameters or in any estimation process where logarithms are 
used. Blischke suggests that the lowest value be used as the origin where the estimated 
origin is above the lowest observed datum. This is the maximum likelihood estimator for 
the origin. Previously, the present authors found that fit to the gamma distribution may 
be rejected when this is done, even though a value slightly lower than the minimum datum 
as the estimator for the origin is used.

The program presents several options for the origin. The default option uses zero as the 
origin. Such a case would be zero for measured precipitation. If prior experience or 
theoretical considerations indicate the value(s) of the origin parameter(s), this option is 
entered in a control card that replaces the default option. A third option uses the lowest 
value less a small amount to ensure the positive number needed for the logarithms used in 
the maximum likelihood or Thom's estimators. Additionally, if the lowest value occurs more 
than once, this value becomes the origin.

The program processes the mixed distribution that consists of two categories, the lower 
bound and the values above the bound. Categories by nonoccurrence, such as zero precipita­
tion, and the distribution of measurable precipitation above the bound is such a mixed 
distribution.

Regarding the bias in the estimators of maximum likelihood, it is of interest to refer to 
Blischke's work and to that of Shenton and Bowman (1970), Fisher (1922), and Thom (1957, 
1958). Here we reproduce the comments of Shenton and Bowman:

"In this note we show that Thom's statistics are:

a) slightly biased, no matter how large the sample; however this bias is almost 
negligible for y»0, and indeed is only of any real importance if y is small (say less than
0.1 approximately); the bias in finite samples is about the same as for the maximum likeli­
hood estimators;
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b) superior to the maximum likelihood estimators because their variances are less in 
large sample theory; there is evidence that this property holds in finite samples also;

c) about as near to normality (as measured by skewness and kurtosis) as the maximum 

likelihood estimators; actually the distribution of 3 is generally nearer to the normal 

form than that of 3."

In the above, the 3 and 3 are respectively the maximum likelihood and Thom estimators.

Removal of bias in the estimators is not attempted in this program and report. Such will 
be examined later. In view of the large variability of the estimates (Andrews and Barger 
1956) and Mooley and Crutcher (1968), removal of the bias may or may not be appropriate.

With a, the origin, obtained, the following expression is pertinent:

x = y - a. (4)

Then eq (1) becomes
f(x;0,3,y) = e“Y(r(y))-1 xY_1e“x/3, 0 < x < •

(5)and
= 0, x ^ 0.

Thom (1968 and in his earlier papers) utilizes this form.

As shown by Thom (1958) and by Wilk et al. (1962), if the variate x assumes a transform 
by division of the scale parameter 3, the distribution function develops as

F(x';0,1,y) = (r(y)r1 /qx't7'1 e‘T dx, x' > 0 

(6)and 

= 0, x' <_ 0.

that is a standard form with a = 0 and 3 = 1 and is positive when x > 0.

Figure 1 provides a picture of the effect of the shape parameter and scale parameter on 
the function curves. Here, the standardized scale (frequency) is plotted against the 
quantile t. Curves for shape parameters (A) 0.5, 1.0, 1,5, and 2.0, (B) 1, 2, 3, and 4, 
and (C) 1, 5, 10, 20, and 30 illustrate the effect. The shape parameter for 1.0 is shown 
on each subset, but the horizontal scale has been compressed. Hahn and Shapiro (1968) and 

Falls (1971) provide illustrations for other combinations of the scale and shape parameters. 
Reference to x2 curves also may be made. Where y = 1, this is the same as the exponential 
and the same for x2 with two degrees of freedom as well as for a Poisson distribution. 
Stated somewhat differently, the random variable (l/2)x^ with Zy degrees of freedom has 
the gamma density function with the scale parameter equal to one and the shape parameter 

equal to y.
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Wilk et al. (1962) and Thom (1968) present 

the numerical methods to obtain the estimates 
of the gamma distribution scale and shape pa­
rameters 6 and y. Masuyama and Kuroiwa (1951) 

provide a table for the likelihood solution 
of the gamma distribution. Those papers pro­
vide more detail. As Barger et al. (1959) in­
dicate, the estimates of the parameters are 
subject to rather large variations due to sam­
pling and estimating errors. Mooley and 
Crutcher (1968) discuss the variance of the 
probabilities of exceeding stated amounts 

based on work of Andrews and Barger (1956).

For a particular gamma variate distribution, 
the product of the shape and scale parameters
equals the mean of the nonzero quantities. 

** _That is, 3y = y. If y2, y2,... ,yn are inde­
pendent gamma variates with shape parameters

n
equal to y . y ....,yn, then Y = z y. is a

l z m i=1
gamma variate with a shape parameter equal to 

n
z y. (Kenney and Keeping 1951 and Lancaster 

i=i
1969). This provides a useful tool for com­
bining parameter estimates, thereby reducing 
the computation that would be required if the 
original data sets were combined.The division 
of the mean of the total set by the new shape 
parameter estimate provides the new scale pa­
rameter estimate.

F

■—1.0

igure 1.—Selected gamma distribution func­
tion curves

An option is available in the computer program discussed below that permits the calcula­
tion of probabilities from the input value of the parameter estimates in lieu of entry of 
original data with subsequent calculation of the estimates.

VI. GAMMA DISTRIBUTION FUNCTION COMPUTER PROGRAM

Elderton (1953) provides the moment estimate procedures for the origin parameter a as 
indicated previously. Thom (1958, 1968) provides the requisite information and equations 
to provide the maximum likelihood (ML) and Thom estimates of the scale and shape parameters 
$ and y.
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The computer program given in the appendix, initially follows after Bark and Hofman (1960). 

Since that time, through much usage, discussions, and changes, resemblance to the original 

program decreases.

The present program may provide inadequate approximation for values of the probabilities 
when the shape parameter y is less than 0.50. In this region, the asymptotic portion of 
the gamma function distribution, the slope of the curve, is almost indeterminant. Small 
changes in the shape parameter cause extreme changes in the function.

Pearson (1922) discusses this problem. Where computers of extremely large capacity are 
available, the approximations may succeed at low gamma and low probability values, though 
numbers as small as 10“35 are reached before failure. For most purposes when dealing with 
real data, such low gammas and low probabilities are not of too great importance. However, 
in terms of reliability problems, these may be important. Therefore, further work will be 
done on this problem in the development of approximation algorithms or techniques. Caution 

is needed when using this program for shape parameter values < 0.50.

The electronic computer program that forms the appendix, with comments for the FORTRAN IV 
user, supplies the necessary details. This particular program employs the Univac Series 
70/45 Computer. Use with any other computer may require a few changes, but these will be 
minimal. Other options may be inserted, and changes may be made by the user to satisfy his 

particular requirements.

Figure 2 illustrates in tabular form output the application of the gamma model to the 
weekly rainfall distribution at Albany, Ga. The 11th week of the climatological year,
May 10-16, for 39 yr with measured precipitation in 29 of the years constitutes the data 
set. Figure 3 depicts in tabular form the application of the gamma model to maximum rain­
fall in the Appalachian Mountains (1900-1969) from hurricanes or remnants thereof passing 
over the mountains or the centers touching the 1,000-ft contour (Haggard et al. 1971). 
Figure 2 shows output for 20 arbitrarily selected levels, and figure 3 shows output for 52 
selected levels, which is the maximum for this program. Fifty-two is also the maximum data 
set input. This latter restriction, of course, may be bypassed if the option starting with 
known estimates of the scale and shape parameters is used. Parts A and B in figures 2 and 

3 and in data output divide the tabulations into two sets of columns.
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A 1

STATION
90140

0.52
0.02

0.000.02
1.71
0.51
0.00
0.57
0.05
2.46
0.15
0.00
2.93
2.48
0.00
2.80
1.84
0.00

1.32
0.00

1.210.56
0.00
1.61
0.20
1.63
0.41
0.49
0.00
0.45
0.48
0.00
0.03
0.00
0.21

3

0.00
0.00
0.00
0.00

0.000.00
0.00
0.00
0.00
0.00
0.02
0.02
0.03
0.03
0.05
0.15
0.20
0.21
0.41
0.45
0.48
0.49
0.51
0.52
0.56
0.57
0.59

1.211.25
1.32 
1.61 
1.63 
1.71 
1.84
2.33 
2.46 
2.48 
2.80 
3.95

PRECIPITATION PROBABILITIES RUN DATF 11/17/71
5

NNX
6

XBAR
1.030

7
ALPHA
0.000

8beta
1.295

9 10GAMMA X2
0.796 15.483

5 6 7
EMP PROB EMP PROB 

EMP QUANTILE QUANTILE

10
BsBETA values

8 <
SELECTED SELECTEO SELECTED 

PROB QUANTILE QUANTILE

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.015
0.015
0.023
0.023
0.039
0.116
0.154
0.162
0.317
0.348
0.371
0.378
0.394
0.402
0.432
0.440
0.456
0.934
0.965
1.019
1.243
1.259
1.321
1.421
1.799
1.900
1.915
2.162
3.050

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
O.OQO 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.019 0.000
0.054 0.023
0.088 0.044
0.122 0.068
0.157 0.094
0.191 0*122
0.225 0.153
0.260 0.186
0.294 0.221
0.32b 0.259
0.363 0.300
0.397 0.344
0.431 0.391
0.466 0.442
0.500 0.497
0.534 0.557
0.569 0.622
0.603 0.693
0.637 0.771
0.672 0.858
0.706 0.955
0.740 1.066
0.775 1.193
0.809 1.343
0.843 1.524
0.878 1.751
0.912 2.057
0.946 2.521
0.981 3.493

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.030
0.057
0.087
0.121
0.158
0,198
0.240
0.286
0.336
0.389
0.446
0.507
0.573
0.644
0.721
0.805
0.697
0.999
1.111
1.237
1.380
1.545
1.739
1.973
2.268
2.664
3.265
4.523

0.050 0.000 0.000 
0.100 0.000 0.000 
0.150 0.000 0.000 
0.200 0.000 0.000 
0.250 0.000 0.000 
0.300 0.026 0.034 
0.350 0.070 0.091 
0.400 0.124 0.160 
0.450 0.186 0.241 
0.500 0.258 0.335 
0.550 0.341 0.642 
0.600 0.437 0.566 
0.650 0.548 0.709 
0.700 0.679 0.879 
0.750 0.837 1.084 
O.BOO 1.034 1.339 
0.850 1.293 1.674 
0.900 1.663 2.154 
0.950 2.308 2.988 
0.990 3.835 4.966

11 12
PRUB K-5

0.970 0.086

11 12
GRAPH SELECTED 
PROB QUANTITY 
(X>0) LEVELS

0.135 0.100
0.428 0.500
0.567 0.800
0.621 0.950
0.638 1.000
0.766 1.500
0.8*7 2.000
0.899 2.500
0.933 3.000
0.956 3.500
0.971 4.000
0.980 4.500
0.987 5.000
0.991 5,500
0.994 6.000
0.996 6.500
0.997 7,000
0.998 7.500
0.999 8.000
0.999 8.500

13
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Figure 2.—Precipitation probabilities for Albany, Ga., during the 11th 
climatological week of the year, May 10-16. The first week is March 1- 
7. The gamma model is used. The period of record is 1930-1968.
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Figure 3.—Precipitation probabilities for the Appalachian 
fall from tropical cyclones or remnants thereof crossing 
during 1900-1969 (Haggard et al. 1971). The gamma model

Mountains rain- 
the mountains 
is used.
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Part A, shown on the first line, provides the following.

1 Station Identification
2 I Sample number
3 J Number of duration periods in sample

4 NX Number of data excluding zeros

5 NNX Number of data including zeros

6 XBAR Arithmetic average of data excluding zeros

7 ALPHA Origin value
8 BETA Scale parameter estimate, BETA STAR

9 GAMMA Shape parameter estimate, GAMMA STAR

10 X2 X2 for chi-square test

11 PROB Probability of a chi-square value equal to X2 above

12 K-S The largest difference in probability between the theoretical
and empirical distribution curves. This is the Kolmogorov-
Smirnov test statistic (Smirnov 1948).

Part B comprises 13 columns of output information that provide the following.
1 
2 

Sequential guidance
Data in order of observation or record. These are x or y or transforms

of y such as (y-a) or (y-a)/3.
3 Ordered data of column 2
4 Ordered data of column 2 divided by the scale parameter 3 of column B-2

data. If the transform ((y-a)/3) is used, columns B-2 and B-4 ought 

5 
to be identical except for rounding error.

Empirical probability of the ordered data. The expression (n-c)/(n-c+l)
provides the probabilities where n is equivalent to NX of part A and 
c = 0.44 (Gringorten 1963). NX is the number of nonzero data. A 

program option permits a change in the value of c.
6 Variate quantile associated with the empirical probability of column 5

with the scale parameter 3 set equal to unity
7 Variate quantile associated with the empirical probability of column 5

8 
with the sample scale parameter 3 shown in part A

Fifty-two or less arbitrarily selected cumulative theoretical probability
values for which columns B-9 and B-10 respectively show corresponding 
cumulative quantiles and amounts. A program option permits change in 
these, but allows for no more than 52.

9 Cumulative quantile values of the distribution corresponding respectively
to the cumulative probability values of column B-8

10 Cumulative values of the distribution corresponding respectively to the
cumulative probability values of column B-8. Multiplication of values 
in column B-9 by the sample 3 value of part A provides column B-10 

data.
11 Consider the base. The base is only the distribution of nonzero amounts

shown in columns B-2 and B-3. The number of data is the NX of column 
A-4. Column B-ll then gives the probabilities of occurrence of amounts 
equal to or less than selected nonzero amounts shown in column B-12.
This column is labeled "GRAPH" to indicate that this may be used to 

12 
graph the set of nonzero amounts.

Arbitrarily selected cumulative amounts. The maximum number of amounts
is 52. A program option permits change of amounts and < 52 amounts.
The option also provides for the amounts to be scaled in terms of the 

mean of the nonzero amounts.
13 Probabilities of exceeding the arbitrarily selected cumulative amounts

shown in column B-12. This is the mixed distribution.________________
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If NX = NNX in part A, columns A-4 and A-5 (i.e., if the original distribution has no 
zero amounts), then column B-13 is the complement of column B-ll.

The plot of columns B-ll, B-12, and B-13 (as one set) and columns B-8 and B-9 (as another 
set) should plot on the straight line of the graphs shown in this report. The data of 
column B-12 should be scaled by division by the scale parameter B. The empirical proba­
bilities and empirical amounts shown in columns B-5 and B-7 plotted on the graph will show 
visually and subjectively how good the line of best fit fits the data.

Wherever the approximation routines fail for a particular quantity or probability level, 
this will be noted in the output. Usually, enough levels will be available so that the 
loss of a level or two is not important (i.e., interpolation will suffice). If too many 
levels are noted, then the program routines generally will be inadequate because of diffi­
culties previously mentioned in the asymptotic portion of the distribution.

For most purposes (in the analytical sense), if the gamma model is accepted without 
question, columns B-8 and B-10 or columns B-12 and B-13 provide the desired information 
based on the data sample. One set is the inverse of the other, though different levels 
may be and generally are used.

VII. MIXED DISTRIBUTIONS

Some data sets form a mixed set of distributions. The simplest mixed set consists of two 
subsets of data:

1. All data equal to or less than a, the origin.

2. All data greater than a.

Where the origin a is zero, the mixed set consists of:

1. The subset of zeros.
2. The subset of measured quantities.

Thus, after Thom (1951),
H(x) = q + p G(x) (7)

where q is the zero set empirical probability, p is the measured set probability, and G(x) 

is the gamma distribution function for the measured set. For example, if q = 0.40 and 
p = 0.60, 40% of the observed values are zero and 60% of the observed values are greater 
than zero. Then, the cumulative probabilities of amounts greater than zero develop from 
the solution of G(x). These probabilities then are multiplied by 0.60 and added cumula­
tively to the initial 0.40 probability for the zero. If a is not zero, then the q = 0.40 
would apply to values <_ a. Also, p refers to values > a.
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The above procedure, utilizing the simplest mixed distribution, is part of the present 
computer program. Neither the model nor the program considers or allows for mixtures 

within the set of measurable quantities.

VIII. PREPARATION OF GAMMA DISTRIBUTION FUNCTION PROBABILITY PLOTTING PAPER

The investigator who relies too much on numbers and the electronic computer to process a 
data set bypasses the plotting step in many investigations. He expects the computer to do 
the thinking and the interpretation. This places too much reliance on a computer, which 
may have internal programming procedures unknown to the investigator. Data plots are many 
times a last step, if at all, in the reporting step in an investigation.

Plots of data form a first step in the study of any set of experimental or engineering 
data. The eye is usually a good integrator of the information display. Graphical analysis 
sometimes replaces numerical analysis. Sometimes, there is no other recourse because the 
complexity of distributions and their interrelationships defies the ingenuity of the 

analyst, the programmer, and often, even today, overloads the capacity and capabilities of 
the electronic computers. Intractable problems from the numerical or even analog point of 
view sometimes become tractable by means of graphical analysis. Graphical plots in terms 
of probabilities or of hazards provide ideas, concepts, and answers that numerical proce­
dures cannot provide. Linsley et al. (1949) provide some good examples of graphical corre­

lation procedures.

In a sense, the preplotting of the data permits a quality review of the data. This pre­
plotting may even take the form of simple arrays such as scattergrams, histograms, or iso- 
pleth analyses of data arrays, whether in original first differences or transformation. By 
such means, outlier or questionable data examination is possible prior to inclusion or ex­
clusion in the processing of the data. The inclusion of extremely bad data destroys the 

validity of any statistical analysis.

The following (Kimball 1960, p. 549) is most appropriate for this discussion, though it 
pertains in general to the normal distribution.

"Before proceeding further it is to be noted that the simplification afforded by the use 
of probability-scale graph paper is a visual simplification. The probability paper trans­
forms a curvilinear distribution into a straight line. If the approach is to be purely 
analytical, there is no point in using the special scale paper.

"It then becomes important to have in mind the purpose served by plotting the observed 
data on the special scale graph paper. In general there are three rather different kinds 

of purposes that might be served. These are:
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(1) A test as to whether or not the sample data indicate that the universe is of the 

prescribed type. One argues that the universe is of the prescribed type only if the plotted 
points tend to lie along a straight line.

(2) The graphical method may be used as a shortcut in estimating the standard devia­
tion of the distribution, which in turn is directly determined from the slope of the fitted 
straight line.

(3) Graphical extrapolation at one of the extremes. This is the purpose most commonly 

served in plotting data from an extreme-value universe. Data are often plotted on extreme- 
value graph paper when it is known that on the lower range of maximum values the extreme- 
value distribution of Type I does not apply (9, p. 767). If in the upper range there is 

likely to be good conformity with the Type I distribution, a straight line fitted on the 
upper range is used as a basis for extrapolation of large extremes beyond the range of 
plotted points.

"These objectives can overlap. When accenting (2), one may well have a weather eye on 
Objective (1). For example, in examining a batch of samples taken from different popula­
tions one may have inferred that the universes are normal and so accent Objective (2). 

However, some errant populations may deviate considerably from the normal and so one may 
also give some weight to the graphical test of normality. Similarly in accenting Objective 
(3), Objective (2) is important. Furthermore, as noted above, there are situations where 
the data over the lower range are known not to follow the prescribed distribution; in which 
case data on the upper range are given greater weight in fitting a straight line. Thus 
Objective (1) is involved in indicating what part of the range conforms to the prescribed 
universe."

Wilk et al. (1962) and Thom (1968) provide, for a gamma distributed variable, the 
necessary information for construction of a probability plot whereby the fitted theoretical 
line is a straight line.

Plotting of the data often allows the estimation of parameter values. Chernoff and 
Lieberman (1956) indicate that the optimal construction of a graph paper depends upon the 
use to which the graph will be put. For example, Nelson and Hendrickson (1969) discuss a 
computer program for probability plotting and analysis of data, while Shapiro (1969) dis­
cusses probability plotting in general. Wilk et al. (1962) discuss this for the gamma 
distribution, and Nelson and Thompson (1971) discuss this for the Wei bull distribution.

This report builds upon the work of all the cited authors back to the work edited by 
Pearson (1922). Simply, graphical form gives the inverse gamma probability values so that, 
with an estimate of the shape parameter y, the appropriate probability grid lines of the 
graphical plot easily can be drawn. With an estimate of the scale parameter 6, the appro­
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priate scale is determined graphically and used as the second argument of the plot or the 
horizontal grid. Thus, the only requirement for use of the plotting paper illustrated in 
this report is that the estimates of the scale and shape parameters 3 and y must be known 
or calculated before use of the paper. On the other hand, the graphical techniques provide 
approximation of the parameters 3 and y. Usually, three approximations narrow the estimates 
sufficiently. Suggestion for an approximation technique is given after the discussion on 
graph papers.

Hahn and Shapiro (1968) discuss at some length the subject of probability plotting and 
listing of distribution of assumptions. They indicate a x2 distribution probability 

plotting paper is available from Technical and Engineering Arts for Management, 104 Bel rose 
Avenue, Lowell, Mass. The shape parameter y is equivalent to one-half the degrees of free­
dom of the x2 distribution. The x2 probability plotting paper used for 1, 2, 3, 4,... de­

grees of freedom can be used for gamma probability plotting paper of 0.5, 1, 1.5, 2,... for 
gamma. Available x2 probability plotting paper is restrictive for the gamma probability 

plotting paper, but gamma probability paper in the present report is not restrictive for 
the x2 distribution.

When the shape parameter y is equal to 1.0, then the techniques shown here provide the 

basis for the exponential distribution function plotting paper.

A. Type A Plotting Paper

The lower bound of the data is zero, and no zeros exist. Type A plotting paper is any 
rectangular coordinate plotting paper or simply a piece of paper on which unit measurements 
exist as square blocks of equal size. That is, the units are the same on both the abscissa 
and the ordinate. Choose the horizontal as the abscissa and the vertical as the ordinate.

Figure 2 illustrates the computer output of a mixed distribution H(x) = q + p G(x) where 

q = 10/39 and p = 29/39 from columns A-4 and A-5. Columns B-8, B-9, B-10, B-12, and B-13 
refer to the mixed distribution; and columns B-ll and B-12 refer to the nonzero portion or 
p portion. Column B-ll provides G(x). Note that column B-12, selected arbitrary amounts, 
serves twice.

Figures 4A, 4B, and 4C illustrate the preparation and use of type A plotting paper. The 
basic chart 4A design is based on Wilk et al. (1962). Figures 4A and 4B refer to the mixed 

distribution; figure 4C shows both the mixed and the nonzero portions of the distribution.

As a preliminary basic chart, 4A is prepared. Essentially, it consists of a rectangular 
coordinate graph paper with units and divisions thereof marked as quantiles. A line of 
slope 1 serves as the theoretical line of best fit. The bound of zero is placed in the 
lower left-hand corner.
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Figure 4.—Albany, Ga., May 10-16 precipitation: (A) quantiles and line of best fit, 
(B) probability quantiles, (C) probability of exceeding stated amounts in (I) G(X) 
and (II) H(X), and (D) data plot on the line of best fit
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Figure 4B is now prepared from figure 4A and data in columns B-8, B-9, and B-10. The 
quantile probability grid is constructed easily. Here, only a few probabilities are 
selected for illustration (viz, 0.40, 0.50, and 0.60). The respective quantile values from 
column B-9 are 0.124, 0.258, and 0.437. They are located on both the quantile scale across 
the top or the quantile scale inside the left vertical axis. Lines from these points, of 
course, intersect on the line of slope 1. Draw the grid for the quantile values above.
Label the base of the vertical grid lines with the respective cumulative probabilities.
Then label the horizontal grid lines on the left with the quantile values and on the right 
with the quantile values times the scale @. The corresponding values obtained from column 

B-10 are 0.160, 0.335, and 0.566.

Figure 4C shows:

I. The cumulative probabilities within the nonzero quantities G(x).

II. The probability of exceeding stipulated amounts of the variable, (1-H(x))—in this 

case, precipitation.

To easily plot the data on the figure 4A base, one must change the stipulated amounts of 
rainfall in column B-12 to quantiles by dividing by the scale parameter estimate §, 1.295. 

Here, for lack of space, only the unit values of precipitation are changed. Respectively, 
these are 0.772, 1.544, and 2.317. Column B-ll gives the cumulative probabilities (G(x)) 
of these as 0.638, 0.847, and 0.933. Column B-13 gives the probabilities of exceeding these 
amounts in the mixed distribution that includes the zeros, that is, (1.000 - H(x)), re­

spectively, as 0.269, 0.114, and 0.050. Here,

1.000 - H(x) = 1 - (q + p G(x)) (8)

where n = 39, q = 10/39, and p = 29/39.

Using the figure 4A base, plot the quantiles transformed from column B-12 and draw the 
rectangular grid. The quantiles are shown on the left vertical scale; the equivalent pre­
cipitation amounts are shown on the right vertical scale. The bottom of each vertical grid 
then is marked I, with the respective cumulative probabilities (G(x)) within the nonzero 
population, and II, with the respective probability of exceeding (1.000 - (H(x))) the 
amounts in the mixed distribution. Please note that, for the latter, the bounding proba­

bility on the left is 29/39 or 0.744.

The user may wish to plot his actual data on this paper to see whether he wants to reject 
the fit presented by the straight line. There are several procedures to do this. Hald 
(1952), Chernoff and Lieberman (1956), Blom (1958), Kimball (1960), Sarhan and Greenberg 
(1962), and Gringorten (1963) describe some of the procedures often used. Kimball discusses 

the problem in some detail.
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The steps are:

1. Order the data from low to high, such as xi, x2, x3,..., xn. See column B-3 of the
computer output.

2. Compute the empirical probabilities by means of

Pi = (i-c)/(n-c-b+1)

where is the empirical probability of i and i is the ith ordered data, b and c are 
parameters, and n is the number of data. As an approximation, assuming some measure of 
symmetry whenever appropriate, especially when y is large, set b = c = 1/2. Blom (1958) 
suggests the use of 3/8 rather than 1/2. Gringorten (1963), working with extreme values, 
suggests 0.44. Here, c is set to 0.44. The right-hand member of the equation reduces to 
(i-0.44)/(n+0.12). Sometimes, when n is small, c is set equal to zero. See computer out­

put column B-5.

The present computer program contains a default option to 0.44. (See Wilk et al. 1962.) 
The user may decide to use some value for c other than 0.44. Experience dictates the value. 
Blom (1958), Kimball (1960), Hahn and Shapiro (1968), and Gupta and Groll (1961) present

important, pertinent, and interesting reading on the selection of an appropriate value for 
c. As indicated by Kimball, the various methods put forward to determine plotting positions 
create confusion of thought in judging what plotting convention is optimum. There still is 
confusion, but only because the user usually does not realize that the value of c used de­
pends upon a certain feature or certain features of the distribution that are being ex­
amined.

3. Plot the data on a base illustrated in figure 4A at the ordered points of (Y^, p..).
The corresponding quantiles for plotting for p.. are given in columns B-6 and B-7. The user 
subjectively will decide whether the fit of the straight line to the data is to be rejected 
or not rejected.

Figure 4A illustrates the basic quantile background for all plotting, though this back­
ground usually is not shown. The theoretical cumulative quantiles are shown with the 45° 
line of best fit (i.e., the scale parameter is 1). On the right, the quantiles for the 
scale parameter have been multiplied by a scale parameter 1.295. This refers to the data 
of figure 2, Albany, Ga., precipitation data, 11th climatological week, May 10-16, 1930- 
1968. Quantiles and quantities associated with arbitrary selected probabilities now are 
shown in figure 4B where the unit quantile background grid has been dropped. These are 
taken from figure 2, columns B-8, B-9, and B-10. For example, at the probability level of
0.90, go to the right a quantile value of 1.663; rise vertically on this probability grid 
value to the 45° sloping line and then to the left and right. Here, the left-hand ordinate 
has been marked also, but with the value of 1.663; on the right, the quantity level 2.154 
(1.663 x 1.295) is shown.
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Figure 4C has been prepared from the data provided by columns B-ll, B-12, and B-13 of 
figure 2. The background grid has been prepared by scaling the data in column B-12 by 
division by the scale parameter 1.295. These then become the units of this particular grid. 
Here, units of (1.000/1.295) or 0.772 are used. These then are marked, quantiles on the 

left and precipitation quantities on the right.

Plotting is as follows. Correct the quantities of column B-12 to quantiles by division 
by the scale parameter, in this case, 1.295. Proceed to the right for a selected quantile, 
say 0.772, then upward the same distance to the 45° line, then to the left and to the right. 
Now mark the horizontal end points with the appropriate respective quantile and quantity 
values, 0.772 and 1.0. Now mark the base of the verticals with the appropriate probability 
values for the nonzero and the mixed data, G(x) and H(x), respectively. For 1.0-in. pre­
cipitation for this set of data from figure 2, the probabilities are respectively 0.638 and
0.269.

Note that in the H(x) data, line (II), the left probability bound is the empirical proba­
bility of zeros. In this case, the probability of exceeding zero is 29/39 or 0.744. The

lower bounding probability line for the mixed distribution (II) H(x) is labeled 0.744; for 
the (I) G(x) line within only the measurable precipitation data, the probability of getting 

less than a measurable amount is zero.

Figure 4D illustrates an overplot of selected data of figure 2 on the graph showing the 
line of best fit. These are plotted in quantile values from the data in columns B-4 and 
B-6. These are labeled respectively with corresponding data from columns B-3 and B-5.

Figure 4D shows the theoretical line of best fit of figure 4A with the overplot of em­
pirical data taken from columns B-4, B-5, and B-6 of figure 2. The background grids are 
not shown here in detail. These are for the nonzero data. The fit of the model to the data 
may be judged subjectively by eye. Here, the fit could be better. Substantiating this, 
figure 2 provides on line A three values, one each in columns A-10, A-ll, and A-12. The x2 
value of 15.483 (col. A-10) will be exceeded with a probability of only 0.030 (col. A-ll) 

which indicates that this data set is not too well represented by the gamma model. Here, 
the distribution was divided into 10 equiprobability class intervals. The value of the K-S 
test statistic provides, in column A-ll, 0.086, a measure of the largest class interval 
difference between the theoretical and empirical, probabilities. The probability of exceed­
ing the value may be obtained by reference to Lilliefors (1967, 1969, 1972) for the normal, 
exponential, and gamma distributions. Here the gamma is the most appropriate for general 
use; though if the shape parameter is very large or equal to one, the tables for the normal 
and exponential respectively can be used. In Lilliefors (1972), for the gamma model, for a 
sample of 30 (29 were used here), for an a level of 0.005, and for a shape parameter of 1.0 
(here, 0.796), the K-S statistic is 0.1863. As the K-S statistic 0.086 does not exceed 
0.1863, the model is not rejected. The K-S test is judged to be more powerful than the chi- 
square test; therefore, though the chi-square test suggests rejection, the model is not re­
jected.
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Here is another example — figure 3 gives the computer tabular output. The data are 35 
cases of maximum rainfall from tropical cyclones or remnants thereof that crossed the 
Appalachian Mountains during the period 1900-1969 (Haggard et al. 1971).

Figure 3 differs from figure 2 in that there are no zero amounts involved. Thus, paired 
values of columns B-ll and B-13 add to 1.000. In other words, the column B-ll values are 
complementary to the column B-13 values. Only one graph is required for the theoretical 
values. Column B-8 provides arbitrarily selected probability levels for which the theoreti­
cal quantiles and amounts are given in columns B-9 and B-10. Four probability levels are 
selected for illustration, namely, 0.100, 0.500, 0.900, and 0.950. Column B-12 provides 
arbitrarily selected precipitation amounts for which theoretical probability levels, cumu­
lative and exceeding, are shown respectively in columns B-ll and B-13. As the values in 
column B-13 are complementary to the column B-ll values, only the column B-ll cumulative 
probabilities are shown. Because of space limitations, the 1.000-, 5.000-, 10.000-, and 
15.000-in. levels with the corresponding probabilities are shown. As in construction of 
figure 4C, it is necessary to change the column B-12 amounts to quantiles by dividing by the 

scale parameter 2.447.

Construction of figure 5 from figure 3 information follows that for figure 4C. Figure 5, 
therefore, shows the cumulative probability for the Appalachian Mountains maximum measured 
rainfall from cyclones or remnants thereof crossing the mountains during 1900-1969 (after 
Haggard et al. 1971). The data are taken from figure 3. The line of best fit is the 45° 
line. The plotting quantile grid used is indicated on the left; the amounts (quantiles 

times scale parameter) are shown on the right.

QUANTILES

5.815 2

CUMULATIVE PROBABILITY

Figure 5.--Maximum measured rainfall from tropical cyclones crossing 
the Appalachian Mountains during 1900-1969
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Figure 5 from figure 3 shows the amounts corresponding to selected probabilities of 0.100, 
0.500, and 0.800 from column B-8 against the quantity values from column B-10, 2.257, 5.815, 
and 9.547, respectively. Probabilities of 0.016 and 0.823 corresponding to selected amounts 
from column B-ll are 1 and 10 in., respectively. In addition, it further illustrates both 
the probability level 0.409 and quantity level 4.894 for the quantile value of 2.0.

More complete plotting of the information in figure 3 will permit ready graphical inter­
polation of information. No overplot of empirical data has been prepared. The chi-square 
and K-S test value information imply that the data are well fit by the gamma model. The 
line A, column A-ll, chi-square datum of 0.628 indicates that the probability of exceeding 
the value of 7.571 will be 0.372.

The K-S test value is 0.086. For a sample size of 30, with a shape parameter of 3.0, the 
probabilities of exceeding values of 0.151 and 0.164 are 0.10 and 0.05, respectively 
(Lilliefors 1972). The probability of a number larger than 0.086 by chance then is rather 
large. Please note that, by coincidence, the K-S test statistic for both examples to three 
decimal places is the same (viz, 0.086) though the shape parameter and data samples are 
quite different.

Another procedure is to label the ordinate in terms of the quantiles shown in column B-9. 
Then, construct a line with a slope equal to $ and read directly from this slope the proba­
bilities equal to or less than or the probabilities greater than selected amounts.

B. Type B.1 Plotting Paper

Figures 6A and 6B show two sizes for a gamma distribution function plotting paper type B.l 
for data > 0 or the origin. The first is regular page size; the second is oversize and 
appears as an unnumbered fold-out page. There are four quadrants. The upper left quadrant 
shows the general form of the incomplete gamma function with instructions for use. The 
lower right-hand portion of the paper, the quadrant containing the single diagonal line of 
best fit sloping upward to the right with a slope of 1, is for plotting. If the data are 

precisely gamma, chi-square, or exponentially distributed, the plot is the sloping straight 
line. Such a perfect fit is not to be expected. Sample data can be plotted. Departures of 
sample data from the straight line permit subjective decision as to whether the fit is or is 
not good.

Tables 2 and 3 give recorded maximum 24-hr precipitation from tropical cyclones or rem­
nants thereof that passed over the Appalachian Mountains during 1900-1969. Table 2 provides 
a data set for the total storm period. Table 3 presents the maximum likelihood estimators 
of the scale and shape parameters of the gamma distribution for the data of table 2.

Figure 7 illustrates the use of the gamma plotting paper type B.l and depicts the distri­
bution for the data of table 3. A few values of table 2 are overplotted on the figures to
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illustrate the fit of the line of quantile slope 1 to the data. The inference is made that 
the fit is adequate. The size of the graph illustrated precludes easy plotting of all data 
pairs (Y., p^.

Probability plots of data by computer may be made as indicated by Wilk et al. (1962) who 

indicate that such a program is available. Here, this graph paper has been developed for 
use by people to whom a computer is not immediately available or who wish to make graphical 
estimates of the gamma parameters.

Plot probabilities as the abscissa beginning at zero at the left-hand bound of the plot­
ting area. Plot values of the variate vertically against a scale that may be marked on the 
left-hand vertical bound of the plotting areas. A scale is available in the appropriate 
units when the scale parameter B is equal to 1.0.

Specified gamma quantile probabilities appear as curved lines in the upper right-hand 
quadrant. Tables given by Wilk et al. (1962) and Thom (1968) form the basis of these curved 
lines. The sloping straight lines shown in the lower left-hand quadrant furnish the appro­
priate scales for the variate. These are a multiplication artifice.

The user obtains the percentile marks in the fashion shown in the inset of figures 4 and 
7. Suppose that the shape parameter is 2.0 and the scale parameter is 3.0. The steps

follow.
1. Draw a horizontal line at y = 2.0 in the upper right-hand quadrant. Note that the

line crosses all the gamma probability curves shown for the gamma quantiles.

2. From the intersection of the horizontal line drawn in step 1 and the probability
curves, drop perpendicular lines vertically through the lower right-hand quadrant and label 
each with its appropriate probability value. Labels of the complements provide probabili­

ties exceeding specified values.

3. There are several options to produce scale values. One follows. At the vertical line
separating the lower quadrants, proceed upward to the value of the scale parameter 3.0.
From this point, draw a line to the extreme lower left at the convergence point of all scale 
lines. Note the intersection of this line with the horizontal line 1.0 on the vertical 
separation. This appears as a heavy line on the plotting paper.

4. From the point of intersection found in step 3, draw a perpendicular line. The inter­
sections of the sloping scale and this vertical line provide appropriate scaling units.
Draw horizontal lines passing through these points of intersection across the lower right 
quadrant. In the vertical space along the left-hand side of the plotting quadrant, mark the 
ends of the horizontal lines with the appropriate scale values.

5. The probabilities equal to or less than or the probabilities greater than selected
amounts can be read directly from the heavy line sloping upward to the right.

6. Plot the empirical sample data on the graph to permit subjective evaluation of the fit
of the model to the sample data.
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Figure 6.—Gamma distribution function plotting paper type B.l
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Table 2.—Ordered maximum recorded amounts of Appalachian 
Mountains precipitation in inches produced by tropical 
cyclones that passed over the mountains during 1900-1969. 
A is sequential order; B, amount; C, empirical probabil­
ity (1.000 - pi) where p.

i
= (i - c)/n - c + 1 where 

c = 0.44.

A B C A B C

1 0.80 0.016 19 6.31 0.514
2 .81 .043 20 6.44 .542 *
3 3.10 .071 21 8.00 .569
4 3.50 .099 22 9.30 .597 *
5 3.74 .126 23 10.84 .625
6 3.79 .154 24 11.00 .652
7 4.02 .182 25 11.07 .680
8 4.46 .209 26 11.22 .708 *
9 4.49 .237 27 13.47 .735

10 4.50 .265 28 15.15 .763
11 4.58 .292 29 15.60 .791
12 5.04 .320 30 16.00 .818
13 5.08 .348 31 16.36 .846
14 5.27 .375 32 16.64 .874
15 5.94 .403 * 33 18.69 .901
16 6.14 .431 34 18.93 .929 *
17 6.18 .458 35 23.73 .957 *
18 6.28 .486 36 27.00 .984 *

* These values are selected arbitrarily to illustrate 
plotting. The reader is invited to plot other points so 
as to induce a better understanding of the plotting pro­
cedure.

Table 3.--Estimates of the gamma distribution parameters of the 
maximum recorded Appalachian Mountains precipitation amounts 
in inches produced by tropical cyclones that passed over the 
mountains during 1900-1969. Table 2 provides the data.

Number of data 36
Mean 9.263
Origin (a) 0.000

Beta (3)
Gamma (y)
X2

4.551
2.035

10.667

Scale parameter
Shape parameter

x2 (prob.) 0.846 X2 will exceed 10.667 with a 
probability of (1.000 - 0.846) 
or 0.154.
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C. Type C.1 Plotting Paper

Type 

C.1

 plotting paper intrinsically is the same as type B.l. The probability curves and 
scale curves appear in overlay patterns. The field is larger than in the type B.l so as to 
permit easier drafting of the scale and probability grids. Figures 8A and 8B show two sizes 
for a gamma distribution function plotting paper type C.l when data are > 0 or the origin:

1. The probability curves run upward toward the right.

2. The scale slopes run upward to the left so as to permit easier reading against the
probability curves. These are marked in terms of B, the slope or scale parameter.

3. With a given scale parameter B, select the appropriate slope line. Proceed downward
to the right to the intersection with the first horizontal unit line, 3=1. Draw a vertical 
line and mark this line with the value of the slope lines at the points of intersection. 
These are the units of the scale of the original data. This scale then forms the ordinates 
of the graph. The ordinate values then can be drawn horizontally across the grid from the 
left-hand side of the graph paper (i.e., where probability values are zero). Label these.

4. With a given shape parameter y, draw a horizontal line through the appropriate y line.
Mark the intersection of the curving probability lines with this horizontal line and re­
spectively label them. Now, draw a vertical line through these points. Label them. These, 
with borders and the sloping heavy line, complete the grid.

5. The straight line sloping upward at 45° is the theoretical line of best fit as in the
types A and B plotting papers.

6. The observed data with their probability levels dictated by (i-c)/(n-2c+l) now may be
plotted. See column B-4 of figure 3. View the data plot to determine subjectively whether 
the straight line fits the data.

Figure 9 illustrates the use of gamma probability plotting paper type C.l for the 
parameters given in table 3. Again, a few data pairs of table 2 are overplotted to illus­
trate the fit of the line to the quantile slope 1 to the data. The inference is, of course, 
made again that the line is a good fit to the data on the grid shown.
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D. Type D Plotting Paper

Here is another procedure to use the grid system on the type C plotting paper:

1. Use a blank sheet of paper with rectangular corners (say, the size of this page).

2. Place the lower edge of the blank sheet of paper on the lower edge of the grid. Place 
the left edge of the blank sheet of paper on the vertical line that passes through the 
intersection of the horizontal 1 line and the 3 value sloping line. Mark the edge of the 
sheet with the values of the sloping 3 lines that pass through the vertical line. This is 

the graph ordinate scale in units of the original data.

3. Move the left edge of the blank sheet of paper to the left edge of the grid. Then 
move the sheet vertically until the top or bottom edge lies on a horizontal line equal to 
the value of y, the shape parameter. Mark the horizontal edge of the blank sheet with the 
probability values of curving gamma lines as these intersect the edge of the paper. Draw 
vertical lines through these points. These then form the probability net.

4. Draw a line with a 45° angle, a slope of 1, from the lower left-hand corner of the 
gridded sheet upward to the right. This is the line of best fit of the gamma model to the 

data set.

5. Read probabilities of exceeding any arbitrary value of the variable or read values for 

exceeding any arbitrary probability.

IX. GRAPHIC ESTIMATION

Use of graph paper to estimate the scale and shape parameters of the gamma distribution 

entails:

1. Ordering the data.

2. Computing the empirical probabilities of the ordered data.

3. Computing the arithmetic average J of the set of data where 0 < x < «.

4. Estimating the scale parameter first as 3 and obtaining the corresponding shape 

parameter yx from the expression J = 3^-

5. Alternatively, the first estimate of 3, 3X may be obtained by first estimating the 
shape parameter y as y . This may be done by plotting the histogram of the data set and 
then by looking at the histogram shape. Reference may be made to figure 1 showing various
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shape parameters with the corresponding distribution curve shape. Remember:’

a. The mean or average is equal to By.

b. The mode is one less than yi (i.e., y-1).

c. If the shape is exponential, y=l.

d. If the shape is normal, y is large; estimate 30. Having estimated y as y^ then
obtain 31 from J = y^-

6. Scaling the lower right diagram (compute ordinate values) using Bx = )T/yx- This 
applies to figures 6A, 6B, and 7.

7. Drawing a horizontal line on the upper right diagram corresponding to y.

8. Drawing vertical probability lines on the lower right diagram corresponding to y and 
the empirical probabilities computed in (2).

9. Plotting the data according to points defined by the abscissa and ordinate values 
determined in (5) and (7).

10. Drawing a line of best fit (by eye) through the plotted data, using all data.

11. Translating the line of best fit so that it intersects the lower left corner of the 
lower right diagram.

12. For a convenient probability (preferably the highest) take the ratio of the value of 
the translated line of best fit to the value of the theoretical printed line, which is the 
45° line.

13. Multiplying the square or cube of ratio obtained in the latter part of (12) by yi to 
obtain a second approximation y2 that is a closer approximation to the sample shape 
parameter y.

14. Computing a new approximation to the correct sample 3 from 32 = X/y2.

15. Repeating this procedure until an estimated y^ and 3^ permit the line of best fit to 
coincide with the theoretical printed line.

16. The multipliers in (13) may be higher roots or powers for other types of graph paper.

This procedure should provide acceptable estimates with the second approximation, though 
three approximations may be needed. A bad fitting of the data points by eye will call for 
the next approximation.
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X. PROBABILITY PLOTTING FOR OTHER DISTRIBUTIONS

A. Exponential Distribution

The user is urged always to make a scattergram or some type of plot for the data set. If 
the data set is bounded on one side and unbounded above, a first guess model is a gamma 
model. If the shape parameter is near 1, a second guess is that the distribution may be 
more specific (i.e., exponential). See figure 1. Rarely will the number 1 be obtained 
precisely because of sampling error. Therefore, with a shape parameter near 1, the expo­
nential distribution is a good first guess. Use exponential distribution plotting paper or 
the chi-square plotting paper for two degrees of freedom. If these are not available, use 
the type B or type C probability plotting paper described in this report. The probability 
grid is determined from gamma equal to one line (y = 1).

B. Chi-square Distribution

As the degrees of freedom for the chi-square distribution are integer values equal to 
twice the value of gamma, then the chi-square distribution for 1, 2, 3, 4, 5,...,n degrees 
of freedom are plotted on gamma plotting paper for 0.5, 1, 1.5, 2.0, 2.5,..., values for 
gamma. The graph paper illustrated has the x2 degrees of freedom placed parallel to the 

gamma values along the ordinate on the left.

C. Poisson Distribution

The Poisson distribution holds for even values of the chi-square distribution. Therefore, 
gamma distribution grids prepared for gamma equal to integer values of gamma may be used for 

the Poisson distribution.

Please note that the gamma, exponential, chi-square, and Poisson distributions are 
related. The gamma distribution model is the general model. The shape parameter's range 
is 0 <_ y < °°. The chi-square distribution shape parameters in terms of y are restricted 
(i.e., these are 0.5, 1.0, 1.5,...,< «> gamma values respectively equivalent to chi-square 

with 1, 2, 3,...,degrees of freedom). The Poisson distribution shape parameters in terms of 
y are even more restrictive; i.e., these exist for chi-square degrees of freedom 2, 4, 6,..., 
< oo, respectively, for gamma shape parameters are 1, 2, 3,.... The exponential distribution 
has one and only one shape parameter in terms of y; its value is 1. In other words, for the 
last distribution, the exponential distribution is equivalent to a gamma distribution with a 
shape parameter of 1 and a chi-square distribution with two degrees of freedom. A small 
tabular illustration follows where ... or a value indicates existence and dashes or lack of 

a mark indicates nonexistence.
Some care will be required if chi-squared tables are used for gamma or vice-versa. The 

chi-square values must be halved,or the gamma values must be doubled for any cumulative 

level. For example, at the 0.95 cumulative probability level the chi-square for 2 d.f. is

5.991 while the gamma tabular value at a shape parameter of 1.000 is 2.9957. For 3 d.f., 
the 0.95 cumulative probability level is 7.815 while the gamma tabular value is 3.9074.
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Gamma Chi-square Poisson Exponential
(Shape Parameter) (Degrees of Freedom (d.f.)) (d.f.) (d.f.)

1.0000

XI. SPECIALIZED GAMMA GRAPH PAPER

The foregoing discussion of the gamma probability graph paper treats as large a range of 
scale and shape parameters as possible. For quality assurance, control and reliability 
purposes, the user may be interested in the region of the gamma distribution near zero and 
in the tail. Therefore, five more graphs, types 3 through 7, have been prepared, though it 
is realized that these may not meet all of the user's needs. These are shown as figures 10, 
11, 12, 13, and 14. Readers are invited to correspond with the authors if other specialized 
forms are needed.

Table 4 provides for the seven graph papers,

1. The ranges of the probabilities, the quantiles, the shape parameters, and the scale 
parameters, in addition to

2. The slope ratio treatment for the parameter approximating steps.

No examples of use with actual data are provided here.

For figures 12, 13, and 14 the scaling can be 6/100. Figure 11 differs from the others in 
that the right half is an extension of the left half. Here, the line of best fit may be 
extended upward toward the right for use with the left half. For the right half a line of 
best fit may be drawn from its lower left-hand corner and an appropriate shift of scale made 
from the left half.
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Figure 10.--Gamma distribution function plotting paper type 3
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QUANTILES

8 9 10 11 A2
GRAPH PREPARATION

Given a* 0; 0= 4.0; y = 1.4; the completed graph will appear in the 
lower half.

STEP I (a) In the upper right quadrant, at 7=1.4, draw a horizontal line.

(b) Through the intersections of this horizontal line with 
the probability curves, draw perpendicular lines ex­
tending through the lower half. Label these lines at 
the base with the corresponding probability values.

STEP II Multiply the scale at the right edge of the graph by /3 = 4.
Draw horizontal lines across the lower half and label 
these lines with the new scale values. These new scale 
values are in units of the original set of data.

STEP III The heavy sloping line in the lower half is the line fitted to 
the distribution defined by the scale lines and probability 
lines that have been drawn. Quantities and probabilities 
may be interpolated from this graph.

STEP IV If a plot of the original data is needed, order the data 
from lowest to highest, labeling them i = 1 through n, 
where i = 1 is the lowest value and n is the number 
of data. Compute the empirical probabilities by use of 
the expression ( i - c ) / ( n - 2c + 1 ). For large samples 
c is set equal to x/z which reduces the expression to 
( i - xk ) / n. For small samples c may be set equal to 
0. The expression is then ( i / n + 1 ). Plot the ordered 
data pairs against the probabilities on the graph prepared ( 
in STEPS I through IV. View the data plot and sub­
jectively decide whether the data are fit well by the 
prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, an­
other model should be considered.

NOTE: If the shape parameter gamma is 1.2 or less use the left half.

I i l » l i I l l i I i l 11

GAMMA DISTRIBUTION FUNCTION MODEL

■,°Ar)z (y-a)7'1 e'(y"a)/'8

ORIGIN 
0>O SCALE PARAMETER 

:Y >0 SHAPE PARAMETER 
y IS THE MEAN

SCHEMATIC EXAMPLE

a * 0

7“ 1.4
0 = 4.0 

r» 5.6
P« 0.995

AMOUNT* 24.84
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Figure 10.--Concluded
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GAMMA DISTRIBUTION FUNCTION MODEL
B . 0-r ;°Ar). r(rl (y-a)^1

a r

0 >0
ORIGIN

0= SCALE PARAMETER

r = r >0 SHAPE PARAMETER

y = 7 IS THE MEAN

.850

Given a = 0; 
lower half. •

GRAPH PREPARATION

0 * 10; y = 1; the completed graph will appear in the

STEP I

— STEP III

(a) In the upper half, at 7=1, draw a horizontal line.

(b) Through the intersections of this horizontal line with 
the probability curves, draw perpendicular lines ex­
tending through the lower half. Label these lines at 
the base with the corresponding probability values.

Multiply the scale at the right edge of the graph by 0= 10. 
Draw horizontal lines across the lower half and label 
these lines with the new scale values. These new scale 
values are in units of the original set of data.

The heavy sloping line in the lower half is the line fitted to 
the distribution defined by the scale lines and probability 
lines that have been drawn. Quantities and probabilities 
may be interpolated from this graph.

If a plot of the original data is needed, order the data 
from lowest to highest, labeling them i = 1 through n, 
where i = 1 is the lowest value and n is the number 
of data. Compute the empirical probabilities by use of 
the expression (i - c ) / ( n - 2c ♦ 1 ). For large samples 
c is set equal to Mr which reduces the expression to 
( i - Mr) / n. For small samples c may be set equal to 
0. The expression is then ( i / n + 1 ). Plot the ordered 
data pairs against the probabilities on the graph prepared 
in STEPS I through IV. View the data plot and sub­
jectively decide whether the data are fit well by the 
prepared graph.

.950

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is. an­
other model should be considered.
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995

.999 _I- i.o 2

— 0.5 1
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Figure 11.—Gamma distribution function plotting paper type 4
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GRAPH PREPARATION

SgSsaHSrKS

QUANTILES

i i i 1 i . 1 i I ■ I ■ I ■ ■Ll-Li I I I L J .1-1 I 1 1 1 I 1 I ■ I . I . I ■ I ■

1 I I. I I I ■11111J- l x. Li.1.1 I I i. Li 1 > L 1 1 1 L.

PROBABILITY

Figure 11.—Concluded
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DISTRIBUTION FUNCTION MODEL
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Figure 12.--Gamma distribution function plotting paper type 5
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GAMMA DISTRIBUTION FUNCTION MODEL

, p-y (yW~l e‘(y-a)/S

a r ORIGIN
0>O SCALE PARAMETER

y= r>o SHAPE PARAMETER

ys y IS THE MEAN

p I ' I 'l"l ' I

GRAPH PREPARATION

Given a = 0; 6 = 0.2; y = 0.5, the completed graph will appear in the lower right quadrant.

STEP I - (a) In the upper right quadrant, at y = 0.5, draw a horizontal line.

(b) Through the intersections of this horizontal line with the probability curves, 
draw perpendicular lines extending through the lower right blank quadrant.
Label these lines at the base with the corresponding probability values.

STEP II - In the lower left quadrant are the solid sloping lines with the 6 values or slopes.
At the intersection of the sloping line labeled 6 = 0.2 and the horizontal heavy 
line at 6 = 0.1 draw a vertical scale line. Through the intersections of the 
sloping 6 lines with the vertical line, draw horizontal lines across the lower right 
blank quadrant. Label the ends of these*lines with the respective values of the 
sloping 6 lines at the intersection points. These scale values are in units of the 
original set of data.
For very large or small values of 8 some scaling difficulties are encountered. Use 
the scale for 8 = 1 which is at the left side of the lower right quadrant. Read the 
quantities on this scale and multiply by the sample 8 values to arrive at values in 
the same units as the original set of data.

STEP III - The heavy sloping line in the lower right quadrant is the line fitted to the distri­
bution defined by the scale lines and probability lines that have been drawn. 
Quantities and probabilities may be interpolated from this graph.

STEP IV - If a plot of the original data is needed, order the data from lowest to highest,
labeling them i = 1 through n, where i = 1 is the lowest value and n is the number 
of data. Compute the empirical probabilities ty use of the expression (i-c)/(n-2c+l). 
For large samples c is set equal to h which reduces the expression to (i-%)/n. For 
small samples c may be set equal to 0. The expression is then (i/n+l). Plot the 
ordered data pairs against the probabilities or the graph prepared in STEPS I 
through IV. View the data plot and subjectively decide whether the data are fit 
well by the prepared graph.

a. If so, use the graph. The model is a good fit.
b. If not so, do not use the graph. That is, another model should be considered*
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- GAMMA DISTRIBUTION FUNCTION MODEL

— /(y;<>Ar)= r(y)(y-a) a)//S

a = ORIGIN
$- /3>0 SCALE PARAMETER

Y- r >0 SHAPE PARAMETER
y = 7 IS THE MEAN

GRAPH PREPARATION

Given a = 0; 0=3; 7 = .30; the completed graph will appear in the lower right quadrant. .110
STEP I

STEP I I

STEP I I I

STEP I V

(a) In the upper right quadrant, at y 1 .30, draw a horizontal line.

Through the intersections of this horizontal line with the probability curves, draw 
perpendicular lines extending through the lower right blank quadrant. Label these 
lines at the base with the corresponding probability values.

In the lower left quadrant are the solid sloping lines with the $ /100 values or slopes.
At the intersection of the sloping line labeled 0 / 100 = .03 and the horizontal heavy 
line at 0 = .010, draw a vertical scale line. Through the intersections of the sloping 
0 /100 lines with the vertical line, draw horizontal lines across the lower right blank 

quadrant. Label ends of these lines with the respective values of the sloping 0 lines at 
the intersection points. These scale values are in units of the original set of data.

The heavy sloping line in the lower right quadrant is the line fitted to the distribution 
defined by the scale lines and probability lines that have been drawn. Quantities and 
probabilities may be interpolated from this graph.

If a plot of the original data is needed, order the data from lowest to highest, labeling them 
i = 1 through n, where i * 1 is the lowest value and n is the number of data. Compute the 
empirical probabilities by use of the expression ( I - c ) / ( n - 2 c + 1 ). For large samples 
c is set equal to 1/2 which reduces the expression to ( i - 1/2 ) / n. For small samples c may 
be set equal to 0. The expression is then ( i / n + 1 ). Plot the ordered data pairs against the 
probabilities on the graph prepared in STEPS I through I V. View the data plot and sub­
jectively decide whether the data are fit well by the prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, another model should be considered.
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Figure 13.--Gamma distribution function plotting paper type 6
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Figure 14.--Gamma distribution function plotting paper type 7
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CRAPH PREPARATION

Given a - 0; 0 = 4; 7 = 0.5; the completed graph will appear in the 
lower half.

M i | 1 M | 1 I 1 p"p"i 1 I 1 I 1 | l | l I 1 |

STEP I

STEP II

STEP III

— STEP IV

(a) In the upper half, at 7 = 0.5, draw a horizontal line.

(b) Through th e intersections of this horizontal line with 
the probability curves, draw perpendicular lines ex­
tending through the lower half. Label these lines at 
the base with the corresponding probability values.

Multiply th» scale at the left edge of the graph by 0 = 4. 
Draw horizontal lines across the lower half and label 
these lines *vith the new scale values. These new scale 
values are in units of the original set of data.

The heavy soping line in the lower half is the line fitted to 
the distribution defined by the scale lines and probability 
lines that have been drawn. Quantities and probabilities 
may be inte polated from this graph.

If a plot of the original data is needed, order the data 
from lowest to highest, labeling them i * 1 through r\ 
where i ■ 1 is the lowest value and n is the number 
of data. Compute the empirical probabilities by use of 
the expressbn (i-c)/(n-2c+l ). For large samples 
c is set equal to V? which reduces the expression to 
( i - ) / n. For small samples c may be set equal to m
0. The expression is then ( i / n + 1 ). Plot the ordered 
data pairs aiainst the probabilities on the graph prepared 
in STEPS I through IV. View the data plot and sub­
jectively deride whether the data are fit well by the 
prepared graph.

a. If so, use the graph. The model is a good fit.
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-
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yz J >0 SHAPE PARAMETER -
y = y IS THE MEAN — 2.0 4

b. If rot so, do not use the graph. That is, an­
other model should be considered.
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Table 4.--Ranges for the seven graph papers of the probabilities, the quan­
tiles, the shape and scale parameters

Type Figure

Proba- 
bi 1 i ty

P Quantiles
Shape
Parameter

Scale
Parameter

Slope Ratio 
r

1* 6 .001 >0.00 >0.00 >0.00 r2
to to to to

.999 20.00 20.00 30.00

2* 8 .001 >0.00 >0.00 >0.00 r2
to to to to

.999 16.00 20.00 100.00

3 10 .800 >0.00 >0.00 >0.00 t r2
to to to to

.999 12.00 2.25 12.00

4 11 .800 >0.00 >0.00 >0.00 + r2
to to to to

.999 7.60 2.50 5.00

5 12 .010 >0.00 >0.00 >0.00 r*
to

.990
to

0.60
to

1.20
to

1.10

6 13 .001 >0.00 >0.00 >0.00 r*
to

.900
to

0.06
to

1.20
to

11.00

7 14 .001 >0.00 >0.00 >0.00 t r4
to

.500
to

0.04
to

2.50
to

0.025

*Type 1 here is type B.l in the text, and type 2 is type C.l. 

tirefers to 31#the multiplier of 3.

XII. FUTURE MODIFICATIONS TO THE PROGRAM

The following are five expected modifications planned for the computer program and sub­

routines given.

1. A subroutine for the determination of an acceptable location (origin) parameter,

2. A possible subroutine for the debiasing of the maximum likelihood and Thom (1958) 

shape and scale estimators.

3. Modification of routines to permit calculation of probabilities for shape parameter 
values, plots, and other x-y type plotters using linear scale plotting.

4. A subroutine for cathode ray computer output plots.

5. A separate program designed for low values of the shape parameter (i.e., y 1. 1.000).

39



ACKNOWLEDGMENTS

Acknowledgment is made to Mr. H. C. S. Thom for his discussions and material used from his 
many papers and to Mr. Danny Fulbright for his help in checking the procedures.

Appreciation is expressed to Dr. M. B. Wilk of the American Telephone and Telegraph Com­
pany and to Dr. R. Gnanadesikan of Bell Laboratories for correspondence and discussions. 
Acknowledgment is made to Dr. James D. McQuigg, Research Meteorologist, Environmental Data 
Service, NOAA, and to Dr. Sharon LeDuc, Atmospheric Science Department, University of 
Missouri, for discussions.

Acknowledgment is made to Bradford F. Kimball and to L. R. Shenton and K. 0. Bowman for 
permission to quote material given on pages 13-14 and pages 6-7, respectively. Acknowl­
edgment is made also to the Journal of the American Statistical Association and to NOAA to 
quote the above material.

Appreciation is tendered to Mr. Warren Buck and to Mr. Bob Ford for the drafting of the 
figures and graphs, to Dr. Nathaniel Guttman for a review of the report, and to Mrs.
Margaret Larabee for final typing of the manuscript.

EDITOR'S NOTE

Under section XII, "Future Modifications to the Program," number 5, techniques were to be 
developed to permit better calculations when the shape parameter was less than 1. These 
techniques already have been developed but too late to include here. A modification to the 
program given in this paper will be issued in the near future. The technique will be ex­
tended to the use of higher shape parameters, say 4, as on the average the computing time is 
halved.
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APPENDIX:
FORTRAN IV ELECTRONIC COMPUTER PROGRAM 

FOR APPLICATION OF THE GAMMA DISTRIBUTION FUNCTION TO DATA SETS;
AND

WORK GRAPHS (GAMMA DISTRIBUTION FUNCTION MODEL PLOTTING PAPER) 
PERFORATED FOR EASY REMOVAL AT THE END OF THE REPORT

The following are comments for use of the gamma distribution program (FORTRAN IV). The 
user may go directly to the program for implementation. The program does contain comment 
cards where deemed appropriate.
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The immediately following comments are provided for those who wish to have a more general 
understanding of just what is required for program initiation. These will be helpful as 
references if difficulties are encountered either during the initiation or the running of 
the program.

There are four types of header (control) cards associated with any request. Two of these 
are required; the remaining two are required only when the user chooses to define his own 
table of quantiles and probability levels.

Control card 1

Name in 
Card col. program Meaning

1-2 II This is the beginning period number of data set. Usually, this 
would be 01 if the first period is desired. Care should be taken 
when working with multiple data points per input record if one 
chooses to start with other than the first period on each data 
set. Positional association is used in this program. For ex­
ample, suppose one has 20 yr of weekly rainfall data in cards with 
13 weeks of data contained on 1 card--therefore 4 cards per year 
comprising a data set. If the user chooses to define II = 12, he
should make certain that fields 1-11 do not contain invalid 
punches (blanks are permissible). The data for this year should 

then fall into the 12th field of the input card. If one chooses 
to start with 14, the first card for weeks 1-13 will not be re­
quired, however the card number must be 2 since data storage is 
computed by index = (card no. - 1) * No. pts/card + pt # in this 
card 01 < II £ 52.

3-4 JJ Ending period number
II £ JJ < 52

5-6 N Number of quantile and probability levels to compute. If the 
standard set is chosen, N = 52, otherwise N is specified by the 
user. Note if N < 52, the user should define his own set since
the first N values of the defined set would be used.

01 < N < 52

7 I COD Code definition required by the program. If period totals of a 
quantity (i.e., weekly rainfall) are the input data, ICOD = 1.
If parameter data are input (i.e., y, 3, Tj, ICOD = 2.

1 < ICOD < 2
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Control card 1 concluded

8 12 Coded as 1 if 2 period totals are required, otherwise blank or

zero.
0 <_ 12 <*\

9 13 Coded as 1 if 3 period totals are required, otherwise blank or

zero.
0 < 13 £ 1

10 ITAB If the defined set of quantiles and probability levels are used,
ITAB = 0; if the user specified the tables, ITAB =1. If
ITAB = 1, the tables are read under format specifications of F4.2.
If ITAB = 2, the user may specify the tables and these will be 

read under F4.0.
0 < ITAB < 2

11-13 K1 The number of years in the data sample. This number is checked by 
the program and, if incorrect, an appropriate error message is 

printed.
001 £ K1 < 999

14-77 ASTN 64 character heading of the user's choice to appear at the top of 

each output page.

78 I FACT IFACT = 1 if the user wishes to compute the quantiles by X/N where
J is the gamma distribution mean for an individual period and N is 

defined in col. 5-6 above. Note that the user may or may not use 
the defined tables as provided by the program. If he does, then 
ITAB = 0 (col. 10) and IFACT =1. If the user wants to use less 
than 52 levels, he must include a card for the quantity levels 
even though they will be overlaid by this option.

0 < IFACT < 1

79 IA If IA = 0, alpha (origin) is assumed to be zero. If IA = 1, alpha 
is defined by control card 4, col. 9-16. If IA = 2, alpha is com­

puted by the program.

80 ICN Coded for card recognition.

46



Control card 2

Card col.
1-4

Name in 
program

p(D
Meaning

Quantile levels in format of F4.2 if ITAB = 1 or are in F4.0 if
ITAB = 2. Note this card is not required if ITAB = 0.

5-8 P(2)

77-80 P(K)

1-4 P(K=1) If 20 < N £ 40, then a second card is needed, If 40 < N < 52, a

third card is required.

•
P(N)

Control card 3

Card col.
1-4

Name in 
program
PL(1) Probability 

required if
of cards or

levels
ITAB =
in the

Meaning
in format of F4.2. Note this card is not
0. The same conditions hold for the number
quantile definition above.

5-8 PL(2)

77-80 PL(K)

1-4 PL(K+1)
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Control card 4

Name in 
Card col. program Meaning

1-2 IP IP = number of data points contained on each individual card.

3-4 INT INT = number of levels of chi-sguare grouping. If blank or zero,

a default of 10 is used.

5-8 C C = constant for computation of empirical probabilities. Default 

of 0.44 is used if C = blank or zero.

9-16 ALPHA Origin definition if IA in card 1 is set to 1. If IA = 0, leave

ALPHA blank or zero.

17-24 AOJ AJJ is the largest value in the data set entry that is used by the 

program to detect missing data. For example, in the case of pre­
cipitation, if 1 year-week were missing and the user had coded the 

missing value 99.99, then AJJ should be coded 99.99. AJJ is read 

under format specification F8.2. It should be noted that, if the 

user requested 2 or 3 period totals and the case of missing data 

were encountered with 99.99 defined for missing, the output would 

show an entry in the affected period that is greater than the

99.99; however, this would be omitted by the test of >99.99.

25-26 LIMIT LIMIT is the controlling iteration value. If blank or zero, the 

default value of 10 is chosen. LIMIT is not used in the current 

version of the program.

27-73 AFMT AFMT is the user defined data format. Example of period total,
13 values/card and IC0D = 1. (15, 12, 11, 13F4.2)

15 - STN or data set identifier in col. 1-5.

12 - Year of sequence number in col. 6-7.
11 - Card number within sequence # in col. 8.
13F4.2 - Thirteen fields of data with each field 4 cols, in width 

and an assumed decimal for data recorded to the nearest 0.01.

Example for IC0D = 2. (15, 12, 12, 13, 13, F6.2, F6.2, F6.2)

15 - Data set identifier in col. 1-5.

12 - Period number I col. 6-7.
12 - No. of weeks in period J in col. 8-9.
13 - NX * No. of years of nonzero entries, col. 10-12.

13 - NNX = No. of total years, col. 13-15.
F6.2 - XBAR = gamma distribution mean, col. 16-21.

F6.2 - GAMMA = shape parameter, col. 22-27.
F6.2 - BETA * scale parameter, col. 28-33

74 MILL Input data are not in inches but millimeters (mm) and user wants 

quantiles converted to mm, code MILL = 1, otherwise 0.

75-80 BLANK Not used.
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If the user has multiple data sets to run with uniform characteristics ( i.e., all options 
identical), only one control set of cards is required. Two blank cards terminate the run.

If the data sets are different, for example, the number of years in one set is different 
from the remainder and requires its own set of control cards, then one blank card should be 
used to separate stations run under different controls.

Fortran ivl27 source program 03/26/72 PAGE 0001

PROGRAM PQA04
21
3 P0A04 IS A FORTRAN IV COMPUTER PROGRAM WRITTEN AT THE NATIONAL CLIMATIC 

4 CENTER TO COMPUTE PRECIPITATION AMOUNTS ANO/OR PROBABILITIES FROM PERIOD 
3 TOTALS.
6 THE PROGRAM IS WRITTEN TO ALLOW AS MUCH LATITUDE AS POSSIBLE FOR THE USER 
7 BY PERMITTING BY CONTROL CARD SPECIFICATION THE POLLOWINGl
8 1 DEFINITION OF BEGINNING AND ENDING PERIOD
9 2 SELECTION OF THE NUMBER OF LEVELS TO COMPUTE

10 3 ALLOWING INPUT TO BE FROM PRE-COMPUTED PARAMETERS
11 4 ALLOWING OPTION OF COMPUTING TWO PERIOD OR THREE PERIOD STATISTICS
12 5 ALLOWING THE USER TO SPECIFY LEVELS OF QUANTILES AND PROBABILITIES OR 
13 TO USE A PRE-DEFINED SET
14 6 ALLOW THE USER TO DEFINE THE HEADER LINE APPEARING ON THE OUTPUT
13 7 ALLOW THE USER TO SPECIFY THE ORIGIN OR PERMIT ITS COMPUTATION IF UNKNOWN
16 8 ALLOW THE USER TO SPECIFY THE NUMBER OF INPUT DATA POINTS PER RECORD
17 AND THEIR FORMAT AT RUN TIME
18 9 ALLOW THE USER TO SPECIFY THE NUMBER OF INTERVALS OF DATA GROUPING 
19 FOR COMPUTATION OF CHI-SQUARE
20 10 ALLOW THE USER TO SPECIFY THE CONSTANT TO BE USED IN COMPUTING THE 
21 EMPIRICAL PROBABILITIES
22
23 THE REQUIRED AND OPTIONAL CONTROL CARDS ARE AS FOLLOWS 
24 FIRST CONTROL CARD
25 C POSITION NAME 1DEFINITION
26 C 1-2 II 1BEGINNING PERIOD NUMBER 
27 c 3-4 JJ 1ENDING PERIOD NUMBER
28 c 5-6 N 1NUMBER OF QUANTILE AND PROBABILITY LEVELS Tfl COMPUT 
29 c 7 ICOD 1CODED 1 IF PERIOD TOTALS TO BE USED. CODED 2 FOR PARAMETERS 
30 c 8 12 ICODED 1 IF TWO PERIOD TOTALS ARE REQUIRED OTHERWISE BLANK 
31 c 9 13 ICODED 1 IF 3 PERIOD TOTALS ARE REQUIRED OTHERWISE BLANK 
32 c 10 ITAB ICODED 0 FOR DEFINED TABLES/ 1 IF YOU SPECIFY TABLES 
33 c CODE 2 IF DATA ARE ! AND QUANTILES ARE IN MM 
34 c 11-13 K1 1NUMBER OF YEARS IN DATA SAMPLE 
33 c 14-77 ASTN (64 CHARACTER HEADING LINE
36 c 78 IFACT (CODE 1 IF PRECIP LEVELS ARE TO BE DIFINED BY XBAR/N 
37 c 79 IA lUSER WILL SUPPLY ALPHA IF CODED 1/ 0 MEANS ALPHAsO/
38 c 2 REQUIRES COMPUTATION OF ALPHA 
39 c BO ICN <CODED 1 FOR CARD RECOGNITION
40 c
41 c IF ITABal ON THE 1 ED1NG CARD THEN N VALUES OF QUANTILES AND 
42 c PROBABILITIES MUST EAD. THESE ARE READ UNDER FORMAT CONTROL OF 
43 c 20F4.2 quantiles READ FIRST WITH AS MANY CARDS USED AS ARE 

REQUIRED TO CONTAIN N VALUES. PROBABILITIES ARE THEN READ IN THE SAME 
FASHION. (NOTE THESE ARE A SEPARATE SET. UNUSED PORTIONS OF THE QUANTILE 
CARD CAN NOT BE USED TO DEFINE PROBABILITIES)

THE NEXT HEADER CARD IS AS FOLLOWS I 
POSITION NAME DEFINITION
1-2 IP NUMBER OF DATA POINTS PER RECORD
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FORTRAN IVL27 SOURCE PROGRAM P0A04 PROGRAM 03/26/72 PAGE 0006

251 CALL COMPUT <99,P,P6,N)
252 CALL PRINT (X2,1/2#ICOD)
253 GO TO 75
234 C COMPUTE PARAMETERS FOR 3 DURATION PERIODS 
253 63 CALL SUM (X3,1,0,CHI,ICOD)
236 CALL COMPUT (ICQD,P,P5,N)
237 CALL COMPUT <99,P,P6,N>
256 CALL PRINT (X3,1/3/ICOD)
239 73 CONTINUE
260 100 CONTINUE
261 ID1-ID2
262 IY-IY1
263 NUM-1
264 IF (ID2.NE.0) GO TO 45
265 GO TO 15
266 END

FORTRAN IVL27 SOURCE PROGRAM SUM SUBROUTINE 05/26/72 page 0007

267 SUBROUTINE SUM (Y,1,0,CHI,ICOD)
268
269 THE SUM SUBROUTINE DOES THE FOLLOWING

1 SELECTS THE ITH WEEK FROM THE APPROPRIATE DURATION PERIOD270
2 SORTS SELECTED DATA IN ASCENDING ORDER OF MAGNITUDE271

272 3 IF REQUIRED COMPUTES ORIGIN ALPHA
4 COMPUTES SUMS AND LOGS FOR COMPUTATION OF PARAMETERS273

274 COMMON SX,SLX,NX,NNX,NUM,XBAR,GAMMA,BETA,GAM,PEA,N,II,JJ,QQ,FLAG,V  273
COMMON X(75),XI(3900),X2(3900),X3(3900),D(75),EMP(75),AJJ 276
COMMON PI(52 >,P2(52 ),P3(52 >,P4<52 >,P5<52>,P6<52),P<52>,PL(32> 277
COMMON A5TN(8),H(20),CHI(20),INT,K1,SKTEST,PRQB,IDl,ALPHA,IA,C 278

279 COMMON LIMIT,IFACT 
280 DIMENSION Y(1),TEM(50),T(50)
281 IMPLICIT REAL*8 (A-H,0-Z>
282 REAL44 X,X1,X2,X3,0,AJJ,Y

IF ICOD-2 60 TO RETURN SINCE PARAMETERS ARE ALREADY AVAILABLE 283 C
284 IF (IC0D.EQ.2) GO TO 70 
285 SX-O.
286 SLX-O.
287 NX-0
288 NNX*0
289 DO 7 J»l,NUM 
290 7 0(J)»AJJ

COMPUTE BEGIN AND END OF STORAGE FOR DATA SELECTION 291 C
292 M«I*NUM-(NUM-1)
293 NN«M*NUM-1
294 V»0.
295 K«1
296 C move selected data into 0
297 DO 8 J-M,NN
298 IF (Y(J).GE.AJJ) GO TO 8 
299
300 K0 (-KK+)»l Y(J )
301 IF (Y(J).GT.O.) V-V+l.
302 8 CONTINUE
303 IF (K.EQ.l) GO TO 70 
304 K«K-1
305 C SORT DATA IN 0 INTO ASCENDING ORDER 
306 DO 25 Ll«l,K 
307 00 25 L2«L1,K
308 IF (3(L2).GT.O(Ll)) GO TO 25 
309 QQ>0(L2)
310 0(L2)-0(H)
311 0( LI) «QQ 
312 25 CONTINUE
313 C IF IA-1, ALPHA WAS SPECIFIED IN THE HEADER CARD 
314 IF (IA.LT.2) GO TO 9
315 C IF THE LEAST VALUE OF 0 IS ZERO, THE ORIGIN IS DEFINED 
316 IF (O(l).EQ.O.) GO TO 6
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317 C IF AT LEAST 2 VALUES (SMALLEST) ARE EQUAL ALPHA IS MADE THIS VALUE
318 IF (0(1).EQ.0(2)) GO TO 6
319 C ALPHA IS MADE SLIGHTLY SMALLER THAN THE SMALLEST ENTRY
320 ALPHA-O(l)-Od)*.00001
321 GO TO 9
322 6 ALPHA-O(l)
323 9 NX-0
324 SX-O.
325 SLX-O.
326 C COMPUTE SUMS AND LOGS FOR THE NON-ZERO ENTRIES
327 DO 20 J-M,NN
328 IF (Y(J).GE.AJJ ) GO TO 20
329 IF ((Y(J)-ALPHA).LE.O.) GO TO 5
330 SX-SX+Y (J ) - ALPHA
331 SLX-SLX+DLOG(Y(J)-ALPHA)
332 NX-NX+1
333 5 NNX-NNX+1
334 20 CONTINUE
335 IF (NX.LT.6) GO TO 70
336 C COMPUTE CHI-SQUARE
337 L-INT-1
338 XBAR-SX/NX
339 0-4.*{DL0G(XBAR)-SLX/NX)
340 GAMMA-(l.+SQRT(l.+D/3.))/D
341 BETA-XBAR/GAMMA
342 CALL GAMIT(l)
343 CALL INVGAM <BETA,H,CHI,L,NX,NX)
344 DO 26 J-1,50
345 TEM(J)-0•
346 T(J)-0.
347 26 CONTINUE
348 M-0
349 K-l
350 L-0
351 DO 40 J-l,NNX
352 IF (O(J).EQ.O.) GO TO 40
353 27 IF (O(J).LE.CHI(K)) GO TO 30
354 T(K)-M •
355 TEM(K)-L
356 K-K+l
357 L-0
358 IF (K-INT) 27,75,80
359 30 M-M+l
360 L-L+l
361 40 CONTINUE
362 45 DEN«NX/FLOAT(INT)
363 SS -0.
364 DO 50 L-l,INT
365 SS -SS ♦ (TEM(L)-DEN)*(TEM(L)-DEN)
366 50 CONTINUE

Fortran ivl27 source program sum subroutine 05/26/72 page 0009
367 OQ-SS /DEN*.5
368 GAMMA- (I NT-3)*.5
369 BETA-1.
370 IF (IFACT.EQ.O) GO TO 51
371 P (1) -10.*XBAR/N
372 PART-P(1)
373 DO 52 L-2,N
374 P(L)-P(L-1)+PART
375 52 CONTINUE
376 C COMPUTE PROBABILITY OF CHI-SQUARE
377 51 CALL COMPUT (99,QQ,PROB,1)
378 C COMPUTE S-K
379 QQ-QQ+OQ
380 DIFF—9999.
381 SS -0.
382 DO 65 L-1,K
383 SS-SS+DEN
384 CHECK-ABS(T(L)-SS)
385 IF (CHECK.GT.DIFF) DIFF-CHECK
386 65 CONTINUE
387 SKTEST-DIFF/NX
388 70 RETURN
389 75 J-K-l
390 TEM(K)-NX-T(J)
391 T(K)-T(J)+TEM(K)
392 GO TO 45
393 80 WRITE (6,81) (H(J),CHI(J),TEM(J),T(J),J-1,INT)
394 81 FORMAT (3X,4F18.10/)
395 STOP 1111
396 END
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581 GO TO 55
582 97 WRITE (6/98) PP(I)
583 98 FORMAT (IX /' UNABLE
584 GO TO 55
585 200 XO-XX
586 GO TO 27
587 END

FORTRAN IVL27 SOURCE PROGRAM PRINT SUBROUTINE 05/26/72 PAGE 0015

588 SUBROUTINE PRINT (Y/I/M/ICOD) , . w
COMMON SX/SLX/NX/NNX/NUM/XBAR/GAMMA,BETA/GAM/PEA/N/II/JJ/QQ/PLAG/V 

589
COMMON X(75)/X1(3900)/X2(3900)/X3(3900)/0(75)/EMP(75)/AJJ 590 COMMON PI(52 )/P2(52 )/P3(52 )/P4(52 >/P5C52)/P6(52)/P(52>/PLC52) 591
COMMON ASTN(8)/H(20)/CHI(20)/INT/K1/SKTEST/PRQB/IDl/ALPHA/IA/C 592

593 COMMON LIMIT/IFACT 
594 DIMENSION Y(l)
595 IMPLICIT REAL*8 (A-H/O-Z)
596 REAL*4 X/Xl/X2/X3/0/AjJ/Y/Z(75)
597 IF (NX.LT.6) GO TO 26 
598 LlNE-45
599 IF (IC00.EQ.2) GO TO 50 
600 V-0.
601 L-l
602 K-I*NUM-(NUM-1)
603 NN-K+NUM-l
604 IF (N.GT.NUM) NN-NN+N-NUM 
605 DO 10 J-l/NUM 
606 Z(J)-0.
607 IF (O(J).GE.AJJ) GO TO 10
608 Z(J)-0(JJ/BETA
609 10 CONTINUE
610 DO 25 J-K/NN
611 IF (LINE.LT.45) GO TO 6
612 LINE-1
613 WRITE (6/1) ASTN 
614 1 FORMAT (1H1/33X/8A8//)
615 FORMAT^X/ 'STATION I J NX NNX XBAR A
616 2

1LPHA BETA GAMMA X2 PROB K-S')617 WRITE (6/3) ID1/I/M/NX/NNX/XBAR/ALPHA/BETA/GAMMA/QQ/PR0B/SKTEST 618
619 3 FORMAT (6X/3I7/2I8/5F11.3/2F10.3//)
620 FORMAT^ts3X/'EMP PROB EMP PROB SELECTED SELECTED SELECTED 
621 4

1GRAPH SELECTED EXC PRB•/16X/•ENTRY ORDER DATA *622 2MP QUANTILE QUANTILE PROB QUANTILE QUANTILE PROB QU623
3ANTITY FOR'/ 8X/ 'SEO DATA DATA /BETA PRO624 4B B-l B-BETA VALUES B«1 B-BETA (X>0)625

626 5LEVELS PCP LVL•/)
627 6 IF (LlNE.GT.N.OR.V.EQ.l.) GO TO 30
628 IF (LINE.GT.NUM.0R.V.EQ.2.) GO TO 40 . . # .

WRITE (6/5) L/Y(J)/0(L)/Z(L)/EMP(L)/P1(L)/P2(L)/PL<L)/P3(L)/P4(L)/629
630 1F0RMATP(in/2F10.2/2F10.3/2F10.3/Fl0.3/3F10.3/F11.3/F10.3)
631 5
632 20 LlNE-LlNE+1 
633 L-L + l 
634 25 CONTINUE 
635 26 RETURN

WRITE (6/31) L/Y(J)/0(L)/Z(L)/EMP(L)/P1(L)/P2(L)636 30
637 31 FORMAT (I11/2F10.2/2F10.3/2F10.3)

FORTRAN IVL27 SOURCE PROGRAM PRINT SUBROUTINE 05/26/72 PAGE 0016

638
639 GO TO 20

WRITE (6/41) L/PL(L)/P3(L)/P4(L)/P6(L)/P(L)/P5(L)640 40
FORMAT (I11/60X/F10.3/3F10.3/F11.3/F10.3)641 41

642 V-2.
643 GO TO 20 
644 50 ALPHA-0.
645 DO 60 J-l/N
646 IF (LINE.LT.45) GO TO 59 
647 LINE-1
648 WRITE (6/1) ASTN 
649 WRITE (6/2)

WRITE (6/51) ID1/I/M/NX/NNX/XBAR/ALPHA/BETA/GAMMA 650
651 51 FORMAT (6X/3I7/2I8/4F11.3)
652

WRITE (6/52) J/EMP(J)/Pl(J)/P2(J)/PL(J)/P3(J)/P4(J)/P6(J)/P(J)* 653 59
654 IPS(J)
655 LINE-LINE+I
656 60

FORMAT (111/30X/ Fl0.3/2P10.3>F10.3/3F10»3/Fll.3/F10.3)657 52
658 GO TO 26 
659 END
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660 SUBROUTINE GAMIT (I)
661 COMMON SX,SLX,NX,NNX,NUM,XBAR,GAMMA,BETA,GAM,PEA,N,II,JJ,QQ,FLAG
662 DIMENSION U(200)
663 IMPLICIT REAL*8 (A-H,D-Z)
664 A-.035868343
663 V- -.193327818
666 C- .482199394
667 0* -.736704078
668 E- .918206857
669 F- -.897056937
670 G- .988205891
671 B- -.377191632
672 FLAG-0.
673 IP (GAMMA.EQ.l.) GO TO 55
674 PEA-GAMMA-1.
675 L-PEA+I
676 IF (L.LT.l) GO TO 25
677 U(1)-PEA+I
67B 00 10 K-l,L
679 KK-K+1
680 10 U(KK)-U(K>-1.
681 PO-l.
682 IF (GAMMA.GT.50) GO TO 45
683 IF (L.LT.2) GO TO 16
684 00 15 K-2,L
685 PD-PD*U(K)
686 15 CONTINUE
687 16 Y- U(L)-1
688 GO TO 30
689 25 Y-GAMMA-L
690 PD-l./Y
691 30 GAM-PD*((((((((A*Y+V)*Y*C)*Y+D)*Y+E)*Y+F>*Y-»-G)*Y+B>* Y+l.)
692 40 RETURN
693 55 GAM-1.
694 GO TO 40
695 45 FLAG-1.
696 PD-O.
697 L-L-l
698 DO 50 K-?,L
699 PD- P0+ LQG(U(K))
700 30 CONTINUE
701 Y-U(L+l)-1
702 GAM- ((((((((A*Y+V>*Y+C)*Y+0)*Y+E)*Y4F)*Y+G)*Y‘*'B)* Y+i.)
703 GAM-PO + LOG(GAM)
704 GO TO 40
705 END

FORTRAN IVL27 OBJECT SUMMARY P0A04 PROGRAM 03/26/72 PAGE 0018

OBJECT DECK ORIGIN FdEDAO FIRST CARD SEQ NO 0001 
INSTRUCTIONS
ARRAYS 00880 003E8 
FORMATS, NAMELISTS, LITCONS 002FB
VARIABLES, CONSTANTS, TEMPORARIES 00460

P0A04 SD 01 016C0 ITF#MPI ER 02 ITF#MPS LD 01260
CM 04 0CAB8

PRINT EV 05 COMPUT EV 06 SUM EV 07
ITFFOR EV 08 ITF#IR EV 09 ITFFOX EV
itffqi

OA
EV OB ITFFQH EV oc ITF9QF EV 00

itffoa EV OE IT F # IZ EV OF ITFFIX EV 10
itffis EV 11 ITF#IL EV 12 itf#ii EV 13
ITFFIH EV 14 ITF9IG EV 15 ITFFIF EV 16
ITFFIE EV 17 ITFMlO EV 18 itffia EV 19
ITFFCG EV 1A IT F # IC EV IB ITF9ST EV 1C

FORTRAN IVL27 STORAGE MAP P0A04 PROGRAM

symbol type ESID VALUE SYMBOL TYPE ESID VALUE

AFMT (RB) 01 OOECO ITAB 14 01 012FC
AJJ R4 04 obbfo IY 14 01 01318
alpha RB 04 0CA98 lYl 14 01 01328
ASTN (R8) 04 0C8F8 12 14 01 012F4
ATABl (RB) 01 00B80 13 14 01 012F8
ATAB2 (R8) 01 00D20 J 14 01 01320
BETA R8 04 00030 JJ 14 04 00050
C R8 04 0CAA8 K 14 01 0132C
CHI (RB) 04 0C908 KOUNT 14 01 01330
EMP (R8) 04 08998 Kl 14 04 0CA7C
FLAG R8 04 00060 L 14 01 01314
GAM R8 04 00038 LIMIT 14 04 OCABO
GAMMA R8 04 00028 M 14 01 01304
H (RB) 04 0C938 MILL 14 01 01310
I 14 01 01308 N 14 04 00048
IA 14 04 OCAAo NNX 14 04 00014
IC 14 01 0131C NUM 14 04 00018
ICN 14 01 01300 NX 14 04 00010
ICOD 14 01 012F0 0 <R4> 04 0BB6C
ID1 14 04 0CA90 P (R8) 04 0C5B8
102 14 01 01324 PEA RB 04 00040
I FACT 14 04 0CAB4 PL (R8) 04 0C758
II 14 04 0004C PROS R8 04 0CA88
I-NT 14 04 0CA78 PI (RB) 04 0BBF8
IP 14 01 0130C P2 (R8) 04 0BD98

03/26/72 page 0019

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

P3 (R8) 04 0BF38 17 STMT 01 001FC
P4 (R 8 ) 04 oeooB 18 STMT 01 00294
P3 (R8) 04 0C27B 19 STMT 01 002BC
P6 (RB) 04 0C418 20 STMT 01 002EC
QQ R8 04 00058 35 STMT 01 00416
SKTEST R8 04 OCA80 36 STMT 01 0046A
SLX R8 04 00008 37 STMT 01 0049E
SX R8 04 00000 44 STMT 01 00516
TEM (R8) 01 OOEFO 43 STMT 01 0052C
V R8 04 00068 46 STMT 01 00364
X (R4) 04 000?0 47 STMT 01 00738
XBAR R8 04 00020 48 STMT 01 0079C
XI (R4) 04 0019C 30 STMT 01 007E6
X2 (R4) 04 03E8C 5l FORMT 01 01206
X3 (R4) 04 07B7C 55 STMT 01 008A6
1 FORMT 01 00F68 56 STMT 01 00958
2 FQRMT 01 00F93 37 STMT 01 00974
3 FORMT 01 OOFBA 58 STMT 01 00990
4 FORMT 01 OOFCA 60 STMT 01 00926
5 FORMT 01 00FE8 6l STMT 01 009C2
6 FORMT 01 00FC2 62 STMT 01 OOAl A
13 FORMT 01 00F7C 63 STMT 01 00A72
14 STMT 01 0009A 75 STMT 01 OOABC
15 stmt 01 00006 100 STMT 01 OOAFO
16 STMT 01 0012A
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SYMBOL TYPE ESID VALUE SYMBOL type ESID VALUE

15 STMT 01 00006 100 STMT 01 OOAFO
14 STMT 01 0009A ATAB1 <R8> 01 00B80
16 STMT 01 0012A ATAB2 (R8) 01 00D20
17 STMT 01 001FC AFMT (R8) 01 OOECO
18 STMT 01 00294 TEM (R8 j 01 OOEFO
19 STMT 01 002BC 1 FORMT 01 00F68
20 STMT 01 002EC 13 FORMT 01 00F7C
35 STMT 01 00416 2 FORMT 01 00F93
36 STMT 01 0046A 3 FORMT 01 OOFBA
37 STMT 01 0049E 6 FORMT 01 00FC2
44 STMT 01 00516 4 FORMT 01 OOFCA
45 STMT 01 0052C 3 FORMT 01 00FE8
46 STMT 01 00564 31 FORMT 01 01206
47 STMT 01 00738 ICOD 14 01 012F0
48 STMT 01 0079C 12 14 01 012F4
50 STMT 01 007E6 13 14 01 012F8
55 STMT 01 008A6 ITAB 14 01 012FC
60 STMT 01 00926 ICN 14 01 01300
56 STMT 01 00958 M 14 01 01304
37 STMT 01 00974 I 14 01 01308
58 STMT 01 00990 IP 14 01 0130C
61 STMT 01 009C2 MILL 14 01 01310
62 STMT 01 00A1A L 14 01 01314
63 STMT 01 00A72 IY 14 01 01318
75 STMT 01 OOABC IC 14 01 0131C

05/26/72 PAGE 0020

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

J 14 01 01320 □ { 04 0B86CR4)
ID2 14 01 01324 emp (R8) 04 0B998
IY1 14 01 01328 AJJ R4 04 OBBFO
K 14 01 0132C Pi (RB) 04 0BBF8
KOUNT 14 01 0133Q P2 (RB) 04 0BD98

sx R8 04 00000 P3 (R8) 04 0BF38
SLX R8 04 00008 P4 (R8) 04 0C0D8
NX 14 04 00010 P3 (R8) 04 0C278
NNX 14 04 00014 P6 (RB) 04 0C418
NUM 14 04 00018 P (R8) 04 0C5B8
XBAR R8 04 00020 PL (R8) 04 0C758
GAMMA R8 04 00028 ASTN (R8) 04 0C8F8
BETA R8 04 00030 H (R8) 04 0C938
GAM R8 04 00038 CHI (R8) 04 0C9D8
PEA R8 04 00040 I NT 14 04 0CA78
N 14 04 00048 K1 14 04 0CA7C
II 14 04 0004C sktest R8 04 0CA80

0CA88JJ 14 04 00050 PROB R8 04
QQ RB 04 00058 101 14 04 0CA90
FLAG R8 04 00060 ALPHA R8 04 0CA98
V R8 04 00068 IA 14 04 OCAAO
X (R4) 04 00070 C RB 04 0CAA8
XI (R4) 04 0019C LIMIT 14 04 OCABO
X2 (R4) 04 03E8C IFACT 14 04 0CAB4
X3 (R4) 04 07B7C

FORTRAN IVL27 OBJECT SUMMARY SUM SUBROUTINE 05/26/72 page 0021

object deck origin fdfias FIRST CARD SEQ NO 0200
INSTRUCTIONS 00B88 
ARRAYS 00320 
FORMATS* NAMELISTS* LITCQNS 00010 
VARIABLES* CONSTANTS* TEMPORARIES 002C0 

SUM SD 01 01178 ITF#MPI ER 02 I»F#BUG EV 03
CM 04 0CAB8

INVGAM EV 05 GAMIT EV 06 COMPUT EV 07
EV OAITF#OR EV 08 ITF#QX EV 09 ITF#DF

ITF#IC EV OB ITF#ST EV OC ITF#05 EV OD
ITF#31 EV OE

FORTRAN IVL27 STORAGE MAP SUM SUBROUTINE

ESID VALUESYMBOL TYPE ESID VALUE SYMBOL TYPE

OBBFO I NT 14 04 0CA78AJJ R4 04
R8 04 0CA98 J 14 01 00F6CALPHA

04 0C8F8 JJ 14 04 00050ASTN (R8)
00030 K 14 01 00F7CBETA R8 04

c R8 04 0CAA8 K1 14 04 0CA7C
00F88CHECK R8 01 00FB8 L 14 01
OCABOCHI 0 (RB) LIMIT 14 04

D R8 01 00F90 LI 14 01 00F80

DEN R8 01 00F98 L'2 14 01 00F84
14 01 00F7ODIFF R8 01 OOFBO M

EMP (R8) 04 0B998 N 14 04 00048

FLAG R8 04 00060 NN 14 01 00F78

GAM R8 04 00038 NNX 14 04 00014
04 Q002B NUM 14 04 00018GAMMA R8

H (RB) 04 0C938 NX 14 04 00010

I □ 14 01 00F74 □ □ (R4)
14 04 OCAAO P (R8) 04 0C5B8IA

ICOD □ 14 01 00F68 PART R8 01 00FA8

ID1 14 04 0CA90 PEA R8 04 00040
14 04 0CAB4 PL (R8) 04 0C758IFACT

:i 14 04 0004C PROB R8 04 0CA88

05/26/72 PAGE 0022

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

(RB) 04 0BBF8 3 STMT 01 0042CPI
( r8 ) 04 03D98 6 STMT 01 0032AP2
(R8) 04 0BF38 7 STMT 01 00086P3

0018EP4 (RB) 04 0C0D8 8 STMT 01
P5 < R8} 04 0C278 9 STMT 01 0033E

(R8) 04 0C418 20 STMT 01 00440P6
0026CQQ R8 04 00058 25 STMT 01

STMT 00396SKTEST R8 04 0CA80 26 01
04 00008 27 STMT 01 0061ASLX R8

R8 01 OOFAO 30 STMT 01 006CESS
STMT 01 006F6SX R8 04 00000 40

(R8) 01 oooia 43 STMT 01 0071AT
(R8) 00E82 30 STMT 01 007A4TEM 01
R8 04 00068 31 STMT 01 008C2V

X (R4) 04 00070 52 STMT 01 0089E
00962XBAR R8 04 00020 65 STMT 01

XI (R4) 04 0019C To STMT 01 009AC
009BCX2 (R4) 04 03E8C 73 STMT 01

(R4) 04 07B7C 80 STMT 01 00A2CX3
Y □ (R4) 81 FORMT 01 00EA6

FORTRAN IVL27 STORAGE MAP SUM SUBROUTINE

VALUE SYMBOL TYPE ESID VALUEsymbol TYPE ESID

80 STMT 01 00A2CCHI □ (R8)
n(R4) TEM (R8) 01 OOBeB

Y
T (R8) 01 00018o □ (R4)

00EA87 STMT 01 00086 81 FORMT 01
00F6BSTMT 01 0018E ICOD □ 14 016

STMT 01 0026C J 14 01 00F6C
25 00F706 STMT oi 0032A M 14 01

9 STMT 01 0033E I □ 14 01 00F74

5 stmt 01 0042C NN 14 01 00F78
14 00F7C

20 STMT ol 00440 K 01
STMT 01 00596 LI 14 01 00F8026 14 01 00F8427 STMT 01 0061A L2

00F8830 STMT 01 006CE L 14 01
01 006F6 0 R8 01 O0F9O40 STMT

R8 01 00F9845 STMT 01 0071A DEN
50 STMT 01 007A4 SS R8 01 OOFAO

52 STMT 01 0089E PART R3 01 0QFA8
DIFF R8 01 OOFBO51 STMT 01 008C2

00962 CHECK R8 01 00F8365 STMT 01
009AC SX R8 04 0000070 STMT 01

0000873 STMT 01 0098C SLX R8 04

05/26/72 PAGE 0023

TYPE VALUESYMBOL ESID VALUE SYMBOL TYPE ESID

14 04 00010 PI (R8) 04 03BF8NX
04 C0014 P2 (R8) 04 0BD98NNX 14

NUM 14 04 00018 P3 (R8) 04 0BF36
XBAR R8 04 00020 P4 (RB ) 04 0C0D8
GAMMA R8 04 00028 P5 (R8) 04 0C278

0C418BETA R8 04 00030 P6 (RB) 04
GAM R8 04 00038 P (R8) 04 0C5B8

RB 04 00040 PL (R8) 04 0C758PEA
14 04 00048 ASTN (R8) 04 0C8F8N
14 04 0004C H (R8) 04 0C938II

0CA78JJ 14 Q4 00050 INT 14 04
R8 04 00058 K1 14 04 0CA7CQQ

FLAG R8 04 00060 SKTEST R8 04 OCABO
V R8 04 00068 PROB R6 04 0CA88

(R4) 04 00070 101 14 04 0CA90X
04 0019C ALPHA R3 04 0CA98XI (R4)

X2 (R4) 04 03E8C IA 14 04 OCAAO
X3 (R4) Q4 07B7C C R8 04 0CAA8

(R8) 04 0e998 LIMITEMP 14 04 OCABO

AJJ R4 04 OBEFO IFACT 14 04 0CAS4

58



Fortran ivi27 object summary comput subroutine 03/26/72 pace 0024

OBJECT DECK ORIGIN FDF560 FIRST CARD SEQ NO 0345
INSTRUCTIONS 00780 
ARRAYS 00320 
FORMATS* NAMELISTS* LITCONS 
VARIABLES* CONSTANTS* TEMPORARIES 00000

COMPUT SD 01 00D60 ITF#MPI ER 02 ISFtfBUG EV 03
CM 04 0CAB8

INVGAM EV 05 CAMIT EV 06 ITFBX4 EV 07
ITF#01 EV 08 ITF#05 EV 09 ITFB03 EV OA
ITF#31 EV OB

FORTRAN IVL27 STORAGE MAP COMPUT SUBROUTINE

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

AJJ R4 04 OBBFO IFACT 14 04 0CAB4
alpha R8 04 0CA98 II 14 04 0004C
ASTN (R8) 04 0C8F8 I NT 14 04 0CA78
BETA R8 04 00030 JJ 14 04 00050
C R8 04 0CAA8 K 14 01 00B5C
CHI (R8) 04 0C9D8 K1 14 04 0CA7C
D R8 01 00B60 L 14 01 OOBAO
DEN R8 01 OOBBO LIMIT 14 04 OCABO
EMP (R8) 04 0B998 M 14 01 00B7C
EN R8 01 0OB4O N 14 04 00048
ENN R8 01 00B48 NNX 14 04 00014
EYE R8 01 00BA8 NUM 14 04 00018
FLAG R8 04 00060 NX 14 04 00010
GAM R8 04 00038 NZ 014 01 00B78
GAMMA R8 04 00028 □ (R4) 04 0B86C
H (R8) 04 0C938 P <R8 > 04 0C5B8
I 14 01 00BA4 PEA R8 04 00040
IA 14 04 OCAAO PL (R8) OA 0C758
ICOD nI4 01 00B58 PROB R8 04 0CA88
ID1 14 04 0CA90 PI (R8) 04 0BBF8

03/26/72 PACE 0023

SYMBOL TYPE ESID value symbol TYPE ESID VALUE

P2 (R8> 04 0BD98 X2 (R4) 04 03E8C
P3 (R8) 04 0BF38 X3 (R4) 04 07B7C
P4 (RB) 04 0C0D8 Y n(R8)
P3 (R8) 04 0C278 you R8 01 00B70
P6 (RB) 04 0C418 l R8 01 00B88
QQ R8 04 00058 68 STMT 01 00130
SEA R8 01 00B80 70 STMT 01 00188
SEE R8 01 00B68 73 STMT 01 002B4
SERIES R8 01 00898 80 STMT 01 002D0
SKTEST R8 04 0CA80 81 STMT 01 00332
SLX RB 04 00008 82 STMT 01 00374
SX RB 04 00000 85 STMT 01 003D0
TERM R8 01 00B90 90 STMT 01 00418
TRACE R8 01 00B50 93 STMT 01 0058E
UU (R8) 01 00780 96 STMT 01 004F2
V R8 04 00068 97 STMT 01 00332
W B(R8) 100 STMT 01 0060C
X (R4) 04 OOOTO 101 STMT 01 0065C
XBAR RB 04 00020 200 STMT 01 00680
XI (R4) 04 0019C 300 STMT 01 00690

FORTRAN IVL27 STORAGE MAP -COMPUT SUBROUTINE

symbol TYPE ESID VALUE SYMBOL TYPE ESID VALU

W □ (RB) TRACE R8 01 00B5
Y □ (R8) ICOD □ 14 01 00B5
68 STMT 01 00130 K 14 01 00B5
70 STMT 01 00188 0 R8 01 00B6
75 STMT 01 002B4 SEE R8 01 OOB6
80 STMT 01 002D0 YOU R8 01 00B7
81 STMT 01 00332 NZ □ 14 01 00B7
82 STMT 01 00374 M 14 01 00B7C
85 STMT 01 00300 SEA R8 01 O0B8
90 STMT 01 00418 Z R8 01 00B8
96 STMT 01 004F2 TERM R8 01 0089
97 STMT 01 00532 SERIES R8 01 00B98
93 STMT 01 0058E L 14 01 OOBAO
100 STMT 01 0060C I 14 01 00BA
101 STMT 01 0065C EYE R8 01 OOBA8
200 STMT 01 00680 DEN R8 01 OOBBO
300 STMT 01 00690 SX R8 04 00000
UU (R8) 01 00780 SLX R8 04 00008
EN R8 01 00B40 NX 14 04 00010
ENN RB 01 00B48 NNX 14 04 00014

E

0
8
C
O
8
0
8

O
8
0

4

05/26/72 PAGE 0026

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

NUM 14 04 00018 P2 (R8) 04 0BD98
XBAR R8 04 00020 P3 (R8) 04 0BF38
GAMMA R8 04 00028 P4 (R8) 04 0C0D8
BETA R8 04 00030 P3 (RB) 04 0C278
GAM R8 04 00038 P6 (R8) 04 0C418
PEA R8 04 00040 P (R8) 04 0C5B8
N 14 04 00048 PL (R8) 04 0C738
II 14 04 0004C astn (R8) 04 0C8F8
JJ 14 04 00030 H (R8) 04 0C938
QQ R8 04 00058 CHI (R8) 04 0C9D8
FLAG R8 04 00060 I NT 14 04 0CA78
V R8 04 00068 Kl 14 04 0CA7C
X (R4) 04 00070 SKTEST R8 04 0CA80
XI (R4) 04 0019C PROB R8 04 0CA88
X2 (R4) 04 03E8C ID1 14 04 0CA90
X3 (R4) 04 07B7C ALPHA R8 04 0CA98
□ (R4) 04 0B86C IA 14 04 OCAAO
EMP (R 8) 04 08998 C R8 04 0CAA8
AJJ R4 04 OBBFo LIMIT 14 04 OCABO
PI (R8) 04 0BBF8 IFACT 14 04 0CAB4

FORTRAN IVL27 OBJECT SUMMARY INVGAM SUBROUTINE 03/26/72 PAGE 0027

OBJECT DECK ORIGIN FDF41B FIRST CARD SEQ NO 0457 
INSTRUCTIONS 00838 
ARRAYS 00210 
FORMATS* NAMELISTS* LITCONS
VARIABLES* CONSTANTS* TEMPORARIES 0001A00334

INVGAM SD 01 00F3C ITF#MP I ER 02 ItFtfBUG EV 03
CM 04 0CAB8

ITF#QR EV 05 ITFiOX EV 06 ITF#QH EV 07ITF#QF EV 08 ITF#QE EV 09 ITF#X2 EV OAITF#IC EV OB ITF#ST EV OC ITF#01 EV ODITF#Q3 EV OE ITF#31 EV OF
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FORTRAN IVL27 STORAGE MAP INVGAM SUBROUTINE 

TYPE ESID VALUE SYMBOL type ESID VALUESYMBOL

AA (R8) 01 00838 IA 14 04 OCAAO
AAA (R8) 01 00940 ID1 14 04 0CA90
AJJ R4 04 OBBFO IFACT 14 04 0CAB4
ALPHA R8 04 0CA96 II 14 04 0004C
ASTN (R8) 04 0C8F8 IJ 14 01 00CD4
BB (R8) 01 00890 IJ J 14 01 00C98
bbb (R8) 01 00998 I NT 14 04 0CA78
BET BR8 01 00D40 JJ 14 04 00050
BETA R8 04 00030 K 14 01 OOCFO
c R8 04 0CAA8 K1 14 04 0CA7C
cc (R8) 01 008E8 L 14 01 00D10
CCC (R8) 01 009F0 LIMIT 14 04 OCABO
CHECK R8 01 OOCEO M 14 01 00CF4
CHI (R8) 04 0C9D8 N 14 04 00048
DL R8 00CE8 NN al4 01 OOCDO
DX R8 01 00D38 NNX 14 04 00014
DXO R8 01 00CD8 NNY nI4 01 OOCCO
EMP (RB) 04 0B998 NUM 14 04 00018
EN R8 01 OOCBO NX 14 0* 00010
ENN R8 01 OOCBB NY nl4 01 00C9C
PL AG R8 04 00060 0 (R4) 04 0B86C
GAM R8 04 00038 P (R8) 04 0C5B8
GAMMA R8 04 00028 PEA R8 04 00040
H (R8) 04 0C938 PK a(R8)

14 01 00CC4 PL (R8) 04 0C758I

3/26/72 PAGE 0028

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

PP B (R8) XX R8 01 00D20
PROB R8 04 0CA68 XI (R4) 04 0019C
PI (R8) 04 0BBF8 X2 (R4) 04 03E8C
P2 (R8) 04 0BD98 X3 <R4> 04 07B7C
P3 (R8) 04 0BF38 Z R8 01 00CF8
P 4 (R8) 04 0C0D8 20 STMT 01 001C6
P5 (R8) 04 0C278 25 STMT 01 001EA
P6 (RB) 04 0C418 26 STMT 01 00236

Q R8 01 00CC8 27 STMT 01 0025C

QQ R8 04 00058 30 STMT 01 002PA
S R8 01 00D08 31 FORMT 01 00A4B
SG R8 01 OOCAO 35 STMT 01 0035A
SKTEST R8 04 0CA80 38 STMT 01 003E8
SLX R8 04 00008 39 STMT 01 00446
SP R8 01 00CA8 55 STMT 01 004F4
SUM R8 01 00D30 60 STMT 01 0054C
SX R8 04 00000 70 STMT 01 00632
T RB 01 OODOO 95 STMT 01 0069A
TEM R8 01 00D18 96 FORMT 01 00879
TT R8 01 00D28 97 STMT 01 006F8
V R8 04 00068 98 FORMT 01 OOBBO
X (R4) 04 00070 100 STMT 01 005D6
XBAR R8 04 00020 105 STMT 01 00612
XO R8 01 00C90 200 STMT 01 00734

FORTRAN IVL27 STORAGE MAP INVGAM SUBROUTINE

symbol TYPE ESID VALUE SYMBOL TYPE ESID VALUE

PP o (R8) 96 FORMT 01 00B79
PK n(RB) 98 FORMT 01 OOBBO
20 STMT 01 001C6 XQ R8 01 00C90
25 STMT 01 001EA IJ J 14 01 00C98
26 STMT 01 00236 NY BI4 01 00C9C
27 STMT 01 0023C SG R8 01 OOCAO
30 STMT 01 002FA SP R8 01 00CA8
35 STMT 01 0033A EN R8 01 OOCBO
38 STMT 01 003E8 ENN R8 01 00CB8
39 STMT 01 00446 NNY BI4 01
55 STMT 01 004F4 I 14 01 0o0oCcCco4
60 STMT 01 0054C Q R8 01 00CC8
100 STMT 01 005D6 NN BI4 01 OOCDO
105 STMT 01 00612 IJ 14 01 00CD4
70 STMT 01 00632 DXO R8 01 OOC08
95 STMT 01 0069A CHECK R8 01 OOCEO
97 STMT 01 006F8 DL R8 01 00CE8
200 STMT 01 00734 K 14 01 OOCFO
AA (R8> 01 00838 M 14 01 00CF4
BB (R8) 01 00890 Z R8 01 00CF8
CC (R8) 01 008E8 T R8 01 OODOO
AAA (R8) 01 00940 S R8 01 00D08

BBB (R8) 01 00998 L 14 01 00D10
CCC (R8) 01 009F0 TEM R8 01 00D18
31 FORMT 01 00A48 XX R8 01 00D20

05/26/72 PAGE 0029

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

TT R8 01 00D28 0 (R4) 04 0B86C
SUM R8 01 00D30 EMP (R8) 04 0B998
DX RB 01 00D38 AJJ R4 04 OBBFO
BET aR8 01 00D40 Pi CRB) 04 0BBF8
SX R8 04 00000 P2 (R6) 04 0BD98
SLX R8 04 00008 P3 (R8> 04 0BF38
NX 14 04 00010 P4 (RB) 04 OCoDB
NNX 14 04 00014 P5 (R8) 04 0C278
NUM 14 04 00018 P6 (R8) 04 0C418
XBAR R8 04 00020 P (R8) 04 0C5B8
GAMMA R8 04 00028 PL (RB) 04 0C758
BETA R6 04 00030 astn (R8) 04 0C8F8
GAM RB 04 00038 H (R8) 04 0C938
PEA R8 04 00040 CHI (RB) 04 0C9D8
N 14 04 00048 INT 14 04 0CA78
II 14 04 0004C Kl 14 04 0CA7C
JJ 14 04 00050 SKTEST R8 04 OCABO
QQ R8 04 00058 PROB R8 04 OCA88
FLAG R8 04 00060 101 14 04 0CA90
V R8 04 00068 ALPHA R8 04 0CA98
X (R4) 04 00070 IA 14 04 OCAAO
XI (R4) 04 0019C C R8 04 0CAA8
X2 (R4) 04 03E8C LIMIT 14 04 OCABO
X3 (R4) 04 07B7C IFACT 14 04 0CAB4

FORTRAN IVL27 OBJECT SUMMARY PRINT SUBROUTINE 05/26/72 PAGE 0030

OBJECT DECK ORIGIN FDF4C8 FIRST CARO SEQ NO 0614 
INSTRUCTIONS 00758
ARRAYS 00130
FORMATS* NAMELISTS* LITCONS 002B0
VARIABLES* CONSTANTS* TEMPORARIES 00260

PRINT SD 01 OOD98 ITF#MPI ER 02 IAFtfBUG EV 03
CM 04 0CAB8

ITFFOR EV 05 ITF#OX EV 06 ITF#OI EV 07
ITF#QH EV 08 ITF#OF EV 09 ITF#OA EV OA
ITF#IC EV OB

FORTRAN IVL27 STORAGE MAP PRINT SUBROUTINE 

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

AJJ R4 04 OBBFO JJ 14 04 00050
ALPHA RB 04 0CA98 K 14 01 O0BE4
ASTN (R8) 04 0C8F8 Kl 14 04 0CA7C
BETA R8 04 00030 L 14 01 OOBEO
C R8 04 0CAA8 LIMIT 14 04 OCABO
CHI (RB) 04 0C9D8 LINE 14 01 OOBDB
EMP (R8) 04 0B998 M BI4 01 00BF4
FLAG R8 04 00060 N 14 04 00048
GAM R8 04 00038 NN 14 01 OOBEC
GAMMA R8 04 00028 NNX 14 04 00014
H (R8) 04 0C938 NUM 14 04 00018
I BI4 01 00BE8 NX 14 04 00010
IA 14 04 OCAAO D (R4) 04 0B86C
ICOD BI4 01 OOBDC P (R8) 04 0C5B8
ID1 14 04 OCA90 PEA RB 04 00040
IFACT 14 04 0CAB4 PL (R8) 04 0C758
I i 14 04 0004C PROB R8 04 0CAB8
INT 14 04 0CA78 Pi (R8) 04 0BBF8
J 14 01 OOBFO

05/26/72 PAGE 0031

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

P2 (R8) 04 0BD98 2 FORMT 01 00897
P3 (RB) 04 0BF38 3 FORMT 01 0090F
P4 <R8) 04 0C0D8 4 FORMT 01 0092B
P5 (R8) 04 0C278 5 FORMT 01 00A83
P6 (R6) 04 0C416 6 STMT 01 001F6
QQ R8 04 00058 10 STMT 01 00128
SKTEST R8 04 0CA80 20 STMT 01. 00336
SLX R8 04 00008 25 STMT 01 0035E
SX R8 04 00000 26 STMT 01 00382
V R8 04 00068 30 STMT 01 00392
X (R4) 04 00070 31 FORMT 01 00AB6
XBAR RB 04 00020 40 STMT 01 00444
XI (R4) 04 0019C 41 FORMT 01 OOADO
X2 (R4) 04 03E8C 50 STMT 01 004E8
X3 (R4) 04 07B7C 51 FORMT 01 00AF2
Y n(R4) 52 FORMT 01 00B05
Z (R4) 01 00758 59 STMT 01 0059C
1 FORMT 01 00888 6q STMT 01 0065C
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FORTRAN IVL27 STORAGE MAP PRINT SUBROUTINE

SYMBOL TYPE ESID VALUE SYMBOL type ESID VALUE

Y n(R4) 51 FORMT 01 00AF2
10 STMT 01 00128 52 FORMT 01 00B05
6 STMT 01 001F6 LINE 14 01 00BD8
20 STMT 01 00336 ICOD nI4 01 OOBDC
25 STMT 01 0035E L 14 01 OOBEO
26 STMT 01 00382 K 14 01 00BE4
30 STMT 01 00392 I 014 01 00BE8
40 STMT 01 00444 NN 14 01 OOBEC
50 STMT 01 004E8 J 14 01 OOBFO
59 STMT 01 0059C M QI4 01 00BF4
60 STMT 01 0065C SX R6 04 00000
Z (R4) 01 00758 SLX R8 04 00008
1 FQRMT 01 00888 NX 14 04 00010
2 fdrmt 01 00897 NNX 14 04 00014
3 FORMT 01 0090F NUM 14 04 00018
4 FQRMT 01 0092B XBAR R8 04 00020
5 FORMT 01 00A83 GAMMA R8 04 00028
31 FORMT 01 OOAB6 BETA R8 04 00030
41 FORMT 01 OOADO

05/26/72 page 0032

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

GAM RB 04 00038 P4 (R8) 04 0C0D8
PEA R8 04 00040 P5 (R8) 04 0C278
N 14 04 00048 P6 (R8) 04 0C418
II 14 04 0004C P (R8) 04 0C5B8
JJ 14 04 00050 PL (R8) 04 0C738
QQ R8 04 00058 astn (R8) 04 0C8F8
FLAG R8 04 00060 H (R8) 04 0C938
V R8 04 00068 CHI (R8) 04 0C9D8
X (R4) 04 00070 I NT 14 04 0CA78
XI (R4) 04 0019C Kl 14 04 0CA7C
X2 (R4) 04 03E8C sktest R8 04 OCA80
X3 (R4) 04 07B7C prob R8 04 0CA88
□ (R4) 04 0B86C 101 14 04 0CA90
EMP (R8) 04 0B998 alpha R8 04 0CA98
AJJ R4 04 OBBFo IA 14 04 OCAAO
PI (RB) 04 0BBF8 C R8 04 0CAA8
P2 (R8) 04 0BD98 LIMIT 14 04 OCABO
P3 (RB) 04 0BF38 IFACT 14 04 0CAB4

FORTRAN IVL27 OBJECT SUMMARY GAMIT SUBROUTINE 05/26/72 PAGE 0033

OBJECT DECK ORIGIN FDF4E8 FIRST CARD SEQ NO 0730
INSTRUCTIONS 004D8
ARRAYS 00640
FORMATS* NAMELISTS* LITCONS 00000
VARIABLES* CONSTANTS* TEMPORARIES 00208

GAMIT SO 01 00D20 ITF#MPI ER 02 I*F#BUG EV 03
CM 04 00068

ITFB05 EV 05

fortran ivl27 storage map gamit subroutine

SYMBOL TYPE ESID VALUE SYMBOL type ESID value

A R8 01 OOBAO GAMMA R8 04 00028
B R8 01 OOBD8 I DI4 01 00BE4
BETA R8 04 00030 II 14 04 0004C
C R8 01 OOBRO JJ 14 04 00050
D R8 01 00BB8 K 14 01 00BE8
E R8 01 OOBCO KK 14 01 OOBEC
F R8 01 OOBC8 L 14 01 OOBEO
FLAG R8 04 00060 N 14 04 00048
G R8 01 OOBDO NNX 14 04 00014
GAM R8 04 00038 NUM 14 04 00016

05/26/72 PAGE 0034

SYMBOL TYPE ESID VALUE symbol TYPE ESID VALUE

NX 14 04 00010 10 STMT 01 0015C
PD R8 01 OOBFO 15 STMT 01 0021C
PEA R8 04 00040 16 STMT 01 00240
QQ R8 04 00058 25 STMT 01 00268
SLX RB 04 00008 30 STMT 01 0029E
SX R8 04 OQOOO 40 STMT 01 002F2
U (RB) 01 004D8 45 STMT 01 0031E
V RB 01 OOBAB 30 STMT 01 00392
XBAR RB 04 00020 55 STMT 01 00302
Y RB 01 00BF8

FORTRAN IVL27 STORAGE MAP GAMIT SUBROUTINE

SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE

10 STMT 01 0015C A R8 01 OOBAO
15 STMT 01 0021C V R8 01 00BA8
16 STMT 01 00240 C R8 01 OOBBO
23 STMT 01 ◦0268 D R8 01 00BB8
30 STMT 01 0029E E R8 01 OOBCO
40 STMT 01 002F2 F R8 01 00BC8
55 stmt 01 00302 G R8 01 OOBDO
45 STMT 01 0031E B R8 01 00BD8
50 STMT 01 00392 L 14 01 OOBEO
U (RB) 01 004D8 I nl4 01 OOBE4

05/26/72 PAGE 0035

SYMBOL TYPE ESID VALUE symbol TYPE ESID VALUE

K 14 01 00BE8 gamma R8 04 00028
KK 14 01 OOBEC BETA R8 04 00030
PD RB 01 OOBFO GAM R8 04 00038
Y RB 01 00BF8 PEA RB 04 00040
SX R8 04 00000 N 14 04 00048
SLX RB 04 00008 II 14 04 0004C
NX 14 04 00010 JJ 14 04 00050
NNX 14 04 00014 QQ RB 04 00038
NUM 14 04 00018 flag R8 04 00060
XBAR R8 04 00020
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LINKAGE EDITOR PARAMETERS AND DIAGNOSTICS 05/26/72 PAGE 1
(P) ERREXIT A-OOOOOl

LINKAGE EDITOR ------ PROGRAM MAP 05/26/72 PAGE 2

PROGRAM

NAME OF program P0A04 computed length 00095984 MAXIMUM LENGTH 00095984

NUMBER OF REGIONS 001 NUMBER OF OVERLAY POINTS 000
number of segments 001 number of entry points 00089
NUMBER OF MODULES 035 starting execution addr. 014D20
BLANK COMMON LENGTH 00051896 blank common load addr. 000000

segment

  (ROOT) NUMBER 001 segment length 00095984 starting addressname of segment  oooooo

SYMBOLIC OVERLAY POINT (ROOT) region NUMBER 001
NEXT SEGMENT IN PATH (ROOT) NUMBER OF MODULES IN SEGMENT 035

MODULES name mof LOAD MODULE NUMBER OF ethod used to

module ADDRESS LENGTH ENTRYS BIND MODULES

PQA04 00CAB8 00005824 00002 EXPLICIT

sum 00E178 00004472 00001 EXPLICIT

comput OOF2FO 00003424 00001 EXPLICIT

INVGAM 010050 00003904 00001 EXPLICIT

PRINT 010F90 00003480 00001 EXPLICIT

GAMIT 011D28 00003360 00001 EXPLICIT

1TF8AG 012A48 00000064 00003 IMPLICIT

ITF#IA 012A88 00000104 00002 implicit

ITFRIC 012AF0 00003312 00007 IMPLICIT

ITF8IC2 0137E0 00000832 00009 IMPLICIT

ITF6ID 013B20 00000768 00006 IMPLICIT

itf#ifmt 013E20 00002176 00003 IMPLICIT

ITFBIG 0146A0 00000048 00002 IMPLICIT

ITF#IH 0146D0 00000048 00002 IMPLICIT

ITF # I 014700 00000416 00002 IMPLICIT

LINKAGE EDITOR ------ PROGRAM MAP 05/26/72 PAGE 3

IMPLICITITF#IL 014BA0 00000096 00002

014900 00000520 00004 IMPLICITITF8ILR

ITF#IS 014B08 00000216 00002 IMPLICIT

ITFBIX 014BE0 00000016 00002 IMPLICIT

ITF8IZ 014BF0 00000304 00002 implicit

ITF6MPI 014D20 00000904 00005 IMPLICIT

0150A8 00000104 00002 IMPLICITITF#OA

ITF60H 015110 00000048 00002 implicit

ITF80I 015140 00000128 00002 implicit

ITF60LR 0151C0 00000432 00003 IMPLICIT

ITF#0X 015370 00000048 00002 IMPLICIT

0153A0 00000704 00005 implicitITF#PA

ITF8X2 015660 00000200 00001 implicit

ITFBX4 015728 00000280 00001 implicit

ITF801 015840 00000400 00001 IMPLICIT

ITF809 0159D0 00000456 00002 IMPLICIT

ITF631 015B98 00000184 00001 IMPLICIT

015C50 00002512 00003 IMPLICITITFDATAD

ITF6PUG 016620 00004176 00003 implicit

implicitITF6IC1 017670 00000128 00001
***end lnkedt
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GAMMA DISTRIBUTION FUNCTION MODEL

/(y;«Ar)£ 777. (y-o)7"1 e^a)/l3r (r)
ORIGIN 

/9>0 SCALE PARAMETER 
y >0 SHAPE PARAMETER 

y IS THE MEAN

is 36

17 34
GRAPH PREPARATION 16 32

8 - 3; > = 2.0; the completed graph will appear 
lower right quadrant

(a) In the upper right quadrant, at 
horizontal 1

2.0, draw
14 28

(b) Through the intersections of this horizontal line 
the probability curves, draw perpendicular lines ex­
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba- 

ty values

13 26

STEP II In the lower left quadrant are the solid sloping lines 
the b values or slopes. At the intersection of the sloping 
ine labeled s = 3 and the horizontal heavy line at 8 

draw a vertical scale line. Through the intersections of 
the slopino e lines with the vertical line, draw horizontal 

nes across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping b lines at the intersection points. These scale 

units of the original set of data

11 22
10 20

lues are

v large or small values of 8,some scaling diffi 
culties are encountered. Use the scale for 8 
at the left side of the lower right quadrant. Read the 
quantities on this scale and multiply by the sampl

lues to arrive at values in the same units as the origi- 
of data

0.001 /.Ol .05.10.20.30.40.50.60.70 .80

STEP III The heavy sloping line in the lower right quadrant is the 
line fitted to the distribution defined by the scale lines 
and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph.

If a plot of the original data is needed, order the data 
from lowest to highest, labeling them i = 1 through 
where i » 1 is the lowest value and n is the number of data 
Compute the empirical probabilities by use of the expression 24 
(i-c)/(n-2c+l). For large samples, c is set equal to % that/ /
reduces the expression to (i-%)/n. For small samp 
be set equal to 0. The expression is then (i/n+1)........... Plot
the ordered data pairs against the probabil 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit wel 
the prepared graph.
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use the graph. The model is good fi
the graph. That is. another 
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lower right quadrant.
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18 36

n 34

16 32GRAPH PREPARATION 

= 2.0; the completed graph will appea

STEP I - (a) In the upper right quadrant, at y = 2.0, draw a 
horizontal u 28

(b) Through the intersections of this horizontal line with 
the probability curves, draw perpendicular 
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba 
bility values

13 26

In the lower left quadrant are the solid sloping lines
values or slopes. At the intersection of the sloping 

labeled b - 3 and the horizontal heavy 1 
draw a vertical scale line. Through the intersections of 
the slopino b lines with the vertical line, draw horizontal 

nes across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping B lines at the intersection points. These scale 

lues are in units of the original set of data

11 22

io 20

9 18

y large or small values of s,some scaling diffi
encountered. Use the scale for 8=1 that is 

at the left side of the lower right quadrant. Read the 
ouantities on this scale and multiply by the sample B 
values to arrive at values in the same units as the origi

The heavy sloping line in the lower right quadrant is the 
fitted to the distribution defined by the scale 

and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph 5 10

plot of the original data is needed, order the data 
from lowest to highest, labeling themi = 1 through 
where i = 1 is the lowest value and n is the number of data 
Compute the empirical probabilities by use of the expression 
(i-c)/(n-2c+l). For large samples, c is set equal to % that/ j j 
reduces the expression to (i-%)/n. For small samples, c may L 
be set equal to 0. The expression is then (i/n+1). Plot 
the ordered data pairs against the probabiliti 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit well by 
the prepared graph

the graph. The model is a good fit 
If not so, do not use the graph. That is, another 
model should be considered
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7 IS THE MEAN 17 34

GRAPH PREPARATION 16 32
= 3; y = 2.0; the completed graph will appear in the 

lower right quadrant

(a) In the upper right quadrant, at y * 2.0, draw a 
horizontal line 1*28

(b) Through the intersections of this horizontal line 
the probability curves, draw peroendi 
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba 
bility val

13 26

In the lower left quadrant are the solid sloping lines with 
the 8 values or slopes. At the intersection of the sloping 

ine labeled b * 3 and the horizontal heavy line at 8 
draw a vertical scale line. Through the intersections of 
the slopina s lines with the vertical line, draw horizontal 
lines across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping b lines at the intersection points. These seal 

lues are in units of the original set of data

11 22

large or small values of B.some scaling diffi­
culties are encountered. Use the scale for b 
at the left side of the lower right quadrant. Read the 
ouantities on this scale and multiply by the sampl

to arrive at values in the same units as the origi 
set of data

0.001 .01 .05.10.20.30.40.50 60 70 .80

The heavy sloping line in the lower right quadrant 
fitted to the distribution defined by the scale 

and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph 5 IO

plot of the original data is needed, order the data 
from lowest to highest, labeling them 
where i = 1 is the lowest value and 
Compute the empirical probabilities 
(i-c)/(n-2c+l). For large sampl
reduces the expression to (i-*)/n. For small samples, 
be set equal to 0. The expression is then (i/n+1). Plot 
the ordered data pairs against the probabilities on the 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit well by 
the prepared graph.

hem i « 1 through n 'll
d n is the number of data. / / 
s by use of the expression 24.0 
, c is set equal to % that/ j /
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Tgamma distribution function model
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a =a ORIGIN
8>0 SCALE PARAMETER 
y >0 SHAPE PARAMETER 

y IS THE MEAN

GRAPH PREPARATION

1 * 2.0; the completed graph will appear in the

- (a) In the upper right quadrant, at y = 2.0, draw a
horizontal line.

(b) Through the intersections of this horizontal line with 
the probability curves, draw perpendicular lines ex­
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba­
bility values.

- In the lower left quadrant are the solid sloping lines with 
the B values or slopes. At the intersection of the sloping 
line labeled b - 3 and the horizontal heavy line at 8 = 1, 
draw a vertical scale line. Through the intersections of 
the slopina b lines with the vertical line, draw horizontal 
lines across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping b lines at the intersection points. These scale 
values are in units of the original set of data.

For very large or small values of B,some scaling diffi­
culties are encountered. Use the scale for s = 1 that is 
at the left side of the lower right quadrant. Read the 
quantities on this scale and multiply by the sample B 
values to arrive at values in the same units as the origi­
nal set of data.

0 = 3 
?: 1* 

AMOU* : - 14.2
y

y QUANTILES---
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19 38

18 36

17 34

16 32

u28

13 26

ll 22
10 20

9 <8

.99 .9950.001 /.Ol .05.10 .20.30.40.50.60.70 .80

The heavy sloping line in the lower right quadrant is the 
fitted to the distribution defined by the scale 

and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph

5 IO
plot of the original data is needed, order the data 

from lowest to highest, labeling them i * 1 through 
where i « 1 is the lowest value and n is the number of data. / 
Compute the empirical probabilities by use of the expression 24 
(i-c)/(n-2c+l). For large samples, c is set equal to y that/ / 
reduces the expression to (i-40/n. For small samples

equal to 0. The expression is then (i/n+1). Plot 
the ordered data pairs against the probabilities on the 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit well by 
the prepared graph.

, use the graph. The model is a good fit 
so, do not use the graph. That is. another 

model should be considered
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= 2.0; the completed graph
16 32

lower right quadrant 

[P I - (a) In the upper 
horizontal

ght quadrant, 2.0, draw

14 28
(b) Through the intersections of this horizontal line 

the probability curves, draw perpendicular lines 
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba- 

ty values

13 26

STEP II lower left quadrant are the solid sloping 
the 8 values or slopes. At the intersection of the sloping 
line labeled b - 3 and the horizontal heavy line at 8 
draw a vertical scale line. Through the intersections of 
the slopina 6 lines with the vertical line, draw horizontal 
lines across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping b lines at the intersection points. These scale 
values are in units of the original set of data

ll 22
10 20

For very large or small values of 8,some scaling diffi- 
encountered. Use the scale for 8 = 1 that 

at the left side of the lower right quadrant. Read the 
quantities on this scale and multiply by the sampl

ues to arrive at values in the same units as the origi­
nal set of data.

0.001

The heavy sloping line in the lower right quadrant i 
ne fitted to the distribution defined by the sea 

and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph. 5 10

STEP IV plot of the original data is needed, order the data 
from lowest to highest, labeling them i = 1 through 
where i = 1 is the lowest value and n is the number of data 
Compute the empirical probabilities by use of the expression 
(i-c)/(n-2c+l). For large samples, c is set equal to % that/ / 
reduces the expression to (i-%)/n. For small samples,c may 
be set equal to 0. The expression is then (i/n+1). Plot 
the ordered data pairs against the probabilities 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit well by 
the prepared graph

QUANTILES

If so, use the graph. The model is a good fit.
That is, anotherIf not so, do not use the graph 

model should be considered
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GAMMA DISTRIBUTION FUNCTION MODEL
/(y ;a,/3,r)= Y^y)(y-a)y 1 e'(y_a)/'e

a rO
■ 0 >0 

7 >0

ORIGIN
SCALE PARAMETER 
SHAPE PARAMETER 
y IS THE MEAN

GRAPH PREPARATION

Given a = C; e = 3; y = 2.0; the completed graph will appear i 
lower right quadrant.

(b) Through the intersections of this horizontal line with 
the probability curves, draw perpendicular lines ex­
tending through the lower right blank quadrant. Label 
these lines at the base with the corresponding proba­
bility values.

■ In the lower left quadrant are the solid sloping lines with 
the B values or slopes. At the intersection of the sloping 
line labeled 8 = 3 and the horizontal heavy line at 6 = 1, 
draw a vertical scale line. Through the intersections of 
the slopino e lines with the vertical line, draw horizontal 
lines across the lower right blank quadrant. Label the 
ends of these lines with the respective values of the 
sloping B lines at the intersection points. These scale 
values are in units of the original set of data.

For very large or small values of 8,some scaling diffi­
culties are encountered. Use the scale for 6=1 that is 
at the left side of the lower right quadrant. Read the 

quantities on this scale and multiply by the sample 0 values to arrive at values in the same units as the origi­
nal set of data.

- The heavy sloping line in the lower right quadrant is the 
line fitted to the distribution defined by the scale lines 
and probability lines that have been drawn. Quantities 
and probabilities may be interpolated from this graph.

- If a plot of the original data is needed, order the data 
from lowest to highest, labeling them i = 1 through n 
where i = 1 is the lowest value and n is the number of data. 
Compute the empirical probabilities by use of the expression 24.

SCHEMATIC EXAMPLE

0 - 3 
?: 0.95

AMCXX - 14.2

/ jT)
QUANTILES---

;£>

i expression
be set equal to 0. The expression is then (i/n+1). Plot 
the ordered data pairs against the probabilities on the 
graph prepared in STEPS I through IV. View the data plot 
and subjectively decide whether the data are fit well by 
the prepared graph.

a. If so, use the graph. The model is a good fit.
b. If not so, do not use the graph. That is, another 

model should be considered,

(i-c)/(n-2c+l). For large samples, c is set equal to % that/ / I 

reduces the expression to (i-*)/n. For small samples, c may 23 0~................................ ' //
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