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A NOTE ON A GAMMA DISTRIBUTION COMPUTER PROGRAM AND GRAPH PAPER

Harold L. Crutcher,l Gerald L. Barger,2 and Grady F. McKay!l
Environmental Data Service, NOAA

ABSTRACT. The gamma distribution function may be used as a
model for many sets of data. The electronic computer pro-
gram in the Formula Translator (FORTRAN) IV for this function
here provides the analytic solution to a set of data, gives
the probabilities of exceeding or not exceeding arbitrary
amounts, and indicates the amounts exceeded or not exceeded
for arbitrary probabilities.

The developed gamma probability plotting paper serves also
for the special cases of the chi-squared, the exponential,
and the Poisson distribution functions. Estimates of the
scale and shape parameters permit construction of the graph.
The graph paper may be used to estimate the scale and shape

parameters.

The program, in its general form, permits a maximum of 52
entries, which will suffice for those dealing with weekly
data through the year. In addition, in precipitation
studies, the user has the option to compute in one pass of
the data the two duration and three duration period distri-
butions. These computations are done without program
change but by appropriate changes in the control cards.
This feature is not limited to the study of precipitation
data.

An option permits the computation of the required proba-
bilities and inverses when only the scale and shape

parameters are given.

The computer output is designed for easy input to plotter
routines.

National Climatic Center, EDS, Asheville, N.C.

laboratory for Environmental Data Research, EDS, Washington, D.C.



1. INTRODUCTION

This paper presents for the gamma distribution function:

1. An electronic computer program in the Formula Translator (FORTRAN) IV to provide an
analytic solution for a data set.
2. Probability graph paper that furnishes a best fit straight line to the data.

Pearson and Hartley (1954) and others before them indicate that the chi-square integral,
the incomplete gamma function, the type Ill distribution integral of Pearson (1894), the
exponential functions, and the cumulative sum of terms of the Poisson distribution are
different forms of the same mathematical function. Rayleigh (Strutt 1919) and the
Maxwellian (1859) densities are special cases of the gamma densities. Therefore, the
probability plotting paper developed here serves for these distributions as well as the
exponential. In queuing theory, the Erlangian distribution is a gamma distribution. (For
symbols used in this report, see table 1.)

Il.  THE GAMMA DISTRIBUTION FUNCTION

Many processes produce data distributions that the gamma distribution model describes
well. Naturally, considerable literature exists for this distribution. The model serves
for reliability life tests and fatigue problems. It offers advantages in the study of many
multiple component systems where time to failure is an important feature. There are many
other applications. For example, precipitation is the result of atmospheric processes, and
the additive features of the gamma distribution parallel the additive features of atmo-
spheric processes in rainfall production.

Pearson (1916) derives the gamma density function (Pearson's type Ill) as the solution of
a differential equation. The tables edited by Pearson (1922), with subsequent revision
through 1957, and those by Pearson and Hartley (1954) permit application of the gamma dis-
tribution model to fit and graduate skew data. The above tables permit interpolation for
fractional degrees of freedom for the chi-square distribution. Campbell (1923) provides
perhaps the first tabulation of the inverse gamma function if only for integer values.
These, of course, are equivalent to the chi-square distribution with integer degrees of
freedom equal to twice the gamma values. Salvosa (1930) also provides useful tables.

Cohen et al. (1969) extend the tables of Salvosa. Birnbaum and Saunders (1958) derive and
use the gamma distribution as one of the models for material life length, which may be
likened to the life of a storm or the time to failure of precipitation generating processes.
Harter (1964, 1969) provides an excellent discussion and extends Pearson's tables. Yet as
Harter says, Pearson's work has no serious contender.
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Table 1.—Symbols and their meanings

Gamma distribution variable dependent on second and third moments
Plotting parameter equal to c
Plotting parameter with a default option to 0.44
Exponential; 2.7183
Function
(1) sample number
(2) subscript
(1) sample number
(2) subscript
Subscript, such as i or j
Number of data
(1) probability of nonzero amounts; NX/NNX
(2) probability level
(1 - p), probability of zero amounts (NNX-NX)/NNX
Variable
Average t; the overbar indicates an averaging process,
Derivative of t
Variable, here generally y - a
Transformed x, as (y - a)/8
Average x; nonzero amounts only
Variable
Average y; nonzero amounts only
Function
Gamma distribution function for a measured set excluding zeros
Gamma distribution function fora measured set including zeros
Sample number
(1) number of duration periods
(2) number of data combined
Kolmogorov (1933)
Kolmogorov-Smirnov
Moment; subscripts indicate type of moment.
Maximum likelihood
Number of data excluding zeros
Number of data including zeros
Smirnov (1936, 1948)
Untransformed variable (i.e., an original datum)
Untransformed variable (i.e., an original datum)
Alpha; (1) origin
(2) probability level for rejection
Beta; scale parameter

Gamma; shape parameter

Beta hat; maximum likelihood estimate of sample scale parameter
Gamma hat; maximum likelihood estimate of sample shape parameter
Beta star; Thom's (1958, 1968) estimate of scale parameter
Gamma star; Thom's (1958, 1968) estimate of shape parameter
Gamma; gamma function

Integral

Sigma; summation

Tau; quantile

Derivative of T

Chi-square

Equal to

Greater than

Much greater than

Less than

Less than or equal to

Overbar; averaging process

Infinity



I11. THE GENERAL GAMMA DISTRIBUTION FUNCTION

The general gamma distribution with origin parameter a(- » < a < «>), scale parameter
b(b > 0), and shape parameter y(y > 0) has the probability density function shown in

fly:t»,e)y) = BY(r(Y))"'l(y-a)Y_le"y’l™6, y=a, - » <y <+ »

and 0]
=0, vy<a
The distribution function given in
F(y;a,3y) = f(t;a,3,y)dt @

is for all y > a.

Fisher (1922) first develops the maximum likelihood (ML) equation for the solution for
for the incomplete gamma distribution known commonly as the gamma distribution. It is
incomplete in the sense that the integral limits of the function do not range from - » to
+ w but from some finite point such as a to + k where k is some real number. If the origin
parameter a is zero, this distribution is a special case of the Pearson type Il distribu-
tion. The solution of the ML equation as developed by Fisher is difficult. Therefore,
Thom (1947) develops approximate solutions. Chapman (1956), Greenwood and Durand (1960),
Gupta (1960), and Wilk et al. (1962) provide methods to estimate the gamma distribution
parameters. Mooley and Crutcher (1968) discuss the variability of the parameter estimates
of two gamma distributions. Schickedanz and Krause (1970) present tests for the scale

parameters.

Thom's work leads to fruitful use of the gamma distribution in meteorological, climato-
logical, and hydrological applications. Barger and Thom (1949) furnish an evaluation of
drought hazard. Friedman and Janes (1957) provide an estimation of rainfall probabilities.
Thom (1958) presents a note on the gamma distribution. Barger et al. (1959) give the
chances of receiving selected amounts of n-week precipitation in the north-central region
of the United States. The last is the model for a number of subsequent publications.
Hartley and Lewish (1959) manage the computer hardware and software for the above study.
Thom and Vestal (1968) provide a study of monthly rainfall in the conterminous United

States.
IV. PARAMETER ESTIMATION

The gamma distribution (Pearson's type Ill1) includes the chi-square and the exponential
distributions as special cases. Pearson (1922), Thom (1958), and Hahn and Shapiro (1968)
discuss this. Most statistical texts briefly discuss this also. The shape parameter y is
equal to one-half the degrees of freedom for the chi-square distribution and is equal to !
for the exponential distribution, while the scale parameter 3 is equal to ! in the stan-
dardized case as well as the last two cases.



Barger et al. (1959) provide plotting paper where the arguments are the mean and the
variate. Overlaid straight lines represent probabilities. Each value of the shape
parameter y requires a separate graph. In the same paper, Thom's distribution curves,
also prepared from Pearson's tables in 1957, appear. The probability and the variate
divided by the scale parameter are the arguments with the shape parameter being overlaid

in curved lines over the argument plot.

Wilk et al. (1962) provide techniques to estimate the scale and shape parameters, and
they indicate that computer routines are available to provide graphical plots in terms of
the quantile probabilities of the distribution and scale units. The theoretical line of
best fit is then a straight line. These authors provide a brief set of tables that allows
the person with a desk calculator, slide rule, or paper and pencil to interpolate required
probability values and scale values and to make a plot of the data against the line ob-
tained from the estimate of the scale and shape parameters. Roy et al. (1971) incorporate

the above paper.

Thom (1968) presents direct and inverse tables of the gamma distribution. Thom's tables
fill in areas not covered by the Wilk et al. (1962) tables and repeat other portions for

verification.

V. ORIGIN

The origin or location parameter a in eq (1) usually is set to zero. However, there are
cases where the origin is not zero. Elderton (1953) uses Pearson's moments to locate an
origin from which the other parameters of the distribution may be measured. The necessary

statements follow:
a = origin = mode - a,

(2M2/M3) - (M3/2M2),

a

mode = t - (M3/2M2),
and N

origin = t - ((2M|)/M3)

where M2 and M3 are the second and third moments from the mean of the distribution. Barger
(1964) discusses this. The expression t - (2M|/M3) does not ensure a positive location
estimate even though the observed values are all positive. In some cases, the estimate may
be higher than the lowest observed and recorded value in the data set.

Pitman's (1938) estimator for the location (origin) parameter is a minimum variance un-
biased estimator if the scale and shape parameters are known. These parameters usually are
not known and must be estimated. Pitman's technique is not examined further in this report.



Hastings (1955) provides equations for the estimation of the origin. Greenwood and
Durand (1960) also study the estimation of the location parameter. Chapman (1956) provides
a tabular aid for iterative procedures to solve for the origin parameter in the untruncated
case. He indicates an additional procedure for the truncated case, providing there is
sufficient supplementary information. These iterative procedures are not examined in this

report.

Blischke (1971 and in prior studies) pursues the solution to the problem. Blischke
encountered the same difficulties in the estimation process as is mentioned for the
Elderton estimator. This, of course, blocks the calculation of maximum likelihood esti-
mators for the shape and scale parameters or in any estimation process where logarithms are
used. Blischke suggests that the lowest value be used as the origin where the estimated
origin is above the lowest observed datum. This is the maximum likelihood estimator for
the origin. Previously, the present authors found that fit to the gamma distribution may
be rejected when this is done, even though a value slightly lower than the minimum datum
as the estimator for the origin is used.

The program presents several options for the origin. The default option uses zero as the
origin. Such a case would be zero for measured precipitation. If prior experience or
theoretical considerations indicate the value(s) of the origin parameter(s), this option is
entered in a control card that replaces the default option. A third option uses the lowest
value less a small amount to ensure the positive number needed for the logarithms used in
the maximum likelihood or Thom's estimators. Additionally, if the lowest value occurs more

than once, this value becomes the origin.

The program processes the mixed distribution that consists of two categories, the lower
bound and the values above the bound. Categories by nonoccurrence, such as zero precipita-
tion, and the distribution of measurable precipitation above the bound is such a mixed

distribution.

Regarding the bias in the estimators of maximum likelihood, it is of interest to refer to
Blischke's work and to that of Shenton and Bowman (1970), Fisher (1922), and Thom (1957,
1958). Here we reproduce the comments of Shenton and Bowman:

"In this note we show that Thom's statistics are:

a) slightly biased, no matter how large the sample; however this bias is almost
negligible for y»0, and indeed is only of any real importance if y is small (say less than
0.1 approximately); the bias in finite samples is about the same as for the maximum likeli-

hood estimators;



b) superior to the maximum likelihood estimators because their variances are less in
large sample theory; there is evidence that this property holds in finite samples also;

c) about as near to normality (as measured by skewness and kurtosis) as the maximum
likelihood estimators; actually the distribution of 3 is generally nearer to the normal
form than that of 3."

In the above, the 3 and 3 are respectively the maximum likelihood and Thom estimators.

Removal of bias in the estimators is not attempted in this program and report. Such will
be examined later. In view of the large variability of the estimates (Andrews and Barger
1956) and Mooley and Crutcher (1968), removal of the bias may or may not be appropriate.

With a, the origin, obtained, the following expression is pertinent:

X=y-a )
Then eq (1) becomes
f(x;0,3,y) = e“Y(r(y))-1 xY_le“x/3, 0 < x< e
and ®)
= 0, X N 0.

Thom (1968 and in his earlier papers) utilizes this form.

As shown by Thom (1958) and by Wilk et al. (1962), if the variate x assumes a transform
by division of the scale parameter 3, the distribution function develops as
F(x";0,1,y) = (r()rl /gx~€7"1 e“T dx, x' >0
and (6)
0, x' <0.

that is a standard form with a = 0 and 3 = | and is positive when x > 0.

Figure 1 provides a picture of the effect of the shape parameter and scale parameter on
the function curves. Here, the standardized scale (frequency) is plotted against the
quantile . Curves for shape parameters (A) 0.5, 1.0, 1,5, and 2.0, (B) 1, 2, 3, and 4,
and (C) 1, 5, 10, 20, and 30 illustrate the effect. The shape parameter for 1.0 is shown
on each subset, but the horizontal scale has been compressed. Hahn and Shapiro (1968) and
Falls (1971) provide illustrations for other combinations of the scale and shape parameters.
Reference to x2 curves also may be made. Where y = 1, this is the same as the exponential
and the same for x2 with two degrees of freedom as well as for a Poisson distribution.
Stated somewhat differently, the random variable (I/2)x” with Zy degrees of freedom has
the gamma density function with the scale parameter equal to one and the shape parameter
equal to y.



Wilk et al. (1962) and Thom (1968) present
the numerical methods to obtain the estimates
of the gamma distribution scale and shape pa-
rameters 6 and y. Masuyama and Kuroiwa (1951)
provide a table for the likelihood solution
of the gamma distribution. Those papers pro-
vide more detail. As Barger et al. (1959) in-
dicate, the estimates of the parameters are
subject to rather large variations due to sam-
pling and estimating errors. Mooley and
Crutcher  (1968) discuss the variance of the
probabilities of exceeding stated amounts
based on work of Andrews and Barger (1956).

For a particular gamma variate distribution,
the product of the shape and scale parameters
equals the mean of the nonzero quantities.

That is, §§ =y, Ify2 y2,...,yn are inde-
pendent gamma variates with shape parameters
n
equal toy .y ....,yn, then Y= z vy. is a
| z m i=1
gamma variate with a shape parameter equal to
n
z y. (Kenney and Keeping 1951 and Lancaster
i=i
1969). This provides a useful tool for com-
bining parameter estimates, thereby reducing

the computation that would be required if the
original data sets were combined.The division
of the mean of the total set by the new shape
parameter estimate provides the new scale pa- Figure 1.—Selected gamma distribution func-
rameter estimate. tion curves

An option is available in the computer program discussed below that permits the calcula-
tion of probabilities from the input value of the parameter estimates in lieu of entry of
original data with subsequent calculation of the estimates.

VI. GAMMA DISTRIBUTION FUNCTION COMPUTER PROGRAM

Elderton (1953) provides the moment estimate procedures for the origin parameter a as
indicated previously. Thom (1958, 1968) provides the requisite information and equations
to provide the maximum likelihood (ML) and Thom estimates of the scale and shape parameters

$ and y.



The computer program given in the appendix, initially follows after Bark and Hofman (1960).
Since that time, through much usage, discussions, and changes, resemblance to the original

program decreases.

The present program may provide inadequate approximation for values of the probabilities
when the shape parameter y is less than 0.50. In this region, the asymptotic portion of
the gamma function distribution, the slope of the curve, is almost indeterminant. Small
changes in the shape parameter cause extreme changes in the function.

Pearson (1922) discusses this problem. Where computers of extremely large capacity are
available, the approximations may succeed at low gamma and low probability values, though
numbers as small as 1035 are reached before failure. For most purposes when dealing with
real data, such low gammas and low probabilities are not of too great importance. However,
in terms of reliability problems, these may be important. Therefore, further work will be
done on this problem in the development of approximation algorithms or techniques. Caution
is needed when using this program for shape parameter values < 0.50.

The electronic computer program that formsthe appendix, with comments for the FORTRAN IV
user, supplies the necessary details. This particular program employs the Univac Series
70/45 Computer. Use with any other computer may require a few changes, but these will be
minimal. Other options may be inserted, and changes may be made by the user to satisfy his

particular requirements.

Figure 2 illustrates in tabular form output the application of the gamma model to the
weekly rainfall distribution at Albany, Ga. The 11th week of the climatological year,
May 10-16, for 39 yr with measured precipitation in 29 of the years constitutes the data
set. Figure 3 depicts in tabular form the application of the gamma model to maximum rain-
fall in the Appalachian Mountains (1900-1969) from hurricanes or remnants thereof passing
over the mountains or the centers touching the 1,000-ft contour (Haggard et al. 1971).
Figure 2 shows output for 20 arbitrarily selected levels, and figure 3 shows output for 52
selected levels, which is the maximum for this program. Fifty-two is also the maximum data
set input. This latter restriction, of course, may be bypassed if the option starting with
known estimates of the scale and shape parameters is used. Parts A and B in figures 2 and
3 and in data output divide the tabulations into two sets of columns.



PRECIPITATION PROBABILITIES RUN DATF 11/17/71

. y v b ;. & 9. W AL 12
XBAR ALPHA beta GAIMA c
30140 e 1.030 0.000 1.295 0.796 15.483 0.970 0.086
5 6 7 (,87 ¢ ;{9 11 12 13
EMP PROB EMP PROB SELECTED SELECTEO SELECTED GRAPH  SELECTED  EXC PRB
EMP  QUANTILE QUANTILE PROB  QUANTILE QUANTILE PROB QUANTITY FOR
BSBETA  values (X>0) LEVELS  PCP LVL
0.52 0.00 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.135 8 %gg g azztg
0.02 0 0.000 0.000 0.000 0.100 0.000 0.000 0.428 4
0:00 0:000 0.000 0.000 0.000 0.150 0.000 0.000 0.567 0.800 0.322
0.08 0.00 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.621 0.950 0.282
1.71 0.000 0.0Q0 0.000 0.000 0.250 0.000 0.000 0.638 1.000 0.269
0.51 0.08 0.000 0.000 0.000 0.000 0.300 0.026 0.034 0.766 1.500
0.00 0.00 0.000 0.000 0.000 0.000 0.350 0.070 0.091 0.8*7 2.000
0.57 0.00 0.000 0.000 0.000 0.000 0.400 0.124 0.160 0.899 2.500 0.075
0.05 0.00 0.000 0.000 0.000 0.000 0.450 0.186 0.241 0.933 3.000 0.050
2.46 0.00 0.000 0.000 0.000 0.000 0.500 0.258 0.335 0.956 3.500 0.033
0115 0.02 0.015 0.019 0.000 0.000 0.550 0.341 0.642 0.971 4.000 0,022
0.00 0.02 0.015 0.054 0.023 0.030 0.600 0.437 0.566 0.980 500 .
2.93 0.03 0.023 0.088 0.044 0.057 0.650 0.548 0.709 0.987 5.000 0.010
248 0.03 0.023 0.122 0.068 0.087 0.700 0.679 0.879 0.991 5,500 0.007
0.00 0.05 0.039 0.157 0.094 0.121 0.750 0.837 1.084 0.994 6.000 0.004
280 0.15 0.116 0.191 0122 0158 0.800 1.034 1.339 0.996 6.500 0.003
184 0.20 0.154 0.225 0.153 0,198 0.850 1.293 1.674 0.997 7,000 0,002
0.00 0.21 0.162 0.260 0.186 0.240 0.900 1.663 2.154 0.998 7.500 0,001
0.41 0.317 0.294 0221 0.286 0.950 2.308 2.988 0.999 8.000 0.001
0.45 0.348 0.32b 0.259 0.336 0.990 3.835 4.966 0.999 8.500 0.001
0.48 0.371 0.363 0.300 0.389
0.49 0.378 0.397 3 .446
1.32 051 0394 0.431 0.391 0.507
0.00 0.52 0.402 0.466 0.442 0.573
0.56 0.432 0.500 0.497 0.644
4.2 0.57 0.440 0534 0.557 0.721
0.00 0.59 0.456 0.569 0.622 0.805
1561 0.934 0.603 0.693 0.697
0.20 13 0.965 0.637 0.771 0.999
1.63 132 1.019 0.672 0.858 1111
0.41 161 1.243 0.706 0.955 1237
0.49 1.63 1.259 0.740 1.066 1.380
0.00 171 1.321 775 1.193 1.545
0.45 184 1.421 0.809 343 1.739
0.48 2333 1.799 0.843 1524 1.973
0.00 2.46 1.900 0.878 1.751 2.268
0.03 2.48 1.915 0.912 2.057 2.664
0.00 2.80 2162 0.946 2521 3.265
021 3.95 3.050 0.981 3.493 4.523

Figure 2.—Precipitation probabilities for Albany, Ga., during the 11th
climatological week of the year, May 10-16. The first week is March 1-

7. The gamma model is used.

N

4 HOUR TOTAL PRECIP

The period of record is 1930-1968.

A 1
10 11 12
STATION SR ALPHA B TA GAMMA X2
11 >10 C.uoC 2 447 2.702 7.571
B 1 6 7 8 9 Jeg 11 J_ 13
EMP PROB EMP PROB SELECTED SELECTED SELECTED GRAPH sefected EXC PRB
QUANTILE QUANTILE PROB  QUANTILE QUANTILE PROB QUANTITY FOR
B-1 b-beta values B-l ETA (X>0) LEVELS PCP L'
0.274 0.409 0.001 0.334 0.000 0.005 1.000
0. 0.327 0.634 1361 0.003 0.512 0.000 0.010 1.000
4.02 2.H? 1.153 1.943 0.005 0.626 0.000 0.015 1.000
9.50 3.10 1.267 2.272 0.006 0.673 0.000 020 1.000
4.50 3.42 1.398 1.043 2.567 C.007 0.716 0.000 0.025 1.000
11.40 3.50 1.430 1.161 2.842 0.008 0.755 0.000 0.030 1.000
10.71 3.6 1.508 3.103 0«009 0.792 0.000 0.035 1.000
1.524 3.354 0.827 0.000 0.040 1.000
4.95 1.627 1.471 3.600 9919 0.976 0.000 0.045 1.000
5.64 1.643 1.57C 3.841 0.000 0.050 1.000
5.51 1.721 4.081 9929 1m 0.000 0.060 1.000
13.40 1.823 4.320 0.030 1.308 0.000 0.070 1.000
9.72 1.839 1.864 4.560 0.035 1.398 0.000 0.080 1.000
6.47 1.872 1.963 4.802 0.040 1.482 0.000 0.090 1.000
10.16 1.941 2.063 5.04b 0.045 1.561 0.000 1.000
4.21 2.023 2.165 5.297 0.050 1.636 0.000 91@9 1.000
11.60 5.00 2.044 2.269 5.553 0.055 1.708 0.000 1.000
4.75 5.51 2.252 2.377 5815 0*060 1.776 0.000 92@9 1.000
6.85 2.305 2.487 6.085 0.065 1.843 0.001 0.300 0.999
6.25 2.534 2.602 6.365 0.070 1.907 0.001 0.350 0.999
3.42 2.554 2+72i 6.657 0.075 1.96V 0.002 0.400 0.998
1& 86 2.579 2.845 6.962 9 ggg 2.029 0.00: 0.450 0.998
% 6.47 2.644 2.977 7.284 3 0*003 0.500 0.997
3.69 6.85 2.800 3.116 7.624 0.090 2.988 0.004 0.550 0.996
3.10 3.037 3.265 7.988 0.095 0.004 0.600 0.996
22.22 8.00 3.270 3.425 8,379 0.100 0.005 0.650 0.995
7.43 9.50 3.883 3.599 8.805 0.150 2.763 0.007 0.700 0.993
5.00 3.973 3.790 9.274 0.200 3.220 0.008 0.750 0.992
4.58 4.152 4.005 9,798 0.250 3.653 0.009 0.800 0.991
4.46 4.377 4.249 10.397 0.300 4.075 0.850 0.989
8.00 4.659 4.536 11.098 0.350 4.496 .| 0.900 n.988
3.73 4.741 4.886 11.954 0.400 4.922 0.950 0.986
3.50 4.823 5.340 13.064 0.450 5.359 0.016 1.000 0.984
6.20 5.477 14.683 0.500 5.815 0.041 1.500 0.959
0.67 9.081 6001 17.398 0.550 6.296 0.078 0.922
0.600 6.811 0.123 Qeee 0.877
0.631 7.153 0.175 3.000 0.825
0.650 7.373 .500 N
THE FOLLOWING CONTROL PARAMETERS HAVE BEEN READ 0.700 7.997 gggi ‘31_300 8;3‘;
0.750 8.708 0.350 4.500 0.650
0.800 9.547 0.409 5.000 0.591
BEGINNING PERIOD NUMBER IS 0.850 10-569 0.»66 5.500 0.534
ENDING PERIOD NUMBER IS 0.900 0.520 6.000 0.480
NUMBER OF PRECIP AND/OR PROB LEVELS IS 0.910 0.617 7.000 0.383
OPTION
TWO PER 100 TOTALS REOUIRED, YES IF 2 8328 ﬁ %3? 3;323 3888 822‘2’
THREE PERIOD TOTALS REQUIRED, YES IF 3 C.970 15.933 0.823 10.000 0.177
USE DEFINED TABLES OF PRECIP OR PROB, YES IF 0 0.98C 17.199 0.960 15.000 0.040
NUMBER OF VEARS USED IS 0.990 19.318 0.992 20.000 0.008
C VALUE 0.995 21.389 0.999 25.000 0.001
ALPHA VALUE TO BE COMPUTED IF IA-2, 0.997 1.000 30.000 £.000
VALUE TO CONTROL ITERATION LIMIT = 0.999 1.000 35.000

Figure 3.—Precipitation probabilities for the Appalachian Mountains rain-
fall from tropical cyclones or remnants thereof crossing the mountains
during 1900-1969 (Haggard et al. 1971). The gamma model js used.
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Part A, shown on the first line, provides the following.

Station Identification

2 | Sample number

3 J Number of duration periods in sample

4 NX Number of data excluding zeros

5 NNX Number of data including zeros

6 XBAR Arithmetic average of data excluding zeros

7 ALPHA Origin value

8 BETA Scale parameter estimate, BETA STAR

9 GAMMA Shape parameter estimate, GAMMA STAR

10 X2 X2 for chi-square test

1 PROB Probability of a chi-square value equal to X2 above
12 K-S The largest difference in probability between the theoretical

and empirical distribution curves. This is the Kolmogorov-
Smirnov test statistic (Smirnov 1948).

Part B comprises 13 columns of output information that provide the following.

1 Sequential guidance

2 Data in order of observation or record. These are x or y or transforms
of y such as (y-a) or (y-a)/3.

3 Ordered data of column 2

4 Ordered data of column 2 divided by the scale parameter 3 of column B-2
data. If the transform ((y-a)/3) is used, columns B-2 and B-4 ought
to be identical except for rounding error.

5 Empirical probability of the ordered data. The expression (n-c)/(n-c+l)
provides the probabilities where n is equivalent to NX of part A and
¢ = 0.44 (Gringorten 1963). NX is the number of nonzero data. A
program option permits a change in the value of c.

6 Variate quantile associated with the empirical probability of column 5
with the scale parameter 3 set equal to unity

7 Variate quantile associated with the empirical probability of column 5
with the sample scale parameter 3 shown in part A

8 Fifty-two or less arbitrarily selected cumulative theoretical probability
values for which columns B-9 and B-10 respectively show corresponding
cumulative quantiles and amounts. A program option permits change in
these, but allows for no more than 52.

9 Cumulative quantile values of the distribution corresponding respectively
to the cumulative probability values of column B-8

10 Cumulative values of the distribution corresponding respectively to the
cumulative probability values of column B-8. Multiplication of values
in column B-9 by the sample 3 value of part A provides column B-10
data.

11 Consider the base. The base is only the distribution of nonzero amounts
shown in columns B-2 and B-3. The number of data is the NX of column
A-4. Column B-Il then gives the probabilities of occurrence of amounts
equal to or less than selected nonzero amounts shown in column B-12.
This column is labeled "GRAPH" to indicate that this may be used to
graph the set of nonzero amounts.

12 Arbitrarily selected cumulative amounts. The maximum number of amounts
is 52. A program option permits change of amounts and < 52 amounts.
The option also provides for the amounts to be scaled in terms of the
mean of the nonzero amounts.

13 Probabilities of exceeding the arbitrarily selected cumulative amounts
shown in column B-12. This is the mixed distribution.

1



If NX = NNX in part A, columns A-4 and A-5 (i.e., if the original distribution has no
zero amounts), then column B-13 is the complement of column B-II.

The plot of columns B-Il, B-12, and B-13 (as one set) and columns B-8 and B-9 (as another
set) should plot on the straight line of the graphs shown in this report. The data of
column B-12 should be scaled by division by the scale parameter B. The empirical proba-
bilities and empirical amounts shown in columns B-5 and B-7 plotted on the graph will show
visually and subjectively how good the line of best fit fits the data.

Wherever the approximation routines fail for a particular quantity or probability level,
this will be noted in the output. Usually, enough levels will be available so that the
loss of a level or two is not important (i.e., interpolation will suffice). If too many

levels are noted, then the program routines generally will be inadequate because of diffi-
culties previously mentioned in the asymptotic portion of the distribution.

For most purposes (in the analytical sense), if the gamma model is accepted without
question, columns B-8 and B-10 or columns B-12 and B-13 provide the desired information
based on the data sample. One set is the inverse of the other, though different levels
may be and generally are used.

VII. MIXED DISTRIBUTIONS

Some data sets form a mixed set of distributions. The simplest mixed set consists of two
subsets of data:
1. All data equal to or less than a, the origin.

2. All data greater than a.

Where the origin a is zero, the mixed set consists of:

1. The subset of zeros.
2. The subset of measured quantities.

Thus, after Thom (1951),

HX) = g+ p G(X) (7)
where q is the zero set empirical probability, p is the measured set probability, and G(x)
is the gamma distribution function for the measured set. For example, if g = 0.40 and
p = 0.60, 40% of the observed values are zero and 60% of the observed values are greater
than zero. Then, the cumulative probabilities of amounts greater than zero develop from
the solution of G(x). These probabilities then are multiplied by 0.60 and added cumula-
tively to the initial 0.40 probability for the zero. If a is not zero, then the q = 0.40
would apply to values < a. Also, p refers to values > a.

12



The above procedure, utilizing the simplest mixed distribution, is part of the present
computer program. Neither the model nor the program considers or allows for mixtures
within the set of measurable quantities.

VIII. PREPARATION OF GAMMA DISTRIBUTION FUNCTION PROBABILITY PLOTTING PAPER

The investigator who relies too much on numbers and the electronic computer to process a
data set bypasses the plotting step in many investigations. He expects the computer to do
the thinking and the interpretation. This places too much reliance on a computer, which
may have internal programming procedures unknown to the investigator. Data plots are many
times a last step, if at all, in the reporting step in an investigation.

Plots of data form a first step in the study of any set of experimental or engineering
data. The eye is usually a good integrator of the information display. Graphical analysis
sometimes replaces numerical analysis. Sometimes, there is no other recourse because the
complexity of distributions and their interrelationships defies the ingenuity of the
analyst, the programmer, and often, even today, overloads the capacity and capabilities of
the electronic computers. Intractable problems from the numerical or even analog point of
view sometimes become tractable by means of graphical analysis. Graphical plots in terms
of probabilities or of hazards provide ideas, concepts, and answers that numerical proce-
dures cannot provide. Linsley et al. (1949) provide some good examples of graphical corre-
lation procedures.

In a sense, the preplotting of the data permits a quality review of the data. This pre-
plotting may even take the form of simple arrays such as scattergrams, histograms, or iso-
pleth analyses of data arrays, whether in original first differences or transformation. By
such means, outlier or questionable data examination is possible prior to inclusion or ex-
clusion in the processing of the data. The inclusion of extremely bad data destroys the
validity of any statistical analysis.

The following (Kimball 1960, p. 549) is most appropriate for this discussion, though it
pertains in general to the normal distribution.

"Before proceeding further it is to be noted that the simplification afforded by the use
of probability-scale graph paper is a visual simplification. The probability paper trans-
forms a curvilinear distribution into a straight line. If the approach is to be purely
analytical, there is no point in using the special scale paper.

"It then becomes important to have in mind the purpose served by plotting the observed
data on the special scale graph paper. In general there are three rather different kinds

of purposes that might be served. These are:

13



(1) A test as to whether or not the sample data indicate that the universe is of the
prescribed type. One argues that the universe is of the prescribed type only if the plotted
points tend to lie along a straight line.

(2) The graphical method may be used as a shortcut in estimating the standard devia-
tion of the distribution, which in turn is directly determined from the slope of the fitted
straight line.

(3) Graphical extrapolation at one of the extremes. This is the purpose most commonly
served in plotting data from an extreme-value universe. Data are often plotted on extreme-
value graph paper when it is known that on the lower range of maximum values the extreme-
value distribution of Type | does not apply (9, p. 767). If in the upper range there is
likely to be good conformity with the Type | distribution, a straight line fitted on the
upper range is used as a basis for extrapolation of large extremes beyond the range of
plotted points.

"These objectives can overlap. When accenting (2), one may well have a weather eye on
Objective (1). For example, in examining a batch of samples taken from different popula-
tions one may have inferred that the universes are normal and so accent Objective (2).
However, some errant populations may deviate considerably from the normal and so one may
also give some weight to the graphical test of normality. Similarly in accenting Objective
(3), Objective (2) is important. Furthermore, as noted above, there are situations where
the data over the lower range are known not to follow the prescribed distribution; in which
case data on the upper range are given greater weight in fitting a straight line. Thus
Objective (1) is involved in indicating what part of the range conforms to the prescribed

universe."

Wilk et al. (1962) and Thom (1968) provide, for a gamma distributed variable, the
necessary information for construction of a probability plot whereby the fitted theoretical
line is a straight line.

Plotting of the data often allows the estimation of parameter values. Chernoff and
Lieberman (1956) indicate that the optimal construction of a graph paper depends upon the
use to which the graph will be put. For example, Nelson and Hendrickson (1969) discuss a
computer program for probability plotting and analysis of data, while Shapiro (1969) dis-
cusses probability plotting in general. Wilk et al. (1962) discuss this for the gamma
distribution, and Nelson and Thompson (1971) discuss this for the Weibull distribution.

This report builds upon the work of all the cited authors back to the work edited by
Pearson (1922). Simply, graphical form gives the inverse gamma probability values so that,
with an estimate of the shape parameter y, the appropriate probability grid lines of the
graphical plot easily can be drawn. With an estimate of the scale parameter 6, the appro-
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priate scale is determined graphically and used as the second argument of the plot or the
horizontal grid. Thus, the only requirement for use of the plotting paper illustrated in
this report is that the estimates of the scale and shape parameters 3 and y must be known
or calculated before use of the paper. On the other hand, the graphical techniques provide
approximation of the parameters 3 and y. Usually, three approximations narrow the estimates
sufficiently. Suggestion for an approximation technique is given after the discussion on
graph papers.

Hahn and Shapiro (1968) discuss at some length the subject of probability plotting and
listing of distribution of assumptions. They indicate a x2 distribution probability
plotting paper is available from Technical and Engineering Arts for Management, 104 Bel rose
Avenue, Lowell, Mass. The shape parameter y is equivalent to one-half the degrees of free-
dom of the x2 distribution. The x2 probability plotting paper used for 1, 2, 3, 4,... de-
grees of freedom can be used for gamma probability plotting paper of 0.5, 1, 1.5, 2,... for
gamma. Available x2 probability plotting paper is restrictive for the gamma probability

plotting paper, but gamma probability paper in the present report is not restrictive for
the x2 distribution.

When the shape parameter y is equal to 1.0, then the techniques shown here provide the
basis for the exponential distribution function plotting paper.

A. Type A Plotting Paper

The lower bound of the data is zero, and no zeros exist. Type A plotting paper is any
rectangular coordinate plotting paper or simply a piece of paper on which unit measurements
exist as square blocks of equal size. That is, the units are the same on both the abscissa
and the ordinate. Choose the horizontal as the abscissa and the vertical as the ordinate.

Figure 2 illustrates the computer output of a mixed distribution H(x) = g + p G(x) where
g = 10/39 and p = 29/39 from columns A-4 and A-5. Columns B-8, B-9, B-10, B-12, and B-13
refer to the mixed distribution; and columns B-Il and B-12 refer to the nonzero portion or
p portion. Column B-Il provides G(x). Note that column B-12, selected arbitrary amounts,
serves twice.

Figures 4A, 4B, and 4C illustrate the preparation and use of type A plotting paper. The
basic chart 4A design is based on Wilk et al. (1962). Figures 4A and 4B refer to the mixed

distribution; figure 4C shows both the mixed and the nonzero portions of the distribution.

As a preliminary basic chart, 4A is prepared. Essentially, it consists of a rectangular
coordinate graph paper with units and divisions thereof marked as quantiles. A line of
slope ! serves as the theoretical line of best fit. The bound of zero is placed in the
lower left-hand corner.
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QUANTILES

,,,,,,,, 40 QUANTILES
3.835

--------- 3.0
2.308

20
1.663
1.034 =—— i.o
0.679
0.437
0.258
0.124

.50 .60 .70

CUMULATIVE PROBABILITY

60 “
5.180
3.885
1.295
5.180——
4.966
3.885-——
2.088
2,590
2.154
1.295-—— 1.339

Figure 4.—Albany, Ga., May 10-16 precipitation: (A) quantiles and line of best fit,
(B) probability quantiles, (C) probability of exceeding stated amounts in (1) G(X)

and (1) H(X), and (D) data plot on the line of best fit
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Figure 4B is now prepared from figure 4A and data in columns B-8, B-9, and B-10. The
quantile probability grid is constructed easily. Here, only a few probabilities are
selected for illustration (viz, 0.40, 0.50, and 0.60). The respective quantile values from
column B-9 are 0.124, 0.258, and 0.437. They are located on both the quantile scale across
the top or the quantile scale inside the left vertical axis. Lines from these points, of
course, intersect on the line of slope 1. Draw the grid for the quantile values above.
Label the base of the vertical grid lines with the respective cumulative probabilities.
Then label the horizontal grid lines on the left with the quantile values and on the right
with the quantile values times the scale @ The corresponding values obtained from column
B-10 are 0.160, 0.335, and 0.566.

Figure 4C shows:

I. The cumulative probabilities within the nonzero quantities G(x).

Il1. The probability of exceeding stipulated amounts of the variable, (1-H(x))—in this

case, precipitation.

To easily plot the data on the figure 4A base, one must change the stipulated amounts of
rainfall in column B-12 to quantiles by dividing by the scale parameter estimate §, 1.295.

Here, for lack of space, only the unit values of precipitation are changed. Respectively,
these are 0.772, 1.544, and 2.317. Column B-Il gives the cumulative probabilities (G(x))
of these as 0.638, 0.847, and 0.933. Column B-13 gives the probabilities of exceeding these
amounts in the mixed distribution that includes the zeros, that is, (1.000 - H(x)), re-
spectively, as 0.269, 0.114, and 0.050. Here,

1.000 - HX) = 1 - (@ + p G(X) (8)

where n = 39, g = 10/39, and p = 29/39.

Using the figure 4A base, plot the quantiles transformed from column B-12 and draw the
rectangular grid. The quantiles are shown on the left vertical scale; the equivalent pre-
cipitation amounts are shown on the right vertical scale. The bottom of each vertical grid
then is marked |, with the respective cumulative probabilities (G(x)) within the nonzero
population, and 11, with the respective probability of exceeding (1.000 - (H(x))) the
amounts in the mixed distribution. Please note that, for the latter, the bounding proba-
bility on the left is 29/39 or 0.744.

The user may wish to plot his actual data on this paper to see whether he wants to reject
the fit presented by the straight line. There are several procedures to do this. Hald
(1952), Chernoff and Lieberman (1956), Blom (1958), Kimball (1960), Sarhan and Greenberg
(1962), and Gringorten (1963) describe some of the procedures often used. Kimball discusses
the problem in some detail.
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The steps are:

1. Order the data from low to high, such as xi, x2, x3,...,xn. See column B-3 of the
computer output.
2. Compute the empirical probabilities by means of

Pi = (i-c)/(n-c-b+1)

where is the empirical probability of i and i is the ith ordered data, b and c are
parameters, and n is the number of data. As an approximation, assuming some measure of
symmetry whenever appropriate, especially when y is large, set b = ¢ = 1/2. Blom (1958)
suggests the use of 3/8 rather than 1/2. Gringorten (1963), working with extreme values,
suggests 0.44. Here, ¢ is set to 0.44. The right-hand member of the equation reduces to
(i-0.44)/(n+0.12). Sometimes, when n is small, ¢ is set equal to zero. See computer out-

put column B-5.

The present computer program contains a default option to 0.44. (See Wilk et al. 1962.)
The user may decide to use some value for c other than 0.44. Experience dictates the value.
Blom (1958), Kimball (1960), Hahn and Shapiro (1968), and Gupta and Groll (1961) present

important, pertinent, and interesting reading on the selection of an appropriate value for
c. As indicated by Kimball, the various methods put forward to determine plotting positions
create confusion of thought in judging what plotting convention is optimum. There still is
confusion, but only because the user usually does not realize that the value of c used de-
pends upon a certain feature or certain features of the distribution that are being ex-
amined.

3. Plot the data on a base illustrated in figure 4A at the ordered points of (Y*, p..).
The corresponding quantiles for plotting for p. are given in columns B-6 and B-7. The user
subjectively will decide whether the fit of the straight line to the data is to be rejected

or not rejected.

Figure 4A illustrates the basic quantile background for all plotting, though this back-
ground usually is not shown. The theoretical cumulative quantiles are shown with the 45°
line of best fit (i.e., the scale parameter is 1). On the right, the quantiles for the
scale parameter have been multiplied by a scale parameter 1.295. This refers to the data
of figure 2, Albany, Ga., precipitation data, 11lth climatological week, May 10-16, 1930-
1968. Quantiles and quantities associated with arbitrary selected probabilities now are
shown in figure 4B where the unit quantile background grid has been dropped. These are
taken from figure 2, columns B-8, B-9, and B-10. For example, at the probability level of
0.90, go to the right a quantile value of 1.663; rise vertically on this probability grid
value to the 45° sloping line and then to the left and right. Here, the left-hand ordinate
has been marked also, but with the value of 1.663; on the right, the quantity level 2.154
(1.663 x 1.295) is shown.
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Figure 4C has been prepared from the data provided by columns B-Il, B-12, and B-13 of
figure 2. The background grid has been prepared by scaling the data in column B-12 by
division by the scale parameter 1.295. These then become the units of this particular grid.
Here, units of (1.000/1.295) or 0.772 are used. These then are marked, quantiles on the

left and precipitation quantities on the right.

Plotting is as follows. Correct the quantities of column B-12 to quantiles by division
by the scale parameter, in this case, 1.295. Proceed to the right for a selected quantile,
say 0.772, then upward the same distance to the 45° line, then to the left and to the right.
Now mark the horizontal end points with the appropriate respective quantile and quantity
values, 0.772 and 1.0. Now mark the base of the verticals with the appropriate probability
values for the nonzero and the mixed data, G(x) and H(x), respectively. For 1.0-in. pre-
cipitation for this set of data from figure 2, the probabilities are respectively 0.638 and
0.269.

Note that in the H(x) data, line (Il), the left probability bound is the empirical proba-
bility of zeros. In this case, the probability of exceeding zero is 29/39 or 0.744. The
lower bounding probability line for the mixed distribution (I1) H(x) is labeled 0.744; for
the (1) G(x) line within only the measurable precipitation data, the probability of getting

less than a measurable amount is zero.

Figure 4D illustrates an overplot of selected data of figure 2 on the graph showing the
line of best fit. These are plotted in quantile values from the data in columns B-4 and
B-6. These are labeled respectively with corresponding data from columns B-3 and B-5.

Figure 4D shows the theoretical line of best fit of figure 4A with the overplot of em-
pirical data taken from columns B-4, B-5, and B-6 of figure 2. The background grids are
not shown here in detail. These are for the nonzero data. The fit of the model to the data
may be judged subjectively by eye. Here, the fit could be better. Substantiating this,
figure 2 provides on line A three values, one each in columns A-10, A-Il, and A-12. The x2
value of 15.483 (col. A-10) will be exceeded with a probability of only 0.030 (col. A-Il)
which indicates that this data set is not too well represented by the gamma model. Here,
the distribution was divided into 10 equiprobability class intervals. The value of the K-S
test statistic provides, in column A-Il, 0.086, a measure of the largest class interval
difference between the theoretical and empirical, probabilities. The probability of exceed-
ing the value may be obtained by reference to Lilliefors (1967, 1969, 1972) for the normal,
exponential, and gamma distributions. Here the gamma is the most appropriate for general
use; though if the shape parameter is very large or equal to one, the tables for the normal
and exponential respectively can be used. In Lilliefors (1972), for the gamma model, for a
sample of 30 (29 were used here), for an a level of 0.005, and for a shape parameter of 1.0
(here, 0.796), the K-S statistic is 0.1863. As the K-S statistic 0.086 does not exceed
0.1863, the model is not rejected. The K-S test is judged to be more powerful than the chi-
square test; therefore, though the chi-square test suggests rejection, the model is not re-

jected.
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Here is another example — figure 3 gives the computer tabular output. The data are 35
cases of maximum rainfall from tropical cyclones or remnants thereof that crossed the
Appalachian Mountains during the period 1900-1969 (Haggard et al. 1971).

Figure 3 differs from figure 2 in that there are no zero amounts involved. Thus, paired
values of columns B-Il and B-13 add to 1.000. In other words, the column B-Il values are
complementary to the column B-13 values. Only one graph is required for the theoretical
values. Column B-8 provides arbitrarily selected probability levels for which the theoreti-
cal quantiles and amounts are given in columns B-9 and B-10. Four probability levels are
selected for illustration, namely, 0.100, 0.500, 0.900, and 0.950. Column B-12 provides
arbitrarily selected precipitation amounts for which theoretical probability levels, cumu-
lative and exceeding, are shown respectively in columns B-ll and B-13. As the values in
column B-13 are complementary to the column B-Il values, only the column B-Il cumulative
probabilities are shown. Because of space limitations, the 1.000-, 5.000-, 10.000-, and
15.000-in. levels with the corresponding probabilities are shown. As in construction of
figure 4C, it is necessary to change the column B-12 amounts to quantiles by dividing by the

scale parameter 2.447.

Construction of figure 5 from figure 3 information follows that for figure 4C. Figure 5,
therefore, shows the cumulative probability for the Appalachian Mountains maximum measured
rainfall from cyclones or remnants thereof crossing the mountains during 1900-1969 (after
Haggard et al. 1971). The data are taken from figure 3. The line of best fit is the 45°
line. The plotting quantile grid used is indicated on the left; the amounts (quantiles

times scale parameter) are shown on the right.

QUANTILES

5.815 2

CUMULATIVE PROBABILITY

Figure 5.--Maximum measured rainfall from tropical cyclones crossing
the Appalachian Mountains during 1900-1969
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Figure 5 from figure 3 shows the amounts corresponding to selected probabilities of 0.100,
0.500, and 0.800 from column B-8 against the quantity values from column B-10, 2.257, 5.815,
and 9.547, respectively. Probabilities of 0.016 and 0.823 corresponding to selected amounts
from column B-Il are | and 10 in., respectively. In addition, it further illustrates both
the probability level 0.409 and quantity level 4.894 for the quantile value of 2.0.

More complete plotting of the information in figure 3 will permit ready graphical inter-
polation of information. No overplot of empirical data has been prepared. The chi-square
and K-S test value information imply that the data are well fit by the gamma model. The
line A, column A-Il, chi-square datum of 0.628 indicates that the probability of exceeding
the value of 7.571 will be 0.372.

The K-S test value is 0.086. For a sample size of 30, with a shape parameter of 3.0, the
probabilities of exceeding values of 0.151 and 0.164 are 0.10 and 0.05, respectively
(Lilliefors 1972). The probability of a number larger than 0.086 by chance then is rather
large. Please note that, by coincidence, the K-S test statistic for both examples to three
decimal places is the same (viz, 0.086) though the shape parameter and data samples are
quite different.

Another procedure is to label the ordinate in terms of the quantiles shown in column B-9.
Then, construct a line with a slope equal to $ and read directly from this slope the proba-
bilities equal to or less than or the probabilities greater than selected amounts.

B. Type B.1 Plotting Paper

Figures 6A and 6B show two sizes for a gamma distribution function plotting paper type B.l
for data > 0 or the origin. The first is regular page size; the second is oversize and
appears as an unnumbered fold-out page. There are four quadrants. The upper left quadrant
shows the general form of the incomplete gamma function with instructions for use. The
lower right-hand portion of the paper, the quadrant containing the single diagonal line of
best fit sloping upward to the right with a slope of 1, is for plotting. If the data are
precisely gamma, chi-square, or exponentially distributed, the plot is the sloping straight
line. Such a perfect fit is not to be expected. Sample data can be plotted. Departures of
sample data from the straight line permit subjective decision as to whether the fit is or is
not good.

Tables 2 and 3 give recorded maximum 24-hr precipitation from tropical cyclones or rem-
nants thereof that passed over the Appalachian Mountains during 1900-1969. Table 2 provides
a data set for the total storm period. Table 3 presents the maximum likelihood estimators
of the scale and shape parameters of the gamma distribution for the data of table 2.

Figure 7 illustrates the use of the gamma plotting paper type B.l and depicts the distri-
bution for the data of table 3. A few values of table 2 are overplotted on the figures to
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illustrate the fit of the line of quantile slope | to the data. The inference is made that
the fit is adequate. The size of the graph illustrated precludes easy plotting of all data
pairs (Y., p”~.

Probability plots of data by computer may be made as indicated by Wilk et al. (1962) who
indicate that such a program is available. Here, this graph paper has been developed for
use by people to whom a computer is not immediately available or who wish to make graphical
estimates of the gamma parameters.

Plot probabilities as the abscissa beginning at zero at the left-hand bound of the plot-
ting area. Plot values of the variate vertically against a scale that may be marked on the
left-hand vertical bound of the plotting areas. A scale is available in the appropriate
units when the scale parameter B is equal to 1.0.

Specified gamma quantile probabilities appear as curved lines in the upper right-hand
quadrant. Tables given by Wilk et al. (1962) and Thom (1968) form the basis of these curved
lines. The sloping straight lines shown in the lower left-hand quadrant furnish the appro-
priate scales for the variate. These are a multiplication artifice.

The user obtains the percentile marks in the fashion shown in the inset of figures 4 and
7. Suppose that the shape parameter is 2.0 and the scale parameter is 3.0. The steps
follow.

1. Draw a horizontal line at y = 2.0 in the upper right-hand quadrant. Note that the

line crosses all the gamma probability curves shown for the gamma quantiles.

2. From the intersection of the horizontal line drawn in step ! and the probability
curves, drop perpendicular lines vertically through the lower right-hand quadrant and label
each with its appropriate probability value. Labels of the complements provide probabili-
ties exceeding specified values.

3. There are several options to produce scale values. One follows. At the vertical line
separating the lower quadrants, proceed upward to the value of the scale parameter 3.0.

From this point, draw a line to the extreme lower left at the convergence point of all scale
lines. Note the intersection of this line with the horizontal line 1.0 on the vertical
separation. This appears as a heavy line on the plotting paper.

4. From the point of intersection found in step 3, draw a perpendicular line. The inter-
sections of the sloping scale and this vertical line provide appropriate scaling units.

Draw horizontal lines passing through these points of intersection across the lower right
quadrant. In the vertical space along the left-hand side of the plotting quadrant, mark the
ends of the horizontal lines with the appropriate scale values.

5. The probabilities equal to or less than or the probabilities greater than selected
amounts can be read directly from the heavy line sloping upward to the right.

6. Plot the empirical sample data on the graph to permit subjective evaluation of the fit
of the model to the sample data.
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GAMMA DISTRIBUTION FUNCTION MODEL

19 38
ORIGIN 1836

$>0 SCALE PARAMETER

SHAPE PARAMETER
y IS THE MEAN 1734
GRAPH PREPARATION 16 32

2.0; the completed graph
(a) In the upper right ouadrant, at y - 2.0, draw

horizontal line 428

(b) Through the intersections of this horizontal line
the probability curves, draw peroendicul
tending through the lower right blank quadrant. Label 13 26
these lines at the base with the corresponding proba

ty values.

In the lower left quadrant are the solid sloping lines
the 6 values or slopes. At the intersection of the sloping
ine labeled 8 = 3 and the horizontal heavy line at s 1l 22
draw a vertical scale line. Through the intersecti
the slopino 6 lines with the vertical line, draw horizontal .
lines across the lower right blank quadrant. Label the io 20
ends of these lines with the respective values of the
sloping e lines at the intersection points. These seal

original set of data

For very large or small values of 8,some scaling diffi-
culties are encountered. Use the scale for s - 1 that 8 16
the left side of the lower right quadrant. _Read the 0.001 /.0l 05.10 .20.30.40.50.60.70 80 90 95 08 oo 995

quantities on this scale and multiply by the sampl
lies. to arrive at values in the Sane units 3 the origi
of data

STEP 1l The heavy sloping line in the lower right quadrant is the
ine fitted to the distribution defined by the seal
and probability lines that have been drawn. Quantities
and probabilities may be interpolated from this graph. 5 1O

STEP IV lot of the original data is needed, order the data
from lowest to highest, labeling them i = I through n
where i = 1 is the lowest value and n is the number of data
Compute the empirical probabilities by use of the expression
(-c)/n-2c+). For large samples,c is set equal o h thau
reduices the expression to (i-% For small samples, ¢ may
be set equal to 0. The expressmn is then (im+1). Plot
the ordered data pairs_against the probabilities on the
graph prepared in STEPS | through IV. View the data plot QUANTILES
and subjectively decide whether the data are fit well by
the prepared graph
If so, use the graph good fit

If not so, do not use the graph. That is, another
model should be considered.
2.0f

Figure 6.—Gamma distribution function plotting paper type B.I
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GAMMA DISTRIBUTION FUNCTION MODEL

A\VAV4 1,-.,"-1 e-lv-al/S SCHEMATIC EXAMPLE
r(xl

a =0 ORIGIN

5= 0O=o SCALE PARAMETER

r- v >0 SHAPE PARAMETER

y = y IS THE MEAN

GRAPH PREPARATION

Given a = 0; B = 3; y = 2.0; the completed graph will appear in the
lower right quadrant.

STEP

STEP

STEP

STEP

[\

(a) In the upper right quadrant, at y = 2.0, draw a
horizontal line.

(b) Through the intersections of this horizontal line with
the probability curves, draw perpendicular lines ex-
tending through the lower right blank quadrant. Label
these lines at the base with the corresponding proba-
bility values.

3 SCALE
In the lower left quadrant are the solid sloping lines with (

the 6 values or slopes. At the intersection of the sloping

line labeled 6=3 and the horizontal heavy line at b = 1,

draw a vertical scale line. Through the intersections of

the slopina b lines with the vertical line, draw horizontal

lines across the lower right blank quadrant. Label the

ends of these lines with the respective values of the

sloping 6 lines at the intersection points. These scale 30.0
values are in units of the original set of data.

For very large or small values of 6,some scaling diffi-
culties are encountered. Use the scale for b = | that is
at the left side of the lower right quadrant. Read the
quantities on this scale and multiply by the sample B
values to arrive at values in the same units as the origi-
nal set of data.

The heavy sloping ‘ine in the lower right quadrant is the
line fitted to the distribution defined by the scale lines
and probability lines that have been drawn. Quantities

and probabilities nay be interpolated from this graph.

IT a plot of the original data is needed, order the data
from lowest to highest, labeling them i = 1 through n

where i = 1 is the lowest value and n is the number of data.
Compute the empirical probabilities by use of the expression
(i-c)/(n-2c+1). For large samples.c is set equal to h that
reduces the expression to (i-%)/n. For small samples, ¢ may
be set equal to 0. The expression is then (i/n+1). Plot
the ordered data pairs against the probabilities on the
graph prepared in STEPS | through IV. View the data plot
and subjectively decide whether the data are fit well by
the prepared graph

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, another
model should be considered.

0.00I /.0l .05.10 .20.30.40.50.60.70 .80

PROBABILITY

Figure 6.—Concluded

.90

QUANTILES

.95

98

.99

.995

.999

*
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Table 2.—Ordered maximum recorded amounts of Appalachian
Mountains precipitation in inches produced by tropical
cyclones that passed over the mountains during 1900-1969.
A is sequential order; B, amount; C, empirical probabil-
ity 814.&0 - pi) where p. = (i -c)/n - ¢ + 1 where
c = 0.44. i

A B C A B C

1 0.80 0.016 19 6.31 0.514

2 81 .043 20 6.44 542 *
3 3.10 .071 21 8.00 .569

4 3.50 .099 22 9.30 597 *
5 3.74 126 23 10.84 .625

6 3.79 154 24 11.00 .652

7 4.02 .182 25 11.07 .680

8 4.46 .209 26 11.22 .708 *
9 4.49 .237 27 13.47 735
10 4.50 .265 28 15.15 .763
11 4.58 .292 29 15.60 791
12 5.04 .320 30 16.00 .818
13 5.08 .348 31 16.36 .846
14 5.27 375 32 16.64 874
15 5.94 403 * 33 18.69 .901
16 6.14 431 34 18.93 929 *
17 6.18 458 35 23.73 957 *
18 6.28 .486 36 27.00 .984 *

* These values are selected arbitrarily to illustrate
plotting. The reader is invited to plot other points so
as to induce a better understanding of the plotting pro-
cedure.

Table 3.--Estimates of the gamma distribution parameters of the
maximum recorded Appalachian Mountains precipitation amounts
in inches produced by tropical cyclones that passed over the
mountains during 1900-1969. Table 2 provides the data.

Number of data 36

Mean 9.263

Origin (a) 0.000

Beta (3) 4.551 Scale parameter

Gamma  (y) 2.035 Shape parameter

X2 10.667

x2 (prob.) 0.846 x2 will exceed 10.667 with a
probability of (1.000 - 0.846)
or 0.154.
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C. Type &1 Plotting Paper

Type plotting paper intrinsically is the same as type B.l. The probability curves and
scale curves appear in overlay patterns. The field is larger than in the type B.l so as to
permit easier drafting of the scale and probability grids. Figures 8A and 8B show two sizes
for a gamma distribution function plotting paper type C.I when data are > 0 or the origin:

1. The probability curves run upward toward the right.

2. The scale slopes run upward to the left so as to permit easier reading against the
probability curves. These are marked in terms of B, the slope or scale parameter.

3. With a given scale parameter B, select the appropriate slope line. Proceed downward
to the right to the intersection with the first horizontal unit line, 3=1. Draw a vertical
line and mark this line with the value of the slope lines at the points of intersection.
These are the units of the scale of the original data. This scale then forms the ordinates
of the graph. The ordinate values then can be drawn horizontally across the grid from the
left-hand side of the graph paper (i.e., where probability values are zero). Label these.

4. With a given shape parameter y, draw a horizontal line through the appropriate y line.
Mark the intersection of the curving probability lines with this horizontal line and re-
spectively label them. Now, draw a vertical line through these points. Label them. These,
with borders and the sloping heavy line, complete the grid.

5. The straight line sloping upward at 45° is the theoretical line of best fit as in the
types A and B plotting papers.

6. The observed data with their probability levels dictated by (i-c)/(n-2c+l) now may be
plotted. See column B-4 of figure 3. View the data plot to determine subjectively whether
the straight line fits the data.

Figure 9 illustrates the use of gamma probability plotting paper type C.I for the
parameters given in table 3. Again, a few data pairs of table 2 are overplotted to illus-
trate the fit of the line to the quantile slope ! to the data. The inference is, of course,
made again that the line is a good fit to the data on the grid shown.
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STEP V
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Iy r):

Write down in the spaces provided above the sample
values of the origin, scale and shape parameters of
the gamma distribution. These are respectively

a, 8. y (alpha, beta,and aammak Ordinarily, a
equals zero.

Dashed sloping 8 lines rise from the lower right-
hand corner upvard and to the left.

Locate the $ line corresponding to the sample 8
value. Interpolate when necessary.

Through the intersection of the sample 8 line and \
the heavy horizontal line near the bottom of the
graph, draw a vertical line from bottom to top.

Label the intersections of the vertical line and
the sloping 8 ines with the corresponding 8
values. This is the scale for the graph in terms
of the original sample units.

Through the intersections obtained in d, draw hori-
zontal lines across the chart and mark the ends
with the appropriate scale values. These are the
ordinate values in units of the original data.

Solid curves slope upward to the right from the
lower left-hand corner marking probabilities. Draw
a horizontal line from left to right through the
gamma (>) value obtained from the vertical scale
column marked >  Through the intersections of this
horizontal line and the solid curves, draw vertical
lines and label them at the base with the appro-
priate probability values.
values In terms of probability.

The heavy sloping line rising from the left to the

right is the lile of best fit to the data. Quanti-

ties and probabilities may be intemolated from this \
graph composed of the ordinate, abscissa, and the AN
line of best fit.

If a plot of the original data is needed for compari-
son, order the data and compute the empirical proba-
bilities by use of the expression (i-c)/(n-2c+l).
Usually, ¢ is set equal to 0.5, though for small n,
0 may be preferable where n is the number of data
and i is the order of the data from ! to n. Plot
the ordered data against the probabilities on the
graph prepared n STEPS | through III.

\
View the data ard subjectively decide whether the
data are fit well by the prepared graph.

a. |If so, tse the graph. The gamma model is
a good iit.

b. If not so, do not use the graph. The gamma
model is not a good fit,and another model N
should fce considered.
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Figure 9.--Probability grid and partial plot of probability of maximum recorded Appalachian Mountains
precipitation from tropical cyclones that passed over the mountains during 1900-1968.
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D. Type D Plotting Paper
Here is another procedure to use the grid system on the type C plotting paper:

1. Use a blank sheet of paper with rectangular corners (say, the size of this page).

2. Place the lower edge of the blank sheet of paper on the lower edge of the grid. Place
the left edge of the blank sheet of paper on the vertical line that passes through the
intersection of the horizontal | line and the 3 value sloping line. Mark the edge of the
sheet with the values of the sloping 3 lines that pass through the vertical line. This is

the graph ordinate scale in units of the original data.
3. Move the left edge of the blank sheet of paper to the left edge of the grid. Then

move the sheet vertically until the top or bottom edge lies on a horizontal line equal to
the value of y, the shape parameter. Mark the horizontal edge of the blank sheet with the

probability values of curving gamma lines as these intersect the edge of the paper. Draw
vertical lines through these points. These then form the probability net.

4. Draw a line with a 45° angle, a slope of 1, from the lower left-hand corner of the
gridded sheet upward to the right. This is the line of best fit of the gamma model to the

data set.

5. Read probabilities of exceeding any arbitrary value of the variable or read values for
exceeding any arbitrary probability.

IX.  GRAPHIC ESTIMATION

Use of graph paper to estimate the scale and shape parameters of the gamma distribution
entails:

1. Ordering the data.
2. Computing the empirical probabilities of the ordered data.

3. Computing the arithmetic average J of the set of data where 0 < x < «.

4. Estimating the scale parameter first as 3 and obtaining the corresponding shape

parameter yx from the expression J = 37-

5. Alternatively, the first estimate of 3, 3{ may be obtained by first estimating the
shape parameter y as y . This may be done by plotting the histogram of the data set and
then by looking at the histogram shape. Reference may be made to figure 1 showing various
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shape parameters with the corresponding distribution curve shape. Remember:’
a. The mean or average is equal to By.

b. The mode is one less than yi (i.e., y-1).
c. If the shape is exponential, y=I.

d. If the shape is normal, y islarge; estimate 30. Having estimated y as y” then
obtain 3! from J = y™-

6. Scaling the lower right diagram (compute ordinate values) using Bx = )T/yx- This
applies to figures 6A, 6B, and 7.

7. Drawing a horizontal line on the upper right diagram corresponding to vy.

8. Drawing vertical probability lines on the lower right diagram corresponding to y and
the empirical probabilities computed in (2).

9. Plotting the data according to points defined by the abscissa and ordinate values
determined in (5) and (7).

10. Drawing a line of best fit (by eye) through the plotted data, using all data.

11. Translating the line of best fit so that it intersects the lower left corner of the
lower right diagram.

12. For a convenient probability (preferably the highest) take the ratio of the value of
the translated line of best fit to the value of the theoretical printed line, which is the
45° line.

13. Multiplying the square or cube of ratio obtained in the latter part of (12) by yi to
obtain a second approximation y2 that is a closer approximation to the sample shape

parameter vy.

14. Computing a new approximation to the correct sample 3 from 32 = X/y2.

15. Repeating this procedure until an estimated y* and 3" permit the line of best fit to
coincide with the theoretical printed line.

16. The multipliers in (13) may be higher roots or powers for other types of graph paper.

This procedure should provide acceptable estimates with the second approximation, though
three approximations may be needed. A bad fitting of the data points by eye will call for
the next approximation.
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X. PROBABILITY PLOTTING FOR OTHER DISTRIBUTIONS

A. Exponential Distribution

The user is urged always to make a scattergram or some type of plot for the data set. If
the data set is bounded on one side and unbounded above, a first guess model is a gamma
model. If the shape parameter is near 1, a second guess is that the distribution may be
more specific (i.e., exponential). See figure 1. Rarely will the number 1 be obtained
precisely because of sampling error. Therefore, with a shape parameter near 1, the expo-
nential distribution is a good first guess. Use exponential distribution plotting paper or
the chi-square plotting paper for two degrees of freedom. If these are not available, use
the type B or type C probability plotting paper described in this report. The probability
grid is determined from gamma equal to one line (y = 1).

B. Chi-square Distribution

As the degrees of freedom for the chi-square distribution are integer values equal to
twice the value of gamma, then the chi-square distribution for 1, 2, 3, 4, 5,...,n degrees
of freedom are plotted on gamma plotting paper for 0.5, 1, 1.5, 2.0, 2.5,..., values for
gamma. The graph paper illustrated has the x2 degrees of freedom placed parallel to the

gamma values along the ordinate on the left.
C. Poisson Distribution

The Poisson distribution holds for even values of the chi-square distribution. Therefore,
gamma distribution grids prepared for gamma equal to integer values of gamma may be used for
the Poisson distribution.

Please note that the gamma, exponential, chi-square, and Poisson distributions are
related. The gamma distribution model is the general model. The shape parameter's range
is 0 <y < ° The chi-square distribution shape parameters in terms of y are restricted
(i.e., these are 0.5, 1.0, 1.5,...,< ¢ gamma values respectively equivalent to chi-square

with 1, 2, 3,...,degrees of freedom). The Poisson distribution shape parameters in terms of
y are even more restrictive; i.e., these exist for chi-square degrees of freedom 2, 4, 6,...,
< 00, respectively, for gamma shape parameters are 1, 2, 3,.... The exponential distribution

has one and only one shape parameter in terms of y; its value is 1. In other words, for the
last distribution, the exponential distribution is equivalent to a gamma distribution with a
shape parameter of 1 and a chi-square distribution with two degrees of freedom. A small
tabular illustration follows where ... or a value indicates existence and dashes or lack of
a mark indicates nonexistence.

Some care will be required if chi-squared tables are used for gamma or vice-versa. The
chi-square values must be halved,or the gamma values must be doubled for any cumulative

level. For example, at the 0.95 cumulative probability level the chi-square for 2 d.f. is

5.991 while the gamma tabular value at a shape parameter of 1.000 is 2.9957. For 3 d.f.,
the 0.95 cumulative probability level is 7.815 while the gamma tabular value is 3.9074.
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Gamma Chi-square Poisson Exponential
(Shape Parameter) (Degrees of Freedom (d.f.)) (d.f.) d.f.)

1.0000

Xl.  SPECIALIZED GAMMA GRAPH PAPER

The foregoing discussion of the gamma probability graph paper treats as large a range of
scale and shape parameters as possible. For quality assurance, control and reliability
purposes, the user may be interested in the region of the gamma distribution near zero and
in the tail. Therefore, five more graphs, types 3 through 7, have been prepared, though it
is realized that these may not meet all of the user's needs. These are shown as figures 10,
11, 12, 13, and 14. Readers are invited to correspond with the authors if other specialized
forms are needed.

Table 4 provides for the seven graph papers,

1. The ranges of the probabilities, the quantiles, the shape parameters, and the scale
parameters, in addition to

2. The slope ratio treatment for the parameter approximating steps.
No examples of use with actual data are provided here.

For figures 12, 13, and 14 the scaling can be 6/100. Figure 11 differs from the others in
that the right half is an extension of the left half. Here, the line of best fit may be
extended upward toward the right for use with the left half. For the right half a line of
best fit may be drawn from its lower left-hand corner and an appropriate shift of scale made
from the left half.
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GRAPH PREPARATION

Given a* 0; O= 4.0; y = 1.4; the completed graph will appear in the

lower half.

STEP |

STEP 1l

STEP 11l

STEP IV

(a) In the upper right quadrant, at 7=1.4, draw a horizontal line.

(b) Through the intersections of this horizontal line with
the probability curves, draw perpendicular lines ex-
tending through the lower half. Label these lines at
the base with the corresponding probability values.

Multiply the scale at the right edge of the graph by 3= 4.
Draw horizontal lines across the lower half and label
these lines with the new scale values. These new scale
values are in units of the original set of data.

The heavy sloping line in the lower half is the line fitted to
the distribution defined by the scale lines and probability
lines that have been drawn. Quantities and probabilities
may be interpolated from this graph.

If a plot of the original data is needed, order the data
from lowest to highest, labeling them i =1 through n,
where i =1 is the lowest value and n is the number
of data. Compute the empirical probabilities by use of
the expression (i-c)/(n-2c+1). For large samples
c is set equal to 1z which reduces the expression to
(i-1k)/n. For small samples ¢ may be set equal to
0. The expression is then (i/n + 1). Plot the ordered
data pairs against the probabilities on the graph prepared (
in STEPS | through IV. View the data plot and sub-
jectively decide whether the data are fit well by the
prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, an-
other model should be considered.

NOTE: If the shape parameter gamma is 1.2 or less use the left half.

GAMMA DISTRIBUTION FUNCTION MODEL
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'Y >0 SHAPE PARAMETER
y IS THE MEAN
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Figure 10.--Concluded
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DISTRIBUTION FUNCTION MODEL
O-r, (y-a)~!
;°%r). rarl &

ar ORIGIN

0>0 SCALE PARAMETER

r: r o SHAPE PARAMETER

Given a = 0;
lower half. +

STEP |

— STEP 1l

11 1.131.1

7 IS THE MEAN

GRAPH PREPARATION

0 * 10; y = 1; the completed graph will appear in the

(a) In the upper half, at 7=1, draw a horizontal line.

(b) Through the intersections of this horizontal line with
the probability curves, draw perpendicular lines ex-
tending through the lower half. Label these lines at
the base with the corresponding probability values.

Multiply the scale at the right edge of the graph by 0= 10.
Draw horizontal lines across the lower half and label
these lines with the new scale values. These new scale
values are in units of the original set of data.

The heavy sloping line in the lower half is the line fitted to
the distribution defined by the scale lines and probability
lines that have been drawn. Quantities and probabilities
may be interpolated from this graph.

If a plot of the original data is needed, order the data
from lowest to highest, labeling them i =1 through n,
where i =1 is the lowest value and n is the number
of data. Compute the empirical probabilities by use of
the expression (i-c)/(n-2c e 1). For large samples
c is set equal to Mr which reduces the expression to
(i-Mr)/n. For small samples ¢ may be set equal to
0. The expression is then (i/n + 1). Plot the ordered
data pairs against the probabilities on the graph prepared
in STEPS | through IV. View the data plot and sub-
jectively decide whether the data are fit well by the
prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is. an-
other model should be considered.
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Figure 11.—Gamma distribution function plotting paper type 4
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Figure 12.--Gamma distribution function plotting paper type 5
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GAMMA DISTRIBUTION FUNCTION MODEL

: P™Y (yW~ e‘(y-a)/S
ar ORIGIN
0>0 SCALE PARAMETER 30
y= r=>o0 SHAPE PARAMETER
IS THE MEAN
ys Y

GRAPH PREPARATION

Given a = 0; 6 = 0.2; y = 0.5, the completed graph will appear in the lower right quadrant.

1.10

STEP |1 - (a) In the upper right quadrant, at y = 0.5, draw a horizontal line.

(b) Through the intersections of this horizontal line with the probability curves,
draw perpendicular lines extending through the lower right blank quadrant. 1.05
Label these lines at the base with the corresponding probability values.

STEP 11 - In the lower left quadrant are the solid sloping lines with the 6 values or slopes.
At the intersection of the sloping line labeled 6 = 0.2 and the horizontal heavy
line at 6 = 0.1 draw a vertical scale line. Through the intersections of the
sloping 6 lines with the vertical line, draw horizontal lines across the lower right 60
blank quadrant. Label the ends of these*lines with the respective values of the
sloping 6 lines at the intersection points. These scale values are in units of the
original set of data.

For very large or small values of 8 some scaling difficulties are encountered. Use
the scale for 8 = 1 which is at the left side of the lower right quadrant. Read the
quantities on this scale and multiply by the sample 8 values to arrive at values in
the same units as the original set of data.

STEP 111 - The heavy sloping line in the lower right quadrant is the line fitted to the distri-
bution defined by the scale lines and probability lines that have been drawn.
Quantities and probabilities may be interpolated from this graph.

1
STEP IV - If a plot of the original data is needed, order the data from lowest to highest, 80

labeling them i = 1 through n, where i = is the lowest value and n is the number
of data. Compute the empirical probabilities ty use of the expression (i-c)/(n-2c+l).

For large samples c is set equal to h which reduces the expression to (i-%)/n. For
small samples c may be set equal to 0. The expression is then (i/n+l1). Plot the
ordered data pairs against the probabilities or the graph prepared in STEPS |
through 1IV. View the data plot and subjectively decide whether the data are fit

well by the prepared graph. / QUANT|LES
a. If so, use the graph. The model is a good fit.
b. If not so, do not use the graph. That is, another model should be considered* 70 0 10
.65
.60
55
50
45
40
35
30
SCHEMATIC EXAMPLE
a-0
25 0-0.20
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F- 0.10
/>= 0.50

AMOUNT = 0.0454
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GAMMA DISTRIBUTION FUNCTION MODEL
1(y;<>An= r(y)(y-a) a)lls

a = ORIGIN

$- /3>0 SCALE PARAMETER
Y- I >0 SHAPE PARAMETER
y = 7 IS THE MEAN

GRAPH PREPARATION
Given a = 0; O=3; 7 = .30; the completed graph will appear in the lower right quadrant. 110
STEP | (a) In the upper right quadrant, at y 1 .30, draw a horizontal line.

Through the intersections of this horizontal line with the probability curves, draw
perpendicular lines extending through the lower right blank quadrant. Label these
lines at the base with the corresponding probability values.

STEP | | In the lower left quadrant are the solid sloping lines with the $ /100 values or slopes.
At the intersection of the sloping line labeled O /100 = .03 and the horizontal heavy
line at O = .010, draw a vertical scale line. Through the intersections of the sloping

O /100 lines with the vertical line, draw horizontal lines across the lower right blank
quadrant. Label ends of these lines with the respective values of the sloping 0 lines at
the intersection points. These scale values are in units of the original set of data.

STEP ||| The heavy sloping line in the lower right quadrant is the line fitted to the distribution

defined by the scale lines and probability lines that have been drawn. Quantities and

probabilities may be interpolated from this graph.

STEP | V If a plot of the original data is needed, order the data from lowest to highest, labeling them
i = 1 through n, where i * 1 is the lowest value and n is the number of data. Compute the
empirical probabilities by use of the expression (1-c)/(n-2c+ 1). For large samples
c is set equal to 1/2 which reduces the expression to (i - 1/2) / n. For small samples ¢ may
be set equal to 0. The expression isthen (i/n+ 1). Plotthe ordered data pairs against the
probabilities on the graph prepared in STEPS | through | V. View the data plot and sub-
jectively decide whether the data are fit well by the prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, another model should be considered.

T—T

Figure 13.--Gamma distribution function plotting paper type 6
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CRAPH PREPARATION

Given a - 0; 0=4; 7=0.5; the completed graph will appear in the GAMMA DISTRIBUTION FUNCTION MODEL
lower half.
/(y;aAr); (y-a)7’l e'(y"a)l(S

STEP | (a) In the upper half, at 7 = 0.5, draw a horizontal line.

(b) Through th e intersections of this horizontal line with
the probability curves, draw perpendicular lines ex- a-: OR'G'N

tending through the lower half. Label these lines at
the base with the corresponding probability values. $' $>0 SCALE PARAMETER -
STEP Il Multiply th» scale at the left edge of the graph by 0 = 4. yz J >0 SHAPE PARAMETER _
Draw horizontal lines across the lower half and label y - y |S THE MEAN 2.0 4

these lines *vith the new scale values. These new scale
values are in units of the original set of data.

STEP 11l The heavy soping line in the lower half is the line fitted to
the distribution defined by the scale lines and probability
lines that have been drawn. Quantities and probabilities
may be inte polated from this graph.

— STEP IV If a plot of the original data is needed, order the data
from lowest to highest, labeling them i * 1 through r\
where im 1 is the lowest value and n is the number
of data. Compute the empirical probabilities by use of
the expressbn (i-c)/(Nn-2c—+1 ). For large samples
c is set equal to V? which reduces the expression to
(i- )/ n. Forsmall samples ¢ may be set equal to n
0. The expression is then (i/n + 1). Plot the ordered 1 5 3
data pairs aiainst the probabilities on the graph prepared "
in STEPS | through IV. View the data plot and sub-
jectively deride whether the data are fit well by the
prepared graph.

a. If so, use the graph. The model is a good fit.

b. If rot so, do not use the graph. That is, an-
other model should be considered.
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Table 4.--Ranges for the seven graph papers of the probabilities, the quan-
tiles, the shape and scale parameters

Proba- )
bility Shape Scale Slope Ratio
Type  Figure p Quantiles  Parameter  Parameter r
1* 6 .001 >0.00 >0.00 >0.00 r
to to to to
.999 20.00 20.00 30.00
2% 8 .001 >0.00 >0.00 >0.00 r
to to to to
.999 16.00 20.00 100.00
3 10 .800 >0.00 >0.00 >0.00 t r2
to to to to
.999 12.00 2.25 12.00
4 11 .800 >0.00 >0.00 >0.00 + r2
to to to to
.999 7.60 2.50 5.00
5 12 .010 >0.00 >0.00 >0.00 r*
to to to to
.990 0.60 1.20 1.10
6 13 .001 >0.00 >0.00 >0.00 r*
to to to to
.900 0.06 1.20 11.00
7 14 .001 >0.00 >0.00 >0.00 t r4
to to to to
.500 0.04 2.50 0.025

*Type 1 here is type B.l in the text, and type 2 is type C.I.
tirefers to 31#the multiplier of 3.

XIIl.  FUTURE MODIFICATIONS TO THE PROGRAM

The following are five expected modifications planned for the computer program and sub-

routines given.

1. A subroutine for the determination of an acceptable location (origin) parameter,

2. A possible subroutine for the debiasing of the maximum likelihood and Thom (1958)

shape and scale estimators.

3. Moadification of routines to permit calculation of probabilities for shape parameter
values, plots, and other x-y type plotters using linear scale plotting.

4. A subroutine for cathode ray computer output plots.

5. A separate program designed for low values of the shape parameter (i.e., y 1. 1.000).
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EDITOR'S NOTE

Under section XII, "Future Modifications to the Program," number 5, techniques were to be
developed to permit better calculations when the shape parameter was less than 1. These
techniques already have been developed but too late to include here. A modification to the
program given in this paper will be issued in the near future. The technique will be ex-
tended to the use of higher shape parameters, say 4, as on the average the computing time is
halved.
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APPENDIX:
FORTRAN IV ELECTRONIC COMPUTER PROGRAM
FOR APPLICATION OF THE GAMMA DISTRIBUTION FUNCTION TO DATA SETS;
AND
WORK GRAPHS (GAMMA DISTRIBUTION FUNCTION MODEL PLOTTING PAPER)

PERFORATED FOR EASY REMOVAL AT THE END OF THE REPORT

The following are comments for use of the gamma distribution program (FORTRAN 1V). The
user may go directly to the program for implementation. The program does contain comment
cards where deemed appropriate.
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The immediately following comments are provided for those who wish to have a more general
understanding of just what is required for program initiation. These will be helpful as
references if difficulties are encountered either during the initiation or the running of
the program.

There are four types of header (control) cards associated with any request. Two of these
are required; the remaining two are required only when the user chooses to define his own
table of quantiles and probability levels.

Control card !

Name in
Card col. program Meaning

1-2 1 This is the beginning period number of data set. Usually, this
would be 01 if the first period is desired. Care should be taken
when working with multiple data points per input record if one
chooses to start with other than the first period on each data
set. Positional association is used in this program. For ex-
ample, suppose one has 20 yr of weekly rainfall data in cards with
13 weeks of data contained on | card--therefore 4 cards per year
comprising a data set. If the user chooses to define Il = 12, he
should make certain that fields 1-11 do not contain invalid
punches (blanks are permissible). The data for this year should
then fall into the 12th field of the input card. If one chooses
to start with 14, the first card for weeks 1-13 will not be re-
quired, however the card number must be 2 since data storage is
computed by index = (card no. - 1) * No. pts/card + pt # in this
card 01 < Il £ 52.

3-4 JJ Ending period number
I £J3J < 52

5-6 N Number of quantile and probability levels to compute. If the
standard set is chosen, N = 52, otherwise N is specified by the
user. Note if N < 52, the user should define his own set since
the first N values of the defined set would be used.

01 <N < 52

7 1COD Code definition required by the program. If period totals of a
quantity (i.e., weekly rainfall) are the input data, ICOD = 1.
If parameter data are input (i.e., y, 3, Tj, ICOD = 2.

1 < ICOD < 2
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Control card ! concluded

10

11-13

14-77

78

79

80

12

13

ITAB

K1

ASTN

I FACT

ICN

Coded as | if 2 period totals are required, otherwise blank or

zZero.
0 < 12 <X

Coded as | if 3 period totals are required, otherwise blank or

zero.
0<13£1

If the defined set of quantiles and probability levels are used,
ITAB = O; if the user specified the tables, ITAB =1. If
ITAB 1, the tables are read under format specifications of F4.2.
If ITAB = 2, the user may specify the tables and these will be
read under F4.0.

0 < ITAB < 2

The number of years in the data sample. This number is checked by
the program and, if incorrect, an appropriate error message is
printed.

001 £ K1 < 999

64 character heading of the user's choice to appear at the top of

each output page.

IFACT = 1 if the user wishes to compute the quantiles by X/N where
J is the gamma distribution mean for an individual period and N is
defined in col. 5-6 above. Note that the user may or may not use
the defined tables as provided by the program. If he does, then
ITAB = 0 (col. 10) and IFACT =1. If the user wants to use less
than 52 levels, he must include a card for the quantity levels
even though they will be overlaid by this option.

0 < IFACT < 1

If IA = 0, alpha (origin) is assumed to be zero. If IA = 1, alpha
is defined by control card 4, col. 9-16. If IA = 2, alpha is com-

puted by the program.

Coded for card recognition.
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Control card 2

Name in

Card col. program
1-4 p(D
5-8 P(2)
77-80 P(K)

1-4 P(K=1)
P(N)

Control card 3

Name in

Card col. program
1-4 PL(1)
5-8 PL(2)
77-80 PL(K)

1-4 PL(K+1)

Meaning
Quantile levels in format of F4.2 if ITAB = 1| or are in F4.0 if
ITAB = 2. Note this card is not required if ITAB = 0.

If 20 < N £ 40, then a second card is needed, |If 40 < N < 52, a
third card is required.

Meaning
Probability levels in format of F4.2. Note this card is not
required if ITAB = 0. The same conditions hold for the number
of cards or in the quantile definition above.
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Control

Card col.

1-2

34

5-8

9-16

17-24

25-26

27-73

74

75-80

card 4

Name in
program

P

INT

ALPHA

AOJ

LIMIT

AFMT

MILL

BLANK

Meaning
IP = number of data points contained on each individual card.

INT = number of levels of chi-sguare grouping. If blank or zero,
a default of 10 is used.

C = constant for computation of empirical probabilities. Default

of 0.44 is used if C = blank or zero.

Origin definition if |IA in card 1 is set to 1. If IA = 0, leave
ALPHA blank or zero.

AJJ is the largest value in the data set entry that is used by the
program to detect missing data. For example, in the case of pre-
cipitation, if | year-week were missing and the user had coded the
missing value 99.99, then AJJ should be coded 99.99. AJJ is read
under format specification F8.2. It should be noted that, if the
user requested 2 or 3 period totals and the case of missing data

were encountered with 99.99 defined for missing, the output would
show an entry in the affected period that is greater than the

99.99; however, this would be omitted by the test of >99.99.

LIMIT is the controlling iteration value. If blank or zero, the
default value of 10 is chosen. LIMIT is not used in the current

version of the program.

AFMT is the user defined data format. Example of period total,
13 values/card and ICOD = 1. (15, 12, 11, 13F4.2)

15 - STN or data set identifier in col. 1-5.

12 - Year of sequence number in col. 6-7.

11 - Card number within sequence # in col. 8.

13F4.2 - Thirteen fields of data with each field 4 cols, in width

and an assumed decimal for data recorded to the nearest 0.01.

Example for ICOD = 2. (15, 12, 12, 13, 13, F6.2, F6.2, F6.2)
15 - Data set identifier in col. 1-5.

12 - Period number | col. 6-7.

12 - No. of weeks in period J in col. 8-9.

13 - NX * No. of years of nonzero entries, col. 10-12.

13 - NNX = No. of total years, col. 13-15.

F6.2 - XBAR = gamma distribution mean, col. 16-21.
F6.2 - GAMMA = shape parameter, col. 22-27.

F6.2 - BETA * scale parameter, col. 28-33

Input data are not in inches but millimeters (mm) and user wants

quantiles converted to mm, code MILL = 1, otherwise O.

Not used.
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IT the user has multiple data sets to run with uniform characteristics ( i.e., all options
identical), only one control set of cards is required. Two blank cards terminate the run.

If the data sets are different, for example, the number of years in one set is different
from the remainder and requires its own set of control cards, then one blank card should be
used to separate stations run under different controls.

Fortran ivi127 source program 03/26/72 PAGE 0001

; PROGRAM PQA04

3 POAO4 IS A FORTRAN IV COMPUTER PROGRAM WRITTEN AT THE NATIONAL CLIMATIC
4 CENTER TO COMPUTE PRECIPITATION AMOUNTS ANO/OR PROBABILITIES FROM PERIOD
3 TOTALS.

6 THE PROGRAM IS WRITTEN TO ALLOW AS MUCH LATITUDE AS POSSIBLE FOR THE USER
7 BY PERMITTING BY CONTROL CARD SPECIFICATION THE POLLOWINGI

8

1 DEFINITION OF BEGINNING AND ENDING PERIOD
9 2 SELECTION OF THE NUMBER OF LEVELS TO COMPUTE
10 3 ALLOWING INPUT TO BE FROM PRE-COMPUTED PARAMETERS
11 4 ALLOWING OPTION OF COMPUTING TWO PERIOD OR THREE PERIOD STATISTICS
12 5 ALLOWING THE USER TO SPECIFY LEVELS OF QUANTILES AND PROBABILITIES OR

13 TO USE A PRE-DEFINED SET

14 6 ALLOW THE USER TO DEFINE THE HEADER LINE APPEARINGON THE OUTPUT

13 7 ALLOW THE USER TO SPECIFY THE ORIGINOR PERMIT ITS COMPUTATION IF UNKNOWN
16 8 ALLOW THE USER TO SPECIFY THE NUMBEROF INPUT DATA POINTS PER RECORD

17 AND THEIR FORMAT AT RUN TIME

18 9 ALLOW THE USER TO SPECIFY THE NUMBER OF INTERVALS OF DATA GROUPING

19 FOR COMPUTATION OF CHI-SQUARE

20 10 ALLOW THE USER TO SPECIFY THE CONSTANT TO BE USED IN COMPUTING THE

21 EMPIRICAL PROBABILITIES

22

23 THE REQUIRED AND OPTIONAL CONTROL CARDS ARE AS FOLLOWS

24 FIRST CONTROL CARD

25 ¢ POSITION NAME DEFINITION

26 C 1-2 n BEGINNING PERIOD NUMBER

27 ¢ 3-4 JJ ENDING PERIOD NUMBER

28 c 5-6 N NUMBER OF QUANTILE AND PROBABILITY LEVELS Tfl COMPUT

29 ¢ 7 ICOD CODED 1 IF PERIOD TOTALS TO BE USED. CODED 2 FOR PARAMETERS
30 ¢ 8 12 ICODED 1 IF TWO PERIOD TOTALS ARE REQUIRED OTHERWISE BLANK
31 ¢ 9 13 ICODED 1 IF 3 PERIOD TOTALS ARE REQUIRED OTHERWISE BLANK
32 ¢ 10 ITAB CODED 0 FOR DEFINED TABLES/ 1 IF YOU SPECIFY TABLES

33 ¢ CODE 2 IF DATA ARE AND QUANTILES ARE IN MM

34 ¢ 11-13 K1 NUMBER OF YEARS IN DATA SAMPLE

33 ¢ 14-77 ASTN 64 CHARACTER HEADING LINE

36 c 78 IFACT [(CODE 1 IF PRECIP LEVELS ARE TO BE DIFINED BY XBAR/N

37 ¢ 79 IA USER WILL SUPPLY ALPHA IF CODED 1/ 0 MEANS ALPHAsO/

38 c 2 REQUIRES COMPUTATION OF ALPHA

39 ¢ BO ICN CODED 1 FOR CARD RECOGNITION

40 ¢

41 ¢ IF ITABal ON THE | EDING CARD THEN N VALUES OF QUANTILES AND

42 ¢ PROBABILITIES MUST EAD. THESE ARE READ UNDER FORMAT CONTROL OF

43 ¢ 20F4.2 quantiles READ FIRST WITH AS MANY CARDS USED AS ARE

REQUIRED TO CONTAIN N VALUES. PROBABILITIES ARE THEN READ IN THE SAME
FASHION. (NOTE THESE ARE A SEPARATE SET. UNUSED PORTIONS OF THE QUANTILE
CARD CAN NOT BE USED TO DEFINE PROBABILITIES)

THE NEXT HEADER CARD IS AS FOLLOWS |

POSITION NAME DEFINITION
1-2 P NUMBER OF DATA POINTS PER RECORD

49



| I 111 * 1] el
XO0000O0gOoXg -———

iiiNiiitrmiitil

222 2222
If.- ill.
StS2
SPSS £
Pii— Is 1?7 mu

I;
o
i

gggssgg

1R s M ESHTHOTHET
SK5HI ss sl*sss:--«sfHsis |11

Llsil I 25 Niiiiispioo f
|Lg£%]' is §%222 S IP.1Bf-ilsl|

PREEX 322

.= <l *In O »

(_ HNIs«i!  HI
S mu

| SSSSSSKSSSSSSSSSSSSPPPPPPPPPSSSSISSCSSSSSSSSSSSSS



3¢ 3s

g-1 gZ

1l
£/\

=P===F==A

sggssgsss spttiiis
]

S
| 1
S
i <5
S
z
2
g |
A
oo
52 = é”
€3«
s:1Pi
iNisis
2
2 S-iSSsMmn

juuun u

I
I
E
I

Is

I N Ith ==

1
£
25 0
1022 filr -

1Ss“““‘sS ou
s£°sh DR g
«52g] 9 SEisistSi 43,
AP $2PESSSIEE2SE

h-13J3-1-1h

2522SS2g g 2|992323g|23
> “’ff

*J<e uMmMuNU M <«

s3sS§2§§§3aSSSSSSsS§833§3§SS§SSS§2$SHSS3S§3HSSZS§

£
|

* <<
,off 3]
*Ta.\fN CMiS
“07s £~i
I||;2H|
's-g(s
54r,, Si
_—«~2_|\/|
ill»si-»

sIsS3*»rL HigSirE'Zggf HAIE

S s S
3 £ I 1
22 |l 2
re I
% P 5 § i
@ 1 —
2 . iu I
5 2
12 53
= £
% 11 £
u_w £ 52
2 <o o
o e X 5 (2 s S *3 ci
Zo s 2 g Sz
29 5~ _« ass Li -
2S } ] | =% - -1 .
KSBSSr £2i— ) ) JzQ > AT

« 7T=0

Mrutin e RS

SHlﬂ' I(( |((—| 5||| |||| P5EIt“IS --*-em*

((g O((g

>g|

?

2
S

ASi

gpVi3aWa
op %N OO —w X~i*r_J—" Xnm-. «

252£ - 2

? 2222599%777997?99%8HEEH%%%‘«O ﬁssé‘oﬁzzé‘zzszzvszzs

51



PAGE 0006

page 0007

FORTRAN IVL27 SOURCE PROGRAM  POA04 PROGRAM 03/26/72
251 CALL COMPUT <99,P,P6,N)
252 CALL PRINT  (X2,1/2#ICOD)
253 0 TO 75
234 C COMPUTE PARAMETERS FOR 3 DURATION PERIODS
253 63 CALL SUM (X3,1,0,CHI,ICOD)
236 CALL COMPUT (ICQD,P,P5,N)
237 CALL COMPUT <99,P,P6,N>
256 CALL PRINT (X3,1/3/ICOD)
239 73 CONTINUE
260 100  CONTINUE
261 ID1-1D2
262 1Y-1y1
263 NUM-1
264 IF (ID2.NE.O) GO TO 45
265 GO TO 15
266 END
FORTRAN IVL27 SOURCE PROGRAM  SUM SUBROUTINE 05/26/72
267 SUBROUTINE SUM (Y,1,0,CHI,ICOD)
268
269 THE SUM SUBROUTINE DOES THE FOLLOWING
270 1 SELECTS THE ITH WEEK FROM THE APPROPRIATE DURATION PERIOD
571 2 SORTS SELECTED DATA IN ASCENDING ORDER OF MAGNITUDE
272 3 IF REQUIRED COMPUTES ORIGIN ALPHA
573 4 COMPUTES SUMS AND LOGS FOR COMPUTATION OF PARAMETERS
23‘3' COMMON  SX,SLX,NX,NNX,NUM,XBAR,GAMMA,BETA,GAM,PEA N,I1,JJ,QQ,FLAG,V
276 COMMON X(75),XI(3900),X2(3900),X3(3900),D(75),EMP(75),AJJ
577 COMMON PI(52 >,P2(52 ),P3(52 >P4<52 >P5<52>P6<52),P<52>PL(32>
578 COMMON ASTN(8),H(20),CHI(20),INT,K1,SKTEST,PRQB,IDI,ALPHA,IA,C
279 COMMON LIMIT,IFACT
280 DIMENSION Y(1), TEM(50),T(50)
281 IMPLICIT REAL*8 (A-H,0-Z>
282 REAL44 X,X1,X2,X3,0,AJJ,Y
583 ¢ I|F ICOD-2 60 TO RETURN SINCE PARAMETERS ARE ALREADY AVAILABLE
284 IF (ICOD.EQ.2) GO TO 70
285 SX-O.
286 SLX-O.
287 NX-0
288 NNX*0
289 DO 7  J»I,NUM
290 7 0(I)»AIJ
501 ¢ COMPUTE BEGIN AND END OF STORAGE FOR DATA SELECTION
292 M«I*NUM-(NUM-1)
293 NN«M*NUM-1
294 V»0.
295 Kel
296 ¢ move selected data into 0
297 DO 8 J-M,NN
208 IF (Y(WJ).GE.AJJ) GO TO 8
299
300 aKRYQ)
301 IF (Y(J).GT.O.) V-V+L
302 8 CONTINUE
303 IF (K.EQ.l) GO TO 70
304 K«K-1
305 ¢ SORT DATA IN 0 INTO ASCENDING ORDER
306 DO 25 Ll«l,K
307 00 25 L2«L1,K
308 IF (3(L2).GT.O(LI)) GO TO 25
309 QQ>0(L2)
310 o(L2)-0(H)
311 o( LI)«QQ
312 25 CONTINUE
313 ¢ IF IA-1, ALPHA WAS SPECIFIED IN THE HEADER CARD
314 IF (IA.LT.2) GO TO 9
315 ¢ IF THE LEAST VALUE OF 0 IS ZERO, THE ORIGIN
316 IF (O().EQ.O.) GO TO 6
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FORTRAN

317
318
319
320
321
322
323
324
325
326
327
328

348

352

354
355
356
357
358
359
360
361
362
363
364
365
366

Fortran

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

391
392
393
394
395

[

C

C

5

IVL27 SOURCE PROGRAM  SUM

IF AT LEAST 2 VALUES (SMALLEST) ARE EQUAL ALPHA

ALPHA

COMPUTE SUMS AND LOGS FOR THE NON-ZERO ENTRIES

20

C

IF (O(1).EQ.0(2)) GO TO

ALPHA-O(1)-Od)*.00001
GO TO 9

ALPHA-O(l)

NX-0

SX-O.

SLX-O.

DO 20 J-M,NN
IF (Y(J).GE.AJJ ) GO TO 20
IF ((Y(J)-ALPHA).LE.O.) GO
SX-SX+Y (J) -ALPHA
SLX-SLX+DLOG(Y(J)-ALPHA)
NX-NX+1

NNX-NNX+1

CONTINUE

IF (NX.LT.6) GO TO 70

COMPUTE CHI-SQUARE

30

40
45

50

L-INT-1
XBAR-SX/NX
0-4.*{DLOG(XBAR)-SLX/NX)
GAMMA-(1.+SQRT(I.+D/3.))/D
BETA-XBAR/GAMMA

CALL GAMIT(l)

SUBROUTINE

TO 5

CALL INVGAM <BETA,H,CHI,L,NX,NX)

DO 26 J-1,50
TEM(J)-0-

T(3)-0.

CONTINUE

M-0

K-1

L-0

DO 40 J-1,NNX

IF (O(J).EQ.0.) GO TO 40

IF (O@J).LE.CHI(K)) GO TO 30

T(K)-M
TEM(K)-L

K-K-+l

L-0

IF (K-INT) 27,75,80
M-M+

L-L+l

CONTINUE
DEN«NX/FLOAT(INT)
ss -o.

DO 50 L-IINT

SS -SS + (TEM(L)-DEN)*(TEM(L)-DEN)

CONTINUE

ivi27 source program sum

52

c

51

C

80
81

0Q-SS /DEN*.5
GAMMA- (I NT-3)*.5
BETA-L.

IF (IFACT.EQ.O0) GO TO 51
P (1) -10.*XBAR/N

PART-P(1)

DO 52 L-2,N
P(L)-P(L-1)+PART
CONTINUE

subroutine

COMPUTE PROBABILITY OF CHI-SQUARE

CALL COMPUT (99,QQ,PROB,1)
COMPUTE S-K

QQ-QQ+0Q

DIFF—9999.

ss -o.

DO 65 L-1,K

SS-SS+DEN

CHECK-ABS(T(L)-SS)

IF (CHECK.GT.DIFF) DIFF-CHECK

CONTINUE
SKTEST-DIFF/NX
RETURN

J-K-1
TEM(K)-NX-T(J)
T(K)-T(I)+TEM(K)
GO TO 45

05/26/72 PAGE 0008

IS MADE THIS VALUE

IS MADE SLIGHTLY SMALLER THAN THE SMALLEST ENTRY

05/26/72

WRITE (6,81) (H(J),CHI(J), TEM(J),T(3J),I3-1,INT)

FORMAT (3X,4F18.10/)
STOP 1111
END
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FORTRAN 1VL27 SOURCE PROGRAM  INVGAM SUBROUTINE 05/26/72 PAGE 0014

581 GO TO 55
582 97 WRITE (6/98) PP(I)
583 98 FORMAT (IX /* UNABLE

584 GO TO 55
585 200 XO-XX
586 GO TO 27
587 END

FORTRAN IVL27 SOURCE PROGRAM PRINT SUBROUTINE 05/26/72 PAGE 0015
588 SUBROUTINE PRINT (Y/I/M/ICOD) . W
o89 COMMON  SX/SLX/NX/NNX/NUM/XBAR/GAMMA,BETA/GAM/PEA/N/II1JI/QQ/PLAG/V
290 COMMON X(75)/X1(3900)/X2(3900)/X3(3900)/0(75)/EMP(75)/AJJ
2ot COMMON PI(52 )/P2(52 )/P3(52 )/P4(52 >/P5C52)/P6(52)/P(52>/PLC52)
292 COMMON ASTN(8)/H(20)/CHI(20)/INT/K1/SKTEST/PRQB/IDI/ALPHA/IA/C
593 COMMON LIMIT/IFACT
594 DIMENSION Y (1)
595 IMPLICIT REAL*8 (A-H/O-Z)
506 REAL*4 X/XI/X2/X3/0/AjI/YIZ(75)
597 IF (NX.LT.6) GO TO 26
598 LINE-45
599 IF (ICO0.EQ.2) GO TO 50
600 V-0.
601 L-1
602 K-I*"NUM-(NUM-1)
603 NN-K+NUM-I
604 IF (N.GT.NUM) NN-NN+N-NUM
605 DO 10 J-/NUM
606 z(J)-0.
607 IF (O(J).GE.AJJ) GO TO 10
608 Z(3)-0(JI/BETA
609 10 CONTINUE
610 DO 25 J-K/NN
611 IF (LINE.LT.45) GO TO 6
612 LINE-1
613 WRITE (6/1) ASTN
614 1 FORMAT (1H1/33X/8A8//)
615 FORMATAX/ 'STATION 1 J NX NNX XBAR A
616
617 1LPHA BETA GAMMA x2 PROB K-S7)
pops WRITE (6/3) IDL/I/M/NX/NNX/XBAR/ALPHA/BETA/GAMMA/QQ/PROB/SKTEST
619 3 FORMAT (6X/317/218/5F11.3/2F10.3//)
620 FORMAT/ts3X/"EMP PROB EMP PROB SELECTED SELECTED SELECTED
621 4
622 1GRAPH  SELECTED  EXC PRB=/16X/-ENTRY ORDER DATA *
623 2MP  QUANTILE QUANTILE PROB QUANTILE QUANTILE PROB QU
624 3ANTITY FOR'/ 8X/ 'SEO DATA DATA /BETA PRO
625 48 B-l B-BETA  VALUES Bel B-BETA (X>0)
626 SLEVELS  PCP LVLe/)
627 6 IF (LINE.GT.N.OR.V.EQ.l.) GO TO 30
628 IF_ (LINE.GT.NUM.OR.V.EQ.2.) GO TO 40 o d
629 WRITE (6/5) L/Y(I)/O(LY/Z(LYEMP(L)/PL(L)/P2(L)/PL<L)/P3(L)/P4(L)/
630 1FORMATP(in/2F10.2/2F10.3/2F10.3/FI10.3/3F10.3/F11.3/F10.3)
631 5
632 20 LINE-LINE+1
633 L-L+1
634 25 CONTINUE

635 26 RETURN
636 30 WRITE (6/31) L/Y(I)V/O(LY/Z(LYEMP(L)/P1(L)/P2(L)
637 31 FORMAT (111/2F10.2/2F10.3/2F10.3)

FORTRAN IVL27 SOURCE PROGRAM PRINT SUBROUTINE 05/26/72 PAGE 0016

GO TO 20
640 40 WRITE (6/41) L/PL(L)/P3(L)/PA(L)/PE(L)/P(L)/P5(L)
641 41  FORMAT (111/60X/F10.3/3F10.3/F11.3/F10.3)

642 V-2,

643 GO TO 20

644 50 ALPHA-0.

645 DO 60 J-I/N

646 IF (LINE.LT.45) GO TO 59

647 LINE-1

648 WRITE (6/1) ASTN

649 WRITE Ee/z)

650 WRITE (6/51) IDL/I/M/NX/NNX/XBAR/ALPHA/BETA/IGAMMA
651 51  FORMAT (6X/317/218/4F11.3)

652

653 50 WRITE (6/52) J/EMP(J)/PI(I)/P2(I)/PL(I)VPI(I)NPA(I)PEI)P(I)*
654 IPS(@I)

655 LINE-LINE+|

656 60

657 52 FORMAT (111/30X/ FIl0.3/2P10.3>F10.3/3F10»3/FIl.3/F10.3)

658 GO TO 26
659 END

56



FORTRAN

FORTRAN IVL27 STORAGE MAP

symbol

AFMT
AJJ
alpha
ASTN
ATABI
ATAB2
BETA
C

CHI
EMP
FLAG
GAM
GAMMA
H

|

IA

IC

ICN
ICOD
ID1
102

I FACT

I-NT
P

LD

EV
EV
EV
EV
EV
EV
EV
EV

FORTRAN IVL27 SOURCE PROGRAM GAMIT SUBROUTINE 0Ss/26/72 PAGE 0017
660 SUBROUTINE GAMIT (1)
661 COMMON  SX,SLX,NX,NNX,NUM,XBAR,GAMMA ,BETA,GAM,PEA N,I1,JJ,QQ,FLAG
662 DIMENSION U(200)
663 IMPLICIT REAL*8 (A-H,D-Z)
664 A-.035868343
663 V- -.193327818
666 C- .482199394
667 O* -.736704078
668 E- .918206857
669 F- -.897056937
670 G- .988205891
671 B- -.377191632
672 FLAG-0.
673 IP (GAMMA.EQ.l.) GO TO 55
674 PEA-GAMMA-1.
675 L-PEA+|
676 IF (L.LT.I) GO TO 25
677 U(1)-PEA+
67B 00 10 K-I,L
679 KK-K+1
680 10 U(KK)-U(K>-1.
681 PO-I.
682 IF (GAMMA.GT.50) GO TO 45
683 IF (L.LT.2) GO TO 16
684 00 15 K-2,L
685 PD-PD*U(K)
686 15 CONTINUE
687 16 Y- U(L)-1
688 GO TO 30
689 25 Y-GAMMA-L
690 PD-L./Y
691 30 GAM-PD*((((((A*Y +V)*Y*CY*Y +D)*Y +E)*Y +F>*Y-»-G)*Y+B>* Y+1.)
692 40 RETURN
693 55 GAM-1.
694 GO TO 40
695 45 FLAG-1.
696 PD-O.
697 L-L-1
698 DO 50 K-2,L
699 PD- PO+ LQG(U(K))
700 30 CONTINUE
701 Y-U(L+D-1
702 GAM- CCCCCCUARY HV>*Y +C) XY +0)*Y+E)* YAF) XY +G)* Y+ B)* Y +i.)
703 GAM-PO + LOG(GAM)
704 GO TO 40
705 END
IVL27 OBJECT SUMMARY POA04 PROGRAM 03/26/72 PAGE 0018
OBJECT DECK ORIGIN FdEDAO FIRST CARD SEQ NO 0001
INSTRUCTIONS
ARRAYS
FORMATS, NAMELISTS, LITCONS 002FB
VARIABLES, CONSTANTS, TEMPORARIES 00460
POAO4 SD 01 016CO ITF#MPI ER 02 ITF#MPS
CM 04 OCAB8
PRINT EV 05 COMPUT EV 06 SUM
ITFFOR EV 08 ITF#IR EV 09 ITFFOX
itFfqi EV 0B ITFFQH EV  oc ITFOQF
itffoa EV  OE ITF#1Z EV  OF ITFFIX
itffis EV 11 ITF#IL EV 12 T
ITFFIH EV 14 ITFOIG EV 15 ITFFIF
ITFFIE EV 17 ITEMIO EV 18 itffia
ITFFCG EV 1A ITF#IC EV 1B ITFOST
POA0O4 PROGRAM 03/26/72 page 0019
type ESID VALUE SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE SYMBOL
(RB) 01 OOECO ITAB 14 01 012FC P3 (R8) 04 0BF38 17
R4 04 obbfo Y 14 01 01318 P4 (R8) 04  oecoB 18
RB 04  OCA98 1Yl 14 01 01328 P3 (R8) 04 o0c27B 19
(R8) 04  OC8F8 12 14 01 O012F4 P6 (RB) 04 0C418 20
(RB) 01 00B8O 13 14 01 O012F8 QQ R8 04 00058 35
(R8) 01 00D20 N 14 01 01320 SKTEST R8 04 OCA80 36
R8 04 00030 33 14 04 00050 SLX R8 04 00008 37
RS 04 0CAA8 K 14 01 0132C SX R8 04 00000 44
(RB) 04 0C908 KOUNT 14 01 01330 TEM (R8) 01 OOEFO 43
(R8) 04 08998 KI 14 04 OCA7C \ R8 04 00068 46
R8 04 00060 L 14 01 01314 X (R4) 04 00070 47
R8 04 00038 LIMIT 14 04  OCABO XBAR R8 04 00020 48
R8 04 00028 M 14 01 01304 X1 (R4) 04 0019C 30
(RB) 04 0C938 MILL 14 01 01310 X2 (R4) 04 03E8C 51
14 01 01308 N 14 04 00048 X3 (R4) 04 07B7C 55
14 04 OCAAo NNX 14 04 00014 1 FORMT 01  OOF68 56
14 01 0131C NUM 14 04 00018 2 FQRMT 01 O0OF93 37
14 01 01300 NX 14 04 00010 3 FORMT 01 OOFBA 58
14 01 012F0 o <R4> 04 0BB6C 4 FORMT 01  OOFCA 60
14 04 0CA90 P (R8) 04 0C5B8 5 FORMT 01 OOFES8 61
14 01 01324 PEA RB 04 00040 6 FORMT 01 0OFC2 62
14 04 0CAB4 PL (R8) 04 0C758 13 FORMT 01 OOF7C 63
14 04 0004C PROS R8 04 0CA88 14 STMT 01 0009A 75
14 04 OCA78 Pl (RB) 04 0BBF8 15 stmt 01 00006 100
14 01 0130C P2 (R8) 04  0BD98 16 STMT 01 0012A

57

o7
0A

10
13
16
19
ic

TYPE

STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
FORMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT

01260

ESID

VALUE

001FC
00294
002BC
002EC
00416
0046A
0049E
00516
0052C
00364
00738
0079C
007E6
01206
008A6
00958
00974
00990
00926
009C2
OOAIA
00A72
OOABC
OOAFO



FORTRAN IVL27 STORAGE MAP POA04 PROGRAM 05/26/72
SYMBOL  TYPE ESID VALUE SYMBOL  type ESID VALUE SYMBOL
15 STMT 01 00006 100 STMT 01  OOAFO J
14 STMT 01  0O009A ATAB1 <R8> 01 00B8O D2
16 STMT 01 0012A ATAB2 (R8) 01 00D20 Y1
17 STMT 01 001FC AFMT (R8) 01  OOECO K
18 STMT 01 00294 TEM (R8] 01 OOEFO KOUNT
19 STMT 01 002BC 1 FORMT 01 OOF68 SX
20 STMT 01 002EC 13 FORMT 01 OOF7C SLX
35 STMT 01 00416 2 FORMT 01 OOF93 NX
36 STMT 01 0046A 3 FORMT 01 OOFBA NNX
37 STMT 01 0049E 6 FORMT 01 OOFC2 NUM
44 STMT 01 00516 4 FORMT 01 OOFCA XBAR
45 STMT 01 0052C 3 FORMT 01 OOFES8 GAMMA
46 STMT 01 00564 31 FORMT 01 01206 BETA
47 STMT 01 00738 Icop 14 01 012FO0 GAM
48 STMT 01 0079C 12 14 01 O12F4 PEA
50 STMT 01 O07E6 13 14 01 O012F8 N
55 STMT 01 008A6 ITAB 14 01 012FC 1"

60 STMT 01 00926 ICN 14 01 01300 33
56 STMT 01 00958 M 14 01 01304 QQ
37 STMT 01 00974 1 14 01 01308 FLAG
58 STMT 01 00990 P 14 01 0130C v
61 STMT 01 009C2 MILL 14 01 01310 X
62 STMT 01 00A1A L 14 01 01314 X1
63 STMT 01 00A72 Y 14 01 01318 x2
75 STMT 01 OOABC Ic 14 01 0131C X3
FORTRAN IVL27 OBJECT SUMMARY SUM SUBROUTINE 05/26/72
object deck origin Ffdfias FIRST CARD SEQ NO 0200
INSTRUCTIONS 00B88
ARRAYS 00320
FORMATS* NAMELISTS* LITCQNS 00010
VARIABLES* CONSTANTS* TEMPORARIES  002CO
SUM sD 01 01178 ITF#MPI ER 02
CM 04 OCABS
INVGAM EV 05 GAMIT EV 06
ITF#OR EV 08 ITFH#QX EV 09
ITF#IC EV OB ITF#ST EV OC
ITF#31 EV OE

FORTRAN IVL27 STORAGE MAP SUM SUBROUTINE 05/26/72
SYMBOL  TYPE ESID VALUE SyMBoL  TYPE ESID VALUE SYMBOL
AJI R4 04 OBBFO INT 14 04 OCA78 PI
ALPHA R8 04 OCA98 J 14 01 OOF6C P2
ASTN (R8) 04 OC8F8 33 14 04 00050 P3
BETA R8 04 00030 K 14 01 O0OF7C P4
¢ R8 04 OCAA8 K1 14 04 OCA7C P5
CHECK R8 01 OOFB8 L 14 01 OOF88 P6
CHI 0 (RB) LIMIT 14 04 OCABO QQ
D R8 01 OOF90 LI 14 01 OOF80 SKTEST
DEN R8 01 OOF98 L2 14 01 OOF84 SLX
DIFF R8 01 OOFBO M 14 01 00F70 ss
EMP (R8) 04 0B998 N 14 04 00048 sX
FLAG R8 04 00060 NN 14 01 OOF78 T
GAM R8 04 00038 NNX 14 04 00014 TEM
GAMMA R8 04 QO002B NUM 14 04 00018 v
H (RB) 04 0C938 NX 14 04 00010 X
1 014 01 OOF74 o 0 (R4) XBAR
1A 14 04  OCAAO P (R8) 04 0C5B8 X1
IcoD o014 01 OOF68 PART R8 01 OOFA8 X2
D1 14 04 OCA90 PEA RS 04 00040 X3
IFACT 14 04 OCAB4 PL (R8) 04 0C758 Y
s 14 04 0004C PROB R8 04 OCA88

FORTRAN IVL27 STORAGE MAP SUM SUBROUTINE 05/26/72
symbol  TYPE ESID VALUE symBoL TYPE ESID VALUE SYMBOL
CHI 0 (R8) 80 STMT 01  00A2C NX
Y n(R4) TEM (R8) 01 0OBeB NNX
° 0 (R4) T (R8) 01 00018 NUM
7 STMT 01 00086 81 FORMT 01 OOEA8 XBAR
6 STMT 01 O018E IcoD 014 01 OOF6B GAMMA
25 STMT 01 0026C J 14 01 OOF6C BETA
6 STMT  oi 0032A M 14 01 O0OF70 GAM
9 STMT 01 0033E | 014 01 OOF74 PEA
5 stmt 01 0042C NN 14 01 OOF78 N
20 STMT ol 00440 K 14 01 00F7C 1
26 STMT 01 00596 Ll 14 01 OOF80 JJ
27 STMT 01 0061A L2 14 01 OOF84 QQ
30 STMT 01 006CE L 14 01 O0OF88 FLAG
40 STMT 01 OO06F6 0 R8 01  OOF90 v
45 STMT 01 0071A DEN R8 01 O00F98 X
50 STMT 01 007A4 ss R8 01 OOFAO XI
52 STMT 01 0089E PART R3 01 O0QFA8 X2
51 STMT 01 008C2 DIFF R8 01 OOFBO X3
65 STMT 01 00962 CHECK R8 01 OOF83 EMP
70 STMT 01 009AC SX R8 04 00000 AJI
73 STMT 01 0098C SLX R8 04 00008

58

PAGE 0020
TYPE ESID VALUE
14 01 01320
14 01 01324
14 01 01328
14 01 0132C
14 01 0133Q
R8 04 00000
R8 04 00008
14 04 00010
14 04 00014
14 04 00018
R8 04 00020
R8 04 00028
R8 04 00030
R8 04 00038
R8 04 00040
14 04 00048
14 04 0004C
14 04 00050
RB 04 00058
R8 04 00060
R8 04 00068
(R4) 04 00070
(R4) 04 0019C
(R4) 04 03ESC
(R4) 04 07B7C
page 0021
I»>F#BUG
COMPUT
ITF#DF
ITF#05
PAGE 0022
TYPE ESID VALUE
(RB) 04 OBBF8
(r8) 04 03D98
(R8) 04 OBF38
(RB) 04 0COD8
<R8} 04 0C278
(R8) 04 0C418
R8 04 00058
R8 04  OCA80
R8 04 00008
R8 01 OOFAO
R8 04 00000
(R8) 01 oooia
(R8) 01 OOE82
R8 04 00068
(R4) 04 00070
R8 04 00020
(R4) 04 0019C
(R4) 04 O03ESC
(R4) 04 07B7C
o(R4)
PAGE 0023
TYPE ESID VALUE
14 04 00010
14 04 C0014
14 04 00018
R8 04 00020
R8 04 00028
R8 04 00030
R8 04 00038
RB 04 00040
14 04 00048
14 04 0004C
14 Q4 00050
R8 04 00058
R8 04 00060
R8 04 00068
(R4) 04 00070
(R4) 04 0019C
(R4) 04 03ESC
(R4) Q4 07B7C
(R8) 04 0e998
R4 04 OBEFO

SYMBOL

EV 03
EV 07

EV 0D

SYMBOL

P

P2
P3
P4
P5
P6

P

PL
ASTN
H

INT

K1
SKTEST
PROB
101
ALPHA

LIMIT
IFACT

TYPE

R4
RS
R4
(RB)
(RB)
(R8)
(R8)
(R8)
(RB)
(R8)
(R8)
(R8)
(R8)
(R8)
14
14
R8
R8
14
R8
14
RB
14
14

TYPE

STMT
STMT

TYPE

(R8)
(R8)
(R8)
(RB)
(R8)
(RB)
(R8)
(R8)
(R8)
(R8)
14
14
RS
R6
14
R3
14
R8
14
14

ESID

ESID

ESID

04

VALUE

0B86C
0B998
OBBFO
0BBF8
0BD98
OBF38
ocobs
0cz278
oc418
0CcsB8
0C758
0C8F8
0C938
0C9oD8
0CA78
OCA7C
0CA80
0CA88
0CA90
0CA98
OCAAO
0CAA8
OCABO
0CAB4

VALUE

0042C
0032A
00086
0018E
0033E
00440
0026C
00396
0061A
006CE
006F6
0071A
007A4
008C2
0089E
00962
009AC
009BC
00A2C
00EA6

VALUE

03BF8
0BD98
OBF36
ocops
0C278
0c418
0csB8
0C758
0C8F8
0C938
0CA78
0CA7C
OCABO
0CA88
0CA90
0CA98
OCAAO
0CAA8
OCABO
0CAS4



Fortran ivi27 object summary comput 03/26/72
OBJECT DECK ORIGIN FDF560 FIRST CARD SEQ NO 0345
INSTRUCTIONS 00780
ARRAYS 00320
FORMATS* NAMELISTS* LITCONS
VARIABLES* CONSTANTS* TEMPORARIES 00000

COMPUT SD 01 00D60 ITF#MPI ER
CM 04 O0CAB8
INVGAM EV 05 CAMIT EV
ITF#01 EV 08 ITF#05 EV
ITF#31 EV 0B
FORTRAN IVL27 STORAGE MAP COMPUT SUBROUTINE 03/26/72
SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE SYMBOL
AJJ R4 04 OBBFO IFACT 14 04 0CAB4 P2
alpha R8 04 O0CA98 1 14 04 0004C P3
ASTN (R8) 04 0C8F8 INT 14 04 OCA78 P4
BETA R8 04 00030 JJ 14 04 00050 P3
Cc R8 04 OCAA8 K 14 01 00B5C P6
CHI (R8) 04 0C9D8 K1 14 04 OCA7C Q
D R8 o1 00B60 L 14 01 0OOBAO SEA
DEN R8 o1 00BBO LIMIT 14 04 OCABO SEE
EMP (R8) 04 0B998 M 14 01 00B7C SERIES
EN R8 01 00B40O N 14 04 00048 SKTEST
ENN R8 01 00B48 NNX 14 04 00014 SLX
EYE R8 01 00BA8 NUM 14 04 00018 SX
FLAG R8 04 00060 NX 14 04 00010 TERM
GAM R8 04 00038 NZ 014 01 o00B78 TRACE
GAMMA R8 04 00028 o (R4) 04 0B86C uu
H (R8) 04 0C938 3 <R8> 04 0C5B8 v
I 14 01 00BA4 PEA R8 04 00040 w
IA 14 04 OCAAO PL (R8) OA 0C758 X
ICOD nl4a 01 00BS58 PROB R8 04 0CAs88 XBAR
1D1 14 04 0CA90 PI (R8) 04 O0BBF8 X1
FORTRAN IVL27 STORAGE MAP -COMPUT SUBROUTINE 05/26/72
symbol TYPE ESID VALUE SYMBOL TYPE ESID VALUE SYMBOL
w 0 (RB) TRACE R8 01 00B50 NUM
Y 0 (R8) ICOD 014 01 00B58 XBAR
68 STMT 01 00130 K 14 01 00B5C GAMMA
70 STMT 01 00188 0 R8 01 00B60O BETA
75 STMT 01 002B4 SEE R8 01 00B68 GAM
80 STMT 01 002D0 YOU R8 01 00B70 PEA
81 STMT 01 00332 NZ 014 01 00B78 N
82 STMT o1 00374 M 14 01 ooB7C 1
85 STMT 01 00300 SEA R8 01 0O0B8O JJ
90 STMT 01 00418 z R8 01 00B88 QQ
96 STMT 01 004F2 TERM R8 01 00890 FLAG
97 STMT 01 00532 SERIES R8 01 00B98 \
93 STMT 01 00S8E L 14 o1 0OOBAO X
100 STMT 01 0060C 1 14 01 00BA4 X1
101 STMT 01 0065C EYE R8 01 OOBA8 X2
200 STMT 01 00680 DEN R8 01 O0OBBO X3
300 STMT 01 00690 SX R8 04 00000 o
uu (R8) 01 00780 SLX R8 04 00008 EMP
EN R8 01 00B40 NX 14 04 00010 AJd
ENN RB 01 0oB48 NNX 14 04 00014 PI
FORTRAN IVL27 OBJECT SUMMARY INVGAM SUBROUTINE 03/26/72
OBJECT DECK ORIGIN FDF41B FIRST CARD SEQ NO 0457
INSTRUCTIONS 00838
ARRAYS 00210
FORMATS* NAMELISTS* LITCONS
VARIABLES* CONSTANTS* TEMPORARIES eefh@ﬁ
INVGAM SD 01 O0OF3C ITF#MP | ER 02
CM 04 O0CAB8
ITF#QR EV 05 ITFIOX EV 06
ITF#QF EV 08 ITF#QE EV 09
ITF#IC EV OB ITF#ST EV  oCc
ITF#Q3 EV  OE ITF#31 EV  OF

subroutine

59

02

06
09

pace 0024
PACE 0023
TYPE ESID
(R8> 04
(R8) 04
(RB) 04
(R8) 04
(RB) 04
R8 04
R8 o1
R8 o1
R8 o1
R8 04
RB 04
RB 04
R8 o1
R8 o1
(R8) 01
R8 04
B(R8)
(R4) 04
RB 04
(R4) 04
PAGE 0026
TYPE ESID
14 04
R8 04
R8 04
R8 04
R8 04
R8 04
14 04
14 04
14 04
R8 04
R8 04
R8 04
(R4) 04
(R4) 04
(R4) 04
(R4) 04
(R4) 04
(R8) 04
R4 04
(R8) 04
PAGE 0027

ISFtfBUG

ITFBX4
ITFBO3

value

0BD98
OBF38
0cop8
oc278
0c418
00058
00B80
00B68
00898
0OCA80
00008
00000
00B90
00B50
00780
00068

000TO

00020
0019C

VALUE

00018
00020
00028
00030
00038
00040
00048
0004C
00030
00058
00060
00068
00070
0019C
03E8C
o7B7C
0B86C
08998
OBBFo
0OBBF8

ItFtFBUG

ITF#QH
ITF#X2
ITF#01

EV

EV
EV

sym

X2
X3
Y
you
1

68
70
73
80
81
82
85
90
93
96
97
100
101
200
300

03

o7
OA

bol

SYMBOL

P2
P3
P4
P3
P6
p

PL

astn

H
CHI

INT

KI

SKTEST

PROB

ID1

ALPHA

IA

LIMIT
IFACT

EV

EV
EV
EV

03

o7
OA
oD

TYPE

(R4)
(R4)

n(R8)

R8
R8
STMT

TYPE

(R8)
(R8)
(R8)
(RB)
(R8)
(R8)
(R8)
(R8)
(R8)
(R8)
14
14
R8
R8
14
RS
14
R8
14
14

ESID

04
04

01
01
o1
01

01
o1
01
o1
01
01
o1
o1

01
01
01

ESID

04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04

VALUE

03E8C
07B7C

00B70
ooB8s
00130
00188
002B4
002D0
00332
00374
003D0
00418
0058E
004F2
00332
0060C
0065C
00680
00690

VALUE

0BD98
OBF38
ocops
0C278
0Cc418
0C5B8
0C738
0C8F8
0C938
0CcoD8
0CAT78
0CA7C
0CA80
0CA88
0CA90
0CA98
OCAAO
0CAA8
OCABO
0CAB4



FORTRAN IVL27 STORAGE MAP INVGAM SUBROUTINE 3/26/72 PAGE 0028
SYMBOL  TYPE ESID VALUE SYMBOL  type ESID VALUE SYMBOL  TYPE ESID VALUE
AA (R8) 01 00838 1A 14 04  OCAAO PP B (R8)
AAA (R8) 01 00940 D1 14 04 0CA90 PROB R8 04 0OCA68
AJJ R4 04 OBBFO IFACT 14 04 0CAB4 Pl (R8) 04 OBBF8
ALPHA R8 04 OCA96 1 14 04 0004C P2 (R8) 04 0BDY98
ASTN (R8) 04 0CS8F8 13 14 01 00CD4 P3 (R8) 04 OBF38
BB (R8) 01 00890 133 14 01 00Ccos P4 (R8) 04 0CODS8
bbb (R8) 01 00998 INT 14 04 OCA78 P5 (R8) 04 0C278
BET BR8 01 00D40 33 14 04 00050 P6 (RB) 04 0C418
BETA R8 04 00030 K 14 01 OOCFO R8 o1 ooccs
c R8 04 0CAA8 K1 14 04 OCA7C §Q R8 04 00058
cc (R8) 01 O0O8E8 L 14 01 00D10 R8 01 00DO8
cce (R8) 01 009FO0 LIMIT 14 04 OCABO SG RS 01 OOCAO
CHECK R8 01 OOCEO M 14 01 OOCF4 SKTEST  R8 04 0OCA80
CHI (R8) 04 0C9D8 N 14 04 00048 SLX RS 04 00008
DL R8 00CE8 NN al4 01 00CDO sP RS 01 00CAS8
DX R8 01 00D38 NNX 14 04 00014 SUM R8 01 00D30
DXO R8 01 00CD8 NNY ni4 01 00CCO sX R8 04 00000
EMP (RB) 04 0B998 NUM 14 04 00018 T RB 01  00DOO
EN R8 01 0OCBO NX 14 0* 00010 TEM R8 01 00D18
ENN R8 01 0OCBB NY ni4a 01 00C9C T R8 01 00D28
PLAG R8 04 00060 0 (R4) 04 0B86C v R8 04 00068
GAM R8 04 00038 P (R8) 04 0C5B8 X (R4) 04 00070
GAMMA R8 04 00028 PEA R8 04 00040 XBAR RS 04 00020
H (R8) 04 0C938 PK a(R8) X0 R8 01 00C90
1 14 01 0occ4 PL (R8) 04 0C758
FORTRAN IVL27 STORAGE MAP INVGAM  SUBROUTINE 05/26/72 PAGE 0029
symbol TYPE ESID VALUE SYMBOL  TYPE ESID VALUE SYMBOL  TYPE ESID VALUE
PP o (R8) 96 FORMT 01 00B79 T R8 01 00D28
PK n(RB) 98 FORMT 01 OOBBO SUM R8 01 00D30
20 STMT 01 001C6 XQ R8 01 00C90 DX RB 01 00D38
25 STMT 01 O0O01EA 133 14 01 00C98 BET ars 01 00D40
26 STMT 01 00236 NY Bl4 01 00C9C sX R8 04 00000
27 STMT 01 0023C SG R8 01 0OCAO SLX R8 04 00008
30 STMT 01 O002FA sP R8 01 00CA8 NX 14 04 00010
35 STMT 01 0033A EN R8 01 0OCBO NNX 14 04 00014
38 STMT 01 OO3E8 ENN R8 01 0oCB8 NUM 14 04 00018
39 STMT 01 00446 NNY Bl4 o1 XBAR R8 04 00020
55 STMT 01 004F4 1 14 01 985E9 GAMMA R8 04 00028
60 STMT 01 0054C Q R8 01 0occs BETA R6 04 00030
100 STMT 01 005D6 NN Bl4 01 0OCDO GAM RB 04 00038
105 STMT 01 00612 13 14 01 00CD4 PEA R8 04 00040
70 STMT 01 00632 DXO RS 01 0OC08 N 14 04 00048
95 STMT 01  0069A CHECK R8 01 OOCEO 1" 14 04 0004C
97 STMT 01 OO6F8 DL R8 01 O0OCE8 33 14 04 00050
200 STMT 01 00734 K 14 01  OOCFO ;QQ R8 04 00058
AA (R8> 01 00838 M 14 01 0OCF4 LAG R8 04 00060
BB (R8) 01 00890 z R8 01 O0OCF8 v R8 04 00068
cc (R8) 01 008ES8 T R8 01 00DOO X (R4) 04 00070
AAA (R8) 01 00940 s R8 01 00DO8 X1 (R4) 04 0019C
BBB (R8) 01 00998 L 14 01 00D10 x2 (R4) 04  03E8C
ccc (R8) 01 009FO0 TEM R8 01 o0oD18 X3 (R4) 04 07B7C
31 FORMT 01 O0O0A48 XX R8 01 00D20
FORTRAN IVL27 OBJECT SUMMARY PRINT SUBROUTINE 05/26/72  PAGE 0030
OBJECT DECK ORIGIN FDF4C8 FIRST CARO SEQ NO 0614
INSTRUCTIONS 00758
ARRAYS 00130
FORMATS* NAMELISTS*LITCONS 002B0
VARIABLES* CONSTANTS*TEMPORARIES 00260
PRINT SD 01 ©0ODY8 ITF#MPI ER 02 IAFtIBUG
CM 04 OCABS
ITFFOR EV 05 ITF#OX EV 06 ITF#OI
ITF#QH EV 08 ITF#OF EV 09 ITF#OA
ITF#IC EV 0B
FORTRAN IVL27 STORAGE MAP PRINT SUBROUTINE 05/26/72 PAGE 0031
SYMBOL  TYPE ESID VALUE SymMBOoL  TYPE ESID VALUE SYMBOL  TYPE ESID VALUE
AJI R4 04  OBBFO 2 14 04 00050 P2 (R8) 04 0BD98
ALPHA RB 04 0CA98 K 14 01 OOBE4 P3 (RB) 04 OBF38
ASTN (R8) 04  0C8F8 KI 14 04  OCA7C P4 <R8) 04 0ocoD8
BETA R8 04 00030 L 14 01  OOBEO P5 (R8) 04 o0c278
R8 04 OCAAS8 LIMIT 14 04  OCABO P6 (R6) 04 0C416
CHI (RB) 04 0C9D8 LINE 14 01 OOBDB QQ R8 04 00058
EMP (R8) 04 0B998 M Bl4 01 OOBF4 SKTEST  R8 04  0OCA80
FLAG R8 04 00060 N 14 04 00048 SLX R8 04 00008
GAM R8 04 00038 NN 14 01 OOBEC SX RS 04 00000
GAMMA R8 04 00028 NNX 14 04 00014 v R8 04 00068
H (R8) 04 0C938 NUM 14 04 00018 X (R4) 04 00070
I Bl4 01 00BES8 NX 14 04 00010 XBAR RB 04 00020
1A 14 04  OCAAO D (R4) 04 0B86C XI (R4) 04 0019C
IcoD Bl4 01 OOBDC P (R8) 04 0C5B8 x2 (R4) 04  03E8C
1D1 14 04  OCA90 PEA RB 04 00040 X3 (R4) 04 07B7C
IFACT 14 04 O0CAB4 PL (R8) 04 0C758 Y n(R4)
i 14 04 0004C PROB R8 04 OCABS8 z (R4) 01 00758
INT 14 04 OCA78 Pi (R8) 04 OBBF8 1 FORMT 01 00888
J 14 01 OOBFO

60

SYMBOL

XX
X1
X2
X3
z
20
25
26
27
30
31
35
38
39
55
60
70
95
96
97
98
100
105
200

SYMBOL
o]

EMP
AJJ

EV 03

EV 07
EV  OA

TYPE ESID VALUE
R8 01 00D20
(R4) 04 0019C
(R4) 04 03E8C
<R4> 04 07B7C
R8 01 OOCF8
STMT 01 001C6
STMT 01 OO1EA
STMT 01 00236
STMT 01 0025C
STMT 01  002PA
FORMT 01 00A4B
STMT 01  0035A
STMT 01 O03ES8
STMT 01 00446
STMT 01 004F4
STMT 01  0054C
STMT 01 00632
STMT 01  0069A
FORMT 01 00879
STMT 01 OO6F8
FORMT 01 OOBBO
STMT 01 005D6
STMT 01 00612
STMT 01 00734
TYPE ESID VALUE
(R4) 04 0B86C
(R8) 04 0B998
R4 04 OBBFO
CRB) 04 OBBF8
(R6) 04 0BD98
(R8> 04 OBF38
(RB) 04 OCoDB
(R8) 04 0C278
(R8) 04 0C418
(R8) 04 0C5B8
(RB) 04 0C758
(R8) 04 OC8F8
(R8) 04 o0C938
(RB) 04 0C9D8
14 04 OCA78
14 04 OCA7C
R8 04  OCABO
R8 04 OCA88
14 04  0CA90
R8 04 0CA98
14 04  OCAAO
R8 04  0CAA8
14 04 OCABO
14 04 0CAB4
TYPE ESID VALUE
FORMT 01 00897
FORMT 01 0090F
FORMT 01 0092B
FORMT 01 00A83
STMT 01 001F6
STMT 01 00128
STMT  01. 00336
STMT 01 0035E
STMT 01 00382
STMT 01 00392
FORMT 01 00AB6
STMT 01 00444
FORMT 01 OOADO
STMT 01 004E8
FORMT 01 OO0AF2
FORMT 01 00BO5
STMT 01  0059C
STMT 01  0065C



FORTRAN IVL27 STORAGE MAP PRINT SUBROUTINE 05/26/72
SYMBOL TYPE ESID VALUE SYMBOL type ESID VALUE SYMBOL
Y n(R4) 51 FORMT 01 OOAF2 GAM
10 STMT 01 00128 52 FORMT 01 00BOS PEA
6 STMT 01 001F6 LINE 14 01  00BDS8 N
20 STMT 01 00336 Icobp ni4 01  0O0BDC 1
25 STMT 01 O0O035E L 14 01 OOBEO 33
26 STMT 01 00382 K 14 01 OOBE4 QQQ
30 STMT 01 00392 1 014 01 O0OBE8 FLAG
40 STMT 01 00444 NN 14 01 OOBEC \

50 STMT 01 O004E8 J 14 01 OOBFO X
59 STMT 01 0059C M Ql4 01 OOBF4 X1
60 STMT 01 0065C SX R6 04 00000 X2
z (R4) 01 00758 SLX R8 04 00008 X3
1 FQRMT 01 00888 NX 14 04 00010 o
2 fdrmt 9] 00897 NNX 14 04 00014 EMP
3 FORMT 01  OO90F NUM 14 04 00018 AJJ
4 FQRMT 01 0092B XBAR R8 04 00020 Pl
5 FORMT (1 OOAS83 GAMMA R8 04 00028 P2
31 FORMT 01 OOAB6 BETA R8 04 00030 P3
41 FORMT 01  OOADO
FORTRAN IVL27 OBJECT SUMMARY GAMIT SUBROUTINE 05/26/72
OBJECT DECK ORIGIN FDF4E8 FIRST CARD SEQ NO 0730
INSTRUCTIONS 004D8
ARRAYS 00640
FORMATS* NAMELISTS* LITCONS 00000
VARIABLES* CONSTANTS* TEMPORARIES (0208
GAMIT SO 01 00D20 ITF#MPI ER 02
CM 04 00068
ITFBOS EV 05

fortran ivi27 storage map gamit subroutine 05/26/72
SYMBOL TYPE ESID VALUE SYMBOL type ESID value SYMBOL
A R8 01  OOBAO GAMMA R8 04 00028 NX
B R8 01  00BD8 1 DI4 01 O00BE4 PD
BETA R8 04 00030 1 14 04  0004C PEA
c R8 01  OOBRO 33 14 04 00050 QQ
D R8 01 o00BB8 K 14 01 O0OBE8 SLX
E R8 01  0OOBCO KK 14 01 OOBEC SX
F R8 01  0OBC8 L 14 01  OOBEO u
FLAG R8 04 00060 N 14 04 00048 v
G R8 01  0OBDO NNX 14 04 00014 XBAR
GAM R8 04 00038 NUM 14 04 00016 Y

FORTRAN IVL27 STORAGE MAP GAMIT SUBROUTINE 05/26/72
SYMBOL TYPE ESID VALUE SYMBOL TYPE ESID VALUE SYMBOL
10 STMT 01 0015C A R8 01 OOBAO K
15 STMT 01 0021C \ R8 01 00BA8 KK
16 STMT 01 00240 c R8 01  0OBBO PD
23 STMT 01 -0268 D R8 01 00BB8 Y
30 STMT 01  0029E E R8 01 0OBCO SX
40 STMT 01 002F2 F R8 01 00BC8 SLX
55 stmt 01 00302 G R8 01 0OOBDO NX
45 STMT 01 0031E B R8 01 00BDS8 NNX
50 STMT 01 00392 L 14 01 OOBEO NUM
] (RB) 01 004D8 1 nla 01 OOBE4 XBAR

page 0032
TYPE ESID
RB 04
RS 04
14 04
14 04
14 04
R8 04
R8 04
R8 04
(R4) 04
(R4) 04
(R4) 04
(R4) 04
(R4) 04
(R8) 04
R4 04
(RB) 04
(R8) 04
(RB) 04

PAGE 0033

PAGE 0034

VALUE

00038
00040
00048
0004C
00050
00058
00060
00068
00070
0019C
03E8C
07B7C
0B86C
0B998
OBBFo
0BBF8
0BD98
OBF38

*F#BUG

TYPE ESID VALUE

PAGE 0035

TYPE ESID

14
14
RB
RB
R8
RB
14
14
14
R8

04
o1
04
04
04

00010
OOBFO
00040
00058
00008
0QO000
004D8
0OOBAB
00020
00BF8

VALUE

00BE8

SYMBOL

P4

EV 03

symbol

TYPE

(R8)

TYPE

STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT
STMT

TYPE

R8
R8
R8
RB
14
14
14
RB
R8

ESID

04
04
04

ESID

01
o1
01
01
01
01
01
01
01

ESID

VALUE

ocobs
0c278
0c418
0CcsB8
0C738
0C8F8

VALUE

0015C
0021C
00240
00268
0029E
002F2
0031E
00392
00302

VALUE

00028
00030
00038
00040
00048
0004C
00050
00038
00060



(P) ERREXIT

PROGRAM

end

NAME OF program

segment

name of segment

MODULES

Inkedt

A-O000O0I

POAO4

(ROOT)

name of
module

PQA04

comput
INVGAM
PRINT
GAMIT
1TF8AG
ITF#IA
ITFRIC
ITF8IC2
ITF8ID
iCFHIfmT
ITFBIG
ITF#IH

ITF#1

ITF#IL
ITFSILR
ITF#1S
ITEFBIX
ITF81Z
ITFEMPI
ITF#OA
ITF60H
ITF80I
ITF6OLR
ITF#0OX
ITF#PA
ITF8X2
ITFBX4
ITF801
ITF809
ITF631
ITFDATAD
ITF6PUG

ITF6IC1

LINKAGE EDITOR

LINKAGE EDITOR

NUMBER 001

LOAD
ADDRESS
00CAB8
00E178
OOF2FO
010050
010F90
011D28
012A48
012A88
012AFO0
0137EO0
013B20
013E20
0146A0
0146D0

014700
LINKAGE EDITOR

014BA0
014900
014B08
014BEO
014BFO
014D20
0150A8
015110
015140
0151CO
015370
0153A0
015660
015728
015840
0159D0
015B98
015C50
016620

017670

PARAMETERS

AND DIAGNOSTICS

PROGRAM MAP

computed length 00095984
NUMBER OF REGIONS 001
number of segments 001
NUMBER OF MODULES 035
BLANK COMMON LENGTH 00051896
segment length 00095984
SYMBOLIC OVERLAY POINT (ROOT)
NEXT SEGMENT IN PATH (ROOT)
MODULE NUMBER OF
LENGTH ENTRYS
00005824 00002
00004472 00001
00003424 00001
00003904 00001
00003480 00001
00003360 00001
00000064 00003
00000104 00002
00003312 00007
00000832 00009
00000768 00006
00002176 00003
00000048 00002
00000048 00002
00000416 00002
- PROGRAM MAP
00000096 00002
00000520 00004
00000216 00002
00000016 00002
00000304 00002
00000904 00005
00000104 00002
00000048 00002
00000128 00002
00000432 00003
00000048 00002
00000704 00005
00000200 00001
00000280 00001
00000400 00001
00000456 00002
00000184 00001
00002512 00003
00004176 00003
00000128 00001

62

05/26/72

05/26/72

MAXIMUM LENGTH

PAGE 1

PAGE 2

00095984

NUMBER OF OVERLAY POINTS

number of entry points

starting execution addr.

blank common

starting address
region NUMBER

NUMBER OF MODULES

method used to

BIND MODULES

EXPLICIT

EXPLICIT

EXPLICIT

EXPLICIT

EXPLICIT

EXPLICIT

IMPLICIT

implicit

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

implicit

IMPLICIT

IMPLICIT

implicit

implicit
IMPLICIT
IMPLICIT
implicit

implicit

implicit

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

05/26/72

load addr.

PAGE

000
00089
014D20
000000

oooooo

001

IN SEGMENT 035

3



GAMMA DISTRIBUTION FUNCTION MODEL
1(y;«Ar) 7r7(Z) (y-o7l e”a)i3

ORIGIN
/9>0  SCALE PARAMETER
y >0 SHAPE PARAMETER
y IS THE MEAN

GRAPH PREPARATION

8 - 3 > = 2.0; the completed graph will appear
lower right quadrant

(@) In the upper right quadrant, at 2.0, draw
horizontal 1

(b) Through the intersections of this horizontal line
the probability curves, draw perpendicular lines ex-
tending through the lower right blank quadrant. Label
these lines at the base with the corresponding’ proba-

STEP Il In the lower left quadrant are the solid sloping lines

the b values or slopes. At the intersection of the sloping
ine labeled s = 3 and the horizontal heavy line at 8

draw a vertical scale line. Through the intersections of

the slopino e lines with the vertical line, draw horizontal
nes across the lower right blank quadrant. Label the

ends of these lines with the respective values of the

sloping b lines at the intersection points. These scale
lues are  units of the original set of data

v large or small values of 8.same scaling dlifi
culties are encountered.  Use the scale
at the left side of the lower right quadvanl Read the
quantities on this scale and multiply by the sampl
lues to arrive at values in the same units as the origi-
of data

STEP 111 The heay sloping line in the lower right quadrant is the
line fitted to the distribution defined by the scale lines
and probability lines that have been drawn. Quantities
and probabilities may be interpolated from this’ graph.

If a plot of the original data is needed, order lhe data
from lowest to highest, labeling them i = 1 thro
where i » 1 is the lowest value and n is the number of data
Compute the empirical probabilities by use of the expression 24
(i-c)/(n-2c+l)." For large samples, ¢ is set equal to % tha
reduces the expression to (i-%)/n. For small samp
be set equal to 0. The expression is then (llnfl) Plot
the ordered data pairs against the probabil
graph prepared in STEPS | through IV. View the data plot
and subjectively decide whether the data are fit wel
the prepared graph.

use the graph. The model is  good fi

If not so, do not the graph. That is. another
model should be dered:
..200

0.001 /.0l .05.10.20.30.40.50.60.70 .80

63

PROBABILITY-

QUANTILES

is 36
17 34

16 32

1428

13 26

122
10 20



GAMMA DISTRIBUTION FUNCTION MODEL

rir)
ORIGIN
/S>0 SCALE PARAMETER

Y >0 SHAPE PARAMETER
7 IS THE MEAN

GRAPH PREPARATION
= 2.0; the completed graph will appea

lower right quadrant.

STEP |

- (@) In the upper right quadrant, at y = 2.0, draw a
It

horizontal

(b) Through the intersections of this horizontal line with
the probability curves, draw perpendicular
tending through the lower right blank quadrant. Label
these lines at the base with the corresponding proba
bility values

In the lower left quadrant are the solid sloping lines
values or slopes. At the intersection of the sioping
labeled b - 3 and the horizontal heay

draw 2 vertical scale line.  Thiough the. intersections. of

the slopino b lines with the vertical line, draw horizontal

nes across the lower right blank quadrant. Label the
ends of these lines with the respective values of the
sloping B lines at the intersection points. These scale
lues are in units of the original set of data

y large or small values of s,some scaling di
encountered. Use the scale for 8=1 that is
at the left side of the lower right quadrant. Read the
ouantities on this scale and multiply by the sample B
values to arrive at values in the same units as the origi

The heay sloping line in the lower right quadrant is the
fitted to the distribution defined by the scale

and probability lines that have been drawn. Quantities

and probabilities may be interpolated from this graph

plot of the original data is needed, order the data
from lowest to highest, labeling themi = L through
where i = | is the lowest value and n is the number of data

(-c)/(n-2c+).~ For large samples, ¢ is set equal fo %
reduces the expression to (i-%)/n. For small samples, ¢ may
be set equal to o The expression is then (i/r|+1) Plot
the ordered data pairs against the probabiliti
graph propared ' STEPS | though 1V _ View the data plot
and’subjectively decide whether the data are fit well by
the prepared graph
the graph. The model is a good fit
If not so, do not use the graph. That is, another
model should be considered

Gomeue the empircal probabiltes by use of the expression

iinn!

64
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GAMMA DISTRIBUTION FUNCTION MODEL
v-ar p<v-a)/E
[

)y

ORIGIN
Q>0 SCALE PARAMETER
7 >0 SHAPE PARAMETER
7 IS THE MEAN

GRAPH PREPARATION

= 3; y = 2.0; the completed graph will appear in the
lower right quadrant

(a) In the upper right quadrant, at y * 2.0, draw a
horizontal line

(b) Through the intersections of this horizontal line
the probability curves, draw peroendi
tending through the lower right blank quadrant. —Label
fhese lines ‘at the base with the corresponding proba
bility v

In the lower left quadrant are the solid sloping lines with
the 8 values or slopes. At the intersection of the sloping
ine labeled b * 3 and the horizontal heavy line at 8§
draw a vertical scale line. Through the intersections of
the slopina s lines with the vertical line, draw horizontal
lines across the lower right blank quadrant. Label the
ends of these lines with the respective values of the
sloping b lines at the intersection points. These seal
lues are in units of the original set of data

arge or small values of B.some scaling diffi-
culties are Sncounrerod. st tha eale for b
at the left side of the ower right quarant. _Read the
ouantities on this scale and multiply by the sampl
artive at values in' the save units 4 the origi
set of data

The heavy sioping line in the lower right quadrant
itted to the distribution defined by the scale

and pmbammy lines that have been drawn. Quantities

and probabilities may be interpolated from this" graph

plot of the original data is needed, order the data
from lowest to highest, labeling ttem i ¢ L through 1
whete 1= 1 is the lowest value_and 1 IS the number of data. / /
Compute the empirical probabilities by use of the expression 24.0
(i-c)/(n-2c+).  For large sampl ,c Is set equal to % that/ j /
reduces the expression t© (i-+)/n.  For small samples,
be set equal to 0. The expression is then (i/n+1). Plot 23
the ordered data pairs against the probabilities on the
graph prepared in STEPS I through IV. View the data plol
and subjectively decide whether the data are fit well Z

the prepared graph
the graph. The model is a good fit.

If not so, do not  the graph  That is, another
model should be dered

0.001 .01 .05.10.20.30.40.50 60 70

Imiiuu liiimiill

65

.80

QUANTILES

19 38
18 36

17 34

16 32

1*28

13 26

122




Tgamma distribution function model

fiv."Ar) e«w,M9

a=a ORIGIN

8>0 SCALE PARAMETER

y >0 SHAPE PARAMETER
y IS THE MEAN

GRAPH PREPARATION

1+ 2.0; the completed graph will appear in the

(@) In the upper right quadrant, at y = 2.0, draw a
horizontal line.

(b) Through the intersections of this horizontal line with
the probability curves, draw perpendicular lines ex-
tending through the lower right blank quadrant. Label
these lines at the base with the corresponding proba-
bility values.

In the lower left quadrant are the solid sloping lines with
the B values or slopes. At the intersection of the sloping
line labeled b - 3 and the horizontal heavy line at 8 = 1,
draw a vertical scale line. Through the intersections of
the slopina b lines with the vertical line, draw horizontal
lines across the lower right blank quadrant. Label the
ends of these lines with the respective values of the
sloping b lines at the intersection points. These scale
values are in units of the original set of data.

For very large or small values of B.some scaling diffi-
culties are encountered. Use the scale for s = 1 that is
at the left side of the lower right quadrant. Read the
quantities on this scale and muiltiply by the sample B
values to arrive at values in the same units as the orig
nal set of data.

The heay sloping line in the lower right quadrant is the
itted to the distribution defined by the scale

and prubabllny lines that have been drawn. Quantities
and probabilities may be interpolated from this graph

plot of the original data is needed, order the daia
from lowest to highest, labeling them i * I throu
e e 12 T owest valant ™ 15 the mimar of data.

Compute the emplncal probabilities hy use of the expressn)n 24

(i-c)/(n-2c+l)." For large samples, ¢ Is set equal to'y thai
reduces the expresslon to (i-40/n. For small samples

he expression is then (i/n+1). Plot
the ordered dat palrs against the probabilities on the
graph prepared in STEPS | through IV. View the data plot
and subjectively decide whether the data are Fit well by
the prepared graph.

, use the graph. The model is a good fit

do not use the graph. That is. another

model should be considered

S

AMOU* @ - 142

b QUANTILES—

0.001 /.0l .05.10 .20.30.40.50.60.70 .80

Litnull i mii Wi mill
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PROBABILITY-

QUANTILES

.99

.995
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GAMMA DISTRIBUTION FUNCTION MODEL

ORIGIN
B>0 SCALE PARAMETER
SHAPE PARAMETER
IS THE MEAN

GRAPH PREPARATION

= 2.0; the completed graph
lower right quadrant

[P - (@ In the upper ght quadrant, 2.0, draw
horizontal

(b) Through the intersections of this horizontal line
the probability curves, draw perpendicular lines
tending through the lower right blank quadrant. Label
these lines at the base with the corresponding proba-

STEP 11 lower left quadrant are the solid sloping
the 8 values or slopes. At the intersection of the slopmg
line labeled b - 3 and the horizontal heavy line at
draw a vertical scale line. Through the Inlersecllons of
the slopina 6 lines with the vertical line, draw horizontal
lines across the lower right blank quadrant. Label the
ends of these lines with the respective values of the
sloping b lines at the intersection points. These scale
values are in units of the original set of data

For very large or small values of 8,some scaling diffi-
encountered. ~Use the scale for 8 = | that
at the left side of the lower right quadrant. Read the
quantities on this scale and multiply by the sampl
ues to arrive at values in the same units as the origi-
nal set of data.

The heawy sloping line in the lower right quadrant i
e fitted to the distribution defined by the sea

and probability lines that have been drawn, - Quanities

and probabilities may be interpolated from this graph.

STEP IV plot of the original data is needed, order the data
from lowest to highest, labeling them i = I through
where i = 1 is the lowest value and n is the number of data

Compute the empirical probabilities by use of the expression
(i-c)/(n-2c+)).  For large samples, ¢ is set equal to % that/ /
reduces the expression to (i-%)/n. For small samples.c may
be set equal 10 0. _The expression is then Plot
the ordered data pairs against the prol e
graph prepared in STEPS | through IV. N the data plot
and subjectively decide whether the data are fit well by
the prepared graph

If so, use the graph. The model is a good fit.

If not so, do not use the graph  That is, another
model should be considered

0.001

67

PROBABILITY-

QUANTILES

19
18
17 34

16 32

1428

13 26

122
10 20
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GAMMA DISTRIBUTION FUNCTION MODEL

19 38
/(Qy;a,/3,n= Y y)(y-a)y | e'(y_a)e SCHEMATIC EXANPLE
0-3 is36
a ro ORIGIN 2: 0%
10>0 SCALE PARAMETER ACX - 142
7 >0 SHAPE PARAMETER 17 34
y IS THE MEAN — in
GRAPH PREPARATION QUANTILES— 16 32
Given a = C; e = 3; y = 2.0; the completed graph will appear i
lower right quadrant.
14 28
(b) Through the intersections of this horizontal line with £ 13 26
the probability curves, draw perpendicular lines ex- ’

tending through the lower right blank quadrant. Label
these lines at the base with the corresponding proba-
bility values.

1 In the lower left quadrant are the solid sloping lines with
the B values or slopes. At the intersection of the sloping 1 22
line labeled 8 = 3 and the horizontal heavy line at 6 = 1,
draw a vertical scale line. Through the intersections of
the slopino e lines with the vertical line, draw horizontal 10 20
lines across the lower right blank quadrant. Label the
ends of these lines with the respective values of the
sloping 8 lines at the intersection points. These scale
values are in units of the original set of data.

For very large or small values of 8,some scaling dlffl-
culties are encountered. Use the scale for 6=1
at the left side of the lower right quadrant. Read lhe

MRS AR SRS RS byiE asnfe rigi-

nal set of data.

0.001 /.0l .05.10.20.30.40.50.60.70

- The heavy sloping line in the lower right quadrant is the
line fitted to the distribution defined by the scale lines
and probability lines that have been drawn. Quantities
and probabilities may be interpolated from this graph.

- If a plot of the original data is needed, order the data
from lowest to highest, labeling them i = 1 through n
where i = 1 is the lowest value and n is the number of data.
Compute the empirical probabilities by use of the expression 24.
(i-c)/(n-2c+1).  For large samples, ¢ is set equal to % that/ / |

| expression
Peagedseme! ek§rQs A RIOFAN 1T ISli/Ltbies Flehay /2}0

the ordered data_pairs -against the probabiHties -on QUANTILES
graph prepared in STEPS | through IV. View the data plol

and subjectively decide whether the data are fit well by

the prepared graph.

a. If so, use the graph. The model is a good fit.

b. If not so, do not use the graph. That is, another
model should be considered,

PROBABILITY-

68



DISTRIBUTION

STEP lla - Dashed sloping 6 lii \

b - Locate the 8 line_corresponding to the samp
value.  Interpolate when necessary.

¢ - Throuoh the intersection of the sample 8 lii

with the corresponding
of the original sample units.

upward to the right from the
mer marking probabilities. 0
from left 1o fight through the

base with the appro-

12 24
STEP IV - The heavy slooing lir
intercalated from this \
graph composed of the ordinate, abscissa.
of the expression (i-c)/(n-2c+l).
7 14
6 12

PROBABILITY
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16

12

10

32

28

24

20

18

12

STEP IV

0.999 .995 .99

.005 .01
GAMMA DISTRIBUTION FUNCTION MODEL
I<y;°Ar>= n7,(y-°) €'
y is THE MEAN
Ao\
\/\ \
\ \ \

\ N\

- The heavy slooing line rising from the left
from this \
ANW!
<\ \\\\v
\\wv

PROBABILITY
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PROBABILITY
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17

16

14

13

12

10

36

32

28

24
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in terms of probability.

PROBABILITY
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0.999

995 .99
.005 .01
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d

40

36

32

28

24

O -~ N W b 0 O N 0O ©

SCALE UNITS;

0.999 .995 .99
.005 .01

GAMMA DISTRIBUTION FUNCTION MODEL

WA\
VALY

\A\

AW/
\ \v
\wvwx\\ \
< \\\\\\
\wv W\ VN
b daal AVAV S |
PROBABILITY
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Soo

GAMMA DISTRIBUTION FUNCTION MODEL
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