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Abstract 

 

This document describes methods for diagnosing non-prognostic variables from explicit 

prognostic variables from hourly updated NOAA models from 2020 onward.  A previous 

diagnostics technical memorandum (Benjamin et al. 2021a) described diagnostics for earlier 

versions of the hourly updated models.   Here, we describe diagnostics applicable to the High-

Resolution Rapid Refresh (HRRRv4) and Rapid Refresh (RAPv5) models implemented in 

December 2020 and to the Rapid Refresh Forecast System (RRFS) starting in 2026. The 

code for these diagnostics resides primarily within the Unified Post-Processor (Unipost or UPP) 

program used for common NOAA NCEP modeling system output.  
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1. Introduction 

 

This document describes diagnostic output fields for the closely related NOAA Rapid Refresh 

(RAPv5), the High-Resolution Rapid Refresh (HRRRv4) and the Rapid Refresh Forecast 

System (RRFSv1) hourly updated weather models. These descriptions provide at least general 

information on the diagnostic techniques by which these fields are calculated but do not include 

code-level details. The diagnostic fields described do not include all output fields from the RAP, 

HRRR and RRFS but only those for which the diagnostic method was not obvious and 

description is needed for interpreting the fields by forecast users.   For diagnostic techniques 

relevant to earlier versions of the HRRR (v1-v3) and RAP (v1-4), see Benjamin et al. (2021a). 

 

The RAP, with 13-km grid spacing, was implemented at NOAA/NCEP in 2012 (Benjamin et al. 

2016a). The HRRR (Dowell et al. 2022, James et al. 2022), with 3-km grid spacing and explicit 

convection, was implemented at NCEP in 2014, but also ran experimentally at NOAA GSD 

since 2009. Many of the diagnostic techniques used in RRFSv1, HRRRv4, and RAPv5 

explained in this document were developed initially for use in the hourly updated Rapid Update 

Cycle (RUC, Benjamin et al. 2004) model run at NCEP from 1998-2012. Table 1 provides a 

history of the versions of the RUC, RAP, HRRR, and future RRFS models to clarify changes 

made to these diagnostics at certain points in code history. 

 

Both the RAP and HRRR models use the common NCEP post-processing program, Unipost 

(also known as the Unified Post-Processor - UPP, github UPP code), which has been used for 

approximately the last decade for all NCEP models. The diagnostics described in this document 

are generated either in the UPP code or directly diagnosed within the forecast model (WRF-

ARW for RAP and HRRR). These diagnostic methods have been carried over for output fields 

from the Rapid Refresh Forecast System (RRFS) model (Carley et al 2023), which is part of the 

Unified Forecast System.  RRFSv1 (FV3 used for forecast model dynamic core instead of WRF-

ARW used for HRRR/RAP) is currently planned for operational implementation at NCEP in 

2026.  HRRR and RAP will continue to be run operationally at NCEP until RRFSv2 

implementation, currently scheduled for 2028-2029.  

 

Graphical examples are shown in this memo for many diagnostic fields. All fields are stored in 

GRIB2 using SI (International System of Units) / metric units even though some graphics are 

displayed using conversion to non-SI units (e.g., knots, degrees Fahrenheit). 

 

HRRR GRIB2 Inventories     :   

Two-dimensional fields. Native hybrid model level fields.  Isobaric level fields. 

Sub-hourly fields. 

RAP GRIB2 Inventories     :    Two-dimensional fields. Native hybrid model level fields. 

Isobaric level fields. 

RRFSv1 GRIB2 Inventories: (viewable with non-Chrome browsers)   

Native model level fields Isobaric-level fields Sub-hourly fields 

 

  

https://github.com/NOAA-EMC/UPP/
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFNAT.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFPRS.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO_SUBH.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFTWO.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFNAT.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFPRS.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_natlev.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_prslev.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_subh.txt
https://github.com/NOAA-EMC/UPP/
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFNAT.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFPRS.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO_SUBH.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFTWO.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFNAT.txt
https://rapidrefresh.noaa.gov/RAPv5_GRIB2_WRFPRS.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_natlev.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_prslev.txt
https://www.emc.ncep.noaa.gov/rrfs/GRIB2Table_rrfs_subh.txt
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Table 1.  History of rapidly updated model and assimilation systems at NCEP (as of 2026).  Dates 

for implementation for experimental versions at NOAA ESRL/GSD/GSL are also shown.  RUC = Rapid 

Update Cycle.  RAP = Rapid Refresh.  HRRR = High-Resolution Rapid Refresh.  Experimental output 

from the RAPv5 and HRRRv4 models before their implementation in Dec 2020 are labeled in some 

figures in this document as RAPX and HRRRX, respectively. RRFS = Rapid Refresh Forecast System. 

 

Model and 
assimilation 
system 

Horizontal 
grid 
spacing 

Number 
of vertical 
levels 

Assim. 
frequency 

Implementation 
(month/year) 

Geographical 
domain 

        NCEP ESRL/ 
GSL 

  

RUC1 60 km 25 3h 1994 
  

CONUS 

RUC2 40 km 40 1h 
4/1998   

CONUS 

RUC20 20 km 50 1h 
2/2002   

CONUS 

RUC13 13 km 50 1h 
5/2005 

  CONUS 

RAP v1 13 km 51 1h 
5/2012 2010 

N. America 

RAP v2 13 km 51 1h 
2/2014 1/2013 

N. America 

RAP v3 13 km 51 1h 
8/2016 1/2015 

N. America 

RAP v4 13km 51 1h 
7/2018 5/2017 

N. America 

RAP v5 13km 51 1h 
12/2020  5/2019 

N. America 

HRRR 3 km 51 1h 
9/2014 2010 

CONUS 

HRRR v2 3 km 51 1h 8/2016 4/2015 CONUS 

HRRR v3 3 km 51 1h 7/2018 5/2017 CONUS, Alaska 

HRRR v4 3 km 51 1h 12/2020  6/2019 CONUS, Alaska 

RRFS v1 3 km 65 1h Estim.  
4/2026 

4/2025 
(exp at 
NCEP) 

N. America 
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Some of the diagnostic differences between HRRRv4 and RRFSv1 described in this document 

are related to differences in the data assimilation and model configurations.   In Table 2, we 

summarize the common points and differences in these configurations.  For instance, RRFSv1 

uses a convective parameterization but HRRRv4 does not.  RRFSv1 uses a full ensemble 

control member for its initialization whereas HRRRv4 uses an ensemble mean with a drying 

effect as noted by Benjamin et al. (2025).   There is a very substantial difference, of course, in 

the dynamic core for the forecast model with RRFSv1 using the FV3 core (Carley et al. 2023) 

compared to HRRRv4 using the WRF-ARW core (Dowell et al. 2022). 

 

There are many similarities between RRFSv1 and HRRRv4, with RRFSv1 maintaining 

assimilation features including a non-variational stratiform cloud analysis (Benjamin et al 

2021b), coupling with the Great Lakes FVCOM model (Fujisaki-Manome et al 2020), and the 

addition of a 1-d lake model to represent variations in lake surface temperatures for smaller 

inland lakes (Trahan et al. 2025, Benjamin et al. 2022b).   RRFSv1 also carries most of the 

same model parameterizations used in HRRR but with updated versions, e.g., for turbulence 

(MYNN, Olson et al. 2026), cloud microphysics (Thompson) and land-surface models (RUC 

LSM, Smirnova and Benjamin 2025).  Gravity-wave drag (GWD, Toy et al. 2025) is also applied 

in both RRFSv1 and HRRRv4.  

 

 

Table 2.  RRFSv1 vs. HRRRv4 for model and data assimilation components 

 

 
Data assimilation 
 
   RRFSv1   HRRRv4   References 
Overall   Ens control analysis Ensemble mean  Dowell et al 2022, Fig. 3 
Cloud DA  Yes   Yes   Benjamin et al 2021b 
Soil DA   Yes   Yes   Benjamin et al 2022a 
Lake cycle  Yes    Yes   Benj et al 2022b, Trahan et al 2025  
FVCOM coupled  Yes   Yes   Fujisaki-Manome et al 2020 
2m Td diagnosis  Linear   Flux   This document 
  (effect on assimilation) 
 
 
Model 
 
   RRFSv1   HRRRv4   References 
Dycore   FV3   WRF-ARW  Carley et al 2023, Dowell et al 2022 
Convective cloud  Aligo-scale-aware SAS none 
Turbulence  MYNN-2022  MYNNv3.8  Olson et al 2019, 2026 
Subgrid-scale clouds MYNN-2022  MYNNv3.8  Olson et al 2019, 2026 
Cloud microphysics Thomp-Eid 2022 version Thomp-Eid 2014  Thompson and Eidhammer 2014  
Land-surface model RUC LSM  RUC LSM  Smirnova and Benjamin 2025 
Gravity-wave drag Yes   Yes   Toy et al 2025 
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2. Descriptions of diagnostics by category 

 

Diagnostic fields are grouped by variable type, each with a summary of the method.     

 

A. Humidity-related variables 

i. Relative humidity 

Relative humidity (RH) is always defined for output from the hourly updated models using 

saturation with respect to water (i.e., over a plane surface of liquid water) at all levels regardless 

of air temperature for RAP/HRRR and RRFSv1 isobaric fields and in the 2-m RH field. This 

approach was also used for the NOAA NAM weather model.  In contrast, GFS output fields (up 

through GFSv16) calculate RH using a different saturation vapor pressure definition partially 

with respect to ice at cold temperatures up through GFSv16. GFSv17 (planned for late 2026) 

will switch to the same RH definition used by HRRR, RAP, RRFSv1, and NAM.  Examples are 

shown for 850-hPa RH, and 850-500-hPa mean RH graphics (see Figs. 1-2). 

Fig. 1: Mean RH for 850-hPa layer.  From 12-h 
HRRRv4 forecast valid at 00 UTC 13 Mar 2020. 
Note that regions where the ground is at a lower 
pressure than 850 hPa are shown as hatched. 

      

 Fig. 2: 850-500-hPa RH. From 12-h HRRRv4 
(labeled HRRRX) forecast valid at 00 UTC 13 
Mar 2020.  The RH fields show deep moisture 
surging northward into the southwestern 
CONUS associated with an approaching upper-
level low.        
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ii. Precipitable water 

 

Precipitable water (PW), which is the vertically 

integrated water vapor in a column (Fig. 3), is defined in 

a manner consistent with meteorological convention, 

where water-vapor specific humidity at each vertical 

level is multiplied by the vertical pressure thickness of 

the layer surrounding that level (with other factors), and 

then summed over the model atmosphere from the 

model surface (ground) to the model top (10 hPa for 

RAP, 15 hPa for HRRR, 2 hPa for RRFSv1).  This 

diagnosed PW is relative to the model surface elevation 

at a given gridpoint, so this field will usually show 

topographically related variations as in the example 

below over ridges in the state of Nevada and also over 

the Sierra Nevada mountains in California and Baja. 

 

Fig. 3.  Precipitable water.   From 12-h HRRRv4 forecast valid 00z 13 March 2020. 

 

iii. Relative humidity with respect to precipitable water 

 

A total-column RH with respect to precipitable water (RHPW) 

is defined as the ratio between precipitable water (PW) and 

PW if the full column was completely saturated with respect 

to water, i.e., RHPW = PW / PW(sat).  Figure 4 shows an 

example of RHPW. RHPW provides more continuity, 

especially across terrain variations, than PW (compare Fig. 4 

below with Fig. 3 above).    It is a relative-humidity measure 

through all levels, more so than the 850-500 hPa RH product 

(Fig. 2). RHPW shows similar patterns to 850-500 hPa RH. 

The 850-500 hPa RH gives a linear average of RH over 

pressure intervals. RHPW is weighted more heavily toward 

layers with warmer temperatures and much higher saturation 

vapor pressure; i.e., a ‘Clausius-Clapeyron-weighted’ 

measure of vertically integrated RH. 

 

Fig. 4.      Relative humidity with respect to precipitable water (RHPW). From 12-h HRRRv4 

forecast valid at 00 UTC 13 Mar 2020, same forecast shown in Fig. 3.   
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B. Surface and boundary-layer variables 

i. 2-m temperature 

The 2-m temperature (Fig. 5) is diagnosed 

internally in the model in a surface-diagnostics 

subroutine in the forecast model using 

atmospheric temperature, skin temperature, and 

sensible heat flux at the surface.   This field is 

diagnosed because the lowest model level in 

sigma coordinates is currently 0.999-sigma or ~8 

m above ground level (AGL).                                

The 2-m temperature is valid at 2 m above the 

model terrain elevation at the same grid point.    

For comparisons with observations, users should 

apply a correction for the observation-minus-

model elevation difference using the local lapse 

rate (as used in data assimilation for HRRR, RAP, 

and RRFS; Benjamin et al. 2016a, section 2.a).            

Fig. 5.  2-m temperature.   

 

ii. 2-m dewpoint 

The 2-m dewpoint temperature (Fig. 7) is calculated directly from temperature, specific humidity, 

pressure and surface latent heat flux.  HRRR, RAP and RUC models used a flux-formulation 

diagnosis of the 2-m specific humidity value (Benjamin et al. 2016a, section 2.f) using the 

surface latent heat (moisture) flux under unstable conditions (Fig. 6).    RRFSv1.0 uses a linear-

interpolation diagnosis between the surface and lowest model level, resulting in a higher 

estimate of 2-m specific humidity (and subsequent calculation of 2-m dewpoint).    As of this 

writing, RRFSv1.1 and RRFSv2 are planned to revert to the flux-formulation diagnostic of 2-m 

specific humidity.    The flux 2-m diagnostic is considered to be more accurate while the linear 2-

m diagnostic exaggerates 2-m dewpoint estimates in daytime leading to an erroneous drying 

effect in data assimilation in RRFSv1.0. 
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Fig. 6.  Methods for diagnosis of 2-m specific 

humidity.  The flux-based estimate (red) gives an 

exponential variation between the surface and the 

lowest model level (~8 m above ground level - AGL).   

The linear-interpolation method (blue) gives a linear 

variation.   The horizontal axis is for magnitude of 

specific humidity; vertical axis is height above 

ground.   

Fig. 7.  2-m dewpoint temperature.  2-m dewpoint (displayed in oF) combined with a wind barb 

display of 10-m wind (in knots, long barb = 10 knots, half barb = 5 knots).  Shown here are 12-h 

forecasts valid 00z/13 Mar 2020 from the 12z/12 Mar 2020 HRRRv4.  

iii. 10-m wind (instantaneous and maximum) 

The 10-m wind is calculated directly by interpolation accounting for stability between the lowest 

two model levels within the forecast model.  The lowest prognostic model level in HRRR, RAP 

and RRFS is about 8 m AGL at sea-level, slightly less for higher elevations.  

An hourly maximum 10-m wind speed is also diagnosed from values at each model time step for 

each horizontal grid point. 

iv. 80-m wind speed (plus additional lower-tropospheric levels)  

The 80-m AGL wind speed is estimated internally within the forecast model by interpolation 

between the appropriate prognostic model levels. Wind speed at this level has been useful as a 

nominal hub-height wind speed for wind energy applications, but it is also useful as another 

metric for wind gust potential.   Additional levels (30, 50, 100, 160, and 320 m AGL) were 

included with RRFSv1 to account for higher wind turbines and provide more data points in the 

lowest 50 m for maritime search-and-rescue operations     .  
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v. PBL depth 

The PBL height (above ground level) is diagnosed directly in the model MYNN PBL scheme 

(Olson et al. 2019a,b) using a hybrid PBL diagnostic based on turbulent kinetic energy when the 

sensible heat flux is low (stable conditions) and based on the virtual potential temperature (θv) 

profile when sensible heat flux is positive. 

The θv profile uses the model native levels 

and the lowest-level θv value is boosted by 

an additional 0.5 K, which does not strongly 

affect the PBL height if it is already at least 

100 m, but does avoid a diagnosis of zero 

depth from a small (< 0.5 K) inversion in the 

lowest 20 m.   

An example of a PBL height field is shown 

in Fig. 8.  Note:  A separate PBL depth 

using only the θv profile continues to be 

used for diagnosing potential wind gust 

speed as shown in Fig. 9. 

Fig. 8.  Planetary boundary layer 

(PBL) height (m).  Above ground 

level. From the 12-h HRRRv4 forecast 

valid at 00 UTC 13 Mar 2020.  

 

 

vi. Potential wind gust speed  

The potential wind gust speed diagnostic depends on the PBL depth diagnostic (above).  It will 

often exceed the observations of transient wind gusts at a particular time and will generally 

exceed a simpler 1.6 x 10-m-wind-speed estimate but provides a better estimate of the higher-

end maximum gusts possible. The diagnostic (see Fig. 9) calculates the excess of wind speed 

over the 10-m wind speed at each level below the PBL depth.  This excess is then multiplied by 

a coefficient (f(z)) that decreases with height from 1.0 at the surface to 0.5 at 1 km height AGL, 

and is 0.5 for any height > 1 km AGL. The maximum weighted wind excess is then added back 

to the surface wind [i.e., gust-potential = vsfc + max (f(z)*(v(z)-vsfc)) where v(z) is the wind 

speed at some level z meters AGL and vsfc is wind speed at lowest model level]. This 

calculation is roughly illustrated by the graphic below (Fig. 9). 
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Fig. 9. PBL height and potential wind gust speed diagnostic.  The horizontal axis is for 

both wind speed and for virtual potential temperature (in red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Near-surface wind fields for 22-h HRRRv4 forecasts (kts) valid at 10 UTC 13 Mar 2020.  This 

is the approximate time of the strongest wind downstream of the Mogollon Rim in Arizona following 

passage of an upper-level trough axis. Panels show (top left) 10-m winds, (top right) maximum 10-m wind 

over previous hour, (bottom left) 80-m winds, and (bottom right) 10-m potential wind gust speed. There 

are instances when the 80-m wind may give the best forecast of the maximum 10-m wind gust potential. 
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C. Surface-pressure-related variables 

 

i. Surface pressure 

 

The hourly updated NOAA weather prediction models (HRRR, RAP, RRFSv1) all output surface 

pressure fields, the prognostic pressure at the atmospheric surface defined by the model terrain 

elevation field.   The surface pressure is shown in Fig. 11 at the same time for the HRRRv4 and 

RRFSv1 models.   Those two models have slightly different terrain elevation fields and their 

horizontal grids are defined differently, and the surface pressure fields are similar. 

 

Fig. 11.  Surface pressure.  For 0-h (analysis) valid at 12 UTC 6 November 2025 for HRRRv4 

(left – MAPS reduction) and RRFSv1 (right – MSLET reduction) models. 

 

ii. Sea-level pressure 

Two different sea-level pressure (SLP) reductions are used in the different hourly updated 

prediction models. 

 

The RAP and HRRR use the MAPS reduction (Benjamin and Miller 1990) to calculate sea-level 

pressure. This reduction uses the 700-hPa temperature to minimize unrepresentative local 

variations caused by local surface temperature variations (used in most other reduction 

methods). This method improves over the standard reduction method in mountainous areas and 

gives geostrophic winds that are more consistent with observed surface winds (Fig. 11).  The 

MAPS SLP includes some horizontal smoothing before output.    

 

In contrast, RRFSv1 outputs the NAM (or ‘Mesinger’) SLP reduction (Pauley 1998, Mesinger 

and Treadon 1995), also called ‘MSLET’ since this mean-sea-level reduction was developed 

originally for the NOAA Eta regional model and later used for the NOAA NAM regional model.  

MSLET uses unsmoothed atmospheric fields and computes below ground extrapolated 

temperature by relaxing Laplace's equation.   Differences in the output field smoothing 

contribute to the different appearance in Fig. 12 (MAPS SLP is smoothed, MSLET is not), but 

MSLET is intrinsically smoother than the MAPS SLP reduction.   

https://doi.org/10.1175/1520-0493(1990)118%3c2099:AASLPR%3e2.0.CO;2.
https://doi.org/10.1175/1520-0493(1990)118%3c2099:AASLPR%3e2.0.CO;2.
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Fig. 12. Sea-level pressure. SLP is displayed for both HRRRv4 (left) and RRFSv1 (right) at the same 

time with their different SLP reduction techniques (see text).   SLP is red-contoured (every 2 hPa) with 

the 1-h total precipitation field as a graphic (in inches). 1000-500 hPa thickness is also shown (dm, 

blue).  Shown here are 6-h forecasts valid 18 UTC 6 November 2025 from the 12 UTC model 

forecasts. 

 

D.  Soil-land-lake-related variables 

i. Soil temperature and moisture 

Soil moisture at different levels is cycled continuously in the RAP/HRRR model/assimilation 

cycles without resetting from external models. There are 9 levels in the RUC land-surface model 

(RUC LSM -Smirnova et al 2016, Smirnova and Benjamin 2025 - SB25) used in the RAP, 

HRRR, and RRFSv1 models, with 4 levels in the top 10 cm and extending down to 3 m deep.  

Soil moisture fraction is calculated as the soil volumetric moisture divided by the full volume of 

the soil. The surface soil moisture (fraction) is for the top 0.5 cm of soil only, so this field 

responds quickly to recent precipitation or surface drying.  In general, as soil depth increases, 

soil conditions change more slowly. The maximum soil moisture fraction is dependent on the 

soil-type-dependent value of porosity. Fig. 13 shows soil moisture fraction at the surface, and at 

30-cm depth, while Fig. 14 shows soil moisture availability (soil moisture at top level divided by 

maximum soil moisture at field capacity, Smirnova et al 1997). Soil temperature (Fig. 13) is 

defined at the same 9 levels in the RUC LSM.   

https://doi.org/10.1175/MWR-D-15-0198.1
https://doi.org/10.25923/55x8-cy36
https://doi.org/10.1175/MWR-D-15-0198.1
https://doi.org/10.25923/55x8-cy36
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Fig. 13.  Soil moisture fraction. 12-h HRRRv4 forecasts from the 12z/12 Mar 2020 run valid at 

00z/13 Mar for two of the 9 levels of moisture in the land-surface model, the surface (0.5 cm) on 

the left and for a depth of 30 cm on the 

right. This variable is the fraction of soil 

moisture at a given level over the total 

possible moisture with field capacity 

(Smirnova et al 1997). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Soil moisture availability.  Units - 

percent, calculated in the top 0.5 cm layer.   

This is again a 12-h forecast valid 00z/13 Mar 

2020 from the 12z/12 Mar HRRRv4.  
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Fig. 15.  Soil temperature (K) for surface (top 0.5 cm -left) and 30-cm level (right). From 12-h 

HRRRv4 forecasts from the 12z/12 Mar 2020 run valid at 00z/13 Mar. 

 

 

 

 

ii. Skin temperature 

 

Skin temperature (Fig. 16) is the temperature of 

the top level (1-cm depth) in the 9-level soil model 

(Smirnova et al 2016) over land, and the sea-

surface (or lake-surface) temperature over water.  

Skin temperature will also be from the top snow 

level (up to 7.5 cm deep, Smirnova et al. 2000) in 

the 2-layer snow model for grid points with snow 

cover. Skin temperature will vary in time for soil 

and snow-covered grid points, and starting with 

HRRRv4 and continuing with RRFSv1, also for 

small lakes (Benjamin et al. 2022b, Trahan et al 

2025).  

 

 

Fig. 16. Skin temperature.  From 12-h 

forecast valid 00z/13 Mar 2020 from the 

12z/12 Mar HRRRv4. Graphic in oF. 
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E. Precipitation variables 

i. Precipitation 

All precipitation values in the RAP, HRRR and RRFSv1, for all accumulation intervals including 

the model run total, are liquid equivalents, regardless of whether the precipitation is rain, snow, 

or other frozen precipitation. (In one exception, snow accumulation products are available both 

for liquid equivalent and in snow depth using temperature-dependent variable density instead of 

a simple 10:1 snow/water ratio). The run-total accumulated precipitation is the precipitation 

accumulated since the model initialization time. The 1-h precipitation is the precipitation 

accumulated over the previous hour. The 15-minute precipitation (available in HRRRv4 and 

RRFSv1) is the precipitation accumulated over the previous 15 minutes. Note that the RAP and 

HRRR do not output 3-h or 6-h precipitation, although these can be calculated by differencing 

the appropriate output files.  The instantaneous precipitation rate is the total precipitation 

(resolved and sub-grid-scale) from the last physics time step and is written in mm/s.   

In contrast to HRRR, RRFSv1 uses a convective parameterization at its similar 3-km resolution 

as shown in Table 2.   At 13-km resolution, the RAP also uses a convective parameterization 

scheme to represent sub-grid precipitation using the Grell-Freitas (2014) scheme     .       

The various 

precipitation 

fields available 

on the 

HRRR/RAP 

websites are 

shown below 

(Figs. 17-25). 

 

 

 

 

Fig. 17.  Basic precipitation fields: 1-h precipitation and MSLP (left) and run-total 

precipitation (right), in inches for HRRRv4 forecast initialized 12 UTC 12 Mar 2020. 
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ii. Snow/sleet accumulation 

Two products are available for snow accumulation using fixed or variable density.  

This fixed-density snow accumulation is calculated using a 10:1 snow-water ratio (SLR) 

from the snow mixing ratio (using Thompson cloud microphysics) reaching the surface over the 

accumulation period.   SLR varies in reality, but the ratio used for this product was set at this 

constant value so that water content is unambiguous. The snow accumulation (through the 

snow liquid water equivalent) is explicitly forecast through the mixed-phase cloud microphysics 

in the model and specifically from snow mixing ratio fall out to the surface.  Therefore, both fixed 

(10:1 SLR) and variable snow accumulation are based on only snow fallout at the surface and 

do not include graupel fallout. 

  

The Thompson (Thompson et al. 2008, Thompson and Eidhammer 2014) microphysics used in 

RAP and HRRR calculates explicitly the fall of snow mixing ratio (qs), graupel mixing ratio (qg), 

and rain mixing ratio (qr) reaching the surface, using separate fall speeds for each. This allows 

separate diagnosis of 

accumulation for each variable. 

 

The variable density snow 

accumulation uses a crude near-

surface-temperature-based 

estimate of snow-water ratio from 

less than 5:1 up to 17:1 (Fig. 18).    

 

Note:  A separate snow density 

for falling snow diagnostic has 

been added for RRFSv1 as 

described in an upcoming section.   

 

 

 

 

 

 

 

Fig. 18.  Snow-liquid ratio (SLR, density) of run-accumulated snow as a function of 

near-surface air temperature each time step for variable snow accumulation product.   

The ‘HRRRX’ curve is used for both HRRRv4 and RRFSv1. ‘HRRR-NCEP’ is from previous 

versions of HRRR (v1-v3) and RAP (v1-v4). 
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iii. Graupel accumulation 

 

Graupel accumulation (Fig. 19) is defined as the 

model-internal accumulation at the surface, timestep-

by-timestep, of graupel (qg) as defined by Thompson 

(2008) and Thompson and Eidhammer (2014). This 

graupel can occur from either winter-storm sleet or 

convective- storm ice/ graupel formation.  

Fig. 19.  Graupel accumulation.  48-h total 

accumulation of graupel ending at 12z/14 March from 

the 12z/12 March 2020 HRRRv4. 

 

 

 

 

 

 

 

 

 

 

iv. Freezing rain accumulation 

 

The freezing rain accumulation (Fig. 20) is calculated by 

accumulating a special class of rainfall, timestep-by- 

timestep, but only including values when the 

temperature at the lowest level < 0 oC at that specific 

timestep.    This variable is available for the 3-km 

models, HRRRv4 and RRFSv1, both using the explicit 

Thompson microphysics. 

Fig. 20.  Freezing rain accumulation. For 48-h total 

forecast accumulation ending at 12z/14 March from the 

12z/12 March 2020 HRR 
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v. Frozen precipitation percentage 

 

This field (Fig. 21) uses the explicit precipitation (rain, 

snow or graupel) produced from the multi-species 

Thompson cloud microphysics scheme. It is calculated 

as (snow-accumulated + graupel-accumulated) divided 

by (snow-accumulated + graupel-accumulated + rain-

accumulated).  No rime factor (as used on the Ferrier 

microphysics scheme - Aligo et al. 2018) is used in this 

explicit calculation. 

 

Fig. 21.  Frozen precipitation percentage. For 17-h 

forecast valid for the previous 1-h period valid at 05z/13 

March from the 12z/12 Mar 2020 HRRRv4. 

 

vi. Snow depth 

 

This field is the current estimated snow depth on the 

surface using the latest snow density, which is also an 

evolving variable (snow-water equivalent cycles internally within the RAP, HRRR or RRFS 1-h 

cycle). For the evolution of the snow height in the RUC land-surface model (RUC LSM), a 10:1 

ratio is applied only for fresh snow falling on the ground surface when 2-m air temperature is 

below -15 oC. When 2-m temperature is warmer than -15 oC the density of falling snow is 

computed using an exponential dependency on 2-m temperature, and usually the ratio will be 

less than 10:1, but not less than 2.5:1. The density of snowpack is computed as the weighted 

average of old and fresh snow and changes with time due to compaction, temperature changes, 

melted water held within the snowpack, and addition of more fresh snow. (See Koren et al. 

(1999) for snow density formulations.)  More information on snow depth evolution is described in 

Smirnova et al. (2016), Corrie et al. (2024, section 2.c) and SB25. This snow density is applied 

in the blowing snow diagnostic described later under the ‘visibility’ diagnostic. 

 

HRRR/RAP and RRFS use the RUC LSM with a 2-level snow model and cold-season effects 

(freezing and thawing of moisture in soil, etc. - see Smirnova et al. 2016). These models all 

cycle snow depth/cover, respectively, as well as snow temperature in the top 5 cm and below 

that top snow layer. Fig. 22 shows snow-related variables from the HRRRv4.   
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Fig. 22. Snow-related variables (all in inches) from HRRRv4 forecasts from the 12z/12 March run. 

Accumulated snow applying a 10:1 ratio (upper left) and using variable density (upper right), for 

the 48-h period ending 12z/14 March 2020. Also, 48-h forecast valid at 12z/14 March of snow depth 

(lower left) and snow-water equivalent (lower right). 

vii.  Snow-water equivalent.  As described above, snow-water equivalent (SWE) is for all 

accumulated snow and graupel on the surface.  SWE increases from accumulation and 

decreases from melting.   SWE does not change from snow compression (which is represented 

in the RUC LSM).  SWE processes in HRRR, RAP, and RRFSv1 are described in both 

Smirnova et al (2016) and SB25.  The RRFSv1 application of the RUC LSM is described in 

more detail in SB25. 
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viii. Precipitation type(s) – potential area 

Yes/no categorical indicators for rain, snow, ice pellets, and freezing rain potential are 

calculated from the 3-d hydrometeor mixing ratios reaching the ground in the explicit Thompson 

cloud microphysics parameterization in the HRRR, RAP and RRFS models.  Details on the 

diagnosis of this explicit precipitation-type diagnosis were important and detailed enough to 

warrant a full journal article: Benjamin et al. (2016b). A decision tree for the diagnosis is 

provided in Fig. 23, and an example forecast is shown in Fig. 24.   

 

The p-type (precipitation type) values from this explicit diagnosis are not mutually exclusive; 

more than one value can be yes (1) at a grid point, just as      different hydrometeor species      

can coexist at a given 3-d grid volume in the Thompson cloud scheme.   This non-exclusive 

diagnosis reflects what can occur in the real world also, e.g., mixed rain/snow, or mixed freezing 

rain and sleet.  The accumulation thresholds used are very low, well below measurable 

thresholds, so the diagnostic will indicate potential areas of hazardous p-type conditions to 

increase the probability of detection and reduce unforecasted hazardous events.  It should be 

combined with QPF and freezing rain accumulation and sleet accumulation values. 

 

 

 

Fig. 23 - Explicit precipitation- 

type diagnostic method.  

From Benjamin et al. 2016b, 

Fig. 1.  Flowchart describing the 

diagnostic logic for 

determination of precipitation 

type. (Bold letters in tan boxes: 

(FZ, IP, R, S) = (freezing rain, 

ice pellets, rain, snow). Ptot, 

ptot-rs and psnow are the total, 

rain plus snow (no graupel), and 

snow only (water-equivalent) 

precipitation, respectively, 1h 

indicating over the last hour.  

Prate is the instantaneous fall 

rate for different hydrometeor 

types (r – rain, s – snow, g – 

graupel). The maximum rain 

mixing ratio in the column is 

represented by Max(qr). 

 

  

 

https://doi.org/10.1175/WAF-D-15-0136.1
https://doi.org/10.1175/WAF-D-15-0136.1
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ix. Maximum graupel/ hail size 

 

The current HRRR output contains two diagnostics of maximum graupel/hail size (diameter) at 

the surface. The first diagnostic, which operates within the Thompson microphysics 

parameterization, calculates the maximum hail size directly from the calculated graupel size 

particle distribution. Beginning with HRRRv4, an additional hail diagnostic based on a one-

dimensional hail growth model, referred to as HAILCAST (Adams-Selin and Ziegler 2016), is 

included in the HRRR output. RRFSv1.0 provides HAILCAST output only for maximum hail size, 

but future versions will likely include additional quantities. Output from the two hail-size 

diagnostics is shown in Fig. 25. 

 

Hail-related diagnostic fields from versions of HRRR model: 

HRRRv4 Hourly max vertically integrated graupel 
Thompson MP-based hourly and vertical column maximum hail size diagnostic 
Thompson MP-based hourly maximum surface hail size diagnostic 
HAILCAST hourly maximum surface hail size diagnostic 

Fig. 24.  Precipitation type.  

From 17-h HRRRX forecast valid 

at 05z/13 March combined with 1-

h total precipitation (image) for 

the 1-h period ending at 05z/13 

Mar. 
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Fig. 25. Max hail/graupel diameter at the surface. 10-h HRRRv4 10-h forecasts from the 12z/12 

March 2020 run valid at 22z/12 Mar at the surface for the 1-h ending at 05z (top), and maximum hail 

diameter using HAILCAST for the 1-h ending at 05z (bottom), both in inches, for a severe-weather 

event with accompanying supercell and other storms. 

 

     x.  Precipitation rate.   

 

This variable (units: m/s) is instantaneous in that it is calculated over the last time step (20 

s for the HRRR, 60 s for the RAP, 36 s for RRFSv1).  It is calculated solely from the explicit 

precipitation in the HRRR (i.e., via Thompson cloud microphysics) but in the RAP and 

RRFSv1, from combined explicit precipitation and parameterized precipitation.         

xi. Snow density of falling snow 

RRFSv1 provides an instantaneous snow-density field (GRIB2 variable: "SDEN") of falling 

snow that is obtained from the linear-regression algorithm of Pletcher et al. (2026), 

sometimes referred to as the University of Utah SLR (snow–liquid ratio) algorithm.  This 

algorithm is intended to diagnose the instantaneous density of snow if snow were to be falling 

at a given location and time.  Note that other snow-related fields in RRFSv1 (e.g., snow 

accumulation) are not currently formulated using the results of this algorithm.  This falling-

snow density is a different diagnostic from the temperature-dependent SLR technique shown 

above and in Fig. 18.  
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F. Severe-weather index variables 

i. CAPE/ CIN/ EL (equilibrium level) 

Convective available potential energy (CAPE) is defined in RAP, HRRR and RRFS using the 

standard Unipost (UPP) definition of CAPE including use of virtual temperature. CAPE values 

are provided for surface-based CAPE (based on lowest model level), most unstable CAPE 

(MUCAPE) in lowest 300 hPa, and mixed-layer (lowest ~50 hPa mixed) CAPE (MLCAPE), 

lowest 90 hPa and others (see GRIB inventory). The calculation of CAPE considers only 

positively buoyant contributions of the ascending air parcel, starting at the parcel's Lifted 

Condensation Level (LCL) and ending at the Equilibrium Level (EL). 

 

Convective inhibition (CIN) indicates the accumulated negative buoyancy contributions for the 

ascending parcel, starting at the parcel's LCL and ending at its EL. By this definition, CIN is 

mainly accumulated between the LCL and the Level of Free Convection (LFC) and represents 

the negative buoyant energy that must be overcome in order for the parcel to become positively 

buoyant once it reaches its LCL. This is also the standard Unipost definition. 

 

Equilibrium level (EL) indicates the highest positively buoyant level. This is also the standard 

Unipost definition. The EL provided is associated with the most unstable CAPE parcel 

(MUCAPE; using the parcel with highest θe in the lowest 300 hPa). 

 

Examples of the different CAPE and CIN variables are shown below (Figs. 26-27) for the 

southeast map domain from the HRRR website for a case of severe convection using forecasts 

from the 12z/12 March 2020 HRRRv4 run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26. CAPE/CIN variables. 10-h HRRRv4 10-h forecasts from the 12z/12 March 2020 run valid at 

22z/12 Mar for (left) a combination of surface-based CAPE (image) with surface-based CIN (faint 

diagonal hatching for values less than -50 J/kg) and (right) for CIN only. 

https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO.txt
https://rapidrefresh.noaa.gov/hrrr/HRRRv4_GRIB2_WRFTWO.txt
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Fig. 27. Other CAPE and CIN variables. Top left figure shows an image for the mixed-layer CAPE with 

the mixed layer from the lowest 90 hPa, along with hatching where CIN (defined negative) has values 

below -50 J/kg. Top-right figure has an image for the most-unstable CAPE at any point in the 

atmosphere below the 300-hPa level with hatching if that point is above the lowest 50 hPa of the 

atmosphere (this distinguishes elevated instability from lower level or surface-based CAPE). Both figures 

show 10-h forecasts from the 12z/12 Mar HRRRv4. 

 

ii. Lifted index (LI) 

The lifted index (Fig. 28) indicates the difference between environmental temperature and 

ascending parcel temperature at 500 hPa (in K). The standard lifted index uses the surface  

parcel, and Best Lifted Index parcel uses the buoyant parcel from the native level with maximum 

buoyancy within 300 hPa of surface (also the standard Unipost definition). 
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Fig. 28. LCL (left) and LI 

(right). 10-h HRRRv4 

forecasts from the 12z/ 12 

March 2020 run valid at 

22z/12 Mar of Lifting 

Condensation Level (LCL, 

in m AGL, on left). LCL is 

calculated as the height at 

which the surface parcel 

becomes saturated with 

respect to liquid water when 

lifted dry adiabatically.  Best 

Lifted Index (LI, oC, using 

the best parcel in the lowest 

300 hPa (caption incorrect) 

of the atmosphere) on right. 

iii. Environmental helicity/storm motion 

Environmental (not storm-relative) helicity and storm motion are defined following the 

diagnostics of Bunkers et al. (2000). Examples of vertical wind shear are shown in Fig. 29, and 

storm-relative helicity and storm motion in Fig. 30.   

 

What can be considered high values of environmental helicity? 

The units of helicity are m2 s-2. The value of 150 m2 s-2 is generally considered to be the low 

threshold for tornado formation. Helicity is closely related to low-level shear, so in high-shear 

situations, such as behind strong cold fronts or ahead of warm fronts, the values will be very 

large, possibly as high as 1500 m2 s-2. High negative values are also possible in reverse shear 

situations. 

 

 

Fig. 29. 0-6 km (AGL) shear (left) and surface to 1 km AGL shear (right), both in knots.  

Shown are 1-h forecasts from HRRRv4 valid at 22z/12 March 2020. 
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Fig. 30. Storm-relative helicity (SRH, in m2/s2) fields displayed with calculated storm 

motion.  0-1 km AGL SRH (left) and 0-3 km AGL SRH (right). Shown are 1-h forecasts 

from HRRRv4 valid at 22z/12 March 2020. 

 

 

 

G. Cloud-related variables 

 

In sections i-iii below, these descriptions apply to RRFSv1 only.   We recommend looking at the 

previous tech memo (Benjamin et al. 2021a) for descriptions of the same cloud-related variables 

for HRRRv4 and RAPv5. 

i. Cloud cover (i.e., cloud amount or cloud fraction) fields (various) 

The MYNN PBL scheme (Olson et al. 2019a,b, 2026) provides a cloud fraction (0–1) in each 

grid volume and at each time step of the model integration.  Using this instantaneous cloud-

fraction field, numerous cloud-cover (percentage) fields are obtained, as described in Table 3.   
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GRIB2 variable* Layer / Level Description 

TCDC:{hybrid 
level} 

Single model layer Cloud cover for each grid volume (3D field; 
no horizontal or temporal averaging) 

TCDC:entire 
atmosphere 

Column maximum Maximum cloud cover for the applicable 
layer or column, as applicable (2D field; 
with horizontal averaging): 
(1) First, for each grid volume, a horizontal 
neighborhood average of cloud cover is 
obtained over a 16.1 km (10 mile) radius.  
This averaging serves as a horizontal 
smoothing operator. 
(2) Then, for the applicable layer/column, 
the maximum value of (1) is output. 

LCDC:low cloud 
layer 

Surface–642 hPa 
(~0–12 kft MSL)  

MCDC:middle 
cloud layer 

642–350 hPa 
(~12–27 kft MSL) 

HCDC:high cloud 
layer 

350–150 hPa 
(~27–45 kft MSL) 

TCDC:entire 
atmosphere 

(hourly average) 

Column maximum Hourly average of column-maximum cloud 
cover (2D field; no horizontal averaging) 

TCDC:boundary 
layer 

Surface–(PBL top+1 km) Maximum cloud cover between the surface 
and the PBL top + 1 km (2D field; no 
horizontal averaging) 

*Note that the GRIB2 field "TCDC" is formally described as "total cloud cover".  Here, the sense of "total" 

is taken to include both explicit (resolved) and subgrid-scale (unresolved) clouds.  Indeed, all of the fields 

in this table include both explicit and subgrid-scale clouds. 

Table 3. Summary of cloud-cover fields available in RRFSv1. 

ii. Cloud-base height and cloud-top height 

In RRFSv1, the cloud-base height is the lowest level at which the cloud fraction is ≥ 0.02.  In an 

analogous manner, the cloud-top height is the highest level at which the cloud fraction is ≥ 0.02.  

iii. Ceiling height (two related fields) 

The Federal Meteorological Handbook No. 1 (NOAA, 2019) defines ceiling as "the lowest layer 

aloft reported as broken or overcast; or the vertical visibility into an indefinite ceiling".  In 

RRFSv1, two related ceiling fields are provided: 

● The standard (main) ceiling field (GRIB2 variable: "HGT:cloud ceiling") 

 

Overview: The formulation of this diagnostic in UPP has been in longstanding use in the 

RUC, RAP/HRRR, and now RRFSv1 models.  Because of its well-established history of 

operational use, it is sometimes referred to as the "legacy" ceiling diagnostic. 
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Description: Each model column is searched from the surface upward.  A ceiling is 

diagnosed for any of three conditions: 

 

1. When explicit (resolved) cloud hydrometeor masses exceed a threshold:  

Namely, the ceiling is assigned the lowest height for which the sum of resolved 

cloud-water (qc) and cloud-ice (qi) mixing ratios is ≥ 10-7 kg kg-1.  Note that a linear 

interpolation between model layers is performed, so this condition gives a continuous 

value.  

 

● Shallow-fog exclusion: When the threshold in (1) is exceeded at the lowest model 

layer—implying the existence of fog—an additional check is performed to assess 

the depth of the fog.  Namely, if this threshold is also exceeded at level 2 (~32 m 

AGL) and/or level 3 (~80 m AGL), but not above that level, then the fog is 

characterized as too shallow to yield an aviation-affecting ceiling and is ignored. 

 

2. When falling snow yields restrictive vertical visibility:  When falling snow is 

present at the lowest model layer, a vertical visibility is calculated from the snow mixing 

ratio.  This vertical-visibility calculation for snow uses the same formulation as ordinary 

(horizontal) visibility.  If the vertical visibility is less than the ceiling height obtained by (1), 

then the vertical visibility is assigned as the ceiling. 

 

3. When subgrid (unresolved) clouds are inferred:  If the relative humidity at the PBL 

top is >95%, then the height of the PBL top is assigned as the ceiling. This condition is 

taken as an indication of unresolved (subgrid-scale) cloudiness.  While crude, it 

nevertheless provides a key detection capability for this diagnostic. 

  

● An alternative (supplemental) ceiling field (GRIB2 variable: "CEIL:cloud ceiling") 

 

Overview:  A secondary ceiling field is also available in RRFSv1, intended for aviation-

oriented users who wish to consider ceiling guidance derived from an alternative 

diagnostic algorithm.  GSL developers have found that this alternative ceiling field 

typically exhibits a reduced high-frequency bias (i.e., less excessive coverage) than the 

standard (or legacy) ceiling field, and this reduced bias may yield improved overall skill 

during the cold season.  Interested users are generally advised to use this field in 

conjunction with the standard ceiling field, rather than discontinuing the use of the 

standard ceiling field. 

 

Description: Each model column is searched from the surface upward.  A ceiling is 

diagnosed for either of two conditions: 

 

1.      When cloud fraction exceeds a threshold: Namely, the ceiling is assigned the 

lowest height for which the cloud fraction is ≥ 0.41.  A linear interpolation between 

model layers is performed, so this condition gives a continuous value.  Note that the 

use of cloud fraction obviates the need to separately consider explicit (resolved) and 
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subgrid (unresolved) clouds.  The threshold value of 0.41 was chosen based on 

experimental results. 

      

● Shallow-fog exclusion: If a cloud fraction > 0 is present at the lowest model 

layer—implying the existence of fog—then the overlying model layers 2–4 are 

assessed to determine the depth of the fog.  Namely, if cloud fraction is < 0.8 

within any of these overlying layers, then the fog is ignored at and below these 

layers; i.e., the fog is too shallow to yield an aviation-affecting ceiling at these 

heights. 

2. When falling snow yields restrictive vertical visibility:  This condition is applied in 

an identical manner to that of the main ceiling diagnostic. 

iv. Surface visibility 

The surface visibility algorithm developed 

for and used in HRRR/RAP and RRFSv1 

is an extension of the Stoelinga and 

Warner (1999) algorithm designed to take 

advantage of explicit hydrometeor types 

used in those models (Fig. 31 - RRFSv1).   

It is usable for any model with explicit 

hydrometeor predictions.   

  

This visibility diagnostic is based on 

conditions at the lowest model level 

(about 8 m AGL) for these variables: 

- Non-zero hydrometeors, with 

attenuation coefficients for each 

hydrometeor type (qc, qi, qr, qs, qg).  

Maximum value of each 

hydrometeor type is calculated from 

the lowest 3 layers (from ~6-8m AGL up to ~60-75m AGL).   

- day/night dependency for hydrometeor attenuation coefficients from Roy Rasmussen 

(NCAR, 2000) 

- additional visibility attenuation term for forecast graupel hydrometeor mixing ratio 

- additional relative humidity dependency (developed by GSL NWP team) using max RH 

at the lowest 2 levels.  This RH term approximates the effects of haze on visibility.   It 

allows a maximum 90-km (~56 mile) visibility with near-surface RH <15% and a 

minimum ~12-km (~7 mile) visibility with near-surface RH >95%.   

- Smoke extinction (from 3-d smoke concentration at lowest level) is included beginning 

with RAPv5 and HRRRv4 (starting December 2020); dust extinction is included with 

RRFSv1 (see below). 

- Blowing snow (see section G.v below, Corrie et al. 2024) 

 

Fig. 31. Surface visibility (in miles). 12-h forecast from the 

00z 6 November 2025 RRFSv1, valid at 12z 6 Nov 2025. 
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Generally, if hydrometeors are present at either of the two lowest levels (~6-8m and ~25-30m 

AGL), the diagnosed visibility will be less than 5-6 miles and usually, less than 3 miles.  

Otherwise (for estimated visibility > 7 miles), near-surface RH largely governs the visibility 

estimate. The inclusion of smoke effect is accomplished by assigning the overall surface 

visibility as the minimum of visibility from hydrometeors and smoke combined (each with their 

own extinction coefficients) vs. the visibility from RH. 

v.  Additional effect from blowing snow on surface visibility 

An additional term (extinction coefficient) for blowing snow was added to the visibility diagnostic   

in the RRFSv1 model.  This diagnostic is based on the time-varying snow density of snow on 

the ground and surface wind speed as described in Corrie et al. (2024).   Snow density of snow 

on the ground evolves in time in the RUC land-surface model (RUC LSM) used in HRRR/RAP 

and in RRFSv1, which allows an estimate of the “driftability” of the snow cover. 

vi.  Additional effect of smoke and dust on surface visibility 

Other additional extinction coefficients are added for smoke and dust.   These extinction 

coefficients are calculated using both smoke aerosol concentration and dust aerosol 

concentration at the lowest model level. 

vii.  Shortwave and longwave radiative fluxes at surface and top-of-atmosphere 

Instantaneous shortwave (SW) and longwave (LW) radiative flux fields are output from the 

hourly updated NOAA models.   Downward SW radiative fluxes include total downward SW 

fluxes (units – W m-2) and, separately, its direct and diffuse components.   These fields are 

calculated using complex 1-d radiative transfer model parameterizations within the forecast 

models and are affected by all 3-d prognostic fields including cloud hydrometeor mixing ratios 

(cloud water, ice, rain, snow, graupel), predicted 3-d smoke concentration, and, for RRFSv1, 

predicted 3-d dust concentration. Note that the cloud hydrometeors used in the calculation of 

the radiation have both the resolved and subgrid-scale cloud components. Upward SW and LW 

fluxes at the surface (dependent on surface albedo, predicted soil and snow conditions, 

predicted surface emissivity, etc.) and top-of-atmosphere SW and LW fluxes are also output  

viii. Simulated satellite imagery 

HRRR and RRFSv1 have output synthetic simulated satellite imagery in the thermal infrared 

band (10.7 micron wavelength; Fig. 32a) and the water vapor band (6.5 micron wavelength; Fig. 

32b), which is intended for comparison with GOES satellite observations.  RRFSv1 has output 

for GOES bands 7-16. The simulated brightness temperatures are computed using the model 

output and the Community Radiative Transfer Model (CRTM; Han et al. 2006). The brightness 

temperature of clear grid points is calculated based on surface skin temperature, 10-m wind 

speed, pressure, and vertical profiles of temperature and water vapor. The brightness 

temperature of cloudy grid points uses vertical profiles of mixing ratio and number concentration 

for each hydrometeor species included in the Thompson-Eidhammer aerosol-aware 

microphysics scheme (Thompson and Eidhammer 2014).  (Unfortunately, the simulated satellite 
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images do not include effects from subgrid-scale clouds (Olson et al 2019a, 2026).) Additional 

details about the formulation of the simulated brightness temperatures are provided by Griffin et 

al. (2017) and Otkin et al. (2007).  

 

Fig. 32. Simulated IR and WV imagery. 12-h forecasts from the 12z/12 March 2020 

HRRRv4 valid 00z/13 March for the simulated images from the GEOS-W perspective for IR 

channel 4 (left) and WV channel 3 (right). 

 

 

H. Explicit-scale convective-storm variables 

 

i. Radar reflectivity 

 

Radar reflectivity products are produced in a different manner for hourly/15-min instantaneous 

and hourly maximum fields. For instantaneous fields with hourly or 15-min output, reflectivity is 

calculated using a more sophisticated method within the Thompson scheme for each model 3-

d grid point based on rain, snow, graupel/hail, and temperature at that grid point. The 

temperature is used to determine if melting snow is present (i.e., if there should be a “bright 

band” in the computed reflectivity).  The convective parameterizations used in RRFSv1 (see 

Table 2) and RAP also contribute to the diagnosed reflectivity. 
 

These reflectivity diagnostics are produced: 

●  Composite reflectivity (maximum reflectivity in model column) 

● 1-km AGL reflectivity (interpolated in model to 1-km AGL level) 

● -10oC reflectivity. 

Hourly maximum fields using timestep-by-timestep calculations are produced for 1-km AGL and 

-10oC reflectivity diagnostics. For these hourly maximum values, a simpler reflectivity 

diagnostic, not internal to the Thompson scheme, is applied. Examples are shown in Fig. 33. 
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Fig. 33. Reflectivity fields. (Units - dBZ). All are 10-h 

forecasts from the 12z/12 March 2020 HRRRv4 valid 22z/12 

March. Top row displays two types of reflectivity at the 1-km 

AGL level, (upper left) instantaneous reflectivity at the 

forecast time (here 22z) and (upper right) maximum 

reflectivity over the previous hour (1-h period ending at 22z). 

Middle row: composite reflectivity. In the bottom row: two 

types of reflectivity interpolated to the -10oC level are 

displayed. 
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ii. Lightning diagnostic (for convection-allowing model output with explicit microphysics) 

 

Hourly maximum lightning threat is a measure of total lightning (cloud-to-ground and in-cloud).  

It is calculated for each model column based on the vertically integrated ice (cloud ice, snow, 

graupel) and the vertical graupel flux (vertical motion and graupel) (McCaul et al., 2009). The 

units are flashes per square km every 5 minutes; Fig. 34.  It attempts to capture both lower 

frequency, broad anvil lightning and higher frequency lightning near updrafts. The McCaul 

scheme consists of two algorithms ("Threat 1" and "Threat 2") that are combined to produce a 

blended lightning, Threat 3. 

 

Threat 1: Graupel Flux at -15oC. This is the product of qg and w, where qg is the predicted 

mixing ratio of graupel, and w is the vertical velocity, both interpolated to the level where the 

temperature is -15oC. This can be looked at as an estimate of charge separation produced in an 

updraft. This is done for each horizontal grid point, to produce a horizontal map of Threat 1. 

 

Threat 2: Vertical Ice Integral.  This is the vertical integral of all ice hydrometeors at each 

horizontal grid point. The ice hydrometeors (from the Thompson scheme) are qi (cloud 

ice), qs (snow), and qg (graupel). This threat diagnostic is an attempt to capture the 

lightning threat from thunderstorm anvils, where vertical motions are weak, but a 

considerable concentration of charged ice particles may be present aloft. 

 

Threat 3 = a * Threat 1 + b * Threat 2, where a and b are empirically determined weights. 

 
Fig. 34. Lightning Threat using McCaul diagnostic. 10-h forecast valid at 22z/12 Mar 2020 

from the 12z/12 Mar HRRRv4, compared to composite reflectivity from the same forecast on 

right. 
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iii. Updraft helicity 

 

Hourly maximum and minimum updraft helicity (UH) are calculated as hourly maxima or minima 

valid at the end of each hour. UH is derived from upward vertical velocity and vertical vorticity 

for a given vertical layer; HRRR maximum UH (cyclonic) and minimum UH (anticyclonic) are 

diagnosed between 0 and 2 km, 0 and 3 km, 2 and 5 km, and 1 and 6 km AGL. In cases where 

the lower boundary is at 0 km AGL, the 10-m wind field is used as the wind at the lower 

boundary. UH indicates updraft rotation in forecasted convection, which can imply a threat for 

tornadoes but does not explicitly predict tornadoes.  UH maxima identify cyclonic rotation, while 

minima identify anticyclonic rotation. Since UH depends partially on updraft strength, it can be 

small in low CAPE, highly sheared environments. It does not discriminate between elevated and 

surface-based convection. 

 
 

 

 

Fig. 35. Updraft helicity (UH - Instantaneous values, in m2s-2).  Shown here from the HRRR 

website for two levels, displayed with 0-1 km vertical shear vector (wind barb). Top image is for 

the 1-6 km UH and the bottom image for the 2-5 km UH.  Both are 10-h forecasts valid at 22z/12 

Mar from the 12z/12 Mar HRRRv4 for a severe weather event. 
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Fig. 36. Maximum/minimum 0-1 km updraft helicity (m2s-2) over previous 1-h period.  Also 
shown - 0-1 km vertical shear vector (wind barb). Maximum UH values are calculated for previous 
hour to show UH tracks for cyclonically rotating model storms (top - ”right-movers”) and minimum UH 
over the previous hour to show UH tracks for anticyclonically rotating model storms (lower - ”left-
movers”).   For this case, UH is shown for the 0-1 km layer.  For 10-h forecasts valid at 22z/12 Mar for 
the 0-1 km shear and for the 1-h period ending at 22z for the UH, from the 12z/12 Mar HRRRv4. 

 

  

  

  

 
Fig. 37. UH maximum/minimum values.  Forecasters have found that it can be easier to view UH 
values as tracks over a period of time, which can be useful since supercells can last for many hours, 
both in the model and the real world.  UH fields are provided for these layers: 1-6 km, 2-5 km, 0-3 km 
and 0-2 km AGL. The forecasts shown above are all 24-h UH tracks ending at 12z/13 March for these 
various levels for both max and min UH values, all from the 12z/12 March 2020 HRRRv4. There were 
several supercells on this day producing severe weather including a few tornadoes.  
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iv. Vertical velocity 

 

Hourly maximum updraft velocity / downdraft velocities are the maximum upward/downward 

vertical velocities (m s-1) between the surface and 100 hPa (Fig. 38). They do not indicate where 

in the vertical column the maximum occurred or when during the hour.  Hourly mean vertical 

velocity is the average vertical velocity (m s-1) between sigma level 0.8 and 0.5 (approximately 

800 hPa and 470 hPa) and averaged over the 1-h period. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 38. 12-h forecasts from the 12z/12 March 2020 

HRRRv4 valid at 00z/13 March for max updraft 

(upper left) and downdraft (upper right) velocity 

over the previous hour and for mean vertical 

velocity (left) as described earlier, all in m s-1. 
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v. Vertical vorticity 

 

Vertical vorticity is another diagnostic measuring the strength of low-level rotation within or 

outside of the convection and does not account for updraft strength. Hourly maximum vertical 

vorticity is diagnosed in the HRRR for the 0-1 km layer and the 0-2 km layer (Fig. 39).   

 

 

 
 

 

Fig. 39. Vertical vorticity (s-1).  For the 0-2 km (AGL) layer (top) and 0-1 km layer (bottom), 12h 

forecast valid at 00z/13 March from the 12z/12 March 2020 HRRRv4. 

vi. Vertically integrated liquid (VIL) 

 

VIL is calculated from reflectivity to produce an estimate of vertically integrated liquid in kg m-2.  

This output VIL is not the same as the vertical cloud liquid water path. For an average vertical 

profile within a convective storm, 12 kg m-2 VIL is very roughly equivalent to a 50 dBZ reflectivity 

although VIL is, by definition, a vertically integrated quantity. Two different VIL diagnostics are 

described below. 
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VIL (hydrometeor-based diagnostic, provided in HRRR/RAP but not in RRFSv1): Uses a vertical 

summation of three microphysics hydrometeors including rain, snow, and graupel mixing ratios 

(no cloud water or cloud ice) in each model column. This diagnostic approach assumes a linear 

relationship between contributions from different hydrometeors even though the actual 

relationship is nonlinear.   

 

VIL (radar-based diagnostic): Involves computing model radar reflectivity (Z) at all levels in each 

model column from the precipitation hydrometeors (using both mixing ratios and number 

concentrations) and then using the familiar mapping of reflectivity factor to VIL (vertical integral 

of 3.44 * Z 4/7, see Greene and Clark 1972) to produce a field called "Radar VIL." This method is 

designed to better approximate "observed" VIL from WSR-88D (and other) radars. The radar 

VIL diagnostic tends to produce lower values when compared to the hydrometeor VIL field, 

especially around the periphery of more intense moist convective updrafts. 

 

 
Fig. 40.  Vertically integrated liquid.  Hydrometeor-based diagnostic (left) and radar-based 

diagnostic (right).  Units - kg m-2. Both are 12-h forecasts valid at 00z/13 March from the 12z/12 

March 2020 HRRRv4. 

 

 

 

 

vii. Echo-top level 

 

This field is the maximum height (in m above sea level) at which reflectivity exceeds 18 dBZ 

(Fig. 41) in a column and is calculated from a vertical profile of reflectivity.   
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Fig. 41. Echo top. 12-h forecast from the 12z/12 March 

2020 HRRRv4 valid at 00z/13 March.  Units shown in 

graphic - kft ASL. 

 

 

viii. Hourly maximum/minimum fields 

 

Maximum hourly fields contain the maximum value across every model time-step (20 seconds in 

HRRR model, 36 seconds in RRFSv1) at each grid point during that hour. Care must be taken 

to interpret these fields because one cannot tell when during the hour a feature occurred.  

Spatial structure could imply one feature moving or multiple features. Hourly maxima can be 

used to help identify temporal and spatial phase errors in the forecast, and to help infer if 

features are transient or longer-lived. Hourly maximum fields are provided for the following 

variables (all of which are described earlier in this section): 

● Radar reflectivity at 1 km AGL 

● Radar reflectivity at -10oC 

● Lightning threat 

● Updraft helicity 

● Vertical vorticity 

● 10-m wind 

● Updraft velocity 

● Downdraft velocity 

I. Other upper-air diagnostics 

i. Tropopause variables 

In the RAP and RRFSv1, tropopause pressure is diagnosed in the standard Unipost 

configuration with a surface-upward search for first occurrence of a 3-layer mean lapse rate less 

than or equal to a critical lapse rate (2 K km-1) in accordance with WMO definition of the 

tropopause.   Low tropopause regions correspond to upper-level waves and give a quasi-3D 

way to look at upper-level potential vorticity. They also correspond well to dry (warm) areas in 

water vapor satellite images, since stratospheric air is very dry.  For RAP and RRFSv1, 

tropopause-level fields are also provided for temperature, potential temperature, and u/v wind 

components.  No tropopause fields are provided for HRRR. 

https://rapidrefresh.noaa.gov/RAP_var_diagnosis.html#TP-def
https://rapidrefresh.noaa.gov//RAP_var_diagnosis.html#TP-def
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ii. Vertical velocity 

Following NCEP Unipost convention, 

vertical velocity in m/s is converted to 

omega in Pa/s using the formula 

omega = -rho*g*w, where rho is air 

density and g = 9.80665 m s-2. 

(The vertical motion is instantaneous 

(at a given model time step) and is not 

time-averaged.) 

 

 

iii. Freezing levels 

 

Two sets of freezing levels are output 

from RAP/HRRR and RRFS, one 

searching in the column from the 

bottom up, and one searching from 

the top down. Of course, these two 

sets may be equivalent under many 

situations, but they may sometimes 

identify multiple freezing levels 

(important for aviation). The bottom-

up algorithm will return the surface 

as the freezing level if any of the 

bottom 3 native levels (up to about 

80 m above the surface) are below freezing (per instructions from the NOAA Aviation Weather 

Center, which uses this product). The top-down freezing level returns the first level at which the 

temperature goes above freezing searching from the top downward. For both the top-down and 

bottom-up algorithms, the freezing level is actually interpolated between native levels to 

estimate the level at which the temperature goes above or below freezing.   

 

iv. Isobaric level vs. native level output for HRRR and RAP and RRFSv1 

Fields on the native model levels from HRRR, RAP and RRFSv1 are never horizontally 

smoothed.  By contrast, for HRRR and RAP (but not RRFSv1), isobaric fields are horizontally 

smoothed for temperature, height, RH, and u/v components of horizontal winds since these 

fields are often used for horizontal maps.  For all 3 models (RRFSv1, HRRR, RAP), for studies 

of local structure (e.g., orographic, coastal, storm, others), users are advised to use native-level 

data and not use isobaric data. 

J. Smoke-related, wildfire-related and dust diagnostics (introduced with HRRRv4/RAPv5 

and further with RRFS) 

RAPv5 / HRRRv4 in 2020 and continuing with RRFSv1 explicitly predict concentrations of 

wildfire smoke at each 3-d grid point. Data assimilation using fire radiative power data from 

Fig. 42. 700 hPa vertical velocity (-Pa s-1).  12h forecast from 

the 12z/12 March 2020 HRRRv4 valid at 00z/13 March. 

 

https://rapidrefresh.noaa.gov//RAP_var_diagnosis.html#TP-def
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satellites and model effect on radiation from smoke are described by Ahmadov et al (2017) and 

more recently by Li et al (2025). Smoke-related diagnostic variables, described below, are 

output for RAPv5, HRRRv4 and RRFSv1.   Explicitly predicted dust mixing ratio is also output in 

RRFSv1.  The GRIB2 labeling conventions for smoke and dust related products are provided in 

Table 4.   

Table 4.  Atmospheric composition diagnostics from RAPv5/HRRRv4/RRFSv1.  Note that the 

RAPv5/HRRRv4 MASSDEN fields do not have any associated aerosol type or aerosol size, 

since smoke < 2.5 x 10-6 m is the only air quality tracer in those modeling systems. 

Variable GRIB2 
label 

GRIB2 
aerosol 
type 

GRIB2 
aerosol size 

Units In RAPv5 
and 
HRRRv4? 

In 
RRFSv1? 

Inst. near-sfc 
smoke 

MASSDEN Particulate 
organic 
matter dry 

<2.5 x 10-6 m kg m-3 Yes Yes 

Inst. near-sfc 
fine dust 

MASSDEN Dust dry <2.5 x 10-6 m kg m-3 No Yes 

Inst. near-sfc 
coarse dust 

MASSDEN Dust dry >=2.5 x 10-6 m,  
<1 x 10-5 m 

kg m-3 No Yes 

1-h avg 
near-sfc 
PM2.5 

MASSDEN Total 
aerosol 

<2.5 x 10-6 m kg m-3 No Yes 

1-h avg 
near-sfc 
PM10 

MASSDEN Total 
aerosol 

<1 x 10-5 m kg m-3 No Yes 

Inst. vert. 
integrated 
smoke 

COLMD Particulate 
organic 
matter dry 

<2.5 x 10-6 m kg m-2 Yes Yes 

Inst. vert. 
integrated 
fine dust 

COLMD Dust dry <2.5 x 10-6 m kg m-2 No Yes 

Inst. vert. 
integrated 
coarse dust 

COLMD Dust dry >=2.5 x 10-6 m,  
<1 x 10-5 m 

kg m-2 No Yes 

AOD AOTK - - - Yes Yes 

1-h avg 
HWP 

WFIREPOT* - - - No Yes 

*Some older GRIB2 interrogation tools may not be able to correctly decode the HWP variable 

and may display the HWP as “var discipline=2 master_table=2 parmcat=4 parm=26“. 
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i. Near-surface smoke 

A near-surface smoke diagnostic is provided from HRRR, RAP, and RRFSv1 models. This 

variable is simply the explicit smoke concentration on the lowest model level (~8 m AGL at sea 

level). The smoke concentration is in the GRIB2 files in units of kg m-3, converted to μg m-3 

(micrograms per cubic meter) for website graphics. 

 

Fig. 43. Near-surface smoke. (left) From HRRRv4 (with 10-m wind) for a case of widespread 

western U.S. fires on 4 September 2017. GOES-16 GeoColor imagery (right) shows the observed 

extent of smoke in the atmosphere, which is likely more comparable to the HRRR forecast product 

shown below. 

 

 

ii. Vertically integrated smoke   

 

In addition to the near-surface smoke, a vertically 

integrated smoke is diagnosed, in which smoke 

concentrations are summed across all vertical levels. 

GRIB2 units are in kg m-2 (converted to mg m-2 for 

website graphics).      

 

 Fig. 44. Vertically integrated smoke.  From an early 

experimental version of HRRRv4 for the same case of 

widespread western U.S. fires on 4 September 2017.   
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iii. Aerosol optical depth 

 

A 2-D aerosol optical depth (AOD) for smoke is calculated by vertically integrating the smoke 

extinction plus that from climatological aerosols.  For RRFSv1, AOD also includes dust across 

all vertical levels. It should be noted that the AOD (see ‘AOTK’ variable in the GRIB2 files from 

RAP/HRRR-Smoke or RRFS) does not include the contribution of other aerosols (e.g., urban 

pollution). AOD is a unitless quantity.  

 

Iv.  Hourly Wildfire Potential 

A new wildfire potential diagnostic based on near-surface wind gust potential, soil moisture, 

snow cover, and near-surface water-vapor saturation deficit (James et al. 2025) is now available 

from RRFSv1 (in GRIB2 output) and also available on the website for HRRRv4.   This variable 

is available hourly and is called the Hourly Wildfire Potential (HWP).   The HWP is intended to 

reflect hourly changes in fire activity on any ongoing fires based on changes in the weather.  

Examples of HWP are presented in Fig. 45 for a case from November 2025.   

 

 
Fig. 45.   Hourly Wildfire Potential (HWP).  From 1-h forecasts valid at 0100 UTC 5 November 

2025 for HRRRv4 (left) and RRFSv1 (right). 
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v. Near-surface dust and vertically integrated dust. 

 

Fig. 46.  Near-surface fine-grain dust 

concentration (ug/m3).   For 1-h 

RRFSv1 forecast valid at 19 UTC 5 

November 2025. 

 

As described above, fine-grain and 

coarse-grain dust concentrations were 

added as prognostic variables in 

RRFSv1 as described in Li et al. (2025).  

A dust emission function is used in 

RRFSv1, highly dependent on near-

surface wind speed.    An example of 

near-surface (lowest model level, about 

10 m AGL) dust concentration is shown 

in Fig. 46 with some dust evidence over Nevada and Utah.   Vertically integrated dust is another 

output product from RRFSv1, corresponding to the previously described vertically integrated 

smoke product.  Note that, for RRFS, additional diagnostics are provided corresponding to 

hourly-average PM2.5 (smoke + fine dust) and PM10 (smoke + fine dust + coarse dust; see 

Table 4).  These hourly-average fields allow for more direct comparison with surface regulatory 

monitors, which are generally provided as an hourly average.   
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