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Executive Summary 

Introductions of non-native and invasive species are occurring at accelerating rates 
globally, posing major threats to the maintenance of native ecosystem functioning and 
services. Despite these impacts, invasive species remain underrepresented in coral reef 
management, which is especially problematic given that ports represent main vectors of 
introduction. Therefore, marine tropical regions with high vessel traffic, like the main 
Hawaiian Islands, face elevated risks of biological introductions. 

In the main Hawaiian Islands, specifically on Oʻahu, Pearl Harbor (Puʻuloa) is an 
important maritime port due to its strategic geographic location, comprehensive 
infrastructure, and critical role as a U.S. naval base. The waters of Puʻuloa are known to 
harbor several non-native species, from mangroves to corals and fishes. Among these, 
the pulsing soft coral Unomia stolonifera was discovered in 2020 and has rapidly spread 
within the harbor, threatening native reef communities. This coral is particularly 
concerning if secondary spread occurs to other parts of Oʻahu and other islands due to 
Hawai‘i’s ecological vulnerability, geographic isolation, and high rates of endemicity. 
Therefore, enhancing early detection and rapid response (EDRR) of U. stolonifera is 
critical.  

In response to this need, we deployed an ensemble species distribution model (SDM) 
combined with a Getis-Ord (also known as Gi*) spatial hotspot analysis to map habitat 
suitability of U. stolonifera and identify potential high-risk areas. Our modeling effort 
revealed the presence of 18 predicted hotspots spread across O‘ahu, Kaua‘i, and 
Hawai‘i Island. This pattern is indicative of potential secondary dispersal, which is 
further supported by the role of ports as a significant driver of its habitat suitability.  

Out of those 18 hotposts, 12 were located on O‘ahu. To further prioritize areas for 
management, we ranked the hotspots by the extent of surveyable benthic area, ranging 
from 0 to 30 meters. While our results indicated the presence of 2 hotspots located in 
Puʻuloa (confirming the harbor’s role in the introduction and retention of U. stolonifera), 
7 more were found outside the harbor toward Barber’s Point (Kalaeloa) and Waikiki-
Diamond Head (Lēʻahi), indicating potential secondary dispersal caused by the 
prevailing East-West currents.  

Additionally, 3 hotspots were predicted in Kāne‘ohe Bay, overlapping with areas 
containing existing non-native macroalgal incursions, signaling potential additive 
ecological pressures. By identifying specific hotspots and refining them with their 
associated surveyable area, our SDM-based framework can help Hawaiʻi’s Division of 
Aquatic Resources to apply EDRR efforts more effectively and guide them toward 
geographically-focused citizen science and local partnerships while continuing 
cooperation with the Department of Defense in regard to eradication efforts. 
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Introduction 

Invasive background 

Biological invasions are an increasingly major global threat to the functioning of 
ecosystems today (Levine, 2008; Roy et al., 2024). While most non-native species have 
neutral or benign impacts, smaller subsets can cause significant ecological and 
economic harm (Levine, 2008). They are responsible for 60% of documented 
extinctions in all ecosystems and incurring global economic costs exceeding US$ 423 
billion in 2019 (Roy et al., 2024). These harmful species are termed “invasive” and often 
characterized as fast-growing generalist organisms capable of rapid establishment and 
spread (Levine, 2008; Walther et al., 2009).  

Through mechanisms such as predation, competition, and habitat modification, invasive 
species can displace native taxa and alter community structure, often leading to 
ecological homogenization and a subsequent reduction in ecosystem functions and 
resilience (Levine, 2008; Molnar et al., 2008;  Roy et al., 2024). Despite these impacts, 
invasive species remain underrepresented in management priorities compared to other 
marine stressors such as pollution and overfishing (Alidoost et al., 2021). 

Case study background 

 

Figure 1. (A) Image of Unomia stolonifera in the field, and (C) a close-up on its stalks with the 
presence of multiple polyps: a unique characteristic of this species (Benayahu et al. 2021). (B & 
D) Images of Sarcothelia edmonsoni, the only native soft coral species in Hawaiʻi, which differs 
in terms of colors and stalk length. Photos by DLNR (A), Reef Builders (C), and Keoki Stender 
(B, D). 
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Unomia stolonifera (Gohar, 1938) is a soft bodied octocoral from the family Xeniidae 
(Octocorallia, Alcyonacea), formerly known Cespitularia stolonifera (Benayahu et al., 
2021); it is commonly misidentified as Xenia spp. It is distinguished by polyps with eight 
pulsating tentacles (pink to orange-brown) and additional dispersed polyps along the 
stalks, unlike other xeniids whose polyps cluster at the stalk tips. (Benayahu et al., 
2021; Bolick & Lee 2023). This species inhabits tropical waters at depths varying from 0 
meters (m) to 60 m—the deepest depth recorded so far (Ruiz-Allais et al., 2021).  

Native to the Western Indo-Pacific, specifically Sulawesi (Indonesia), U. stolonifera was 
introduced to northern Venezuela in 2007 via aquarium release, and spread to other 
Caribbean nations such as Cuba in 2023 (Bolick & Lee 2023, Ruiz-Allais et al., 2021). In 
the Pacific, this pulsing coral was introduced to Hawaiʻi in 2020 potentially through the 
same mechanism. Hawaiʻi only has 1 native soft coral species, Sarcothelia edmondsoni, 
which can be easily distinguished from U. stolonifera by differences in stalk morphology 
and colony color (Figure 1B & 1D), thus reducing the risk of misidentification. 

The wide geographic establishment of U. stolonifera to new environments is driven by 
several factors. This species can reproduce both sexually (via propagules) and 
asexually (via fragmentations), allowing it to rapidly establish new individuals from a 
single parent. This leads to fast population growth and expansion (Ruiz-Allais et al., 
2014). U. stolonifera is also capable of settling over diverse substrates, including rock 
bottoms, sand, and seagrass beds, potentially making it a ubiquitous organism in 
shallow coastal habitats (Ruiz-Allais et al., 2014).  

Likewise, this species can attach to boats and other floating objects (e.g., fishing 
derelicts) or even highjack organisms such as cone snails (Hayes, 2023), further 
expanding its spread. Lastly, although corallivores (e.g., butterflyfish and aeolid 
nudibranchs) have been posited to prey upon U. stolonifera and potentially assist in 
controlling its population, there is no evidence of these natural predators in invaded 
regions such as Venezuela (Ruiz-Allais et al., 2021). These biological traits contribute to 
U. stolonifera’s successful establishment in tropical marine coastal ecosystems in both 
the Caribbean and central Pacific, posing threats to native benthic communities and 
ecosystem biodiversity. 

Spread in Hawaiʻi 

The main Hawaiian Islands host major maritime hubs for the state of Hawai‘i, U.S. and 
the broader Pacific region, supporting high volumes of commercial and military shipping 
traffic (De La Cruz, 2010). Ports and shorelines have long been recognized as 
introduction points for non-native species (Seebens et al., 2023). Consequently, these 
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islands face elevated risks of marine biological invasions through ballast water 
discharge and hull fouling (Godwin, 2003). 

In Oʻahu, Pearl Harbor (Pu‘uola) is a main military port where several non-native and 
invasive species have been recorded (Bolick and Lee, 2023). Among these species is 
U. stolonifera, which was first detected in 2020 with a coverage of 20 acres. It is now 
estimated to cover 80–100 acres (Jacobs, 2025). This 4 to 5-fold expansion in 5 years 
has prompted containment efforts by the Department of Defense. However, the 
potential for spread beyond the harbor remains a concern, posing significant ecological 
risks by rapidly outcompeting native species, altering community composition, and 
decreasing biodiversity. 

Leveraging species distribution models for early detection 

The confirmed presence of U. stolonifera in Puʻuloa highlights the need for enhanced 
monitoring efforts given the species’ recent introduction and potential for rapid spread 
outside its entry point. Effective and timely invasive species management in the main 
Hawaiian Islands is particularly critical due to the island’s geographical isolation, high 
levels of endemic biodiversity, and ecological vulnerability (Manes et al., 2021; Monaco 
et al., 2012). 

This study applies a species distribution modeling (SDM) approach to predict habitat 
suitability of U. stolonifera in Hawaiʻi. SDMs are valuable tools for supporting early 
detection and rapid response (EDRR) frameworks (Reaser et al., 2020; Srivastava et 
al., 2019) by identifying areas most susceptible to establishment, thereby enhancing 
spatially targeted conservation and management strategies aimed at limiting further 
spread (Barbet-Massin, et al., 2018). 
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 Methods 

Study area 

We specifically focus on shallow coastal waters (extending ~5 km offshore) of the main 
Hawaiian Islands, which is part of the most geographically isolated archipelago, 
harboring a very high degree of endemicity and high habitat modification (Friedlander et 
al., 2005; Monaco et al., 2012). 

Species occurrence data 

We gathered 31 global georeferenced presence records of U. stolonifera from 2 open-
source databases: Global Biodiversity Information Facility (GBIF) (gbif.org, 2024) and 
United States Geological Survey (USGS) (Reaver, 2025). A total of 29 records were 
from GBIF spanning from 1994 to 2024, while 2 were from USGS recorded in 2023 
(Table 1). Local records from Hawai‘i were limited to Puʻuloa in O‘ahu and, therefore, 
were insufficient to calibrate a SDM with reliable predictive performance. Due to this, 
additional global records were utilized to better define the range of environmental 
conditions where U. stolonifera has been observed, providing a stronger empirical 
foundation for modelling. After combining the 2 datasets, we removed duplicate records 
and records that lacked coordinates (latitude and longitude).  

Table 1. Total number of georeferenced occurrence records of Unomia stolonifera with the 
associated country and year observed. Obtained from 2 open-access databases: GBIF (Global 
Biodiversity Information Facility) and USGS (United States Geological Survey). 

Countries with 
Records 

Years Occurrence 
Records 

Data Source 

Venezuela 2013, 2017, 2021, 
2022, 2023 

14 GBIF 

Philippines 2022 8 GBIF 

Indonesia 1994, 2023, 2024 5 GBIF 

United States 
(Pearl Harbor, 
O‘ahu, Hawai‘i) 

2023 2 USGS 

Cuba 2023 1 GBIF 

Republic of China 
(Taiwan) 

N/A 1 GBIF 
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Environmental data layers 

To model the habitat suitability of U. stolonifera, we compiled environmental variables 
known to influence the physiology, dispersal, and establishment of sessile marine 
invertebrates. Eighty-five pre-screened parameters were used from Bio-ORACLE, a 
publicly available database hosting marine environmental dataset and geospatial layers 
at ~0.05 degrees (~5.6 km at the equator) (Tyberghein et al., 2012).  

From these parameters, we narrowed down their numbers and grouped them across 4 
thematic categories: (1) ocean conditions (temperature, salinity, seawater speed, mixed 
layer depth, and seawater direction), (2) nutrient concentrations (nitrate, chlorophyll, 
phosphate, and pH), (3) atmospheric and light variables (mixed layer depth), and (4) 
topographic features (slope, aspect, topographic position index, and bathymetry). To 
account for potential anthropogenic vectors of non-native species spread, we 
incorporated gridded layers of distance from ports from Global Fishing Watch (Welch et 
al., 2024). All variables represent long term baseline conditions spanning from 2000–
2020.  

Lastly, we performed a variance inflation factor (VIF) to test for multicollinearity amongst 
the selected predictor variables using a variance inflation factor (VIF ≤ 3). This avoids 
high correlation amongst variables and the inflation of permutation importance. Thus, 
we could accurately assess the individual influence of each predictor variable on the 
predicted distribution of U. Stolonifera. 

Table 2. Environmental and anthropogenic predictor variables used for species distribution 
modeling and associated ecological relevance. 

Variable 
(units) 

Summary 
Statistic/Descriptor (VIF) 

Ecological Relevance 

Bathymetry  
(m) 
 

Minimum (1.53) Sessile organisms like corals inhabit shallower 
depths due to light availability, water temperature, 
pressure, and the energy of waves and currents 
(Goodman et al., 2020; Pittman et al., 2009). 

Seawater 
Speed  
(m.s-1) 

Maximum (2.66) 
Minimum (2.4) 
Range (1.7) 

High speeds of water currents can impact nutrient 
and larval dispersal or be a source of physical 
stress and make anchoring onto substrates more 
difficult (Burrage, 1993; Graus et al., 1977). 

Salinity 
(ppt) 

Range (2.1) 
Maximum (2.05) 

Important for water density and osmotic 
regulation. Large ranges or high levels of salinity 
can cause stress in corals (Coles & Jokiel, 1992; 
Moberg et al., 1997). 

https://www.bio-oracle.org/
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Variable 
(units) 

Summary 
Statistic/Descriptor (VIF) 

Ecological Relevance 

pH Average (2.16) 
 

Corals are highly sensitive to pH levels. Acidic 
conditions can cause stress in organisms 
(Brownlee, 2009; Chan et al., 2016; Marubini & 
Atkinson, 1999). 

Slope  
(°) 

(1.48) High slope reduces sediment stress and creates 
microhabitats sheltered for corals from strong 
currents (Faure, 1977; Sheppard, 1982). 

Aspect  
(°)  

(1.07) Affects feeding efficiency, exposure to 
disturbance, and light availability (Faure, 1977; 
Sheppard, 1982). 

Nitrate 
(ppm) 

Range (2.24) Variability can negatively influence food supply 
through plankton abundance and potentially 
affects symbiotic algal-coral dynamics, causing 
nutrient stress (Fernandes de Barros Marangoni 
et al., 2020). 

Phosphate  
(mmol. m-3) 

Range (1.96) Large ranges can indicate unstable conditions, 
impacting tissue growth or lead to eutrophic 
conditions (Rosset et al., 2017).  

Ocean 
Temperature  
(°C) 

Maximum (1.55) 
Range (1.83) 

Maximum temperatures that exceed a coral’s 
tolerance threshold can lead to bleaching or 
disease. A wide range in temperature can cause 
stress to tropical organisms such as corals that 
thrive in stable conditions (Chavanich et al., 2009; 
Zeevi-Ben-Yosef & Benayahu, 2008). 

Sea Water 
Direction  
(°) 

Maximum (2.08) 
Minimum (1.45) 
Average (2.56) 

Impacts direction of nutrient flow and larval 
dispersal (Maida et al., 1995; Sebens & Johnson, 
1991). 

Mixed Layer 
Depth  
(m) 

Minimum (1.33) 
Range (1.68) 

Important for nutrient availability and the 
distribution of light. A wide range can indicate a 
variable environment with changing access to 
resources while a narrow range indicates low 
access (Jaffrés, 2013; Mackey et al., 1987). 

Chlorophyll  
(mg m-3) 

Minimum (1.98) Minimum chlorophyll values can represent a 
seasonal low point in primary productivity, 
indicating the stability of a food web (Fabricius et 
al., 1998) 

Topographic 
Position 
Index 

(1.25) Indicator of marine ecosystem complexity, as 
rocky or coral seabed structures form habitats, 
and can create shelter from hazards such as 

https://www.zotero.org/google-docs/?GzEMGx
https://www.zotero.org/google-docs/?GzEMGx
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Variable 
(units) 

Summary 
Statistic/Descriptor (VIF) 

Ecological Relevance 

strong currents and erosion (Sous et al., 2024). 

Distance 
From Port  
(km) 

(1.17) A close distance to a port can indicate higher 
levels of vessel traffic and the potential for the 
introduction of non-native species (Bax et al., 
2003). 

Ensemble species distribution model parameterization 

We implemented the maximum entropy (MaxEnt) algorithm to model the habitat 
suitability of U. stolonifera, as it is well suited for presence-only data and robust to 
limited occurrence records. MaxEnt estimates a probability distribution of maximum 
entropy constrained by environmental conditions at known presence locations (Phillips 
et al., 2006). Its robustness to incomplete or spatially biased sampling enhances its 
applicability for species with sparse or patchy records, such as U. stolonifera (31 
records in total) (Elith & Leathwick, 2009; Phillips et al., 2006). 

To account for the lack of true absence data, we generated 10,000 background 
(pseudo-absence) points, following Phillips & Dudík (2008). Background sampling was 
restricted to tropical marine regions (23.5°N to 23.5°S) to align with the species’ known 
biogeographic range. To further limit ecological bias, we confined background selection 
to nearshore environments using a buffer defined by multiplying the minimum depth 
associated with presence records (within a 5 km BIO-ORACLE grid cell) by 1.5, thereby 
excluding deep or pelagic zones unlikely to represent viable habitat. 

To optimize model performance and minimize overfitting, we used the ENMevaluate 
package in R (Muscarella et al., 2014) to systematically test 30 combinations of feature 
classes and regularization multipliers (RM = 1–5). Feature classes define the types of 
mathematical relationships used to model the relationship between species occurrence 
and environmental predictors. We tested the following feature classes: L (linear), Q 
(quadratic), H (hinge), P (product), T (threshold) and their combinations (e.g., LQ, LQH, 
LQHP, LQHPT).  

Regularization multipliers serve as a penalty to prevent model overfitting. A higher RM 
value results in a simpler, more generalized model. By evaluating different 
combinations, we identified an optimal balance between model complexity and 
generalizability.  
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Each model was evaluated using jackknife cross-validation, with k equal to the number 
of occurrence localities (Shcheglovitova & Anderson, 2013). This method is 
recommended for sparse datasets as it improves prediction reliability (Shcheglovitova & 
Anderson, 2013). By testing different combinations of both, we were able to find the 
optimal balance between model complexity and generalizability.  

We implemented an ensemble modeling approach to increase predictive robustness 
and account for variability across model parameterizations. We averaged predictions 
from the top 3 performing models, reducing single-model bias (Harris et al., 2024; 
Jones-Farrand et al., 2011). Predictive performance was assessed using the Area 
Under the Receiver Operating Characteristic Curve (AUC) (Phillips et al., 2006), which 
measures the ability to distinguish presence from background points. Model complexity 
and parsimony were evaluated using the Akaike Information Criterion corrected for 
small sample sizes (AICc). Model accuracy was further assessed using the 10% training 
omission rate (OR10), which measures the proportion of known presence points 
incorrectly predicted as absent using a 10% omission threshold. Predictor variable 
importance was evaluated using MaxEnt’s permutation importance analysis. This 
approach quantifies each predictor’s contribution by permuting its values among 
presence and background points, then calculating the decrease in model performance 
(AUC). Higher values indicate stronger influence on the model. 

A habitat suitability map was generated by averaging predictions across ensemble 
models. To quantify uncertainty, we calculated the standard deviation of predicted 
values across models at each grid cell where a higher standard deviation indicates a 
greater disagreement among models, thus, higher uncertainty (Araújo & New, 2007; 
Woodman et al., 2019).  

For final analysis, we generated a weighted habitat suitability map by penalizing areas 
of high uncertainty. For each grid cell, the final suitability score (S′) was calculated as 
the mean predicted suitability (S) minus the standard deviation (σ), such that: S′=S−σ. 
This conservative approach emphasizes areas with high predicted suitability and low 
inter-model variability, improving confidence in spatial prioritization. 

Predicted habitat suitability spatial hotspots 

To identify statistically significant clusters of high habitat suitability, we applied the 
Getis-Ord Gi* statistics (Ord & Getis, 1995). This spatial analysis used a k-nearest 
neighbor approach with k=8, selected to detect localized clustering patterns within the 
spatial resolution of the prediction grid. Grid cells with absolute z-scores ≥2.58 
(corresponding to p≤0.01) were classified as statistically significant hotspots (Jana & 
Sar, 2016). These cells represent areas where high suitability values are not randomly 
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distributed, but instead form consistent spatial clusters. This threshold ensures a high 
level of statistical confidence in identifying hotspots of predicted U. stolonifera habitat 
suitability around Hawaiʻi. 

Prioritizing monitoring of hotspots on Oʻahu 

We developed a prioritization of hotspots specifically in Oʻahu because U. stolonifera 
has been confirmed on Oʻahu. We developed a model guided prioritization by ranking 
habitat suitability hotspots based on a quantifiable metric: total surveyable area. We 
employed high-resolution bathymetry at a 9 m spatial resolution (Amante et al., 2023), 
clipped to depths between 0 and 30 m around Oʻahu to reflect standard survey depths 
conducted by local survey programs (e.g., NOAA Fisheries’ Pacific Islands Fisheries 
Science Center) (Heenan et al., 2017).  

To calculate the total surveyable area within each 5 km × 5 km hotspot grid cell 
(identified via Gi* analysis), we overlaid these hotspots onto the bathymetry grid and 
calculated the total number of 9 m x 9 m (81 m2) cells within the target depth range 
inside each hotspot. The total surveyable area per hotspot was then derived by 
summing the area of all qualifying cells. Hotspots with the greatest amount of total 
surveyable area were ranked highest for management prioritization. 
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Results 

Ensemble maximum entropy output 

 

Figure 2. Log10 transformed mean permutation importance (%) of the predictor variables 
contributing to the habitat suitability model for Unomia stolonifera. Values represent averages 
across the top three models in the ensemble; error bars indicate standard error. 

The permutation importance analysis identified distance from port (km), bathymetry 
minimum (m), and salinity range (ppt) as the top 3 predictors contributing most to 
habitat suitability of U. stolonifera in Hawaiʻi (Figure 2). Other influential variables 
included seawater speed maximum (m∙s⁻¹), ocean temperature range (°C), ocean 
temperature maximum (°C), and chlorophyll minimum (mg m⁻³). Lower-ranked variables 
such as seawater direction minimum (°), seawater direction average (°), and 
topographic position index showed minimal influence on model predictions (Figure 2). 
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Figure 3. Mean predicted habitat suitability for Unomia stolonifera across the main Hawaiian 
Islands based on the ensemble Maximum entropy model output. Lighter colors in the suitability 
map indicate areas of higher predicted suitability. Labels indicate major ports. 

 

Figure 4. Standard deviation of the mean predicted habitat suitability predictions for Unomia 
stolonifera across the main Hawaiian Islands based on the ensemble maximum entropy model 
output. Lighter colors represent greater standard deviation or uncertainty across the ensemble. 
Labels indicate major ports. 
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Our ensemble MaxEnt models achieved high discriminatory performance with mean 
AUC of 0.974 ± 0.002, indicating strong discrimination between presence locations and 
background points. The mean habitat suitability showed distinct spatial gradients across 
the main Hawaiian Islands (Figure 3). High predicted suitability areas (0.60–1.00) were 
concentrated along the south, east, and north shores of Kauaʻi, the south and east 
shores of Oʻahu, all around Molokaʻi and Lānaʻi, along with patches spread in Maui and 
the Island of Hawaiʻi. Major ports in Hawaiʻi—such as Kauaʻi’s Hanalei Bay and 
Nawiliwili, Oʻahu’s Honolulu Harbor, Kalaeloa (Barber’s Point), Puʻuloa, and Kāneʻohe 
Bay, Molokaʻi’s Hale O Lono Harbor and Kaunakakai, Maui’s Kahului and Lahaina, and 
Hawaiʻi Island’s Hilo, Kawaihae, and Kailua-Kona—are in or near areas of high habitat 
suitability.  

The standard deviation map highlights model uncertainty across grid cells. Areas with 
high standard deviation (0.3–0.4) are seen scattered across the islands, with 
concentrations off the East coasts of Molokaʻi and Maui. 

 

Figure 5. Mean predicted habitat suitability for Unomia stolonifera in Oʻahu based on the 
ensemble maximum entropy model output. Lighter colors in the habitat suitability map indicate 
higher predicted suitability. Labels indicate major ports. 
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Figure 6. Standard deviation of the mean predicted habitat suitability predictions for Unomia 
stolonifera in Oʻahu based on the ensemble maximum entropy model output. Lighter colors 
represent greater standard deviation or uncertainty across the ensemble. Labels indicate major 
ports. 

The mean habitat suitability map of Oʻahu showed spatial gradients across the 
coastline. High predicted suitability areas (0.60–1.00) were concentrated in the south 
shore and east shore. Oʻahu’s major ports (Honolulu Harbor, Kalaeloa (Barber’s Point), 
Puʻuloa, and Kāneʻohe Bay) are all located in high suitability grid cells. Low suitability 
areas (0.00–0.40) were scattered throughout the coasts, seen in grid cells further off 
shore and most concentrated across the entirety of North Shore. High standard 
deviation areas (0.30–0.40) were seen scattered across the island but most 
concentrated in the North Shore. Low standard error (0.00–0.20) were concentrated 
across the south and east shores. Low standard deviation scores were overlapped with 
areas of high habitat suitability and major ports. 
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Figure 7. Partial dependence plots from the ensemble maximum entropy model showing the 
effect of 6 top-ranked predictor variables on the predicted habitat suitability of Unomia 
stolonifera. Curves represent mean response, with predicted suitability on the y-axis and each 
variable’s range on the x-axis. Grey zones around the curves represent the standard deviation 
between models. Variables include distance from port, bathymetry, salinity, current speed, and 
ocean temperature. 

Partial dependence plots illustrate how the 6 top-ranked environmental predictor 
variables (Figure 7) influence the modeled habitat suitability of U. stolonifera (Figure 3). 
Suitability declined steeply with increasing distance from port up to about 100 km, then 
remained low, indicating a higher likelihood of establishment near human activities and 
lower likelihood in remote areas. U. stolonifera showed a strong preference for shallow 
habitats, increasing sharply with minimum bathymetry from approximately -100 m 
towards 0 m.  

Environmental variability also played a key role as suitability decreased with increasing 
salinity range, indicating sensitivity to environments with greater physicochemical 
fluctuation. Similarly, suitability declined with both increasing seawater speed maximum 
and greater ocean temperature range, suggesting limited tolerance for high 
hydrodynamic energy and a preference for thermally stable conditions. Suitability 
remained high across lower ocean temperatures but began to decline notably above 
approximately 28°C, suggesting a potential thermal maximum tolerance. 
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Predicted habitat suitability spatial hotspots and surveyable area 

 

Figure 8. Spatial hotspots of predicted Unomia stolonifera habitat suitability on Oʻahu, shown at 
a 5 km × 5 km grid resolution. Twelve hotspots were identified using the Getis-Ord Gi* statistics 
(k = 8 nearest neighbors) and are grouped into 3 regions: Puʻuloa (PH1, PH2), south shore 
(SS1–SS7), and Kāneʻohe Bay (KB1–KB3). Bathymetry is represented by a yellow-to-purple 
gradient, indicating depths from 0 to 30 m. Grid cells are colored by total surveyable benthic 
area (0–30 m depth), with lighter blue indicating a greater amount of area suitable for diving-
based monitoring. 

Eighteen spatial hotspots of high predicted habitat suitability for U. stolonifera were 
identified in the main Hawaiian Islands, with 3 in Kauaʻi, 12 in Oʻahu, and 3 in Hawaiʻi 
Island. These were identified as having statistically significant high predicted habitat 
suitability from the Getis-Ord GI* statistics with a z-score threshold of ≥2.58 (Figure 6 & 
Table 2).  

Due to confirmed occurrence records in Oʻahu, further hotspot analysis and ranking was 
conducted on the island’s 12 hotspots. Hotspots were ranked by the total surveyable 
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benthic area, prioritizing regions most accessible for diving-based monitoring. These 
hotspots were concentrated along the South and East Shores of the island. Seven of 
the 12 hotspots were found in the south shore (SS1, SS2, SS3, SS4, SS5, SS6, and 
SS7), 2 were found in Puʻuloa (PH1 and PH2), and a cluster of 3 hotspots were located 
along the east shore, concentrated in Kāneʻohe Bay (KB1, KB2, and KB3). 
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 Discussion 

With non-native species being introduced at accelerating global rates (Seebens et al., 
2023), understanding their biogeography is critical for conserving biodiversity, especially 
in vulnerable systems such as remote oceanic islands (Manes et al., 2021; Monaco et 
al., 2012). This is particularly critical for Hawaiʻi, which harbors a high degree of 
endemicity yet faces heightened anthropogenic disturbance, making it susceptible to 
biological introductions (Monaco et al., 2012).  

Native species displacement by introduced species can occur rapidly (Fitzpatrick et al., 
2010), often outpacing management responses. Moreover, resource and time 
constraints (Thompson et al., 2025; Hauser & McCarthy, 2009) along with 
environmental connectivity further complicates monitoring and control, especially in 
marine ecosystems where survey logistics are challenging (Clements et al., 2021; 
Giakoumi et al., 2019). In these contexts, SDMs can guide prioritization of early 
detection and rapid response (EDRR) (Mandrak & Cudmore, 2015; Sepulveda et al., 
2023), reducing the likelihood of costly eradication campaigns (Cariton & Geller, 1993; 
Reaser et al., 2020). 

While capable of providing useful habitat suitability maps of non-native species, SDMs 
are subject to data-driven limitations such as limited data-availability, sampling bias, and 
false taxonomic identification (Benavides Rios et al., 2024; Lomba et al., 2010; Syfert et 
al., 2013). These limitations can be challenging for species with few occurrences such 
as U. stolonifera (Brenier et al., 2015; Lomba et al., 2010). 

Other challenges that often limit habitat suitability predictions relate to fundamental 
difficulties in measuring and parameterizing biotic complexities in species dispersal and 
settling capabilities, species interactions (e.g., predation, competition, mutualism, and 
commensalism), and phenotypic plasticity or local adaptation Benito Garzón et al., 
2019; Camarota et al., 2016; Gaya & Chandler, 2024; Godsoe & Harmon, 2012). 
Despite these limitations, SDMs remain an effective and practical tool for assessing 
broad biogeographical trends and guiding invasive species management decisions. 
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Figure 9. Map of ocean currents on the South Shore of Oʻahu. Arrows indicate the direction and 
speed of the current, with both arrow length and color corresponding to current speed (m/s); 
darker blue color represents higher current speeds. Ocean current data were obtained from the 
PacIOOS South Shore ROMS model, downloaded via the PacIOOS ERDDAP data server, 
accessed 26/08/2025. Orange squares are predicted habitat suitability hotspots for Unomia 
stolonifera are overlaid on the ocean currents. 

Knowing some of the caveats, we modeled the potential distribution of U. stolonifera 
across the main Hawaiian Islands because this xeniid has overgrown native benthic 
taxa in Venezuelan reefs, reaching 30–80% cover in introduced sites (Ruiz-Allais et al., 
2021). Using an ensemble SDM approach and Getis-Ord Gi* spatial statistics, we 
identified 18 spatial hotspots of predicted habitat suitability across the main Hawaiian 
Islands.  

In Oʻahu, the hotspots were majoritarily concentrated in Puʻuloa, the south shore (just 
west-east of Puʻuloa), and Kāne‘ohe Bay. The presence of 2 hotspots within Puʻuloa 
provide further local evidence that this harbor might remain not only as an entry point for 
U. stolonifera but also a potential reservoir for propagules to disperse. Seven additional
hotspots were identified just outside the harbor along the south shoreline, potentially
indicative of further spread east and west of the south shore via prevailing currents
(Figure 7). Lastly, 3 hotspots were detected in Kāne‘ohe Bay on the East Shore, where
the invasive macroalgae Dictyosphaeria cavernosa, Eucheuma denticulatum, Gracilaria
salicornia, and Kappaphycus spp., have already established and caused negative
impacts on native benthic communities (Stimson et al., 2001; Stimson & Larned, 2021;
Winston et al., 2023).

These biological pressures suggest that the potential introduction of U. Stolonifera may 
exacerbate the decline of native communities, reducing overall biodiversity. 
Furthermore, the high prevalence of the invasive macroalgae may be an indicator of a 
nutrient-rich environment, which xeniids have been seen to be more tolerant of than 
hard corals (Mezger et al., 2022; Simancas-Giraldo et al., 2021). Lastly, physical 

https://www.pacioos.hawaii.edu/currents/model-southoahu/
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conditions such as low wave energy and currents can be ideal for the establishment of 
U. Stolonifera and other sessile species. These factors make Kāneʻohe Bay also a
highly suitable habitat for U. Stolonifera, necessitating EDRR efforts despite its spatial
separation from the confirmed occurrence points in Puʻuloa.

Potential for secondary dispersal 

Figure 10. Log10 transformed maritime traffic across the main Hawaiian Islands (based on the 
GFW AIS vessel presence dataset, public-global-presence from January 1, 2024 to January 1, 
2025: latest, accessed 26/08/2025). Purple-to-white gradient areas indicate average vessel 
presence in hours per 31 km². Lighter areas correspond to higher vessel traffic. Orange squares 
denote predicted habitat suitability hotspots for Unomia stolonifera, illustrating overlap between 
high-traffic zones with several likely invasion areas. 

As a major maritime hub in the North Pacific, Hawaiʻi receives substantial maritime 
traffic, especially in Puʻuloa and Honolulu Harbor in Oʻahu (De La Cruz, 2010). 
Secondary dispersal is a pattern observed globally, where maritime traffic and ports 
facilitate the spread of non-native species (Cariton & Geller, 1993; Carlton et al., 1995). 
With distance from port being a significant predictor variable for the habitat suitability of 
U. stolonifera in Hawai‘i (Figure 2), secondary dispersal of U. Stolonifera between the
Hawaiian Islands is a risk. In the main Hawaiian Islands, major ports and areas of high

https://globalfishingwatch.org/platform-update/global-ais-vessel-presence-dataset/#:%7E:text=AIS%20vessel%20presence%20captures%20where,Fishing%20Watch%20Map's%20activity%20layer.
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vessel presence are often located in or near suitability hotspots of U. stolonifera (Figure 
10). Although U. stolonifera has only been observed in Oʻahu to date, inter-island 
shipping routes connecting Oʻahu to ports across the islands is a possible vector for 
secondary dispersal. Given the decline in native benthic taxa in Venezuela following U. 
stolonifera’s invasion in introduced sites, EDRR efforts in suitability hotspots is of utmost 
importance to preserve native ecosystem function and resilience (Toledo-Rodriguez et 
al., 2024). 

Management recommendations 

The identification of high-ranked suitability hotspots provides a scientific basis that may 
help inform monitoring and management considerations for U. stolonifera on Oʻahu. 
These locations are characterized by both high predicted suitability and relatively large, 
accessible benthic areas, suggesting that they represent plausible locations for 
establishment while also being practical for targeted surveys. Focusing early-detection 
and rapid-response (EDRR) efforts in these areas could offer a more efficient use of 
resources than distributing effort uniformly across the island. Current physical-removal 
measures in Puʻuloa represent one approach currently being used to limit spread, and 
continued evaluation of these efforts may help improve understanding of their 
effectiveness in containing the octocoral (Jaen, 2024).

Community-based observations may offer a cost-effective and efficient response-time 
approach to increase detection efforts (Scyphers et al., 2015; Thompson et al., 2025) by 
educating communities on how to identify this soft coral and how to record its presence 
using photos and geographic coordinates. Educational materials, such as visual 
identification guides, simple reporting instructions, and general best-practice 
information, could be shared with schools, dive operations, and surf shops near high-
ranked suitability hotspots to support voluntary participation by interested community 
members (Compagnone et al., 2023; Hart & Larson, 2014). These materials can 
highlight key morphological features of U. stolonifera and outline broadly recommended 
precautions to reduce unintentional spread (e.g., equipment-cleaning practices; Miralles 
et al., 2016).

● Robust morphological Identification: Visual guides and descriptions can help
citizens accurately identify U. stolonifera. Providing simple, accessible ways for
them to report sightings to managers is equally important.

● Avoid further spread: Provide instructions to avoid secondary spread of U.
stolonifera including but not limited to:

○ Encouraging fishers, beach goers, and scuba divers to wash their
equipment (e.g., fishing nets and swim wear that was in contact with algal
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material) by soaking them in freshwater for at least 5 minutes to prevent 
accidental transport of U. stolonifera (Miralles et al., 2016). 

Market-based approaches used for other non-native species, such as NOAA 
Fisheries’ “Eat Lionfish” campaign (Huth et al., 2018), illustrate potential avenues 
through which public engagement may contribute to management objectives (Harris 
et al., 2023). Preliminary efforts to explore potential uses of U. stolonifera, including 
applications of its chemical compounds as waterproofing or dye materials, are 
ongoing (Montilla, 2024). Continued collaboration among local community groups 
(e.g., Kuleana Coral Restoration, KUA), state agencies (e.g., Hawaiʻi DAR Aquatic 
Invasive Species team), and commercial fishers may help improve monitoring 
capacity and understanding of possible spread pathways, including those associated 
with marine debris (Soares et al., 2023).

https://oceanservice.noaa.gov/news/lionfish/eatlionfish.html
https://oceanservice.noaa.gov/news/lionfish/eatlionfish.html
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Conclusion 

Introduced octocorals are an increasing concern because their resilience to ocean 
conditions makes them more likely to persist in introduced reef areas as oceanographic 
conditions continue to change in their favor (Toledo-Rodriguez et al., 2024; Nadir et al., 
2023). For example, they have been seen to acclimate to rising sea surface 
temperatures (Goulet et al., 2017; Steinberg et al., 2022; Thobor et al., 2022) and ocean 
acidification (Gabay et al., 2014; Inoue et al., 2013; Tilstra et al., 2023).  

The expansion of octocorals can drive phase shifts and reduce biodiversity by 
outcompeting calcifying organisms such as scleractinians, who build structural habitat 
and support ecological complexity (Johnson et al., 2022; Tilstra et al., 2023). Given this 
trajectory, proactive management of invasive octocorals is essential. Leveraging SDM 
provides a framework for targeted monitoring, early detection, and containment, helping 
to limit spread and mitigate long-term ecological shifts. Incorporating higher-resolution 
satellite environmental datasets will further improve predictions and provide managers 
with clearer decision pathways. 
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Appendix: Supplemental Material 

Table S1. List of coordinates for each spatial hotspot identified using the Getid-Ord GI* 
statistics. Hotspot IDs are labelled geographically as south shore (SS), Puʻuloa (PH), Kāneʻohe 
Bay (KB) with corresponding numerical values for identification. 

Hotspot ID Longitude Latitude 
KB1 -157.825 21.524 

KB2 -157.775 21.524 

KB3 -157.825 21.474 

PH1 -157.975  21.374 

PH2 -157.975 21.324 

SS1 -158.125 21.324 

SS2 -158.125 21.274 

SS3 -158.075 21.274 

SS4 -158.025 21.274 

SS5 -157.975 21.274 

SS6 -157.925 21.274 

SS7 -157.825 21.225 
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