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Abstract Terrestrial hydrology is altered by fires, particularly in snow-dominated catchments. However,
fire impacts on catchment hydrology are often neglected from land surface model (LSM) simulations. Western
U.S. wildfire activity has been increasing in recent decades and is projected to continue increasing over at least
the next three decades, and thus it is important to evaluate if neglecting fire impacts in operational land surface
models (LSMs) is a significant error source that has a noticeable signal among other sources of uncertainty. We
evaluate a widely used state-of-the-art LSM (Noah-MP) in runoff and snowpack simulations at two
representative fire-affected snow-dominated catchments in the Pacific Northwest: Andrew's Creek in
Washington and Johnson Creek in Idaho. These two catchments are selected across all western U.S. fire-
affected catchments because they are snow-dominated and experienced more than 50% burning in a single fire
event with minimal burning outside of this event, which allows analyses of distinct pre- and post-fire periods.
There are statistically significant shifts in model skills from pre-to post-fire years in simulating runoff and
snowpack. At both study catchments, simulations miss enhancements in early-spring runoff and annual runoff
efficiency during post-fire years, resulting in persistent underestimates of annual runoff anomalies throughout
the 12-year post-fire analysis periods. Enhanced post-fire snow accumulation and melt contributes to observed
but unmodeled increases of spring runoff and annual runoff efficiency at these catchments. Informing
simulations with satellite observed land cover classifications, leaf area index, and green fraction do not
consistently improve the model ability to simulate hydrologic responses to fire disturbances.

Plain Language Summary Western U.S. fire activity has been increasing in recent decades and is
expected to continue to increase in coming decades. Fires remove vegetation and alter soils which in turn alters
terrestrial hydrology. Fire effects on hydrology are particularly significant over snowy catchments that serve as
natural water towers for major western U.S. rivers. Sophisticated models often neglect or underrepresent fire
effects on land surface properties, and thus are susceptible to larger errors after fires. This study compares runoff
and snow simulations from a widely used land surface model (LSM) with observations to quantify fire-induced
changes in model accuracy over two snow dominated catchments in the Pacific Northwest. Simulations
persistently underestimate enhanced spring runoff and annual runoff anomalies in post-fire years. These
underestimates are consistent with observed enhancements in post-fire snow accumulation and melt, which the
model mostly failed to capture. The finding that post-fire model errors are consistent with previously published
fire impacts on hydrology supports that fire is an important error source in LSM simulations that should be
accounted for.

1. Introduction

Seasonal snowpack serves as a natural water tower in the western United States (WUS) where winter precipitation
is stored as snow and released as liquid in spring and summer when water demands are greatest (Viviroli
et al., 2007). Water managers rely on accurate simulations of winter snowpack accumulation and spring-summer
snow melt from land surface models (LSMs) to forecast and manage water resources in the snow-reliant WUS,
which receives most of its streamflow from snowmelt (Kapnick et al., 2018; D. Li et al., 2017). However, LSMs
often neglect fire-induced changes to vegetation, snow and soil properties in weather and hydrological appli-
cations despite analyses that show fire disturbances significantly alter land surface properties and the terrestrial
water budget, particularly in snow-dominated catchments (Hampton & Basu, 2022; Harpold et al., 2014; Koshkin

ABOLAFIA-ROSENZWEIG ET AL.

1 of 21


https://orcid.org/0000-0002-6169-6430
https://orcid.org/0000-0002-7367-2815
https://orcid.org/0000-0003-2573-3828
https://orcid.org/0000-0001-6321-1276
https://orcid.org/0000-0001-8250-4218
https://orcid.org/0000-0001-5445-2473
https://orcid.org/0000-0001-8668-4850
mailto:abolafia@ucar.edu
https://doi.org/10.1029/2023JD039780
https://doi.org/10.1029/2023JD039780
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JD039780&domain=pdf&date_stamp=2024-04-25

M\I Journal of Geophysical Research: Atmospheres 10.1029/20231D039780

et al., 2022; Smoot & Gleason, 2021; Williams et al., 2022). This underrepresentation of fire effects in land
surface and hydrologic models is a growing threat to the accuracy of water supply forecasts in the WUS where
burned area has increased by 255 km?/year from 1984 to 2020 in snowy regions of WUS (Abolafia-Rosenzweig,
He, & Chen, 2022) and projections suggest climate will be twice as conducive for wildfire in the WUS from 2021
to 2050 compared to 1991-2020 (Abatzoglou et al., 2021; Williams et al., 2022). These projections indicate that
fire effects on water supply are expected to continue growing over the next few decades such that streamflow will
be noticeably altered at regional scales in the WUS (Williams et al., 2022). An important step to addressing this
source of uncertainty in weather and hydrologic predictions is to quantify fire-induced errors from operationally-
used LSM simulations over snow-dominated catchments.

Cumulative effects of fire on land surface hydrology are often associated with significantly enhanced streamflow
(Williams et al,, 2022) and reduced evapotranspiration (ET) (Ma et al., 2020; Maina and Siirila-
Woodburm, 2020). However, fire impacts on hydrology are heterogenous at the scale of individual catchments
because fire-induced changes to hydrologic processes depend on complex interactions among many factors
including: burn area and severity, catchment size, human management (e.g., of reservoirs and forests), vegetation,
soil type, meteorology, and topography (Atchley et al., 2018; Goeking & Tarboton, 2020, 2022; Niemeyer
et al., 2020; Partington et al., 2022; Pugh & Gordon, 2013; Spence et al., 2020). Effects of fire on soil—increased
bulk density by decreasing macropores, reduced infiltration capacity by sealing pore space with ash and sediment,
and formation of a hydrophobic layer at the soil surface which tends to reduce hydraulic conductivity and
sorptivity —are generally associated with higher runoff efficiency (the ratio of runoff (Q) to precipitation (P); that
is, Q/P), drier top soils, and wetter subsoils (Ebel, 2020; Ebel & Martin, 2017; Martin & Moody, 2001; Moody
et al., 2008; Shakesby & Doerr, 2006; Stoof et al., 2012). The response of vegetation to fires have competing
effects on hydrologic states and fluxes. For instance, vegetation removal is associated with reduced downward
longwave radiation and precipitation interception, both of which contribute to greater ground snow accumulation
(Burles & Boon, 2011; Harpold et al., 2014; Seibert et al., 2010). Conversely, vegetation burning is also asso-
ciated with decreased snow albedo (i.e., snow darkening) due to burned woody debris shedding from standing
trees onto the snowpack, reduced shading and increased wind speeds and associated turbulent heat flux to the
snowpack, all of which favor more winter ablation and earlier and faster spring snowmelt (Burles & Boon, 2011;
Campbell & Morris, 1988; Gleason et al., 2013, 2019; Harpold et al., 2014; Kampf et al., 2022; Maxwell & St
Clair, 2019; Niemeyer et al., 2020; Pugh & Small, 2012; Seibert et al., 2010). Furthermore, vegetation removal
also has competing effects on ET: increased soil evaporation but decreased transpiration and canopy evaporation
(Bond-Lamberty et al., 2009; Maina & Siirila-Woodburm, 2020).

Previous research has shown that physically-based hydrologic model simulations designed to account for these
fire impacts provide significantly different simulations of runoff, snowpack and evapotranspiration relative to
simulations that do not account for fire impacts (Maina & Siirila-Woodburm, 2020), and conceptual hydrologic
models that do not account for fire impacts have larger runoff biases post-fire than pre-fire (Seibert et al., 2010;
Williams et al., 2022). These studies which quantify fire effects on hydrology by differencing conceptual models
that do not account for fire effects with post-fire observations approach the problem in a manner akin to earlier
paired catchment studies, where models allow water yield from the post-fire watershed to be compared to the
same watershed prior to the fire disturbance. Importantly, these studies indicate that neglecting fire effects on land
surface properties in physically-based LSMs may be an important source of uncertainty in post-fire hydrology
simulations.

In this study, we are motivated to evaluate a state-of-the-art physically-based LSM, Noah-MP, which is a key land
component of widely-used operational and research weather and hydrological modeling systems such as the
Weather Research and Forecasting model (WRF) (Powers et al., 2017), the WRF-Hydro/NOAA National Water
Model (Gochis et al., 2020), the NASA Land Information System (LIS) (Kumar et al., 2006; Peters-Lidard
et al., 2007) and the NOAA Unified Forecast System (UFS). Because the Noah-MP LSM was not originally
designed to account for fire effects on hydrology, we hypothesize that simulations of runoff and snowpack will be
less skillful after fires. Prior to this analysis, it was uncertain if model errors that are attributable to the neglect of
fire-perturbations could be identifiable, or if other well-established sources of LSM uncertainty (i.e., model
structure, parameter uncertainty, meteorological forcing uncertainty or observational noise) would mask this
additional source of uncertainty (Cuntz et al., 2016; He et al., 2021; Zhang et al., 2016). Resolving this uncertainty
is valuable to prioritize model development strategies for LSMs. This research is becoming increasingly
important over the U.S. which experienced 799,412 km? of burning (nearly 1.9 times the area of California) from
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1983 to 2021 (https://www.nifc.gov/fire-information/statistics/wildfires) and is expected to experience accel-
erated burning over at least the next three decades (Abatzoglou et al., 2021).

This study focuses on WUS snow dominated catchments that experienced more than 50% burning in a single fire
event. This research uniquely quantifies fire-induced uncertainties in sophisticated LSM simulations of snowpack
at daily to annual time scales and streamflow at monthly and annual scales while considering the relationship
between simulated errors in snowpack with errors in streamflow. Furthermore, this study is unique in that we use
differing vegetation configurations to evaluate potential challenges in accounting for fire impacts on hydrology in
LSM simulations. Overall, this study is motivated to better understand the magnitude and nature of fire-induced
LSM uncertainties to inform future research that plans to implement a fire module within Noah-MP to explicitly
account for fire disturbances. Specifically, this study seeks to answer the following science questions: (a) Are
differences in skill scores of modeled runoff and snow fluxes and states between pre- and post-fire periods
statistically significant? (b) Are model skill changes in streamflow physically consistent with skill changes in
snowpack from pre-to post-fire years? (c) Does informing LSM simulations with remotely sensed vegetation
properties help capture the effects of fire on hydrology?

2. Materials and Methods
2.1. Study Domain

We perform analyses at two study catchments—Andrew's Creek and Johnson Creek in the Pacific Northwest
(PNW; Figure 1)—which are selected based on the following criteria: (a) catchments that are selected for analysis
of fire effects on water supply across the entire WUS by Williams et al. (2022), (b) catchments that are snow-
dominated (peak flows are from snow melt), (c) catchments that had a single major fire event that occurred
during the MODIS-era that burned at least 50% of the watershed area, and (d) catchments that had no other
significant fire events (i.e., burning more than 15% of the catchment) in the analysis periods. The last two criteria
are to ensure a clear separation of pre- and post-fire conditions.

The Andrew's Creek catchment, approximately 58 km? with elevations ranging from 1,532 to 2,247 m, is in
Okanogan County in northern Washington. 96% of the Andrew's Creek catchment burned during the Fawn Peak
Complex in June 2003, with 67% of the catchment experiencing high-severity burning, 18% of the catchment
experiencing mid-severity burning and 11% of the catchment experiencing low-severity burning (based on the
Relative differenced Normalized Burn Ratio index; Eidenshink et al., 2007) (Figure 1). The Andrew's Creek
catchment received an average of 1,031 mm of precipitation each water year, with approximately 63% of pre-
cipitation falling as snow during the 1990-2019 analysis period. Andrew's Creek was comprised of 46% ever-
green needle leaf forest, 41% woody savannas, and 13% grasslands pre-fire and transitioned to over 90%
grasslands across all post-fire years (2004-2019).

The Johnson Creek catchment, approximately 562 km* with elevations ranging from 1,539 to 2,577 m, is in
Central Idaho within the Boise National Forest. Sixty percent of the Johnson Creek catchment burned during the
Cascade Complex in July 2007, with 22% of the catchment experiencing high-severity burning, 15% experiencing
mid-severity burning and 23% experiencing low-severity burning. The Johnson Creek catchment received
approximately 1,069 mm of precipitation each water year, with approximately 66% of precipitation falling as
snow during the 1995-2019 analysis period. Johnson Creek was comprised of 82% woody savanna, 8% savanna,
7% grasslands and 3% evergreen needleleaf forest pre-fire, and had increased grassland area post-fire (ranging
from 31%-59% from 2008 to 2019) and decreased woody savanna area (ranging from 19%-54% from 2008 to
2019) and a modest increase to savanna area (ranging from 14%-24% from 2008 to 2019).

Hence, both Andrew's Creek and Johnson Creek experienced persistent landcover transitions from forested and
wooded areas to grasslands in post-fire years, with more dramatic transitions at Andrew's Creek which experi-
enced more severe burning. MODIS observes post-fire reductions in vegetation characteristics at both catch-
ments, where post-fire leaf area index (LAI) and green fractions are lower than any pre-fire years in the MODIS
era (Figures 1f and 1i).

2.2. Selection of Pre- and Post-Fire Periods

To quantify changes in model uncertainty following fires, model skill scores are calculated based on comparisons
with observations of streamflow and snow during distinct pre- and post-fire periods. In annual analyses of
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Figure 1. Analyses of fire effects on Noah-MP skill are conducted at the Andrew's Creek and Johnson Creek catchments shown in the (a) site vicinity map with
topography, (b) zoom in of Andrew's Creek catchment overlain on the topographic map, with the blue line representing Andrew's Creek, red shading showing the area of
the study fire event (Fawn Peak Complex: June 2003) and the black dot showing the location of the USGS stream gage at the watershed outlet, and (c) same as (b) but for
the Johnson Creek catchment which experienced the Cascade Complex fire event in July 2007. The gray dot shows the location of the SNOTEL station (Deadwood
Summit) used to evaluate simulated snowpack. (d), (¢) Google Earth images of Andrew's Creek pre- and post-fire shows satellite-observed decreases in vegetation in
response to the fire event. (f) Bar graph of mean annual MODIS leaf area index (LAI) and green fraction (8-day 500-m MOD15A?2 data), with red shading marking the
fire-year and dashed gray and green reference lines marking the minimum pre-fire LAI and green fraction, respectively. (g)—(i) Same as (d)—(f) but for Johnson Creek.
Fire perimeters are from the Landsat-based Monitoring Trends in Burn Severity data set (Eidenshink et al., 2007).

streamflow, data are aggregated by water year. Water years that do not have observations from at least 70% of
days are excluded to reduce impacts of data availability. To ensure consistency between temporally continuous
model results and discontinuous observations, model outputs are matched temporally with observations so that we
only account for simulated values on days when observations are available. At Andrew's Creek, the selected pre-
fire years are 1990-1999 and 2001-2002 and post-fire years are 2004-2009, 2011, 2015-2019, while 2003 is the
fire event year. At Johnson Creek, pre-fire years are 1995-2006 and post-fire years are 2008—-2019 (Figure S1 in
Supporting Information S1), while 2007 is the fire event year. Pre- and post-fire periods for monthly streamflow
analyses evaluate the 120 pre- and post-fire months with available streamflow observations closest to the fire
ignition month (June 2003 at Andrew's Creek and July 2007 at Johnson Creek). The 120-month period is selected
to be consistent in duration with the 12-year pre- and post-fire periods in annual streamflow analyses.

The snowpack analysis at Johnson Creek uses 11 pre- and post-fire years, constrained by SNOTEL snow water
equivalent (SWE) observations which are through the 2018 water year (11-years post-fire). Daily SNOTEL snow
observations are available during all days in the 11 pre- and post-fire years (1996-2006 and 2008-2018,
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respectively). For snow disappearance analyses relying on MODIS snow cover data (Section 3.3), only burned
pixels are considered. Pre- and post-fire data sets are set to have an equal number of data points to enforce
consistency in pre-to post-fire comparisons. The length of pre- and post-fire periods for these analyses are
constrained by the number of pre-fire retrievals: two pre-fire years at Andrew's Creek (51 1-km pixels X 2 pre-fire
years = 102 total data points) and six pre-fire years at Johnson Creek (354 1-km pixels X 6 pre-fire years = 2,124
data points). Thus, all pre-fire data are included, and the following 2 and 6 years of data after fire events are
selected for Andrew's Creek and Johnson Creek analyses, respectively.

We consider if changes in meteorological conditions at each of the study catchments from pre-to post-fire periods
may contribute to significant changes in LSM uncertainty between the two periods (Figure S2 in Supporting
Information S1). At Andrew's Creek, the median annual precipitation (1,104 mm) and surface air temperature
(274.5 K) during the 12 pre-fire years were not significantly different (p > 0.46, based on 2-tailed Wilcoxon rank
sum tests) from the median annual precipitation (1,179 mm) and surface air temperature (274.8 K) during the 12
post-fire years. At Johnson Creek, the pre-fire median annual precipitation (1,075 mm/year) and surface air
temperature (275.2 K) tended to be cooler and wetter than post-fire values (968 mm/year and 275.7 K); however,
these differences are not statistically significantly (p > 0.12; based on 2-tailed Wilcoxon rank sum tests). We
found similar annual cycles for these meteorological conditions between the two periods, particularly for surface
air temperature. Minor differences in meteorological conditions between pre-to post-fire years, relative to the
persistent reductions in vegetation characteristics (Figure 1), supports that significant changes in LSM skill scores
from pre-to post-fire years are more likely to be attributable to difficulties in modeling fire impacts than changes
in meteorological regimes.

2.3. Noah-MP Simulations

Noah-MP (Niu et al., 2011) is a widely-used state-of-the-art LSM, which serves as a key land component in WRF-
Hydro/National Water Model (NWM), WRF, NASA LIS, and NOAA UFS. Noah-MP is designed to simulate
land surface water and energy budgets, including soil and snow water balances. Noah-MP considers a three-layer
snowpack depending on snow depth, which allows it to simulate snow variables more accurately than its pre-
decessor (Noah; Chen & Dudhia, 2001; Chen et al., 1996, 1997; Ek et al., 2003). Comprehensive details of Noah-
MP snowpack treatment can be found in He et al. (2023). The open-source community Noah-MP LSM is
maintained by the National Center for Atmospheric Research (NCAR) and is available on GitHub: https://github.
com/NCAR/noahmp.

Noah-MP simulations are run at a 1-km spatial resolution forced with eight surface meteorological variables
(precipitation, temperature, east-to-west and north-to-south wind speed, long- and short-wave radiation, air
pressure, and specific humidity) from the 1-km hourly observation-constrained Analysis of Record for Cali-
bration (AORC:; Fall et al., 2023) data set that is used to drive NWM. We bias-correct AORC daily surface air
temperature and precipitation to match observationally-based values for these variables from the widely evaluated
4-km PRISM data set (Parameter-elevation Relationships on Independent Slopes Model) (Daly et al., 2008)
(adjustments are shown in Figure S3 of Supporting Information S1). Specifically, hourly AORC data are adjusted
to maintain daily mean temperature and precipitation values from PRISM, while maintaining the diurnal pattern
from AORC. Model topography is based on 30-m data from the Shuttle Radar Topography Mission (https://doi.
org/10.5066/F7K072R7). Simulations use the land model physics options from the WRF/Noah-MP options used
in the continental-scale convection-permitting regional climate simulations (He et al., 2019; Liu et al., 2017,
Rasmussen et al., 2023) that successfully captured precipitation and snow conditions in WUS, with updated snow
cover parameters that improve surface albedo and temperature (He et al., 2021). Quantitative results presented in
this study may change depending on different model physics options and parameters; however, comprehensively
assessing model sensitivity to various combinations of physics options available within Noah-MP such as in
Zhang et al. (2016), J. Li et al. (2019), and Zhang et al. (2020) is beyond the scope of this study. All model
simulations are generated without river routing, which we assume does not introduce substantial uncertainty at
monthly to annual time scales that streamflow validations are conducted at.

Dominant (i.e., mode) pre- and post-fire vegetation classifications are selected for each 1-km model pixel
allowing simulations to account for land cover classification conversions following fire events. Simulations are
forced with remotely sensed green fraction and LAI from 8-day MODIS retrievals (Section 3.3) which are linearly
interpolated to hourly forcing. During pre-MODIS times, simulations are forced with a pre-fire multiyear average
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monthly climatology of green fraction and LAI, computed for each vegetation classification in the study domain
based on MODIS observations during the total pre-fire periods.

It is valuable to determine if the model configuration detailed above—which is designed to be partially fire-aware
by accounting for fire impacts on vegetation characteristics and classifications—is more skillful than a no-fire
model configuration. Therefore, we conduct supplementary no-fire twin-simulations for comparison. Namely, we
evaluate if simulations using the partially fire-aware model configuration has relatively greater skill than no-fire
simulations in post-fire years. No-fire simulations are configured as discussed above, except these twin-
simulations use pre-fire vegetation classifications and are forced with the pre-fire monthly MODIS green frac-
tion and LAI climatology during the entire analysis period. Vegetation forcing from the fire-aware and no-fire
simulations are compared in Figure S4 of Supporting Information S1.

2.4. Comparing Simulated and Observed Monthly Flow and Relationships to Post-Fire Snowmelt and
Accumulation

It is important to evaluate LSM biases at both annual and sub-annual (e.g., monthly) time scales to understand the
bulk impact of fire-induced uncertainties to the LSM as well as when (i.e., which season) uncertainties are most
prevalent. In monthly streamflow evaluations, we use a normalized streamflow (Q’) which is defined as monthly
Q divided by annual P throughout pre- and post-fire years. This metric allows for comparison of changes in
monthly streamflow from pre-to post-fire years from the LSM and observations while controlling for the primary
meteorologic control (P). Annual precipitation is selected for this normalization, because normalizing monthly Q
by monthly P is not physically meaningful in snow-dominated catchments where there are multi-month lags
between P and Q (e.g., winter P contributes to spring Q).

We hypothesized that a deeper snowpack that melts faster would contribute to LSM streamflow uncertainties in
post-fire years based on previous research which found removal of vegetation in snowy areas favors greater
ground snow accumulation and often greater ablation rates when temperatures exceed freezing (Gleason
etal., 2019; Harpold et al., 2014). A key assumption in this hypothesis is that a deeper snowpack that melts faster
has a robust relationship with runoff efficiency. We evaluate this assumption using Noah-MP simulations by
quantifying correlations between simulated annual runoff efficiency with simulated ablation rates and peak SWE.
Correlations between these snow-related metrics with runoff efficiency are used to determine if the aforemen-
tioned hypothesis is consistent with relationships depicted by the sophisticated physically-based model. Statis-
tically significant positive correlations between Q/P with peak SWE and ablation rates would indicate that a
deeper snowpack that melts faster is physically consistent with enhanced runoff efficiency.

After evaluating this assumption, we then evaluate if Noah-MP has a shift from pre-to post-fire biases in snow
accumulation and ablation metrics that are consistent with this hypothesis. First, we perform catchment-wide
comparisons of simulated and satellite-observed day of snow disappearance (DSD) to determine if there is a
systematic shift in DSD biases from pre-to post-fire years across all burned pixels. If observations capture the
signal of fire-induced ablation acceleration, but the model fails to simulate this effect, then Noah-MP post-fire
biases (Noah-MP DSD—observed DSD) will be larger than pre-fire biases because observed DSD would
occur earlier under the same meteorological conditions whereas Noah-MP would remain constant. DSD from
Noah-MP and MODIS observations are identified as the first day when there is a transition from snow-covered to
no snow conditions during the spring melt season. The snow/no-snow threshold used for Noah-MP and MODIS
are 0% and 50% snow cover area, respectively (O’Leary et al., 2018, 2019). The stricter no-snow threshold for
Noah-MP favors relatively later disappearance from simulations; however, preliminary analyses show simula-
tions generally estimate earlier snow disappearance than MODIS observes indicating that the differing no snow
assumptions do not impose a systematic bias. However, differences between LSM and observational uncertainties
can impact the DSD bias analyses so we primarily focus on evaluating the change in bias from pre-to post-fire
periods under consistent assumptions. Additional details for MODIS DSD observations are provided in
Section 3.3.

Final snow analyses use in situ observations from the Deadwood SNOTEL station in the Johnson Creek
catchment (the only SNOTEL station in either study fire perimeters; Figure 1c) to compare simulated and
observed snow accumulation and melt. In these analyses, we compare multiyear mean daily averages of pre- and
post-fire SWE to determine differences in magnitude and timing of simulated and observed SWE. We also
compare simulated and observed ablation rates and peak SWE to quantify changes in Noah-MP skill for these
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snow evolution metrics after the Cascade Complex fire. Ablation rates are calculated following the methodology
presented in Xiao et al. (2021), as the rate of change in SWE between 80% and 20% of peak SWE during the
falling limb of the annual SWE cycle. Noah-MP simulations for the in situ analysis are identical to the description
in Section 2.3, except in situ observed daily precipitation and temperature from the SNOTEL site are used to bias
correct these meteorological forcing inputs for simulations (following the same forcing bias-correction method
described in Section 2.3). These meteorological adjustments are shown in Figure S5 of Supporting
Information S1.

2.5. Evaluation Metrics and Significance Testing

We use bias and Spearman's correlation coefficient (p) as skill metrics throughout the analysis. Spearman's
correlation coefficient is used instead of Pearson's because Pearson's correlation coefficient assumes normality,
and there are multiple instances of non-gaussian data in this study. Additionally, Spearman's correlation coef-
ficient is relatively more robust to outliers. Biases are calculated as the difference between the mean of simulated
and observed time series, during respective pre- and post-fire periods. Streamflow time series are converted to
anomalies (discussed in Section 3) prior to comparison.

Statistical differences in pre- and post-fire bias and p are computed with the widely used 2-tailed Wilcoxon rank
sum test and the permutation test, respectively. Permutation tests are based on resampling the original data
without replacement to test the hypothesis of no statistical difference between p calculated during pre- and post-
fire periods, respectively. This is performed by: (a) calculating the absolute difference between post- and pre-fire
p, (b) pooling data from pre- and post-fire periods together, (c) shuffling the data randomly and calculating
differences in p between random samples equivalent to the length of pre- and post-fire periods (i.e., 12-year), (d)
repeat step (c) 10,000 times, and (e) calculate the proportion of shuffled absolute differences in p that exceed the
originally calculated p when data was organized in pre- and post-fire years.

3. Observations for Model Evaluations
3.1. In Situ Streamflow Observations

Simulations are compared with gauged streamflow from USGS stations at the outlets of water catchment areas
(Figures 1b and lc; catchment polygons are from the USGS GAGES-II data set: https://doi.org/10.3133/
70046617). Streamflow model evaluations are conducted at monthly and annual timescales because simulated
streamflow uncertainty at sub-monthly timescales may be large due to the neglect of river routing in model
simulations. Following Williams et al. (2022), observed and simulated time series of Q are converted to the
standardized anomaly space (Q-anomalies) to isolate fire-induced discrepancies rather than analyzing results
confounded by systematic biases between simulations and observations that are not related to fire-disturbances.
For pre- and post-fire comparisons, Q-anomalies are computed across the entire 25-year analysis period (12 pre-
fire years, the fire year, and 12 post-fire years):

0, -0
%90

(1)

Qanomaly,i =

where Q; is Q from the ith month or year in the time series (depending on if comparisons are monthly or annual), O
is the total time series mean, and oy, is the total time series standard deviation of Q. Because Q time series are not
normally distributed, the anomaly conversion is exclusively used to enforce a zero bias between simulated and
observed time series (mean and variance), rather than interpretation of anomaly magnitude in a z-score context.
Although this methodology removes biases for total time series comparisons, biases from distinct pre- and post-
fire periods remain allowing quantification of bias shifts from pre-to post-fire periods.

3.2. In Situ Snowpack Observations

We use quality-controlled bias-corrected ground observations of SWE processed and bias-corrected by the Pa-
cific Northwest National Laboratory (Sun et al., 2019; Yan et al., 2018) to evaluate snow simulations at the
SNOTEL station (Deadwood Summit) in Johnson Creek (blue dot in Figure 1c). Pacific Northwest National
Laboratory has made these bias corrected observations publicly available: https://www.pnnl.gov/data-products.
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3.3. MODIS Vegetation and Snow Disappearance Observations

Vegetation classifications used in analyses and model simulations are based on the annual 500 m MCD12Q1V6
MODIS data product (https://doi.org/10.5067/MODIS/MCD12Q1.006). Green fraction and LAI come from 8-
day 500-m MODIS retrievals (MOD15A2; Myneni et al., 2015). In this study we assume that MODIS-
observed Fraction of Photosynthetically Active Radiation (FPAR) is equal to green fraction used by the LSM
as done by the widely used WRF Preprocessing System (WPS) which is frequently used to derive Noah-MP LSM
inputs (Lu et al., 2021). Using FPAR as a proxy for vegetation fraction in LSM simulations can introduce un-
certainties (Filipponi et al., 2018; Myneni & Williams, 1994) so future modeling research should consider using
other vegetation cover fraction data products (e.g., DiMiceli et al., 2015; Liang et al., 2021).

We use snow disappearance maps from the Oak Ridge National Laboratory (O’Leary et al., 2019), derived
from MODIS observations (MOD10A2), to evaluate simulated snow disappearance. These maps identify the
day of year that each MODIS 500-m pixel transitions from snow-covered to no snow conditions during the
spring melt season. To account for cloud-obscured images, these data interpolate the dates between the last
observed snow cover and the first observed snow-free date using a 50% snow cover area threshold (O’Leary
et al., 2018, 2019). The 500-m MODIS data are aggregated to the 1-km model grid prior to model evaluations
such that the latest DSD is selected among MODIS pixels which are contained by each model pixel for each
calendar year.

4. Results
4.1. Pre-Fire Streamflow Validation

We first evaluate Noah-MP simulations of monthly and annual Q-anomalies in pre-fire years because high ac-
curacy of the modeled runoff in pre-fire years is essential to discern fire-induced modeling errors from other
sources of uncertainty in post-fire years. There are robust pre-fire correlations (p = 0.89-0.92) between simulated
and observed Q-anomalies at monthly and annual time scales at both catchments (Figures 2—4). Despite un-
certainties that may be attributable to neglecting river-routing in Noah-MP simulations, we proceed under the
reasonable assumption that Noah-MP can accurately translate meteorological conditions to monthly and annual
Q-anomalies in both catchments in the absence of severe land disturbances. Because all comparisons are con-
ducted in the anomaly space, forcing a zero-bias, the bias analyses focus on changes in bias from pre-to post-fire
years as an indication of shifts in model skill. Note, LSM biases in one period (either pre- or post-fire) will impact
anomaly biases in both periods (Equation 1). For example, failure to simulate enhanced post-fire streamflow
would impose a systematic high Q-anomaly bias in the pre-fire period.

4.2. Comparing Model Skills for Monthly and Annual Streamflow From Pre-Fire To Post-Fire Years

Model simulations of Q-anomalies have a statistically significant (p < 0.01) shift in biases from pre-to post-fire
years and modestly different correlations in monthly and annual comparisons (Figures 2-4). Simulated Q-
anomaly biases tend to be positive in pre-fire years and negative in post-fire years. At Andrew's Creek, pre-fire
annual Q-anomaly biases have a mean of 0.34 and interquartile range (IQR) of 0.11-0.55; whereas the corre-
sponding post-fire biases have a mean of —0.33 and an IQR of —0.65 to 0.10 (Figures 2a and 2b). Likewise, pre-
and post-fire monthly Q-anomaly biases at Andrew's Creek have means 0.08 and —0.08, respectively (Figure 3b).
Similarly at Johnson Creek, pre-fire annual Q-anomaly biases have a mean of 0.22 and IQR of 0.02-0.43; whereas
the corresponding post-fire biases have a mean of —0.26 and IQR of —0.36 to —0.16 (Figures 2c and 2d). Pre- and
post-fire monthly mean Q-anomaly biases at Johnson Creek are 0.05 and —0.05, respectively (Figure 4b). The
shift in annual Q-anomaly biases is more consistent at Johnson Creek where 11 out of the 12 post-fire years have
negative biases, whereas 8 out of the 12 post-fire years at Andrew's Creek have negative biases. Q-anomaly
overestimates in pre-fire years are at least partially attributable to LSM anomalies being calculated during the
entire 25-year analysis period covering both pre- and post-fire years, and thus pre-fire anomaly overestimates are
inflated by Noah-MP failing to simulate the observed enhanced runoff in post-fire years. There are minor and
inconsistent differences between pre- and post-fire correlations (Figures 2—4), which indicates the LSM has
similar skill in simulating the runoff temporal variability during pre- and post-fire years. These comparisons
support that fire contributes to an altered relationship between meteorology and land surface hydrology that the
model does not capture.
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Figure 2. Comparisons of Noah-MP simulated annual catchment runoff (Q) anomalies compared to in situ observed
anomalies at (a) and (b) Andrew's Creek and (c) and (d) Johnson Creek. Biases in Q-anomalies (in b, d) are calculated by
subtracting observed runoff anomalies from simulated anomalies. Black 1:1 lines in (a) and (c) are provided for reference.
For boxplots, central marks indicate the median, and the bottom and top edges of boxes indicate the 25th and 75th percentiles,
respectively. Whisker lengths are equal to the interquartile range and outliers are plotted as blue and red dots. Correlations in
blue text are for all pre-fire years and those in red text are for all post-fire years.

Monthly and annual Q-anomaly bias shifts are similar from the twin-simulations designed to neglect fire impacts
on vegetation (Figures S6-S8 in Supporting Information S1). In the twin no-fire simulation at Andrew's Creek,
pre-fire annual Q-anomaly biases have a mean of 0.35 and IQR of 0.13-0.57; whereas post-fire biases have a
mean of —0.35 and an IQR of —0.67 to 0.10 (Figure S6 in Supporting Information S1). Likewise, pre- (post-) fire
mean monthly Q-anomaly biases at Andrew's Creek are 0.08 (—0.08) in the no-fire simulation (Figure S7b in
Supporting Information S1). Similarly, at Johnson Creek, pre-fire annual Q-anomaly biases have a mean of 0.25
and IQR of 0.05-0.47; whereas corresponding post-fire biases have a mean of —0.30 and IQR of —0.40 to —0.20
(Figure S6 in Supporting Information S1). Likewise, pre- (post-) fire mean monthly Q-anomaly biases at Johnson
Creek are 0.05 (—0.06) in the no-fire simulation (Figure S8b in Supporting Information S1). Fire-aware simu-
lations are not more skillful in simulating post-fire annual Q-anomalies in terms of correlation than the twin no-
fire simulations. These results show that accounting for fire impacts on vegetation in the Noah-MP system as
discussed in Section 2.3 only slightly reduces the pre-to post-fire bias shift, and therefore is not an adequate
approach to resolve fire-related uncertainties in Noah-MP for these study catchments.

Further analyses support that the systematic shifts in Q-anomaly biases from Noah-MP (Figures 2—4) are mainly
attributable to the observed, but unmodeled, enhanced runoff efficiency (i.e., Q/P) after fires (Figures 5a and 5b).
Observed increases in mean annual runoff efficiency from pre-to post-fire years is statistically significant
(p £0.01): a 54% increase at Andrew's Creek (0.40-0.61) and a 22% increase at Johnson Creek (0.49-0.59).
However, simulated increases in runoff efficiency are much smaller: a 22% increase at Andrew's Creek (p = 0.09)
and a 3% increase at Johnson Creek (p = 0.31). Simulated increases in runoff efficiency at Andrew's Creek
suggests that meteorology contributes to the observed enhanced runoff efficiency, but the model which primarily
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Figure 3. Comparisons of Noah-MP simulated monthly catchment runoff (Q) anomalies compared to in situ observed
anomalies at Andrew's Creek. (a) Time series comparison of simulated (red) and observed (black) monthly Q-anomalies;
vertical dashed red line represents the date of the fire event. Vertical blue lines on top show monthly precipitation.

(b) Boxplots of pre- and post-fire monthly Q-anomaly biases. (c) Multiyear mean monthly pre- and post-fire Q-anomaly
biases; shading represents the 80% range from interannual variability. (d) Simulated and observed Q-anomalies with

correlations; dashed black line represents 1:1 line for reference.
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anomalies at Johnson Creek. (a) Time series comparison of simulated (red) and observed (black) monthly Q-anomalies;
vertical dashed red line represents the date of the fire event. Vertical blue lines on top show monthly precipitation.
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biases; shading represents the 80% range from interannual variability. (d) Simulated and observed Q-anomalies with

correlations; dashed black line represents 1:1 line for reference.
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Figure 5. Comparison of annual catchment runoff (Q) and precipitation at (a) and (b) Andrew's Creek and (c) and (d) Johnson
Creek. Dashed blue and red lines represent the slopes of pre- and post-fire runoff efficiencies, respectively. Correlations in
blue text are for all pre-fire years and those in red text are for all post-fire years.
accounts for meteorologic controls and partially accounts for vegetation disturbances underestimates a large
portion of the increase in observed post-fire runoff efficiency at this catchment (Figures 5a and 5b). Similarly, the
observed but unmodeled enhancement in post-fire runoff efficiency at Johnson Creek (Figures 5c and 5d) results
in underestimates of Q-anomalies in post-fire years (Figures 2c and 5d). Observed correlations between Q and P
are reduced during post-fire years at both catchments relative to pre-fire years; however, these reductions in
correlation are not statistically significant (p = 0.40 and p = 0.10 at Andrew's Creek and Johnson Creek,
respectively). This indicates that fire-induced land cover changes may cause environmental factors other than
precipitation to exert modest increases in control on annual discharge after fire events, which is consistent with
prior research that suggests wind and radiation exert a greater control on post-fire annual runoff efficiency in
snow-dominated catchments due to enhanced winter sublimation and faster melt (Harpold et al., 2014). Quali-
tative results from Figure 5 are similar to analyses using the no-fire twin-simulations (Figure S9 in Supporting
Information S1), further supporting that this study's approach to account for fire impacts on vegetation in the
Noah-MP system is not an adequate approach to resolve fire-related model uncertainties in these study
catchments.
4.3. Comparing Simulated and Observed Monthly Runoff Variation
Comparisons between monthly changes in Q' (monthly Q divided by annual P; Section 2.4) from pre-to post-fire
years are consistent with previous research that found fires accelerate spring snow melt (Koshkin et al., 2022;
Smoot & Gleason, 2021). Namely, at both study catchments, there are observed increases from pre-to post-fire
spring Q' which are underestimated in model simulations (Figure 6). Observations show a mean 0.03 increase in
Q' at Andrew's Creek and Johnson Creek in April (111% and 79% increase, respectively) and a 0.13 and 0.08
increase in May (97% and 46% increase, respectively) (Figure 6). However, Noah-MP simulates small decreases
to April Q' from pre-to post-fire years by 6% and 8% at Andrew's Creek and Johnson Creek, respectively, and
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Figure 6. Mean monthly runoff divided by annual precipitation (Q’) from (a) Andrew's Creek and (b) Johnson Creek. Solid
dots represent the multiyear mean and uncertainty bars represent the interquartile range based on temporal variability across
the 12 pre- and post-fire periods.

simulates relatively minor increases to peak Q' in May (16% and 26% at Andrew's Creek and Johnson Creek,
respectively). These comparisons are consistent with the monthly bias analyses which show the most substantial
shift in Q-anomaly biases occur during spring months (Figures 3c and 4¢). Namely, at Andrew's Creek, the largest
pre-to post-fire shift in the multiyear mean monthly Q-anomaly biases occurs in April and May when pre-fire Q-
anomaly biases range from 0.12 to 0.34 and post-fire Q-anomaly biases are —0.52. Likewise, at Johnson Creek,
April-May biases in pre-fire years are much larger (0.56-0.57) than post-fire biases in April-May (0.04-0.09).
These results support that LSM simulations are missing key processes related to enhanced post-fire spring runoff,
although there is substantial temporal variability in the results (Figure 6).

Differences between observed and simulated peak Q timing support that LSM simulations are more prone to
estimating too-late peak Q in post-fire years (Figure S11 in Supporting Information S1), which is consistent with
observed, but unmodeled, fire-induced acceleration of snowmelt (Section 4.4). At Andrew's Creek, observations
show post-fire peak monthly Q in May during 3 years when Noah-MP simulates later peak Q in June, while Noah-
MP accurately simulates peak Q timing in all other post-fire years. During all pre-fire years at Andrew's Creek,
Noah-MP accurately simulates the month of peak Q except in 2000 when Noah-MP simulated too-early peak Q.
Likewise, at Johnson creek, observations show peak Q in May in 1 year when Noah-MP simulates later peak Q in
June, while accurately simulating peak Q timing in all other post-fire years. This is counter to the Noah-MP pre-
fire bias at Johnson Creek, where the simulations show too-early peak Q in 2 years, with matching month of peak
Q for all other pre-fire years. This indicates that although the Noah-MP LSM has a slight early peak Q bias in pre-
fire years at both study catchments, Noah-MP has a greater tendency to simulate too-late peak Q in post-fire years.
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Figure 7. Comparisons of simulated annual runoff efficiency (Q/P) with (a) and (b) simulated ablation rates and (c) and (d) simulated peak snow water equivalent at
Johnson Creek. Dots are colored by annual precipitation, and black lines represent the best-fit line. Relationships between variables across all 25-years in the analysis are
shown in (a) and (c). Relationships between variables during a shortened window with less variable precipitation (800—1,350 mm; 21-years) are shown in (b) and (d).

4.4. Evaluating Consistency Between Runoff Biases With Snowpack Biases

We hypothesize that a large contributing factor to the observed post-fire enhanced Q/P and spring Q' is that
reduced vegetation favors deeper snowpack that melts out faster. Correlations between Noah-MP simulated
annual Q/P with peak SWE and ablation rates are used to determine if the aforementioned hypothesis is consistent
with relationships depicted by the sophisticated physically-based model. Indeed, Noah-MP simulates these
linkages—greater volumes of snow that melt faster favor higher runoft efficiency—which supports that the
hypothesis is physically consistent with state-of-the-art physical hydrologic modeling in these catchments.
Specifically, Noah-MP simulates significant and positive correlations between Q/P with ablation rates and peak
snowpack volume (i.e., peak SWE) at both study catchments (p = 0.43-0.80; p < 0.05; Figures 7a, 7c, 8a, and 8c).
To evaluate the robustness of these correlations, we consider that interpretations of these comparisons across the
entire 25-year analysis period may be convoluted by annual precipitation having significant correlations with all
the variables compared: ablation rates, peak SWE and annual Q/P (p = 0.48-0.87 (p < 0.02) at Johnson Creek and
p =0.29-0.73 (p = 0.16 to <0.001) at Andrew's Creek). Therefore, we also quantify these correlations between
Q/P with peak SWE and ablation rates during years when precipitation is less variable (800-1,350 mm), while
still maintaining 68%—84% of the analysis period (17-21 years) (Figures 7b, 7d, 8b, and 8d). In this narrowed
window, annual precipitation has insignificant relationships with Q/P (p = 0.23-0.32; p > 0.14) while Q/P re-
mains positively correlated with peak SWE and ablation rates at Johnson Creek (p = 0.49-0.68; p < 0.05). In this
narrowed window, Q/P is significantly correlated with peak SWE at Andrew's Creek (p = 0.73; p < 0.01), but not
significantly correlated with ablation rates (p = 0.24; p = 0.34). However, at Andrew's Creek, there is an
insignificant relationship between ablation rates and annual precipitation across the total 25-year analysis period
(p =0.29; p = 0.16), which supports that the significant relationship between Q/P and ablation rates during this
same 25-year period (p = 0.43; p = 0.03) is likely linked to a connection between ablation rates with Q/P at this
catchment.

Next, we evaluate if Noah-MP has shifts in snow ablation biases that are consistent with the hypothesis noted in
the paragraph above. We use catchment-wide comparisons of snow disappearance between Noah-MP with
MODIS snow cover observations to determine if there are significant shifts in Noah-MP biases for simulated DSD
from pre-to post-fire years, relative to MODIS observations (Figures 9 and 10). In pre-fire years, Noah-MP
simulates a persistent early-melt bias relative to satellite observations at both catchments (median un-
derestimates = 11-14-day) (Figures 9b and 10b). These pre-fire biases are consistent with Section 4.3 and
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Figure 8. Comparisons of simulated annual runoff efficiency (Q/P) with (a) and (b) simulated ablation rates and (c) and
(d) simulated peak snow water equivalent at Andrew's Creek. Dots are colored by annual precipitation, and black lines
represent the best-fit line. Relationships between variables across all 25-years in the analysis are shown in (a) and (c).
Relationships between variables during a shortened window with less variable precipitation (800—1,350 mm; 17-years) are
shown in (b) and (d).

previous research which found Noah-MP underestimates peak SWE and melts snow too-early over the western
US (He et al., 2019) due to the model deficiencies in representing vegetation-snow-radiation/turbulence in-
teractions (He et al., 2021). In post-fire years, the too-early DSD bias is reduced (median underestimates = 4—
10.5-day). This is consistent with observations capturing fire-induced snowmelt acceleration which Noah-MP
does not accurately simulate, which happens to compensate for a portion of pre-fire early melt biases in Noah-
MP in these catchments. The twin no-fire simulations show later post-fire DSD than simulations informed

(=2}
o

(a) ] (b)

200

® pre-fire

N
o

@ post-fire

N
=

Observed DSD
DSD bias (days)
o

N
]

§
-
1
1
50 = 1

50 100 150 200 Pre-fire Post-fire
Simulated DSD

A
S

N

S o
T

4 -
I

.
n
o o

T )
‘
|
‘
‘
|
|

HIH

‘
|
|
|
‘
‘
i
‘
,
i
|
i
|
‘
i
‘
|
|
|
‘
‘
i
|
i
i
|
|
‘
‘
|
|
‘
‘
‘
‘
|
|
i
i
‘
‘
‘
|
|
|
|
|
|
i
‘
|
‘
|
‘
|
|
|
1
‘
|

L 1

DSD bias (days)

-80 — v
pre-fire  post-fire pre-fire  post-fire pre-fire  post-fire
ENF->grass woody savanna no conversion
>grass

Figure 9. Comparison of simulated and remotely sensed day of snow disappearance (DSD) for each 1-km burned pixel in
Andrew's Creek. (a) Scatter plot comparing MODIS-observed and simulated DSD based on the calendar year at Andrew's
Creek across all burned pixels. (b) Biases in DSD in pre- and post-fire years at Andrew's Creek across all burned pixels.
(c) Same as (b), but data are separated based on MODIS observed pre-to post-fire landcover conversions.
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Figure 10. Same as Figure 9 but for Johnson Creek. (a) Scatter plot comparing MODIS-observed and simulated day of snow
disappearance (DSD) based on the calendar year at Johnson Creek across all burned pixels. (b) Biases in DSD in pre- and
post-fire years at Johnson Creek across all burned pixels. (c) Same as (b), but data are separated based on MODIS observed
pre-to post-fire landcover conversions.

with post-fire vegetation changes by an average of 3-day at Johnson Creek and 1-day at Andrew's Creek (Figures
S12b and S12e in Supporting Information S1). This indicates that informing the LSM with fire-induced changes
to green fraction, LAI and classifications accelerates post-fire snow disappearance in the model; however, the
aforementioned shift in DSD biases support that further model enhancements are required to comprehensively
capture the associated fire-vegetation-snow interactions.

In Andrew's Creek, pixels which experience land cover conversions, particularly conversions from forested land
to grassland, tend to experience greater impacts associated with observed, but unmodeled, post-fire acceleration
of ablation. Namely, the too-early DSD bias tends to be reduced from pre-to post-fire years by 5.5- and 3.5-days
across burned pixels which have observed pre-to post-fire land cover conversions from evergreen need leaf forest
(ENF) to grasslands and from woody savanna to grasslands, respectively (Figure 9¢). Conversely, burned pixels
which do not have observed land cover conversions at Andrew's Creek tend to have a small increase to the
negative bias magnitude (by 1.5-day). This result is mostly consistent with analysis of the no-fire simulation from
Andrew's Creek (Figures S12a—S12c¢ in Supporting Information S1), except the pre-to post-fire bias change is
largest over pixels converted from woody savanna to grasslands rather than pixels converted from ENF to
grasslands. The median pre-to post-fire bias change over pixels converted from woody savanna to grassland are
twice as large in the fire blind simulation relative to the simulation informed with fire-impacted vegetation
characteristics which indicates that informing the Andrew's Creek simulation with post-fire vegetation data helps
the model capture post-fire snow ablation acceleration, particularly across pixels which experienced the observed
land cover conversion from woody savanna to grassland.

In Johnson Creek, pixels which experienced land cover conversions from ENF to grassland or savannas expe-
rienced marginally larger impacts associated with observed, but unmodeled, post-fire acceleration of ablation
relative to other burned pixels. Namely, the too-early DSD model bias tends to be reduced from pre-to post-fire
years by 10.5- and 11.5-days over burned pixels which were converted from ENF to grassland and savannas,
respectively. The too-early DSD bias tends to be reduced from pre-to post-fire years by 6-8-days across other
burned pixels in the Johnson Creek catchment where land cover conversions were observed. Burned pixels at
Johnson Creek which did not have observed land cover classification conversions—consisting of woody savanna,
savanna and grassland classifications in pre- and post-fire years—tend to have the too-early DSD bias reduced by
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Figure 11. Comparison of simulated and observed snow water equivalent (SWE) at the Deadwood SNOTEL station in
Johnson Creek. (a) Mean multiyear SWE for 11 pre- and post-fire years from observations and Noah-MP simulations.

(b) Scatter plot comparison of simulated and observed peak SWE during pre- and post-fire years. (c) Kernel density estimator
for peak SWE bias during pre- and post-fire years. (d) Scatter plot comparison of simulated and observed ablation rates.
(e) Kernel density estimator for ablation rate bias. Vertical blue and red lines in (c¢) and (e) represent medians of pre- and post-
fire distributions, respectively.

9-days from pre-to post-fire years, which falls within the range of pre-to post-fire bias shifts across burned pixels
where land cover conversions were observed. This indicates that fire impacts on Noah-MP skill in simulating
DSD are generally spatially consistent at Johnson Creek catchment, with little sensitivity to land cover classi-
fication conversions. This finding is consistent with the corresponding analysis of the no-fire simulation (Figures
S12d-S12f in Supporting Information S1) which also shows the too-early DSD bias is reduced by 9-days from
pre-to post-fire years across pixels where no land cover conversion was observed.

Finally, we compare simulated and in situ observed snowpack at the Deadwood SNOTEL station in Johnson
Creek. Noah-MP has degraded skill in simulating snow accumulation and spring ablation in post-fire years, with
underestimates of peak SWE and spring ablation rates (Figure 11a). In pre-fire years, Noah-MP accurately
simulates peak SWE (p = 0.99 and bias = —22 mm (—2%)) (Figures 11b and 11c¢). In post-fire years, Noah-MP
maintains accurate representation of peak SWE interannual variability (p = 0.95) but has larger underestimates of
peak SWE magnitude (bias = —99 mm (—9%)). Observations show a lower multiyear average peak SWE in pre-
fire years (1,052 mm) than post-fire years (1,107 mm), whereas Noah-MP shows the opposite: a decrease from
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pre-fire peak SWE of 1,067 mm to post-fire value of 1,033 mm. This supports that fire impacts favor greater snow
accumulation in post-fire years at this location, an effect which the simulation informed with post-fire vegetation
characteristics failed to capture. Noah-MP also has degraded skill in simulating post-fire ablation rates, with pre-
and post-fire correlations of 0.95 and 0.31, respectively (Figure 11d). Furthermore, observations show higher
post-fire ablation rates compared to pre-fire years, resulting in a 4-day earlier post-fire SWE disappearance
despite greater observed SWE accumulation during post-fire years (Figure 11a). Noah-MP fails to simulate the
enhanced post-fire ablation, resulting in a larger model underestimate in mean ablation rates in post-fire years
(bias of —3.4 mm/day) relative to pre-fire years (bias of —1.5 mm/day); however, there is substantial variability in
the results with the model overestimating ablation rates in some pre- and post-fire years (Figure 11e). Results
from Figure 11 are consistent with analyses using the twin-simulation designed to neglect fire impacts on
vegetation (Figure S13 in Supporting Information S1) which indicates that updating vegetation classifications,
LAI and green fraction model inputs to reflect fire impacts does not resolve fire-induced snow modeling un-
certainties in Noah-MP at this SNOTEL site. This is partially expected because the Deadwood SNOTEL site is in
a canopy gap, and thus the bulk of the vegetated-related fire impacts to the snowpack at this site are likely from
interactions with the neighboring forested area (e.g., interception, wind patterns, and ash deposition onto snow)
which is not captured by Noah-MP.

5. Implications for Future Model Improvement

Fire-aware simulations informed with satellite-observed fire-effects on vegetation classifications, green fraction
and LAI have similar skill in simulating post-fire runoff and snowpack as the no-fire twin-simulations that do not
account for fire effects on these vegetation inputs across the study catchments. Hence, Noah-MP uncertainties
associated with simulating post-fire land surface hydrology in these snow-dominated and heavily burned
catchments are not suitably reduced by informing simulations with the satellite observed vegetation data using the
modeling approach presented in Section 2.3. Namely, Noah-MP has unresolved uncertainties in representing fire-
snow-hydrology interactions which need to be improved to accurately reflect fire impacts on runoff and snow-
pack. This finding is supported by streamflow and snowpack comparisons which reveals the LSM fails to
simulate the observed increase in ground snow accumulation and enhanced ablation rates post-fire (Figures 9-11)
which is physically and statistically consistent with errors in simulating enhanced post-fire runoff efficiency,
enhanced spring runoff and earlier peak runoff (Figures 2—8; Figure S11 in Supporting Information S1). Because
fire impacts on snow are physically consistent with vegetation disturbances, rather than soil disturbances, these
findings support that future modeling efforts aimed at improving Noah-MP skill in simulating post-fire hydrology
in snow-dominated areas may benefit from using different physics options (e.g., for dynamic vegetation) and
incorporating model developments that more accurately represent interactions between vegetation and snowpack.
This is further supported by the supplementary analyses in Figures S14 of Supporting Information S1 which
shows correcting post-fire model SWE to be consistent with in situ observed SWE (which implicitly observes fire
impacts) can substantially reduce the shift in systematic biases in annual Q-anomalies at Johnson Creek. These
results are consistent with previous research which found interactions between snow, meteorology, and vege-
tation are important sources of uncertainty in Noah-MP snow simulations over undisturbed landscapes (Abolafia-
Rosenzweig et al., 2021; Abolafia-Rosenzweig, He, McKenzie Skiles, et al., 2022; Chen et al., 2014; He
etal., 2019, 2021). We note that explicitly evaluating error sources from fire disturbances on vegetation and soil
separately is out of the scope of this analysis, and thus the relative contributions from these sources of uncertainty
remains unknown.

Despite only minor differences between fire-aware and no-fire simulations in this study; there are recent studies
which found physically-based model sensitivities to fire-adjusted vegetation and soil properties in runoff sim-
ulations (Atchley et al., 2018; Maina & Siirila-Woodburn, 2020; Wang et al., 2020). More distinct differences
from pre-to post-fire simulated hydrology reported in these previous studies, relative to those reported herein, are
likely attributable to differing study domains and potentially due to differences in land model physics. For
example, failure to simulate enhanced post-fire streamflow by Noah-MP in this study is partially due to
compensatory effects of vegetation reductions on ET, which is domain specific. Namely, in both study catch-
ments, simulations that account for fire impacts on vegetation show reductions in canopy evaporation and
transpiration, relative to no-fire simulations; however, these reductions are mostly accounted for by increases in
bare ground evaporation (Figure S15 in Supporting Information S1). Thus, additional research using Noah-MP in
other fire-effected regions across a range of climates, elevations and vegetations are required to determine the
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extent of which the results presented herein are applicable to a diverse array of fire-effected areas. For instance,
Atchley et al. (2018) and Wang et al. (2020) examine simulated fire impacts over catchments that do not receive
heavy snowfall, and thus inter-study model results are not directly comparable. However, Maina and Siirila-
Woodburn (2020) show that accounting for fire impacts on vegetation yields greater winter snowpack accu-
mulation in ParFlow—Community Land Model (Community Land Model) simulations, a fire impact which
Noah-MP does not accurately show in this study. This may be attributable to differences between the ParFlow-
CLM and the Noah-MP model physics configuration used herein; however, inter-model comparisons that are out
of the scope of this analysis are required to determine specific land model differences in simulating fire-related
sensitivities to land cover disturbance.

Our analysis did not account for fire perturbations to soil and runoff parameters (e.g., saturated hydraulic con-
ductivity, porosity, residual soil moisture content, field capacity and surface roughness) which are important to
consider when modeling fire impacts on hydrology. The choice to not perturb these parameters in this study was
made because fire impacts on snowpack evolution are likely dominated by vegetation impacts, which was a large
focus of this analysis. Updating soil and runoff parameters would not noticeably impact post-fire snow model
deficiencies presented herein which contributed largely to the model runoff uncertainties in this study. However,
fire-impacts on soil may play an important role in post-fire hydrology in these catchments, particularly at
timescales finer than those considered herein (e.g., daily), and thus will be important to evaluate in future
modeling studies that employ river routing. Augmenting Noah-MP soil and runoff parameters to reflect fire
impacts may improve model accuracy (i.e., by enhancing streamflow), but until vegetation-related uncertainties
are resolved, the associated accuracy increases are likely to be a result of compensatory errors.

Based on the results from this study, we suggest future efforts to improve post-fire simulated hydrology with
Noah-MP should attempt to resolve vegetation-related uncertainties that allow the LSM to have higher sensitivity
to fire perturbations. Then, it is necessary to quantify sensitivities of simulations to model parameters that are
altered by fires, including: (a) soil hydraulic conductivity, (b) soil bulk density, (c) infiltration/runoff partitioning,
(d) LAL (e) green fraction, (f) vegetation classifications, (g) vegetation height, and (h) snow albedo aging and
impurity parameters. Adjustments to soil hydrologic properties can be informed by observationally-based for-
mulas that relate fire severity to post-fire hydrologic properties (e.g., Ebel, 2020). Fire-induced changes to
vegetation classifications, LAI and green fraction are remotely sensed and can be used as direct inputs to Noah-
MP simulations. Noah-MP vegetation height is inferred from a look-up table based on vegetation classifications;
however, following fires these classification-based parameters should be considered adjustable. Finally, post-fire
snow albedo enhanced darkening (Gleason et al., 2013, 2019), should be accounted for either implicitly (e.g.,
using an empirical increase in snow darkening with the BATS or CLASS scheme) or explicitly (e.g., with the
SNICAR model which is being coupled with Noah-MP).

This analysis focused on two case studies where fire burned most of the study catchment areas in a single event.
Thus, although Noah-MP fire-related uncertainties reported herein were distinguishable from other sources of
uncertainty, additional analysis beyond this study is required to determine if catchments with smaller burned areas
have fire signals in uncertainty analyses. It is likely that a threshold of burn area and severity exists in which fire-
induced uncertainties are masked by other uncertainty sources. Therefore, we note value in future research that
explores how large and severe a catchment must be burned in order for LSM uncertainties from fire to be
noticeable and significant. Furthermore, future model development activities aimed toward accurately modeling
post-fire hydrology should consider Andrew's Creek and Johnson Creek as a starting point for analysis but should
use data from other fire-impacted catchments as well.

6. Conclusions

We evaluated a widely-used state-of-the-art LSM (Noah-MP) in runoff and snowpack simulations at two
representative fire-affected snow-dominated Pacific Northwest catchments: Andrew's Creek in Washington and
Johnson Creek in Idaho. These two catchments are selected across all western U.S. fire-affected catchments,
because they are snow-dominated and experienced more than 50% burning in a single fire event with minimal
burning outside of this event, allowing analyses of distinct pre- and post-fire periods. Noah-MP simulations have
a statistically significant shift to model underestimates in monthly and annual runoff anomalies from pre-to post-
fire years at both catchments. Simulations underestimate the observed increases in runoff efficiency from pre-to
post-fire years, resulting in systematic underestimates of post-fire runoff anomalies. Monthly model evaluations
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revealed key uncertainties in post-fire simulations including observed but unmodeled: increases to spring flow,
earlier peak flows, accelerated ablation rates and increased snow accumulation. We conclude that a large
contributing factor to the observed but unmodeled enhanced annual Q/P and spring flows are partially attributable
to the LSM failing to simulate deeper snowpacks that melt faster in post-fire years. In this study, simulations
designed to include fire-effects on vegetation characteristics (classification, green fraction and LAI) performed
similarly to simulations designed to neglect fire effects on vegetation, indicating that additional model en-
hancements or physics option configurations aimed at increasing LSM sensitivity to fire-perturbations to vege-
tation over snow-dominated areas are likely a valuable research endeavor.
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