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Abstract

Wildfire activity in the western United States (WUS) is increasingly impacting water supply,
and land surface models (LSMs) that do not explicitly account for fire disturbances can have
critical uncertainties in burned areas. This study quantified responses from the Weather
Research and Forecasting Hydrological modeling system (WRF-Hydro) to a suite of fire-
related perturbations to hydrologic soil and runoff parameters, vegetation area, land cover
classifications and associated vegetation properties, and snow albedo across the heavily
burned Feather River Basin in California. These experiments were used to quantify the
impacts of fire-related perturbations in model simulations under the observed meteorological
conditions during the 2000-2022 water years and determine whether applying these fire-
related perturbations enhanced post-fire model accuracy across the 11-12 post-fire months
evaluated herein. The most comprehensive fire-aware simulation consistently modelled
enhanced annual catchment streamflow (by 8-37%), subsurface flow (by 72-116%), and soil
moisture (by 4-9%), relative to the baseline simulation which neglected fire impacts.
Simulated fire-enhanced streamflow was predominately attributable to fire-induced
vegetation area reductions that reduced transpiration. Simulated streamflow enhancements
occurred throughout the water year, excluding early-summer (e.g., May-June) when the
baseline simulation modelled relatively more snowmelt and streamflow because fire
perturbations caused earlier model snow depletion. Vegetation area reductions favoured
increased model ground snow accumulation and enhanced snow ablation while imposed
snow albedo darkening perturbations enhanced ablation, ultimately resulting in similar peak
SWE and earlier snow disappearance (on average by 8-days) from the most comprehensive
fire-aware simulation relative to the baseline simulation. The baseline simulation had large
degradations in streamflow accuracy following major fire events that were likely partially
attributable to neglecting fire disturbances. Applying fire-related perturbations reduced post-
fire streamflow anomaly biases across the three study catchments. However, remaining large
post-fire streamflow uncertainties in the fire-perturbed simulation underscores the importance

of additional observationally constrained fire-disturbance model developments.
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1. INTRODUCTION

Seasonal snowpack serves as a natural water reservoir in the western United States
(WUS) where most of the streamflow originates as snow (Viviroli et al., 2007; Li et al., 2017;
Kapnick et al., 2018). Rising trends in wildfire burn area over snowy WUS regions (255
km?/year from 1984-2020; Abolafia-Rosenzweig et al., 2022a) are increasingly impacting
water supply in headwater catchments (Williams et al., 2022; Koshkin et al., 2022; Smoot
and Gleason, 2021; Kampf et al., 2022). The growing impact of wildfire on water supply is
projected to increase over the next few decades with climate projections showing 2021-2050
being twice as conducive for WUS wildfires compared to 1991-2020 (Abatzoglou et al.,
2021; Williams et al., 2022). Failure to account for fire perturbations in hydrologic and land
surface models (LSMs) that are used to inform water resources management can result in
significant post-fire inaccuracies (Abolafia-Rosenzweig et el., 2024b) and potential water
resource mismanagement. Therefore, it is increasingly important to evaluate model sensitives
to fire-related land cover disturbances and account for these impacts on water supply in
models used to inform water management decisions across the WUS.

Fire impacts on land surface hydrology are associated with complex soil-vegetation-
hydrology-meteorology interactions through fire-induced alterations to soil hydrologic
properties and the destruction and charring of vegetation. A suite of analyses have leveraged
in-situ and remote sensing observations to quantify impacts of fire-related disturbances to
streamflow (Q), evapotranspiration (ET), infiltration and soil moisture (SM), and snowpack
(Hampton and Basu, 2022; Harpold et al., 2014; Kampf et al., 2022; Koshkin et al., 2022;
Smoot and Gleason, 2021; Goeking and Tarboton, 2022; Spence et al., 2020; Niemeyer et al.,
2020; Stoof et al., 2012; Shakesby and Doerr, 2006; Martin and Moody, 2001; Moody et al.,
2008; Ebel and Martin, 2017; Ebel, 2020; Gleason et al., 2013, 2019; Ahmad et al., 2024).
Fire impacts on the terrestrial water budget are often associated with reduced infiltration,
enhanced Q, reduced ET, greater ground snow accumulation and enhanced snow ablation
favoring earlier spring snowmelt and snow disappearance. However, there is substantial
spatiotemporal heterogeneity in fire-disturbance impacts on hydrology which are dependent
on interactions among many factors including: burn area and severity, catchment size, human
management, vegetation, soil properties, meteorology, and topography (Pugh and Gordon
2013; Goeking and Tarboton 2020, 2022; Spence et al., 2020; Niemeyer et al., 2020; Atchley
et al., 2018; Partington et al., 2022; Ahmad et al., 2024). Thus, simulating post-fire hydrology
requires accurate representation of fire disturbances to the land surface in sophisticated

models that accurately represent soil-vegetation-meteorology-hydrology interactions.
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Fire effects on soil—increased bulk density, reduced pore space, and formation of a
hydrophobic layer at the soil surface—are generally associated with lower infiltration, drier
topsoil, wetter subsoil and higher runoff efficiency (Abolafia-Rosenzweig et al., 2024b; Stoof
et al., 2012; Shakesby and Doerr, 2006; Martin and Moody, 2001; Moody et al., 2008; Ebel
and Martin, 2017; Ebel, 2020). Burning of vegetation often has competing impacts on snow
and streamflow. For instance, vegetation burning contributes to greater ground snow
accumulation by reducing downward longwave radiation and precipitation interception
(Seibert et al., 2010; Harpold et al., 2014; Burles and Boon, 2011). Conversely, vegetation
burning can favour faster snow ablation and less snowpack through snow darkening from
burned debris and soot shedding from standing trees onto the snowpack, reduced shading,
and increased wind speeds and associated increases to turbulent heat flux to the snowpack
(Seibert et al., 2010; Harpold et al., 2014; Pugh and Small, 2012; Burles and Boon, 2011;
Gleason et al., 2013, 2019; Niemeyer et al., 2020; Maxwell and St Clair, 2019; Kampf et al.,
2022). Vegetation removal also has competing effects on ET through decreased transpiration
and canopy interception but increased bare ground evaporation (Bond-Lamberty et al., 2009;
Maina and Siirila-Woodburm, 2020; Abolafia-Rosenzweig et al., 2024b).

Previous studies have attempted to account for fire impacts on hydrology in simple
hydrological models (e.g., curve number-based); however, these approaches generally had
insufficient performance or were only able to provide adequate results for specific variables
(e.g., peak flow) at calibrated watersheds (Chen et al., 2013; Kinoshita et al., 2014; Wang et
al., 2020). This motivates a sophisticated physically-based approach to post-fire hydrologic
modeling, allowing in-depth mechanistic analyses that account for complex fire impacts on
hydrology. Recent modeling analyses have begun to address this gap by quantifying fire
induced uncertainties in physically-based LSM simulations (Abolafia-Rosenzweig et al.,
2024) and explicitly accounting for fire-related perturbations in these models (Atchley et al.,
2018; Li et al., 2023; Wang et al., 2020; Maina and Siirila-Woodburn, 2020; Kumar et al.,
2021). These analyses have accounted for fire-induced increases to surface soil
hydrophobicity and vegetation removal by perturbing soil hydrologic properties and
vegetation parameters and assimilating remotely sensed fire signatures. Namely, surface soil
hydrophobicity has been accounted for in previous modeling studies by applying
observationally informed empirical perturbations to the surface soil saturated hydraulic
conductivity (Ksar) (Robichaud, 2000; Blake et al., 2009; Ebel and Martin, 2017; Moody et
al., 2015) which controls the infiltration rate, or by recalibrating a model to more accurately

simulate observed post-fire streamflow (Li et al., 2022). Fire-induced vegetation reductions
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have been accounted for by informing model simulations with observed reductions to leaf
area index (LAI), vegetation height, vegetation optical depth, and imposing shifts to land
cover classifications over burned areas (e.g., forested to barren and sparsely vegetated)
(Atchley et al., 2018; Li et al., 2022; Wang et al., 2020; Maina and Siirila-Woodburn, 2020;
Kumar et al., 2021).

The overarching goals of these previous modeling studies were to: (i) quantify
changes in model skill following major fire events, (ii) quantify fire impacts on hydrology by
comparing a baseline simulation that does not account for fire impacts with a fire-aware
simulation that imposes fire-related perturbations, and (iii) determine if accounting for fire
perturbations improves post-fire model accuracy. The approach for objective (ii) is akin to
earlier paired catchment studies (e.g., Stoof et al., 2012), where a no-fire simulation is used to
represent a twin unburned catchment, and the fire-aware simulation represents the fire-
perturbed catchment. Previous model-based research found that imposing fire-related
perturbations to model simulations decreased simulated ET while enhancing surface water
flow and snow accumulation, with the magnitude and timing of these impacts largely
depending on meteorological conditions (Atchley et al., 2018; Li et al., 2022; Wang et al.,
2020; Maina and Siirila-Woodburn, 2020). Failure to adequately account for fire disturbances
increases LSM uncertainty after major fire events (Abolafia-Rosenzweig et al., 2024b),
whereas accounting for fire perturbations can enhance post-fire model accuracy for Q and ET
(Wang et al., 2020; Kumar et al., 2021 and Li et al., 2022). However, these previous
modeling studies have relied on domain-specific calibration or data assimilation and have
been performed over a small sample of study domains. Thus, further research is valuable to
work towards the development of a generalizable fire-disturbance scheme applicable to
hydrological forecasting systems can improve model accuracy across a range of fire-impacted
domains that are crucial for water and food security.

In this contemporary early-stage of physically-based post-fire land surface model
development there is a growing need to quantify the impacts of fire disturbances in model
simulations across a range of fire prone landscapes and evaluate whether accounting for these
perturbations alters post-fire model accuracy. Important gaps in this area of research are a
lack of: (a) quantifications of simulated water budget responses to incrementally applied fire-
related perturbations, (2) evaluations across a range of burned snow-dominated areas which
are critically important for water supply, and (3) evaluations using operational model systems
and configurations which can inform water management forecasting systems. This study

addresses these gaps by: (i) quantifying the impacts of fire-related perturbations in
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simulations from the operationally used WRF-Hydro modeling system across the heavily
burned and snow-dominated Feather River Basin, and (ii) evaluating whether explicitly
accounting for fire perturbations in WRF-Hydro alters simulated post-fire streamflow

accuracy.

2. Data and Methods

2.1 Study Domain

This study focused on three recently burned catchments in the Feather River Basin:
East Branch North Fork Feather (EBNFF), Middle Fork Feather (MFF), and North Fork
Feather (NFF) (Figure 1). The Feather River basin is the primary river basin for the
California State Water Project. Of the Basin’s 2.3 million acres, almost 1.6 million acres
burned between 2018 and 2022. As the source watershed for the State Water Project, fire
related impacts to hydrology could cause significant impacts to water supply operations and
deliveries to the 27 million Californians that receive State Water Project supplies. From
2018-2022, the following major fire events burned across the three study catchments in the
Feather River Basin: (i) Camp Fire which was ignited in November 2018 and burned 153,336
acres (240 square miles); (i1) North Complex Fire which was ignited in August 2020 and
burned 318,776 acres (498 square miles); (iii) Dixie Fire which was ignited in July 2021 and
burned 963,309 acres (1,505 square miles); (iv) Sugar Fire which was ignited in July 2021
and burned 105,076 acres (164 square miles); and (v) Walker Fire which was ignited in
September 2019 and burned 54,628 acres (85 square miles). There has also been burning in
the study domain excluding these major fire events. Specifically, the 2000-2022 total burn
area excluding the study fire events sums to 24% of the cumulative burn area of the 5 study
fire events (Figure S1) which may partially confound pre- to post-fire model skill
comparisons (Section 2.3 and 3.1) because there is no true pre-fire period with negligible
burning. Streamflow analyses for these three burned catchments are conducted at California
Department of Water Resources (CADWR) stream gauge stations near catchment outlets
which include: (i) North Fork Feather River at Pulga (NFP) for the NFF catchment; (ii)
Indian Creek below Indian Falls (ICR) for the EBNFF catchment; and (iii) Feather River at
Merrimac (MER) for the MFF catchment (Figure 1). Streamflow data from the NFP, ICR and
MER stations began in the 2005, 2007 and 1997 water years, respectively. Although human
management, such as diversions, are likely to impact streamflow at times, we did not

explicitly consider human impacts in model simulations. Therefore, inconsistencies between
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simulations and observations may be partially attributable to neglect of human impacts along
with other uncertainty sources including meteorological forcing, land surface input
parameters, and model physics.

The three study catchments have complex topography with minimum catchment
elevations ranging from 129 — 799 m and maximum elevations ranging from 2402 — 2741 m.
Winter is the wettest season in each study catchment, with 51-52% of mean annual
precipitation (mean annual precipitation =785, 1033 and 1239 mm in EBNFF, MFF and
NFF, respectively) falling from December — February when mean catchment temperatures are
near-zero (0.3 — 1.8°C). Thirty-three to thirty-six percent of annual precipitation fell as snow
across the study domain and only 2-3% of the annual precipitation occurs during summer
months (June — August) when human water demands tend to be greatest, highlighting the
importance of prudently storing and managing winter precipitation and snowmelt. Fall
(September—November) and Spring (March—May) snowfall are also valuable components of
the catchment-scale water resources, with 46% of annual precipitation received during Fall

and Spring and 15-16% and 35-39% of this precipitation coming as snowfall, respectively.

2.2 WRF-Hydro experiments

Simulations were generated over the study domain using the community Weather
Research and Forecasting Hydrological modeling system (WRF-Hydro; Gochis et al., 2020)
which is an open-source physics-based multi-spatial community model that relies on the
Noah-MP LSM (Niu et al., 2011; He et al., 2023) to resolve terrestrial water and energy
budgets and a terrain- and channel-routing module and a conceptual subsurface flow bucket
model to resolve streamflow. WRF-Hydro is designed for simulation, analysis, and prediction
of surface and subsurface hydrologic and energy fluxes, with particular emphasis on the
prediction of water exchanges to and from the atmosphere, across heterogeneous landscapes,
and through stream and river networks and shallow groundwater aquifers. The WRF-Hydro
system has served as the leading national hydrologic forecasting system for the U.S. National
Weather Service (i.e. the NOAA National Water Model; Cosgrove et al., 2024) as well as in
Romania, Israel, and the United Arab Emirates. Over the past two years (Water Years 2022
and 2023), the WRF-Hydro system has been implemented to provide seasonal water supply
forecasts for multiple river basins in the Sierra Nevada region of California and Nevada
assimilating real-time weather information, climate forecast data, and airborne lidar retrieved

estimates of mountain snowpack from the Airborne Snow Observatory, Inc (ASO).



WRF-Hydro simulations were run with a multi-grid structure where soils and land
cover/land use are prescribed at a 1-km spatial resolution and the model was forced with
eight surface meteorological variables (precipitation, surface air temperature, east-to-west
and north-to-south wind speed, long- and short-wave radiation, surface air pressure, and
specific humidity) from the 1-km hourly observation-constrained Analysis of Record for
Calibration (AORC; Fall et al., 2023) dataset that is used to drive the NOAA National Water
Model (NWM). Model topography was based on the 1 arc-second National Elevation Dataset
used by the National Water Model (NWM). Terrain routing processes controlling runoff and
lateral exchanges of overland flow and subsurface saturated flow were represented on a 250
m model grid. Vegetation classifications were based on 30 m data from the 2016 National
Land Cover Database (NLCD) (i.e., pre-fire classifications) and associated monthly leaf area
index (LAI) and peak annual green vegetation fraction (GVF) were based on MODIS
observed climatology from 2000-2008 which is consistent with the NWM configuration.
Physics options and land surface parameters were selected to be consistent with the
NWMvV2.1 configuration. All simulations began on Oct. 1, 1999, and were initialized with a
14-year spin-up loop generated by the baseline simulation (Table 1) from Oct. 1, 1999 - Sept.
30, 2013. We did not calibrate the model for the purpose of this study, but the NWMv2.1
model configuration which was adopted for this study used the ICR gauge as a point of
calibration during the 2009-2013 water years.

WRF-Hydro experiments incrementally introduced fire-related perturbations in a
series of simulations and used a baseline simulation with no fire perturbations for
comparisons to quantify the impact of compounding perturbations. Fire-perturbation
simulations, summarized in Table 1, incrementally applied perturbations to (i) hydrological
soil and surface water routing parameters (Section 2.2.1), (ii) vegetation area (Section 2.2.2),
(ii1) land cover classifications (Section 2.2.2), and (iv) snow albedo (Section 2.2.3). The
simulation accounting for all fire-related perturbations considered herein (Mod-
params+GVF+Veg-class+Snow-alb) applies a large range of land cover disturbances to the
model configuration; however, fire can have important impacts through other perturbations to
the land surface that are not considered in this study (Veraverbeke et al., 2012; French et al.,
2016).

We ran a series of simulations from water years 2000-2022 (Table 1) to evaluate
individual and compounding impacts of fire-related perturbations on simulated land surface
hydrology in the study domain across a range of historically observed meteorological

conditions. Although the study fire events only impacted hydrology in the post-fire 2018-
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2022 water years, we imposed fire perturbations across the full historical period to evaluate

the impacts of fire-related perturbations in WRF-Hydro simulations under the historically

observed metrological conditions, considering potential fire impacts on the Feather River

Basin water budget are likely to be sensitive to meteorological conditions. We evaluated

model outputs from each water year as an ensemble member (interpreted as the model’s

response to fire perturbations under the unique meteorological conditions of respective water

years), and the ensemble mean (i.e., multiyear average) was interpreted as the mean

simulated land surface hydrological response to the climate conditions experienced in the

study domain from 2000-2022.

Table 1. WRF-Hydro simulation experiment names and descriptions.

Experiment name

Experiment description

Baseline

“No-fire” simulation that does not account

for fire impacts

Mod-params

Parameters associated with infiltration
(REFKDT), surface roughness factor
(OVROUGHRT), and surface retention
depth factor (RETDEPRT) are adjusted
based on burn severity classification

(Section 2.2.1)

Mod-params+GVF

Simulation that modifies hydrologic soil and
routing parameters and reduces greenness
vegetation fraction (GVF) across burned

areas (Sections 2.2.1; 2.2.2)

Mod-params+GVF+Veg-class

Simulation that modifies hydrologic soil and
routing parameters, reduces GVF, and shifts
vegetation classifications across burned

areas (Sections 2.2.1; 2.2.2)

Mod-params+GVF+Veg-class+Snow-alb

Simulation that modifies hydrologic soil and
routing parameters, reduces GVF, shifts
vegetation classifications, and enhances
snow albedo degradation rates across

burned areas (Sections 2.2.1; 2.2.2; 2.2.3)
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2.2.1 Accounting for fire disturbances on hydrologic and routing parameters

Fires directly impact hydrologic and routing parameters which LSMs rely on for
accurate streamflow simulations (Verma & Jayakumar 2012). In this study we assumed fire
impacts are generally proportional to fire severity and duration (Verma & Jayakumar 2012,
Agbeshie et al. 2022). Therefore, we scale parameter adjustments by burn severity index
(BSI) classifications (see Figure 1 for burn severity classification maps). BSI classification
data used in this study are from the Monitoring Trends in Burn Severity (MTBS) dataset
when available (Eidenshink et al., 2007) and the Burned Area Emergency Response (BAER)
in instances when MTBS data was not available at the time of analysis (i.e., for post-2020
fires). These satellite-based burn-severity classification datasets record burn severity as
unburned to very low-severity, low-severity, moderate-severity and high-severity. MTBS
classifies burn severity using the differenced normalized burn ratio (AINBR), and BAER
classifies soil burn severity using the burned area reflectance classification (BARC), noting
there are known inconsistencies between BARC and fire effects on vegetation (Safford et al.,
2008) which can introduce uncertainties in post-fire simulations. We recognize that post-fire
changes in runoff generation can be highly site-specific (e.g., based on pre-fire vegetation
type, soil type, slope, fire recurrence) and can change based on time since fire and weather
conditions, but due to a lack of relevant observations to build these local relationships, in this
study we tested a simple scaling scheme based on burn severity classifications alone that
were generally consistent with previous research. We scaled the three fire-perturbed
parameters, discussed below, by a factor of 0.5 for low-severity BSI, 0.3 for moderate-
severity BSI, and 0.1 for high-severity BSI. For pixels that burned multiple times, these
multiplication factors were first multiplied together before being applied to perturb respective
parameters (e.g., if a pixel experienced a low-severity burn in one study fire event and a
moderate-severity burn in a different study fire event then the corresponding multiplication
applied to parameters was 0.5 x 0.3 = 0.15).

Ebel (2019) and Ebel and Moody (2020) suggested a field saturated conductivity
adjustment of 0.30-0.37 from pre-fire to post-fire in the near-surface soil (top 1 cm), which is
consistent with our moderate-burn severity modification of surface conductivity via the
REFKDT scaling parameter used in the WRF-Hydro infiltration excess scheme (Schaake et
al., 1996). Atchley et al. (2018) adjusted post-fire saturated hydraulic conductivity in the top
2-cm soil layer of Parflow-CLM by a factor of 0.04-0.14 for high-severity burn sites, which is
consistent with our factor of 0.1 for the high-severity class. In Atchley et al. (2018) and
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Lopez-Vicente et al. (2020), post-fire overland roughness values were set to a bare soil value
(0.011), which is slightly lower than our high-severity factor applied to the WRF-Hydro
surface roughness parameter (OVROUGHRT) for a standard evergreen needleleaf forest
type. Our moderate-severity overland roughness factor is generally consistent with a
conversion from evergreen needleleaf forest to the grassland land cover type. We did not
identify values to compare for changes due to fire to the WRF-Hydro maximum retention
depth parameter (RETDEPRT) in previous literature, so our scaling factors were set to match
the other parameter factors. Overall, this approach resulted in parameter adjustments across
all burned classes, with higher severities yielding lower infiltration, smaller potential surface
storage, and faster overland flowrate.

The primary goal of applying these parameter perturbations is to better understand
whether WRF-Hydro simulations are notably impacted by perturbations in commensurate
with fire disturbance magnitudes used in previous research. There is substantial uncertainty in
the fire-perturbations we applied to the REFKDT, OVROUGHRT, and RETDEPRT
parameters due to the large uncertainty in spatially-distributed fire-impacts on these
parameters at the catchment scale and lack of local observations of these impacts. Therefore,
the results discussed in this paper pertaining to these perturbations should be interpreted in
the context of these known uncertainties, rather than interpreting these perturbations as an

accurate representation of post-fire soil and routing parameters.

2.2.2 Accounting for fire disturbances on vegetation

Experiments designed to account for fire impacts on vegetation updated vegetation
area and land cover classification model inputs across burned pixels. Vegetation area updates
were informed by pre- to post-fire changes in satellite-monitored Fraction of
Photosynthetically Active Radiation (FPAR) from the MODIS satellite (MOD15A2; Myneni
et al., 2015). This study assumed MODIS observed changes to FPAR from pre- to post-fire
periods are consistent with green vegetation fraction (GVF) changes. This assumption is
consistent with the widely used WRF Preprocessing System (WPS) which is frequently used
to derive Noah-MP LSM inputs (Lu et al., 2021); although using FPAR as a proxy for
vegetation fraction in LSM simulations can introduce uncertainties (Filipponi et al., 2018;
Myneni and Williams, 1994). MODIS observed distinct decreases to FPAR following each
study fire event within respective fire perimeters (Figure 2). WRF-Hydro simulations
employed the Noah-MP dynamic vegetation option 4, which assumes a constant vegetation

area based on the peak GVF for respective pixels (He et al., 2023). To account for fire-
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induced reductions to GVF, we imposed the MODIS-observed fractional change to peak

annual GVF on the model input using eq. 1:

Obs _firei— ObSyre—Ffirei

_ post—fire,i pre—fire,i

GVFpost—fire,i - GVFbaseline,i + GVFbaseline,i X Obs . (Eq- 1)
pre—fire,i

where GV Fyo5t—fire,; 1s used in fire-related perturbation experiments to reflect the fire
impacted GVF for pixel i, GV Fj,qse1ine ; 15 the baseline GVF for pixel i assuming no fire
disturbance, ObSpre—fire,; 18 the multi-year median of MODIS-observed peak annual GVF
for pixel i across all pre-fire years, and Obsy st —fire,; 15 the multi-year maximum of MODIS-
observed peak annual GVF for pixel i across all post-fire years. GV Fy o5 fire; Was
constrained to not exceed GV Fpgseiine ; t0 assume that burned pixels do not have increased
vegetated area. This constraint was applied to 8% of pixels in fire perimeters, whereas the
other 92% of pixels in fire perimeters showed lower GV Fyo5;_ fire relative to GV Fygseiine-
For land cover classification shifts: pixels that experienced low-severity burning were
maintained as original baseline land cover classifications, pixels with moderate-severity
burning were updated to the grassland land cover classification, and pixels that experienced
high-severity burning were updated to the barren or sparsely vegetated classification. Shifts
to land cover classifications implicitly impact model parameters: leaf area index (LAI),
height of the canopy, maximum rate of carboxylation at 25°C, and the overland flow
roughness coefficient. These parameters were derived from the default Noah-MP parameter
table which is publicly available: https://github.com/NCAR/wrf hydro nwm public. These
assumed fire-induced land cover classification shifts are less aggressive than previous
modeling analyses that account for fire impacts on hydrology, which imposed homogenous
shifts to the barren or sparsely vegetated classification over entire burn scars (Maina and
Siirila-Woodburn, 2020; Li et al., 2023). The land cover updates applied herein are designed
to roughly represent fire-induced land cover shifts because post-fire observed land cover
classifications (e.g., from the MODIS MCD12 products) were not available at the time of
experimentation. This source of LSM and hydrologic model uncertainty motivates up-to-date
monitoring and publishing of land cover classification and vegetation data that can inform

operational hydrologic modeling systems over burned areas.
2.2.3 Accounting for fire-enhanced snow albedo degradation
Snow albedo tends to degrade faster following fires due to soot and burned debris

shedding from standing trees onto the snowpack which darkens the snow resulting in reduced
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albedo (Gleason et al., 2013, 2019; Gleason and Nolin, 2016). Additionally, less shading
results in more solar radiation being absorbed by the snowpack which also favours faster
snow albedo degradation (Harpold et al., 2014). Fire-enhanced snow albedo degradation,
which was accounted for in the most comprehensive WRF-Hydro experiment (Mod-
params+GVF+Veg-class+Snow-alb), was designed to allow the model simulated albedo to
degrade to the mean observed snow albedo from a late spring ASO snow survey within the
Dixie Fire burn scar (Painter et al., 2016). Specifically, a spring post-fire ASO fly over in the
Feather River Basin (March 31 — April 2, 2022) observed substantially lower snow albedo
over burn scars (mean and standard deviation = 0.40 and 0.15) relative to measurements over
unburned areas (mean and standard deviation = 0.79 and 0.14), resulting in large
systematically positive snow albedo biases in the baseline WRF-Hydro simulation within
burn scars (Figure 3; mean [standard deviation] of baseline snow albedo bias = 0.45 [0.15]).
We chose to inform the fire-aware snow albedo parameter updates using this late-season
ASO survey because it was difficult to inform snow albedo parameter updates using earlier
surveys in February and March which were more significantly impacted by fresh snowfall,
and thus had more noise regarding fire-enhanced snow albedo degradation. The mean and
standard deviation for observed visible snow albedo from the four Feather River Basin ASO
surveys in 2022 over burned and no-burn areas are recorded in Table S1. We account for fire-
enhanced snow albedo degradation by implementing a code update into the WRF-Hydro
model that adjusted parameters controlling the visible snow albedo degradation rate in the
BATS ground snow albedo scheme (https://github.com/RAbolafiaRosenzweig/WRF-Hydro-
BATS fire enhanced snow_albedo_ degradation), which is the most sophisticated snow
albedo physics option in the open-source Noah-MP LSM that computes ground snow albedo
for direct and diffuse radiation in visible and NIR bands (Yang et al., 1997).

BATS computes broadband ground snow albedo (a;) as the average of visible (ay 5; A
<0.7 pm) and NIR (apyps; A = 0.7 um) snow albedo:

as = 0.5(ays + anr;s) (Eq. 2)
where,
ays = Wairect Qv s—airect ¥ Waifruse@v,s—daifruse (EQ.3)
anirs = WairectAnirs-airect + Waiffusenirs—aiffuse  (EQ. 4)

Wairect and Wy ryqe are the fractions of total transmitted solar radiation that is direct and
diffuse, respectively. Direct visible (@y s—girect) and NIR (@ s—girect) Snow albedos are
solved as:
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aV,s—direct = aV,s—diffuse + VDIR]CZ,S(1 - aV,s—diffuse ) (Eq- 5)
ANIR s—direct = aNIR,s—diffuse + NIRDIRfZ,s(l - aNIR,s—diffuse ) (Eq- 6)

Ay s—dif fuse aNd Anr s—_aiffuse are diffuse visible and NIR albedo, respectively. Vpir and
NIRpir are the cosZ factor for direct visible and NIR snow albedo, respectively. f; s is a
factor, ranging between 0 and 1, to parameterize the effect of solar zenith angle on snow
albedo. Diffuse albedos are calculated as:

Qv s—diffuse — aV,new(l - Vagefage) (Eq. 7)

ANIRs—diffuse = ANiRnew(1 — NIRggefage) (Eq. 8)
where @y e and Ay g ney are fresh-snow visible and NIR albedo with solar zenith angle
less than 60°. f, 4., ranging between 0-1, is a snow-age factor designed to account for the
effects of snow grain growth from vapor diffusion, additional effects of snow grain growth
near or at the freezing of meltwater, and snow impurification from dirt and soot (i.e., set
equal to the dirt-soot parameter in the Noah-MP parameter table). Details on fg 4. calculations
are provided in Abolafia-Rosenzweig et al. (2022b).

Sensitive snow albedo parameters that were adjusted were informed by a previous
Noah-MP BATS snow albedo sensitivity analysis (Abolafia-Rosenzweig et al., 2022b).
Pixels which experienced high-severity burning increased the dirt-soot and Vage parameters to
0.6 and 0.9 allowing snow albedo to degrade to 0.4 during a 20-day snow free period, which
is equal to the mean burn scar snow albedo observed by the ASO measurements (Figure 3).
Pixels which experienced moderate-severity burning adjusted dirt-soot and Vage to 0.5 and
0.67 which resulted in snow albedo degradation to 0.57 in a 20-day snow free period. Pixels
which experienced low-severity burning adjusted dirt-soot and Vage to 0.4 and 0.43 which
resulted in snow albedo degradation to 0.71 in a 20-day snow free period. Pixels that were not
burned in the study fires used default dirt-soot and Vage values (0.3 and 0.2, respectively)
resulting in relatively slower snow albedo degradation over no-burn areas: reducing to 0.84
over a 20-day snow free. Parameter adjustments for moderate- and low-severity burning are
calculated using linear interpolation between the adjustment for the high-severity and the
baseline parameters which assumes snow albedo degradation increases with increasing burn
severity; however, this assumption and corresponding linear interpolation are largely
uncertain and requires in-depth quantifications of the influence of burn-severity on surface
snow albedo degradation that is out of the scope of this modeling-focused study.

These snow albedo parameter adjustments have substantial uncertainty and are

primarily implemented to roughly reflect the impact of fire-enhanced snow albedo
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degradation in burned areas. For instance, relationships between burn severity and albedo
degradation vary as a function of vegetation type in nature because severely burned
grasslands will not shed soot and burned debris on post-fire snowpack as observed in burned
forests. Furthermore, the average snow albedo within burn scars from a single ASO flyover
does not provide a robust presentation of spatiotemporal impacts of fire on snow albedo. Due
to the uncertainty related to this snow albedo parameterization, we implement the fire-aware
snow albedo parameterization in WRF-Hydro to roughly account for fire-enhanced snow
albedo degradation in a manner that allows the model to simulate degraded snow albedo to be
consistent with a snapshot of spatially averaged ASO monitored snow albedo. This
representation likely does not adequately simulate true spatiotemporal variability of snow
albedo in burn scars nor is it likely to accurately simulate the true corresponding hydrologic
impacts so we encourage future research to evaluate pathways for more sophisticated post-
fire snow albedo degradation model updates (e.g., Gleason and Nolin, 2016) that can be

implemented in operational modeling systems.

2.3 WRF-Hydro streamflow validation

Validation of pre- and post-fire simulations compared simulated and in-situ observed
Q anomalies at a daily timestep. This validation first quantified the accuracy of baseline Q
anomalies during pre-fire periods to establish a baseline performance in which post-fire
changes in skill were compared with. Post-fire validations compared skill from the baseline
and the most comprehensive fire-adjusted simulation (i.e., Mod-params+GVF+Veg-
class+Snow-alb) to determine whether accounting for fire perturbations in the model reduces
post-fire model biases and uncertainties.

Prior to comparing modelled and observed Q, we converted respective timeseries to

standardized anomalies using eq. 2:

— Qt_Qprefire (Eq 9)

Q Iyt
anomaty, OQ-prefire

where QO 1s Q from day ¢, Qpre fire 18 the pre-fire time series mean, and 0g_prefire 18 the pre-
fire time series standard deviation. Because Q time series are not normally distributed, the
anomaly conversion was exclusively used to remove pre-fire biases between simulated and
observed time series (mean and variance), rather than interpretation of anomaly magnitude in
a z-score context (Williams et al., 2022; Abolafia-Rosenzweig et al., 2024b). It is important

to remove background systematic biases to allow isolation of fire-induced discrepancies
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rather than analysing results confounded by systematic biases between simulations and

observations that are not related to fire-disturbances. This standardized approach limits the
meaning of bias and NSE, and thus bias and NSE skill scores reported in this paper should
primarily be used in the context of comparisons between fire-aware and no-fire simulations

and for skill score shifts from pre- to post-fire periods.

Statistical differences in biases between the baseline and fire-aware simulations were
computed with the widely used 2-tailed Wilcoxon rank sum test. Statistical differences in R?
and NSE were computed with permutation testing. Permutation tests are based on resampling
the original data without replacement to test the hypothesis of no statistical difference
between skill scores calculated from different simulations. This is performed by: (i)
calculating the absolute difference between skill scores, (ii) pooling data from comparison
datasets together, (iii) shuffling the data randomly and calculating differences in skill scores
between random samples equivalent to the length of the original samples, (iv) repeating step
(ii1) 10,000 times, and (v) calculating the proportion of shuffled absolute differences in skill

scores that exceed the originally calculated skill score differences when data was organized.

Pre-fire validation periods were selected to begin either at the start of the 2000 water
year or at the start of the in-situ record (if observations were not available starting at Oct. 1,
1999) and span until the end of the month prior to the ignition of the first study fire event in
respective catchments. Post-fire periods were selected as periods starting on the first of the
month after the containment of the latest study fire event in respective catchments and range
until the end of the study period (Sept 30, 2022). Post-fire evaluations are limited because
they are relatively short (11-12 months) and dry (negative observed mean streamflow
anomalies). Thus, the post-fire model validations did not consider wet regimes or allow
consideration of uncertainties related to vegetation regrowth. Pre- and post-fire period
selections only considered the five major fire events shown in Figure 1, but due to burning in
the study domain excluding these major fire events (Figure S1) the pre- to post-fire model
skill comparisons may be confounded by the fact that there is no true pre-fire period with
negligible burning. However, comparisons between these periods are still valid and useful to
determine the impacts of these relatively major fire events on model skill. Pre-fire periods for
MFF, NFF and EBNFF were selected as: 10/1999-07/2020, 12/2004-06/2021, and 06/2007-
08/2019, respectively, with varying start dates based on observation data availability. Post-
fire periods for MFF, NFF and EBNFF were selected as: 11/2021-09/22, 10/2021-09/2022,
and 10/2021-09/2022, respectively.
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We reported widely used metrics from previous hydrologic model evaluations to
quantify model skill in this study: mean anomaly bias, the coefficient of determination (R?)
and the Nash Sutcliffe efficiency (NSE) (Moriasi et al., 2007, 2015). Skill categorizations are
based on Moriasi et al. (2015): R*>0.85, 0.70<R?<0.85, 0.50<R?<0.70 and R?><0.50 are
considered very good, good, satisfactory and not satisfactory performance, respectively, and
NSE>0.80, 0.70<NSE<0.80, 0.50<NSE<0.70 and NSE<0.50 are considered very good, good,

satisfactory and not satisfactory performance, respectively.

2.4 Water budget sensitivities to fire disturbances

We evaluated the response of the WRF-Hydro simulations to fire-related
perturbations by quantifying differences between fire-adjusted and baseline simulations
(Table 1) for land surface water budget components: Q (i.e., routed surface flow + routed
subsurface flow), subsurface flow, ET and its partitions (transpiration (Exan), evaporation of
canopy-intercepted water (Ecan), and bare ground evaporation plus sublimation (Edir)), snow
water equivalent (SWE), and soil moisture (SM). Catchment-scale Q impacts were evaluated
at CADWR gauge locations (Figure 1), whereas other components were evaluated at the
catchment scale using spatial averaging. Snow ablation rates were calculated following the
methodology presented in Xiao et al. (2021), as the rate of change in SWE between 80% to
20% of peak SWE during the falling limb of the annual SWE cycle. Simulated day of snow
disappearance (DSD) was defined as the first day when SWE=0 after peak SWE for

respective water years at respective model pixels.

3. RESULTS

3.1 WRF-Hydro streamflow validation

In the three study catchments the baseline simulation had good to very good pre-fire
skill simulating daily (R* = 0.72-0.87; NSE =0.70-0.87) and monthly (R? = 0.79-0.93; NSE
=0.78-0.93) streamflow anomalies at each study catchment (Moriasi et al., 2015) (Figure
4a,c,e; Figure S2a,c,e). In post-fire periods, skill from the baseline simulation only provided
satisfactory performance at the MFF catchment for R? (R?>=0.61) but unsatisfactory
performance for R? at NFF and EBNFF (R?<0.5) and unsatisfactory NSE across all three
study catchments (NSE<O0.5) for daily comparisons (Moriasi et al., 2015) (Figure 4b,d,f). The

baseline simulation also simulated consistently negative post-fire biases for streamflow

18



anomalies (Figure 4; Figure S2) and had consistently degraded skill in monthly comparisons
as well (R?=0.00-0.66; NSE = -1.56-0.61). Accounting for fire-related perturbations in the
Mod-params+GVF+Veg-class+Snow-alb simulation significantly (p<0.001) reduced post-
fire daily Q anomaly biases at each catchment (by 0.03 to 0.15) and significantly (»<0.001)
increased post-fire model R? and NSE to a satisfactory 0.63 and 0.60 at the NFF catchment,
relative to the baseline simulation (Figure 4b,d,f). Likewise, monthly comparisons also
showed improved post-fire streamflow biases in the Mod-params+GVF+Veg-class+Snow-
alb simulation relative to the baseline simulation (Figure S2b,d,f). To further evaluate
whether the imposed fire perturbations allow model simulations to be more physically
consistent with post-fire terrestrial hydrology, we evaluated whether the fire-aware
simulation has lower skill in simulating pre-fire streamflow than the baseline simulation.
Figure S5 shows that the Mod-params+GVF+Veg-class+Snow-alb consistently had lower
skill than baseline simulated Q in pre-fire years; however, only differences in NSE from
baseline and Mod-params+GVF+Veg-class+Snow-alb simulations at the NFF and EBNFF
catchments were statistically significant (p<0.01). Overall, consistently reduced post-fire
anomaly underestimates from the fire-aware simulation may indicate that the imposed fire-
related perturbations can improve the model’s ability to simulate fire-enhanced streamflow;
however, instances of similar skill scores between Mod-params+GVF+Veg-class+Snow-alb
and baseline in pre- and post-fire periods indicate that the fire-treatments considered herein
likely do not adequately resolve fire-related model uncertainties and more sophisticated
observationally-constrained parameterizations of soil properties, snow albedo, and vegetation
classifications should be considered in future model developments.

At the MFF catchment, a key discrepancy between simulated and observed post-fire
Q-anomalies occurred during the snow accumulation period (Dec. 2021 — Jan. 2022) when
observations showed substantially larger streamflow anomalies relative to the Mod-
params+GVF+Veg-class+Snow-alb and baseline simulations (Figure S3a). During this
period, both observed and simulated spikes in Q-anomalies responded to precipitation events,
with observed anomalies responding with higher sensitivity. These discrepancies in Q-
anomaly spikes may be attributable to combinations of uncertainties in: (i) rain/snowfall
magnitude and partitioning, (ii) rain-on-snow runoff and melt responses, and (iii) post-fire
soil infiltration alterations. The most obvious discrepancies between simulated and observed
Q-anomalies occurred in the EBNFF catchment where observations had more acute
streamflow responses to precipitation events than model simulations (Figure S3c). For

example, in late-October, observations showed a large spike in Q-anomalies in response to a
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precipitation event, whereas simulations showed a minor and slow response in Q-anomalies
while simulating increases in soil moisture and SWE. This indicates that in the model, the
precipitation largely contributes to SWE and soil moisture instead of Q (as observed). This is
consistent with potential uncertainties in rain-snow partitioning, soil moisture, and post-fire
soil infiltration alterations. Throughout the EBNFF snow accumulation period, observed Q-
anomalies had acute responses to precipitation events whereas the model fails to simulate
these streamflow spikes. This further supports that the post-fire uncertainties are partially
attributable to uncertainties in meteorological forcing (e.g., incorrect rain/snow partitioning)
or uncertain rain-on-snow runoff and melt responses. Accounting for fire perturbations
provided the largest improvement at the NFF catchment (Figure 4d). The largest post-fire Q-
anomaly error for the baseline simulation at NFF was in response to a late-October
precipitation event when observations show a large spike in Q-anomalies up to 5.0, whereas
the corresponding baseline simulated Q-anomaly spike only reached 1.2 (Figure S3b).
Accounting for fire-impacts in the Mod-params+GVF+Veg-class+Snow-alb simulation
allowed the model to better capture this Q-anomaly spike, reaching 5.5. More minor
discrepancies between baseline and Mod-params+GVF+Veg-class+Snow-alb simulated Q
occurred in the spring when the fire-aware simulation melted snow at a faster rate and
simulated higher streamflow. However, observed Q-anomalies did not show the signal of
fire-enhanced spring ablation and streamflow, but it is difficult to determine whether this is
due to lack of fire impacts on snow and Q in nature, or whether the observations may be

impacted by other unmodeled factors such as human diversions of surface water.

Comparing multidecadal pre-fire periods to relatively short and dry post-fire periods
is useful to provide historical context of post-fire skill. However, further evaluations are
required to determine whether relatively lower skill in post-fire periods was likely to have
been induced by fire-related uncertainties. Previous research has established that LSMs have
difficulty simulating water-limited ET reductions (Ukkola et al., 2016; Mu et al., 2021; Li et
al., 2021) so we consider whether the degraded model performance in post-fire years shown
in Figure 4 is attributable to a small post-fire data record during a relatively dry and water-
limited period (mean post-fire observed Q-anomalies = -0.16 to -0.14 varying by catchments)
with observed peak Q anomalies that ranged from 1.98-4.95. Figure S4 shows pre-fire model
evaluations from the baseline simulation only considering dry pre-fire periods comparable to
respective post-fire periods: same start month and number of days with valid observations as

corresponding post-fire periods with a negative mean daily observed Q-anomaly and similar
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peak flow (see Figure S4 for further details). The baseline simulation has higher skill in two
out of three of the hydrologically similar pre-fire periods relative to baseline post-fire skill at
the MFF catchment. The one “pre-fire” period at MFF (Nov. 1, 2009 — Sept. 30, 2010) when
the baseline simulation had lower skill than the corresponding post-fire period followed
nearly 40,000 acres of burning in 2008 (Figure S1) which may confound the pre- to post-fire
skill comparison because the pre-fire skill can be impacted by fires other than the five study
fire events. The baseline skill during hydrologically similar pre-fire periods was consistently
better than corresponding post-fire skill at the NFF and EBNFF catchments, particularly for
NSE and bias. For instance, post-fire Q-anomaly underestimates (biases =-0.16 - -0.21)
largely exceeded the pre-fire bias magnitudes during comparable periods (biases = -0.03 —
0.10). Relatively better skill from the baseline simulation during hydrologically similar pre-
fire periods, compared to post-fire baseline skill, further supports that a portion of the
degraded pre- to post-fire model skill and bias changes in the baseline simulation are likely

due to fire disturbances that are not accounted for in the baseline simulation.

3.2 Fire-related disturbance impacts to the terrestrial water budget

3.2.1 Impacts on streamflow and subsurface flow

The most comprehensive fire-aware experiment (Mod-params+GVE+Veg-
class+Snow-alb) simulated enhanced annual Q by 6-115% (multiyear mean = 37%), 3-18%
(multiyear mean =8%), and 4-28% (multiyear mean = 16%) at the EBNFF, MFF, and NFF
catchments, respectively, relative to the baseline simulation (ranges are from temporal
variability across 2000-2022 water years) (Figure 5; Figures S6-S9). There were minimal
differences in simulated annual Q between the Mod-params and baseline experiments
(multiyear-mean differences are <0.1% in each study catchment). Fire-induced reductions to
GVF accounted for the majority of the fire-enhanced Q: differences in annual Q between the
Mod-params+GVF and baseline experiments were 7-113% (multiyear mean = 38%), 3-18%
(multiyear mean = 9%), and 5-27% (multiyear mean = 16%) at EBNFF, MFF, and NFF
catchments, respectively (Figure 5; Figures S6-S9). After accounting for GVF reductions,
altering vegetation classifications only has a relatively minor impact on annual catchment
discharge, with minor differences in annual Q between Mod-params+GVF+Veg-class and
Mod-params+GVF simulations (multiyear mean difference of <0.2% across each study
catchment). Enhancing snow albedo degradation rates in burned areas did not notably alter

annual Q compared to simulations that did not consider fire-impacts on snow albedo:
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multiyear mean differences between Mod-params+GVF+Veg-class+Snow-alb and Mod-
params+GVF+Veg-class annual Q were <1% at each study catchment.

At the daily timescale, there were typically minimal differences in Q between the
Mod-params and baseline experiments; however, modified parameters favoured substantially
enhanced streamflow during some precipitation events with differences in daily Q between
the Mod-params and baseline experiments exceeding 10% of mean daily baseline Q during 8
days, 64 days, and 24 days in the 23-year simulations at the EBNFF, MFF, and NFF
catchments, with peak changes in daily Q reaching 695-1032 cfs (Figures S7-S9). Mean
differences between daily Q from Mod-params+GVF and baseline experiments were
substantial: 25% (164 cfs), 7% (113 cfs), and 14% (484 cfs) at the EBNFF, MFF, and NFF
catchments, respectively. Imposing fire-related vegetation classification shifts resulted in
minor differences between Mod-params+GVF+Veg-class and Mod-params+GVF at the
daily timescale; namely, enhanced Q from Mod-params+GVF+Veg-class from January
through March (by 1-2% across catchments) and relatively lower Q from Mod-
params+GVF+Veg-class from May through June by 1-4% across catchments. These
differences are physically consistent with landcover classification shifts favoring enhanced
ablation and reduced SWE (Section 3.2.3). Enhancing snow albedo degradation rates in
burned areas enhanced Q from January through March (by 2-5% across catchments) and
reduced Q from April through June (by 2-8% across catchments), based on differences
between Mod-params+GVEF+Veg-class+Snow-alb and Mod-params GVF+Veg-class
simulations. These streamflow differences are physically consistent with enhanced snow
ablation during accumulation and ablation seasons from simulations that perturbed snow
albedo parameters in burned areas (Section 3.2.3). Overall, the cumulative impacts of fire on
Q accounted for in the Mod-params+GVF+Veg-class+Snow-alb, relative to baseline,
favoured persistently enhanced daily Q; however, Mod-params+GVF+Veg-class+Snow-alb
tended to simulate minor reductions in late spring to early summer Q (varying by catchment)
due to earlier snow disappearance relative to the baseline simulation (Figures 5; Figure S7-
S9).

Mod-params+GVF+Veg-class+Snow-alb simulated enhanced daily subsurface flow
(by 72-116% across catchments) relative to the baseline simulation; however, faster snow
depletion in the fire-aware simulation resulted in notable subsurface flow reductions from
mid-April through mid-June due to accelerated snow disappearance (Figure 6; Figure 10).
Mod-params simulated slightly reduced daily subsurface flow relative to baseline (mean

catchment reductions <1% across catchments), indicating modelled subsurface flow is
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relatively insensitive to the hydrologic parameter modifications imposed in this study (Figure
6). Mod-params+GVF simulated substantially greater subsurface flow than baseline by
114%, 70%, and 116% at EBNFF, MFF and NFF catchments, respectively. Accounting for
fire-related vegetation classification shifts in Mod-params+GVF+Veg-class did not
substantially impact annual subsurface flow relative to Mod-params+GVF, with <1%
reductions across each catchment for the total water year, a 2% increase from January
through March and then a 4% reduction from April through June. These subsurface flow
differences are physically consistent with Mod-params+GVF+Veg-class simulating
enhanced snow ablation relative to the Mod-params+GVF simulation (Section 3.2.3). Mod-
params+GVF+Veg-class+Snow-alb simulated enhanced subsurface flow relative to Mod-
params+GVF+Veg-class throughout the water year until early- to mid-April when
accelerated snow depletion from enhanced snow albedo degradation caused earlier snow

disappearance and in turn reduced subsurface flow.

3.2.2 Impacts on evapotranspiration

The Mod-params+GVF+Veg-class+Snow-alb experiment simulated reduced annual
ET by 17-31% (multiyear mean = 22%), 11-23% (multiyear mean =15%), and 20-36%
(multiyear mean = 26%) at EBNFF, MFF, and NFF catchments, respectively, relative to the
baseline simulation (ranges from temporal variability) (Figure 7). There were minimal
differences in annual ET between the Mod-params and baseline simulations (multiyear-mean
differences are <0.1% at each study catchment). Fire-induced reductions to GVF accounted
for the bulk of ET reductions (Figure 7). Minor differences between ET from Mod-
params+GVF+Veg-class and Mod-params+GVF experiments were predominately caused by
enhanced Edir in the Mod-params+GVF+Veg-class simulation which partially countered the
fire-induced ET reductions (Figure S10). Imposing enhanced snow albedo degradation within
burned areas in Mod-params+GVF+Veg-class+Snow-alb slightly altered ET timing relative
to the Mod-params+GVF+Veg-class simulation. Namely, enhanced snow albedo degradation
caused enhanced solar radiation absorbed by the snowpack which increased sublimation in
snow covered areas and decreased soil evaporation in warm months (e.g., May through
August) due to earlier snow disappearance (Figure 7; Figure S11).

Mod-params+GVF+Veg-class+Snow-alb simulated ET reductions across 91-100% of
burned pixels in fall, winter, and summer, relative to baseline (Figure 8). In spring, when fire-
related Eqir enhancements peaked (Figure 9), there was spatial heterogeneity in ET

differences with 34% of burned areas showing enhanced ET from the Mod-

23



params+GVF+Veg-class+Snow-alb experiment, relative to the baseline simulation (Figure
8g). One-hundred percent of the burned pixels with fire-enhanced spring ET had enhanced
Eair with a robust Pearson correlation between increased spring Eqi- and increased spring ET
(r=0.82, p<0.01), supporting a strong control on spring ET from Euir. There was a transition
period in mid-May when fire-related reductions to Ena tended to outweigh enhanced Euir,

followed by fire-related ET and Eran reductions peaking in summer (Figures 7-9).

3.2.3 Impacts on snowpack

Mod-params+GVF+Veg-class+Snow-alb simulated heterogeneous directional
changes to peak SWE relative to the baseline simulation: mean catchment peak SWE
differences ranging from -4% to 0.3% (Figure 10) and the burned pixel peak SWE difference
interquartile range (IQR) was -3 to 8%. These heterogeneous impacts were largely
attributable to heterogeneity in vegetation classification and snow albedo parameter
alterations and the competing impacts of perturbations. Namely, Mod-params+GVF
simulated increased peak SWE in 95% of instances (catchment mean peak SWE increase = 8-
14%), relative to baseline, indicating that reducing vegetation area generally favoured greater
snow accumulation. Mod-params+GVF+Veg-class simulated peak SWE decreases in 19% of
instances relative to baseline, with 95% of these instances having a high burn severity and
baseline classifications of evergreen needleleaf or mixed forest. Conversely, only 12% of the
pixels that showed increased peak SWE from the Mod-params+GVF+Veg-class experiment
had baseline classifications of evergreen or mixed forest and experienced a high burn
severity. This indicates that imposing conversions from forested to barren or sparsely
vegetated classifications for the high-burn severity class was a key contributor to
heterogeneous fire-related impacts on peak SWE. Mod-params+GVF+Veg-class+Snow-alb
simulated decreased peak SWE in 36% of instances, with a higher tendency for peak SWE
decreases at moderate and high-severity burned pixels (48-50%) relative to low-burn severity
pixels (11%). Thus, the burn-severity dependent treatment of snow albedo parameter
perturbations, which tended to counter enhanced SWE from GVF reductions, also contributed
to heterogeneous fire-related impacts on SWE.

The Mod-params+GVF+Veg-class+Snow-alb simulation consistently modelled
earlier snow disappearance relative to the baseline simulation: mean, [IQR] DSD difference =
-8, [-13 to -1 days]. Mod-params+GVF+Veg-class+Snow-alb simulated higher winter and
spring SWE in multiyear averages at 54% and 40% of burned pixels, relative to baseline

(Figure 11). Fire-related perturbations causing a transition from slightly enhanced winter
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SWE to reduced spring and summer SWE is also shown in the catchment scale multiyear-
averaged timeseries. This transition reflects the competing impacts of fire-related
perturbations favoring enhanced ground snow accumulation due to reduced canopy
interception and enhanced ablation due to greater solar radiation being absorbed by the
snowpack in response to vegetation reductions and snow albedo degradation (Figure 10).
GVF reductions tended to enhance melt season snow ablation rates (by 0.15 — 0.38 mm/day
across catchments). This was caused by relatively more incoming solar radiation being
partitioned to latent heat flux to melt and sublimate the snowpack and less solar radiation
partitioned to sensible heat flux to increase the vegetation temperature because a relatively
larger portion of a model pixel was categorized as ground-snow-covered rather than
vegetated after reducing GVF. Competing impacts of GVF reductions on snow, favoring
greater peak SWE and faster ablation, ultimately results in the Mod-params+GVF tending to
simulate a later day of snow disappearance (DSD) (mean, [IQR] DSD difference = 2.8, [-1 to
6] days across burned pixels) relative to baseline. Thus, the impact of GVF reductions on
increased snow accumulation tended to outweigh the impact of accelerated snow ablation
when considering DSD. Fire-related landcover classification shifts in the Mod-
params+GVF+Veg-class simulation enhanced ablation, resulting in reduced peak SWE
(catchment average peak SWE reductions = 3-5%) and a tendency for earlier snow
disappearance (mean, [IQR] DSD difference = -2.9 days, [-4 to 0 days]), relative to the Mod-
params+GVF simulation. Imposing fire-related acceleration of snow albedo degradation in
the Mod-params+GVF+Veg-class+Snow-alb simulation further enhanced snow ablation,
favouring reduced peak SWE (catchment average peak SWE reductions = 6-11%) and earlier
snow disappearance (mean, [[QR] DSD difference =-7.7 days, [-11 to -2 days]) relative to

the Mod-params+GVF+Veg-class simulation.

3.2.4 Impacts on soil moisture

The Mod-params+GVF+Veg-class+Snow-alb experiment simulated a 4-9% soil
moisture increase in the multiyear mean daily catchment comparisons, relative to the baseline
simulation (Figure 12). Fire-related perturbations enhanced soil wetness in the falls when
>99% of burned pixels had increased soil moisture, and 91% increased by at least 10%
(Figure 13a,e). Fire-related perturbations enhanced soil wetness in winters when >99% of
burned pixels had increased soil moisture, but only 36% increased by at least 10% (Figure
13b,f). Fire-related perturbations enhanced soil wetness in summers when >99% of burned

pixels had increased soil moisture, and 48% increased by at least 10% (Figure 13d,h). Fire-
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related perturbations had a lesser impact on soil wetness in springs when 73% of burned
pixels had increased soil moisture and <1% increased by at least 10% (Figure 13c,g).
Simulated soil moisture was not notably impacted by the hydrologic parameter adjustments
made in this study, and simulated soil moisture was most impacted by the GVF reductions
(Figure 12). Namely, the Mod-params+GVF experiment simulated 4-9% wetter soil moisture
relative to the baseline simulation based on multiyear-average daily comparisons across the
three catchments (Figure 12), with enhanced soil wetness being attributable to reduced ET
(Sect. 3.2.2). The seasonality of enhanced soil wetting from GVF reductions (i.e., Mod-
params+GVF minus baseline) is characterized as: enhanced wetting peaking in Fall (by 11-
19%), then reduced soil wetting impacts in winter (by 2-9%), minor differences in spring (by
0.4-1.2%) and then wetter soil moisture in the summer (by 4-7%) (Figure 12). Accounting for
fire-related changes to vegetation classifications and snow albedo generally resulted in minor
adjustments to soil moisture relative to the Mod-params+GVF experiment. Differences in
soil moisture between Mod-params+GVF+Veg-class+Snow-alb and Mod-params+GVF are
characterized as slightly increased wetness when snow albedo darkening enhanced ablation
from January through March and slightly increased dryness from April through June because
Mod-params+GVF+Veg-class+Snow-alb simulated relatively faster snow depletion (Figures
10,12).

4. DISCUSSION

The WRF-Hydro baseline simulation had significant post-fire streamflow anomaly
underestimates which is consistent with Abolafia-Rosenzweig et al. (2024b) who found pre-
to post-fire bias shifts in the Noah-MP LSM. Post-fire bias reductions from the fire-aware
Mod-params+GVF+Veg-class+Snow-alb simulation supports that fire-related model
perturbations played a significant role in post-fire model accuracy. Despite lower biases
during post-fire periods from this fire-aware simulation, there is still inadequate post-fire
accuracy, emphasizing the continued need to focus on land surface and hydrological model
accuracy and improvements in burned areas. Therefore, future improvements in post-fire
LSM accuracy are required to provide reliably accurate depictions of fire impacts to the
terrestrial water budget.

WRF-Hydro simulations were largely impacted by vegetation area reductions, with
smaller impacts corresponding to adjustments made to the hydrologic soil and routing
parameters, land cover classifications, and snow albedo parameters. Simulations that

accounted for vegetation area reductions tended to simulate enhanced annual streamflow and
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reduced annual ET due to transpiration reductions. These results are consistent with previous
analyses which found fire disturbances favour enhanced streamflow (Williams et al., 2022;
Abolafia-Rosenzweig et al., 2024b; Stoof et al., 2012), although these results are likely
domain-specific with prior research finding fire-disturbances tend to favour suppressed
streamflow in dry water-limited watersheds (Goeking and Tarboton, 2022). This analysis
supports that fire-induced ET reductions exert greater control on soil moisture and subsurface
flow than fire-induced changes to soil hydrophobicity in the WRF-Hydro modelling system,
which result is consistent with previous research (Bart and Tague, 2017; Cardenas and
Kanarek, 2014). However, it is difficult to determine whether the small model response to
hydrologic and routing parameter perturbations shown herein are reasonable or potentially
model scheme specific. Relatively larger model responses to GVF reductions shown in this
study, compared to the previous research conducted by Abolafia-Rosenzweig et al. (2024b),
are likely attributable to the dynamic vegetation option used in Noah-MP LSM simulations.
Namely, this study imposed GVF reductions to the peak GVF using Noah-MP’s dynamic
vegetation option 4 (i.e., the default Noah-MP Dynamic Vegetation option), whereas
Abolafia-Rosenzweig et al. (2024b) forced simulations with MODIS-observed GVF which

inherently accounted for GVF reductions using dynamic vegetation option 7 (He et al., 2023).

5. CONCLUSIONS

This study incrementally imposed a suite of fire-related perturbations in WRF-Hydro
simulations across the heavily burned Feather River Basin in northern California. These
perturbations focused on fire-related changes to hydrologic soil and routing parameters,
vegetation area, land cover classifications and associated vegetation properties, and snow
albedo degradation. The most comprehensive fire-aware experiment (Mod-
params+GVF+Veg-class+Snow-alb) consistently simulated enhanced annual streamflow,
subsurface flow, and soil moisture, relative to the baseline simulation which did not account
for fire impacts. Modelled streamflow enhancements from this fire-aware simulation
occurred throughout the water year, excluding early-summer (e.g., May-June) when the
baseline experiment simulated more snow melt because the fire-related perturbations tended
to accelerate snow depletion. Enhanced annual streamflow and soil moisture in simulations
that imposed fire-related perturbations were predominately attributable to vegetation area
reductions which reduced transpiration. Vegetation area reductions also tended to enhance
simulated ground snow accumulation due to less interception; however, vegetation reductions

and snow albedo darkening also tended to enhance radiation absorbed by the snowpack and
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corresponding increases to snow ablation. On average, this resulted in slightly reduced peak
SWE and faster snow disappearance from the fire-aware Mod-params+GVF+Veg-
class+Snow-alb simulation relative to the baseline simulation.

The baseline simulation had good to very good skill in simulating streamflow
anomalies during pre-fire periods across the three study catchments (R?=0.72-0.93; NSE =
0.70-0.93); however, baseline skill was largely degraded in post-fire years with consistent
underestimates of post-fire streamflow anomalies. The fire-aware Mod-params+GVF+Veg-
class+Snow-alb simulation significantly reduced post-fire streamflow anomaly
underestimates by simulating enhanced streamflow. However, this fire-aware simulation
maintains critical post-fire errors which were likely partially caused by inadequate fire
perturbation treatments. The imposed fire perturbations had varying degrees of uncertainty
from observationally-constrained (i.e., vegetation area reductions) to unconstrained guesses
(i.e., assumed post-fire vegetation classification shifts) due to limited temporal and spatially
representative information. Overall, the results from this research support that accounting for
fire perturbations in LSMs can help reduce post-fire systematic biases, but applying fire-
related perturbations to LSM simulations did not adequately resolve fire-induced model
uncertainties. Therefore, accurately simulating terrestrial water and energy budgets in heavily
burned catchments remains an open-ended challenge, and model-based analyses used to
quantify fire-impacts on terrestrial water and energy budgets are likely limited to being
interpreted as model responses, rather than true responses in nature until more sophisticated

post-fire treatments for LSMs are developed.
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Figure captions
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Figure 1. Study domain. (a) Perimeters of catchments (black lines), study gauge locations
(NFP, MER, ICR; black dots), fire areas (red shading), the Feather River (bold blue line), and
Lake Oroville (blue shading in southwest corner of the domain). Fire burn severity maps are
shown for the (b) Walker Fire ignited in Sept. 2019 and contained in Jan. 2020, (¢) Sugar Fire
ignited in Jul. 2021 and contained in Nov. 2021, (d) North Complex Fire ignited in Aug.
2020 and contained in Dec. 2020, (e) Camp Fire ignited and contained in November 2018
and (f) Dixie Fire ignited in Jul. 2021 and contained in Oct. 2021.

Figure 2. (a) Annual time series of maximum Fraction of Photosynthetically Active
Radiation (FPAR) observed by MODIS spatially averaged across fire perimeters of the North
Complex, Camp, Walker, Sugar and Dixie fire events, respectively. (b) MODIS-based
fractional green vegetation fraction (GVF) changes applied in the WRF-Hydro experiments
accounting for fire impacts on GVF (eq. 1; Table 1).

Figure 3. Observed visible snow albedo from an ASO survey over the Feather River Basin for March
31 — April 2, 2022 (a) outside of fire scars and (b) inside of fire scars. Corresponding snow albedo

biases from the WRF-Hydro baseline simulation (c¢) outside of fire scars and (d) inside of fire scars.

Figure 4. Comparisons between simulated and observed daily streamflow (Q) anomalies
during (a,c,e) pre-fire and (b,d,f) post-fire years at the MER, NFP and ICR stations. Metrics
related to the baseline and Mod-params+GVF+Veg-class+Snow-alb simulation are reported
in blue and red, respectively. Pre- and post-fire periods for MFF, NFF and EBNFF are

described in Section 2.3.

Figure 5. (a-c) Muliyear mean (2000-2022) daily streamflow (Q) at stations denoted in
column titles (see Figure 1 for station locations) from the 5 WRF-Hydro experiments (Table
1) at the three study catchments. (d-f) corresponding difference plots relative to the baseline

experiment which does not apply fire perturbations.

Figure 6. (a-c) Muliyear mean (2000-2022) daily subsurface flow spatially averaged across
study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding

difference plots relative to the baseline experiment which does not apply fire perturbations.
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Figure 7. (a-c) Muliyear mean (2000-2022) daily evapotranspiration (ET) spatially averaged
across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding

difference plots relative to the baseline experiment which does not apply fire perturbations.

Figure 8. Multiyear mean daily evapotranspiration (ET) from the baseline simulation
averaged during (a) fall (SON), (b) winter (DJF), (¢) spring (MAM) and (d) summer (JJA).
(e-h) corresponding differences between Mod-params+GVF+Veg-class+Snow-alb and

baseline simulated ET.

Figure 9. Comparison of evapotranspiration (ET) partitions —transpiration (Eran), canopy
evaporation (Ecan) and bare ground evaporation plus sublimation (Edir)—from the Mod-
params+ GVF+Veg-class+Snow-alb and baseline simulations. Top row (a-c) shows
multiyear (2000-2022) daily means for each component at the three study catchments. (d-f)
shows the differences between the three ET partitions as Mod-params+GVF+Veg-

class+Snow-alb minus baseline.

Figure 10. (a-c) Muliyear mean (2000-2022) daily snow water equivalent (SWE) spatially
averaged across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f)
corresponding difference plots relative to the baseline experiment which does not apply fire

perturbations.

Figure 11. Multiyear mean daily snow water equivalent (SWE) from the baseline simulation
averaged during (a) fall (SON), (b) winter (DJF), (¢) spring (MAM) and (d) summer (JJA).
(e-h) corresponding differences between Mod-params + GVF + Veg-class + Snow-alb and

baseline simulated SWE.

Figure 12. (a-c) Muliyear mean (2000-2022) daily soil moisture (SM) spatially averaged
across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding
difference plots relative to the baseline experiment which does not apply fire perturbations.
Figure 13. Multiyear mean daily soil moisture (SM) from the baseline simulation averaged

during (a) fall (SON), (b) winter (DJF), (¢) spring (MAM) and (d) summer (JJA). (e-h)
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corresponding differences between Mod-params+GVF+Veg-class+Snow-alb and baseline
simulated SWE.
Novelty Statement

To the authors’ knowledge this is the first research publication to include the following elements:

(1) Explicitly account for a suite of fire perturbations to the land surface in the operationally
used WRF-Hydro modeling system and the Noah-MP land surface model.
(ii) Incrementally apply fire perturbations to quantify simulated fire impacts on land surface

hydrology from each perturbation and perturbations in combination.

(iii)  Account for fire-enhanced snow albedo degradation in a physically based modeling
system considering observed fire impacts on snow albedo from measurements from the
Airborne Snow Observatory (ASO).

(iv) Quantify simulated fire impacts on water supply in a snow-dominated river basin that is
the primary source for a State Water Project.

V) Validation of physically based simulations from the WRF-Hydro modeling system in pre-
and post-fire periods using configurations that include and neglect fire impacts.

These novel contributions are used to (i) quantify the sensitivity of fire perturbations in the
operationally used WRF-Hydro modelling system over the heavily burned and snow-dominated
Feather River Basin which is the primary source for California’s State Water Project, and (ii) evaluate
if explicitly accounting for fire perturbations in WRF-Hydro enhances post-fire streamflow modelling
accuracy. This study highlights the importance of accounting for fire perturbations in physically based
hydrologic modeling systems while providing a novel methodology designed to account for fire
impacts that improves simulated streamflow accuracy in burned catchments during post-fire periods.

WRF-Hydro simulates fire-enhanced streamflow, reducing post-fire model anomaly biases. (a)
perimeters of study catchments in the Feather River Basin, study gauge locations (black dots) and fire
areas (red shading). (b,c,d) Muliyear mean (2000-2022) daily streamflow (Q) from a no-fire baseline
simulation (black lines) and a fire-aware simulation (red lines) that accounts for fire impacts on soil
and routing parameters, vegetation area and classifications and snow albedo; anomaly biases in black
and red text are for baseline and fire-aware simulations, respectively.
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WRF-Hydro simulates fire-enhanced streamflow, reducing post-fire model anomaly biases. (a)
perimeters of study catchments in the Feather River Basin, study gauge locations (black dots)
and fire areas (red shading). (b,c,d) Muliyear mean (2000-2022) daily streamflow (Q) from a no-
fire baseline simulation (black lines) and a fire-aware simulation (red lines) that accounts for fire
impacts on soil and routing parameters, vegetation area and classifications and snow albedo;
anomaly biases in black and red text are for baseline and fire-aware simulations, respectively.





