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Abstract 

Wildfire activity in the western United States (WUS) is increasingly impacting water supply, 

and land surface models (LSMs) that do not explicitly account for fire disturbances can have 

critical uncertainties in burned areas. This study quantified responses from the Weather 

Research and Forecasting Hydrological modeling system (WRF-Hydro) to a suite of fire-

related perturbations to hydrologic soil and runoff parameters, vegetation area, land cover 

classifications and associated vegetation properties, and snow albedo across the heavily 

burned Feather River Basin in California. These experiments were used to quantify the 

impacts of fire-related perturbations in model simulations under the observed meteorological 

conditions during the 2000-2022 water years and determine whether applying these fire-

related perturbations enhanced post-fire model accuracy across the 11-12 post-fire months 

evaluated herein. The most comprehensive fire-aware simulation consistently modelled 

enhanced annual catchment streamflow (by 8-37%), subsurface flow (by 72-116%), and soil 

moisture (by 4-9%), relative to the baseline simulation which neglected fire impacts. 

Simulated fire-enhanced streamflow was predominately attributable to fire-induced 

vegetation area reductions that reduced transpiration. Simulated streamflow enhancements 

occurred throughout the water year, excluding early-summer (e.g., May-June) when the 

baseline simulation modelled relatively more snowmelt and streamflow because fire 

perturbations caused earlier model snow depletion. Vegetation area reductions favoured 

increased model ground snow accumulation and enhanced snow ablation while imposed 

snow albedo darkening perturbations enhanced ablation, ultimately resulting in similar peak 

SWE and earlier snow disappearance (on average by 8-days) from the most comprehensive 

fire-aware simulation relative to the baseline simulation. The baseline simulation had large 

degradations in streamflow accuracy following major fire events that were likely partially 

attributable to neglecting fire disturbances. Applying fire-related perturbations reduced post-

fire streamflow anomaly biases across the three study catchments. However, remaining large 

post-fire streamflow uncertainties in the fire-perturbed simulation underscores the importance 

of additional observationally constrained fire-disturbance model developments.  
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1. INTRODUCTION 

Seasonal snowpack serves as a natural water reservoir in the western United States 

(WUS) where most of the streamflow originates as snow (Viviroli et al., 2007; Li et al., 2017; 

Kapnick et al., 2018). Rising trends in wildfire burn area over snowy WUS regions (255 

km2/year from 1984-2020; Abolafia-Rosenzweig et al., 2022a) are increasingly impacting 

water supply in headwater catchments (Williams et al., 2022; Koshkin et al., 2022; Smoot 

and Gleason, 2021; Kampf et al., 2022). The growing impact of wildfire on water supply is 

projected to increase over the next few decades with climate projections showing 2021-2050 

being twice as conducive for WUS wildfires compared to 1991-2020 (Abatzoglou et al., 

2021; Williams et al., 2022). Failure to account for fire perturbations in hydrologic and land 

surface models (LSMs) that are used to inform water resources management can result in 

significant post-fire inaccuracies (Abolafia-Rosenzweig et el., 2024b) and potential water 

resource mismanagement. Therefore, it is increasingly important to evaluate model sensitives 

to fire-related land cover disturbances and account for these impacts on water supply in 

models used to inform water management decisions across the WUS.  

Fire impacts on land surface hydrology are associated with complex soil-vegetation-

hydrology-meteorology interactions through fire-induced alterations to soil hydrologic 

properties and the destruction and charring of vegetation. A suite of analyses have leveraged 

in-situ and remote sensing observations to quantify impacts of fire-related disturbances to 

streamflow (Q), evapotranspiration (ET), infiltration and soil moisture (SM), and snowpack 

(Hampton and Basu, 2022; Harpold et al., 2014; Kampf et al., 2022; Koshkin et al., 2022; 

Smoot and Gleason, 2021; Goeking and Tarboton, 2022; Spence et al., 2020; Niemeyer et al., 

2020; Stoof et al., 2012; Shakesby and Doerr, 2006; Martin and Moody, 2001; Moody et al., 

2008; Ebel and Martin, 2017; Ebel, 2020; Gleason et al., 2013, 2019; Ahmad et al., 2024). 

Fire impacts on the terrestrial water budget are often associated with reduced infiltration, 

enhanced Q, reduced ET, greater ground snow accumulation and enhanced snow ablation 

favoring earlier spring snowmelt and snow disappearance. However, there is substantial 

spatiotemporal heterogeneity in fire-disturbance impacts on hydrology which are dependent 

on interactions among many factors including: burn area and severity, catchment size, human 

management, vegetation, soil properties, meteorology, and topography (Pugh and Gordon 

2013; Goeking and Tarboton 2020, 2022; Spence et al., 2020; Niemeyer et al., 2020; Atchley 

et al., 2018; Partington et al., 2022; Ahmad et al., 2024). Thus, simulating post-fire hydrology 

requires accurate representation of fire disturbances to the land surface in sophisticated 

models that accurately represent soil-vegetation-meteorology-hydrology interactions.  
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Fire effects on soil—increased bulk density, reduced pore space, and formation of a 

hydrophobic layer at the soil surface—are generally associated with lower infiltration, drier 

topsoil, wetter subsoil and higher runoff efficiency (Abolafia-Rosenzweig et al., 2024b; Stoof 

et al., 2012; Shakesby and Doerr, 2006; Martin and Moody, 2001; Moody et al., 2008; Ebel 

and Martin, 2017; Ebel, 2020). Burning of vegetation often has competing impacts on snow 

and streamflow. For instance, vegetation burning contributes to greater ground snow 

accumulation by reducing downward longwave radiation and precipitation interception 

(Seibert et al., 2010; Harpold et al., 2014; Burles and Boon, 2011). Conversely, vegetation 

burning can favour faster snow ablation and less snowpack through snow darkening from 

burned debris and soot shedding from standing trees onto the snowpack, reduced shading, 

and increased wind speeds and associated increases to turbulent heat flux to the snowpack 

(Seibert et al., 2010; Harpold et al., 2014; Pugh and Small, 2012; Burles and Boon, 2011; 

Gleason et al., 2013, 2019; Niemeyer et al., 2020; Maxwell and St Clair, 2019; Kampf et al., 

2022). Vegetation removal also has competing effects on ET through decreased transpiration 

and canopy interception but increased bare ground evaporation (Bond-Lamberty et al., 2009; 

Maina and Siirila-Woodburm, 2020; Abolafia-Rosenzweig et al., 2024b).  

Previous studies have attempted to account for fire impacts on hydrology in simple 

hydrological models (e.g., curve number-based); however, these approaches generally had 

insufficient performance or were only able to provide adequate results for specific variables 

(e.g., peak flow) at calibrated watersheds (Chen et al., 2013; Kinoshita et al., 2014; Wang et 

al., 2020). This motivates a sophisticated physically-based approach to post-fire hydrologic 

modeling, allowing in-depth mechanistic analyses that account for complex fire impacts on 

hydrology. Recent modeling analyses have begun to address this gap by quantifying fire 

induced uncertainties in physically-based LSM simulations (Abolafia-Rosenzweig et al., 

2024) and explicitly accounting for fire-related perturbations in these models (Atchley et al., 

2018; Li et al., 2023; Wang et al., 2020; Maina and Siirila-Woodburn, 2020; Kumar et al., 

2021). These analyses have accounted for fire-induced increases to surface soil 

hydrophobicity and vegetation removal by perturbing soil hydrologic properties and 

vegetation parameters and assimilating remotely sensed fire signatures. Namely, surface soil 

hydrophobicity has been accounted for in previous modeling studies by applying 

observationally informed empirical perturbations to the surface soil saturated hydraulic 

conductivity (Ksat) (Robichaud, 2000; Blake et al., 2009; Ebel and Martin, 2017; Moody et 

al., 2015) which controls the infiltration rate, or by recalibrating a model to more accurately 

simulate observed post-fire streamflow (Li et al., 2022). Fire-induced vegetation reductions 
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have been accounted for by informing model simulations with observed reductions to leaf 

area index (LAI), vegetation height, vegetation optical depth, and imposing shifts to land 

cover classifications over burned areas (e.g., forested to barren and sparsely vegetated) 

(Atchley et al., 2018; Li et al., 2022; Wang et al., 2020; Maina and Siirila-Woodburn, 2020; 

Kumar et al., 2021).  

The overarching goals of these previous modeling studies were to: (i) quantify 

changes in model skill following major fire events, (ii) quantify fire impacts on hydrology by 

comparing a baseline simulation that does not account for fire impacts with a fire-aware 

simulation that imposes fire-related perturbations, and (iii) determine if accounting for fire 

perturbations improves post-fire model accuracy. The approach for objective (ii) is akin to 

earlier paired catchment studies (e.g., Stoof et al., 2012), where a no-fire simulation is used to 

represent a twin unburned catchment, and the fire-aware simulation represents the fire-

perturbed catchment. Previous model-based research found that imposing fire-related 

perturbations to model simulations decreased simulated ET while enhancing surface water 

flow and snow accumulation, with the magnitude and timing of these impacts largely 

depending on meteorological conditions (Atchley et al., 2018; Li et al., 2022; Wang et al., 

2020; Maina and Siirila-Woodburn, 2020). Failure to adequately account for fire disturbances 

increases LSM uncertainty after major fire events (Abolafia-Rosenzweig et al., 2024b), 

whereas accounting for fire perturbations can enhance post-fire model accuracy for Q and ET 

(Wang et al., 2020; Kumar et al., 2021 and Li et al., 2022). However, these previous 

modeling studies have relied on domain-specific calibration or data assimilation and have 

been performed over a small sample of study domains. Thus, further research is valuable to 

work towards the development of a generalizable fire-disturbance scheme applicable to 

hydrological forecasting systems can improve model accuracy across a range of fire-impacted 

domains that are crucial for water and food security.  

In this contemporary early-stage of physically-based post-fire land surface model 

development there is a growing need to quantify the impacts of fire disturbances in model 

simulations across a range of fire prone landscapes and evaluate whether accounting for these 

perturbations alters post-fire model accuracy. Important gaps in this area of research are a 

lack of: (a) quantifications of simulated water budget responses to incrementally applied fire-

related perturbations, (2) evaluations across a range of burned snow-dominated areas which 

are critically important for water supply, and (3) evaluations using operational model systems 

and configurations which can inform water management forecasting systems. This study 

addresses these gaps by: (i) quantifying the impacts of fire-related perturbations in 



7 
 

simulations from the operationally used WRF-Hydro modeling system across the heavily 

burned and snow-dominated Feather River Basin, and (ii) evaluating whether explicitly 

accounting for fire perturbations in WRF-Hydro alters simulated post-fire streamflow 

accuracy. 

 

2. Data and Methods 

 

2.1 Study Domain 

 This study focused on three recently burned catchments in the Feather River Basin: 

East Branch North Fork Feather (EBNFF), Middle Fork Feather (MFF), and North Fork 

Feather (NFF) (Figure 1). The Feather River basin is the primary river basin for the 

California State Water Project. Of the Basin’s 2.3 million acres, almost 1.6 million acres 

burned between 2018 and 2022. As the source watershed for the State Water Project, fire 

related impacts to hydrology could cause significant impacts to water supply operations and 

deliveries to the 27 million Californians that receive State Water Project supplies. From 

2018-2022, the following major fire events burned across the three study catchments in the 

Feather River Basin: (i) Camp Fire which was ignited in November 2018 and burned 153,336 

acres (240 square miles); (ii) North Complex Fire which was ignited in August 2020 and 

burned 318,776 acres (498 square miles); (iii) Dixie Fire which was ignited in July 2021 and 

burned 963,309 acres (1,505 square miles); (iv) Sugar Fire which was ignited in July 2021 

and burned 105,076 acres (164 square miles); and (v) Walker Fire which was ignited in 

September 2019 and burned 54,628 acres (85 square miles). There has also been burning in 

the study domain excluding these major fire events. Specifically, the 2000-2022 total burn 

area excluding the study fire events sums to 24% of the cumulative burn area of the 5 study 

fire events (Figure S1) which may partially confound pre- to post-fire model skill 

comparisons (Section 2.3 and 3.1) because there is no true pre-fire period with negligible 

burning. Streamflow analyses for these three burned catchments are conducted at California 

Department of Water Resources (CADWR) stream gauge stations near catchment outlets 

which include: (i) North Fork Feather River at Pulga (NFP) for the NFF catchment; (ii) 

Indian Creek below Indian Falls (ICR) for the EBNFF catchment; and (iii) Feather River at 

Merrimac (MER) for the MFF catchment (Figure 1). Streamflow data from the NFP, ICR and 

MER stations began in the 2005, 2007 and 1997 water years, respectively. Although human 

management, such as diversions, are likely to impact streamflow at times, we did not 

explicitly consider human impacts in model simulations. Therefore, inconsistencies between 
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simulations and observations may be partially attributable to neglect of human impacts along 

with other uncertainty sources including meteorological forcing, land surface input 

parameters, and model physics. 

 The three study catchments have complex topography with minimum catchment 

elevations ranging from 129 – 799 m and maximum elevations ranging from 2402 – 2741 m. 

Winter is the wettest season in each study catchment, with 51-52% of mean annual 

precipitation (mean annual precipitation  = 785, 1033 and 1239 mm in EBNFF, MFF and 

NFF, respectively) falling from December – February when mean catchment temperatures are 

near-zero (0.3 – 1.8°C). Thirty-three to thirty-six percent of annual precipitation fell as snow 

across the study domain and only 2-3% of the annual precipitation occurs during summer 

months (June – August) when human water demands tend to be greatest, highlighting the 

importance of prudently storing and managing winter precipitation and snowmelt. Fall 

(September–November) and Spring (March–May) snowfall are also valuable components of 

the catchment-scale water resources, with 46% of annual precipitation received during Fall 

and Spring and 15-16% and 35-39% of this precipitation coming as snowfall, respectively.  

 

2.2 WRF-Hydro experiments 

Simulations were generated over the study domain using the community Weather 

Research and Forecasting Hydrological modeling system (WRF-Hydro; Gochis et al., 2020) 

which is an open-source physics-based multi-spatial community model that relies on the 

Noah-MP LSM (Niu et al., 2011; He et al., 2023) to resolve terrestrial water and energy 

budgets and a terrain- and channel-routing module and a conceptual subsurface flow bucket 

model to resolve streamflow. WRF-Hydro is designed for simulation, analysis, and prediction 

of surface and subsurface hydrologic and energy fluxes, with particular emphasis on the 

prediction of water exchanges to and from the atmosphere, across heterogeneous landscapes, 

and through stream and river networks and shallow groundwater aquifers. The WRF-Hydro 

system has served as the leading national hydrologic forecasting system for the U.S. National 

Weather Service (i.e. the NOAA National Water Model; Cosgrove et al., 2024) as well as in 

Romania, Israel, and the United Arab Emirates. Over the past two years (Water Years 2022 

and 2023), the WRF-Hydro system has been implemented to provide seasonal water supply 

forecasts for multiple river basins in the Sierra Nevada region of California and Nevada 

assimilating real-time weather information, climate forecast data, and airborne lidar retrieved 

estimates of mountain snowpack from the Airborne Snow Observatory, Inc (ASO).  
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WRF-Hydro simulations were run with a multi-grid structure where soils and land 

cover/land use are prescribed at a 1-km spatial resolution and the model was forced with 

eight surface meteorological variables (precipitation, surface air temperature, east-to-west 

and north-to-south wind speed, long- and short-wave radiation, surface air pressure, and 

specific humidity) from the 1-km hourly observation-constrained Analysis of Record for 

Calibration (AORC; Fall et al., 2023) dataset that is used to drive the NOAA National Water 

Model (NWM). Model topography was based on the 1 arc-second National Elevation Dataset 

used by the National Water Model (NWM). Terrain routing processes controlling runoff and 

lateral exchanges of overland flow and subsurface saturated flow were represented on a 250 

m model grid. Vegetation classifications were based on 30 m data from the 2016 National 

Land Cover Database (NLCD) (i.e., pre-fire classifications) and associated monthly leaf area 

index (LAI) and peak annual green vegetation fraction (GVF) were based on MODIS 

observed climatology from 2000-2008 which is consistent with the NWM configuration. 

Physics options and land surface parameters were selected to be consistent with the 

NWMv2.1 configuration. All simulations began on Oct. 1, 1999, and were initialized with a 

14-year spin-up loop generated by the baseline simulation (Table 1) from Oct. 1, 1999 - Sept. 

30, 2013. We did not calibrate the model for the purpose of this study, but the NWMv2.1 

model configuration which was adopted for this study used the ICR gauge as a point of 

calibration during the 2009-2013 water years.  

WRF-Hydro experiments incrementally introduced fire-related perturbations in a 

series of simulations and used a baseline simulation with no fire perturbations for 

comparisons to quantify the impact of compounding perturbations. Fire-perturbation 

simulations, summarized in Table 1, incrementally applied perturbations to (i) hydrological 

soil and surface water routing parameters (Section 2.2.1), (ii) vegetation area (Section 2.2.2), 

(iii) land cover classifications (Section 2.2.2), and (iv) snow albedo (Section 2.2.3). The 

simulation accounting for all fire-related perturbations considered herein (Mod-

params+GVF+Veg-class+Snow-alb) applies a large range of land cover disturbances to the 

model configuration; however, fire can have important impacts through other perturbations to 

the land surface that are not considered in this study (Veraverbeke et al., 2012; French et al., 

2016). 

We ran a series of simulations from water years 2000-2022 (Table 1) to evaluate 

individual and compounding impacts of fire-related perturbations on simulated land surface 

hydrology in the study domain across a range of historically observed meteorological 

conditions. Although the study fire events only impacted hydrology in the post-fire 2018-
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2022 water years, we imposed fire perturbations across the full historical period to evaluate 

the impacts of fire-related perturbations in WRF-Hydro simulations under the historically 

observed metrological conditions, considering potential fire impacts on the Feather River 

Basin water budget are likely to be sensitive to meteorological conditions. We evaluated 

model outputs from each water year as an ensemble member (interpreted as the model’s 

response to fire perturbations under the unique meteorological conditions of respective water 

years), and the ensemble mean (i.e., multiyear average) was interpreted as the mean 

simulated land surface hydrological response to the climate conditions experienced in the 

study domain from 2000-2022. 

 

Table 1. WRF-Hydro simulation experiment names and descriptions.  

Experiment name Experiment description  

Baseline “No-fire” simulation that does not account 

for fire impacts 

Mod-params Parameters associated with infiltration 

(REFKDT), surface roughness factor 

(OVROUGHRT), and surface retention 

depth factor (RETDEPRT) are adjusted 

based on burn severity classification 

(Section 2.2.1) 

Mod-params+GVF Simulation that modifies hydrologic soil and 

routing parameters and reduces greenness 

vegetation fraction (GVF) across burned 

areas (Sections 2.2.1; 2.2.2) 

Mod-params+GVF+Veg-class Simulation that modifies hydrologic soil and 

routing parameters, reduces GVF, and shifts 

vegetation classifications across burned 

areas (Sections 2.2.1; 2.2.2) 

Mod-params+GVF+Veg-class+Snow-alb Simulation that modifies hydrologic soil and 

routing parameters, reduces GVF, shifts 

vegetation classifications, and enhances 

snow albedo degradation rates across 

burned areas (Sections 2.2.1; 2.2.2; 2.2.3) 
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2.2.1 Accounting for fire disturbances on hydrologic and routing parameters 

Fires directly impact hydrologic and routing parameters which LSMs rely on for 

accurate streamflow simulations (Verma & Jayakumar 2012). In this study we assumed fire 

impacts are generally proportional to fire severity and duration (Verma & Jayakumar 2012, 

Agbeshie et al. 2022). Therefore, we scale parameter adjustments by burn severity index 

(BSI) classifications (see Figure 1 for burn severity classification maps). BSI classification 

data used in this study are from the Monitoring Trends in Burn Severity (MTBS) dataset 

when available (Eidenshink et al., 2007) and the Burned Area Emergency Response (BAER) 

in instances when MTBS data was not available at the time of analysis (i.e., for post-2020 

fires). These satellite-based burn-severity classification datasets record burn severity as 

unburned to very low-severity, low-severity, moderate-severity and high-severity. MTBS 

classifies burn severity using the differenced normalized burn ratio (dNBR), and BAER 

classifies soil burn severity using the burned area reflectance classification (BARC), noting 

there are known inconsistencies between BARC and fire effects on vegetation (Safford et al., 

2008) which can introduce uncertainties in post-fire simulations. We recognize that post-fire 

changes in runoff generation can be highly site-specific (e.g., based on pre-fire vegetation 

type, soil type, slope, fire recurrence) and can change based on time since fire and weather 

conditions, but due to a lack of relevant observations to build these local relationships, in this 

study we tested a simple scaling scheme based on burn severity classifications alone that 

were generally consistent with previous research. We scaled the three fire-perturbed 

parameters, discussed below, by a factor of 0.5 for low-severity BSI, 0.3 for moderate-

severity BSI, and 0.1 for high-severity BSI. For pixels that burned multiple times, these 

multiplication factors were first multiplied together before being applied to perturb respective 

parameters (e.g., if a pixel experienced a low-severity burn in one study fire event and a 

moderate-severity burn in a different study fire event then the corresponding multiplication 

applied to parameters was 0.5 x 0.3 = 0.15). 

Ebel (2019) and Ebel and Moody (2020) suggested a field saturated conductivity 

adjustment of 0.30-0.37 from pre-fire to post-fire in the near-surface soil (top 1 cm), which is 

consistent with our moderate-burn severity modification of surface conductivity via the 

REFKDT scaling parameter used in the WRF-Hydro infiltration excess scheme (Schaake et 

al., 1996). Atchley et al. (2018) adjusted post-fire saturated hydraulic conductivity in the top 

2-cm soil layer of Parflow-CLM by a factor of 0.04-0.14 for high-severity burn sites, which is 

consistent with our factor of 0.1 for the high-severity class. In Atchley et al. (2018) and 
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López-Vicente et al. (2020), post-fire overland roughness values were set to a bare soil value 

(0.011), which is slightly lower than our high-severity factor applied to the WRF-Hydro 

surface roughness parameter (OVROUGHRT) for a standard evergreen needleleaf forest 

type. Our moderate-severity overland roughness factor is generally consistent with a 

conversion from evergreen needleleaf forest to the grassland land cover type. We did not 

identify values to compare for changes due to fire to the WRF-Hydro maximum retention 

depth parameter (RETDEPRT) in previous literature, so our scaling factors were set to match 

the other parameter factors. Overall, this approach resulted in parameter adjustments across 

all burned classes, with higher severities yielding lower infiltration, smaller potential surface 

storage, and faster overland flowrate. 

 The primary goal of applying these parameter perturbations is to better understand 

whether WRF-Hydro simulations are notably impacted by perturbations in commensurate 

with fire disturbance magnitudes used in previous research. There is substantial uncertainty in 

the fire-perturbations we applied to the REFKDT, OVROUGHRT, and RETDEPRT 

parameters due to the large uncertainty in spatially-distributed fire-impacts on these 

parameters at the catchment scale and lack of local observations of these impacts. Therefore, 

the results discussed in this paper pertaining to these perturbations should be interpreted in 

the context of these known uncertainties, rather than interpreting these perturbations as an 

accurate representation of post-fire soil and routing parameters.  

 

2.2.2 Accounting for fire disturbances on vegetation  

 Experiments designed to account for fire impacts on vegetation updated vegetation 

area and land cover classification model inputs across burned pixels. Vegetation area updates 

were informed by pre- to post-fire changes in satellite-monitored Fraction of 

Photosynthetically Active Radiation (FPAR) from the MODIS satellite (MOD15A2; Myneni 

et al., 2015). This study assumed MODIS observed changes to FPAR from pre- to post-fire 

periods are consistent with green vegetation fraction (GVF) changes. This assumption is 

consistent with the widely used WRF Preprocessing System (WPS) which is frequently used 

to derive Noah-MP LSM inputs (Lu et al., 2021); although using FPAR as a proxy for 

vegetation fraction in LSM simulations can introduce uncertainties (Filipponi et al., 2018; 

Myneni and Williams, 1994). MODIS observed distinct decreases to FPAR following each 

study fire event within respective fire perimeters (Figure 2). WRF-Hydro simulations 

employed the Noah-MP dynamic vegetation option 4, which assumes a constant vegetation 

area based on the peak GVF for respective pixels (He et al., 2023). To account for fire-
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induced reductions to GVF, we imposed the MODIS-observed fractional change to peak 

annual GVF on the model input using eq. 1: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 =  𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖  +  𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖− 𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖

𝑂𝑂𝑂𝑂𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖
  (Eq. 1) 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 is used in fire-related perturbation experiments to reflect the fire 

impacted GVF for pixel i, 𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 is the baseline GVF for pixel i assuming no fire 

disturbance, 𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 is the multi-year median of MODIS-observed peak annual GVF 

for pixel i across all pre-fire years, and 𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 is the multi-year maximum of MODIS-

observed peak annual GVF for pixel i across all post-fire years. 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 was 

constrained to not exceed 𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 to assume that burned pixels do not have increased 

vegetated area. This constraint was applied to 8% of pixels in fire perimeters, whereas the 

other 92% of pixels in fire perimeters showed lower 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 relative to 𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.  

For land cover classification shifts: pixels that experienced low-severity burning were 

maintained as original baseline land cover classifications, pixels with moderate-severity 

burning were updated to the grassland land cover classification, and pixels that experienced 

high-severity burning were updated to the barren or sparsely vegetated classification. Shifts 

to land cover classifications implicitly impact model parameters: leaf area index (LAI), 

height of the canopy, maximum rate of carboxylation at 25°C, and the overland flow 

roughness coefficient. These parameters were derived from the default Noah-MP parameter 

table which is publicly available: https://github.com/NCAR/wrf_hydro_nwm_public. These 

assumed fire-induced land cover classification shifts are less aggressive than previous 

modeling analyses that account for fire impacts on hydrology, which imposed homogenous 

shifts to the barren or sparsely vegetated classification over entire burn scars (Maina and 

Siirila-Woodburn, 2020; Li et al., 2023). The land cover updates applied herein are designed 

to roughly represent fire-induced land cover shifts because post-fire observed land cover 

classifications (e.g., from the MODIS MCD12 products) were not available at the time of 

experimentation. This source of LSM and hydrologic model uncertainty motivates up-to-date 

monitoring and publishing of land cover classification and vegetation data that can inform 

operational hydrologic modeling systems over burned areas.  

 

2.2.3 Accounting for fire-enhanced snow albedo degradation 

 Snow albedo tends to degrade faster following fires due to soot and burned debris 

shedding from standing trees onto the snowpack which darkens the snow resulting in reduced 
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albedo (Gleason et al., 2013, 2019; Gleason and Nolin, 2016). Additionally, less shading 

results in more solar radiation being absorbed by the snowpack which also favours faster 

snow albedo degradation (Harpold et al., 2014). Fire-enhanced snow albedo degradation, 

which was accounted for in the most comprehensive WRF-Hydro experiment (Mod-

params+GVF+Veg-class+Snow-alb), was designed to allow the model simulated albedo to 

degrade to the mean observed snow albedo from a late spring ASO snow survey within the 

Dixie Fire burn scar (Painter et al., 2016). Specifically, a spring post-fire ASO fly over in the 

Feather River Basin (March 31 – April 2, 2022) observed substantially lower snow albedo 

over burn scars (mean and standard deviation = 0.40 and 0.15) relative to measurements over 

unburned areas (mean and standard deviation = 0.79 and 0.14), resulting in large 

systematically positive snow albedo biases in the baseline WRF-Hydro simulation within 

burn scars (Figure 3; mean [standard deviation] of baseline snow albedo bias = 0.45 [0.15]). 

We chose to inform the fire-aware snow albedo parameter updates using this late-season 

ASO survey because it was difficult to inform snow albedo parameter updates using earlier 

surveys in February and March which were more significantly impacted by fresh snowfall, 

and thus had more noise regarding fire-enhanced snow albedo degradation. The mean and 

standard deviation for observed visible snow albedo from the four Feather River Basin ASO 

surveys in 2022 over burned and no-burn areas are recorded in Table S1. We account for fire-

enhanced snow albedo degradation by implementing a code update into the WRF-Hydro 

model that adjusted parameters controlling the visible snow albedo degradation rate in the 

BATS ground snow albedo scheme (https://github.com/RAbolafiaRosenzweig/WRF-Hydro-

BATS_fire_enhanced_snow_albedo_degradation), which is the most sophisticated snow 

albedo physics option in the open-source Noah-MP LSM that computes ground snow albedo 

for direct and diffuse radiation in visible and NIR bands (Yang et al., 1997).  

BATS computes broadband ground snow albedo (𝛼𝛼𝑠𝑠) as the average of visible (𝛼𝛼𝑉𝑉,𝑠𝑠; 𝜆𝜆 
< 0.7 µm) and NIR (𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠; 𝜆𝜆 ≥  0.7 µm) snow albedo: 

𝛼𝛼𝑠𝑠 = 0.5(𝛼𝛼𝑉𝑉,𝑠𝑠 + 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠) (Eq. 2) 

where, 

𝛼𝛼𝑉𝑉,𝑠𝑠 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (Eq. 3) 

𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (Eq. 4) 

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are the fractions of total transmitted solar radiation that is direct and 
diffuse, respectively. Direct visible (𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and NIR (𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) snow albedos are 
solved as: 
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𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑍𝑍,𝑠𝑠(1 − 𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) (Eq. 5) 

𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑍𝑍,𝑠𝑠(1 − 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) (Eq. 6) 

𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are diffuse visible and NIR albedo, respectively. VDIR and 
NIRDIR are the cosZ factor for direct visible and NIR snow albedo, respectively. 𝑓𝑓𝑍𝑍,𝑠𝑠 is a 
factor, ranging between 0 and 1, to parameterize the effect of solar zenith angle on snow 
albedo. Diffuse albedos are calculated as: 

                                   𝛼𝛼𝑉𝑉,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑉𝑉,𝑛𝑛𝑛𝑛𝑛𝑛(1 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎)                  (Eq. 7)  
  

𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑛𝑛𝑛𝑛𝑛𝑛(1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎) (Eq. 8) 

where 𝛼𝛼𝑉𝑉,𝑛𝑛𝑛𝑛𝑛𝑛 and 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁,𝑛𝑛𝑛𝑛𝑛𝑛 are fresh-snow visible and NIR albedo with solar zenith angle 

less than 60°. 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎, ranging between 0-1, is a snow-age factor designed to account for the 

effects of snow grain growth from vapor diffusion, additional effects of snow grain growth 

near or at the freezing of meltwater, and snow impurification from dirt and soot (i.e., set 

equal to the dirt-soot parameter in the Noah-MP parameter table). Details on 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 calculations 

are provided in Abolafia-Rosenzweig et al. (2022b).  

Sensitive snow albedo parameters that were adjusted were informed by a previous 

Noah-MP BATS snow albedo sensitivity analysis (Abolafia-Rosenzweig et al., 2022b). 

Pixels which experienced high-severity burning increased the dirt-soot and Vage parameters to 

0.6 and 0.9 allowing snow albedo to degrade to 0.4 during a 20-day snow free period, which 

is equal to the mean burn scar snow albedo observed by the ASO measurements (Figure 3). 

Pixels which experienced moderate-severity burning adjusted dirt-soot and Vage to 0.5 and 

0.67 which resulted in snow albedo degradation to 0.57 in a 20-day snow free period. Pixels 

which experienced low-severity burning adjusted dirt-soot and Vage to 0.4 and 0.43 which 

resulted in snow albedo degradation to 0.71 in a 20-day snow free period. Pixels that were not 

burned in the study fires used default dirt-soot and Vage values (0.3 and 0.2, respectively) 

resulting in relatively slower snow albedo degradation over no-burn areas: reducing to 0.84 

over a 20-day snow free. Parameter adjustments for moderate- and low-severity burning are 

calculated using linear interpolation between the adjustment for the high-severity and the 

baseline parameters which assumes snow albedo degradation increases with increasing burn 

severity; however, this assumption and corresponding linear interpolation are largely 

uncertain and requires in-depth quantifications of the influence of burn-severity on surface 

snow albedo degradation that is out of the scope of this modeling-focused study.  

These snow albedo parameter adjustments have substantial uncertainty and are 

primarily implemented to roughly reflect the impact of fire-enhanced snow albedo 
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degradation in burned areas. For instance, relationships between burn severity and albedo 

degradation vary as a function of vegetation type in nature because severely burned 

grasslands will not shed soot and burned debris on post-fire snowpack as observed in burned 

forests. Furthermore, the average snow albedo within burn scars from a single ASO flyover 

does not provide a robust presentation of spatiotemporal impacts of fire on snow albedo. Due 

to the uncertainty related to this snow albedo parameterization, we implement the fire-aware 

snow albedo parameterization in WRF-Hydro to roughly account for fire-enhanced snow 

albedo degradation in a manner that allows the model to simulate degraded snow albedo to be 

consistent with a snapshot of spatially averaged ASO monitored snow albedo. This 

representation likely does not adequately simulate true spatiotemporal variability of snow 

albedo in burn scars nor is it likely to accurately simulate the true corresponding hydrologic 

impacts so we encourage future research to evaluate pathways for more sophisticated post-

fire snow albedo degradation model updates (e.g., Gleason and Nolin, 2016) that can be 

implemented in operational modeling systems.   

 

2.3 WRF-Hydro streamflow validation 

 Validation of pre- and post-fire simulations compared simulated and in-situ observed 

Q anomalies at a daily timestep. This validation first quantified the accuracy of baseline Q 

anomalies during pre-fire periods to establish a baseline performance in which post-fire 

changes in skill were compared with. Post-fire validations compared skill from the baseline 

and the most comprehensive fire-adjusted simulation (i.e., Mod-params+GVF+Veg-

class+Snow-alb) to determine whether accounting for fire perturbations in the model reduces 

post-fire model biases and uncertainties.  

Prior to comparing modelled and observed Q, we converted respective timeseries to 

standardized anomalies using eq. 2: 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 = 𝑄𝑄𝑡𝑡−𝑄𝑄�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜎𝜎𝑄𝑄−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  (Eq. 9) 

where Qt is Q from day t, Q�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the pre-fire time series mean, and 𝜎𝜎𝑄𝑄−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the pre-

fire time series standard deviation. Because Q time series are not normally distributed, the 

anomaly conversion was exclusively used to remove pre-fire biases between simulated and 

observed time series (mean and variance), rather than interpretation of anomaly magnitude in 

a z-score context (Williams et al., 2022; Abolafia-Rosenzweig et al., 2024b). It is important 

to remove background systematic biases to allow isolation of fire-induced discrepancies 
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rather than analysing results confounded by systematic biases between simulations and 

observations that are not related to fire-disturbances. This standardized approach limits the 

meaning of bias and NSE, and thus bias and NSE skill scores reported in this paper should 

primarily be used in the context of comparisons between fire-aware and no-fire simulations 

and for skill score shifts from pre- to post-fire periods.  

Statistical differences in biases between the baseline and fire-aware simulations were 

computed with the widely used 2-tailed Wilcoxon rank sum test. Statistical differences in R2 

and NSE were computed with permutation testing. Permutation tests are based on resampling 

the original data without replacement to test the hypothesis of no statistical difference 

between skill scores calculated from different simulations. This is performed by: (i) 

calculating the absolute difference between skill scores, (ii) pooling data from comparison 

datasets together, (iii) shuffling the data randomly and calculating differences in skill scores 

between random samples equivalent to the length of the original samples, (iv) repeating step 

(iii) 10,000 times, and (v) calculating the proportion of shuffled absolute differences in skill 

scores that exceed the originally calculated skill score differences when data was organized.  

Pre-fire validation periods were selected to begin either at the start of the 2000 water 

year or at the start of the in-situ record (if observations were not available starting at Oct. 1, 

1999) and span until the end of the month prior to the ignition of the first study fire event in 

respective catchments. Post-fire periods were selected as periods starting on the first of the 

month after the containment of the latest study fire event in respective catchments and range 

until the end of the study period (Sept 30, 2022). Post-fire evaluations are limited because 

they are relatively short (11-12 months) and dry (negative observed mean streamflow 

anomalies). Thus, the post-fire model validations did not consider wet regimes or allow 

consideration of uncertainties related to vegetation regrowth. Pre- and post-fire period 

selections only considered the five major fire events shown in Figure 1, but due to burning in 

the study domain excluding these major fire events (Figure S1) the pre- to post-fire model 

skill comparisons may be confounded by the fact that there is no true pre-fire period with 

negligible burning. However, comparisons between these periods are still valid and useful to 

determine the impacts of these relatively major fire events on model skill. Pre-fire periods for 

MFF, NFF and EBNFF were selected as: 10/1999-07/2020, 12/2004-06/2021, and 06/2007-

08/2019, respectively, with varying start dates based on observation data availability. Post-

fire periods for MFF, NFF and EBNFF were selected as: 11/2021-09/22, 10/2021-09/2022, 

and 10/2021-09/2022, respectively.  
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We reported widely used metrics from previous hydrologic model evaluations to 

quantify model skill in this study: mean anomaly bias, the coefficient of determination (R2) 

and the Nash Sutcliffe efficiency (NSE) (Moriasi et al., 2007, 2015). Skill categorizations are 

based on Moriasi et al. (2015): R2>0.85, 0.70≤R2≤0.85, 0.50<R2<0.70 and R2≤0.50 are 

considered very good, good, satisfactory and not satisfactory performance, respectively, and 

NSE>0.80, 0.70≤NSE≤0.80, 0.50<NSE<0.70 and NSE≤0.50 are considered very good, good, 

satisfactory and not satisfactory performance, respectively. 

 

2.4 Water budget sensitivities to fire disturbances 

 We evaluated the response of the WRF-Hydro simulations to fire-related 

perturbations by quantifying differences between fire-adjusted and baseline simulations 

(Table 1) for land surface water budget components: Q (i.e., routed surface flow + routed 

subsurface flow), subsurface flow, ET and its partitions (transpiration (Etran), evaporation of 

canopy-intercepted water (Ecan), and bare ground evaporation plus sublimation (Edir)), snow 

water equivalent (SWE), and soil moisture (SM). Catchment-scale Q impacts were evaluated 

at CADWR gauge locations (Figure 1), whereas other components were evaluated at the 

catchment scale using spatial averaging. Snow ablation rates were calculated following the 

methodology presented in Xiao et al. (2021), as the rate of change in SWE between 80% to 

20% of peak SWE during the falling limb of the annual SWE cycle. Simulated day of snow 

disappearance (DSD) was defined as the first day when SWE=0 after peak SWE for 

respective water years at respective model pixels.  

 

3. RESULTS  

 

3.1 WRF-Hydro streamflow validation 

 In the three study catchments the baseline simulation had good to very good pre-fire 

skill simulating daily (R2 = 0.72-0.87; NSE =0.70-0.87) and monthly (R2 = 0.79-0.93; NSE 

=0.78-0.93) streamflow anomalies at each study catchment (Moriasi et al., 2015) (Figure 

4a,c,e; Figure S2a,c,e). In post-fire periods, skill from the baseline simulation only provided 

satisfactory performance at the MFF catchment for R2 (R2=0.61) but unsatisfactory 

performance for R2 at NFF and EBNFF (R2<0.5) and unsatisfactory NSE across all three 

study catchments (NSE<0.5) for daily comparisons (Moriasi et al., 2015) (Figure 4b,d,f). The 

baseline simulation also simulated consistently negative post-fire biases for streamflow 
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anomalies (Figure 4; Figure S2) and had consistently degraded skill in monthly comparisons 

as well (R2=0.00-0.66; NSE = -1.56-0.61). Accounting for fire-related perturbations in the 

Mod-params+GVF+Veg-class+Snow-alb simulation significantly (p<0.001) reduced post-

fire daily Q anomaly biases at each catchment (by 0.03 to 0.15) and significantly (p<0.001) 

increased post-fire model R2 and NSE to a satisfactory 0.63 and 0.60 at the NFF catchment, 

relative to the baseline simulation (Figure 4b,d,f). Likewise, monthly comparisons also 

showed improved post-fire streamflow biases in the Mod-params+GVF+Veg-class+Snow-

alb simulation relative to the baseline simulation (Figure S2b,d,f). To further evaluate 

whether the imposed fire perturbations allow model simulations to be more physically 

consistent with post-fire terrestrial hydrology, we evaluated whether the fire-aware 

simulation has lower skill in simulating pre-fire streamflow than the baseline simulation. 

Figure S5 shows that the Mod-params+GVF+Veg-class+Snow-alb consistently had lower 

skill than baseline simulated Q in pre-fire years; however, only differences in NSE from 

baseline and Mod-params+GVF+Veg-class+Snow-alb simulations at the NFF and EBNFF 

catchments were statistically significant (p<0.01). Overall, consistently reduced post-fire 

anomaly underestimates from the fire-aware simulation may indicate that the imposed fire-

related perturbations can improve the model’s ability to simulate fire-enhanced streamflow; 

however, instances of similar skill scores between Mod-params+GVF+Veg-class+Snow-alb 

and baseline in pre- and post-fire periods indicate that the fire-treatments considered herein 

likely do not adequately resolve fire-related model uncertainties and more sophisticated 

observationally-constrained parameterizations of soil properties, snow albedo, and vegetation 

classifications should be considered in future model developments.  

 At the MFF catchment, a key discrepancy between simulated and observed post-fire 

Q-anomalies occurred during the snow accumulation period (Dec. 2021 – Jan. 2022) when 

observations showed substantially larger streamflow anomalies relative to the Mod-

params+GVF+Veg-class+Snow-alb and baseline simulations (Figure S3a). During this 

period, both observed and simulated spikes in Q-anomalies responded to precipitation events, 

with observed anomalies responding with higher sensitivity. These discrepancies in Q-

anomaly spikes may be attributable to combinations of uncertainties in: (i) rain/snowfall 

magnitude and partitioning, (ii) rain-on-snow runoff and melt responses, and (iii) post-fire 

soil infiltration alterations. The most obvious discrepancies between simulated and observed 

Q-anomalies occurred in the EBNFF catchment where observations had more acute 

streamflow responses to precipitation events than model simulations (Figure S3c). For 

example, in late-October, observations showed a large spike in Q-anomalies in response to a 
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precipitation event, whereas simulations showed a minor and slow response in Q-anomalies 

while simulating increases in soil moisture and SWE. This indicates that in the model, the 

precipitation largely contributes to SWE and soil moisture instead of Q (as observed). This is 

consistent with potential uncertainties in rain-snow partitioning, soil moisture, and post-fire 

soil infiltration alterations. Throughout the EBNFF snow accumulation period, observed Q-

anomalies had acute responses to precipitation events whereas the model fails to simulate 

these streamflow spikes. This further supports that the post-fire uncertainties are partially 

attributable to uncertainties in meteorological forcing (e.g., incorrect rain/snow partitioning) 

or uncertain rain-on-snow runoff and melt responses. Accounting for fire perturbations 

provided the largest improvement at the NFF catchment (Figure 4d). The largest post-fire Q-

anomaly error for the baseline simulation at NFF was in response to a late-October 

precipitation event when observations show a large spike in Q-anomalies up to 5.0, whereas 

the corresponding baseline simulated Q-anomaly spike only reached 1.2 (Figure S3b). 

Accounting for fire-impacts in the Mod-params+GVF+Veg-class+Snow-alb simulation 

allowed the model to better capture this Q-anomaly spike, reaching 5.5. More minor 

discrepancies between baseline and Mod-params+GVF+Veg-class+Snow-alb simulated Q 

occurred in the spring when the fire-aware simulation melted snow at a faster rate and 

simulated higher streamflow. However, observed Q-anomalies did not show the signal of 

fire-enhanced spring ablation and streamflow, but it is difficult to determine whether this is 

due to lack of fire impacts on snow and Q in nature, or whether the observations may be 

impacted by other unmodeled factors such as human diversions of surface water.  

Comparing multidecadal pre-fire periods to relatively short and dry post-fire periods 

is useful to provide historical context of post-fire skill. However, further evaluations are 

required to determine whether relatively lower skill in post-fire periods was likely to have 

been induced by fire-related uncertainties. Previous research has established that LSMs have 

difficulty simulating water-limited ET reductions (Ukkola et al., 2016; Mu et al., 2021; Li et 

al., 2021) so we consider whether the degraded model performance in post-fire years shown 

in Figure 4 is attributable to a small post-fire data record during a relatively dry and water-

limited period (mean post-fire observed Q-anomalies = -0.16 to -0.14 varying by catchments) 

with observed peak Q anomalies that ranged from 1.98-4.95. Figure S4 shows pre-fire model 

evaluations from the baseline simulation only considering dry pre-fire periods comparable to 

respective post-fire periods: same start month and number of days with valid observations as 

corresponding post-fire periods with a negative mean daily observed Q-anomaly and similar 
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peak flow (see Figure S4 for further details). The baseline simulation has higher skill in two 

out of three of the hydrologically similar pre-fire periods relative to baseline post-fire skill at 

the MFF catchment. The one “pre-fire” period at MFF (Nov. 1, 2009 – Sept. 30, 2010) when 

the baseline simulation had lower skill than the corresponding post-fire period followed 

nearly 40,000 acres of burning in 2008 (Figure S1) which may confound the pre- to post-fire 

skill comparison because the pre-fire skill can be impacted by fires other than the five study 

fire events. The baseline skill during hydrologically similar pre-fire periods was consistently 

better than corresponding post-fire skill at the NFF and EBNFF catchments, particularly for 

NSE and bias. For instance, post-fire Q-anomaly underestimates (biases = -0.16 - -0.21) 

largely exceeded the pre-fire bias magnitudes during comparable periods (biases = -0.03 – 

0.10). Relatively better skill from the baseline simulation during hydrologically similar pre-

fire periods, compared to post-fire baseline skill, further supports that a portion of the 

degraded pre- to post-fire model skill and bias changes in the baseline simulation are likely 

due to fire disturbances that are not accounted for in the baseline simulation.  

 

3.2 Fire-related disturbance impacts to the terrestrial water budget  

 

3.2.1 Impacts on streamflow and subsurface flow  

 The most comprehensive fire-aware experiment (Mod-params+GVF+Veg-

class+Snow-alb) simulated enhanced annual Q by 6-115% (multiyear mean = 37%), 3-18% 

(multiyear mean =8%), and 4-28% (multiyear mean = 16%) at the EBNFF, MFF, and NFF 

catchments, respectively, relative to the baseline simulation (ranges are from temporal 

variability across 2000-2022 water years) (Figure 5; Figures S6-S9). There were minimal 

differences in simulated annual Q between the Mod-params and baseline experiments 

(multiyear-mean differences are <0.1% in each study catchment). Fire-induced reductions to 

GVF accounted for the majority of the fire-enhanced Q: differences in annual Q between the 

Mod-params+GVF and baseline experiments were 7-113% (multiyear mean = 38%), 3-18% 

(multiyear mean = 9%), and 5-27% (multiyear mean = 16%) at EBNFF, MFF, and NFF 

catchments, respectively (Figure 5; Figures S6-S9). After accounting for GVF reductions, 

altering vegetation classifications only has a relatively minor impact on annual catchment 

discharge, with minor differences in annual Q between Mod-params+GVF+Veg-class and 

Mod-params+GVF simulations (multiyear mean difference of <0.2% across each study 

catchment). Enhancing snow albedo degradation rates in burned areas did not notably alter 

annual Q compared to simulations that did not consider fire-impacts on snow albedo: 
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multiyear mean differences between Mod-params+GVF+Veg-class+Snow-alb and Mod-

params+GVF+Veg-class annual Q were <1% at each study catchment. 

 At the daily timescale, there were typically minimal differences in Q between the 

Mod-params and baseline experiments; however, modified parameters favoured substantially 

enhanced streamflow during some precipitation events with differences in daily Q between 

the Mod-params and baseline experiments exceeding 10% of mean daily baseline Q during 8 

days, 64 days, and 24 days in the 23-year simulations at the EBNFF, MFF, and NFF 

catchments, with peak changes in daily Q reaching 695-1032 cfs (Figures S7-S9). Mean 

differences between daily Q from Mod-params+GVF and baseline experiments were 

substantial: 25% (164 cfs), 7% (113 cfs), and 14% (484 cfs) at the EBNFF, MFF, and NFF 

catchments, respectively. Imposing fire-related vegetation classification shifts resulted in 

minor differences between Mod-params+GVF+Veg-class and Mod-params+GVF at the 

daily timescale; namely, enhanced Q from Mod-params+GVF+Veg-class from January 

through March (by 1-2% across catchments) and relatively lower Q from Mod-

params+GVF+Veg-class from May through June by 1-4% across catchments. These 

differences are physically consistent with landcover classification shifts favoring enhanced 

ablation and reduced SWE (Section 3.2.3). Enhancing snow albedo degradation rates in 

burned areas enhanced Q from January through March (by 2-5% across catchments) and 

reduced Q from April through June (by 2-8% across catchments), based on differences 

between Mod-params+GVF+Veg-class+Snow-alb and Mod-params GVF+Veg-class 

simulations. These streamflow differences are physically consistent with enhanced snow 

ablation during accumulation and ablation seasons from simulations that perturbed snow 

albedo parameters in burned areas (Section 3.2.3). Overall, the cumulative impacts of fire on 

Q accounted for in the Mod-params+GVF+Veg-class+Snow-alb, relative to baseline, 

favoured persistently enhanced daily Q; however, Mod-params+GVF+Veg-class+Snow-alb 

tended to simulate minor reductions in late spring to early summer Q (varying by catchment) 

due to earlier snow disappearance relative to the baseline simulation (Figures 5; Figure S7-

S9).  

 Mod-params+GVF+Veg-class+Snow-alb simulated enhanced daily subsurface flow 

(by 72-116% across catchments) relative to the baseline simulation; however, faster snow 

depletion in the fire-aware simulation resulted in notable subsurface flow reductions from 

mid-April through mid-June due to accelerated snow disappearance (Figure 6; Figure 10). 

Mod-params simulated slightly reduced daily subsurface flow relative to baseline (mean 

catchment reductions <1% across catchments), indicating modelled subsurface flow is 
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relatively insensitive to the hydrologic parameter modifications imposed in this study (Figure 

6). Mod-params+GVF simulated substantially greater subsurface flow than baseline by 

114%, 70%, and 116% at EBNFF, MFF and NFF catchments, respectively. Accounting for 

fire-related vegetation classification shifts in Mod-params+GVF+Veg-class did not 

substantially impact annual subsurface flow relative to Mod-params+GVF, with <1% 

reductions across each catchment for the total water year, a 2% increase from January 

through March and then a 4% reduction from April through June. These subsurface flow 

differences are physically consistent with Mod-params+GVF+Veg-class simulating 

enhanced snow ablation relative to the Mod-params+GVF simulation (Section 3.2.3). Mod-

params+GVF+Veg-class+Snow-alb simulated enhanced subsurface flow relative to Mod-

params+GVF+Veg-class throughout the water year until early- to mid-April when 

accelerated snow depletion from enhanced snow albedo degradation caused earlier snow 

disappearance and in turn reduced subsurface flow.  

 

3.2.2 Impacts on evapotranspiration  

 The Mod-params+GVF+Veg-class+Snow-alb experiment simulated reduced annual 

ET by 17-31% (multiyear mean = 22%), 11-23% (multiyear mean =15%), and 20-36% 

(multiyear mean = 26%) at EBNFF, MFF, and NFF catchments, respectively, relative to the 

baseline simulation (ranges from temporal variability) (Figure 7). There were minimal 

differences in annual ET between the Mod-params and baseline simulations (multiyear-mean 

differences are <0.1% at each study catchment). Fire-induced reductions to GVF accounted 

for the bulk of ET reductions (Figure 7). Minor differences between ET from Mod-

params+GVF+Veg-class and Mod-params+GVF experiments were predominately caused by 

enhanced Edir in the Mod-params+GVF+Veg-class simulation which partially countered the 

fire-induced ET reductions (Figure S10). Imposing enhanced snow albedo degradation within 

burned areas in Mod-params+GVF+Veg-class+Snow-alb slightly altered ET timing relative 

to the Mod-params+GVF+Veg-class simulation. Namely, enhanced snow albedo degradation 

caused enhanced solar radiation absorbed by the snowpack which increased sublimation in 

snow covered areas and decreased soil evaporation in warm months (e.g., May through 

August) due to earlier snow disappearance (Figure 7; Figure S11). 

 Mod-params+GVF+Veg-class+Snow-alb simulated ET reductions across 91-100% of 

burned pixels in fall, winter, and summer, relative to baseline (Figure 8). In spring, when fire-

related Edir enhancements peaked (Figure 9), there was spatial heterogeneity in ET 

differences with 34% of burned areas showing enhanced ET from the Mod-
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params+GVF+Veg-class+Snow-alb experiment, relative to the baseline simulation (Figure 

8g). One-hundred percent of the burned pixels with fire-enhanced spring ET had enhanced 

Edir with a robust Pearson correlation between increased spring Edir and increased spring ET 

(r=0.82, p<0.01), supporting a strong control on spring ET from Edir. There was a transition 

period in mid-May when fire-related reductions to Etran tended to outweigh enhanced Edir, 

followed by fire-related ET and Etran reductions peaking in summer (Figures 7-9). 

 

3.2.3 Impacts on snowpack  

Mod-params+GVF+Veg-class+Snow-alb simulated heterogeneous directional 

changes to peak SWE relative to the baseline simulation: mean catchment peak SWE 

differences ranging from -4% to 0.3% (Figure 10) and the burned pixel peak SWE difference 

interquartile range (IQR) was -3 to 8%. These heterogeneous impacts were largely 

attributable to heterogeneity in vegetation classification and snow albedo parameter 

alterations and the competing impacts of perturbations. Namely, Mod-params+GVF 

simulated increased peak SWE in 95% of instances (catchment mean peak SWE increase = 8-

14%), relative to baseline, indicating that reducing vegetation area generally favoured greater 

snow accumulation. Mod-params+GVF+Veg-class simulated peak SWE decreases in 19% of 

instances relative to baseline, with 95% of these instances having a high burn severity and 

baseline classifications of evergreen needleleaf or mixed forest. Conversely, only 12% of the 

pixels that showed increased peak SWE from the Mod-params+GVF+Veg-class experiment 

had baseline classifications of evergreen or mixed forest and experienced a high burn 

severity. This indicates that imposing conversions from forested to barren or sparsely 

vegetated classifications for the high-burn severity class was a key contributor to 

heterogeneous fire-related impacts on peak SWE. Mod-params+GVF+Veg-class+Snow-alb 

simulated decreased peak SWE in 36% of instances, with a higher tendency for peak SWE 

decreases at moderate and high-severity burned pixels (48-50%) relative to low-burn severity 

pixels (11%). Thus, the burn-severity dependent treatment of snow albedo parameter 

perturbations, which tended to counter enhanced SWE from GVF reductions, also contributed 

to heterogeneous fire-related impacts on SWE.  

The Mod-params+GVF+Veg-class+Snow-alb simulation consistently modelled 

earlier snow disappearance relative to the baseline simulation: mean, [IQR] DSD difference = 

-8, [-13 to -1 days]. Mod-params+GVF+Veg-class+Snow-alb simulated higher winter and 

spring SWE in multiyear averages at 54% and 40% of burned pixels, relative to baseline 

(Figure 11). Fire-related perturbations causing a transition from slightly enhanced winter 
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SWE to reduced spring and summer SWE is also shown in the catchment scale multiyear-

averaged timeseries. This transition reflects the competing impacts of fire-related 

perturbations favoring enhanced ground snow accumulation due to reduced canopy 

interception and enhanced ablation due to greater solar radiation being absorbed by the 

snowpack in response to vegetation reductions and snow albedo degradation (Figure 10). 

GVF reductions tended to enhance melt season snow ablation rates (by 0.15 – 0.38 mm/day 

across catchments). This was caused by relatively more incoming solar radiation being 

partitioned to latent heat flux to melt and sublimate the snowpack and less solar radiation 

partitioned to sensible heat flux to increase the vegetation temperature because a relatively 

larger portion of a model pixel was categorized as ground-snow-covered rather than 

vegetated after reducing GVF. Competing impacts of GVF reductions on snow, favoring 

greater peak SWE and faster ablation, ultimately results in the Mod-params+GVF tending to 

simulate a later day of snow disappearance (DSD) (mean, [IQR] DSD difference = 2.8, [-1 to 

6] days across burned pixels) relative to baseline. Thus, the impact of GVF reductions on 

increased snow accumulation tended to outweigh the impact of accelerated snow ablation 

when considering DSD. Fire-related landcover classification shifts in the Mod-

params+GVF+Veg-class simulation enhanced ablation, resulting in reduced peak SWE 

(catchment average peak SWE reductions = 3-5%) and a tendency for earlier snow 

disappearance (mean, [IQR] DSD difference = -2.9 days, [-4 to 0 days]), relative to the Mod-

params+GVF simulation. Imposing fire-related acceleration of snow albedo degradation in 

the Mod-params+GVF+Veg-class+Snow-alb simulation further enhanced snow ablation, 

favouring reduced peak SWE (catchment average peak SWE reductions = 6-11%) and earlier 

snow disappearance (mean, [IQR] DSD difference = -7.7 days, [-11 to -2 days]) relative to 

the Mod-params+GVF+Veg-class simulation.  

 

3.2.4 Impacts on soil moisture  

 The Mod-params+GVF+Veg-class+Snow-alb experiment simulated a 4-9% soil 

moisture increase in the multiyear mean daily catchment comparisons, relative to the baseline 

simulation (Figure 12). Fire-related perturbations enhanced soil wetness in the falls when 

>99% of burned pixels had increased soil moisture, and 91% increased by at least 10% 

(Figure 13a,e). Fire-related perturbations enhanced soil wetness in winters when >99% of 

burned pixels had increased soil moisture, but only 36% increased by at least 10% (Figure 

13b,f). Fire-related perturbations enhanced soil wetness in summers when >99% of burned 

pixels had increased soil moisture, and 48% increased by at least 10% (Figure 13d,h). Fire-
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related perturbations had a lesser impact on soil wetness in springs when 73% of burned 

pixels had increased soil moisture and <1% increased by at least 10% (Figure 13c,g). 

Simulated soil moisture was not notably impacted by the hydrologic parameter adjustments 

made in this study, and simulated soil moisture was most impacted by the GVF reductions 

(Figure 12). Namely, the Mod-params+GVF experiment simulated 4-9% wetter soil moisture 

relative to the baseline simulation based on multiyear-average daily comparisons across the 

three catchments (Figure 12), with enhanced soil wetness being attributable to reduced ET 

(Sect. 3.2.2). The seasonality of enhanced soil wetting from GVF reductions (i.e., Mod-

params+GVF minus baseline) is characterized as: enhanced wetting peaking in Fall (by 11-

19%), then reduced soil wetting impacts in winter (by 2-9%), minor differences in spring (by 

0.4-1.2%) and then wetter soil moisture in the summer (by 4-7%) (Figure 12). Accounting for 

fire-related changes to vegetation classifications and snow albedo generally resulted in minor 

adjustments to soil moisture relative to the Mod-params+GVF experiment. Differences in 

soil moisture between Mod-params+GVF+Veg-class+Snow-alb and Mod-params+GVF are 

characterized as slightly increased wetness when snow albedo darkening enhanced ablation 

from January through March and slightly increased dryness from April through June because 

Mod-params+GVF+Veg-class+Snow-alb simulated relatively faster snow depletion (Figures 

10,12).  

 

4. DISCUSSION  

 The WRF-Hydro baseline simulation had significant post-fire streamflow anomaly 

underestimates which is consistent with Abolafia-Rosenzweig et al. (2024b) who found pre- 

to post-fire bias shifts in the Noah-MP LSM. Post-fire bias reductions from the fire-aware 

Mod-params+GVF+Veg-class+Snow-alb simulation supports that fire-related model 

perturbations played a significant role in post-fire model accuracy. Despite lower biases 

during post-fire periods from this fire-aware simulation, there is still inadequate post-fire 

accuracy, emphasizing the continued need to focus on land surface and hydrological model 

accuracy and improvements in burned areas. Therefore, future improvements in post-fire 

LSM accuracy are required to provide reliably accurate depictions of fire impacts to the 

terrestrial water budget. 

WRF-Hydro simulations were largely impacted by vegetation area reductions, with 

smaller impacts corresponding to adjustments made to the hydrologic soil and routing 

parameters, land cover classifications, and snow albedo parameters. Simulations that 

accounted for vegetation area reductions tended to simulate enhanced annual streamflow and 
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reduced annual ET due to transpiration reductions. These results are consistent with previous 

analyses which found fire disturbances favour enhanced streamflow (Williams et al., 2022; 

Abolafia-Rosenzweig et al., 2024b; Stoof et al., 2012), although these results are likely 

domain-specific with prior research finding fire-disturbances tend to favour suppressed 

streamflow in dry water-limited watersheds (Goeking and Tarboton, 2022). This analysis 

supports that fire-induced ET reductions exert greater control on soil moisture and subsurface 

flow than fire-induced changes to soil hydrophobicity in the WRF-Hydro modelling system, 

which result is consistent with previous research (Bart and Tague, 2017; Cardenas and 

Kanarek, 2014). However, it is difficult to determine whether the small model response to 

hydrologic and routing parameter perturbations shown herein are reasonable or potentially 

model scheme specific. Relatively larger model responses to GVF reductions shown in this 

study, compared to the previous research conducted by Abolafia-Rosenzweig et al. (2024b), 

are likely attributable to the dynamic vegetation option used in Noah-MP LSM simulations. 

Namely, this study imposed GVF reductions to the peak GVF using Noah-MP’s dynamic 

vegetation option 4 (i.e., the default Noah-MP Dynamic Vegetation option), whereas 

Abolafia-Rosenzweig et al. (2024b) forced simulations with MODIS-observed GVF which 

inherently accounted for GVF reductions using dynamic vegetation option 7 (He et al., 2023).  

 

5. CONCLUSIONS 

This study incrementally imposed a suite of fire-related perturbations in WRF-Hydro 

simulations across the heavily burned Feather River Basin in northern California. These 

perturbations focused on fire-related changes to hydrologic soil and routing parameters, 

vegetation area, land cover classifications and associated vegetation properties, and snow 

albedo degradation. The most comprehensive fire-aware experiment (Mod-

params+GVF+Veg-class+Snow-alb) consistently simulated enhanced annual streamflow, 

subsurface flow, and soil moisture, relative to the baseline simulation which did not account 

for fire impacts. Modelled streamflow enhancements from this fire-aware simulation 

occurred throughout the water year, excluding early-summer (e.g., May-June) when the 

baseline experiment simulated more snow melt because the fire-related perturbations tended 

to accelerate snow depletion. Enhanced annual streamflow and soil moisture in simulations 

that imposed fire-related perturbations were predominately attributable to vegetation area 

reductions which reduced transpiration. Vegetation area reductions also tended to enhance 

simulated ground snow accumulation due to less interception; however, vegetation reductions 

and snow albedo darkening also tended to enhance radiation absorbed by the snowpack and 
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corresponding increases to snow ablation. On average, this resulted in slightly reduced peak 

SWE and faster snow disappearance from the fire-aware Mod-params+GVF+Veg-

class+Snow-alb simulation relative to the baseline simulation.  

The baseline simulation had good to very good skill in simulating streamflow 

anomalies during pre-fire periods across the three study catchments (R2=0.72-0.93; NSE = 

0.70-0.93); however, baseline skill was largely degraded in post-fire years with consistent 

underestimates of post-fire streamflow anomalies. The fire-aware Mod-params+GVF+Veg-

class+Snow-alb simulation significantly reduced post-fire streamflow anomaly 

underestimates by simulating enhanced streamflow. However, this fire-aware simulation 

maintains critical post-fire errors which were likely partially caused by inadequate fire 

perturbation treatments. The imposed fire perturbations had varying degrees of uncertainty 

from observationally-constrained (i.e., vegetation area reductions) to unconstrained guesses 

(i.e., assumed post-fire vegetation classification shifts) due to limited temporal and spatially 

representative information. Overall, the results from this research support that accounting for 

fire perturbations in LSMs can help reduce post-fire systematic biases, but applying fire-

related perturbations to LSM simulations did not adequately resolve fire-induced model 

uncertainties. Therefore, accurately simulating terrestrial water and energy budgets in heavily 

burned catchments remains an open-ended challenge, and model-based analyses used to 

quantify fire-impacts on terrestrial water and energy budgets are likely limited to being 

interpreted as model responses, rather than true responses in nature until more sophisticated 

post-fire treatments for LSMs are developed. 
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Figure 1. Study domain. (a) Perimeters of catchments (black lines), study gauge locations 

(NFP, MER, ICR; black dots), fire areas (red shading), the Feather River (bold blue line), and 

Lake Oroville (blue shading in southwest corner of the domain). Fire burn severity maps are 

shown for the (b) Walker Fire ignited in Sept. 2019 and contained in Jan. 2020, (c) Sugar Fire 

ignited in Jul. 2021 and contained in Nov. 2021, (d) North Complex Fire ignited in Aug. 

2020 and contained in Dec. 2020, (e) Camp Fire ignited and contained in November 2018 

and (f) Dixie Fire ignited in Jul. 2021 and contained in Oct. 2021.  

 

Figure 2. (a) Annual time series of maximum Fraction of Photosynthetically Active 

Radiation (FPAR) observed by MODIS spatially averaged across fire perimeters of the North 

Complex, Camp, Walker, Sugar and Dixie fire events, respectively. (b) MODIS-based 

fractional green vegetation fraction (GVF) changes applied in the WRF-Hydro experiments 

accounting for fire impacts on GVF (eq. 1; Table 1). 

 
Figure 3. Observed visible snow albedo from an ASO survey over the Feather River Basin for March 

31 – April 2, 2022 (a) outside of fire scars and (b) inside of fire scars. Corresponding snow albedo 

biases from the WRF-Hydro baseline simulation (c) outside of fire scars and (d) inside of fire scars. 

 

Figure 4. Comparisons between simulated and observed daily streamflow (Q) anomalies 

during (a,c,e) pre-fire and (b,d,f) post-fire years at the MER, NFP and ICR stations. Metrics 

related to the baseline and Mod-params+GVF+Veg-class+Snow-alb simulation are reported 

in blue and red, respectively. Pre- and post-fire periods for MFF, NFF and EBNFF are 

described in Section 2.3. 

 

Figure 5. (a-c) Muliyear mean (2000-2022) daily streamflow (Q) at stations denoted in 

column titles (see Figure 1 for station locations) from the 5 WRF-Hydro experiments (Table 

1) at the three study catchments. (d-f) corresponding difference plots relative to the baseline 

experiment which does not apply fire perturbations.  

 

 

Figure 6. (a-c) Muliyear mean (2000-2022) daily subsurface flow spatially averaged across 

study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding 

difference plots relative to the baseline experiment which does not apply fire perturbations.  
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Figure 7. (a-c) Muliyear mean (2000-2022) daily evapotranspiration (ET) spatially averaged 

across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding 

difference plots relative to the baseline experiment which does not apply fire perturbations.  

 

Figure 8. Multiyear mean daily evapotranspiration (ET) from the baseline simulation 

averaged during (a) fall (SON), (b) winter (DJF), (c) spring (MAM) and (d) summer (JJA). 

(e-h) corresponding differences between Mod-params+GVF+Veg-class+Snow-alb and 

baseline simulated ET. 

 

Figure 9. Comparison of evapotranspiration (ET) partitions —transpiration (Etran), canopy 

evaporation (Ecan) and bare ground evaporation plus sublimation (Edir)—from the Mod-

params+ GVF+Veg-class+Snow-alb and baseline simulations. Top row (a-c) shows 

multiyear (2000-2022) daily means for each component at the three study catchments. (d-f) 

shows the differences between the three ET partitions as Mod-params+GVF+Veg-

class+Snow-alb minus baseline. 

 

Figure 10. (a-c) Muliyear mean (2000-2022) daily snow water equivalent (SWE) spatially 

averaged across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) 

corresponding difference plots relative to the baseline experiment which does not apply fire 

perturbations.  

 

Figure 11. Multiyear mean daily snow water equivalent (SWE) from the baseline simulation 

averaged during (a) fall (SON), (b) winter (DJF), (c) spring (MAM) and (d) summer (JJA). 

(e-h) corresponding differences between Mod-params + GVF + Veg-class + Snow-alb and 

baseline simulated SWE. 

 

Figure 12. (a-c) Muliyear mean (2000-2022) daily soil moisture (SM) spatially averaged 

across study catchments from the 5 WRF-Hydro experiments (Table 1). (d-f) corresponding 

difference plots relative to the baseline experiment which does not apply fire perturbations.  

Figure 13. Multiyear mean daily soil moisture (SM) from the baseline simulation averaged 

during (a) fall (SON), (b) winter (DJF), (c) spring (MAM) and (d) summer (JJA). (e-h) 
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corresponding differences between Mod-params+GVF+Veg-class+Snow-alb and baseline 

simulated SWE. 
Novelty Statement 

To the authors’ knowledge this is the first research publication to include the following elements: 

(i) Explicitly account for a suite of fire perturbations to the land surface in the operationally 
used WRF-Hydro modeling system and the Noah-MP land surface model. 

(ii) Incrementally apply fire perturbations to quantify simulated fire impacts on land surface 
hydrology from each perturbation and perturbations in combination.  

(iii) Account for fire-enhanced snow albedo degradation in a physically based modeling 
system considering observed fire impacts on snow albedo from measurements from the 
Airborne Snow Observatory (ASO). 

(iv) Quantify simulated fire impacts on water supply in a snow-dominated river basin that is 
the primary source for a State Water Project. 

(v) Validation of physically based simulations from the WRF-Hydro modeling system in pre- 
and post-fire periods using configurations that include and neglect fire impacts.  

 

These novel contributions are used to (i) quantify the sensitivity of fire perturbations in the 
operationally used WRF-Hydro modelling system over the heavily burned and snow-dominated 
Feather River Basin which is the primary source for California’s State Water Project, and (ii) evaluate 
if explicitly accounting for fire perturbations in WRF-Hydro enhances post-fire streamflow modelling 
accuracy. This study highlights the importance of accounting for fire perturbations in physically based 
hydrologic modeling systems while providing a novel methodology designed to account for fire 
impacts that improves simulated streamflow accuracy in burned catchments during post-fire periods.  

WRF-Hydro simulates fire-enhanced streamflow, reducing post-fire model anomaly biases. (a) 
perimeters of study catchments in the Feather River Basin, study gauge locations (black dots) and fire 
areas (red shading). (b,c,d) Muliyear mean (2000-2022) daily streamflow (Q) from a no-fire baseline 
simulation (black lines) and a fire-aware simulation (red lines) that accounts for fire impacts on soil 
and routing parameters, vegetation area and classifications and snow albedo; anomaly biases in black 
and red text are for baseline and fire-aware simulations, respectively.  

 

 





























WRF-Hydro simulates fire-enhanced streamflow, reducing post-fire model anomaly biases. (a) 
perimeters of study catchments in the Feather River Basin, study gauge locations (black dots) 
and fire areas (red shading). (b,c,d) Muliyear mean (2000-2022) daily streamflow (Q) from a no-
fire baseline simulation (black lines) and a fire-aware simulation (red lines) that accounts for fire 
impacts on soil and routing parameters, vegetation area and classifications and snow albedo; 
anomaly biases in black and red text are for baseline and fire-aware simulations, respectively.  
 




