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Abstract

Exploring solutions to expanding industrial activities and climate change
requires assessments of the combined effects of multiple stressors on wild-
life populations. We present a spatially explicit state-space model for the
health, survival, reproduction, and somatic growth of individuals in a long-
lived, wide-ranging species. The model is applied to critically endangered
North Atlantic right whales (Eubalaena glacialis) to investigate the com-
bined effects of three primary stressors affecting the species’ viability:
entanglements in fishing gear, vessel strikes, and prey availability. We
estimate exposure to these stressors in space and time and assess how
their effects may combine in the pathway from exposure to vital rates.
Results suggest that changes in whale distribution after 2010 led to
increased entanglement risk. Poorer prey conditions were associated
with an increased effect of carrying fishing gear, but, overall, results on
combined effects were not conclusive and depended on model formula-
tion. We also incorporated the estimated effects of stressors into a popu-
lation viability analysis to explore alternative scenarios of stressor
reduction. This integrated analysis highlighted the importance of the
declining trend in maximum body length and its effect on reproduction,
in addition to the documented impact of entanglements on survival.
Model development and application elucidated critical data needs and
the influence of underlying mechanistic assumptions. Specifically,
models for the combined effects of stressors hinge on the availability of
extended longitudinal measurements of individual health and life his-
tory outcomes, extensive datasets on the spatiotemporal distribution of
stressors, and information on individual space use affecting rates of
exposure to stressors. Lessons from this data-rich case study will support
the generalization of the modeling approach to other long-lived species
where measuring the population-level consequences of multiple
stressors directly is unfeasible.

KEYWORDS

Bayesian state-space modeling, cumulative risk, entanglements, Eubalaena glacialis,
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INTRODUCTION

Expanding urbanization, industrial development, and
extraction of resources from the environment are exerting
increasing pressure on wildlife populations and their eco-
systems (Steffen et al., 2011), exacerbated by global cli-
mate change. Managing the combined effects of multiple
stressors resulting from these activities in variable envi-
ronmental contexts is one of the greatest challenges con-
servation science will face in the coming decades
(Rudd, 2014; Steffen et al., 2011). Tyack et al. (2022)

argued that environmental regulatory frameworks and
management approaches should move away from focus-
ing on the incremental effect of specific proposed actions
when added to the existing set of actions and toward
assessing cumulative risk to populations of interest.
Ultimately, the goal of management frameworks should
be to identify combinations of stressors that can be feasi-
bly reduced to ensure that conservation targets are met
(Tyack et al., 2022).

Devising management solutions that can reduce risk
to a population below an acceptable level requires
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quantification of the combined effects of multiple
stressors on individuals and the population. Pirotta et al.
(2022) discussed a range of analytical approaches that
have been used to assess combined effects across disci-
plines, spanning from empirical to mechanistic, and
showed that the choice depends on both the availability
of data on the effects of combinations of stressors and
management requirements. Data availability is likely to
remain a challenge for populations of long-lived species
that range widely, especially in the marine environment
where data collection is logistically complicated and
expensive, and many species regularly cross interna-
tional boundaries. For these species, National Acade-
mies (2017) proposed a conceptual approach to
understand the population consequences of multiple
stressors (PCoMS), which outlines the mechanisms
that link the exposure to stressors to the longer term
effects on individual vital rates and population dynam-
ics. This guiding approach is centered on the concept
of individual health, which comprises a set of indica-
tors (e.g., energy reserves, endocrine status, and
immune status) that characterize “the ability of an
organism to adapt to and manage threats to survival
and reproduction” (Tyack et al., 2022). In practice, the
PCoMS approach has often been operationalized using
agent-based modeling (Grimm & Railsback, 2013),
which mechanistically simulates individuals moving in
space and interacting with spatially explicit stressor
agents or surfaces. A more phenomenological imple-
mentation involves the use of state-space models
(Auger-Méthé et al., 2021), where the underlying
health of an individual is a latent state integrating the
effects of stressors and determining its survival and
reproduction, and which can be observed through
diverse data streams.

These complex, data-hungry models can be developed
in species where long-term datasets exist, the most
impactful stressors to the animals are known, and the
underpinning ecological mechanisms are better under-
stood (Pirotta et al., 2018). The lessons learned from these
applications inform critical data needs and highlight ana-
lytical challenges, which will ultimately support the gen-
eralization to other species, including those that are less
well studied (National Academies, 2017). Among marine
mammals, critically endangered North Atlantic right
whales Eubalaena glacialis (hereafter NARW) are a use-
ful case study for the development of state-space model-
ing approaches, given the breadth of available long-term
data on individuals (Moore et al., 2021; Pirotta et al.,
2023; Schick et al., 2013). This species is threatened by
many stressors, including entanglements in fishing gear,
vessel strikes, and climate-driven changes in prey avail-
ability, among others, which likely interact in complex

ways. Vessel strikes and entanglements have both lethal
and sublethal effects (Knowlton et al., 2012, 2022; Sharp
et al., 2019; van der Hoop et al., 2017). Prey availability
has also been linked to reduced calving rates (Meyer-
Gutbrod et al., 2021), as well as a spatial redistribution
that altered the exposure to other stressors and caused a
spike in mortality (Meyer-Gutbrod et al., 2023). Likely as
a result of combined stressors, the mean asymptotic body
length across individuals has been decreasing (Stewart
et al., 2021), with consequences on female reproductive
output (Pirotta et al., 2024). Building on the work by
Schick et al. (2013), Pirotta et al. (2023, 2024) developed a
state-space model for the health, survival, calving and
somatic growth of individual NARW. This model esti-
mated the separate effects of stressors but ignored the
spatiotemporal variation in stressor exposure and did not
explicitly test for any combined effects. However, when
occurring in combination, stressors may operate differ-
ently than in isolation and lead to unexpected outcomes
(Orr et al., 2020; Pirotta et al., 2022). Ultimately, assessing
the relative contributions of stressors, operating in isola-
tion or in combination, to individual health and vital
rates can inform population viability analyses (PVA) used
to evaluate the effectiveness of management measures. A
NARW PVA tool has recently been published (Runge
et al., 2023), which can incorporate estimated combined
stressor effects to predict the population’s trajectory
under alternative scenarios of ecological and anthropo-
genic stressors.

We extend the Pirotta et al. (2023, 2024) model to
explicitly estimate NARW spatial distribution and thus
the variation in exposure to the stressors of interest in
space and time. This extension involves the collation of
data on the distribution and intensity of stressors over
large spatial extents and long time periods. We then use
this extended model to assess how stressor effects may
combine at different levels in the pathway between expo-
sure and population consequences. We further evaluate
how this estimation is affected by model formulation
and the assumptions imposed by data limitations.
Finally, we investigate how the results of this retro-
spective analysis could be incorporated into the
existing PVA tool to guide the evaluation of reducing
the combined effects of stressors to promote the
population’s viability. Altogether, this extensive model-
ing effort demonstrates the challenges of quantifying
cumulative risk on populations of long-lived organ-
isms. We highlight critical data needs and the influ-
ence of mechanistic assumptions underpinning such
complex modeling exercises and provide guidance on
how the results can be used to support conservation
strategies. In doing so, we identify key insights that can
guide similar endeavors in other systems.
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MATERIALS AND METHODS
Existing model summary

This study builds on a Bayesian state-space model for the
survival and calving probability of NARW, which esti-
mates each individual’s underlying health status at a
three-month time scale (Pirotta et al., 2023). The model is
informed by the 1970-2019 dataset provided by the
NARW Consortium (NARWC; www.narwc.org/narwc-
databases.html), comprising sightings of individual
whales, information on their sex and age class, a qualita-
tive assessment of their health from photographs, records
of females with calves, documented deaths, and anthro-
pogenic traumas. The effects of intrinsic (lactation status
and the transition from calf to juvenile) and extrinsic
stressors (entanglements, vessel strikes, and prey abun-
dance) on the underlying health status are modeled.
Recently, the model was extended to include a compo-
nent for individual length, informed by photogrammetric
measurements from occupied aircraft and drones and
estimated to affect female calving probability (Pirotta
et al., 2024). Full details of the data and of model formu-
lation are provided in Pirotta et al. (2023, 2024), and a
concise summary is provided in Appendix S1: Section S1.

Spatial structure

The models published in Pirotta et al. (2023, 2024) are
non-spatial, that is, the location of individuals and their
resulting exposure to stressors were not modeled
explicitly. Here, we extended the model to account for
individual spatial distribution. Sighting data are too
sparse to inform fine-scale individual movements and
space use. Therefore, we collapsed the population’s
range into seven regional polygons (following Schick
et al. (2013); Figure 1a) and modeled an individual’s
proportional presence in those polygons in a three-
month time step. Individual sightings were collected by
multiple survey programs; the associated survey effort
has varied in space and time and has not been consis-
tently reported for all datasets within the database. An
existing density surface model for the species exists,
but it only uses a subset of the data resulting from sys-
tematic effort (Roberts et al., 2024).

Therefore, we developed two versions of the spatial
model: a data-driven version that uses all reported
sightings and ignores the problem of heterogeneous effort
(v1); and an entirely model-based version that builds on
the densities predicted by Roberts et al. (2024) (v2). For
the data-driven version, we fitted a Dirichlet model
for the proportion of time an individual within a given

demographic class (calf, juvenile, adult male, or adult
female) spent within each regional polygon in each sea-
son, estimating a separate set of parameters for the period
prior to 2010 versus from 2010 onward to capture the
shift in distribution observed after 2010 (Meyer-Gutbrod
et al., 2023) (Appendix S1: Section S2.1). For the model-
based version, we assumed that the relative whale abun-
dance in each polygon over a three-month interval
reflects the distribution of the average individual, which
was then rescaled using the proportional occurrence of
different demographic classes per region and three-
month interval (Appendix S1: Section S2.2). Note that
density predictions by Roberts et al. (2024) are available
for the periods 2003-2009 and 2010-2019. We assumed
that the distribution prior to 2003 was the same as in
2003-2009. Because Roberts et al. (2024) model is largely
restricted to US waters, we used the ratio of the number
of sightings to modeled abundance in the Northeastern
US polygon to infer the abundance in the two Canadian
regional polygons (Appendix S1: Section S2.2). The two
alternative versions were used to investigate the influence
of model formulation on the results.

Spatially explicit stressor surfaces

Assessing spatially explicit exposure to stressors over time
requires estimates of the spatiotemporal distribution of
individual whales and of the different extrinsic stressors
included in the model. Across stressors, deriving surfaces
for the entire range of the population and study period
required extensive assumptions and simplifications to fill
current data gaps. These are discussed in Appendix S1:
Sections S3-S5 and impose caution in the interpretation
of emerging exposure patterns.

For entanglement risk, we used the baseline risk out-
puts from the Woods Hole Analysis of Line Entangle-
ment Decision Support Tool (WHALE DST; Miller
et al., 2025). Briefly, the WHALE DST estimates the rela-
tive risk posed by fixed-gear commercial fisheries (trap/
pot and gillnet) within Atlantic US waters (Miller
et al., 2025), calculated as the product of the number of
vertical fishing lines within a grid cell, the threat those
lines pose to NARW given rope strength and gear config-
uration, and NARW abundance at that location from
Roberts et al. (2024). WHALE DST risk estimates were
averaged at the scale of our regional polygons and in each
three-month period, weighting by the relative whale den-
sity in each polygon (Figure 1b). The results were
assumed to reflect recent entanglement risk, based on the
determined range of years that best captured fixed-gear
fishing effort prior to the 2021 modification of the Atlan-
tic Large Whale Take Reduction Plan (Miller et al., 2024,
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FIGURE 1 Map of the seven regional polygons used to model NARW spatial distribution and exposure to stressors (a), and examples of
stressor data (b-d). In (b), relative entanglement risk derived from the WHALE DST for the Jun-Aug interval in the five US regions,
extrapolated into Canadian regional polygons. In (c), total amount of vessel traffic in meters in June 2019, summarized over a 10 km

X 10 km grid. In (d), maximum concentration (in grams per cubic meter) of copepods in the genus Calanus in June 2019 in the depth range
0-306 m, at a 0.083° spatial resolution, as predicted by the model in Plourde et al. (2024).

2025). For previous years (1970-2014), we scaled baseline
risk values using the trend in landings from fisheries that
pose the greatest entanglement risk to NARW
(Appendix S1: Section S3). As the WHALE DST only
covers US waters, we estimated entanglement risk in
Canadian regional polygons by scaling the total risk

in northern US regions by the ratio between lobster and
crab fisheries landings within each Canadian region
and landings from those fisheries in northern US regions
(Appendix S1: Section S3).

We derived vessel strike risk using vessel tracking
data captured by Automatic Information Systems (AIS;
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available for vessels over 19.8 m in length, Appendix S1:
Section S4) over the population’s range in 2019, which
were obtained from low-orbiting satellite constellations
(ORBCOMM, https://www.orbcomm.com/eu) and terres-
trial stations (USCG Nationwide Automatic Identification
System) for US waters, and from the MERIDIAN initia-
tive at Dalhousie University (https://meridian.cs.dal.ca/)
for Canadian waters. AIS data were summarized into
total vessel transit distances (sensu Redfern et al., 2024,
Figure 1c), weighted by the relative spatial distribution of
NARW in each polygon (Roberts et al., 2024), and then
averaged in each regional polygon and three-month
interval (details in Appendix S1: Section S4). The tempo-
ral trend in strike risk prior to 2019 was estimated within
the model (see below).

Prey distribution and density were obtained from a
model for three copepod species in the genus Calanus
(C. finmarchicus, C. hyperboreus and C. glacialis), which
are important prey of NARW (Appendix S1: Section S5).
The model combined estimates of water-column abun-
dance, derived from zooplankton survey data in US
and Canadian waters and modeled as a function of
environmental variables, with predictions of copepod
body size and vertical distribution (Plourde et al.,
2024). It returns predicted 3D Calanus concentrations
(in grams per cubic meter) between 1999 and 2019
(Plourde et al., 2024; Figure 1d). We assumed that in
each spatial cell a whale would target the depth layer
with maximum predicted concentration within the spe-
cies’ diving range (Baumgartner & Mate, 2005). We
then computed the mean prey concentration in each
regional polygon (weighted by whale relative density
in the region) and three-month interval. The resulting
index of prey conditions was extrapolated for the
period not covered by the Calanus model (1970-1998)
by fitting a log-linear regression model between the
values of the index in 1999-2019 and the time series of
annual anomalies of late-stage C. finmarchicus abun-
dance from the Continuous Plankton Recorder data in
the Gulf of Maine (Pershing et al., 2005; Appendix S1:
Section S5).

Modifications to the NARW model to
incorporate spatially explicit stressors

The probability of entanglement and vessel strike in each
three-month time step was modeled as the combination
of an individual’s distribution in that interval and the
values of the corresponding risk surfaces in the regions
used by the individual, rescaled to lie between 0 and
1. Specifically, entanglement probability for individual
i at time t was

R

e -

bi;=u E Zt,i,lGl,tel,ta (1)
=1

where R = 7 is the number of regional polygons, z;;; is
the proportion of time step ¢ an individual i spent in poly-
gon I, G, is the value of the entanglement risk surface for
that polygon [ and time step ¢, e, is the scalar derived
from the landings data to extrapolate risk to years prior
to 2015, and 1 is an estimated parameter (with a
constrained prior; Appendix S1: Section S10) that con-
verts the relative risk value into a probability of getting
entangled in that time step.

For vessel strike probability, we first modeled strike
probability in each region and time step as

logit (p;,) = logit(1 AIS;;) + V(2019 —y,), (2)

where AIS;; is the value of the vessel strike risk surface
for that regional polygon and time step, 1, is an estimated
coefficient (with a constrained prior; Appendix S1:
Section S10) used to rescale the risk into a probability, v
is the estimated temporal trend in strike risk (meant to
capture changes in vessel traffic over time), and y, is the
corresponding year. This formulation ensures that strike
probability is directly proportional to the AIS-derived risk
in 2019, and changes linearly (on the logit scale) going
back in time. These probabilities were then multiplied by
the individual’s spatial distribution to compute the over-
all strike probability for that individual in a time step:

R
p‘i),t = Z Zt,il Pzr,t (3>
=1

We used entanglement and strike probabilities in
submodels to determine an individual’s entanglement
state (E;,) and vessel strike state (V;,), that is, the occur-
rence of observed entanglement and vessel strike events,
as well as one potential unobserved entanglement and
one potential unobserved vessel strike at the end of an
individual’s time series (i.e., after its last sighting) to cap-
ture cryptic deaths (Pace et al.,, 2021) (Appendix S1:
Sections S6 and S7). The effect of an event on individual
health (given its severity, for entanglements, or the type
of injury, for vessel strikes) was then estimated as
described in Pirotta et al. (2023). Severity and type of
injury were known for observed events, or estimated for
unobserved events (Appendix S1: Sections S6 and S7). In
light of the partial confounding between the immediate
and prolonged effects of entanglements highlighted in
Pirotta et al. (2023), we modified their formulation so
that the prolonged effect of an entanglement event did
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not apply in the time step when the event occurred;
therefore, the effect in the first time step included both
the initial effect on health and the effect of carrying the
gear for that interval (Appendix S1: Section S6).

The index of prey conditions in each region and time
step (prey,,) was first weighted by an individual’s
distribution:

R
preyj, = > 2 Prey,. 4)
=1

We then computed the mean of the prey conditions
experienced by an individual in a given year, standard-
ized it using the mean and SD across all annual means,
and estimated its effect on health in the June-August
interval as in Pirotta et al. (2023) (Appendix S1:
Section S5).

TABLE 1
length, or exposure.

Effect level Combined effect

Health Prey X entanglement (prolonged)
Prey X entanglement (immediate)
Prey X vessel strike

Multiple entanglements (cumulative)

Multiple entanglements (occurrence)

Multiple entanglements (occurrence in previous 2 years)

Length Prolonged health (first 15, 10, 5, 2, or 1 year)
Mother’s health (start of lactation)

Mother’s health (lactation year)

Prey X entanglement (mean in first 15, 10, 5, 2, or 1 year)

Mother’s entanglement status
Exposure Change in distribution X entanglement risk
Change in distribution X vessel strike risk

Prey X entanglement risk

Prey x vessel strike risk

Mechanisms for combined effects
of stressors

There are several pathways through which stressors may
combine to affect an individual’s health and vital rates
(Ankley et al., 2010; Pirotta et al., 2022). We formulated a
set of a priori hypotheses for the potential combined
effects of the stressors included in our model, which were
then tested explicitly (Table 1). Stressors may combine at
the level of individual health, for example, if the effects
of traumatic events vary depending on prey conditions,
or if the effect of an entanglement differs when the indi-
vidual was previously entangled. While we explicitly
tested for interactions between pairs of stressors in the
process model for health, it should be noted that, due to
the nonlinear relationship between health and survival,
the combined effect of two stressors on survival was

Hypothesized mechanisms through which stressors may combine to affect North Atlantic right whales (NARW) health,

Hypothesized mechanism
Poor prey conditions may worsen the effect of carrying
fishing gear

Poor prey conditions may worsen the initial effect of
an entanglement (by severity)

Poor prey conditions may worsen the effect of a vessel
strike (by injury type)

The total no. prior entanglements may worsen the

effect of a subsequent one

The occurrence of prior entanglements may worsen
the effect of a subsequent one

The occurrence of prior, recent entanglements may
worsen the effect of a subsequent one

A prolonged period of poor health may impact an
individual’s growth

Poor health of the mother at the start of lactation may
affect a calf’s growth

Poor health of the mother during the year of lactation
may affect a calf’s growth

Low mean prey conditions and high mean
entanglement status may impact somatic growth

If the mother was entangled during the year of
lactation, this may affect a calf’s growth

A change in spatial distribution may alter the exposure
to entanglement risk

A change in spatial distribution may alter the exposure
to vessel strike risk

Different prey conditions may alter the probability of
getting entangled

Different prey conditions may alter the probability of
getting struck
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intrinsically different from the sum of the effects of those
stressors operating in isolation (Pirotta et al., 2022).

Combined stressors not only affect health; if somatic
growth rates are affected, individual asymptotic length
(the maximum length to which a whale will grow) may
also vary. Therefore, we investigated the effect of
prolonged health status and the direct effects of stressors
on an individual’s asymptotic length. Prolonged health
was defined as the mean health over a variable window
covering the first years of an individual’s life (Table 1).
Finally, we investigated the change in exposure to entan-
glement or vessel strike risk that may result from changes
in whale distribution or prey conditions. The updated
model structure is summarized in Figure 2.

The combined effects of stressors were modeled
across the three available model formulations (i.e., the
two spatial versions described above, vl and v2, and the
non-spatial version described in Pirotta et al. (2024), v3),
except for the combined effects on stressor exposure
resulting from the change in distribution, which were
only considered for the two spatial formulations, and the
effects of prolonged health on length, which were only
tested in the non-spatial version. The details of the imple-
mentation of these effects in the model are reported in
Appendix S1: Section S8. The estimated effects are
discussed in terms of the sign of the corresponding
parameter(s) and the overlap of their posterior 95% credi-
ble intervals with 0 (except for the combined effects on
exposure, which are discussed in terms of the associated
probabilities of entanglement and vessel strike).

Bayesian inference

The models were fitted in a Bayesian framework using
Markov chain Monte Carlo (MCMC) algorithms
implemented in software JAGS ver. 4.3.0, run through
package runjags (Denwood, 2016) for R (www.r-project.
org). Details of model setup, convergence, and fitting
diagnostics are described in Pirotta et al. (2023, 2024).
The prior distributions and constraints of model parame-
ters are listed in Appendix S1: Section S10. Results are
discussed in terms of the 95% credible interval of a subset
of parameters of interest, while other posterior estimates
are reported in Appendix S1: Section S10.

Using model results in the NARW
PVA tool

To demonstrate the potential application of our results to
assess alternative stressor scenarios, we integrated them
into an existing PVA tool for NARW (Runge et al., 2023).

To facilitate this incorporation, we modified our model to
formulate survival in terms of hazard rates, as per Runge
et al. (2023) (Appendix S1: Section S14). The PVA code
was modified to: (1) incorporate the distribution of the
health of uninjured animals and the estimated hazard
ratios of the stressors; (2) model calving probability as a
function of health; (3) model somatic growth as change
in length and its effect on calving probability; and
(4) build in the autocorrelation in health and survival
between subsequent years (Appendix S1: Section S14).
We selected one version of our model (with data-driven
spatial structure, v1, and including the combined effects
of prey conditions and the prolonged effect of entangle-
ments) for illustration, and used the PVA to simulate the
population’s trajectory in the next 100 years under a set
of scenarios. Because this exercise was meant for demon-
stration, we did not consider changes in vessel strike risk,
and only investigated: combinations of entanglement risk
reduced by 0%, 50%, and 100%; prey conditions
remaining low, as in the decade 2010-2019, or returning
to the historical variation observed in 1990-2009; NARW
asymptotic length continuing to decline at the current
rate (down to a minimum of 10 m), stabilizing at the cur-
rent mean (~11.8 m), or reverting its trend up to the his-
torical maximum (~14.0 m). As in the original PVA
(Runge et al., 2023), we propagated the uncertainty in
model estimates by rerunning the projections using 1000
samples from the input distributions. There are some
important differences underpinning the estimation of
NARW vital rates and stressor effects between our model-
ing approach and the PVA (Appendix S1: Section S14).
Therefore, this exercise is intended for demonstration
only, and results of the PVA should be interpreted with
caution and not used to inform management decisions.

RESULTS

NARW spatial distribution showed some substantial dif-
ferences between the two spatial formulations of the
model, vl and v2 (Appendix S1: Figure S1), likely due to
heterogeneous survey effort in different regions and
periods. For example, the model based on NARWC
sightings (v1) suggested a greater occurrence in the
Southeastern United States for adult females and juve-
niles during Dec-Feb, but lower occurrence in the Mid-
Atlantic during the same interval. Model v1 also
highlighted a larger presence in Cape Cod Bay during
Mar-May from 2010 onward. In contrast, occurrence in
the Northeastern United States was higher across demo-
graphic classes during Jun-Aug in the model based on
the density surfaces (v2), which also captured an
increased use of Southern New England and the
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FIGURE 2 Schematic representation of the spatial version of the model. Model processes are represented for individual i at time ¢. The
yellow boxes indicate the data streams, including age informing the somatic growth model (a;,), intrinsic stressors (Z;; ) affecting health, the
values of the stressor surfaces across the R regional polygons (G;.r, representing entanglement risk, AIS;.z, representing vessel strike risk,
and prey, .z, representing prey conditions), NARW density derived from Roberts et al. (2024) density surface models (DSM;.,), and the
observation models (VHA data o;,, where x indicates each of the four VHA variables, sightings e; ,, and photogrammetric measures of
length P; ; dotted arrows). The proportion of a time step an individual spends in different regions (z;;1.x; red circle) is estimated using
density surface model predictions (DSM; . ) and/or individual sightings e;,, and, combined with the three stressor surfaces, determines an
individual’s stressor exposure states (purple circle, i.e., whether it is entangled, E;, or vessel struck, V;,, and the mean prey conditions it
experiences, prey; ; in the model, the annual mean prey conditions affect health in the Jun-Aug interval, but here, we represent prey
conditions experienced in each time step, for simplicity). The blue circles represent the time series of latent health, h; . Health affects
survival probability 9;, in time step ¢ and calving probability ¢;, in available years y (green circles), which determine the time series of the
two vital rates (survival s;, and calving r;,, green diamonds). The orange circles represent the time series of latent length (L; ), which
depends on age (a;,) and affects calving probability in females. The solid red arrows indicate the combined effects of stressors we
investigated (Table 1). For more details on model formulation and notation, please refer to Appendix S1: Sections S1 and S9.
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using the average spatial distribution from model v1. In (c), standardized mean annual prey conditions (unitless), calculated from the mean

conditions in each interval prey;, (from model v1). Variation in stressor exposure across intervals is driven by seasonal variation in both
whale distribution and stressor intensity (see Appendix S1: Sections S2-S5). The colored lines and ribbons indicate the posterior medians
and 95% credible intervals (note that in (c) the red credible interval gets too narrow to be visible after ~1980). Each black line in the bottom

row corresponds to the median for each individual.

Mid-Atlantic from 2010 onward, particularly during
Sep-Nov. Both versions of the model highlighted increased
use of the Gulf of St Lawrence during Jun-Aug from 2010
onward. In general, model v2 resulted in the distribution of
individual whales being more evenly spread across the
range from 2010 onward, particularly during Jun-Aug and
Sep-Nov, which reflects the larger uncertainty associated
with the predicted densities in this period.

Variation in estimated spatial distribution drove dif-
ferences in stressor exposure between the two models
(Figure 3 and Appendix S1: Figures S8-S17). However,

both models highlighted an increase in entanglement
probability (Figure 3), with particularly high levels in the
Gulf of St Lawrence (Appendix S1: Figures S8 and S13),
from 2010 onward, following a shift in NARW distribu-
tion (Appendix S1: Figure S1). The trend in landings from
fisheries with high entanglement rates also led to
increased entanglement probability in other northern
regions prior to 2010, and much lower probabilities in
southern regions (Appendix S1: Figures S8 and S13). Ves-
sel strike probability was estimated to have increased
over time in both models v1 and v2 (Figure 3). However,
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FIGURE 4 Combined effects of stressors on health (a), length (b), and exposure risk (c), as described in Table 1, across the three model
formulations (x axis and colors). The points represent the posterior medians of the associated parameter(s), while the segments are the 95%
credible intervals. A positive effect indicates an improvement in health status (a), a larger asymptotic length (b), or a greater exposure risk
(c). Note that the immediate effect of an entanglement differs by severity (three levels, from left to right: minor, moderate, severe), while the
effect of a vessel strike is by injury type (four levels, from left to right: superficial, shallow, deep, blunt). The three parameters in some of the
models for the length asymptote (b) correspond to the effects of prey, entanglement and their interaction, respectively.
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FIGURE 5 Historical and projected total NARW population size 2000-2119, under various scenarios of severe entanglement risk
reduction (0%, 50%, or 100%), prey conditions (following historical patterns from 1990 to 2009, or reduced as in the post-2010 period), and
asymptotic body length (trend continuing along the current downward trajectory, stabilizing, or reverting toward the historical maximum
length). The period before 2019 (vertical dashed line) shows the historical estimates of NARW population size; the period after 2019 shows
the projections from the population viability analysis tool, modified to incorporate the results of our Bayesian state-space model. The bold
line shows the median value, the light gray shaded area encompasses the 2.5% and 97.5% quantiles (95% projection interval), and the dark
gray shaded area encompasses the 25% and 75% quantiles (50% projection interval). Due to the large number of assumptions, these results
are only demonstrative and should not be used to inform management.
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Results
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showed different spatio-temporal
patterns depending on model
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FIGURE 6 Conceptual diagram summarizing the workflow of this paper.
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strike probability by region and season varied substan-
tially between models vl and v2, driven by the differ-
ences in spatial distribution (Appendix S1: Figures S10
and S15), with the partial exception of consistently high
levels in the Southeastern United States during Dec-Feb
for adult females, in Northeastern United States during
Mar-May for both males and females, and, to a lesser
extent, the Maritimes during Sep-Nov. Strike probability
increased in the Gulf of St Lawrence during Jun-Aug in
both models, but levels remained lower than in other
regions (Appendix S1: Figures S10 and S15). The mean
prey conditions experienced by individuals across years
were consistent across the two formulations
(Appendix S1: Figures S12 and S17), but the Dirichlet
spatial model in model v1 led to greater interindividual
variation (Figure 3). We found no evidence that average
prey conditions in a year resulted in increased strike risk,
while the effect on entanglement risk was small and
inconsistent across models vl and v2 (Figure 4
and Appendix S1: Table S5).

The combined effects of stressors on health (sum-
marized in Figure 4 and Appendix S1: Table S5)
showed some inconsistencies across the three model
formulations. The immediate reduction in health
resulting from severe and moderate entanglements was
worsened during poor prey conditions in model v1, but
the combined effect of poor prey with severe entangle-
ments was not evident in models v2 and v3 (Figure 4).
In contrast, the prolonged effect of carrying the gear on
health was consistently larger with poorer prey condi-
tions across the three formulations, although the over-
lap of the parameter’s posterior distribution with
0 varied (Figure 4; Appendix S1: Figure S19, where the
combined effect is exemplified for model v1). Some of
the estimated combined effects were in the opposite
direction to expectations: for example, good prey con-
ditions appeared to be associated with a greater effect
of vessel strikes causing deep wounds, and the cumula-
tive number of prior entanglements was estimated to
have a small positive effect on a subsequent event.
Finally, entanglements that occurred within 2 years of
a previous entanglement resulted in poorer health,
although the posterior 95% CI showed some overlap
with 0 in both spatial formulations (Figure 4 and
Appendix S1: Table S5).

We found no evidence that the prolonged health sta-
tus of an individual during somatic growth years, or of
the mother at the start or during lactation, was associated
with decreased asymptotic length (Figure 4 and
Appendix S1: Table S5). There was also no evidence of
combined effects of prey and entanglement status on this
asymptote, but, in the spatial versions (vl and v2), we
found some indication that the mean amount of time

spent in an entangled state in the first 1, 2, and 5 years of
life resulted in stunted somatic growth (see models
including the interaction between prey and entanglement
in Figure 4b). This effect was not present in the non-
spatial version v3, where, instead, we found a correlation
between asymptotic length and the mean prey index over
the first 15 years and, to a lesser extent, 10 years of an
individual’s life (Figure 4b). Finally, we found some indi-
cation that the entanglement status of the mother was
correlated with reduced asymptotic length of the calf,
although the 95% CI showed some overlap with 0 across
formulations (Figure 4).

The incorporation of our results in the PVA tool indi-
cated that substantial reductions in entanglement risk
are required to ensure the viability of the species
(Figure 5; Appendix S1: Figure S22). Simulations also
showed that, if the current declining trend in asymptotic
length were to continue, the resulting calving probability
may be insufficient to support a positive population
growth rate even if entanglements were completely
removed. In contrast, a stabilization or an inversion of
that trend meshed with reductions in entanglements
would substantially improve the chances of the popula-
tion recovering and surviving. Prey conditions explored
in these simulations did not appear to have any visible
influence on the population’s trajectory.

DISCUSSION

In this study, we present a spatially explicit state-space
model for the health, survival, reproduction and somatic
growth of individuals in a long-lived, wide-ranging spe-
cies, which can be used to assess the combined effects of
multiple stressors resulting from human activities and
environmental change. To illustrate its development and
utility, we applied the model to critically endangered
NARW to investigate how three of the main stressors that
threaten population viability (entanglements, vessel
strikes, and prey availability) may combine. These com-
bined effects can manifest at different levels in the path-
way between exposure and population dynamics (Pirotta
et al., 2022; Tyack et al., 2022); here, we showed how the
PCoMS framework can guide their explicit evaluation at
the appropriate level. Ultimately, estimating combined
effects within an integrated framework could help guide
the evaluation of alternative scenarios where specific
combinations of stressors are reduced to bring the
cumulative risk to the population below some accept-
able target; here, we demonstrated how this could be
achieved in principle using our results within an
existing predictive tool. Overall, this work represents a
proof of concept for the development of an approach
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(summarized in Figure 6) that integrates diverse
modeling efforts to assess the consequences of multiple
stressors in a species where population-level effects
cannot be quickly detected but management needs are
pressing (Taylor et al., 2007). Its application to a case
study of high conservation concern provided important
insights into the associated challenges and data gaps,
highlighting the many uncertainties and assumptions
involved in the integration of data and models.

The combined effects of stressors
on NARW

Both spatial model formulations describe the substantial
changes in NARW distribution from 2010 onward
(Appendix S1: Figure S1; Meyer-Gutbrod et al., 2023).
The increased use of the Gulf of St Lawrence was associ-
ated with an increased exposure to entanglement risk in
this region (Appendix S1: Figures S8 and S13), although
this may partly depend on our risk extrapolation into
Canadian regions. Increased entanglement risk has been
previously proposed as one of the drivers for an ongoing
Unusual Mortality Event (Davies & Brillant, 2019). This
change in exposure represents an example of a com-
bined effect between prey availability (thought to under-
pin the change in distribution; Record et al., 2019,
Meyer-Gutbrod et al., 2023) and entanglements. The
assumptions around how we modeled NARW spatial
distribution, the trends in stressors over space and time,
and the extrapolation of entanglement risk into Canada
prompt caution in further interpretation of the spatio-
temporal patterns of exposure.

Another indication of the combined effects of prey and
entanglements is at the level of individual health, where
poorer prey conditions were associated with an increase in
the prolonged effect of entanglements (Appendix SI:
Figure S19), albeit with varying support across formula-
tions (Figure 4). This result aligns with our a priori
hypothesis, since carrying fishing gear causes additional
drag (van der Hoop et al., 2017) and the associated ener-
getic cost may become particularly problematic when prey
conditions are poorer. In poor prey years, gear may also
limit the ability of animals to feed efficiently on low-
density prey patches, or move in search of better ones
(Hiitt et al., 2023). Separately, we modeled the effect of an
entanglement injury at the time the gear was acquired,
and this effect was not consistently associated with prey
conditions (Figure 4), which suggests that the impact of an
injury is not clearly remediated by better feeding opportu-
nities. However, there was some indication that having
recently been entangled might worsen the immediate
effect of a subsequent entanglement (Figure 4).

We did not identify clear drivers of the documented
decrease in NARW body length (Figure 4). Depending on
model formulation, we found some indication that the
entanglement status of a calf during the first years of life
or the entanglement status of the mother when nursing
had an effect on calf growth, in line with Stewart et al.
(2021). In contrast, prey conditions only appeared to mat-
ter when summarized over a long temporal window in
the non-spatial model (Figure 4). The lack of association
between average health status during growth years and
decreasing asymptotic length may suggest that our health
metric has limited ability to represent sublethal varia-
tions in individual health that underpin long-term
somatic growth patterns. Similarly, Pirotta et al. (2024)
highlighted how the health metric captures only part of
the variation in calving probability. Not investing energy
in somatic growth may also be a strategy for an individ-
ual to maintain good health when conditions are poor.

Vessel strike risk was estimated to have increased over
time across the entire range, as suggested by Vanderlaan
et al. (2009) (Figure 3). However, the combined effects of
vessel strikes with prey conditions were less clear
(Figure 4), indicating that, similar to entanglement inju-
ries, the impact of injuries from vessel strikes on survival
probability may not be ameliorated by better prey condi-
tions. We also note the unexpected result that better prey
conditions were associated with a worse effect of a vessel
strike causing a deep wound (Figure 4). While this could
be a spurious result, its consistency across model formula-
tions prompts some future investigations of the potential
mechanisms. For example, this could reflect the limited
scope for a further health decrease in poor prey years, or
the prioritization of bioenergetically costly foraging effort
at the expense of injury healing in good prey years.

Our model for the occurrence of traumatic events
improves upon the previous, non-spatial version in
Pirotta et al. (2023) by modeling the time of occurrence
and linking events with the underlying risk. The
approach we propose here also aims to address
the known issue of cryptic deaths after an individual’s
last sighting (Pace et al., 2021). However, the nonlinear
nature of the function linking health and survival proba-
bility may lead to unobserved events being assigned to
animals already in poorer health. Moreover, the model
does not account for other cryptic events earlier in an
individual’s life, particularly those causing sublethal,
undetected, blunt injuries. An individual’s time of death
after its last sighting might also be misrepresented given
the simplistic way in which we model encounter proba-
bility, which is known to vary in space and time. In gen-
eral, appropriately modeling the occurrence of a
traumatic event given an underlying risk surface, the
acquisition of an injury of a given severity, the recovery
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or death that ensues, and the observations of such pro-
cesses requires a level of model complexity that is not
supported by the available data.

Lessons learned and future research

Overall, results on combined effects were difficult to
interpret conclusively and depended on the way the
model was formulated. Given the complementary log-log
function used to link health and survival probability
(Pirotta et al., 2023), this may be due in part to the addi-
tive effect of multiple stressors on the link scale
(i.e., health) being non-additive on the response scale (i.-
e., survival) (Pirotta et al., 2022). However, it is also likely
that the ambiguity of some of the results reflects the com-
plexity of the question under analysis and the lack of suf-
ficient data granularity to answer it. Our state-space
model, while mechanistically informed, remains an
empirical model where relationships are estimated from
data (Auger-Méthé et al., 2021). Therefore, its develop-
ment hinged on long-term longitudinal measurements of
individual health and life history outcomes. Our health
metric effectively captures variations in survival (Pirotta
et al., 2023). However, additional markers that can be col-
lected remotely are needed to monitor the more subtle
changes in individual health that are likely to drive
whether an animal reproduces successfully or is able to
grow (National Academies, 2017; Tyack et al., 2022), and
to reflect the different mechanisms through which
stressors operate and combine. For example, we investi-
gated the use of (i) the concentration of thyroid hormone
metabolites in fecal samples and (ii) relative body width
derived from drone imagery as additional metrics of
nutritional state, but the comparatively small sample size
of these novel datasets meant that they did not contribute
to the estimation of individual health. The inclusion of
new data streams will thus have to be validated and bal-
anced against the strength of the existing, long time
series of visual health data.

Modeling individual exposure in space and time
required extensive spatiotemporal stressor data, which
were challenging to collate for a species that ranges over
thousands of kilometers and lives for several decades. An
extensive collaboration among many researchers from
diverse disciplines enabled the compilation of the best
information available on these stressors, that is, range-
wide levels and distribution of wvessel traffic (Redfern
et al., 2024; Spadon et al., 2024), an integrative tool for esti-
mating entanglement risk (Miller et al., 2024, 2025), and a
transboundary model to predict the availability and abun-
dance of NARW main prey species (Plourde et al., 2024).
However, this exercise has also imposed some strong

assumptions on how stressors have changed over time
(e.g., using fisheries landings data to inform the trend in
entanglement risk, or extrapolating the time series of prey
availability prior to 1999) or outside covered areas
(e.g., extending the entanglement risk surface into Cana-
dian waters). Moreover, it forced the coarsening of spatial
and temporal resolutions to scales where important het-
erogeneity in stressor exposure may be missed (e.g., the
mismatch between NARW fine-scale foraging decisions
and our index of prey abundance (Hudak et al., 2023), the
shifting spatial distributions of fisheries and whale habitat
within regions, or the inability to capture heterogeneous
or localized entanglement risk, vessel strike risk, and prey
availability in the Gulf of St Lawrence and Northeastern
US regions). There is also a mismatch between the large
polygons we used and the spatial scale at which manage-
ment decisions are normally made. A separate simulation
study would be needed to optimize the trade-off between
extending the spatiotemporal scope of the model with
increasing uncertainty against the accurate estimation of
combined stressor effects, since we have shown that the
influence of these assumptions can be large. Similarly,
additional mining of existing datasets could improve these
inputs, representing a priority for future research. More-
over, we had to completely exclude other, potentially
important stressors (e.g., anthropogenic noise and chemi-
cal contaminants; Moore et al., 2021), for which sufficient
data were not available or not at the correct extent and res-
olution. These will likely be common obstacles to model-
ing the effects of multiple stressors for many species, and
we encourage investment toward a coordinated compila-
tion of stressor maps at a regional or ecosystem level
(e.g., led by regulatory or advisory agencies), which could
then be made available for specific assessments. In turn,
monitoring how stressor levels change as management
measures are implemented will also be important.

The way in which individual whale distribution was
modeled, and the data used for the modeling, also had a
strong influence on the results. Spatial distribution can
be informed using individual sightings, but more data on
effort levels spanning multiple national jurisdictions are
needed to appropriately capture occurrence and density
patterns. For NARW, the fact that sightings contributed
to the Consortium database did not always include effort
data was limiting, and we have shown the different spa-
tial distribution patterns emerging from the alternative
use of an existing density surface model (Appendix S1:
Figure S1). In turn, this version required strong assump-
tions to extend the model to Canadian regions and
underestimated NARW occurrence in some important
periods and areas (Appendix S1: Section S2.2). Because
ecological systems are dynamic, and the environment
that populations of concern inhabit can change rapidly
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(Parmesan & Yohe, 2003), being able to track geographic
shifts and their consequences for spatiotemporal expo-
sure rates to stressors is critical (Bontrager et al., 2024;
Wickwire et al., 2011). In general, environmental varia-
tion is an important driver of the dynamics of wildlife
populations and will represent a common backdrop to
other anthropogenic stressors requiring management
(Kefford et al., 2023; National Academies, 2017), but our
understanding of ecosystem-level processes and the eco-
logical interactions therein is often incomplete (Tallis
et al., 2010). Systematic data on NARW dynamic distribu-
tion, integrating information on variable detectability in
different regions, and a continued exploration of the
underpinning environmental drivers will be critical to
inform conservation efforts (Roberts et al., 2024).

Here, we have explicitly explored different model for-
mulations to highlight that several mechanistic assump-
tions are required to complement data limitations, and
these can alter the results. Even in this data-rich species,
major assumptions were necessary to fill gaps in the data.
Investigating the influence of model structure and assump-
tions in such a case study is particularly relevant before
applying similar approaches to other, less studied species.
Comparable limitations will emerge across contexts, but
the development and evaluation of models based on avail-
able information can help prioritize future research direc-
tions and guide adaptive management interventions.
Further complexity could be built into our model; for
example, including an explicit observation model to
account for potential differences in carcass recovery by
cause (Linden et al., 2024) or additional pathways through
which stressors may affect vital rates (e.g., female recruit-
ment; Reed et al., 2024). However, we argue that the
individual-level focus of our model should be retained, to
appropriately capture individual heterogeneity in exposure,
health, and life history performance (Moore et al., 2021).

Management applications and conclusions

Ultimately, these modeling efforts can support the design
and evaluation of management scenarios that ensure the
viability of a species (Tyack et al., 2022). As an example,
for NARW, this would involve the integration of our
results within ongoing conservation efforts. We have
shown how the outputs of our model could be incorpo-
rated into a predictive framework, like an existing NARW
PVA tool (Runge et al., 2023). In our example, simulated
population trajectories evaluating the impacts of entan-
glement and prey suggested that, while reducing
entanglement risk is critical to ensuring the population’s
viability (Runge et al., 2023), the current trend in asymp-
totic body length and its effect on calving probability

(Pirotta et al., 2024) may limit NARW’s ability to recover
successfully in the long term (Figure 5). Therefore, it will
be useful to explicitly monitor changes in body length as
part of future management plans. Though we did not iden-
tify an effect of prey in the PVA, we compared recent, low
prey conditions with historical variation including periods
of both low and high prey. Moreover, prey is probably
involved in the process driving the decline in asymptotic
length, although we did not identify this relationship in
our analyses. These results also suggest that, given the dif-
ficulties in compiling robust stressor data, body length
could be a useful trait to measure as an integrator of the
long-term prey conditions and stressors experienced by an
individual (Clements & Ozgul, 2018).

This simulation exercise did not consider scenarios of
reduced vessel strikes, which constitute an important
threat to NARW (Sharp et al., 2019). Moreover, several
analytical inconsistencies between our model and the
PVA tool mean that the absolute population numbers
simulated from this integration may currently be inap-
propriate for use in management. In particular, the ran-
dom walk nature of the health process is not suitable for
forward prediction, as there is no mechanism to con-
strain the temporal trend in health within reasonable
boundaries; nonetheless, accounting for prolonged tem-
poral autocorrelation in health and vital rates is
warranted in such a long-lived species (Appendix S1:
Section S14). Therefore, going forward, a concerted effort
to merge our individual-based perspective with other
population-level analyses (e.g., Reed et al., 2024; Runge
et al., 2023) is advised, as this will benefit from the com-
bined strengths of different approaches and inform man-
agement amidst several available methods.

In conclusion, in this study, we have moved away
from the question of whether stressor interactions are
additive, synergistic, or antagonistic (Pirotta et al., 2022).
Instead, we have focused on building a spatially explicit
model that can be used to examine the combined effects
of stressors on individual vital rates, which will ulti-
mately support the quantification of the cumulative risk
for this population of high conservation interest (Tyack
et al.,, 2022). In this process, we have learned lessons
about the data and assumptions required to assess com-
bined effects in populations of long-lived species, where
measuring population-level consequences directly is too
imprecise or takes too long to meet pressing management
and conservation agendas (Taylor et al., 2007; White,
2019). These lessons should be valuable across a range of
terrestrial and aquatic systems with similar characteristics,
where effective conservation efforts necessitate efficiency
and caution in selecting combinations of stressors to
address. Further data and methodological development
are needed to bring the science of multiple stressors on
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par with the scale of the challenges imposed by the current
climate and biodiversity crises, requiring extensive invest-
ment and large, interdisciplinary collaborations.
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