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Abstract 

Rising ocean temperatures and other climate impact dri ver s are altering the abundance and distribution of economically and culturally 
important marine species. In the Eastern Bering Sea, climate change threatens communities through reduced economic opportunities 
and food security in fishing-reliant areas. We apply a risk assessment framework integrated with statistical modelling and regionally 
downscaled ocean models to hindcast and project the distribution of adult and juvenile Pacific cod abundance in the Eastern Bering Sea 
under two shared socioeconomic pathways (SSP1-2.6 and SSP5-8.5), leveraging commercial fisheries catch data and publicly available 
socioeconomic information to assess the exposure and sensitivity of Alaska fishing communities’ to the geographical redistribution of 
Pacific cod. To compare risk among seven federally recognized Alaska census areas, we adapt a recognized framework that integrates 
hazards, sensitivity, and exposure as equally weighted components of risk. To assess how distributions and relative risk may shift from 

both historic and more recent abnormal environmental conditions, we compare future projections against two contrasting climate 
baselines: a ‘normal’ period (1980–20 0 0) and a recent abnormally warm period (warm years post-20 0 0). Projections of Pacific cod 

distributions across multiple climate scenarios indicate a progressive shift in abundance from the southern to the northern Eastern 

Bering Sea. The extent of this geographical change, coupled with lower adaptive capacity and higher dependence on this fish as a 
resource, results in heightened risk for southern Eastern Bering Sea communities. Our findings highlight the need for adaptive, place- 
based fisheries management strategies that are tailored to regional sensitivities to projected shifts in marine resources under a changing 

climate. 
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Introduction 

Anthropogenic climate change poses significant threats to 

high-latitude ecosystems, such as the Eastern Bering Sea (EBS).
Known as one of the most productive marine ecosystems in 

the world, the EBS supports rich marine biodiversity and ac- 
counts for > 40% of the USA’s annual commercial fish catch 

(Voorhees and Lowther 2010 ). As climate change intensifies,
the EBS ecosystem is expected to face increasing disruptions 
(Stabeno and Bell 2019 ) and amplified risk of adverse impacts 
to ecological and socioeconomic benefits (Constable et al.
2022 , Holsman et al. 2020 , Reum et al. 2020 , Thorson et al.
2021 , Whitehouse et al. 2021 , Hollowed et al. 2022 , Szuwal- 
ski et al. 2023b ). 

The ecological and physical dynamics of the EBS shelf 
are linked to variable annual sea-ice formation/retreat and 

the subsequent extent of the cold pool (Stabeno et al. 2001 ,
2012b , Hirawake and Hunt 2020 , Stabeno et al. 2023 ). The 
cold pool, or an area of relatively cold bottom water, serves 
as refuge for many forage fish species and acts as an impor- 
tant thermal barrier (Ciannelli and Bailey 2005 , Hollowed et 
al. 2012 , Stabeno et al. 2012b , Kotwicki and Lauth 2013 ,
Stevenson and Lauth 2019 ). Changes in the degree of sea-ice 
cover and melt timing have influenced cold pool size and ex- 
tent, which have altered species assemblages and geographic 
distributions of many fish species in the EBS in recent years 
(Stabeno et al. 2012a , Stevenson and Lauth 2019 ). 
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
The EBS has historically exhibited significant oceano- 
raphic variability due to interannual fluctuations in temper- 
ture and oceanographic mixing (Stabeno et al. 2017 ), partic-
larly in relation to sea-ice extent and timing, which drives
any of its physical and biological processes (Stabeno et al.
001 , 2012b , Hirawake and Hunt 2020 ). Prior to 2000, this
ariability followed a relatively predictable pattern, with an- 
ual or biannual transitions between cold and warm years
s part of the normal climate regime (Stabeno et al. 2012b ).
owever, the year 2000 marked a transition to multi-year 

eriods of warm or cold conditions (Stabeno et al. 2023),
ith notable intermittent marine heatwaves during 2014–
016 (Bond et al. 2015 , Siddon and Zador 2017 ) and 2017–
019 (Siddon 2023 , Szuwalski et al. 2023b ). This departure
rom the historic interannual variability reflects a broader 
rend towards climate instability in the region, with bottom 

emperatures in the EBS projected to increase as much as 5 

◦C
y the end of the century (Hermann et al. 2019 , 2021 , Kearney
t al. 2020 , Cheng et al. 2021 ). 

Variations in temperature are one important factor driving 
he geographical distribution of marine species, particularly 
or poikilothermic species such as fish and crabs, whose phys-
ological processes are intricately linked to ambient tempera- 
ure (Pörtner and Farrell 2008 ). Climate change-driven tem- 
erature changes are thus causing shifts in seasonal habitat 
se, poleward movements in distribution, and general species 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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igration to deeper, cooler waters (Dulvy et al. 2008 , Fos-
heim et al. 2015 ). Geographically restricted species that are
nable to adjust their distribution to stay within their thermal
olerance range are particularly vulnerable to ecological con-
equences of a warming climate (Dulvy et al. 2008 , Rijnsdorp
t al. 2009 ), such as phenotypic changes (Blaisdell et al. 2021 ;
oloczanska et al. 2013 ), increased metabolic stress (Madeira
t al. 2016 ), and food web disruptions (Ainsworth et al. 2011 ,
eaugrand et al. 2015 ). 
The fishing industry in Alaska is a pivotal component of

he local and state economies, a source of cultural unity, and
s directly linked to food security. The economic (e.g. profit,
mployment) and social (e.g. community and cultural sus-
ainability, social cohesion, and cross-generational knowledge
ransfer) benefits derived from Alaskan fisheries are closely
ntertwined with the resilience of these communities. Alaska
sheries make up 40% of the national seafood harvest, fu-
lling the global seafood market, and providing jobs for 1 in 7
laskan residents (ASMI 2024 , Voorhees and Lowther 2010 ).

n 2021, Alaskan fisheries generated > 60 000 jobs in the state
nd > $15 billion in economic output (Alaska Department of
abor & Workforce Development 2024 ). In addition to be-

ng an important source of employment and nutrition, fish-
ng is also central to many cultural customs (Fall 2011 , Holen
014 , Reedy 2019 ). Each year, the Bering Sea supplies > 25
illion pounds of subsistence food to Alaskan residents, pre-
ominantly Alaska Natives residing in small coastal commu-
ities (Brown et al. 2023 ). Specifically, coastal communities
long Alaska’s northwest coast heavily rely on the commer-
ial and subsistence fishing and fish processing sectors, with
 substantial portion of their economic input being derived
rom the regional fisheries (Seung and Miller 2018 ). Reduced
sheries productivity in these areas could lead to unemploy-
ent, decreased food security, and other social and economic

mpacts. 
Fishers, particularly those operating on a small scale, are

imited in where they can fish by technical (size of vessels and
ear types), social (local ecological knowledge and cultural
upport), and regulatory constraints (area and seasonal clo-
ures and cost of permits) (St. Martin 2001 , Holsman et al.
019 , Abbott et al. 2023 ). As species undergo climate-driven
eographical redistributions, communities will likely experi-
nce shifts in the accessibility of such commercial and subsis-
ence resources, necessitating adaptations in fishing practices
Adger et al. 2005 , Young et al. 2019 , Abbott et al. 2023 ). 

Pacific cod ( Gadus macrocephalus ) is the second largest
ommercial groundfish fishery in the USA, generating $225.4
illion in 2022 (Alaska Fisheries Science Center). Over the

ast several decades, Pacific cod in the EBS have demonstrated
arge-scale shifts in their distribution patterns into the north-
rn EBS, thought to be the result of a retreating cold pool
Spies et al. 2019 , Stevenson and Lauth 2019 ). These spa-
ial reconfigurations, characterized by poleward movements
r shifts to deeper waters, present significant challenges for
mall-boat fishers seeking to sustain their livelihoods (Link et
l. 2011 , Ojea et al. 2020 , Liu et al. 2023 ). 

Risk assessment frameworks provide a structure for under-
tanding the progressively severe, interrelated, and frequently
rreversible ramifications of climate-driven events on commu-
ities (Ara Begum et al . 2022 , IPCC 2022 ). Specifically, risk as-
essments offer a systematic approach to determining hazards
nd risks that could impact a system, community, or resource
IPCC 2022). Studies employing interdisciplinary methods ad-
ressing the complex interaction between climate change, fish-
ries, and communities remain scarce [except see (Ekstrom et
l. 2015 , Mathis et al. 2015 , Rogers et al. 2019 , Magel et al.
020 , Samhouri et al. 2023 )]. These multifaceted frameworks
an help in developing strategies to mitigate the adverse im-
acts of climate change on fisheries, thereby enhancing the
esilience of fishing communities. 

Here, we employ biological and socioeconomic data to ex-
lore patterns of community dependence on Pacific cod within
laska. We adapt a risk assessment framework developed
y the Intergovernmental Panel on Climate Change (IPCC)
o quantify fishing community risk to changes in Pacific cod
istributions under different climate scenarios. Our findings
ighlight how climate-driven shifts in species distributions can
ead to uneven and altered patterns of risk across fishing-
eliant communities in western Alaska. By integrating ecolog-
cal projections with community-level socioeconomic indica-
ors, this work offers insights into the complex interactions
etween climate, species distributions, and fishing community
esilience. 

ethods 

isk index framework 

he application of risk and risk management frameworks
o mitigate or alleviate the negative consequences of climate
hange has gained prominence in the previous two decades
Ara Begum et al. 2022 ). Risk, defined as the potential for ad-
erse outcomes due to climate hazard intersecting with social
ensitivity to changes in resources (Ara Begum et al. 2022 ,
PCC 2022 ), acknowledges that the degree of adverse out-
ome or risk, varies across societal and individual values and
oals within social-ecological systems. Risk assessment frame-
orks provide a structure for understanding the progressively

evere, interrelated, and frequently irreversible ramifications
f climatic-driven events on communities. 
Following an IPCC approach to assess climate risk (IPCC

022 ), we quantified risk ( R ) for seven Alaskan census areas as
he function of a hazard ( H ), as well as communities’ exposure
 E ), and sensitivity ( S ) ( Fig. 1 ): 

R = H + E + S 

While our risk framework conceptually aligns with the
PCC model (where risk is a function of hazard, exposure,
nd vulnerability), we adapt its terminology to reflect more
recise and socially responsive language. Specifically, we avoid
he term vulnerability to describe people or communities, as
t can carry negative connotations or imply inherent weak-
ess. Instead, based on feedback from community partners
nd informed by literature such as Munari et al. (2021) , we
efer to the vulnerability dimension as ‘sensitivity’. Further,
he IPCC incorporates sensitivity and adaptive capacity as di-
ensions of vulnerability; here, we use ‘dependency’ in place
f what the IPCC refers to as sensitivity. The overall fram-
ng of risk used here follows similar studies that have evalu-
ted the risk of fisheries losses from climate change (Ekstrom
t al. 2015 , Mathis et al. 2015 , Magel et al. 2020 , Koehn et
l. 2022 ). However, here we consider the geographical redis-
ribution of a species as a hazard and are projecting distri-
ution changes under different climate scenarios to predict
isk. 

It is important to note the IPCC distinguishes between
isk (pre-adaptation) and residual risk (post-adaptation), as
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Figure 1. Conceptual risk frame w ork applied in this study. Adapted from the IPCC AR6 CCP6 (Constable et al. 2022 ). 
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incorporation of adaptive strategies can alter sensitivity and 

exposure (IPCC 2022 ). In this study, we primarily focus on 

residual risk (henceforth referred to as ‘risk’ unless other- 
wise specified); however, to illustrate the potential influence of 
adaptation, we also quantify risk without the adaptive capac- 
ity component (henceforth referred to as ‘initial risk’). While 
we adopt the IPCC’s conceptual framing, we acknowledge 
that this approach does not capture actual changes resulting 
from implementing adaptation strategies. Instead, our com- 
parison between initial and residual risk serves as a simpli- 
fied sensitivity analysis, intended to demonstrate the theoret- 
ical importance of adaptive capacity rather than the realized 

outcomes of adaptation. 
Hazard (H) has traditionally been defined as a climatic 

driver of risk (Ara Begum et al. 2022 , IPCC 2022 ; Table 
1 ). Previous adaptations of fisheries-related hazard within 

community-focused risk assessments have encompassed anal- 
yses of risks associated with natural disasters (Hoang et al.
2020 ), variability in ocean-atmosphere circulation (Magel et 
al. 2020 ), and ocean acidification (Ekstrom et al. 2015 , Mathis 
et al. 2015 ). In the context of this analysis, we considered haz- 
ard to be the geographic redistributions of species in response 
to changes in environmental conditions and the driver of com- 
munity risk. This perspective of hazard is a relatively nascent 
pproach and has only recently begun to see implementation 

Reisinger et al. 2020 ). 
Exposure (E) is defined as the presence of people, liveli-

oods, services, environmental resources, or economic, so- 
ial, or cultural assets in locations which could be adversely
ffected by climate change (Ara Begum et al. 2022 , IPCC
022 ; Table 1 ). As we aim to evaluate the susceptibility of
shing communities to distribution shifts in Pacific cod, our 
ocus lies on assessing the repercussions on livelihoods. Con- 
equently, we consider exposure to be an indicator of the ex-
ent of engagement in species fisheries. The IPCC framework 

lso considers that adaptation can reduce exposure (e.g. peo- 
le move away from coastal areas reducing exposure to SLR),
owever in the context of this paper we assumed that adapta-
ion was not being used to reduce exposure, i.e. we evaluated
aseline, pre-adaptation, exposure hazard. 
Following the definition established by Wisner et al. (2004) 

nd applied within the IPCC framework, community specific 
ensitivity to climate effects (S) was the characteristics of a
ommunity which impact ability to anticipate, cope with, re- 
ist, and recover from the impact of a hazard. In this sense,
ensitivity to climate effects is not only an imperative com-
onent of risk, but also an independent dimension, as it en-
bles deeper understanding of the unequal impacts of climate 
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Table 1. Summary of the components, definitions, variables, and data sources used to calculate risk. 

Component Definition Variables Data sources 

Hazard H Ecological response to a climatic-driven event 
(based on definition from IPCC 2022). 

Percent change in 
predicted Pacific cod 
distribution for each 
climate model 

AFSC, 2023 

Exposure E The presence of people, livelihoods, services, 
environmental resources, or economic, social, or 
cultural assets in locations which could be adversely 
affected by climate change (IPCC 2022). 
Represented here as the level of engagement with 
the fishery. 

Vessel permits, vessel 
ownership, fixed gear 
commercial landings, 
presence of processing 
facilities 

AFSC, 2023 

Sensitivity S The characteristics of a community which 
determines the strength of the impact and 
community level capacity to anticipate, cope with, 
resist, and recover from the impact of a hazard 
(Wisner et al. 2004 ). 

Adaptive capacity, 
dependency 

Adaptive 
Capacity 
A 

Capacity to adjust or respond to climate change to 
reduce the impact of a given hazard, including the 
capacity to adapt, absorb impacts, and recover 
(IPCC 2022). Calculated as the sum of indicators 
for local economic stability and community 
accessibility, similarly to Mathis et al. (2015) . 

Unemployment, 
employment by industry, 
educational attainment, 
per capita income, fuel 
cost, road accessibility 

U.S. Census ACS, 
2022 ; ADCCED, 

2023 ; 
ADOT&PF, 

2023 

Dependency 
δ

The extent of dependence (economic or nutritional) 
on the availability of a resource (IPCC 2022). 

Commercial price per 
pound, percent of 
households using as 
subsistence resource 

ADF&G CSIS, 
2023 ; AFSC, 

2023 

Alaska Fisheries Science Center—AFSC. Alaska Department of Commerce, Community, and Economic Development—ADCCED. American Community 
Survey—ACS. Alaska Department of Transportation & Public Facilities—ADOT&PF. Alaska Department of Fish & Game Community Subsistence Informa- 
tion System—ADF&G CSIS. 

c  

H  

p  

r  

t  

c  

f  

s  

b  

t  

u
 

a  

d  

c  

t  

p  

a  

s  

t  

m  

a  

t  

s  

c  

p  

f  

c

H

T  

v  

h  

m  

S  

a  

O

A
P  

F  

s  

s  

t  

o  

s
 

p  

c  

t  

1  

s  

i  

t  

(  

l  

a
2  

i  

t  

a  

s  

n
 

t  

P  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/7/fsaf127/8212207 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 19 D
ecem

ber 2025
hange across individuals (Ara Begum et al. 2022 ; Table 1 ).
ere, sensitivity to climate effects includes communities’ de-

endency on a resource and their adaptive capacity. Sensitivity
efers to the degree of reliance, whether economic or nutri-
ional, on the availability of a particular resource. Adaptive
apacity assesses a community’s capability to mitigate the ef-
ects of climate change (IPCC 2022). A high adaptive capacity
uggests a community has the necessary resources and capa-
ilities required to adapt and offset the cost of the changes
hey are faced with, typically by diversifying or altering their
se of (dependency on) a resource (Ojea et al. 2020 ). 
For this study, we used independent sources of information

vailable across communities as indices of sensitivity, depen-
ence, and adaptive capacity. To facilitate comparison across
ensus areas and ensure equal weighting, we normalized con-
inuous indicator variables and binned them into quartiles
rior to calculating component scores. While this method en-
bles comparison of scores across regions, it should be con-
idered a relative metric to frame future discussions and place
he redistribution of fish species in the context of social di-
ensions. That said, it is not intended to be a holistic char-

cterization of the hazard, dependence, sensitivity, or adap-
ive capacity of each community and we acknowledge that re-
ilience and adaptive capacity are complex and dynamic pro-
esses that warrant future in-depth evaluations. The initial ap-
roach defined in this study will help provide the foundational
ramework for future evaluations of community level risk to
limate-driven impacts on fishery resources. 

azard 

o project future Pacific cod distribution in the EBS, we de-
eloped a Generalized Additive Model (GAM) informed by
istorical fishery-independent abundance data and environ-
ental covariates derived from regional ocean model outputs.
pecifically, environmental input variables were sourced from
 high-resolution implementation of the Bering Sea Regional
cean Modeling System (ROMS), referred to as Bering10K. 

bundance and environmental covariate data 
acific cod abundance data were obtained from the Alaska
isheries Science Center (AFSC) EBS groundfish bottom trawl
urveys. Since 1982, the AFSC has conducted an annual EBS
helf survey, providing comprehensive geographic coverage of
he shelf and detailed data on the abundance and distribution
f adult and subadult groundfish and invertebrates during the
ummer (see supplementary materials for more details). 

To characterize ocean conditions, we use a Bering Sea im-
lementation of the ROMS, referred to as the Bering10K. En-
ompassing the Bering Sea and the northern Gulf of Alaska,
he Bering10K ROMS domain has a horizontal resolution of
0 km and 30 vertical layers. The Bering10K has demon-
trated its ability to accurately represent physical character-
stics crucial for biological processes, such as circulation pat-
erns, temperature, salinity, and the seasonal sea ice patterns
Hermann et al. 2013 , Kearney et al. 2020 ). This study uti-
izes multiple simulations from the Bering10K model. We use
 reanalysis-forced hindcast simulation, which spanned 1970–
023 and accurately demonstrated observed variability dur-
ng that period (see Kearney et al. (2020) for a full descrip-
ion of the Bering10K model, including the reanalysis forcing
nd model configuration). Bottom temperature data from this
imulation were co-located to survey locations using nearest
eighbour analysis. 
For forecasting, we use dynamically downscaled projec-

ions from Phase 6 of the Coupled Model Intercomparison
roject (CMIP6; O’Neill et al. 2016 ), including downscaled
imulations forced by three Earth System Models (ESMs):
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MIROC Earth System version 2 for long-term simulations 
(Hajima et al. 2020 ), CESM version 2 (Danabasoglu et al.
2020 ), and GFDL Earth System Model version 4.1 (Dunne 
et al. 2020 ). For each ESM, we used two different emission 

scenarios to capture an envelope of future climates: SSP1-2.6 

(high emission mitigation) and SSP5-8.5 (low emission miti- 
gation) (O’Neill et al. 2016 , Cheng et al. 2021 , Hermann et al.
2021 ). For forecast simulations, we extracted annual average 
summer (June 1st –August 31st) bottom temperature values 
for each grid cell. Bottom temperature values were bias cor- 
rected following the methodology described in Holsman et al.
( 2020 ; see supplementary material for detailed bias correction 

methodology) and co-located to survey locations using near- 
est neighbour analysis. All statistical analyses were done using 
R Statistical Software (v4.3.2; R Core Team 2023 ). 

Species distribution modelling 
We modelled Pacific cod abundance and distribution in the 
EBS using a spatially variable coefficient GAM (e.g. Bartolino 

et al. 2011 , Baker 2021 ) with a Tweedie response distribution.
Model selection was based on AIC (see Table S1 ), and this 
formulation was identified as the best fitting model. Spatially 
variable coefficient GAMs are well-suited for testing spatially 
or temporally variable relationships between ocean conditions 
and fish abundance (e.g. Ciannelli et al. 2012 ). The covariates 
used in the final model included latitude ( φ), longitude ( λ), bot- 
tom depth ( d ), sediment size ( ϕ), co-located bottom tempera- 
ture ( temp ), and year as a random effect ( yr ) to enable fore- 
casting. Additionally, the average annual middle shelf bottom 

temperature ( mid ) was modelled as a spatially varying coeffi- 
cient term. Both temperature variables ( temp and mid ) serve 
as proxies for the cold pool, a key oceanographic feature in- 
fluencing Pacific cod habitat in the EBS (Ciannelli and Bailey 
2005 , Stabeno et al. 2012b , Stevenson and Lauth 2019 ). A link 

function was used to estimate the linear predictor, μ, which 

represented Pacific cod catch per unit effort (CPUE) plus 1 to 

facilitate model convergence. All dimensions and variables in 

the model were included additively and the GAM was fitted 

using the R package ‘mgcv’ (v 1.9–1; Wood 2023 ). Model as- 
sumptions were assessed by examining residual diagnostics,
including testing for temporal autocorrelation using an auto- 
correlation function (ACF) plot of yearly mean residuals and 

testing for spatial autocorrelation using Moran’s I with a 40- 
km spatial neighbourhood. The equation for the final model 
is as follows: 

μφ,λ = s 1 
(
d 

) + s 2 ( φ, λ) + s 3 ( φ, λ) ∗ mid + s 4 ( ϕ ) 

+ s 5 ( temp ) + re ( yr ) 

Hazard calculation 

To link shifts in Pacific cod distributions to census areas,
we spatially matched Alaska Department of Fish and Game 
(ADF&G)’s commercial groundfish statistical areas (BS 508,
509, 512, 514, 516, 517, 519) with distinct census areas ( Fig.
2 ). We selected ADF&G statistical areas for their spatial res- 
olution rather than for alignment with National Marine Fish- 
eries Service (NMFS) data. As Alaskan residents engage in Pa- 
cific cod commercial and subsistence fishing close to shore,
only statistical areas adjacent to the coastline were considered.
Statistical areas BS 509, 512, 516, 517, and 519 were grouped 

into one region to spatially align with census areas, while BS 

514 was subdivided at Kusilvak Census Area’s southernmost s
atitude to improve resolution ( Fig. 2 ). Given this method of
inking oceanic and terrestrial areas, it is assumed in our anal-
sis that the regions that encompass multiple census areas ex-
erience the same hazard. We geographically segmented the 
nnual average predicted Pacific cod CPUE during the summer 
eason in each of the four pre-established marine geographi- 
al regions by assigning each grid cell to the predefined marine
egion using the in.chull function from the ‘sgeostat’ package 
v1.0–27; Majure 2016 ). 

To explore a variety of hazard scenarios and assess the pre-
icted impact of changing environmental conditions on Pacific 
od distributions, we developed three distinct hazard mod- 
ls: a reference hazard scenario covering 2001–2022 and two 

rojected hazard scenarios, each spanning from 2015–2099.
e divided each projections into early (2015–2039), mid- 

le (2040–2069), and late century (2070–2099) intervals. We 
hen averaged CPUE predictions across the ESMs for each grid
ell to produce spatially explicit, SSP-specific abundance esti- 
ates over the three time periods. We use hazard under cur-

ent environmental and socioeconomic conditions as a refer- 
nce scenario to contextualize future projections under SSP1- 
.6 and SSP5-8.5. While risk is inherently forward-looking,
his baseline provides a useful point of comparison to under-
tand the magnitude of change in projected hazard and is not
ntended to represent observed impacts. 

We assessed projected changes in hazard using two differ- 
nt baseline periods. The first, henceforth referred to as the
tandard Baseline, uses 1980–2000 as the baseline, represent- 
ng historically ‘normal’ Bering Sea conditions. The second,
eferred to as the Extreme Baseline, uses anomalously warm
ears post 2000 to capture average Pacific cod distributions.
iven the environmental conditions in the EBS have deviated 

rom historical norms over the past two decades (Stabeno et al.
012b , 2019 , Stabeno and Bell 2019 ), comparing future pro-
ections to both baselines allows us to evaluate whether pro-
ected conditions represent a departure from historical norms 
r a continuation of recent extremes. Abnormally warm base- 
ine years were defined by calculating the average middle shelf
ottom temperature, used here as a thermal index, for each
ear since 2000 and identifying years exceeding the 75th per-
entile (2.35 

◦C) as warm, below the 25th percentile (1.28 

◦C)
s cold, and intermediate years as moderate ( Table S3 ). We
hen used the average CPUE from the warm years as the base-
ine for comparing CPUE projections under different climate 
cenarios. 

We calculated hazard as the average % change in predicted
ccessible (available for harvest by small-scale fishers) Pacific 
od abundance for each marine area as: 

Percent change = 

Contrast − Baseline 
Baseline 

× 100 , 

here Baseline is the average CPUE from the reference period,
nd Contrast is the average predicted CPUE from the compari-
on period for each climate scenario. The marine area with the
ighest positive average % change received the lowest hazard 

core (1), as higher accessible abundance of Pacific cod would
ndicate lower risk for communities. Conversely, the lowest 
 change (most negative or smallest % change) received the

ighest score (4), indicating less or similar accessible abun- 
ance compared to the reference period, which would be as-
ociated with higher community risk levels. Uncertainty was 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
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Figure 2. Map of the study census areas and spatially aligned commercial groundfish statistical areas. 
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ested using 95% confidence intervals for each marine area
cross the baseline and contrast years. 

xposure 

ollowing Mathis et al. (2015) and Wise et al. (2021) , ex-
osure was considered to be a measure of communities’ en-
agement with the potentially affected fishery and assessed
sing vessel and catch metrics. For each census area, we
uantified exposure as the sum of vessel permits, vessel
wnership, the proportion of fixed gear landings by census
rea, and presence of processing facilities ( Table 1 ). Given
hat most commercial Pacific cod landings are conducted
y large trawling vessels owned by and employing resi-
ents of Washington or Oregon (AFSC 2023 ), we used only
xed gear landings to better understand small-boat participa-
ion in fisheries. The value for each variable was standard-
zed to be between 0 and 1.0 and then divided into quar-
iles, where higher scores indicated greater exposure. Each
omponent was equally weighted in the calculation of total
xposure: 

E = 0 . 25 E P + 0 . 25 E O 

+ 0 . 25 E L + 0 . 25 E F , 

here E P is the quartile-classified vessel permits and E O 

is the
uartile-classified vessel owners. E L is the quartile-classified
roportion of fixed gear landings and E F is quartile-classified
rocessing facilities. To classify resulting exposure scores as
ow, moderate, or high, the range of values was divided into
hree equal groups. 

ensitivity 

ependency and adaptive capacity values for each census area
ere standardized on a scale of 0 to 1.0, then segmented
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into quartiles and assigned scores ranging from 1 (lowest) 
to 4 (highest). For dependency, higher standardized values 
received higher quartile-derived scores, which would reflect 
increased sensitivity, and ultimately increased risk. In contrast,
the ranking of adaptive capacity was scored inversely, with the 
highest standardized values receiving lower quartile-derived 

scores. This is based on the logic that higher values for these 
socioeconomic indicators implies greater capacity to adapt,
and thus lower overall sensitivity and risk. The scored values 
for dependency and adaptive capacity were evenly weighted 

and summed for each census area to determine overall 
sensitivity ( S ): 

S = 0 . 5 δ + 0 . 5 A, 

where δ is quartile-classified dependency, and A is quartile- 
classified adaptive capacity. The final sensitivity score was di- 
vided into three equal groups to classify each census area as 
having low, moderate, or high sensitivity. 

Dependency 
Dependency (δ) was derived from metrics for both commercial 
and subsistence harvest ( Table 1 ). For our purposes, economic 
reliance was based on each census area’s commercial price per 
pound ( P ) values for each species. To incorporate nutritional 
reliance into sensitivity, subsistence data on the percentage of 
households participating in the subsistence harvest ( Sub ) of 
Pacific cod for the most recent year available was used. The 
sum of these two equally weighted indicators equalled total 
sensitivity: 

δ = 0 . 5 Sub + 0 . 5 P. 

Adaptive capacity 
Similarly to Mathis et al. (2015) , adaptive capacity is consid- 
ered to consist of two dimensions: local economic stability and 

accessibility ( Table 1 ). These dimensions were selected to re- 
flect the ability of a community to respond to or recover from 

change. Local economic stability reflects the financial and in- 
stitutional flexibility available to individuals and communities 
in the face of disruptions. We evaluated this through indica- 
tors such as job diversity (specifically, employment by indus- 
try), unemployment rates, and per capita income. Addition- 
ally, educational attainment, representing individuals’ ability 
to access and apply new information, was measured by the 
percentage of the population 25 years and older that received 

a high school diploma. 
The second component of adaptive capacity , accessibility ,

captures the degree to which communities can physically and 

economically access broader infrastructure needed to adapt.
Here, we used indicators such as average annual fuel costs 
as a financial burden of transportation and road accessibility 
to represent physical connectivity. The sum of these variables 
equalled total adaptive capacity ( A ): 

A = 0 . 16 Emp + 0 . 16 Unemp + 0 . 16 PCI + 0 . 16 Edu 

+0 . 16 F C + 0 . 16 RA, 

where employment by industry is represented by Emp , un- 
employment is Unemp , and per capita income is PCI . Educa- 
tional attainment is represented in the equation by Edu , and 

fuel cost and road accessibility are represented by FC and RA ,
respectively. 
esults 

od distribution 

ll variables in the most supported model explaining the dis-
ribution of Pacific cod were statistically significant ( Table S2 ).
he model explained 32.4% of the null deviance in the data.
he two temperature metrics in the model were moderately 
ositively correlated ( r = 0.39), and both were important in
xplaining the distribution of Pacific cod. CPUE varied spa- 
ially according to average temperature on the middle shelf,
uch that increasing temperatures positively (negatively) af- 
ected abundance in the northern (southern) EBS ( Fig. 3 a). An
ncrease in bottom temperature led to decreases in abundance 
hroughout the sample period ( Fig. 3 d). A CF analysis of the
ean residuals by year indicated no strong temporal autocor- 

elation. Moran’s I test on residuals revealed a small but statis-
ically significant positive spatial autocorrelation (I = 0.055,
 < 0.001), reduced from that observed in the raw CPUE

I = 0.117, P < 0.001), which is expected given spatial clus-
ering of fish in ecological data. 

Model predicted distribution generally aligned with ob- 
erved survey data during the corresponding time period ( Fig.
 ). Historical distribution trends also reflected those seen in
urvey observations, particularly during years with contrast- 
ng environmental conditions. Under both SSP scenarios, the 
odel predicted a northward shift in Pacific cod distributions 

 Fig. S1 ). By late century (2070–2099), the northern EBS is
rojected to contain 42% of Pacific cod abundance under 
SP1-2.6 and 54% under SSP5-8.5, compared to 33% from 

he hindcast predictions (2001–2022). Statistically significant 
hanges in abundance are evident, with no overlap in 95%
onfidence intervals between baseline (1980–2000) and late- 
entury projections (2070–2099), indicating major shifts in 

acific cod distributions. 

azard 

sing 2001–2022 as the period for the reference hazard,
he northernmost marine region, covering Nome and Kusil- 
ak census areas, had the highest hazard score (indicating 
he smallest % change in accessible Pacific cod abundance) 
 Table S5 ). In contrast, Lake and Peninsula received the low-
st hazard score, reflecting the greatest positive % change in
ccessible Pacific cod abundance across the past two decades.

Across the Standard Baseline timeframe (2015–2099) and 

nder both climate scenarios, the marine region encompassing 
ome and Kusilvak census areas are expected to experience 

he highest positive % change in accessible abundance, thus 
eceiving the lowest predicted hazard score. Under these con- 
itions, the census areas along the Alaska Peninsula (Aleutians 
ast and Lake and Peninsula) had the highest projected hazard
cores ( Table S5 ). 

Hazard projections using abundance from historically 
arm years as a baseline (Extreme Baseline) reveal differences 

cross SSP1-2.6 and SSP5-8.5. Under SSP1-2.6, the north- 
rnmost marine region encompassing Nome and Kusilvak 

howed the lowest abundance change (highest projected haz- 
rd score), while Bethel, Bristol Bay, and Dillingham had the
ighest abundance change (lowest projected hazard score) 
 Table S5 ). Conversely, projected hazard scores under SSP5-
.5 were highest for the regions along the Alaska Peninsula
Aleutians East and Lake and Peninsula boroughs), and low- 
st for the northernmost census areas ( Table S5 ). 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
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(b)

(d)(c)

(a)

Figure 3. a) CPUE anomalies per unit change in annual a v erage middle shelf bottom temperature. Negative (positive) effects are indicated by blue (red) 
bubbles. Panels b–d depict the additive effects of bottom depth, sediment size, and bottom temperature, respectively. 

Figure 4. Predicted (scaled) and observed (bubbles) Pacific cod abundance for moderate (2002), cold (20 1 0), and warm (2019) years. The northern EBS 
was not sampled in 2002. 
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Comparing observed Pacific cod abundance under warm
istoric years to the Extreme Baseline SSP-based predictions
evealed that early-to-middle century (SSP1-2.6) and early
entury (SSP5-8.5) scenarios exhibited similar hazard scoring,
ith the northernmost census areas facing the highest pro-

ected hazard and the Bristol Bay region and Alaska Penin-
ula regions having the lowest projected hazard. With both
SP scenarios, these early periods align with less pronounced
arming ( Table S4 ), indicating maintained Pacific cod distri-
utions similar to their traditional ranges in the southern EBS.
By the late century under SSP1-2.6 and middle-to-late cen-

ury under SSP5-8.5, more extreme distribution shifts become

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
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Figure 5. Exposure and sensitivity scores classified as low, moderate, and high for each census area. 
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apparent. In these periods, regions along the Alaska Peninsula 
and Bristol Bay are projected to have less accessible abun- 
dance, while northern census areas will see high positive % 

changes. This suggests that substantial and sustained distribu- 
tion shifts from recent warm-year patterns are not anticipated 

until the middle or late century. 

Exposure 

In this study, exposure was used as a measure of social engage- 
ment with the fishery. Census areas in the southern portion 

of the EBS, such as Aleutians East and Bethel, exhibited high 

exposure ( Fig. 4 ). Bristol Bay and Nome census areas were 
found to have moderate exposure, whereas Lake and Penin- 
sula, Dillingham, and Kusilvak census areas had low exposure,
indicating these areas are not highly engaged in the Pacific cod 

fishery ( Fig. 5 ). 

Sensitivity 

Sensitivity in this study consisted of two components: depen- 
dency and adaptive capacity. Dependency reflects the degree 
of community-specific economic and nutritional reliance on 

Pacific cod. Nutritional dependence was measured by the aver- 
age percentage of households harvesting Pacific cod per census 
area, while economic dependence was assessed based on the 
commercial price per pound. Overall, Aleutians East demon- 
strated the highest sensitivity, being the only census area to 

receive the highest score of 4.0. Dillingham and Kusilvak cen- 
sus areas had the lowest sensitivity scores. 

Adaptive capacity refers to the ability of communities to 

mitigate negative impacts or adapt their resource use. We as- 
sume that lower values in these indices reflect alternative em- 
ployment and nutritional options if Pacific cod availability 
diminishes. Adaptive capacity was evaluated using data on 

local economic stability and food accessibility, and analysis 
of this component of climate Sensitivity exhibits distinct re- 
gional trends. Census areas along the southern portion of the 
BS, including Bristol Bay and Lake and Peninsula, had the
owest index scores, whereas northern areas such as Kusilvak 

nd Nome had the highest. 
Overall Sensitivity was calculated as the equally weighted 

um of dependency and adaptive capacity. Aleutians East was
he only census area considered to have high sensitivity to cli-
ate driven change in cod distributions ( Fig. 5 ). The majority
f the census areas in this study demonstrated moderate sen-
itivity to changes, and only Kusilvak and Dillingham were 
lassified as low sensitivity ( Fig. 5 ). 

otal risk 

nder the reference hazard scenario based on conditions from 

he last two decades, Lake and Peninsula was the only census
rea classified as low risk of negative impacts from climate-
riven change to Pacific cod distribution ( Fig. 6 a). In con-
rast, Nome, Aleutians East, Bethel, and Bristol Bay were cat-
gorized as high risk ( Fig. 6 a), with Nome and Aleutians
ast facing the highest potential for negative impacts un- 
er present day conditions ( Fig. 7 ). In this reference sce-
ario, elevated risk of impacts in Aleutians East and Bethel
temmed from moderate hazard, high sensitivity, and sub- 
tantial fishery engagement. For Nome, high hazard scores 
ombined with moderate sensitivity and fishery engagement 
ere key drivers of relative risk associated with Pacific cod

edistributions. 
Using the Standard Baseline, which used normal conditions 

s a baseline, relative risk rankings among census areas under
SP1-2.6 and SSP5-8.5 scenarios remained consistent across 
arly, middle, and late-century periods. Aleutians East and 

ethel consistently had the highest risk scores, while Kusil- 
ak and Lake and Peninsula had the lowest ( Fig. 6 ; Table 2 ).
nly Aleutians East, Bethel, and Bristol Bay were classified as
igh risk under these scenarios ( Fig. 6 b). 
Using anomalously warm historic years as a baseline (Ex- 

reme Baseline scenario), spatial patterns in relative risk out- 
omes diverged between SSP1-2.6 and SSP5-8.5. Northern 



10 Stone et al. 

(c)

(a) (b)

(d)

Figure 6. Total risk classifications for a) reference scenario, b) Standard Baseline SSP1-2.6 and SSP5-8.5 (results for these were the same and are thus 
represented on one map for clarity), c) Extreme Baseline SSP1-2.6, and d) Extreme Baseline SSP5-8.5. 
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ensus areas such as Nome and Kusilvak ranked higher in
elative risk under SSP1-2.6 compared to the Standard Base-
ine scenario, while Aleutians East remained high risk (Fig. 7 ).
n contrast, SSP5-8.5 produced lower risk scores for northern
ensus areas, with Nome and Kusilvak ranking 5th and 7th,
espectively ( Table 2 ). 

SSP1-2.6 predictions for this projection indicated increased
isk classifications for Nome, Kusilvak, and Lake and Penin-
ula, while Bethel and Dillingham saw decreased relative risk
evels, and Bristol Bay dropped from high to low risk. Aleu-
ians East remained high risk ( Fig. 6 c). For SSP5-8.5, Nome,
usilvak, and Aleutians East maintained their risk levels,
hile Bethel, Dillingham, and Bristol Bay decreased a level,

nd Lake and Peninsula increased ( Fig. 6 d). 
Using the Extreme Baseline, early and middle-century pre-

ictions under SSP1-2.6 and early-century predictions under
SP5-8.5 suggested higher risk for northern census areas, re-
ecting lower Pacific cod abundance in the northern EBS com-
ared to previous warm years. However, late-century SSP1-
.6 and mid-to-late century SSP5-8.5 predictions aligned with
arlier findings, showing reduced risk for northern census ar-
as. Southern census areas, particularly those along the Alaska
eninsula and south of Kusilvak, are projected to face in-
reased risks as warming intensifies. 

To quantify risk reduction through adaptation, initial risk
as quantified for each census area. For three of the seven

ensus areas, inclusion of adaptive capacity in the risk model
ecreased risk ( Fig. S2 ). However four census areas (Bristol
ay, Dillingham, Kusilvak, and Lake and Peninsula) demon-
trated a slight increase in risk ( Fig. S2 ). 
iscussion 

ur work demonstrates that climate change presents differen-
ial risk to socioeconomic well-being across coastal Alaskan
ommunities. Differential risk scores arise due to commu-
ity level variability in hazard strength, exposure to change,
nd dependency on redistributed groundfish resources un-
er changing conditions. Further, adaptation ability indices at
he community level modulated risk for three census areas,
emonstrating the capacity for local adaptation responses to
ncrease long-term climate resilience. 

Our findings support existing literature showing anthro-
ogenic climate change is driving geographical shifts in the
istribution of Pacific cod located in the EBS (Spies et al. 2019 ,
tevenson and Lauth 2019 ). Although the redistribution of
arine species at regional scales due to changing oceanic tem-
erature has been well documented (e.g. Dulvy et al. 2008 ,
oloczanska et al. 2013 , Fossheim et al. 2015 , Christiansen
t al. 2016 ), the impact of these changes on the socioeco-
omic cohesion of coastal communities reliant on stable and
bundant fishing grounds has not yet been quantified in a
isk framework. In the EBS, the availability of detailed eco-
omic and environmental data allowed us to explore mod-
lled risk levels of climate-induced species redistribution on
laskan communities reliant on Pacific cod. 

mpacts of environmental conditions on Pacific cod 

istributions 

he shifting distributions of groundfish species in the EBS,
nd the influence of bottom temperature, the cold pool, and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
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Figure 7. Total risk scores for each census area. Standard Baseline scenarios used 1980–2000 as the baseline for predictions, and the Extreme Baseline 
scenarios used abnormally warm years after 20 0 0 as the baseline for predictions. 

Table 2. Total risk ranking (where 1 is the highest total risk and 7 is the lo w est total risk) of each census area under the different hazard scenarios. 

Reference Standard baseline Extreme baseline 
Census Area Hindcast SSP1-2.6/SSP5-8.5 SSP1-2.6 SSP5-8.5 

Aleutians East 2 1 2 1 
Lake and Peninsula 7 6 5 3 
Bristol Bay 4 3 6 4 
Bethel 3 2 4 2 
Dillingham 6 4 7 6 
Kusilvak 5 7 3 7 
Nome 1 5 1 5 

The Standard Baseline used 1980–2000 as the baseline for predictions, and the Extreme Baseline used abnormally warm years post-2000 as the baseline for 
predictions. 
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sea-ice extent as significant drivers of these range expan- 
sions, has been well documented (Mueter and Litzow 2008 ,
Boldt et al. 2012 , Stabeno et al. 2012b , Nichol et al. 2019 ,
Spies et al. 2019 , Stevenson and Lauth 2019 , Baker 2021 ,
Rooper et al. 2021 ). This study demonstrated similar find- 
ings, with bottom temperature and a thermal index act- 
ing as a proxy for the cold pool, being statistically signifi- 
cant in explaining Pacific cod distributions in the EBS. Fur- 
ther, this study aligns with previous work predicting north- 
ward movement of the stock (Rooper et al. 2021 ), with 

biomass in the northern EBS estimated to increase as much 

as 63% by late-century under climate scenarios of extreme 
warming. 
Comparable studies examining the impact of a warming 
limate on Pacific cod distributions have highlighted both a
orthward shift in adult spawning habitat and differences in 

he distance moved between life stages. Using the Bering10K,
igman et al. (2023) predicted changes in Pacific cod spawn-

ng habitat, which demonstrated a general increase and shift 
orthward. Rooper et al. (2021) provided evidence of pre- 
icted northward shifts in the centre of gravity for both
dult and juvenile Pacific cod, with adult fish exhibiting rela-
ively minor shifts ( < 75 km) and juvenile distributions moving
 200 km. Spies et al. (2019) also observed northward move-
ent of both adult and juvenile Pacific cod, attributing the
resence of juveniles in the northern EBS to shifts in adult
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pawning habitats and learned migratory behaviour. Although
his study did not analyse the difference in distributional shifts
etween adults and juveniles, the contrast in migratory abil-
ties between these life stages, as well as adult spawning be-
aviour, likely influenced the results of this analysis; further
tudies should account for differential impacts of a warming
limate across life stages. These life stage-specific shifts could
ave distinct implications for fishery-reliant communities, as
hifts in juvenile distributions may affect future recruitment
ynamics and the predictability of adult populations. 
This study revealed that the lowest average % changes (i.e.

ighest hazard scores) in accessible abundance under the ref-
rence hazard scenario occurred in the northernmost census
reas compared to other regions in Alaska. This marine re-
ion bordering Nome and Kusilvak census areas experienced
oth the largest and smallest % change across the reference
eriod in this hazard scenario. The observed negative average
 change in Pacific cod abundance in this northern marine ge-

graphical area was likely due to a period of cold years from
007 to 2013, during which Pacific cod were predominantly
istributed within the southern EBS. This southward contrac-
ion during the prolonged cold period likely skewed the ref-
rence hazard calculations, underscoring the importance of
onsidering the multi-year climate regimes that the EBS has
ndergone over the last two decades when assessing fishing
ommunity risk. 

Climate driven changes to distribution were postulated un-
er both climate projections, but with early-to-middle cen-
ury estimates indicating higher abundance within the tradi-
ional summer range of Pacific cod in the southern EBS. In
ontrast, middle-to-late century projections for both scenar-
os showed increased Pacific cod abundance in the northern
BS. This suggests that in the near term, while Pacific cod
ay temporarily move northward during anomalously warm

ears, they are likely to return to their southern range during
ooler periods. However, by mid-century (SSP5-8.5) or late
entury (SSP1-2.6), the model predicted the average summer
istribution of Pacific cod will shift more definitively towards
he northern EBS. This is likely due to continued contraction
f the cold pool during warm conditions, and as the EBS is
urrently the northern limit of the species’ thermal tolerance,
hey will be able to occupy areas that were formerly covered
y the cold pool (Ciannelli and Bailey 2005 , Mueter and Lit-
ow 2008 ). This northward movement aligns with other stud-
es predicting similar latitudinal shifts in marine species as they
rack suitable environmental conditions under climate change
Dulvy et al. 2008 , Mueter and Litzow 2008 , Vestfals et al.
016 , Rooper et al. 2021 ). 

mpacts of shifting fish distributions on Alaskan 

ommunities 

his study found that areas along the southern EBS face the
ighest risk to community level socioeconomic outcomes re-
ulting from climate-driven redistributions of Pacific cod. This
rises in part from high levels of reliance and the extent of Pa-
ific cod’s shifting range. Among the seven census areas in-
luded in this study, Aleutians East was the only region to
e categorized as high risk across all scenarios. Rural regions
ith low educational attainment, employment opportunities,

nd high unemployment are among the most sensitive to cli-
ate driven change. This trend aligns with previous indicator-
ased sensitivity assessments, which have identified rural and
conomically constrained communities are particularly sensi-
ive to ocean acidification (Mathis et al. 2015 ), climate change
Allison et al. 2009 ), and changes in general ocean health
Halpern et al. 2012 ). 

The time communities have to adapt their fishing be-
aviours to mitigate losses varies under different warming
cenarios, based on when sustained spatial shifts in Pacific
od distributions are projected to occur. As this study demon-
trates, if future conditions align with SSP1-2.6 projections,
shers may have more time to develop long-term adaptation
trategies, as sustained distribution shifts beyond those ob-
erved during anomalously warm years are unlikely to occur
ntil the late century . Conversely , under SSP5-8.5 projections,
shers will need to adapt by mid-century to mitigate losses
ue to changes in the fishery. This perspective, however, does
ot account for the current multi-year variability in environ-
ental conditions and the impact of this that is already being
bserved in the fishery. Small-scale fishers in Alaska are al-
eady being required to adapt, or they risk significant losses,
epending on the environmental conditions each year. This is
ikely a substantial force driving fishing communities’ sensitiv-
ty to climate effects, as they are being required to alter fishing
ehaviour interannually. 
Fisheries participants have historically employed a variety

f adaptive strategies in response to shifting conditions, in-
luding expanding the number of species they target to cre-
te more diverse fishing portfolios (Cline et al. 2017 , Young
t al. 2019 , Robinson et al. 2020 ), shifting to new fishing lo-
ations (Papaioannou et al. 2021 , Young et al. 2019 ), mod-
fying gear or harvesting practices (Papaioannou et al. 2020,
oung et al. 2019 , Szymkowiak and Rhodes-Reese 2020 ), and

n some cases, leaving the fishery entirely to seek other liveli-
oods (Young et al. 2019 , Szymkowiak and Rhodes-Reese
020 ). Small-scale and subsistence fishers in Alaska have re-
ponded to climate-driven changes with a range of strategies,
ncluding investing in climate-resilient infrastructure, seeking
iversification through emerging boutique fisheries, and ad-

usting subsistence practices and sharing networks to reflect
hifting species availability (Hollowed et al. 2022 ). 

The ability of fishing communities to adapt to climate-
riven changes in the distribution of marine species is con-
trained by social, technical, and economic factors (Holsman
t al. 2019 , Ojea et al. 2020 , Abbott et al. 2023 ). Adaptive
trategies, such as portfolio diversification or shifting fishing
rounds, present significant challenges, including the neces-
ity of changing gear types, the high cost of entry for permits,
nd the need for new knowledge and skills to effectively ex-
loit different fish stocks (Seara et al. 2020 , Papaioannou et
l. 2021 , Powell et al. 2022 ). Additionally, the financial bur-
en associated with these changes can be prohibitive for many
shers, particularly those in small-scale or subsistence fish-
ries (Papaioannou et al. 2021 , Powell et al. 2022 ). In addition
o these barriers, small-scale fishers in Alaska have reported
afety concerns that limit their ability to shift fishing grounds,
s well as hesitation to investment in technical modernization
nd innovation due to uncertainty about future fishing condi-
ions (Hollowed et al. 2022 ). 

Beyond individual responses, global experiences highlight
he importance of systemic and community-level strategies
o support long-term adaptation in fisheries. Across several
ountries, effective responses to climate-driven shifts in ma-
ine ecosystems have emphasized co-management structures,
he incorporation of Indigenous and place-based knowledge,
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government assisted investments in adaptive infrastructure, 
and increased coordination across governance scales (Bennett 
et al. 2016 , Carter 2019 , Hoerterer et al. 2020 , Galappaththi 
et al. 2022 ). These efforts move beyond short-term coping 
mechanisms to foster adaptation pathways that align with lo- 
cal priorities and cultural values. However, changes in fish- 
ing behaviour due to environmental change can disrupt long- 
standing traditions, threaten cultural heritage, and undermine 
the social cohesion and identity of fishing communities (Meier 
et al. 2014 , Bennett 2018 , Salomon et al. 2019 , Ojea et al.
2020 , Pisor et al. 2023 ). Without intentional support, such 

disruptions can contribute to social exclusion or reinforce 
poverty traps, further exacerbating the community specific 
sensitivity to climate effects (Cinner and Barnes 2019 ). Pre- 
serving cultural continuity is as essential to fishery resilience as 
ensuring economic viability (Pinkerton 2017 ), and adaptation 

strategies that integrate cultural identity are increasingly rec- 
ognized as key components of resilient fisheries systems (John- 
son et al. 2014 , Pisor et al. 2023 ). 

The findings of this study highlight the need for adaptive 
management strategies that can respond to both short-term 

fluctuations and long-term trends in Pacific cod distributions.
In the early-to-middle century, management efforts will need 

to focus on regulating harvest levels across both the north- 
ern and southern EBS as distributions fluctuate. However, as 
the century progresses, management attention should shift to- 
wards addressing the challenges posed by a more fixed sum- 
mer population of Pacific cod in the northern EBS. The impact 
of climate change on the EBS Pacific cod fishery necessitates 
a regionally tailored management approach to ensure the sus- 
tainability of the fishery. Managers and community members 
can play a crucial role in encouraging rapid adaptation, which 

will be essential to mitigating socioeconomic risk in fishing 
reliant communities, through promoting information sharing 
across social networks (Barnes et al. 2016 ), investment in in- 
frastructure (Olson and Clay 2007 ), and implementation of 
strategies to improve community and fishery resilience (Cin- 
ner et al. 2018 , Cinner and Barnes 2019 , Holsman et al. 2019 ,
Ojea et al. 2020 ). Drawing on lessons from other regions, such 

approaches may include emphasis on community-led plan- 
ning, intergenerational knowledge transfer, multi-level gover- 
nance coordination, or workforce retraining (Bennett et al.
2016 , Carter 2019 , Hoerterer et al. 2020 , Galappaththi et al.
2022 , Mason et al. 2023 ). Initiatives supporting intergener- 
ational knowledge transfer, tribal governance, and culturally 
grounded adaptation planning may be especially relevant in 

the Alaskan context. 

Overall total risk 

The overall picture of risk presented by this study aligns 
with global trends in the regional disparities in sensitivity to 

climate-driven changes in fisheries (Allison et al. 2009 , Blasiak 

et al. 2017 , Ding et al. 2017 , Tigchelaar et al. 2021 ). Census ar- 
eas in the southern region of the EBS, such as Aleutians East 
and Bethel, consistently exhibited higher total scores across 
multiple scenarios and components of risk. The convergence 
of high exposure, sensitivity, and relatively low adaptive ca- 
pacity in these southern EBS areas underscores their height- 
ened sensitivity to the adverse effects of shifting Pacific cod 

distributions. 
When quantifying risk reduction through incorporating 

adaptive capacity into the risk model, four census areas 
emonstrated increased risk to changes in Pacific cod distri- 
utions. These areas had the lowest adaptive capacity scores,
ndicating the ability of a community to respond to and mit-
gate the impact of shifting Pacific cod distributions plays a
ubstantial role in determining overall risk levels. This find- 
ng aligns with previous research on the role of adaptive ca-
acity in shaping community sensitivity to fisheries changes 
n Alaska (Himes-Cornell and Kasperski 2016 ). These results 
mphasize the importance of increasing adaptive capacity at 
he community level through targeted interventions that sup- 
ort alternative livelihoods or remove barriers to portfolio di- 
ersification and underscores the need for localized manage- 
ent strategies. 

imitations 

he assumption that community engagement with the Pacific 
od fishery remains constant over time does not account for
he dynamic relationship between fishery engagement and Pa- 
ific cod distributions. As Pacific cod populations shift geo- 
raphically due to changing oceanic conditions, small-boat 
shers may struggle to adapt without implementing adapta- 
ions that are financially or culturally disruptive, thereby lim-
ting their ability to adjust and exacerbating their sensitivity
o climate effects (Rogers et al. 2019 , Ojea et al. 2020 ). Sim-
larly, the socioeconomic variables employed in this risk as- 
essment were assumed to remain static over time, overlook- 
ng potential changes in economic, social, and infrastructural 
actors that could influence community resilience and adapt- 
bility. These socioeconomic variables, such as income levels,
mployment rates, and educational attainment are often inter- 
ependent and shaped by external influences, making it diffi- 
ult to isolate individual impacts (Beckley 1995 , Fedderke and
litgaard 1998 , Himes-Cornell and Kasperski 2016 ). 
Data handling posed challenges due to the disparities in 

ariables, which were sometimes measured in different units 
total, %, per capita) and varying temporal scales (bimonthly,
nnual, decadal). When data gaps were encountered, we av- 
raged values across years or subregions when possible. Ad- 
itionally, some datasets, particularly those related to sub- 
istence use, were infrequently and inconsistently surveyed 

cross communities. We also faced challenges when attempt- 
ng to spatially relate marine geographical areas to coastal cen-
us areas, which necessitated having the same hazard for mul-
iple census areas. 

The primary limitation of this study stems from the scaling
ethodology used. Due to the confidential nature of much 

f the fishery-specific socioeconomic data and the necessary 
caling for inclusion in the analysis, the census areas exam-
ned can only be compared to one another. Consequently, the
esults do not necessarily reflect actualized risk but rather rep-
esent relative risk compared to the other census areas within
he study. This approach means that, while we can identify
hich areas are at higher or lower risk relative to each other,
e cannot generalize these findings to absolute risk levels or

ompare them to other regions outside the study area. 

uture directions 

his study provides a valuable framework for assessing the 
mpacts of anthropogenic climate change on a single fishery 
nd evaluates the level of risk posed to coastal communities
eliant on Pacific cod. While conducting large-scale fishery as- 
essments in response to climate change is essential, under- 
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tanding and addressing fine scale impacts on individual fish-
ries and reliant human communities is equally valuable to en-
ure sustainable harvests and continued economic success for
hese communities. However, we acknowledge that this study
lone is insufficient for capturing total fishing community risk
o climate-driven distribution changes in Alaska fisheries. 

This paper focuses on the initial phase of the project to use
n indicator-based risk framework, with the aim of identify-
ng broad-scale patterns across the region. We recognize that
his approach, while methodologically consistent, is limited in
epth and nuance that will be enhanced through direct en-
agement with Bering Sea communities in subsequent phases.
uture work will incorporate participatory mixed-methods
pproaches to better understand the social and institutional
imensions of adaptive capacity from the communities’ per-
pectives. By incorporating community perspectives, future
isk assessment research will be better grounded in local re-
lities and priorities, which would ensure that the findings
re on a relevant and actionable scale for communities. Fur-
her, similar future research should account for the multi-year
ariability in environmental conditions in the EBS as a driver
f community sensitivity to climate effects. Incorporating dy-
amic socioeconomic models that consider potential adaptive
trategies and changing social landscapes will provide a more
omprehensive understanding of community sensitivity and
esilience in the face of climate-driven changes in the distribu-
ions of many marine resources. 

While our framework focuses on risk of adverse impacts, it
s equally important to recognize that regions projected to ex-
erience increases in Pacific cod abundance may benefit from
ew opportunities available to them. In these cases, shifts in
pecies distributions could generate new economic possibili-
ies and enhance community resilience, especially where in-
reases in abundance coincides with high adaptive capacity.
uture work could build on this risk framework by incorpo-
ating an opportunity dimension, which would allow for a
ore balanced assessment of how climate-driven changes in

pecies distributions may alter access to Alaska fisheries. 
Although this study focuses on Pacific cod, other com-
ercially and culturally important species in the Bering Sea,

uch as snow crab and walleye pollock, are also undergo-
ng climate-driven shifts in their distributions (Stevenson and
auth 2019 , Szuwalski et al. 2023a ) which could compound
r mitigate the risk associated with cod declines. Future anal-
ses that include multiple species would offer a more compre-
ensive picture of the changing resources available to com-
unities. Additionally, including a wider range of socioeco-
omic variables that contribute to adaptive capacity and re-
iance, such as average food cost, raw fish tax, and vessel size
ould enhance the robustness of the findings and provide a
ore comprehensive picture of the economic landscape. Simi-

ar analyses should include more census areas to make broader
tatements about overall risk within Alaska. 

By demonstrating the application of single-fishery assess-
ents and the incorporation of dynamic models, this research
rovides a framework for understanding the sensitivity of fish-
ng reliant communities in Alaska to climate-driven impacts
nd resultant community-level risk of adverse impacts from
limate change. The findings of this study can guide the de-
elopment of community-specific management plans that in-
orporate local knowledge and address unique socioeconomic
hallenges. By identifying community specific risk to climate-
riven changes in Alaska fisheries, management efforts can be
ore locally tailored to help enhance the resilience of these
ommunities. 

 c kno wledg ements 

he authors would like to acknowledge and thank all col-
eagues who provided valuable feedback, especially the mem-
ers of the Alaska Climate Integrated Modeling project. We
ould also like to thank NOAA-AFSC for making data avail-
ble from bottom trawl surveys and vessel trip reports. 

uthor contributions 

arah E. Stone (Conceptualization [equal], Data curation
lead], Formal analysis [lead], Investigation [lead], Methodol-
gy [equal], Project administration [lead], Software [lead], Vi-
ualization [lead], Writing – original draft [lead], Writing – re-
iew & editing [lead]), Sarah Wise (Conceptualization [equal],
ata curation [supporting], Formal analysis [supporting],
ethodology [supporting], Writing – review & editing [sup-

orting]), Michael Harte (Conceptualization [equal], Method-
logy [supporting], Writing – review & editing [support-
ng]), Kirstin Holsman (Conceptualization [equal], Method-
logy [supporting], Writing – review & editing [supporting]),
nd Lorenzo Ciannelli (Conceptualization [equal], Data cura-
ion [supporting], Formal analysis [supporting], Investigation
supporting], Methodology [supporting], Software [support-
ng], Visualization [supporting], Writing – review & editing
supporting]). 

upplementary data 

upplementary data is available at ICES Journal of Marine
cience online. 

onflict of interest : The authors declare no competing inter-
sts. 

unding 

his research was partially supported by the Cooperative In-
titute for Climate, Ocean, and Ecosystem Studies (Award
umber: UWSC15757). 

ata availability 

ata on socioeconomic fisheries variables are confidential. All
ther data and the associated code are available from the cor-
esponding author upon request. 

eferences 

bbott JK , Sakai Y, Holland DS. Species, space and time: a quarter
century of fishers’ diversification strategies on the US West Coast.
Fish Fish 2023; 24 :93–110. https:// doi.org/ 10.1111/ faf.12712 

dger NW , Arnell NW, Tompkins EL. Successful adaptation to climate
change across scales. Glob Environ Change 2005; 15 :77–86. https:
// doi.org/ 10.1016/ j.gloenvcha.2004.12.005 

insworth CH , Samhouri JF, Busch DS et al. Potential impacts of cli-
mate change on Northeast Pacific marine foodwebs and fisheries.
ICES J Mar Sci 2011; 68 :1217–29. https:// doi.org/ 10.1093/ icesjms/
fsr043 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf127#supplementary-data
https://doi.org/10.1111/faf.12712
https://doi.org/10.1016/j.gloenvcha.2004.12.005
https://doi.org/10.1093/icesjms/fsr043


Coastal Alaskan fishing communities 15 

 

 

 

B  

 

B  

B  

C  

C  

 

 

C  

 

C  

 

 

C
 

 

C  

C  

 

C  

 

C  

 

 

 

 

D  

 

D  

 

D  

 

D  

E  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/7/fsaf127/8212207 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 19 D
ecem

ber 2025
Alaska Department of Commerce, Community, and Economic Devel- 
opment . DCRA Open Data. 2023. https://dcra- cdo- dcced.opendat 
a.arcgis.com/ (February 2024, date last accessed).

Alaska Department of Fish and Game , Division of Subsistence 
2023, Community Subsistence Information System, Data Down- 
loader. 2023. https://adfg- ak- subsistence.shinyapps.io/CSIS- Data- D 

ownloader/ (March 2024, date last accessed).
Alaska Department of Labor & Workforce Development . Fishing and 

Seafood Industry Data . 2024. https://live.laborstats.alaska.gov/bas 
ic- page/fishing- and- seafood- industry- data (6 August 2024, date last 
accessed).

Alaska Department of Transportation & Public Facilities . 2023. Public 
Road Mileage Dashboard . https:// akdot.maps.arcgis.com/ apps/das 
hboards/dffea5ddb5c34a20bbb1c510817c227c (November 2024, 
date last accessed).

Alaska Fisheries Science Center , Fisheries one stop shop public data: 
RACE division bottom trawl survey data query, U.S. Dep. Com- 
mer. 2023. https:// www.fisheries.noaa.gov/ foss (August 2024, date 
last accessed).

Alaska Seafood Marketing Institute (ASMI) . ASMI Annual Report 
FY2024. 2024. https:// www.alaskaseafood.org/ resource/asmi-annu 
al- report- fy2024/ (21 July 2025, date last accessed).

Allison EH , Perry AL, Badjeck M-C et al. Vulnerability of national 
economies to the impacts of climate change on fisheries. Fish 
Fish 2009; 10 :173–96. https:// doi.org/ 10.1111/ j.1467-2979.2008.0 
0310.x 

Ara Begum R , Lempert R, Ali E et al. Point of departure and key con- 
cepts. In: H-O Pörtner, DC Roberts, M T ignor et al. (eds.). Climate 
Change 2022: Impacts, Adaptation and Vulnerability . Contribu- 
tion of Working Group II to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge, UK and 
New York, NY, USA: Cambridge University Press, 2022, 121–96.
https:// doi.org/ 10.1017/ 9781009325844.003 

Baker M . Contrast of warm and cold phases in the Bering Sea to 
understand spatial distributions of Arctic and sub-Arctic gadids. 
Polar Biol 2021; 44 :1–23. https:// doi.org/ 10.1007/ s00300- 021- 028 
56-x 

Barnes ML , Lynham J, Kalberg K et al. Social networks and envi- 
ronmental outcomes. Proc Natl Acad Sci USA 2016; 113 :6466–71.
https:// doi.org/ 10.1073/ pnas.1523245113 

Bartolino V , Ciannelli L, Bacheler NM et al. Ontogenetic and sex- 
specific differences in density-dependent habitat selection of a ma- 
rine fish population. Ecology 2011; 92 :189–200. https:// doi.org/ 10 
.1890/09-1129.1 

Beaugrand G , Edwards M, Raybaud V et al. Future vulnerability of ma- 
rine biodiversity compared with contemporary and past changes.
Nat Clim Change 2015; 5 :695–701. https:// doi.org/ 10.1038/ nclima 
te2650 

Beckley TM . Community stability and the relationship between eco- 
nomic and social well-being in forest-dependent communities. Soc 
Nat Resour 1995; 8 :261–6. https:// doi.org/ 10.1080/ 089419295093 
80919 

Bennett NJ , Kadfak A, Dearden P. Community-based scenario plan- 
ning: a process for vulnerability analysis and adaptation planning 
to social–ecological change in coastal communities. Environ Dev 
Sustain 2016; 18 :1771–99. https:// doi.org/ 10.1007/ s10668- 015- 9 
707-1 

Bennett NJ . Navigating a just and inclusive path towards sustainable 
oceans. Mar Policy 2018; 97 :139–46. https:// doi.org/ 10.1016/ j.marp 
ol.2018.06.001 

Bigman JS , Laurel BJ, Kearney K et al. Predicting Pacific cod ther- 
mal spawning habitat in a changing climate. ICES J Mar Sci 
2023; 82 :fsad096. https:// doi.org/ 10.1093/ icesjms/ fsad096 

Blaisdell J , Thalmann HL, Klajbor W et al. A dynamic stress-scape 
framework to evaluate potential effects of multiple environmen- 
tal stressors on Gulf of Alaska juvenile Pacific Cod. Front Mar Sci 
2021; 8 . https:// doi.org/ 10.3389/ fmars.2021.656088 

Blasiak R , Spijkers J, Tokunaga K et al. Climate change and marine 
fisheries: least developed countries top global index of vulnerabil- 
ity. PLoS One 2017; 12 :e0179632. https:// doi.org/ 10.1371/ journal. 
pone.0179632 

oldt JL , Buckley TW, Rooper CN et al. Factors influencing cannibal-
ism and abundance of walleye pollock (Theragra chalcogramma) 
on the Eastern Bering Sea shelf, 1982–20. Fish Bull 2012; 110 :
293–306.

ond NA , Cronin MF, Freeland H et al. Causes and impacts of the 2014
warm anomaly in the NE Pacific. Geophys Res Lett 2015; 42 :3414–
20. https:// doi.org/ 10.1002/ 2015GL063306 

rown CL , Bembenic T, Brown M et al. Alaska subsistence and per-
sonal use Salmon fisheries 2020 annual report. Tech Pap No 494 . 
2023. https:// www.adfg.alaska.gov/ techpap/ TP494.pdf

arter L . He korowai o Matainaka/the cloak of Matainaka. New
Zealand J Ecol 2019; 43 :1–8. https:// doi.org/ 10.20417/nzjecol.43. 
27 

heng W , Hermann AJ, Hollowed AB et al. Eastern Bering Sea shelf
environmental and lower trophic level responses to climate forcing: 
results of dynamical downscaling from CMIP6. Deep Sea Res Part
II Top Stud Oceanogr 2021; 193 :104975. https:// doi.org/ 10.1016/ j.
dsr2.2021.104975 

hristiansen JS , Bonsdorff E, Byrkjedal I et al. Novel biodiversity base-
lines outpace models of fish distribution in Arctic waters. Sci Nat
2016; 103 :8. https:// doi.org/ 10.1007/ s00114- 016- 1332- 9 

iannelli L , Bailey K. Landscape dynamics and resulting species inter-
actions: the cod-capelin system in the southeastern Bering Sea. Mar
Ecol Prog Ser 2005; 291 :227–36. https:// doi.org/ 10.3354/ meps2912
27 

iannelli L , Bartolino V, Chan K-S. Non-additive and non-stationary 
properties in the spatial distribution of a large marine fish popula-
tion. Proc R Soc B Biol Sci 2012; 279 :3635–42. https:// doi.org/ 10.1
098/rspb.2012.0849 

inner J , Adger W, Allison E et al. Building adaptive capacity to cli-
mate change in tropical coastal communities. Nat Clim Change 
2018; 8 :117–123. https:// doi.org/ 10.1038/ s41558- 017- 0065- x 

inner JE , Barnes ML. Social dimensions of resilience in Social-
ecological systems. One Earth 2019; 1 :51–6. https:// doi.org/ 10.101
6/j.oneear.2019.08.003 

line TJ , Schindler DE, Hilborn R. Fisheries portfolio diversification
and turnover buffer Alaskan fishing communities from abrupt re- 
source and market changes. Nat Commun 2017; 8 :14042. https:
// doi.org/ 10.1038/ ncomms14042 

onstable AJ , Harper S, Dawson J et al. Cross-Chapter Paper
6: Polar Regions. In: H-O Pörtner, DC Roberts, M Tignor et
al.(eds.), Climate Change 2022: Impacts, Adaptation and Vul- 
nerability. Contribution of Working Group II to the Sixth As-
sessment Report of the Interg ov ernmental Panel on Climate
Change . Cambridge, UK and New York, NY, USA: Cambridge Uni-
versity Press, 2022, 2319–2368, https:// doi.org/ 10.1017/ 97810093 
25844.023 

anabasoglu G , Lamarque J-F, Bacmeister J et al. The Community
Earth System Model version 2 (CESM2). J Adv Model Earth
Syst 2020; 12 :e2019MS001916. https:// doi.org/ 10.1029/ 2019MS00 
1916 

ing Q , Chen X, Hilborn R et al. Vulnerability to impacts
of climate change on marine fisheries and food security.
Mar Policy 2017; 83 :55–61. https:// doi.org/ 10.1016/ j.marpol.2 
017.05.011 

ulvy NK , Rogers SI, Jennings S et al. Climate change and deepening of
the North Sea fish assemblage: a biotic indicator of warming seas. J
Appl Ecol 2008; 45 :1029–39. https:// doi.org/ 10.1111/ j.1365-2664. 
2008.01488.x 

unne JP , Horowitz LW, Adcroft AJ et al. The GFDL Earth Sys-
tem Model Version 4.1 (GFDL-ESM 4.1): overall coupled model 
description and simulation characteristics. J Adv Model Earth 
Syst 2020; 12 :e2019MS002015. https:// doi.org/ 10.1029/ 2019MS00 
2015 

lizabeth S , Stephani Z. Ecosystem Considerations 2017 Status of the
Eastern Bering Sea Marine Ecosystem. 2017. https://repository.libra 
ry.noaa.gov/ view/noaa/ 19464 

https://dcra-cdo-dcced.opendata.arcgis.com/
https://adfg-ak-subsistence.shinyapps.io/CSIS-Data-Downloader/
https://live.laborstats.alaska.gov/basic-page/fishing-and-seafood-industry-data
https://akdot.maps.arcgis.com/apps/dashboards/dffea5ddb5c34a20bbb1c510817c227c
https://www.fisheries.noaa.gov/foss
https://www.alaskaseafood.org/resource/asmi-annual-report-fy2024/
https://doi.org/10.1111/j.1467-2979.2008.00310.x
https://doi.org/10.1017/9781009325844.003
https://doi.org/10.1007/s00300-021-02856-x
https://doi.org/10.1073/pnas.1523245113
https://doi.org/10.1890/09-1129.1
https://doi.org/10.1038/nclimate2650
https://doi.org/10.1080/08941929509380919
https://doi.org/10.1007/s10668-015-9707-1
https://doi.org/10.1016/j.marpol.2018.06.001
https://doi.org/10.1093/icesjms/fsad096
https://doi.org/10.3389/fmars.2021.656088
https://doi.org/10.1371/journal.pone.0179632
https://doi.org/10.1002/2015GL063306
https://www.adfg.alaska.gov/techpap/TP494.pdf
https://doi.org/10.20417/nzjecol.43.27
https://doi.org/10.1016/j.dsr2.2021.104975
https://doi.org/10.1007/s00114-016-1332-9
https://doi.org/10.3354/meps291227
https://doi.org/10.1098/rspb.2012.0849
https://doi.org/10.1038/s41558-017-0065-x
https://doi.org/10.1016/j.oneear.2019.08.003
https://doi.org/10.1038/ncomms14042
https://doi.org/10.1017/9781009325844.023
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1016/j.marpol.2017.05.011
https://doi.org/10.1111/j.1365-2664.2008.01488.x
https://doi.org/10.1029/2019MS002015
https://repository.library.noaa.gov/view/noaa/19464


16 Stone et al. 

E  

 

F  

 

 

 

F  

 

F  

 

G  

 

H  

 

 

H  

 

H  

 

 

H  

 

 

H  

 

 

 

H  

 

 

H  

 

H  

 

 

 

H  

 

 

H  

 

H  

 

 

 

H  

 

 

H  

 

 

H  

 

I  

 

 

 

 

J  

 

 

K
 

 

K  

 

 

K  

 

 

 

L  

 

L  

 

 

M  

 

 

M  

 

 

 

M  

M  

 

 

M  

 

M  

 

 

M  

 

M  

 

N  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/7/fsaf127/8212207 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 19 D
ecem

ber 2025
kstrom JA , Suatoni L, Cooley SR et al. Vulnerability and adapta-
tion of US shellfisheries to ocean acidification. Nat Clim Change
2015; 5 :207–14. https:// doi.org/ 10.1038/ nclimate2508 

all JA . The Division of Subsistence of the Alaska Department of
Fish and Game: an updated overview of its research program and
findings. Alaska Department of Fish & Game, Division of Subsis-
tence, 2011. https:// seagrant.uaf.edu/events/ 2011/wakefield-people/ 
presentations/fall- division- subsistence.pdf (August 2024, date last
accessed).

edderke J , Klitgaard R. Economic growth and social indicators: an
exploratory analysis. Econ Dev Cult Change 1998; 46 :455–89. http
s:// doi.org/ 10.1086/ 452354 

ossheim M , Primicerio R, Johannesen E et al. Recent warming leads
to a rapid borealization of fish communities in the Arctic. Nat Clim
Change 2015; 5 :673–7. https:// doi.org/ 10.1038/ nclimate2647 

alappaththi EK , Susarla VB, Loutet SJT et al. Climate change adapta-
tion in fisheries. Fish and Fisheries 2022; 23 :4–21. https:// doi.org/ 10
.1111/faf.12595 

ajima T , Watanabe M, Yamamoto A et al. Development of
the MIROC-ES2L Earth system model and the evaluation of
biogeochemical processes and feedbacks. Geosci Model Dev
2020; 13 :2197–244. https:// doi.org/ 10.5194/ gmd- 13- 2197- 2020 

alpern BS , Longo C, Hardy D et al. An index to assess the health
and benefits of the global ocean. Nature 2012; 488 :615–20. https:
// doi.org/ 10.1038/ nature11397 

ermann AJ , Gibson GA, Bond NA et al. A multivariate analysis of
observed and modeled biophysical variability on the Bering Sea
shelf: multidecadal hindcasts (1970–2009) and forecasts (2010–
2040). Deep Sea Res Part II Top Stud Oceanogr 2013; 94 :121–39.
https:// doi.org/ 10.1016/ j.dsr2.2013.04.007 

ermann AJ , Gibson GA, Cheng W et al. Projected biophysical condi-
tions of the Bering Sea to 2100 under multiple emission scenarios.
ICES J Mar Sci 2019; 76 :1280–304. https:// doi.org/ 10.1093/ icesjm
s/fsz111 

ermann AJ , Kearney K, Cheng W et al. Coupled modes of projected
regional change in the Bering Sea from a dynamically downscal-
ing model under CMIP6 forcing. Deep Sea Res Part II Top Stud
Oceanogr 2021; 194 :104974. https:// doi.org/ 10.1016/ j.dsr2.2021.
104974 

imes-Cornell A , Kasperski S. Using socioeconomic and fisheries in-
volvement indices to understand Alaska fishing community well-
being. Coast Manag 2016; 44 :36–70. https:// doi.org/ 10.1080/ 0892
0753.2016.1116671 

irawake T , Hunt GL. Impacts of unusually light sea-ice cover in win-
ter 2017-2018 on the northern Bering Sea marine ecosystem—an
introduction. Deep Sea Res Part II Top Stud Oceanogr 2020; 181–
182 :104908. https:// doi.org/ 10.1016/ j.dsr2.2020.104908 

oang HD , Momtaz S, Schreider M. Assessing the vulnerability of
small-scale fishery communities in the estuarine areas of Central
Vietnam in the context of increasing climate risks. Ocean Coast
Manag 2020; 196 :105302. https:// doi.org/ 10.1016/ j.ocecoaman.20
20.105302 

oerterer C , Schupp MF, Benkens A et al. Stakeholder perspectives on
opportunities and challenges in achieving sustainable growth of the
blue economy in a changing climate. Front Mar Sci 2020; 6 . https:
// doi.org/ 10.3389/ fmars.2019.00795 

olen D . Fishing for community and culture: the value of fisheries in
rural Alaska. Polar Rec 2014; 50 :403–13. https:// doi.org/ 10.1017/
S0032247414000205 

ollowed AB , Barbeaux SJ, Cokelet ED et al. Effects of climate vari-
ations on pelagic ocean habitats and their role in structuring for-
age fish distributions in the Bering Sea. Deep Sea Res Part II Top
Stud Oceanogr 2012; 65–70 :230–50. https:// doi.org/ 10.1016/ j.dsr2
.2012.02.008 

ollowed AB , Haynie AC, Hermann AJ et al. Implications of climate
change on the Bering Sea and other cold water systems. Deep Sea
Res Part II Top Stud Oceanogr 2022; 201 :105110. https://doi.org/
10.1016/j.dsr2.2022.105110 
olsman KK , Haynie AC, Hollowed AB et al. Ecosystem-based
fisheries management forestalls climate-driven collapse. Nat
Commun 2020; 11 :1–10. https:// doi.org/ 10.1038/ s41467- 020- 183
00-3 

olsman KK , Hazen EL, Haynie A et al. Towards climate re-
siliency in fisheries management. ICES J Mar Sci 2019; 76 :
1368–78. https:// doi.org/ 10.1093/ icesjms/ fsz031 

PCC . Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change. H-O
Pörtner, DC Roberts, M T ignor et al. (eds.), Climate Change 2022:
Impacts, Adaptation, and Vulnerability . Cambridge, UK and New
York, NY, USA: Cambridge University Press. Cambridge University
Press, 2022, 3056. https:// doi.org/ 10.1017/ 9781009325844 

ohnson TR , Henry AM, Thompson C. Qualitative indicators of so-
cial resilience in small-scale fishing communities: an emphasis on
perceptions and practice. Human Ecol Rev 2014; 20 :97–115. https:
// doi.org/ 10.22459/HER.20.02.2014.05 

earney K , Hermann A, Cheng W et al. A coupled pelagic–benthic–
sympagic biogeochemical model for the Bering Sea: documentation
and validation of the BESTNPZ model (v2019.08.23) within a high-
resolution regional ocean model. Geosci Model Dev 2020; 13 :597–
650. https:// doi.org/ 10.5194/ gmd- 13- 597- 2020 

oehn LE , Nelson LK, Samhouri JF et al. Social-ecological vulnerability
of fishing communities to climate change: a U.S. West Coast case
study. PLoS One 2022; 17 :e0272120. https:// doi.org/ 10.1371/ jour
nal.pone.0272120 

otwicki S , Lauth RR. Detecting temporal trends and environmentally-
driven changes in the spatial distribution of bottom fishes and crabs
on the eastern Bering Sea shelf. Deep Sea Res Part II Top Stud
Oceanogr 2013; 94 :231–43. https:// doi.org/ 10.1016/ j.dsr2.2013.03
.017 

ink JS , Nye JA, Hare JA. Guidelines for incorporating fish distribution
shifts into a fisheries management context. Fish Fish 2011; 12 :461–9.
https:// doi.org/ 10.1111/ j.1467-2979.2010.00398.x 

iu OR , Ward EJ, Anderson SC et al. Species redistribution creates un-
equal outcomes for multispecies fisheries under projected climate
change. Sci Adv 2023; 9 :eadg5468. https:// doi.org/ 10.1126/ sciadv.a
dg5468 

adeira D , Vinagre C, Diniz MS. Are fish in hot water? Effects of warm-
ing on oxidative stress metabolism in the commercial species Sparus
aurata . Ecol Indic 2016; 63 :324–31. https:// doi.org/ 10.1016/ j.ecolin
d.2015.12.008 

agel CL , Lee EMJ, Strawn AM et al. Connecting crabs, currents, and
coastal communities: examining the impacts of changing ocean con-
ditions on the distribution of U.S. West Coast dungeness crab com-
mercial catch. Front Mar Sci 2020; 7 . https:// doi.org/ 10.3389/ fmars.
2020.00401 

ajure J . sgeostat: an object-oriented framework for geostatistical
modeling in S + . R package version. 2016:1.0-27.

ason JG , Weisberg SJ, Morano JL et al. Linking knowledge and ac-
tion for climate-ready fisheries: emerging best practices across the
US. Mar Policy 2023; 155 :105758. https:// doi.org/ 10.1016/ j.marpol
.2023.105758 

athis JT , Cooley SR, Lucey N et al. Ocean acidification risk assess-
ment for Alaska’s fishery sector. Prog Oceanogr 2015; 136 :71–91.
https:// doi.org/ 10.1016/ j.pocean.2014.07.001 

eier WN , Hovelsrud GK, van Oort BEH et al. Arctic sea ice in trans-
formation: a review of recent observed changes and impacts on bi-
ology and human activity. Rev Geophys 2014; 52 :185–217. https:
// doi.org/ 10.1002/ 2013RG000431 

ueter FJ , Litzow MA. Sea ice retreat alters the biogeography of the
Bering Sea continental shelf. Ecol Appl 2008; 18 :309–20. https://do
i.org/ 10.1890/ 07-0564.1 

unari SC , Wilson AN, Blow NJ et al. Rethinking the use of ‘vulnera-
ble’. Aust N Z J Public Health 2021; 45 :197–9. https:// doi.org/ 10.1
111/1753-6405.13098 

ichol DG , Kotwicki S, Wilderbuer TK et al. Availability of yellowfin
sole Limanda aspera to the eastern Bering Sea trawl survey and its

https://doi.org/10.1038/nclimate2508
https://seagrant.uaf.edu/events/2011/wakefield-people/presentations/fall-division-subsistence.pdf
https://doi.org/10.1086/452354
https://doi.org/10.1038/nclimate2647
https://doi.org/10.1111/faf.12595
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.1038/nature11397
https://doi.org/10.1016/j.dsr2.2013.04.007
https://doi.org/10.1093/icesjms/fsz111
https://doi.org/10.1016/j.dsr2.2021.104974
https://doi.org/10.1080/08920753.2016.1116671
https://doi.org/10.1016/j.dsr2.2020.104908
https://doi.org/10.1016/j.ocecoaman.2020.105302
https://doi.org/10.3389/fmars.2019.00795
https://doi.org/10.1017/S0032247414000205
https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1016/j.dsr2.2022.105110
https://doi.org/10.1038/s41467-020-18300-3
https://doi.org/10.1093/icesjms/fsz031
https://doi.org/10.1017/9781009325844
https://doi.org/10.22459/HER.20.02.2014.05
https://doi.org/10.5194/gmd-13-597-2020
https://doi.org/10.1371/journal.pone.0272120
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1111/j.1467-2979.2010.00398.x
https://doi.org/10.1126/sciadv.adg5468
https://doi.org/10.1016/j.ecolind.2015.12.008
https://doi.org/10.3389/fmars.2020.00401
https://doi.org/10.1016/j.marpol.2023.105758
https://doi.org/10.1016/j.pocean.2014.07.001
https://doi.org/10.1002/2013RG000431
https://doi.org/10.1890/07-0564.1
https://doi.org/10.1111/1753-6405.13098


Coastal Alaskan fishing communities 17 

 

 

 

 

 

S  

S  

E

S  

 

S  

 

S  

S  

 

 

S

S  

 

S  

 

S  

 

 

S  

 

S  

 

S  

S  

 

S

T  

 

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/7/fsaf127/8212207 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 19 D
ecem

ber 2025
effect on estimates of survey biomass. Fish Res 2019; 211 :319–30.
https:// doi.org/ 10.1016/ j.fishres.2018.11.017 

O’Neill BC , Tebaldi C, van Vuuren DP et al. The Scenario Model Inter- 
comparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 
2016; 9 :3461–82. https:// doi.org/ 10.5194/ gmd- 9- 3461- 2016 

Ojea E , Lester S, Salgueiro Otero D. Adaptation of fishing communities 
to climate-driven shifts in target species. One Earth 2020; 2 :544–
556. https:// doi.org/ 10.1016/ j.oneear.2020.05.012 

Olson J , Clay PM. Defining fishing communities: issues in theory and 
practice. Am Anthropol Assoc 2007; 28 :27–42. https:// doi.org/ 10.1 
525/napa.2007.28.1.27 

Papaioannou EA , Selden RL, Olson J et al. Not all those who wander are 
lost—Responses of fishers’ Communities to shifts in the distribution 
and abundance of fish. Front Mar Sci 2021; 8 . https:// doi.org/ 10.338 
9/fmars.2021.669094 

Pinkerton E . Hegemony and resistance: disturbing patterns and hope- 
ful signs in the impact of neoliberal policies on small-scale fisheries 
around the world. Mar Policy 2017; 80 :1–9. https:// doi.org/ 10.101 
6/j.marpol.2016.11.012 

Pisor A , Lansing JS, Magargal K. Climate change adaptation needs a sci- 
ence of culture. Philos Trans R Soc B Biol Sci 2023; 378 :20220390.
https:// doi.org/ 10.1098/ rstb.2022.0390 

Poloczanska ES , Brown CJ, Sydeman WJ et al. Global imprint of climate 
change on marine life. Nat Clim Change 2013; 3 :919–25. https://do 
i.org/ 10.1038/ nclimate1958 

Pörtner H-O , Farrell A. ECOLOGY physiology and climate change. Sci- 
ence 2008; 322 :690–2. https:// doi.org/ 10.1126/ science.1163156 

Powell F , Levine A, Ordonez-Gauger L. Fishermen’s perceptions of con- 
straints on adaptive capacity in the California market squid and Cal- 
ifornia spiny lobster fisheries. Front Mar Sci 2022; 9 . https://doi.org/ 
10.3389/fmars.2022.1028280 

R Core Team . R: a Language and Environment for Statistical Comput- 
ing . Vienna, Austria: R Foundation for Statistical Computing, 2023.
https://www.R-project.org (November 2024, date last accessed).

Reedy K . The last cowboys: keeping open access in the Aleut groundfish 
fishery of the Gulf of Alaska. Marit Stud 2019; 18 :31–45. https://do 
i.org/ 10.1007/ s40152- 018- 0108- 6 

Reisinger A , Howden M, Vera C. The Concept of Risk in the IPCC 

Sixth Assessment Report: A Summary of Cross-Working Group Dis- 
cussions . Geneva, Switzerland: Intergovernmental Panel on Climate 
Change, 2020, 15. https:// www.ipcc.ch/ site/assets/ uploads/ 2021/02/ 
Risk- guidance- FINAL _ 15Feb2021.pdf.

Reum JCP , Blanchard JL, Holsman KK et al. Ensemble projections of 
future climate change impacts on the Eastern Bering Sea food web 
using a multispecies size spectrum model. Front Mar Sci 2020; 7 . ht 
tps:// doi.org/ 10.3389/ fmars.2020.00124 

Rijnsdorp A , Peck M, Engelhard G et al. Resolving the effect of climate 
change on fish populations. ICES J Mar Sci 2009; 66 :1570–83. https: 
// doi.org/ 10.1093/ icesjms/ fsp056 

Robinson JPW , Robinson J, Gerry C et al. Diversification insulates fisher 
catch and revenue in heavily exploited tropical fisheries. Sci Adv 
2020; 6 :eaaz0587. https:// doi.org/ 10.1126/ sciadv.aaz0587 

Rogers LA , Griffin R, Young T et al. Shifting habitats expose fish- 
ing communities to risk under climate change. Nat Clim Change 
2019; 9 :512–6. https:// doi.org/ 10.1038/ s41558- 019- 0503- z 

Rooper CN , Ortiz I, Hermann AJ et al. Predicted shifts of ground- 
fish distribution in the Eastern Bering Sea under climate change,
with implications for fish populations and fisheries management.
ICES J Mar Sci 2021; 78 :220–34. https:// doi.org/ 10.1093/ icesjms/ fs 
aa215 

Salomon AK , Quinlan AE, Pang GH et al. Measuring social-ecological 
resilience reveals opportunities for transforming environmental gov- 
ernance. Ecol Soc 2019; 24 :16. https:// doi.org/ 10.5751/ ES- 11044- 2 
40316 

Samhouri J , Feist B, Jacox M et al. Stay or go? Geographic variation in 
risks due to climate change for fishing fleets that adapt in-place or 
adapt on-the-move. PLOS Climate 2023; 3 . https:// doi.org/ 10.1371/ 
journal.pclm.0000285 
eara T , Pollnac R, Jakubowski K. Fishers’ Perceptions of en-
vironmental and climate change in Puerto Rico: implications 
for adaptation and sustainability. In: M Welch-Devine, A Sour- 
dril, BJ Burke (eds.), Changing Climate, Changing Worlds: 
Local Knowledge and the Challenges of Social and Ecolog- 
ical Change . Cham: Springer International Publishing, 2020; 
15–34.

eung CK , Miller S. Regional Economic Analysis for North Pacific Fish-
eries . NOAA Technical Memorandum NMFS-AFSC-3 U.S. Depart- 
ment of Commerce, 2018, 86. https://apps-afsc.fisheries.noaa.gov/ 
Publications/AFSC- TM/NOAA- TM- AFSC- 380.pdf.

. Siddon (ed.), In: Ecosystem Assessment . Ecosystem Status Report 
2023: Eastern Bering Sea, Stock Assessment and Fishery Evaluation 
Report, North Pacific Fishery Management Council, 1007 West 3rd 
Ave., Suite. Anchorage, Alaska: 2023.

pies I , Gruenthal KM, Drinan DP et al. Genetic evidence of a north-
ward range expansion in the eastern Bering Sea stock of Pacific cod.
Evol Appl 2019; 13 :362–75. https:// doi.org/ 10.1111/ eva.12874 

t. Martin K . Making space for community resource management in
fisheries. Ann Assoc Am Geogr 2001; 91 :122–42. https:// doi.org/ 10
.1111/0004-5608.00236 

tabeno PJ , Bell S, Berchok C et al. Long-term biophysical observations
and climate impacts in US arctic marine ecosystems. Oceanography 
2023; 36 :78–85. https:// doi.org/ 10.5670/ oceanog.2023.225 

tabeno PJ , Bell SW, Bond NA et al. Distributed Biological Observatory
Region 1: physics, chemistry and plankton in the northern Bering
Sea. Deep Sea Res Part II Top Stud Oceanogr 2019; 162 :8–21. https:
// doi.org/ 10.1016/ j.dsr2.2018.11.006 

tabeno PJ , Bell SW. Extreme conditions in the Bering Sea (2017–
2018): record-breaking low Sea-ice extent. Geophys Res Lett 
2019; 46 :8952–9. https:// doi.org/ 10.1029/ 2019GL083816 

tabeno PJ , Bond NA, Kachel NB et al. On the temporal variability
of the physical environment over the south-eastern Bering Sea. Fish
Oceanogr 2001; 10 :81–98. https:// doi.org/ 10.1046/ j.1365-2419.20 
01.00157.x 

tabeno PJ , Duffy-Anderson JT, Eisner LB et al. Return of warm condi-
tions in the southeastern Bering Sea: physics to fluorescence. PLoS
One 2017; 12 :e0185464. https:// doi.org/ 10.1371/ journal.pone.018 
5464 

tabeno PJ , Farley EV, Kachel NB et al. A comparison of the physics
of the northern and southern shelves of the eastern Bering Sea and
some implications for the ecosystem. Deep Sea Res Part II Top
Stud Oceanogr 2012a; 65–70 :14–30. https:// doi.org/ 10.1016/ j.dsr2 
.2012.02.019 

tabeno PJ , Kachel NB, Moore SE et al. Comparison of warm and cold
years on the southeastern Bering Sea shelf and some implications for
the ecosystem. Deep Sea Res Part II Top Stud Oceanogr 2012b; 65–
70 :31–45. https:// doi.org/ 10.1016/ j.dsr2.2012.02.020 

tevenson DE , Lauth RR. Bottom trawl surveys in the northern Bering
Sea indicate recent shifts in the distribution of marine species. Polar
Biol 2019; 42 :407–21. https:// doi.org/ 10.1007/ s00300- 018- 2431- 1 

zuwalski CS , Aydin K, Fedewa EJ et al. The collapse of eastern Bering
Sea snow crab. Science 2023a; 382 :306–10. https:// doi.org/ 10.1126/ 
science.adf6035 

zuwalski CS , Hollowed AB, Holsman KK et al. Unintended
consequences of climate-adaptive fisheries management targets 
| request PDF. Fish Fish 2023b; 24 :439–53. https:// doi.org/ 10.111
1/faf.12737 

zymkowiak M , Rhodes-Reese M. Adaptive behaviors to marine 
ecosystem shifts: examining fishermen’s strategies in response to 
abundant juvenile sablefish (Anoplopoma fimbria) in Alaska. Front 
Mar Sci 2020; 7 . https:// doi.org/ 10.3389/ fmars.2020.602281 

horson JT , Arimitsu ML, Barnett LAK et al. Forecasting community
reassembly using climate-linked spatio-temporal ecosystem models.
Ecography 2021; 44 :612–25. https:// doi.org/ 10.1111/ ecog.05471 

igchelaar M , Cheung WWL, Mohammed EY et al. Compound climate
risks threaten aquatic food system benefits. Nat Food 2021; 2: 673–
82. https:// doi.org/ 10.1038/ s43016- 021- 00368- 9 

https://doi.org/10.1016/j.fishres.2018.11.017
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1016/j.oneear.2020.05.012
https://doi.org/10.1525/napa.2007.28.1.27
https://doi.org/10.3389/fmars.2021.669094
https://doi.org/10.1016/j.marpol.2016.11.012
https://doi.org/10.1098/rstb.2022.0390
https://doi.org/10.1038/nclimate1958
https://doi.org/10.1126/science.1163156
https://doi.org/10.3389/fmars.2022.1028280
https://www.R-project.org
https://doi.org/10.1007/s40152-018-0108-6
https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf
https://doi.org/10.3389/fmars.2020.00124
https://doi.org/10.1093/icesjms/fsp056
https://doi.org/10.1126/sciadv.aaz0587
https://doi.org/10.1038/s41558-019-0503-z
https://doi.org/10.1093/icesjms/fsaa215
https://doi.org/10.5751/ES-11044-240316
https://doi.org/10.1371/journal.pclm.0000285
https://apps-afsc.fisheries.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-380.pdf
https://doi.org/10.1111/eva.12874
https://doi.org/10.1111/0004-5608.00236
https://doi.org/\hskip \z@ 10.5670/oceanog.2023.225
https://doi.org/10.1016/j.dsr2.2018.11.006
https://doi.org/10.1029/2019GL083816
https://doi.org/10.1046/j.1365-2419.2001.00157.x
https://doi.org/10.1371/journal.pone.0185464
https://doi.org/10.1016/j.dsr2.2012.02.019
https://doi.org/10.1016/j.dsr2.2012.02.020
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1126/science.adf6035
https://doi.org/10.1111/faf.12737
https://doi.org/10.3389/fmars.2020.602281
https://doi.org/10.1111/ecog.05471
https://doi.org/10.1038/s43016-021-00368-9


18 Stone et al. 

U  

 

V  

 

 

V  

W  

 

W  

 

 

 

W  

W  

Y  

 

Handling Editor: Mark Gibbs 

©

C

i

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/7/fsaf127/8212207 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 19 D
ecem

ber 2025
.S. Census Bureau . American Community Survey 5-year estimates:
comparison profiles 5-year. 2022. https:// api.census.gov/data/ 2022
/acs/acs5 (August 2023, date last accessed).

estfals CD , Ciannelli L, Hoff GR. Changes in habitat utiliza-
tion of slope-spawning flatfish across a bathymetric gradient.
ICES J Mar Sci 2016; 73 :1875–89. https:// doi.org/ 10.1093/ icesjms/
fsw112 

oorhees DV , Lowther A. National Marine Fisheries Service Office of
Science and Technology . 2010.

hitehouse GA , Aydin KY, Hollowed AB et al. Bottom–Up impacts of
forecasted climate change on the Eastern Bering Sea food web. Front
Mar Sci 2021; 8 . https:// doi.org/ 10.3389/ fmars.2021.624301 
The Author(s) 2025. Published by Oxford University Press on behalf of International Council for t

reative Commons Attribution License ( https:// creativecommons.org/ licenses/by/ 4.0/ ), which permits

s properly cited. 
ise S , Sparks K, Lee J et al. Annual community Engagement and Partic-
ipation overview. Alaska Fisheries Science Center, Economic and So-
cial Sciences Research Program, 2021. https:// www.npfmc.org/ wp-c
ontent/PDFdocuments/Publications/ACEPO _ ESSR _ FY21.pdf (May
2025, date last accessed).

isner B , Blaikie P, Cannon T et al. At Risk: Natural Hazards, P eople’ s
Vulnerability and Disasters . Routledge, 2004.

ood S . mgcv: Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation 2023, version 1.9-1.

oung T , Fuller E, Provost M et al. Adaptation strategies of coastal
fishing communities as species shift poleward. ICES J Mar Sci
2019; 76 :93–103. https:// doi.org/ 10.1093/ icesjms/ fsy140 
he Exploration of the Sea. This is an Open Access article distributed under the terms of the 

 unrestricted reuse, distribution, and reproduction in any medium, provided the original work 

https://api.census.gov/data/2022/acs/acs5
https://doi.org/10.1093/icesjms/fsw112
https://doi.org/10.3389/fmars.2021.624301
https://www.npfmc.org/wp-content/PDFdocuments/Publications/ACEPO_ESSR_FY21.pdf
https://doi.org/10.1093/icesjms/fsy140
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	Author contributions
	Supplementary data
	Funding
	Data availability
	References

