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Abstract 10 

High data volumes and the time required to process LiDAR point clouds to identify bathymetric 11 

points create a potentially large lag between data acquisition and use for shallow water mapping.  12 

In this study, a method was developed for a priori identification of areas (500m by 500m “tiles”) 13 

in a data set that are unlikely to contain bathymetric pulse returns and therefore do not need to be 14 

processed.  Using an airborne LiDAR data set centred on Key West, Florida (United States) 15 

containing 1374 tiles, a logistic regression model was developed to predict if a tile contained 16 

extractable bathymetry (according to standard operating procedures of the United States National 17 

Oceanic and Atmospheric Agency (NOAA)) using quantifiable characteristics of depth frequency 18 

histograms as predictors. Results indicated that tiles that do not contain extractable bathymetric 19 

pulse returns could be identified with 90% accuracy. A post-modelling “spatial reassignment” of 20 

individual tiles based on characteristics of neighbouring tiles provided only a minor accuracy 21 

improvement.  The methodology was validated on a Miami Beach LiDAR data set containing 120 22 

tiles.  Results were comparable to the Key West results although the logistic regression model had 23 

to be re-calibrated for Miami Beach.  To operationalize the results and eliminate the need to process 24 

all tiles a priori, a progressive tile-sampling approach is suggested.  Furthermore, operational use 25 

of this a priori tile screening approach also requires consideration of expected uses of bathymetric 26 

maps and risk tolerance relative to the different consequences of false negative (FN) and false 27 

positive (FP) errors. For the Key West data set comprised of 1374 tiles of which 36% did not 28 

contain extractable bathymetry, screening tiles and then processing non-excluded tiles for 29 

bathymetric extraction was estimated to reduce total time by 489 hours (161 human/manual hours 30 

and 328 computer hours) compared to not screening and processing all 1374 tiles. 31 
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Data Availability Statement 38 

The 2016 airborne LiDAR data for the Key West area are available free of charge via NOAA’s 39 

data access viewer (https://www.coast.noaa.gov/dataviewer/#/). The data set collectively has the 40 

name: 41 

• Key West: 2016 NGS Topobathy Lidar: Key West (19,946,934,287 points). 42 

At the time of paper submission, the 2022 airborne LiDAR data for the Miami Beach area were 43 

not yet available.  These can be obtained by contacting the author (pending approval by NOAA). 44 

 45 

1. Introduction 46 

Airborne LiDAR for bathymetry (ALB)1 data are increasingly being used operationally to map 47 

shallow water areas. (“Shallow water” for the purpose of this paper is depths less than 30 m 48 

although LiDAR penetration to depths up to 80 m have been reported under ideal conditions 49 

(Parker and Sinclair, 2012).  This is apparent in the increasing number and geographical and 50 

temporal extents of publicly available LiDAR data sets that can be downloaded via, for example, 51 

the NOAA (National Oceanic and Atmospheric Administration) Data Access Viewer (NOAA 52 

2024).  ALB data are viewed as a useful data source for hydrographic mapping in large measure 53 

because their acquisition is not constrained by potentially dangerous shallow water conditions that 54 

hinder ships equipped with acoustic/sonar sensors. 55 

Generally ALB data conforming to contractual standards are provided as “.las” files or “.laz” files 56 

– a compressed form of “.las” files.  Generally, each .las or .laz file covers a 500 m-by-500 m area 57 

and is referred to as a “tile.”  LiDAR tiles are delivered in a recognised format (ASPRS 2019) that 58 

supports both point cloud LiDAR data and full waveform LiDAR data. The use of full waveform 59 

LiDAR data for a range of ocean mapping purposes has been explored – e.g., Parrish et al. (2014), 60 

 
1 To improve comprehension, Appendix 1 contains acronyms that may be unknown to some readers or that are 
specific to this article. 
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Rogers et al. (2015), Eren et al. (2019).  However, most operational ALB-based hydrographic 61 

mapping focuses on point cloud data; this is also the focus of the present article. 62 

ALB point cloud data are essentially 3-dimensional (3D) locations of pulse returns as well as pulse 63 

return metadata such as the number of the pulse return (for multiple returns) and the intensity of a 64 

return.  Though not considered here, the utility of such metadata for hydrographic mapping has 65 

been examined (e.g., Lowell and Calder 2021, Lowell et al. 2021) as well as for other applications 66 

such as building detection (Matikainen 2009). 67 

Once the 3D {x, y, z} coordinates of each pulse return – i.e., known as a “sounding” in 68 

hydrographic parlance -- are acquired, it remains to identify and separate the pulse returns that 69 

represent ocean depth from those that represent the ocean surface or are noise.  Considerable effort 70 

continues to be expended and multiple approaches explored to improve the accuracy of this process 71 

– e.g., Agrafiotis et al. (2019), Yang et al. (2020), Ranndal et al. (2021), Lowell and Calder (2022). 72 

A topic that has received little attention, however, is “a priori screening” to eliminate LiDAR tiles 73 

(areas) in which depth or water characteristics make it unlikely that processing ALB data 74 

successfully identifies bathymetric pulse returns – i.e., those that represent the ocean floor.  Yet a 75 

priori screening ALB data has the potential to identify tiles that are unlikely to contain extractable 76 

bathymetry (usually due to “too deep” depth) thereby reducing backlogs, speeding data 77 

availability, and reducing the processing resources required. Some physics-based studies have 78 

addressed the estimation of LiDAR extinction depth (Giannakaki et al. 2020, Lisenko and 79 

Shamanaev 2022) – or the detection of a subsurface ocean layer (Krekov et al. 1997; Krekov et al. 80 

1998). Such studies do not, however, provide for the identification of areas that exceed extinction 81 

depth. Without this knowledge a priori, all .las files in a data set must be processed. Hence those 82 

.las files covering areas that are beyond extinction depth – i.e., “too deep” – can only be identified 83 

a posteriori meaning that processing resources will have been unnecessarily expended. 84 

This article is focused on the accurate a priori identification of geographic partitions (tiles) in a 85 

data set that do not have extractable bathymetric (i.e., “Bathy”) pulse returns.  If identification of 86 

such tiles is sufficiently accurate, this a priori screening could become an initial time-saving step 87 

in a workflow to extract Bathy pulse returns from the .las files in an ALB database.  As imagined, 88 

.las files having a low likelihood of containing extractable Bathy soundings would be identified 89 



4 
 

algorithmically and eliminated from time-consuming processing that identifies individual 90 

bathymetric pulse returns within each ALB tiles. 91 

Exploring the potential of a priori screening to reduce LiDAR bathymetric processing effort 92 

appears to be quite novel.  Though there has been considerable work on removing individual pulse 93 

return outliers from LiDAR point clouds for a number of applications (e.g., Matkan et al. 2014, Le 94 

et al. 2022, Szutor and Zichar 2023), such work assumes that a decision has already been made to 95 

process all tiles of the LiDAR data set of interest.  The work presented here addresses the decision 96 

of whether or not each tile in an ALB survey merits processing at all.  If this can be determined 97 

accurately prior to processing, considerable time and effort can be saved.  Evaluating one approach 98 

to this a priori screening is the overarching goal of this work. 99 

The approach explored is the quantitative characterization of each tile’s frequency distribution of 100 

individual pulse return depths and the use of logistic regression modelling to estimate the 101 

probability that a given tile has extractable Bathy pulse returns.  Clearly, such a priori identification 102 

of tiles that should undergo bathymetric pulse return processing is unlikely to be 100% accurate.  103 

Hence this study also quantifies the expected number of false negative (FN) tiles (that represent a 104 

loss of recoverable data), and false positive (FP) tiles (that represent an unnecessary use of 105 

processing resources).  The results present a guide to the trade-offs between potential resource 106 

savings and impacts on accuracy. 107 

2. Materials and Methods 108 

To facilitate reader comprehension, Figure 1 provides a schematic workflow of the materials and 109 

methods. 110 
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 111 

Figure 1. Analytical workflow. 112 

2a. Data 113 

Two ALB data sets captured by NOAA were employed (Figure 2). The calibration/developmental 114 

ALB data were captured between April 19 and 25, 2016 in the vicinity of Key West, Florida (24o33’ 115 

N latitude and 81o46’ W longitude.  The validation/evaluation data set was acquired April 28, 2022 116 

in the vicinity of Miami Beach, Florida (25o57’ N latitude and 80o05’ W longitude).  Both datasets 117 

were acquired using multiple overlapping flight lines generally having a north-south orientation 118 

using a nominal flying height of 400 m that provided a point density of approximately 10 soundings 119 

sq m-1.  The 2016 Key West data set was acquired using a Riegel™ VQ-880-G sensor; the 2022 120 

Miami Beach data were collected using a Riegl VQ880GII instrument.  Both instruments employ 121 

a counterclockwise circular scan and a 200 scan angle.  Data were provided as 500 m-by-500 m 122 

tiles aligned north-south and east-west registered to zone 17N of the Universal Transverse 123 

Mercator Projection (UTM) referenced to the World Geodetic System 1984 (WGS84) datum.  124 

Individual pulse returns in all tiles had been processed using NOAA’s Standard Operating 125 

Procedures (SOPs) to classify each pulse return according to standard LiDAR classes (ASPRS 126 

2019).  For this study, these classes were collapsed into a binary Bathy/NotBathy classification.  127 

Depth values had been tide-corrected to Mean Sea Level (MSL).  Information on the data sets is 128 

provided in Table 1.  Notable differences between the two (in addition to location and date) are 129 
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that the Key West data set has many more tiles, a higher average number of pulse returns and Bathy 130 

pulse returns per tile, and covers a wider variety of depths according to NOAA SOP’s bathymetric 131 

extraction.  The Key West area also has areas where shipping channels increase water turbidity and 132 

a more complex ocean substrate that includes sea grass, sandy bottom, and intersecting channels.  133 

The Miami Beach area has consistently clear water, a sandy substrate, and relatively constant slope 134 

from land to LiDAR extinction depth. 135 

 136 

Figure 2. Layout and location of the study areas. Each dot represents the centre of an ALB data 137 

tile; distance between dots on both figures is 500 m.  Red dots are tiles on which bathymetric pulse 138 

returns are not present according to NOAA’s SOP classification.  (Imagery courtesy of 139 

GoogleEarth™.) 140 

Table 1. Descriptive statistics for tiles not having areas above Mean Sea Level (MSL) for the Key 141 
West (n = 1374) and Miami Beach (n = 120) data sets. 142 

Key West Data Set (n = 1374) 
 Minimum Mean Maximum 
Number of Pulse Returns 85 6731100 29180900 
Number of Bathy Pulse 
Returns 

0 1670400 9328100 

Percent Bathy Pulse 
Returns 

0% 21.0% 98.6% 
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Depth of Bathy Pulse 
Returns (m) 

-11.9 -2.4 0.0 

Number of tiles having a certain range of Bathy Pulse Returns: 
Range: <= 0 (None) > 0 >= 1 <= 100 >100 & <= 250 >250 & <= 500 > 500 
Number: 468 906 85 17 14 790 
 

Miami Beach Data Set (n = 120) 
 Minimum Mean Maximum 

Number of Pulse Returns 1454 4165700 8870500 
Number of Bathy Pulse 

Returns 
0 784500 2075100 

Percent Bathy Pulse 
Returns 

0% 13.9% 33.6% 

Depth of Bathy Pulse 
Returns (m) 

-33.6 -18.6 -11.4 

Number of tiles having a certain range of Bathy Pulse Returns: 
Range: <= 0 (None) > 0 >= 1 <= 100 >100 & <= 250 >250 & <= 500 > 500 
Number: 33 87 2 3 2 80 

 143 

2b. Approach and Procedures 144 

Analysis was confined to those tiles on which NOAA did not detect the presence of any “land 145 

soundings” – i.e., those above MSL.  Operationally, given that NOAA’s pulse return classification 146 

would not be available, it is assumed that such tiles could be identified with sufficient accuracy 147 

using, for example, satellite imagery and threshold slicing of the normalized difference water index 148 

(NDWI) -- e.g., Wen et al. 2021, Qi et al. 2022. 149 

Central to the a priori screening approach explored for the remaining/not-excluded “no land” tiles 150 

is the expectation that the shape of the depth frequency distributions is indicative of the likelihood 151 

that extractable Bathy pulse returns are present on a tile.  To facilitate obtaining useful measures 152 

of depth distribution shape, it is desirable to first eliminate outliers caused by instrument errors, 153 

sun glint, etc.  In this study, this was done by simply using thresholds that eliminated pulse returns 154 

whose depths were clearly above MSL (> 3 m above MSL including consideration of waves), and 155 

clearly beyond LiDAR penetration depth (< 70 m below MSL).  No effort was made to select 156 

optimal outlier screening thresholds, although more objective threshold determination methods 157 

such as those based on analytical optimization could be employed.  Moreover, more complex 158 

outlier screening methods such as Mahalanobis screening (Mahalanobis 1936) or jackknife 159 

sampling (Quenouille 1956) could alternatively be employed.  It is noted that the use of individual 160 
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outlier screening methods and thresholds has the potential to limit the transferability of the a priori 161 

tile screening method explored. 162 

Consider that after removal of depth outliers, a depth frequency distribution for a tile having only 163 

NotBathy pulse returns that are reflected primarily from the ocean surface would be narrow, highly 164 

peaked, nearly symmetrical, unimodal, and have a mean depth near 0.0 (Figures 3a and 3b).  165 

Conversely, as the number of Bathy pulse returns increases, depth frequency distributions would 166 

become wider, less peaked, skewed to the left (i.e., negatively skewed), multimodal (Nason and 167 

Sibson 1992), and have a mean depth lower than 0.0 (Figures 3c and 3d).  This reflects the 168 

observation by others (e.g., Mandlburger and Jutzi 2019; Jung et al. 2021) that LiDAR tiles in 169 

which pulse returns representing ocean depth are present will have a “vertical gap” in their depth 170 

frequency histogram as shown in Figure 3. 171 

172 

Figure 3. Hypothetical examples of pulse return depths and representative frequency distributions. 173 

(a) & (b) Tile that does not have bathymetric pulse returns present (DNHB); (c) & (d) Tile that 174 

does have bathymetric pulse returns present (DHB). 175 
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The following metrics were extracted for each tile’s frequency distribution after outliers had been 176 

removed: 177 

• Location – minimum, maximum, median, and mean depth. 178 

• Width – standard deviation and coefficient of variation. 179 

• Shape – kurtosis (Balanda and MacGillivray 1988; values greater than 3.0 indicate greater 180 

“excessive” peakedness) and skewness (Joanes and Gill 1998; negative values indicate left 181 

skew; positive values indicate right skew). 182 

• Modality – the Dip statistic (Hartigan 1985, Hartigan and Hartigan 1985); lower values 183 

represent a greater likelihood of unimodality. (The Dip value can be tested for significant 184 

unimodality.) 185 

Initially, a value for a single binary dependent variable was assigned to each tile – 0 (zero) if NOAA 186 

did not find Bathy pulse returns on a tile or 1 (one) if NOAA found at least one Bathy pulse return.  187 

Operationally, tiles determined to not have at least one bathymetric pulse return are those that a 188 

priori screening is hoping to identify. (These are termed “Does Not Have Bathy” (DNHB) tiles as 189 

opposed to tiles that do have at least one bathymetric pulse return (“Does Have Bathy” (DHB)).  190 

However, the pulse return threshold (PRT) of “at least 1 Bathy pulse return” does not consider that 191 

if there are relatively few Bathy pulse returns on a tile, identification of individual bathymetric 192 

pulse returns will be less reliable. Hence to examine the “accuracy/effort” trade-off during method 193 

development, three more binary “DNHB/DHB” variables were created using additional PRTs that 194 

designate tiles having at least 100, 250, and 500 bathymetric pulse returns as 1 (one) (DHB) or 0 195 

(zero) (DNHB) otherwise.  The information on the number of tiles having more than each PRT for 196 

both data sets is presented in Table 1.  Ultimately a potential willingness to process a tile only if it 197 

has at least, for example, 250 bathymetric pulse returns implicitly accepts the loss of potentially 198 

valuable bathymetric data in exchange for a presumed reduction in the number of tiles processed.  199 

PRTs for the relative number of bathymetric pulse returns – i.e., percent of total -- were also 200 

examined.  However, because models based on such relative PRTs performed poorly, they were 201 

not considered further. 202 

Logistic regression models were fitted for the Key West data set for each binary DNHB/DHB 203 

variable produced by the four PRTs using the frequency distribution descriptors described earlier 204 

as dependent variables.  Various techniques – e.g., forward and backward stepwise, all possible 205 
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models -- were employed to identify the optimal logistic model form. Based primarily on the 206 

Aikeke Information Criterion (AIC; Cavanaugh and Neath 2019), the most efficient model across 207 

all PRTs consistently employed the Dip statistic value, the standard deviation of depth, and 208 

skewness. Notably, none of these variables directly address the depth values present in the 209 

frequency distribution of each LiDAR tile – i.e., the minimum, maximum, median, or mean depth.  210 

This was somewhat surprising given that a priori it was speculated that tiles having relatively deep 211 

mean depths, for example, would be more likely to have bathymetric pulse returns present. Further 212 

examination of the depth frequency distributions suggested that due to depth distributions being 213 

dominated by ocean surface pulse returns, the variability in the minimum, maximum, and mean 214 

pulse return depths across all tiles was low thereby limiting the predictive utility of these variables. 215 

Each model was used to estimate the probability that each tile was a DHB or DNHB tile.  216 

Subsequently, tiles with a model p(DHB) value greater than 0.5 were designated DHB and those 217 

with a p(DHB) value less than 0.5 designated DNHB.  While 0.5 is the conventional probability 218 

decision threshold employed, alternatives that identify an “optimal” numerical value are possible 219 

– e.g., Youden’s Index (Youden 1950), simulation-based graphical trade-offs between false 220 

positive and false negative errors for imbalanced data sets (Lowell et al., 2021).  This is addressed 221 

in the discussion section. 222 

Ideally for operational purposes, a single logistic a priori screening model fitted on a large data 223 

set would be “universally” applicable.  To explore the robustness of the models developed, two 224 

approaches were employed.  First, logistic regression models of the same form for the same PRTs 225 

were fitted to the Miami Beach data set.  The statistical agreement of coefficients for the Key West 226 

and Miami Beach models was evaluated.  Second, the Key West models for each PRT were applied 227 

to the Miami Beach data set and the accuracy compared to the result of applying Miami Beach 228 

models to the Miami Beach data set. 229 

To this point, the prediction of each tile as DHB/DNHB (does have/does not have bathymetric 230 

pulse returns) was based solely on a logistic model fitted using only measurable depth frequency 231 

distribution characteristics.  It was surmised that for each tile the p(DHB) (the probability of having 232 

bathymetric pulse returns) of a tile’s neighbours might also be indicative of its “true” DHB/DNHB 233 

state.  Hence a post hoc “spatial reassignment” was applied across all tiles.  The logic of this 234 

reassignment was that if, for example, a “large proportion” of DHB tile’s neighbours were labelled 235 



11 
 

as DNHB, the DHB tile being examined was actually likely to not have extractable bathymetry.  236 

Sensitivity testing was undertaken and a threshold of greater than 0.70 was used to define a “large 237 

proportion”.  For each FN and true negative (TN) tile (i.e., tiles designated DNHB based on the 238 

modelled p(DNHB)) having at least three immediate neighbours (i.e., tiles not on the edge of the 239 

study area), the proportion of the tile’s immediate neighbours that were designated DHB based on 240 

the model prediction was determined.  If that proportion was greater than 0.70, the FN/TN tile’s 241 

designation was changed to DHB regardless of its logistic regression model p(DHB) value; this 242 

had the effects of increasing the number of tiles requiring bathymetric processing and increasing 243 

the FP tiles with a consequent reduction in FN tiles.  The same logic and process was applied to 244 

FP/TP tiles.  Figure 4 provides a visual depiction. Figure 4(a) shows the logistic regression 245 

probability of a tile having bathymetric pulse returns p(DHB) for all tiles from which the green/red 246 

tiles in Figures 4(b) and 4(c) were “erroneously” predicted by the model to be DNHB or DHB 247 

based on the p(DHB) values of each tile’s immediate neighbours.  These tiles have a relatively low 248 

or high p(DHB) in Figure 4(a), but their immediate neighbours have the opposite.  TN red tiles in 249 

Figure 4(b) would be (erroneously) reassigned from DNHB to DHB while green tiles in Figure 250 

4(c) would be (correctly) reassigned from DNHB to DHB.  The change in accuracy caused by 251 

spatial reassignment was evaluated in the same manner as the accuracy obtained using the logistic 252 

model only.  253 
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254 

Figure 4. Example of spatial reassignment of individual tiles.   (a). p(Bathy) for each tile according 255 

to model.  (b). Red tiles were correctly identified as “Does Not Have Bathy (DNHB)” by the model 256 

but spatial filtering incorrectly assigns them to “Does Have Bathy (DHB). Green tiles were 257 

incorrectly identified as “DHB)” but spatial filtering correctly assigns them to “DNHB”. (c). Red 258 

tiles were correctly identified as “DHB” but spatial filtering incorrectly assigns them to “DNHB.” 259 

Green tiles were incorrectly identified as “DNHB” but spatial filtering correctly identifies them as 260 

“DHB”. 261 

Results 262 

Table 2 indicates that for Key West the use of a depth frequency distribution-based model is a 263 

viable approach to identifying tiles for which bathymetric processing is necessary or unnecessary 264 

by virtue of being able to accurately separate DHB from DNHB tiles.  Model goodness-of-fit (R2) 265 

values are all statistically significant and accuracy values are 0.90 or above and comparable across 266 

all PRTs.  (Readers are reminded that the number of tiles that achieved each PRT is presented in 267 

Table 1.)  The relatively high, and roughly equal, F1 scores for the DHB/DNHB tiles are indicative 268 
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of models that perform well and equally across both classes.  The importance in the models of the 269 

variables is reasonably consistent.  The positive signs for coefficient values are as expected and 270 

indicate that as frequency distributions become wider, more negatively skewed (i.e., skewed to the 271 

left), and more multi-modal, tiles are more likely to be identified as DHB.  Note that it is the global 272 

accuracy and F1 scores that are of most interest as these are indicative of the number of FN tiles 273 

(that represent “needlessly” lost data) and FP tiles (i.e., “needlessly” processed tiles) that can be 274 

expected operationally – i.e., when the true FN and FP rates are not known. 275 

Table 2. Details of logistic models fitted for Key West. 276 

Data / 
Model 

Soundings 
Threshold 

Pseudo 
R2 [1] 

Global 
Accuracy 

F1 Score Variable Importance / Coeff. 
Sign 

Does 
Not 

Have 
Bathy 

Does 
Have 
Bathy Most Mid Least 

Key 
West 

1 0.651 0.91 0.87 0.93 
Depth 
std. dev. 
/ + 

Skewness 
/ + 

Dip / + 

100 0.65 0.90 0.88 0.91 
Depth 
std. dev. 
/ + 

Dip / + Skewness 
/ + 

250 0.67 0.90 0.89 0.91 
Depth 
std. dev. 
/ + 

Dip / + Skewness 
/ + 

500 0.69 0.91 0.89 0.92 
Depth 
std. dev. 
/ + 

Dip / + Skewness 
/ + 

 277 

Figure 5(a) (the light blue line) shows that as the PRT increases, the number of tiles requiring 278 

bathymetric processing decreases.  For example, suppose that one is willing to accept that tiles 279 

having fewer than 100 bathymetric pulse returns cannot be processed accurately given that the 280 

average number of pulse returns on Key West tiles is 6.7 million (Table 1).  For the data set 281 

employed adopting a PRT of 100 would decrease the number of tiles one must process from about 282 

880 to 770 – a reduction of about 12%.  This is accompanied by an increase in FNs (Figure 5(b)) 283 

from 75 to 100 (a 33% increase) and a reduction in FPs (Figure 5(c)) from 49 to 44 (10%).  This 284 

requires acceptance that any extractable bathymetric pulse returns present in the 85 tiles that have 285 

fewer than 100 bathymetric pulse returns are lost – i.e., one is accepting the existence of 85 FNs 286 
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or approximately 6% of total tiles.  If one accepts this, a PRT of 100 or 250 seems to be the optimal 287 

PRT value as this is where the PRT-related decrease in tiles to process (Figure 5(a)) appears to 288 

asymptote. A higher PRT of 500 does not reduce the number of tiles to process substantially, nor 289 

does it change the number of FNs and FPs markedly. 290 

 291 

Figure 5. Trade-offs for Key West data and models between (a) the number of tiles processed and 292 

the (b) FN and (c) FP error rates. 293 

Combining the results of logistic regression with spatial reassignment had a moderate impact on 294 

results.  The number of tiles to process increased by about 20 tiles across all PRTs (about 2%), FNs 295 

decreased by about 10% and FPs increase by about 8%.  Despite these modest gains, spatial 296 

reassignment is completely algorithmic and requires no human time and very little machine time 297 

(seconds per tile) making it an operationally viable step in an a priori tile screening workflow. 298 

Concerning the broader applicability of the model form, Table 3 summarizes the logistic models 299 

fitted to the Miami Beach data set.  Comparison with comparable information provided for the 300 

Key West models presented in Table 2 indicates comparable performance across all PRTs.  These 301 

results suggest that the logistic model form developed using Key West depth frequency 302 

distributions is applicable to other areas for a priori screening to identify tiles that are likely to 303 
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contain bathymetric pulse returns and therefore should progress to bathymetric processing of 304 

individual pulse returns. 305 

Table 3. Details of logistic models fitted for Miami Beach. 306 

Soundings 
Threshold 

Pseudo 
R2 

Global 
Accuracy 

F1 Score Variable Importance / Coeff. 
Sign 

Does 
Not 

Have 
Bathy 

Does 
Have 
Bathy Most Mid Least 

1 0.78 0.96 0.93 0.97 
Skewness 
/ - 

Depth 
std. dev. / 
+ 

Dip / + 

100 0.87 0.97 0.94 0.98 
Depth 
std. dev. / 
+ 

Skewness 
/ - 

Dip / + 

250 0.93 0.98 0.96 0.98 
Skewness 
/ - 

Depth 
std. dev. / 
+ 

Dip / + 

500 1.00 1.00 1.0 1.0 
Skewness 
/ - 

Depth 
std. dev. / 
+ 

Dip / + 

 307 

That the model form may be broadly applicable for a priori screening does not mean the same for 308 

the calibrated model.  Table 4 indicates that coefficient values for each of the variables are 309 

generally not significantly different for the models for the two data sets.  However, skewness shows 310 

a clear difference – both in value and sign.  This results from a lack of variability in skewness for 311 

the Miami Beach LiDAR tiles whose distributions are only either narrow and highly peaked 312 

(DNHB) or clearly bimodal -- i.e., tiles that clearly are DHB tiles. 313 

Table 4. Coefficient values for Key West (KW) and Miami Beach (MB)models. Bold p values 314 

indicate significantly different coefficients at a = 0.05. 315 

Thresh
-old 

Intercept Skewness Dip Depth Std. Dev. 
KW MB p KW MB p KW MB p K

W 
MB p 

1 -4.1 -9.9 0.33 0.041 -0.122 0.001 152. 137. 0.95 7.7 5.7 0.42 
100 -4.5 -13.0 0.28 0.021 -0.206 0.006 137. 60. 0.79 5.8 10.3 0.28 
250 -4.9 -22.8 0.19 0.018 -0.285 0.039 128. 248. 0.77 6.5 13.1 0.33 
500 -5.3 -373.1 0.99 0.018 -6.29 0.99 136. 1593. 0.99 6.8 198.3 0.99 

 316 
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Given the significant differences for the skewness coefficients, and the lack of variability in 317 

frequency distributions for Miami Beach, it is not surprising that the Key West models perform 318 

poorly when applied to the Miami Beach data (Fig. 6).  Not only is global accuracy relatively low 319 

compared to the application of the Key West and Miami Beach models to the data from which each 320 

model was developed (see Tables 2 and 3), but F1 values for the DNHB tiles are much lower than 321 

the F1 values for the DHB tiles.  This suggests an overabundance of tiles designated as DHB at 322 

the “expense” of relatively few DNHB tiles being correctly designated.  Examination of individual 323 

confusion matrices confirmed that this was due to the Key West model classifying about 95% of 324 

Miami Beach tiles as DHB whereas NOAA classified only 68% of Miami Beach tiles as DHB.  325 

Figure 6 also indicates that spatial reassignment has minimal impact on these results. 326 

 327 

Figure 6. Accuracy results from the application of the Key West logistic model to the Miami Beach 328 

data set. (Legend: Light blue bars are based on the p(DHB) from the logistic regression models 329 

alone. Dark blue bars are based on the model p(DHB) and spatial reassignment.) 330 

It is therefore concluded that though the model form developed may be broadly applicable, this 331 

approach to a priori screening will require local calibration of such models. 332 

3. Discussion 333 

In this study NOAA’s processing of LiDAR tiles was used as the high-quality reference data set.  334 

Consequently, many results and their interpretation implicitly assume that NOAA’s results have a 335 

high degree of accuracy – most critically for tiles on which bathymetric pulse returns were “rare”.  336 
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This was evaluated by independently processing a limited sample of tiles having fewer than 100, 337 

250, and 500 bathymetric pulse returns according to NOAA SOPs.  The independent processing 338 

was done using a two-stage machine learning-based algorithm known as “CHRT-ML.”; CHRT 339 

(CUBE2 with Hierarchical Resolution Techniques) is an algorithm developed by Calder and Rice 340 

(2017) for processing sonar data.  It was adapted to extract bathymetric soundings from LiDAR 341 

point clouds by Lowell and Calder (2022) through the use of machine learning (ML) clustering 342 

techniques.  CHRT-ML employs a completely different approach to identifying bathymetric pulse 343 

returns in LiDAR point clouds than NOAA’s SOPs (Nagle and Wright 2016).  As expected, the 344 

two methods had the greatest disagreement for those tiles on which bathymetric pulse returns were 345 

rarest.  However, the bathymetric pulse returns identified by NOAA SOPs and CHRT-ML on the 346 

sample tiles were sufficiently similar to provide broad confidence in NOAA’s processing. 347 

A major goal of this work was to evaluate if quantifiable characteristics of depth frequency 348 

histograms could accurately identify airborne LiDAR tiles that do not contain extractable 349 

bathymetric pulse returns.  Results suggest that this is true.  To provide a time-based estimate of 350 

the potential savings, experience with bathymetric processing using CHRT-ML was employed – 351 

recognising, of course, that each organisation’s set of SOPs will require different amounts of time.  352 

CHRT-ML required approximately 1 hour per tile with 20 minutes being human time and 40 353 

minutes being computer processing time.  Results for the Key West data set indicated that the 354 

proposed approach would reduce the number of tiles that would be processed from 1374 tiles (that 355 

do not contain land -- i.e., have above MSL areas) to 880 tiles.  This suggests a reduction of time 356 

of 494 hours of which 330 hours (13.75 24-hour days assuming batch processing) are 357 

machine/computer time and 164 hours (20.6 8-hour workdays) are human time.  It is 358 

acknowledged that these estimates do not include the time cost associated with conducting the a 359 

priori screening.  However, this time cost would be minimal since the process – gathering 360 

information on pulse return frequency distributions, fitting a predictive model, and identifying tiles 361 

that are unlikely to have bathymetric pulse returns -- is completely automated.  Manual verification 362 

of results would be advised including considering factors such as location of navigable channels; 363 

this would increase the time cost of the a priori screening. 364 

 
2 Combined Uncertainty and Bathymetry Estimator (Calder and Meyer 2003) 
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A second major goal of this work was to evaluate the trade-offs between processing effort and the 365 

number of resultant FNs and FPs in order to improve operational bathymetric processing of LiDAR 366 

tiles.  This was explored explicitly through the use of four PRTs.  If one prioritizes minimizing the 367 

processing resources required, one can employ a higher PRT which effectively eliminates from 368 

processing tiles having low numbers of bathymetric pulse returns from processing.  The 369 

consequence of this is an increase in FN and FP errors.  This could potentially be offset, however, 370 

by changing the probability decision threshold (PDT) applied to p(DHB) values produced by the 371 

logistic model.  Conventionally in the use of logistic regression, a PDT of 0.5 is employed to assign 372 

observations to one of two classes.  However, the number of FNs, for example, might be decreased 373 

by reducing the PDT – although this would likely cause an increase in the number of FPs.  And it 374 

would undoubtedly have the impact of necessitating processing of a greater number of tiles.  A 375 

quantitatively optimal PDT could be identified using a receiver operating characteristic (ROC) 376 

curve (Nahm 2022) that shows the global accuracy performance of a binary classification model 377 

over all PDTs.  However, in the case of identification of bathymetric pulse returns, the 378 

consequences of FNs (loss of data) and FPs (unnecessary processing) are organisationally quite 379 

different making global accuracy an inappropriate metric.  Hence there is little choice in this case 380 

but for an organisation to set its PDT based on its qualitative tolerance to risk.  In operational 381 

contexts, this would change with the area of interest, the targeted end-user, model performance, 382 

and other factors. 383 

The previous point emphasizes the need for careful evaluation of the consequences of decreasing 384 

the number of tiles processed thereby changing the number of FNs and FPs that occur.  In ocean 385 

mapping for navigation, for example, FN errors are considered more serious than FPs.  FPs 386 

represent a “waste” of resources due to “needless” processing of tiles that are unlikely to contain 387 

bathymetric pulse returns.  Conversely, FNs are a “failure” to capture data that could extend the 388 

geographical extent and accuracy of hydrographic maps.  Alternatively, in clear water, FNs are 389 

likely to occur in the deepest parts of a survey area where sonar-equipped ships may be able to 390 

traverse.  Hence to optimise operational processing of LiDAR data, one must consider the value 391 

of the information produced, the ability to obtain data using an alternative method, the types of 392 

errors likely to result, and the consequences of each type of error as well as the processing 393 

resources expended. 394 
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Results indicate clearly that a logistic regression model fitted for “Area A” (i.e., Key West) is 395 

unlikely to be applicable to “Area B” (Miami Beach).  Potentially, this could be addressed three 396 

ways in operational contexts. 397 

First, the characteristics of the two areas and depth frequency histograms could be examined for 398 

similarity.  In this study, the Miami Beach data set clearly had less variance and different histogram 399 

forms than the Key West study site.  This alone indicated potential difficulties in applying the Key 400 

West model to the Miami Beach data set. 401 

Second, a machine learning method whose underlying approach is different from logistic 402 

regression might be employed.  For this study, though logistic regression was employed because 403 

of superior results, classification and regression tree (CART) modelling was also evaluated 404 

(Breiman et al. 1984).  Whereas logistic regression focusses on general trends across all variables, 405 

CART models “micro trends” by progressively splitting the data into branches and sub-branches 406 

based on optimal variables and split points at each step.  Though prone to overfitting, it captures 407 

non-linear relationships in a way that logistic regression cannot.  CART was examined using 408 

multiple PRTs, variables, optimization criteria, and maximum number of branches.  No CART 409 

models performed better than the logistic regression models.  Nonetheless, there are other machine 410 

learning techniques such as neural networks and support vector machines that are not decision-411 

tree based that were not examined in this study.  These could be of interest in part because logistic 412 

regression – that models broad trends – did not produce models that were geographically robust.  413 

Machine learning techniques other than CART are less likely to produce geographically robust 414 

models.  However, such techniques might produce models that are better for a single area such as 415 

the Key West or Miami Beach areas employed in this study.  Note that the risk of model overfitting 416 

would increase given the underlying approach to model development of many machine learning 417 

techniques. 418 

Third, “progressive sampling” could be employed.  Suppose one has 1000 LiDAR tiles to process.  419 

One could sample a “representative” number – e.g., 50 tiles -- according to an appropriate scheme 420 

– e.g., randomly, weighted by distance from land or likely depth.  Each tile in the sample would 421 

be processed for bathymetric pulse returns according to normal SOPs.  A logistic model would be 422 

fitted using the sample, and global accuracy and other accuracy metrics calculated for the 50 tiles.  423 

An additional sample of 50 tiles would be taken (without-replacement), processed for bathymetric 424 
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pulse returns and added to the original sample.  A new logistic regression model would be fitted 425 

using the 100 tiles, and the selected accuracy metric(s) calculated for the 100 tiles.  This process 426 

would continue for 150, 200, etc. tiles until the accuracy metric(s) converged – i.e., stabilised.  427 

That is, it is expected that the accuracy metric(s) would change “considerably” with each additional 428 

sample of 50 tiles at lower sample sizes.  However, sampling an increasing number of tiles would 429 

increase the representativeness of the tiles sampled causing the accuracy metric(s) to change little 430 

with each additional sample of 50 tiles.  Once this occurred, the final model fitted would be applied 431 

to all 1000 tiles.  If 250 tiles (five samples of 50 each) were required to achieve convergence, 432 

undoubtedly a certain number would be tiles having no bathymetric pulse returns and would have 433 

been “needlessly” processed.  However, this approach would identify tiles in the unsampled 750 434 

tiles that do not require processing for bathymetric pulse returns thereby reducing the number of 435 

tiles requiring processing. 436 

Finally, a critical part of operational implementation of any a priori screening scheme should be 437 

the design and implementation of a quality assurance/continuous improvement (QA/CI) program.  438 

Results of this study demonstrated that though one can eliminate tiles from “needless” processing, 439 

there is a consequent increase in errors that would need to be continually monitored.  Each of the 440 

three potential operational winnowing strategies would base a tile’s “Does/Does Not Have Bathy” 441 

decision on a model’s estimate of the probability that an unprocessed tile does have bathymetric 442 

pulse returns.  This could be checked by actually processing a certain number or percentage of 443 

randomly chosen “QA/CI tiles” and evaluating if the error rate was consistent with the 444 

probabilities; Lowell and Mitchell (1987) described one analytical approach for doing this.  445 

Notably, however, aside from the model-based probability, as discussed, the amount of screening 446 

to be applied must be decided based on organizational consequences of errors and risk tolerance.  447 

An informed decision can only be made if one constantly monitors the screening process including 448 

evaluating model goodness-of-fit, magnitude and type of errors, spatial characterization of 449 

uncertainty, and operational factors such as time and cost. 450 

4. Conclusions 451 

With an overarching operational goal of reducing processing time and resources, this study 452 

demonstrated the viability of using a frequency distribution-based approach to identifying LiDAR 453 

tiles whose processing is unnecessary.  It also quantified the trade-off between reducing resources 454 
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required to process LiDAR point clouds to extract bathymetric pulse returns and the consequent 455 

increase in errors.  For example, by developing and applying a logistic regression model based on 456 

quantifiable characteristics of depth frequency histograms, the number of tiles processed for a 457 

LiDAR data set for Key West (Florida, United States) could be reduced from 1374 to 900 (34%) 458 

with an increase in false negative (FN) tiles from 0 (zero) to 75 tiles (5% of total) and false positive 459 

(FP) tiles from 0 (zero) to 48 (4% of total).  Reassigning FN and TN tiles from “Does Not Have 460 

Bathy” to “Does Have Bathy” based on the p(DHB) values of each tile’s neighbours reduced the 461 

number of FN tiles from 75 to 61 (4% of total) while increasing the number of FP tiles from 48 to 462 

49 (4% of total).  The use of “pulse return thresholds” to eliminate from processing the tiles on 463 

which bathymetric pulse returns were “rare” was found to reduce the number of tiles requiring 464 

processing and the number of FN and FP tiles only modestly.  Finally, it was concluded that 465 

application of the method developed to other data sets will require the fitting of geographic- and 466 

water-condition-specific logistic regression models. 467 

This work is novel in that it is not focused on eliminating or de-noising points in individual LiDAR 468 

tiles being processed.  Instead, it demonstrates that it is possible to effectively de-noise a set of 469 

tiles/areas and eliminate those whose bathymetric processing is unlikely to extract pulse 470 

returns/soundings that represent the depth of the ocean floor. 471 
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Appendix 1. Acronyms. 595 

Acronym Definition 
ALB Airborne LiDAR for Bathymetry 
Bathy/NotBathy A designation for individual pulse returns indicating that an individual 

pulse return does or does not represent bathymetry according to NOAA 
standard operating procedures (SOPs). 

CHRT An algorithm developed for sonar processing. 
CHRT-ML A machine learning algorithm that applies clustering to information 

produced by CHRT to identify bathymetric pulse returns in LiDAR point 
clouds. 

DHB/DNHB Designation for a tile that does have (DH) or does not have (DNHB) 
bathymetric pulse returns. For model fitting, this designation is based on 
bathymetric processing using NOAA standard operating procedures. For 
determining a tile’s model-based designation, this is based on p(DHB) -- 
the probability that a tile does have bathymetric pulse returns. 

FN False Negative. A tile designation that indicates that NOAA SOPs found 
bathymetric pulse returns to be present, but that a logistic regression model 
identified as having no bathymetric pulse returns present. 

FP False Positive. A tile designation that indicates that NOAA SOPs 
determined that bathymetric pulse returns were not present, but that a 
logistic regression model identified as having bathymetric pulse returns 
present. 

NOAA United States National Oceanic and Atmospheric Administration 
p(DHB)/p(DNHB) Probability that a tile does have (DH) or does not have (DNH) bathymetric 

pulse returns according to a logistic regression model fitted to a particular 
data set. 

PDT Probability Decision Threshold. The minimum model probability 
(p(DHB)) 

PRT Pulse Return Threshold. The minimum number of bathymetric pulse 
returns required to designate a tile as “Does Have Bathy” (DHB). 

SOPs Standard Operating Procedures 
TN True Negative. A tile designation indicating that NOAA SOPs and a 

logistic regression model agreed that no bathymetric pulse returns were 
present. 

TP True Positive. A tile designation indicating that NOAA SOPs and a logistic 
regression model agreed that bathymetric pulse returns were present. 
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