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Abstract

High data volumes and the time required to process LiDAR point clouds to identify bathymetric
points create a potentially large lag between data acquisition and use for shallow water mapping.
In this study, a method was developed for a priori identification of areas (500m by 500m “tiles™)
in a data set that are unlikely to contain bathymetric pulse returns and therefore do not need to be
processed. Using an airborne LiDAR data set centred on Key West, Florida (United States)
containing 1374 tiles, a logistic regression model was developed to predict if a tile contained
extractable bathymetry (according to standard operating procedures of the United States National
Oceanic and Atmospheric Agency (NOAA)) using quantifiable characteristics of depth frequency
histograms as predictors. Results indicated that tiles that do not contain extractable bathymetric
pulse returns could be identified with 90% accuracy. A post-modelling “spatial reassignment” of
individual tiles based on characteristics of neighbouring tiles provided only a minor accuracy
improvement. The methodology was validated on a Miami Beach LiDAR data set containing 120
tiles. Results were comparable to the Key West results although the logistic regression model had
to be re-calibrated for Miami Beach. To operationalize the results and eliminate the need to process
all tiles a priori, a progressive tile-sampling approach is suggested. Furthermore, operational use
of this a priori tile screening approach also requires consideration of expected uses of bathymetric
maps and risk tolerance relative to the different consequences of false negative (FN) and false
positive (FP) errors. For the Key West data set comprised of 1374 tiles of which 36% did not
contain extractable bathymetry, screening tiles and then processing non-excluded tiles for
bathymetric extraction was estimated to reduce total time by 489 hours (161 human/manual hours

and 328 computer hours) compared to not screening and processing all 1374 tiles.
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Data Availability Statement
The 2016 airborne LiDAR data for the Key West area are available free of charge via NOAA’s
data access viewer (https://www.coast.noaa.gov/dataviewer/#/). The data set collectively has the
name:

e Key West: 2016 NGS Topobathy Lidar: Key West (19,946,934,287 points).
At the time of paper submission, the 2022 airborne LiDAR data for the Miami Beach area were
not yet available. These can be obtained by contacting the author (pending approval by NOAA).

1. Introduction
Airborne LiDAR for bathymetry (ALB)! data are increasingly being used operationally to map
shallow water areas. (“Shallow water” for the purpose of this paper is depths less than 30 m
although LiDAR penetration to depths up to 80 m have been reported under ideal conditions
(Parker and Sinclair, 2012). This is apparent in the increasing number and geographical and
temporal extents of publicly available LiDAR data sets that can be downloaded via, for example,
the NOAA (National Oceanic and Atmospheric Administration) Data Access Viewer (NOAA
2024). ALB data are viewed as a useful data source for hydrographic mapping in large measure
because their acquisition is not constrained by potentially dangerous shallow water conditions that

hinder ships equipped with acoustic/sonar sensors.

Generally ALB data conforming to contractual standards are provided as “.las” files or “.laz” files
—a compressed form of “.las” files. Generally, each .las or .laz file covers a 500 m-by-500 m area
and is referred to as a “tile.” LiDAR tiles are delivered in a recognised format (ASPRS 2019) that
supports both point cloud LiDAR data and full waveform LiDAR data. The use of full waveform
LiDAR data for a range of ocean mapping purposes has been explored — e.g., Parrish et al. (2014),

!'"To improve comprehension, Appendix 1 contains acronyms that may be unknown to some readers or that are
specific to this article.
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Rogers et al. (2015), Eren et al. (2019). However, most operational ALB-based hydrographic

mapping focuses on point cloud data; this is also the focus of the present article.

ALB point cloud data are essentially 3-dimensional (3D) locations of pulse returns as well as pulse
return metadata such as the number of the pulse return (for multiple returns) and the intensity of a
return. Though not considered here, the utility of such metadata for hydrographic mapping has
been examined (e.g., Lowell and Calder 2021, Lowell ef al. 2021) as well as for other applications

such as building detection (Matikainen 2009).

Once the 3D {x, y, z} coordinates of each pulse return — i.e., known as a “sounding” in
hydrographic parlance -- are acquired, it remains to identify and separate the pulse returns that
represent ocean depth from those that represent the ocean surface or are noise. Considerable effort
continues to be expended and multiple approaches explored to improve the accuracy of this process

—e.g., Agrafiotis et al. (2019), Yang et al. (2020), Ranndal et al. (2021), Lowell and Calder (2022).

A topic that has received little attention, however, is “a priori screening” to eliminate LiDAR tiles
(areas) in which depth or water characteristics make it unlikely that processing ALB data
successfully identifies bathymetric pulse returns — i.e., those that represent the ocean floor. Yet a
priori screening ALB data has the potential to identify tiles that are unlikely to contain extractable
bathymetry (usually due to “too deep” depth) thereby reducing backlogs, speeding data
availability, and reducing the processing resources required. Some physics-based studies have
addressed the estimation of LiDAR extinction depth (Giannakaki et al. 2020, Lisenko and
Shamanaev 2022) — or the detection of a subsurface ocean layer (Krekov et al. 1997; Krekov et al.
1998). Such studies do not, however, provide for the identification of areas that exceed extinction
depth. Without this knowledge a priori, all .las files in a data set must be processed. Hence those
as files covering areas that are beyond extinction depth — i.e., “too deep” — can only be identified

a posteriori meaning that processing resources will have been unnecessarily expended.

This article is focused on the accurate a priori identification of geographic partitions (tiles) in a
data set that do not have extractable bathymetric (i.e., “Bathy ) pulse returns. If identification of
such tiles is sufficiently accurate, this a priori screening could become an initial time-saving step
in a workflow to extract Bathy pulse returns from the .las files in an ALB database. As imagined,

las files having a low likelihood of containing extractable Bathy soundings would be identified
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algorithmically and eliminated from time-consuming processing that identifies individual

bathymetric pulse returns within each ALB tiles.

Exploring the potential of a priori screening to reduce LiDAR bathymetric processing effort
appears to be quite novel. Though there has been considerable work on removing individual pulse
return outliers from LiDAR point clouds for a number of applications (e.g., Matkan et al. 2014, Le
et al. 2022, Szutor and Zichar 2023), such work assumes that a decision has already been made to
process all tiles of the LIDAR data set of interest. The work presented here addresses the decision
of whether or not each tile in an ALB survey merits processing at all. If this can be determined
accurately prior to processing, considerable time and effort can be saved. Evaluating one approach

to this a priori screening is the overarching goal of this work.

The approach explored is the quantitative characterization of each tile’s frequency distribution of
individual pulse return depths and the use of logistic regression modelling to estimate the
probability that a given tile has extractable Bathy pulse returns. Clearly, such a priori identification
of tiles that should undergo bathymetric pulse return processing is unlikely to be 100% accurate.
Hence this study also quantifies the expected number of false negative (FN) tiles (that represent a
loss of recoverable data), and false positive (FP) tiles (that represent an unnecessary use of
processing resources). The results present a guide to the trade-offs between potential resource

savings and impacts on accuracy.
2. Materials and Methods

To facilitate reader comprehension, Figure 1 provides a schematic workflow of the materials and

methods.
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Figure 1. Analytical workflow.

2a. Data
Two ALB data sets captured by NOAA were employed (Figure 2). The calibration/developmental
ALB data were captured between April 19 and 25, 2016 in the vicinity of Key West, Florida (24°33°
N latitude and 81°46” W longitude. The validation/evaluation data set was acquired April 28, 2022
in the vicinity of Miami Beach, Florida (25°57’ N latitude and 80°05° W longitude). Both datasets
were acquired using multiple overlapping flight lines generally having a north-south orientation
using a nominal flying height of 400 m that provided a point density of approximately 10 soundings
sqm’. The 2016 Key West data set was acquired using a Riege]™ VQ-880-G sensor; the 2022
Miami Beach data were collected using a Riegl VQ880GII instrument. Both instruments employ
a counterclockwise circular scan and a 20° scan angle. Data were provided as 500 m-by-500 m
tiles aligned north-south and east-west registered to zone 17N of the Universal Transverse
Mercator Projection (UTM) referenced to the World Geodetic System 1984 (WGS84) datum.
Individual pulse returns in all tiles had been processed using NOAA’s Standard Operating
Procedures (SOPs) to classify each pulse return according to standard LiDAR classes (ASPRS
2019). For this study, these classes were collapsed into a binary Bathy/NotBathy classification.
Depth values had been tide-corrected to Mean Sea Level (MSL). Information on the data sets is

provided in Table 1. Notable differences between the two (in addition to location and date) are
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that the Key West data set has many more tiles, a higher average number of pulse returns and Bathy
pulse returns per tile, and covers a wider variety of depths according to NOAA SOP’s bathymetric
extraction. The Key West area also has areas where shipping channels increase water turbidity and
a more complex ocean substrate that includes sea grass, sandy bottom, and intersecting channels.
The Miami Beach area has consistently clear water, a sandy substrate, and relatively constant slope

from land to LiDAR extinction depth.

Figure 2. Layout and location of the study areas. Each dot represents the centre of an ALB data
tile; distance between dots on both figures is 500 m. Red dots are tiles on which bathymetric pulse
returns are not present according to NOAA’s SOP classification. (Imagery courtesy of
GoogleEarth™.)

Table 1. Descriptive statistics for tiles not having areas above Mean Sea Level (MSL) for the Key
West (n = 1374) and Miami Beach (n = 120) data sets.

Key West Data Set (n = 1374)
Minimum Mean Maximum
Number of Pulse Returns 85 6731100 29180900
Number of Bathy Pulse 0 1670400 9328100
Returns
Percent Bathy Pulse 0% 21.0% 98.6%
Returns
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Depth of Bathy Pulse -11.9 -2.4 0.0
Returns (m)
Number of tiles having a certain range of Bathy Pulse Returns:

Range: <=0 (None) | >0 >=1<=100 | >100 & <=250 | >250 & <=500 | > 500
Number: 468 906 85 17 14 790

Miami Beach Data Set (n = 120)

Minimum Mean Maximum
Number of Pulse Returns 1454 4165700 8870500
Number of Bathy Pulse 0 784500 2075100
Returns
Percent Bathy Pulse 0% 13.9% 33.6%
Returns
Depth of Bathy Pulse -33.6 -18.6 -11.4
Returns (m)
Number of tiles having a certain range of Bathy Pulse Returns:
Range: <=0 (None) | >0 >=1<=100 | >100 & <=250 | >250 & <=500 | > 500
Number: 33 87 2 3 2 80

2b. Approach and Procedures
Analysis was confined to those tiles on which NOAA did not detect the presence of any “land
soundings” —i.e., those above MSL. Operationally, given that NOAA’s pulse return classification
would not be available, it is assumed that such tiles could be identified with sufficient accuracy
using, for example, satellite imagery and threshold slicing of the normalized difference water index

(NDWI) -- e.g., Wen et al. 2021, Q1 et al. 2022.

Central to the a priori screening approach explored for the remaining/not-excluded “no land” tiles
is the expectation that the shape of the depth frequency distributions is indicative of the likelihood
that extractable Bathy pulse returns are present on a tile. To facilitate obtaining useful measures
of depth distribution shape, it is desirable to first eliminate outliers caused by instrument errors,
sun glint, etc. In this study, this was done by simply using thresholds that eliminated pulse returns
whose depths were clearly above MSL (> 3 m above MSL including consideration of waves), and
clearly beyond LiDAR penetration depth (< 70 m below MSL). No effort was made to select
optimal outlier screening thresholds, although more objective threshold determination methods
such as those based on analytical optimization could be employed. Moreover, more complex
outlier screening methods such as Mahalanobis screening (Mahalanobis 1936) or jackknife

sampling (Quenouille 1956) could alternatively be employed. It is noted that the use of individual
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outlier screening methods and thresholds has the potential to limit the transferability of the a priori

tile screening method explored.

Consider that after removal of depth outliers, a depth frequency distribution for a tile having only
NotBathy pulse returns that are reflected primarily from the ocean surface would be narrow, highly
peaked, nearly symmetrical, unimodal, and have a mean depth near 0.0 (Figures 3a and 3b).
Conversely, as the number of Bathy pulse returns increases, depth frequency distributions would
become wider, less peaked, skewed to the left (i.e., negatively skewed), multimodal (Nason and
Sibson 1992), and have a mean depth lower than 0.0 (Figures 3c and 3d). This reflects the
observation by others (e.g., Mandlburger and Jutzi 2019; Jung et al. 2021) that LiDAR tiles in
which pulse returns representing ocean depth are present will have a “vertical gap” in their depth

frequency histogram as shown in Figure 3.

(a) Depth Distribution for LiDAR tile that does not (b) Depth frequency histogram for a tile that does
have bathymetric pulse returns (DNHB). not have bathymetric pulse returns (DNHB).
0 eyttt ageenly o
e® o :'. o e g @ .:" . o é
E = E e o L g
g 2 .: ‘e tné
3 " . . T 5 100
R . -~ E
-4 ¥ ° ‘ =
4 i
- ® ® 0 R ———— E— ]
2711000 2711100 2711200 2711300 2711400 2711500 -4 -3 -2 -1 0
UTM Northing (m) Depth (m)
(c) Depth Distribution for LiDAR tile that does have  (d) Depth frequency histogram for a tile that does
bathymetric pulse returns (DHB). have bathymetric pulse returns (DHB).
600
0 e e ialrRgeRd
¢ %% e e . ® &
z ® '.o . . & e 'g 400
s o PRIV N altvevne 3
g .  n| B
2 200
° E
-4 » Lo ‘i_:"

2721500 2721600 2721700 2721800 2721900 2722000 i 23
UTM Northing (m)

- . il .
2 -1 0

Depth (m)

Figure 3. Hypothetical examples of pulse return depths and representative frequency distributions.
(a) & (b) Tile that does not have bathymetric pulse returns present (DNHB); (¢) & (d) Tile that
does have bathymetric pulse returns present (DHB).
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The following metrics were extracted for each tile’s frequency distribution after outliers had been

removed:

e Location — minimum, maximum, median, and mean depth.

e Width — standard deviation and coefficient of variation.

e Shape — kurtosis (Balanda and MacGillivray 1988; values greater than 3.0 indicate greater
“excessive” peakedness) and skewness (Joanes and Gill 1998; negative values indicate left
skew; positive values indicate right skew).

e Modality — the Dip statistic (Hartigan 1985, Hartigan and Hartigan 1985); lower values
represent a greater likelihood of unimodality. (The Dip value can be tested for significant

unimodality.)

Initially, a value for a single binary dependent variable was assigned to each tile — 0 (zero) if NOAA
did not find Bathy pulse returns on a tile or 1 (one) if NOAA found at least one Bathy pulse return.
Operationally, tiles determined to not have at least one bathymetric pulse return are those that a
priori screening is hoping to identify. (These are termed “Does Not Have Bathy” (DNHB) tiles as
opposed to tiles that do have at least one bathymetric pulse return (“Does Have Bathy” (DHB)).
However, the pulse return threshold (PRT) of “at least 1 Bathy pulse return” does not consider that
if there are relatively few Bathy pulse returns on a tile, identification of individual bathymetric
pulse returns will be less reliable. Hence to examine the “accuracy/effort” trade-off during method
development, three more binary “DNHB/DHB” variables were created using additional PRTs that
designate tiles having at least 100, 250, and 500 bathymetric pulse returns as 1 (one) (DHB) or 0
(zero) (DNHB) otherwise. The information on the number of tiles having more than each PRT for
both data sets is presented in Table 1. Ultimately a potential willingness to process a tile only if it
has at least, for example, 250 bathymetric pulse returns implicitly accepts the loss of potentially
valuable bathymetric data in exchange for a presumed reduction in the number of tiles processed.
PRTs for the relative number of bathymetric pulse returns — i.e., percent of total -- were also
examined. However, because models based on such relative PRTs performed poorly, they were

not considered further.

Logistic regression models were fitted for the Key West data set for each binary DNHB/DHB
variable produced by the four PRTs using the frequency distribution descriptors described earlier

as dependent variables. Various techniques — e.g., forward and backward stepwise, all possible

9
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models -- were employed to identify the optimal logistic model form. Based primarily on the
Aikeke Information Criterion (AIC; Cavanaugh and Neath 2019), the most efficient model across
all PRTs consistently employed the Dip statistic value, the standard deviation of depth, and
skewness. Notably, none of these variables directly address the depth values present in the
frequency distribution of each LiDAR tile — i.e., the minimum, maximum, median, or mean depth.
This was somewhat surprising given that a priori it was speculated that tiles having relatively deep
mean depths, for example, would be more likely to have bathymetric pulse returns present. Further
examination of the depth frequency distributions suggested that due to depth distributions being
dominated by ocean surface pulse returns, the variability in the minimum, maximum, and mean

pulse return depths across all tiles was low thereby limiting the predictive utility of these variables.

Each model was used to estimate the probability that each tile was a DHB or DNHB tile.
Subsequently, tiles with a model p(DHB) value greater than 0.5 were designated DHB and those
with a p(DHB) value less than 0.5 designated DNHB. While 0.5 is the conventional probability
decision threshold employed, alternatives that identify an “optimal” numerical value are possible
— e.g., Youden’s Index (Youden 1950), simulation-based graphical trade-offs between false
positive and false negative errors for imbalanced data sets (Lowell et al., 2021). This is addressed

in the discussion section.

Ideally for operational purposes, a single logistic a priori screening model fitted on a large data
set would be “universally” applicable. To explore the robustness of the models developed, two
approaches were employed. First, logistic regression models of the same form for the same PRTs
were fitted to the Miami Beach data set. The statistical agreement of coefficients for the Key West
and Miami Beach models was evaluated. Second, the Key West models for each PRT were applied
to the Miami Beach data set and the accuracy compared to the result of applying Miami Beach

models to the Miami Beach data set.

To this point, the prediction of each tile as DHB/DNHB (does have/does not have bathymetric
pulse returns) was based solely on a logistic model fitted using only measurable depth frequency
distribution characteristics. It was surmised that for each tile the p(DHB) (the probability of having
bathymetric pulse returns) of a tile’s neighbours might also be indicative of its “true” DHB/DNHB
state. Hence a post hoc “spatial reassignment” was applied across all tiles. The logic of this

reassignment was that if, for example, a “large proportion” of DHB tile’s neighbours were labelled

10
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as DNHB, the DHB tile being examined was actually likely to not have extractable bathymetry.
Sensitivity testing was undertaken and a threshold of greater than 0.70 was used to define a “large
proportion”. For each FN and true negative (TN) tile (i.e., tiles designated DNHB based on the
modelled p(DNHB)) having at least three immediate neighbours (i.e., tiles not on the edge of the
study area), the proportion of the tile’s immediate neighbours that were designated DHB based on
the model prediction was determined. If that proportion was greater than 0.70, the FN/TN tile’s
designation was changed to DHB regardless of its logistic regression model p(DHB) value; this
had the effects of increasing the number of tiles requiring bathymetric processing and increasing
the FP tiles with a consequent reduction in FN tiles. The same logic and process was applied to
FP/TP tiles. Figure 4 provides a visual depiction. Figure 4(a) shows the logistic regression
probability of a tile having bathymetric pulse returns p(DHB) for all tiles from which the green/red
tiles in Figures 4(b) and 4(c) were “erroneously” predicted by the model to be DNHB or DHB
based on the p(DHB) values of each tile’s immediate neighbours. These tiles have a relatively low
or high p(DHB) in Figure 4(a), but their immediate neighbours have the opposite. TN red tiles in
Figure 4(b) would be (erroneously) reassigned from DNHB to DHB while green tiles in Figure
4(c) would be (correctly) reassigned from DNHB to DHB. The change in accuracy caused by
spatial reassignment was evaluated in the same manner as the accuracy obtained using the logistic

model only.

11
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Figure 4. Example of spatial reassignment of individual tiles. (a). p(Bathy) for each tile according

to model. (b). Red tiles were correctly identified as “Does Not Have Bathy (DNHB)” by the model

but spatial filtering incorrectly assigns them to “Does Have Bathy (DHB). Green tiles were

incorrectly identified as “DHB)” but spatial filtering correctly assigns them to “DNHB”. (c¢). Red

tiles were correctly identified as “DHB” but spatial filtering incorrectly assigns them to “DNHB.”

Green tiles were incorrectly identified as “DNHB” but spatial filtering correctly identifies them as

GCDHB”.

Results

Table 2 indicates that for Key West the use of a depth frequency distribution-based model is a

viable approach to identifying tiles for which bathymetric processing is necessary or unnecessary

by virtue of being able to accurately separate DHB from DNHB tiles. Model goodness-of-fit (R?)

values are all statistically significant and accuracy values are 0.90 or above and comparable across

all PRTs. (Readers are reminded that the number of tiles that achieved each PRT is presented in

Table 1.) The relatively high, and roughly equal, F1 scores for the DHB/DNHB tiles are indicative

12
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of models that perform well and equally across both classes. The importance in the models of the
variables is reasonably consistent. The positive signs for coefficient values are as expected and
indicate that as frequency distributions become wider, more negatively skewed (i.e., skewed to the
left), and more multi-modal, tiles are more likely to be identified as DHB. Note that it is the global
accuracy and F1 scores that are of most interest as these are indicative of the number of FN tiles
(that represent “needlessly” lost data) and FP tiles (i.e., “needlessly” processed tiles) that can be

expected operationally — i.e., when the true FN and FP rates are not known.

Table 2. Details of logistic models fitted for Key West.

F1 Score Variable Importance / Coeff.
Sign
Data/ | Soundings | Pseudo | Global Does Does
Model | Threshold | R2!l | Accuracy Not Have Most Mid Least
Have Bathy
Bathy
Depth Skewness | Dip / +
1 0.65! 0.91 0.87 0.93 std. dev. | /+
/+
Depth Dip/+ Skewness
100 0.65 0.90 0.88 0.91 std. dev. /+
Key /+
West Depth Dip / + Skewness
250 0.67 0.90 0.89 0.91 std. dev. /+
/+
Depth Dip / + Skewness
500 0.69 0.91 0.89 0.92 std. dev. /+
/+

Figure 5(a) (the light blue line) shows that as the PRT increases, the number of tiles requiring
bathymetric processing decreases. For example, suppose that one is willing to accept that tiles
having fewer than 100 bathymetric pulse returns cannot be processed accurately given that the
average number of pulse returns on Key West tiles is 6.7 million (Table 1). For the data set
employed adopting a PRT of 100 would decrease the number of tiles one must process from about
880 to 770 — a reduction of about 12%. This is accompanied by an increase in FNs (Figure 5(b))
from 75 to 100 (a 33% increase) and a reduction in FPs (Figure 5(c)) from 49 to 44 (10%). This
requires acceptance that any extractable bathymetric pulse returns present in the 85 tiles that have

fewer than 100 bathymetric pulse returns are lost — i.e., one is accepting the existence of 85 FNs

13
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or approximately 6% of total tiles. If one accepts this, a PRT of 100 or 250 seems to be the optimal
PRT value as this is where the PRT-related decrease in tiles to process (Figure 5(a)) appears to
asymptote. A higher PRT of 500 does not reduce the number of tiles to process substantially, nor

does it change the number of FNs and FPs markedly.

(@) Number of Tiles to Process (DHB; FP + TP) (b) Number of FN Tiles (NOAA: DHB; Model: (c) Number of FP Tiles (NOAA: DNHB; Model:
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Figure 5. Trade-offs for Key West data and models between (a) the number of tiles processed and

the (b) FN and (c) FP error rates.

Combining the results of logistic regression with spatial reassignment had a moderate impact on
results. The number of tiles to process increased by about 20 tiles across all PRTs (about 2%), FNs
decreased by about 10% and FPs increase by about 8%. Despite these modest gains, spatial
reassignment is completely algorithmic and requires no human time and very little machine time

(seconds per tile) making it an operationally viable step in an a priori tile screening workflow.

Concerning the broader applicability of the model form, Table 3 summarizes the logistic models
fitted to the Miami Beach data set. Comparison with comparable information provided for the
Key West models presented in Table 2 indicates comparable performance across all PRTs. These
results suggest that the logistic model form developed using Key West depth frequency

distributions is applicable to other areas for a priori screening to identify tiles that are likely to
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304 contain bathymetric pulse returns and therefore should progress to bathymetric processing of

305 individual pulse returns.

306  Table 3. Details of logistic models fitted for Miami Beach.

F1 Score Variable Importance / Coeff.
Sign
Soundings | Pseudo | Global Does Does
2
Threshold R Accuracy Not Have Most Mid Least
Have Bathy
Bathy
Skewness | Depth Dip/+
1 0.78 0.96 0.93 0.97 /- std. dev. /
+
Depth Skewness | Dip / +
100 0.87 0.97 0.94 0.98 std. dev. / | / -
_|._
Skewness | Depth Dip /+
250 0.93 0.98 0.96 0.98 /- std. dev. /
+
Skewness | Depth Dip / +
500 1.00 1.00 1.0 1.0 / - std. dev. /
+

307

308  That the model form may be broadly applicable for a priori screening does not mean the same for
309 the calibrated model. Table 4 indicates that coefficient values for each of the variables are
310  generally not significantly different for the models for the two data sets. However, skewness shows
311  aclear difference — both in value and sign. This results from a lack of variability in skewness for
312 the Miami Beach LiDAR tiles whose distributions are only either narrow and highly peaked
313  (DNHB) or clearly bimodal -- 1.e., tiles that clearly are DHB tiles.

314  Table 4. Coefficient values for Key West (KW) and Miami Beach (MB)models. Bold p values

315 indicate significantly different coefficients at a = 0.05.

Thresh Intercept Skewness Dip Depth Std. Dev.
KW | MB | p | KW | MB p |KW[MB]| p [ K| MB] p

-old w
1 -4.1 99| 0.33|0.041 | -0.122 | 0.001 | 152. 137.1 095 | 7.7 57| 0.42

100 45| -13.0] 0.28 ] 0.021 | -0.206 | 0.006 | 137. 60.10.79| 58| 103 | 0.28

250 49| -2281] 0.19]0.018 | -0.285| 0.039 | 128.| 248.| 0.77 ] 6.5| 13.1 | 0.33

500 -53 ] -373.1 | 0.99 ] 0.018 -6.29 0.99 | 136.] 1593.] 0.99 | 6.8 | 1983 | 0.99

316
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Given the significant differences for the skewness coefficients, and the lack of variability in
frequency distributions for Miami Beach, it is not surprising that the Key West models perform
poorly when applied to the Miami Beach data (Fig. 6). Not only is global accuracy relatively low
compared to the application of the Key West and Miami Beach models to the data from which each
model was developed (see Tables 2 and 3), but F1 values for the DNHB tiles are much lower than
the F1 values for the DHB tiles. This suggests an overabundance of tiles designated as DHB at
the “expense” of relatively few DNHB tiles being correctly designated. Examination of individual
confusion matrices confirmed that this was due to the Key West model classifying about 95% of
Miami Beach tiles as DHB whereas NOAA classified only 68% of Miami Beach tiles as DHB.

Figure 6 also indicates that spatial reassignment has minimal impact on these results.

(a)Global Accuracy (b)F1 DNHB Tiles (c)F1 DHB Tiles.
@ glblacc ®glblacc_spa_fltr ®F1DNHB ®F1DNHB_spafitr ®F1HsBth @ F1HsBth_spafltr
1.0 1.0 10

0.8

Olz I I I I | ) I I I I
0.0 0.0 0.0

1 100 250 500 1 100 250 500
Min Bathy Soundings for a DHB Tile Min Bathy Soundings for a DHB Tile Min Bathy Soundings for a DHB Tile

o
0o
o
e}

o
a
o
()]
o
()]

Global Accuracy

o
N~
o
~
o
~

F1 (Does Not Have Bathy)
F1(Does Have Bathy)

o
S}

Figure 6. Accuracy results from the application of the Key West logistic model to the Miami Beach
data set. (Legend: Light blue bars are based on the p(DHB) from the logistic regression models

alone. Dark blue bars are based on the model p(DHB) and spatial reassignment.)

It is therefore concluded that though the model form developed may be broadly applicable, this

approach to a priori screening will require local calibration of such models.
3. Discussion

In this study NOAA’s processing of LiDAR tiles was used as the high-quality reference data set.
Consequently, many results and their interpretation implicitly assume that NOAA’s results have a

high degree of accuracy — most critically for tiles on which bathymetric pulse returns were “rare”.
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This was evaluated by independently processing a limited sample of tiles having fewer than 100,
250, and 500 bathymetric pulse returns according to NOAA SOPs. The independent processing
was done using a two-stage machine learning-based algorithm known as “CHRT-ML.”; CHRT
(CUBE? with Hierarchical Resolution Techniques) is an algorithm developed by Calder and Rice
(2017) for processing sonar data. It was adapted to extract bathymetric soundings from LiDAR
point clouds by Lowell and Calder (2022) through the use of machine learning (ML) clustering
techniques. CHRT-ML employs a completely different approach to identifying bathymetric pulse
returns in LiIDAR point clouds than NOAA’s SOPs (Nagle and Wright 2016). As expected, the
two methods had the greatest disagreement for those tiles on which bathymetric pulse returns were
rarest. However, the bathymetric pulse returns identified by NOAA SOPs and CHRT-ML on the

sample tiles were sufficiently similar to provide broad confidence in NOAA’s processing.

A major goal of this work was to evaluate if quantifiable characteristics of depth frequency
histograms could accurately identify airborne LiDAR tiles that do not contain extractable
bathymetric pulse returns. Results suggest that this is true. To provide a time-based estimate of
the potential savings, experience with bathymetric processing using CHRT-ML was employed —
recognising, of course, that each organisation’s set of SOPs will require different amounts of time.
CHRT-ML required approximately 1 hour per tile with 20 minutes being human time and 40
minutes being computer processing time. Results for the Key West data set indicated that the
proposed approach would reduce the number of tiles that would be processed from 1374 tiles (that
do not contain land -- i.e., have above MSL areas) to 880 tiles. This suggests a reduction of time
of 494 hours of which 330 hours (13.75 24-hour days assuming batch processing) are
machine/computer time and 164 hours (20.6 8-hour workdays) are human time. It is
acknowledged that these estimates do not include the time cost associated with conducting the a
priori screening. However, this time cost would be minimal since the process — gathering
information on pulse return frequency distributions, fitting a predictive model, and identifying tiles
that are unlikely to have bathymetric pulse returns -- is completely automated. Manual verification
of results would be advised including considering factors such as location of navigable channels;

this would increase the time cost of the a priori screening.

2 Combined Uncertainty and Bathymetry Estimator (Calder and Meyer 2003)
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A second major goal of this work was to evaluate the trade-offs between processing effort and the
number of resultant FNs and FPs in order to improve operational bathymetric processing of LIDAR
tiles. This was explored explicitly through the use of four PRTs. If one prioritizes minimizing the
processing resources required, one can employ a higher PRT which effectively eliminates from
processing tiles having low numbers of bathymetric pulse returns from processing. The
consequence of this is an increase in FN and FP errors. This could potentially be offset, however,
by changing the probability decision threshold (PDT) applied to p(DHB) values produced by the
logistic model. Conventionally in the use of logistic regression, a PDT of 0.5 is employed to assign
observations to one of two classes. However, the number of FNs, for example, might be decreased
by reducing the PDT — although this would likely cause an increase in the number of FPs. And it
would undoubtedly have the impact of necessitating processing of a greater number of tiles. A
quantitatively optimal PDT could be identified using a receiver operating characteristic (ROC)
curve (Nahm 2022) that shows the global accuracy performance of a binary classification model
over all PDTs. However, in the case of identification of bathymetric pulse returns, the
consequences of FNs (loss of data) and FPs (unnecessary processing) are organisationally quite
different making global accuracy an inappropriate metric. Hence there is little choice in this case
but for an organisation to set its PDT based on its qualitative tolerance to risk. In operational
contexts, this would change with the area of interest, the targeted end-user, model performance,

and other factors.

The previous point emphasizes the need for careful evaluation of the consequences of decreasing
the number of tiles processed thereby changing the number of FNs and FPs that occur. In ocean
mapping for navigation, for example, FN errors are considered more serious than FPs. FPs
represent a “waste” of resources due to “needless” processing of tiles that are unlikely to contain
bathymetric pulse returns. Conversely, FNs are a “failure” to capture data that could extend the
geographical extent and accuracy of hydrographic maps. Alternatively, in clear water, FNs are
likely to occur in the deepest parts of a survey area where sonar-equipped ships may be able to
traverse. Hence to optimise operational processing of LiDAR data, one must consider the value
of the information produced, the ability to obtain data using an alternative method, the types of
errors likely to result, and the consequences of each type of error as well as the processing

resources expended.
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Results indicate clearly that a logistic regression model fitted for “Area A” (i.e., Key West) is
unlikely to be applicable to “Area B” (Miami Beach). Potentially, this could be addressed three

ways in operational contexts.

First, the characteristics of the two areas and depth frequency histograms could be examined for
similarity. In this study, the Miami Beach data set clearly had less variance and different histogram
forms than the Key West study site. This alone indicated potential difficulties in applying the Key
West model to the Miami Beach data set.

Second, a machine learning method whose underlying approach is different from logistic
regression might be employed. For this study, though logistic regression was employed because
of superior results, classification and regression tree (CART) modelling was also evaluated
(Breiman et al. 1984). Whereas logistic regression focusses on general trends across all variables,
CART models “micro trends” by progressively splitting the data into branches and sub-branches
based on optimal variables and split points at each step. Though prone to overfitting, it captures
non-linear relationships in a way that logistic regression cannot. CART was examined using
multiple PRTs, variables, optimization criteria, and maximum number of branches. No CART
models performed better than the logistic regression models. Nonetheless, there are other machine
learning techniques such as neural networks and support vector machines that are not decision-
tree based that were not examined in this study. These could be of interest in part because logistic
regression — that models broad trends — did not produce models that were geographically robust.
Machine learning techniques other than CART are less likely to produce geographically robust
models. However, such techniques might produce models that are better for a single area such as
the Key West or Miami Beach areas employed in this study. Note that the risk of model overfitting
would increase given the underlying approach to model development of many machine learning

techniques.

Third, “progressive sampling” could be employed. Suppose one has 1000 LiDAR tiles to process.
One could sample a “representative” number — e.g., 50 tiles -- according to an appropriate scheme
— e.g., randomly, weighted by distance from land or likely depth. Each tile in the sample would
be processed for bathymetric pulse returns according to normal SOPs. A logistic model would be
fitted using the sample, and global accuracy and other accuracy metrics calculated for the 50 tiles.

An additional sample of 50 tiles would be taken (without-replacement), processed for bathymetric
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pulse returns and added to the original sample. A new logistic regression model would be fitted
using the 100 tiles, and the selected accuracy metric(s) calculated for the 100 tiles. This process
would continue for 150, 200, etc. tiles until the accuracy metric(s) converged — i.e., stabilised.
That is, it is expected that the accuracy metric(s) would change “considerably’ with each additional
sample of 50 tiles at lower sample sizes. However, sampling an increasing number of tiles would
increase the representativeness of the tiles sampled causing the accuracy metric(s) to change little
with each additional sample of 50 tiles. Once this occurred, the final model fitted would be applied
to all 1000 tiles. If 250 tiles (five samples of 50 each) were required to achieve convergence,
undoubtedly a certain number would be tiles having no bathymetric pulse returns and would have
been “needlessly” processed. However, this approach would identify tiles in the unsampled 750
tiles that do not require processing for bathymetric pulse returns thereby reducing the number of

tiles requiring processing.

Finally, a critical part of operational implementation of any a priori screening scheme should be
the design and implementation of a quality assurance/continuous improvement (QA/CI) program.
Results of this study demonstrated that though one can eliminate tiles from “needless” processing,
there is a consequent increase in errors that would need to be continually monitored. Each of the
three potential operational winnowing strategies would base a tile’s “Does/Does Not Have Bathy”
decision on a model’s estimate of the probability that an unprocessed tile does have bathymetric
pulse returns. This could be checked by actually processing a certain number or percentage of
randomly chosen “QA/CI tiles” and evaluating if the error rate was consistent with the
probabilities; Lowell and Mitchell (1987) described one analytical approach for doing this.
Notably, however, aside from the model-based probability, as discussed, the amount of screening
to be applied must be decided based on organizational consequences of errors and risk tolerance.
An informed decision can only be made if one constantly monitors the screening process including
evaluating model goodness-of-fit, magnitude and type of errors, spatial characterization of

uncertainty, and operational factors such as time and cost.

4. Conclusions
With an overarching operational goal of reducing processing time and resources, this study
demonstrated the viability of using a frequency distribution-based approach to identifying LiDAR

tiles whose processing is unnecessary. It also quantified the trade-off between reducing resources
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required to process LiDAR point clouds to extract bathymetric pulse returns and the consequent
increase in errors. For example, by developing and applying a logistic regression model based on
quantifiable characteristics of depth frequency histograms, the number of tiles processed for a
LiDAR data set for Key West (Florida, United States) could be reduced from 1374 to 900 (34%)
with an increase in false negative (FN) tiles from 0 (zero) to 75 tiles (5% of total) and false positive
(FP) tiles from 0 (zero) to 48 (4% of total). Reassigning FN and TN tiles from “Does Not Have
Bathy” to “Does Have Bathy” based on the p(DHB) values of each tile’s neighbours reduced the
number of FN tiles from 75 to 61 (4% of total) while increasing the number of FP tiles from 48 to
49 (4% of total). The use of “pulse return thresholds” to eliminate from processing the tiles on
which bathymetric pulse returns were “rare” was found to reduce the number of tiles requiring
processing and the number of FN and FP tiles only modestly. Finally, it was concluded that
application of the method developed to other data sets will require the fitting of geographic- and

water-condition-specific logistic regression models.

This work is novel in that it is not focused on eliminating or de-noising points in individual LiDAR
tiles being processed. Instead, it demonstrates that it is possible to effectively de-noise a set of
tiles/areas and eliminate those whose bathymetric processing is unlikely to extract pulse

returns/soundings that represent the depth of the ocean floor.
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Appendix 1. Acronyms.

Acronym

Definition

ALB

Airborne LiDAR for Bathymetry

Bathy/NotBathy

A designation for individual pulse returns indicating that an individual
pulse return does or does not represent bathymetry according to NOAA
standard operating procedures (SOPs).

CHRT

An algorithm developed for sonar processing.

CHRT-ML

A machine learning algorithm that applies clustering to information
produced by CHRT to identify bathymetric pulse returns in LiDAR point
clouds.

DHB/DNHB

Designation for a tile that does have (DH) or does not have (DNHB)
bathymetric pulse returns. For model fitting, this designation is based on
bathymetric processing using NOAA standard operating procedures. For
determining a tile’s model-based designation, this is based on p(DHB) --
the probability that a tile does have bathymetric pulse returns.

FN

False Negative. A tile designation that indicates that NOAA SOPs found
bathymetric pulse returns to be present, but that a logistic regression model
identified as having no bathymetric pulse returns present.

FP

False Positive. A tile designation that indicates that NOAA SOPs
determined that bathymetric pulse returns were not present, but that a
logistic regression model identified as having bathymetric pulse returns
present.

NOAA

United States National Oceanic and Atmospheric Administration

p(DHB)/p(DNHB)

Probability that a tile does have (DH) or does not have (DNH) bathymetric
pulse returns according to a logistic regression model fitted to a particular
data set.

PDT

Probability Decision Threshold. The minimum model probability
(p(DHB))

PRT

Pulse Return Threshold. The minimum number of bathymetric pulse
returns required to designate a tile as “Does Have Bathy” (DHB).

SOPs

Standard Operating Procedures

TN

True Negative. A tile designation indicating that NOAA SOPs and a
logistic regression model agreed that no bathymetric pulse returns were
present.

TP

True Positive. A tile designation indicating that NOAA SOPs and a logistic
regression model agreed that bathymetric pulse returns were present.
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