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Abstract

Tidal salt marsh ecosystems are known to accumulate and store large amounts of “blue”
carbon, making them an important component of regional carbon cycle processes and a
potential target for ecosystem-based carbon crediting efforts. However, blue carbon content in
salt marshes can vary substantially at relatively small spatial scales. Understanding spatial
variations of blue carbon storage at the landscape or local scale is important for developing
carbon inventories, guiding ecological restorations, and informing habitat management
strategies. We investigated the potential of spectral index records from the Landsat-8
Operational Land Imager spanning from 2014 to 2023 for mapping blue carbon storage in the
soils of two tidal salt marsh systems in the Mid-Atlantic United States. The decadal mean of a
non-photosynthetic vegetation index and standard deviations of a normalized difference
vegetation index and a modified normalized difference water index were identified as predictors
of blue carbon. These predictors were used to train a gradient boosted trees model for
predicting soil organic matter content that achieved a testing set r-squared value of 0.67. We
estimated that the two study marshes stored a combined 133-208 gigagrams of organic carbon
in the top 30 cm of soil. We emphasize the need for better quantification of deep soil carbon in
tidal salt marsh systems, which is likely quite high, and demonstrate the potential for satellite-

based mapping of blue carbon within individual tidal wetland systems.
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1. Introduction

Coastal wetland soils are of particular importance in the global carbon cycle as they store
and accumulate disproportionately large amounts of soil organic matter (SOM) and soil organic
carbon (SOC) relative to their areal extent. This high carbon storage potential, in addition to
many other valuable ecosystem services (e.g., shoreline protection, critical habitat, nutrient
cycling), has made tidal wetlands an important target for restoration and conservation
(Beaumont et al., 2014; Chmura et al., 2012). However, these soils are subjected to increasing
ecological and physiochemical stressors from sea level rise, changes in storm frequency and
severity, and land use conversion (DeLaune & White, 2012; Kirwan & Megonigal, 2013; Torio &
Chmura, 2013). Carbon stored in coastal wetland ecosystems such as mangroves, sea grass
beds, and tidal salt marshes is collectively referred to as “blue” carbon. Blue carbon is of great
interest to climate change researchers, resilience planners, and policy makers, as the
aforementioned stressors may reduce carbon accumulation and possibly lead to enhanced
carbon loss due to erosion and mobilization, vegetation stress, and alterations to sediment
supply (Andersen et al., 2011; Chmura et al., 2003; McLeod et al., 2011; Mueller et al., 2019;
Steinmuller & Chambers, 2019; Theuerkauf et al., 2015). Conversely, the preservation and
restoration of blue carbon ecosystems may enhance estuarine carbon storage, providing both
ecological and potential economic benefits. Indeed, the mapping, preservation, and restoration
of blue carbon ecosystems has been highlighted as a priority in the United States Ocean
Climate Action Plan (Ocean Policy Committee, 2023). Though its importance is clear, there are
still many unknowns surrounding blue carbon processes, especially in the face of climate
change. Improving our understanding of spatial patterns of SOM and SOC in tidal salt marshes
will help identify conservation priorities at local scales and constrain carbon stock estimates at

regional-to-global scales.
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The issue of scale is important when considering spatial patterns of blue carbon storage. In
a national scale analysis, Holmquist et al. (2018) found that soil organic matter content in tidal
wetlands followed a roughly normal distribution, with variations across marsh systems being
only minimally influenced by local climate, salinity, and vegetation characteristics. These
findings were supported by a second national scale analysis (Uhran et al., 2021), underscoring
the diminished influence of local scale variations on large scale SOM and SOC storage
estimates. However, it is known that SOM and SOC storage can vary substantially within a salt
marsh system at the landscape and plot scale (Fettrow et al., 2023; St. Laurent et al., 2020).
While using a national average may be adequate for continental or global carbon cycle
modeling, accounting for spatial variations within a marsh system may help guide ecological
restorations or conservation strategies that operate on a much more localized scale. Notably,
recent studies have highlighted the potential of carbon crediting systems for offsetting the costs
of localized blue carbon ecosystem restorations (Oreska et al., 2020). Despite its potential role
in carbon markets, methods for accurately quantifying blue carbon storage at the landscape
scale are still an area of developing research. Identifying marsh features with high or low SOM
storage potential may help prioritize marsh tracts that would benefit most from targeted

conservation strategies or restoration practices to enhance climate resiliency.

In situ sampling for blue carbon mapping across tidal salt marsh landscapes is challenging.
Their soft soil, dense vegetation, and environmental protection status prevent the use of heavy
sampling equipment and make them difficult to traverse on foot. Sampling from boats limits soil
collection to near-channel areas of the marsh, neglecting the marsh interior, while sampling
from the marsh fringe can make site access difficult. As salt marshes are critical habitats for
imperiled or endangered species, federal and local protections often necessitate site access
permits from federal and state governments and conservation agencies. These understandable

challenges make large sampling campaigns in salt marshes difficult and time consuming,
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making traditional soil mapping techniques (e.g., interpolations and manual unit delineations)
challenging and potentially less accurate (Holmquist et al., 2018). To overcome these logistical
challenges researchers have begun to employ techniques in the field of digital soil mapping that
utilize increasingly abundant and data-rich products from aerial and satellite remote sensing
platforms (Araya-Lopez et al., 2023; McBratney et al., 2003; Sharma et al., 2022). Studies seek
to map soil properties based on statistical relationships between in situ soil sample data and
remote sensing covariates over broad spatial scales. While remote sensing platforms cannot
directly observe SOM and SOC, they can observe surficial environmental characteristics like
vegetation phenological stages, soil saturation, weather patterns, surface temperature, and
terrain characteristics. These variables can relate to spatiotemporal patterns of soil
characteristics, making remote sensing an increasingly important tool for soil science in tidal salt

marshes and many other ecosystem types.

The use of remote sensing in blue carbon mapping is an area of active research. Wardrup
(2021) mapped salt marsh SOC across the northeastern United States using a regional scale
model trained on observations from a variety of sources with a mixture of static elevation data
and vegetation indices from high spatial resolution aerial imagery (3 m; U.S. Department of
Agriculture’s National Agricultural Imagery Program). These maps revealed substantial small
scale spatial heterogeneity in SOC stocks, but also highlighted the substantial uncertainty of
model predictions and inconsistencies of SOC stock estimates across different studies. Zhang
et al. (2019) used aerial hyperspectral imagery (visible and near-infrared ranging 400-980 nm)
to map various salt marsh SOM content using object-based image segmentation and machine
learning-based classifications. Their approach showed promise for mapping local scale
variations in SOM, but required costly hyperspectral data collections that are not available for
most salt marshes. Predictions made with data simulated to reflect more accessible commercial

satellite data (i.e., Worldview-2 and Quickbird) indicated reduced performance. Similarly,
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Villoslada et al. (2022) found that aboveground biomass maps generated from multispectral
drone imagery (4-band ranging 530-810 nm) were stronger predictors of organic carbon
concentrations in tidal wetland soils than flooding frequency estimated from publicly-available
satellite radar imagery (Sentinel-1). The authors also found that different predictors were better
suited for different systems, indicating that there is no single data source that works best for
blue carbon mapping across all systems. Thus, developing landscape scale maps of blue
carbon storage is possible, but there is a continuing need for exploration of statistical methods

and publicly available, widespread remote sensing predictors to achieve this.

Soils are products of long-term environmental processes. In the case of tidal salt marshes,
soil evolution is dependent on long-term cycles of tidal inundation, vegetation productivity and
structure, salinity regime, decomposition rates, and sediment deposition (Fagherazzi et al.,
2012; Witte & Giani, 2017). Monitoring these processes in situ across an entire marsh system
over multiyear timescales is a massive undertaking, but some remote sensing missions, like
Landsat-8 and its Operational Land Imager (OLI), now provide multispectral information
spanning over a decade. Numerous spectral indices have been developed that reflect
vegetation health, biomass, soil moisture and inundation status, and other relevant ecological
characteristics (Montero et al., 2023). In this study, we investigated the potential of statistics
extracted from decadal spectral indices derived from the Landsat-8 OLI for modeling and
mapping spatial patterns of organic matter storage in tidal salt marsh soils. In this paper, we use
the term “decadal” to indicate the span of Landsat-8 images used to generate summary
statistics (e.g., mean and standard deviation) of various spectral indices. Specifically, we asked:
1. Which statistics of established spectral indices show correlations with SOM storage? 2. What
is the degree of sub-pixel heterogeneity of SOM storage (i.e., how much does SOM density vary
within a Landsat-8 OLI pixel footprint)? 3. How do predictions of whole marsh SOM and SOC

storage compare to those derived from other approaches in the literature? The purpose of this
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work was to develop a modeling approach that supports ongoing blue carbon mapping and
quantification efforts using the wealth of publicly available satellite data that has been collected.
We addressed these questions in two tidal salt marsh systems in Delaware Bay, Delaware,
USA, and provide insights that may help guide future blue carbon mapping and accounting

efforts in other tidal salt marshes (Fig 1).

2. Methods
2.1 Study areas

This study focused on the Delaware tidal salt marshes surrounding Blackbird Creek and St.
Jones River, both of which feature areas managed by the Delaware National Estuarine
Research Reserve. These study marshes were selected for their numerous site access points
and history of use in environmental research. Both study marshes occupy watersheds with
extensive land use modification, including manmade impoundments. The Blackbird Creek
watershed is a blend of row crop agriculture (39%), wetlands (25%), forest (22%), and low
intensity urban development (~10%). The St. Jones River watershed features extensive urban
and suburban development (25%) surrounding the city of Dover including a large reservoir and
a sand mining operation. This watershed also features extensive agriculture (48%) with some
forests (10%) and wetlands (14%) (DNERR 1999). Wetland footprints were delineated based on
vegetation maps that were subsampled to include only polyhaline or mesohaline emergent
vegetation communities and mudflats (i.e., woody forests and freshwater wetlands were
removed) delineated by Coxe (2010). The footprints of each wetland network were 1372 and
1402 ha, respectively. Dominant vegetation types include Spartina alterniflora, Spartina patens,
and the invasive Phragmites australis, which collectively cover almost the entirety of each study
marsh (Fig S1; Fig S2). These systems are affected by upstream agriculture and suburban
development, which may alter sediment supply and chemistry. They are also experiencing a

relatively high (and accelerating) rate of sea level rise (up to 5.94 mm yr'; Callahan et al. 2017)
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due to regional land subsidence from glacial isostatic adjustment, changing ocean currents, and
increases in the global mean sea level from thermal expansion and melting ice sheets (Sweet et

al., 2022).

Sampling points were identified based on site accessibility and supplemented an existing
soil sample dataset (St. Laurent et al., 2020). The existing dataset consisted of samples
primarily collected by boat near major wetland channels, while the new sampling points
captured sites along the outer wetland and in the upper and interior areas (Fig 1). The combined
sample set reflects an array of different sedimentary environments with respect to marsh
platform elevation, distances from channels and fringes, microtopography, inundation regime,

and vegetation communities.

A

4 Kilometers

B 5iackvird Marsh
‘ : St. Jones Marsh
Il other satt Marsh

- Water

QO  Sample Site

astern United States | [
)

Figure 1. Map of study sites in the context of the eastern United States. The location of
the USGS Murderkill River tide gauge can be seen in the lower right of panel C as the red

star near the outlet of St. Jones River.
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2.2 Soil sample collection and analysis

Soil samples for this study were collected using a gouge auger inserted 1 meter (if
possible) into the sediment along pre-planned transects during the 2020 growing season (May —
September). Samples were collected in triplicate within an approximately 1-meter radius at each
sampling location and the top 30 cm segment of each core was reserved for further analysis. If
sufficiently intact, additional segments were collected from 40 to 60 and 70 to 90 cm. Each
sampling location was occupied with a GPS unit until roughly 1-meter horizontal accuracy was
achieved. Triplicate core segments were placed in a plastic sample bag in the field and placed
on ice before transporting to the laboratory. Segments were then air dried at room temperature
in a constantly flowing exhaust hood until reaching a stable mass. This mass was normalized to
the known volume of each segment to calculate the bulk density (BD). Triplicate segments were
then homogenized into one sample, ground, and sieved to 2 mm to remove large stones and

pieces of undecomposed plant material.

Samples were analyzed for organic matter content via loss on ignition (LOI) following a
similar method to Heiri et al. (2001). Approximately 10 g of homogenized sample was placed
into foil containers with small perforations to allow gas to escape. Samples were combusted at
550 °C for 6 hours in a vented furnace and reweighed after cooling. This amount of time was
found to yield a stable final mass (several preliminary test samples were combusted for 4, 6,
and 8 hours). LOI was calculated as a percentage of mass loss before and after combustion.
SOM density per unit volume was then calculated as the LOI multiplied by the sample BD (g cm-
3). For surface samples, organic matter density was then converted to a mass per unit area (kg
m-2) by multiplying by sample depth of 30 cm, from here on referred to as SOMso. Subsamples
of combusted residue were retained for elemental (C and N) analysis to estimate the inorganic

fraction of carbon in the soils.
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Samples from St. Laurent et al. (2020) were collected in the top 30 cm during the
growing seasons of 2017 and 2019 but were sectioned differently than the previously described
method. Most samples were sectioned at 0-15 and 15-30 cm while some were sectioned at O-
7.6 and 22.8-30.4 cm. Each sample was similarly analyzed for BD, LOI, and percent C content.
To account for differences in the core sectioning, soil property values for the upper 30 cm were
calculated as a weighted sum based on relative segment lengths and their corresponding soil
properties. This allowed for comparisons across both datasets, though we note that this may be

a cause of minor uncertainty in SOM3, values for samples sectioned at 0-7.6 and 22.8-30.4 cm.

All samples were analyzed for elemental C and N content using an Elementar Vario EL
Cube at the University of Delaware Advanced Materials Characterization Laboratory (Newark,
DE, USA). Dried soils were ground to a fine powder, and between 40 and 100 mg of sample
was encapsulated in tin foil capsules, with final weights recorded to four decimal places. Lower
weights were used for high LOI samples to avoid potential detector saturation. Duplicate
capsules were used to ensure consistency in elemental composition within samples. All
samples were analyzed for C and N content, and a majority of post-LOI residues from surficial
samples were analyzed to estimate inorganic fractions of C. Using this information, we
estimated the percentage of organic C (OC) contained in total organic matter. This percentage

was later used for whole marsh estimates of SOC content.

2.3 Landsat images and derived spectral indices

This study employed spectral imagery from the Landsat-8 OLI for generating spatial
predictors of marsh SOMs, density. This platform passes the study area at 15:40 GMT with a
16-day revisit cycle and provides imagery in multiple spectral bands. This study employed blue

(450-510 nm), green (530-590 nm), red (640-670 nm), near-infrared (NIR; 850-880 nm), and
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shortwave infrared (SWIR1; 1570-1650 nm and SWIR2; 2110-2290 nm) bands. Tier 1 scenes
from 2014 to 2023 with less than 30% cloud cover were downloaded using the US Geological
Survey Earth Explorer “landsatxplore” Python API, yielding a total of 75 scenes within a roughly
3- to 4-year time interval of soil sample collections. This collection of scenes captured both
seasonal variations in plant phenology and the broad range of tidal conditions present during
the period of record. Scenes were nearly evenly distributed across winter (DJF; n = 18), spring
(MAM; n = 16), summer (JJA; n = 20), and fall (SON; n = 21). Tidal records from the mouth of
the nearby Murderkill River (USGS gauge 01484085) were compared to tidal conditions at the
time of Landsat-8 flyover. Although Landsat-8 collections did not replicate the frequency of the
higher end of the tidal cycle, they did capture the full range of tidal stages at this gage (Fig 2).
Thus, it should be noted that the Landsat-8 imagery collection utilized in this study may skew
slightly towards lower tidal conditions. It should also be noted that tidal schedules and
amplitudes at the reference gage are not necessarily representative of those within the study
marshes, as tides are dampened and require time to propagate through the marsh channel

networks.
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Figure 2. Kernel density estimates were used to visually compare distributions of hourly
tide gauge levels (blue) from the nearby Murderkill River from 2014 to 2023 (USGS
01484085) to those at the time of Landsat-8 image collections (red) during this same

study period.

Pixels flagged for clouds and cloud shadows in the Landsat-8 Level-1 Quality
Assessment (QA) band were removed to include only pixels corresponding to clear land surface
and open water. These filtered scenes were stacked into a data cube, and a variety of
normalized difference spectral indices (NDIs) were calculated as potential predictors for SOMao.

These follow a generalized formula of:

NDI,, = ( Band, — Bandy, )/(Band, + Bandy) [1]

Where NDl,;, is the normalized difference index and Bands a and b are specific Landsat-8
spectral bands. A full list and description of indices considered in this study are available in
Table 1. This list includes indices developed for mapping vegetation phenology and productivity,

litter biomass, and surface water features.

Decadal statistics of mean (.mean), standard deviation (.sd), range (.rng), and coefficient
of variation (.cv) of each spectral index were calculated for each pixel over the study period
(2014-2023). These statistics were calculated at the same 30 by 30 m pixel resolution of the
original Landsat-8 images, though we note that there can be some blurring from image to image
that may introduce small errors into single pixel time series. Once derived, spectral index
statistics were extracted for each pixel corresponding to a soil core sampling location. In 18
cases, multiple core samples corresponded to one single pixel, and these were used in later

assessments of sub-pixel SOM 30 heterogeneity. It should be noted that no significant
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Table 1. Overview of spectral indices considered as predictors of SOMy in this study.

Name Formula Description Citation
Normalized Difference NDINR,Red A commonly used index | Rouse et al.
Vegetation Index (NDVI) for assessing vegetation | 1974

greenness and
phenological stage

Normalized Difference Water NDlareenNIR Developed for McFeeters

Index (NDWI) delineating surface water | 1996
features

Nonphotosynthetic Vegetation | NDlIgwe Green Developed for Beana et al.

Index-1 (NPV1) differentiating vegetation | 2017; Byrd et
types, living and dead al. 2018
biomass®.

Nonphotosynthetic Vegetation | NDlswiri,swirz | Developed for estimating | Daughtry et al.

Index-2 (NPV2) crop residues in fields*. 2006

Modified Normalized Difference | NDlgreenswirz | Developed for identifying | Reddy et al.

Water Index-2 (MNDWI2) fine drainage canals and | 2018

hydrologic features. This
index is also affected by
soil moisture content.

*NPV is often modeled with indices derived from fine differences in shortwave infrared (SWIR)
spectral region, however Landsat-8 OLI lacks sufficient band resolution in this region to
generate the most commonly accepted spectral NPV indices (Dennison et al., 2023). For this
reason, we assessed the potential performance of two less-common indices that align with
Landsat-8 OLI bands.

2.4 Modeling

The first step in modeling SOMso based on spectral characteristics was to extract all
spectral index statistics for pixels containing a sample site to their corresponding SOMsp value
(or values, in the cases of pixels containing multiple sampling sites). SOMso and corresponding
spectral index statistics were split into training (80%) and testing (20%) sets. The next step was
to pare down the list of potential predictors (e.g., NDVI.mean or NPV2.sd) to remove poorly
correlated and/or redundant predictors. This was done by iteratively excluding each potential

predictor from a series of multiple linear regressions with SOM3o and calculating the variance

inflation factors and correlation coefficients for each iteration. This ultimately yielded a final set
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of strong predictors all with a variance inflation factor of less than 1.5, indicating very little

multicollinearity amongst predictors. Weak or redundant predictors were discarded.

These final predictors were used to generate a multiple linear regression and a gradient
boosted regression trees model for predicting SOMso based on the spectral characteristics of
pixels corresponding to sampling locations. Gradient boosted tree is a regression tree-based
algorithm that builds a series of weak learning trees using residuals of previous trees over a
series of training iterations. This algorithm was chosen due to its relative ease of training, ability
incorporate non-linear variable relationships, and established performance in blue carbon
mapping (Pham et al., 2023). In the case of the gradient boosted trees regression, model
hyperparameters were tuned via 5-fold cross validation using the “caret” (Kuhn 2008) and
“xgboost” (Chen et al. 2024) packages in R statistical software version 4.3.3 (R Core Team
2024). After tuning, the final models were fit and extrapolated to our testing set data to generate
performance evaluation metrics of mean absolute error (MAE), root mean square error (RMSE),

and the coefficient of determination (R?).

3. Results
3.1 Soil bulk density, organic matter density, and carbon content
Soil bulk density ranged from 0.23 to 1.5 g cm in the upper 30 cm with a mean of 0.65
g cm3. Deeper soil layers had significantly higher bulk density (t-test, p = 0.004) than the upper
30 cm, with a mean of 1.0 g cm3, ranging from 0.2 to 2.04 g cm=. The upper soil layer of 0 — 30
cm had a mean (+ 1 S.D.) SOM density of 0.096 + 0.035 g OM cm3with values ranging from
0.021 to 0.21 g OM cm3. Soil core sections below the 0 — 30 cm interval had a mean SOM

density of 0.095 + 0.047 g OM cm-2 with values ranging from 0.053 to 0.34 g OM cm3.
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Our elemental analysis found that SOM3s had a mean of 25% SOC (21 - 27%; 95% C.I.).
Inorganic carbon accounted for an average of 2.5% (2.1 - 2.9%; 95% C.l.) of post-combusted
soil dry mass (i.e., total carbon content of residues from LOI analysis). The percentage SOC
values were later used for scaling predictions of SOMsp to estimate total SOC stocks and
uncertainties. No significant differences or correlations in OM density or C content existed
between the 0-30, 40-60, and 70-90 cm sections of cores. Similar to the findings of Morris et al.

(2016), we found a strong inverse relationship between LOI and bulk density.

3.2 Sub-pixel heterogeneity

A total of eighteen pixels contained multiple (2 or 3) soil core sites. SOM density varied
by less than 0.025 g OM cm-3 within fifteen of these pixels, however sub-pixel heterogeneity was
over 0.05 g OM cm= in three pixels (Fig 3). We examined field notes and aerial photos of these
pixels to investigate potential explanations for higher and lower sub-pixel heterogeneity, which is

reported in the Results section.

6

IS

Frequency

N
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Absolute difference (g cm-3)
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Figure 3. Histogram of sub-pixel variability of SOM;, expressed as the absolute
difference between minimum and maximum of observations within a given Landsat-8

pixel.

3.3 Model performance

The variable selection process yielded a set of three predictor statistics derived from the
decade-long collection of Landsat-8 spectral indices. Final predictors were the mean value of
NPV1 (NPV1.mean) and the standard deviations of NDVI (NDVI.sd) and MNDWI2
(MNDWI2.sd). These three predictors were used for model training and extrapolation of model

predictions, while all other predictors were discarded.

The multiple linear regression fit to the training set had the formula:

SOM3, = 3.40 * NPV1.mean - 0.15 * NDVL.sd + 2.48 * MNDWI2.sd - 0.20 [2]

The gradient boosted trees hyperparameter tuning process yielded a final model with
100 iterations, a learning rate of 0.03, gamma value of 0.9 (the minimum loss reduction
necessary to continue splitting a regression tree), maximum tree depth of 2 (the number of
potential splits in a regression tree), and subsample fraction of 0.5 (the fraction of randomly

selected data for training a regression tree).

The gradient boosted trees model outperformed the multiple linear regression in all
performance metrics, showing a strong predictive performance of SOMs on both the testing and

training sets (Table 2; Fig 4).
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Table 2. Performance evaluation metrics for testing set (and training set) for the multiple
linear regression and gradient boosted trees model.

Model MAE (g OM cm??) RMSE (g OM cm-®) R?
Multiple linear 0.016 (0.020) 0.022 (0.026) 0.48 (0.47)
regression
Gradient boosted 0.012 (0.018) 0.016 (0.023) 0.67 (0.65)
trees

* Train

A Test

0.20

0.13

0.067 A

Observed Organic Matter Density in Top 30 cm (g cm™)

0.067 0.13 0.20
Predicted Organic Matter Density in Top 30 cm (g cm™)

Figure 4. Observed and model predicted (gradient boosted trees) SOMs, for training (red
circles) and testing (blue triangles) datasets. The black line represents an exact 1:1

equivalent.

Despite its superior performance, the gradient boosted trees model has the drawback
that it is more complicated to implement and less easy to interpret than a linear regression.
However, there are still ways to assess its internal variable relationships. To investigate the

relative influence of each predictor variable, we calculated Individual Conditional Expectations
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(ICE) for each training data sample (Fig 5). ICE plots indicate how a prediction of a given
instance (predicted SOM value in this case) will change over the range of each predictor
variable within a complex machine learning model, allowing for some degree of interpretation of
its individual variable dependencies. Seeing each instance allows the viewer to assess how
consistent the response of a dependent variable is for a given predictor. If all instances show
distinctly different responses, it may indicate complex variable relationships within the model.
This is termed as the “marginal effect” of a predictor’s value on the model prediction. Overlaid
on these plots is a smoothed general response across all training samples to illustrate the
general effects of each predictor (Fig 5). We found that both NPV1.mean and MNDWI2.sd had
generally positive effects on predicted SOMs, similar to the coefficients in the linear regression
(Eqg. 2), while NDVI.sd effects varied substantially among samples (Fig 5). ICE curves were

generated using the package “iml” in R (Interpretable Machine Learning; Molnar et al. 2018).
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Figure 5. Individual Conditional Expectation (ICE) curves plotted along with the general
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trend of marginal effects for each predictor variable on model predictions. Marginal

histograms indicate the frequency distribution of predictors across the sample domain.

3.4 Mapped OM density and total C stock estimation
Extrapolation of the gradient boosted trees model produced predicted spatial
distributions of SOM3, over a total of 14310 and 16550 Landsat-8 pixels for the Blackbird Creek

and St. Jones River tidal marshes, respectively. These predictions were scaled to units of kg
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OM m-2 (within the upper 30 cm; Fig 6) and multiplied by the 30-by-30 m pixel area. This yielded

a final estimate of 334.2 + 68.8 Gg SOM (95% C.I.) and 438.0 ¥ 79.5 Gg SOM (95% C.|.) storage

in the upper 30 cm of Blackbird Creek and St. Jones River tidal marshes, respectively. Using

the estimated percentage of SOC in SOM from our LOI and elemental analysis, this equates to
an estimated 76.9 (56.8 — 90.2) Gg OC and 100.7 (74.5 — 118.3) Gg OC storage in the upper 30
cm, respectively. Predicted SOMso tended to be greater in the high marsh of the central or lower
reaches of the marsh systems and lesser in more inland and peripheral reaches (Fig 6).
Predicted SOMso was generally lower in Blackbird Creek tidal marsh than in St. Jones River tidal

marsh.
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Figure 6. Predicted spatial distributions of surficial soil organic matter (upper 30 cm)
across the two study marshes. Warmer yellow and orange colors correspond to higher

SOM density while darker tones correspond to lower densities.
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4. Discussion

4.1 Model predictors

The findings of this study demonstrated the potential of decadal spectral characteristics
derived from the Landsat-8 OLI for modeling and mapping organic matter density in surficial
tidal marsh soils. We found SOMgs to vary spatially both within and across the two study
marshes, indicating that some areas of the marshes store more SOM than others in their upper
soil layers. This spatial heterogeneity was related to the average of a non-photosynthetic
vegetation index and standard deviations of NDVI and a modified water index over the Landsat-
8 record spanning from 2014-2023. The ICE plots in Figure 5 showed a positive marginal effect
on predicted SOMzo in pixels with high NPV1.mean and high MNDWI2.sd, which was also
reflected in the positive coefficients of the multiple linear regression. The normalized difference
between blue and green Landsat-8 bands (i.e., NPV1 in this study) has been identified as a
predictor of aboveground biomass alongside other spectral indices (Byrd et al., 2018). MNDWI2
was developed to work in conjunction with NDVI as a spectral index for identifying small surface
waterbodies and fine scale canal features (Reddy et al., 2018). Thus, the positive marginal
effects of these predictors in our model suggest high SOMs in areas with abundant
aboveground dead biomass and variable inundation status. The effects of NDVI.sd on model
predictions were less clear, with some instances showing positive relationships and others
negative (Fig 5). This would suggest that the variability of NDVI may have complex interactions
with other predictors, and it may reflect the interactions of NDVI and MNDWI2 in identifying
standing water on a landscape (Reddy et al., 2018). Maxwell et al. (2024) also found NDVI.sd to
be a variable of moderate predictive importance for SOC density, but it is unclear what the
variables effects were within that model. We note that while these predictors performed well in
this study, their applicability may not be universal across all tidal salt marsh systems. Villoslada
et al. (2022) found that the performance of different spectral predictors from aerial imagery

varied across study sites and vegetation types, suggesting that some degree of local calibration
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may be necessary to maximize model performance in a given region of interest. This, along with
the substantial landscape scale variation that this and other studies have observed, suggest that
a single standardized approach for blue carbon inventorying with remotely sensed predictors
would be less accurate, or inappropriate, when applied in a tidal salt marsh without local

calibration.

The long period of record and high collection frequency of satellite missions like
Landsat-8 allows for assessments of seasonal phenological and tidal inundation patterns. Such
characteristics are not easily determined from data sources with infrequent collections, such as
airborne LiDAR and aerial imagery programs like NAIP. However, these products are able to
achieve much higher spatial resolution, and the fusion of such products with long-term satellite
datasets may help overcome the limitations of any individual data source. For example,
classification models of marsh fringe forests have recently demonstrated improved accuracy by
incorporating airborne LiDAR information alongside multispectral aerial imagery (Powell et al.,
2022). The results of this study reinforce the importance of ongoing and future remote sensing
missions for blue carbon mapping and carbon cycle research at large. The upcoming Landsat
Next mission will provide data products with higher spatial and spectral resolution, particularly in
wavelengths relevant to NPV mapping (Dennison et al., 2023), and next-generation synthetic
aperture radar could provide enhanced capabilities for deriving patterns of inundation and
vegetation structural characteristics. These enhanced remote sensing products may improve
blue carbon inventory accuracy and lead to better standardization of mapping techniques using

publicly available satellite remote sensing data.

4.2 SOM and SOC characteristics and comparisons
Our observed percentage of SOC in SOM (25%) was lower than the average of 37%

observed by (Wang et al., 2017) among salt marsh systems in Louisiana, USA, but fell within
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the broad range that they observed (12%-84%) and within the range observed previously in salt
marshes in North Carolina, USA (22%-60%) (Craft et al., 1991). From the literature, it is clear
this percentage can vary substantially across systems and soil textures. While we did not
observe such large variability in percentages across the two study marshes, we note that local
variability in the percentages of SOC in SOM could substantially influence estimates of salt

marsh carbon stocks based on SOM measured with low-cost LOI analysis.

Scaling our mean observed surficial SOMs, density to a volume of one cubic meter and
multiplying by our estimated SOM:SOC ratio yielded an estimated SOC density (x 1 S.D.) of 24
+ 8.8 kg m3, which is only slightly lower the national mean value of 27 kg m- proposed for
coastal wetlands in the United States (Holmquist et al., 2018). At a per hectare scale, our
estimates of SOC in the upper 30 cm were 60 (44 — 70) and 68 (50 — 79) Mg C ha' for
Blackbird Creek and St. Jones River tidal marshes, respectively. This was lower than a recent
estimated global average of 83.1 Mg C ha' (Maxwell et al., 2024), though well within its margin
of uncertainty. This may suggest that the Blackbird Creek and St. Jones River coastal marshes
may have a surficial SOC density typical of other salt marsh ecosystems in the USA and
globally. However, comparing our whole marsh estimates of SOC in the top 30 cm to those of
Wardrup et al. (2021), we estimated substantially lower SOC stored in both Blackbird Creek
(this study: 77 Gg SOC, Wardrup et al.: 169 Gg SOC) and St. Jones River tidal marshes (this
study: 101 Gg SOC, Wardrup et al.: 152 Gg SOC). The latter study utilized a regional scale
model with training data from sites spanning the entirety of the northeastern United States. The
discrepancy between these estimates may reflect the influence of local factors in our study
marshes, such as the generally low SOC:SOM ratio we found in salt marsh soils. We note that
local geology, vegetation, and geomorphology may all influence soil formation, and some

degree of variability in SOM content across different systems is to be expected. These findings
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reinforce the importance of considering local characteristics in salt marsh SOM mapping, similar

to the findings of Villoslada et al. (2022).

From our limited number of samples deeper than 30 cm, we found SOM content to be highly
variable, with some samples exceeding the SOM content of the surface layer while others were
much lower, which prevented us from projecting SOC estimates into deeper layers with much
certainty. The total amount of SOC stored in these coastal marshes is certainly much higher
than our estimates, but the thickness of marsh sediments (as well as its variability in space) is
poorly understood in our study marshes. Some areas, such as the far upstream sites in St.
Jones marsh had shallow sediment deposits with dense sand and gravel layers less than 30 cm
from the surface, while most other areas extended deeper than our equipment was able to
capture. Characterizing the depth of marsh sediment deposits is critical for accurately estimating
the total amount of carbon and organic matter stored within coastal marshes (van Ardenne et
al., 2018). This is no simple task, as sampling deep soils and measuring soil thickness requires
larger, bulkier equipment that is logistically challenging to use in salt marsh systems and may
require additional permits and regulatory review. The need for more observations and a
fundamentally better understanding of deep salt marsh soil processes has been noted
previously (Holmquist et al., 2018; Steinmuller & Chambers, 2019; van Ardenne et al., 2018;
Wardrup, 2021), and we echo that here. This remains a major challenge in blue carbon

accounting and a limitation for potential crediting systems.

4.3 Sub-pixel heterogeneity and limitations of scale

An obvious limitation of this study is the discrepancy between Landsat-8 pixel size (30
by 30 m) and the spatial coverage of individual soil cores. The long period of record and high
collection frequency of satellite missions like Landsat-8 allows for assessments of seasonal

phenological and tidal inundation patterns. Such characteristics are not easily determined from
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high resolution data sources with infrequent collections, such as airborne LiDAR and aerial
imagery programs like NAIP. We found that SOMs, varied little in most Landsat-8 pixels
containing multiple soil coring locations (Fig 3). However, several pixels had large discrepancies
in SOM3, values, potentially due to heterogeneous vegetation patches and/or microtopography.
The more heterogeneous pixels occupied areas of transitional marsh fringe vegetation or areas
of “hummocky” marsh characteristics, where small tufts, or hummocks, of marsh grasses and
sediments are interspersed with dense networks of drainage channels. Pixels with low sub-pixel
SOM heterogeneity tended to be in the marsh interior with relatively homogenous vegetation
and medium-to-high soil bulk densities. Future research that fuses high spatial, low temporal
resolution products like aerial photographs, drone photogrammetry, and LiDAR with low spatial,
high temporal resolution products like Landsat-8 may help resolve some of this sub-pixel spatial
heterogeneity. For example, classification models of marsh fringe forests have recently
demonstrated improved accuracy by incorporating airborne LiDAR information alongside
multispectral aerial imagery (Powell et al., 2022). Future satellite remote sensing missions will
also benefit blue carbon mapping efforts and carbon cycle research at large. The upcoming
Landsat Next mission will provide data products with higher spatial and spectral resolution,
particularly in wavelengths relevant to NPV mapping (Dennison et al., 2023), and next-
generation synthetic aperture radar could provide enhanced capabilities for deriving patterns of
inundation and vegetation structural characteristics. These enhanced remote sensing products
may improve blue carbon inventory accuracy and lead to better standardization of mapping

techniques using publicly available satellite remote sensing data.

Another limitation of this work is the “snapshot” nature of sample collection. All soil cores
were collected in growing season months over the course of several years, which prevents
assessments of potential seasonal and interannual variations in SOMs,. Previous studies have

found that both salt marsh SOM concentrations and lateral OM export can vary on seasonal
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scales due to changes in salinity, inundation patterns, and vegetation phenology (Fettrow et al.,
2023; Yuan et al., 2022; Zhao et al., 2016). Capturing a broad spatial assemblage of samples
that also reflect seasonal or interannual variability would help enhance scientific understanding

of blue carbon storage and accumulation rates in tidal salt marshes.

5. Conclusions

This study demonstrated the application of decadal statistics of satellite-derived spectral
indices (in this case from the Landsat-8 OLI) for mapping surficial SOM stocks in tidal salt
marshes. In just the to the top 30 cm of the marsh soil profile, we estimated that our two study
marshes contain a combined 133-208 Gg SOC, the equivalent of roughly 490,000-760,000
metric tons of CO: if it were to be released to the atmosphere. Though this study was somewhat
limited in sampling density and scope, we found substantial spatial heterogeneity of SOM within
marsh systems in Delaware that may be driven by distributions of aboveground litter biomass
(NPV1.mean), vegetation phenology (NDVI.sd), and tidal inundation patterns (MNDWI2.sd).
However, we note that the performance of these predictors may vary in different systems. Our
results indicate inconsistent levels of sub-pixel heterogeneity of SOM, which appear to be
highest in fringe and hummocky marsh areas. Future research that fuses high resolution spatial
datasets with multi-year satellite records may help resolve this, along with an increased in situ
sampling density. Although we found no consistent spatial patterns in deeper soil layers in this
specific study, we echo previous researchers in the need for greater accounting of deep SOM in
blue carbon stock estimates. Larger and longer investigations may be facilitated through
collaborations with National Estuarine Research Reserves and other established, on-site,
coastal wetland management organizations. Improved methods for mapping landscape scale
distributions of blue carbon and SOM will help guide targeted carbon inventorying and habitat

protection efforts to minimize carbon loss due to human activities and sea level rise.
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