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23 Abstract 

24 Tidal salt marsh ecosystems are known to accumulate and store large amounts of “blue” 

25 carbon, making them an important component of regional carbon cycle processes and a 

26 potential target for ecosystem-based carbon crediting efforts. However, blue carbon content in 

27 salt marshes can vary substantially at relatively small spatial scales. Understanding spatial 

28 variations of blue carbon storage at the landscape or local scale is important for developing 

29 carbon inventories, guiding ecological restorations, and informing habitat management 

30 strategies. We investigated the potential of spectral index records from the Landsat-8 

31 Operational Land Imager spanning from 2014 to 2023 for mapping blue carbon storage in the 

32 soils of two tidal salt marsh systems in the Mid-Atlantic United States. The decadal mean of a 

33 non-photosynthetic vegetation index and standard deviations of a normalized difference 

34 vegetation index and a modified normalized difference water index were identified as predictors 

35 of blue carbon. These predictors were used to train a gradient boosted trees model for 

36 predicting soil organic matter content that achieved a testing set r-squared value of 0.67. We 

37 estimated that the two study marshes stored a combined 133-208 gigagrams of organic carbon 

38 in the top 30 cm of soil. We emphasize the need for better quantification of deep soil carbon in 

39 tidal salt marsh systems, which is likely quite high, and demonstrate the potential for satellite-

40 based mapping of blue carbon within individual tidal wetland systems. 

41 
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49 1. Introduction 

50 Coastal wetland soils are of particular importance in the global carbon cycle as they store 

51 and accumulate disproportionately large amounts of soil organic matter (SOM) and soil organic 

52 carbon (SOC) relative to their areal extent. This high carbon storage potential, in addition to 

53 many other valuable ecosystem services (e.g., shoreline protection, critical habitat, nutrient 

54 cycling), has made tidal wetlands an important target for restoration and conservation 

55 (Beaumont et al., 2014; Chmura et al., 2012). However, these soils are subjected to increasing 

56 ecological and physiochemical stressors from sea level rise, changes in storm frequency and 

57 severity, and land use conversion (DeLaune & White, 2012; Kirwan & Megonigal, 2013; Torio & 

58 Chmura, 2013). Carbon stored in coastal wetland ecosystems such as mangroves, sea grass 

59 beds, and tidal salt marshes is collectively referred to as “blue” carbon. Blue carbon is of great 

60 interest to climate change researchers, resilience planners, and policy makers, as the 

61 aforementioned stressors may reduce carbon accumulation and possibly lead to enhanced 

62 carbon loss due to erosion and mobilization, vegetation stress, and alterations to sediment 

63 supply (Andersen et al., 2011; Chmura et al., 2003; McLeod et al., 2011; Mueller et al., 2019; 

64 Steinmuller & Chambers, 2019; Theuerkauf et al., 2015). Conversely, the preservation and 

65 restoration of blue carbon ecosystems may enhance estuarine carbon storage, providing both 

66 ecological and potential economic benefits. Indeed, the mapping, preservation, and restoration 

67 of blue carbon ecosystems has been highlighted as a priority in the United States Ocean 

68 Climate Action Plan (Ocean Policy Committee, 2023). Though its importance is clear, there are 

69 still many unknowns surrounding blue carbon processes, especially in the face of climate 

70 change. Improving our understanding of spatial patterns of SOM and SOC in tidal salt marshes 

71 will help identify conservation priorities at local scales and constrain carbon stock estimates at 

72 regional-to-global scales. 

73 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

                

            

           

              

              

                

                 

              

             

             

              

              

             

                

             

          

 

              

              

               

             

                

            

           

            

74 The issue of scale is important when considering spatial patterns of blue carbon storage. In 

75 a national scale analysis, Holmquist et al. (2018) found that soil organic matter content in tidal 

76 wetlands followed a roughly normal distribution, with variations across marsh systems being 

77 only minimally influenced by local climate, salinity, and vegetation characteristics. These 

78 findings were supported by a second national scale analysis (Uhran et al., 2021), underscoring 

79 the diminished influence of local scale variations on large scale SOM and SOC storage 

80 estimates. However, it is known that SOM and SOC storage can vary substantially within a salt 

81 marsh system at the landscape and plot scale (Fettrow et al., 2023; St. Laurent et al., 2020). 

82 While using a national average may be adequate for continental or global carbon cycle 

83 modeling, accounting for spatial variations within a marsh system may help guide ecological 

84 restorations or conservation strategies that operate on a much more localized scale. Notably, 

85 recent studies have highlighted the potential of carbon crediting systems for offsetting the costs 

86 of localized blue carbon ecosystem restorations (Oreska et al., 2020). Despite its potential role 

87 in carbon markets, methods for accurately quantifying blue carbon storage at the landscape 

88 scale are still an area of developing research. Identifying marsh features with high or low SOM 

89 storage potential may help prioritize marsh tracts that would benefit most from targeted 

90 conservation strategies or restoration practices to enhance climate resiliency. 

91 

92 In situ sampling for blue carbon mapping across tidal salt marsh landscapes is challenging. 

93 Their soft soil, dense vegetation, and environmental protection status prevent the use of heavy 

94 sampling equipment and make them difficult to traverse on foot. Sampling from boats limits soil 

95 collection to near-channel areas of the marsh, neglecting the marsh interior, while sampling 

96 from the marsh fringe can make site access difficult. As salt marshes are critical habitats for 

97 imperiled or endangered species, federal and local protections often necessitate site access 

98 permits from federal and state governments and conservation agencies. These understandable 

99 challenges make large sampling campaigns in salt marshes difficult and time consuming, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

             

               

            

               

               

            

            

          

           

              

       

 

                

              

                

              

          

             

            

             

             

          

              

             

          

100 making traditional soil mapping techniques (e.g., interpolations and manual unit delineations) 

101 challenging and potentially less accurate (Holmquist et al., 2018). To overcome these logistical 

102 challenges researchers have begun to employ techniques in the field of digital soil mapping that 

103 utilize increasingly abundant and data-rich products from aerial and satellite remote sensing 

104 platforms (Araya‐Lopez et al., 2023; McBratney et al., 2003; Sharma et al., 2022). Studies seek 

105 to map soil properties based on statistical relationships between in situ soil sample data and 

106 remote sensing covariates over broad spatial scales. While remote sensing platforms cannot 

107 directly observe SOM and SOC, they can observe surficial environmental characteristics like 

108 vegetation phenological stages, soil saturation, weather patterns, surface temperature, and 

109 terrain characteristics. These variables can relate to spatiotemporal patterns of soil 

110 characteristics, making remote sensing an increasingly important tool for soil science in tidal salt 

111 marshes and many other ecosystem types. 

112 

113 The use of remote sensing in blue carbon mapping is an area of active research. Wardrup 

114 (2021) mapped salt marsh SOC across the northeastern United States using a regional scale 

115 model trained on observations from a variety of sources with a mixture of static elevation data 

116 and vegetation indices from high spatial resolution aerial imagery (3 m; U.S. Department of 

117 Agriculture’s National Agricultural Imagery Program). These maps revealed substantial small 

118 scale spatial heterogeneity in SOC stocks, but also highlighted the substantial uncertainty of 

119 model predictions and inconsistencies of SOC stock estimates across different studies. Zhang 

120 et al. (2019) used aerial hyperspectral imagery (visible and near-infrared ranging 400-980 nm) 

121 to map various salt marsh SOM content using object-based image segmentation and machine 

122 learning-based classifications. Their approach showed promise for mapping local scale 

123 variations in SOM, but required costly hyperspectral data collections that are not available for 

124 most salt marshes. Predictions made with data simulated to reflect more accessible commercial 

125 satellite data (i.e., Worldview-2 and Quickbird) indicated reduced performance. Similarly, 



             

            

           

             

                

             

               

          

 

              

             

           

               

             

           

            

            

              

             

                 

              

             

              

                

                

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 Villoslada et al. (2022) found that aboveground biomass maps generated from multispectral 

127 drone imagery (4-band ranging 530-810 nm) were stronger predictors of organic carbon 

128 concentrations in tidal wetland soils than flooding frequency estimated from publicly-available 

129 satellite radar imagery (Sentinel-1). The authors also found that different predictors were better 

130 suited for different systems, indicating that there is no single data source that works best for 

131 blue carbon mapping across all systems. Thus, developing landscape scale maps of blue 

132 carbon storage is possible, but there is a continuing need for exploration of statistical methods 

133 and publicly available, widespread remote sensing predictors to achieve this. 

134 

135 Soils are products of long-term environmental processes. In the case of tidal salt marshes, 

136 soil evolution is dependent on long-term cycles of tidal inundation, vegetation productivity and 

137 structure, salinity regime, decomposition rates, and sediment deposition (Fagherazzi et al., 

138 2012; Witte & Giani, 2017). Monitoring these processes in situ across an entire marsh system 

139 over multiyear timescales is a massive undertaking, but some remote sensing missions, like 

140 Landsat-8 and its Operational Land Imager (OLI), now provide multispectral information 

141 spanning over a decade. Numerous spectral indices have been developed that reflect 

142 vegetation health, biomass, soil moisture and inundation status, and other relevant ecological 

143 characteristics (Montero et al., 2023). In this study, we investigated the potential of statistics 

144 extracted from decadal spectral indices derived from the Landsat-8 OLI for modeling and 

145 mapping spatial patterns of organic matter storage in tidal salt marsh soils. In this paper, we use 

146 the term “decadal” to indicate the span of Landsat-8 images used to generate summary 

147 statistics (e.g., mean and standard deviation) of various spectral indices. Specifically, we asked: 

148 1. Which statistics of established spectral indices show correlations with SOM storage? 2. What 

149 is the degree of sub-pixel heterogeneity of SOM storage (i.e., how much does SOM density vary 

150 within a Landsat-8 OLI pixel footprint)? 3. How do predictions of whole marsh SOM and SOC 

151 storage compare to those derived from other approaches in the literature? The purpose of this 



               

               

               

               

          

  

   

    

               

              

              

              

           

                

             

               

              

              

             

            

               

            

               

               

              

                   

152 work was to develop a modeling approach that supports ongoing blue carbon mapping and 

153 quantification efforts using the wealth of publicly available satellite data that has been collected. 

154 We addressed these questions in two tidal salt marsh systems in Delaware Bay, Delaware, 

155 USA, and provide insights that may help guide future blue carbon mapping and accounting 

156 efforts in other tidal salt marshes (Fig 1). 

157 

158 2. Methods 

159 2.1 Study areas 

160 This study focused on the Delaware tidal salt marshes surrounding Blackbird Creek and St. 

161 Jones River, both of which feature areas managed by the Delaware National Estuarine 

162 Research Reserve. These study marshes were selected for their numerous site access points 

163 and history of use in environmental research. Both study marshes occupy watersheds with 

164 extensive land use modification, including manmade impoundments. The Blackbird Creek 

165 watershed is a blend of row crop agriculture (39%), wetlands (25%), forest (22%), and low 

166 intensity urban development (~10%). The St. Jones River watershed features extensive urban 

167 and suburban development (25%) surrounding the city of Dover including a large reservoir and 

168 a sand mining operation. This watershed also features extensive agriculture (48%) with some 

169 forests (10%) and wetlands (14%) (DNERR 1999). Wetland footprints were delineated based on 

170 vegetation maps that were subsampled to include only polyhaline or mesohaline emergent 

171 vegetation communities and mudflats (i.e., woody forests and freshwater wetlands were 

172 removed) delineated by Coxe (2010). The footprints of each wetland network were 1372 and 

173 1402 ha, respectively. Dominant vegetation types include Spartina alterniflora, Spartina patens, 

174 and the invasive Phragmites australis, which collectively cover almost the entirety of each study 

175 marsh (Fig S1; Fig S2). These systems are affected by upstream agriculture and suburban 

176 development, which may alter sediment supply and chemistry. They are also experiencing a 

177 relatively high (and accelerating) rate of sea level rise (up to 5.94 mm yr-1; Callahan et al. 2017) 



              

                 

    

  

             

               

              

                  

              

           

     

  

                  

                    

          

178 due to regional land subsidence from glacial isostatic adjustment, changing ocean currents, and 

179 increases in the global mean sea level from thermal expansion and melting ice sheets (Sweet et 

180 al., 2022). 

181 

182 Sampling points were identified based on site accessibility and supplemented an existing 

183 soil sample dataset (St. Laurent et al., 2020). The existing dataset consisted of samples 

184 primarily collected by boat near major wetland channels, while the new sampling points 

185 captured sites along the outer wetland and in the upper and interior areas (Fig 1). The combined 

186 sample set reflects an array of different sedimentary environments with respect to marsh 

187 platform elevation, distances from channels and fringes, microtopography, inundation regime, 

188 and vegetation communities. 

189 

190 Figure 1. Map of study sites in the context of the eastern United States. The location of 

191 the USGS Murderkill River tide gauge can be seen in the lower right of panel C as the red 

192 star near the outlet of St. Jones River. 



  

       

                

               

              

                  

                 

               

                 

                

                 

                

                 

       

  

                

                

                

                   

                 

                 

                  

                  

                  

                

        

193 

194 2.2 Soil sample collection and analysis 

195 Soil samples for this study were collected using a gouge auger inserted 1 meter (if 

196 possible) into the sediment along pre-planned transects during the 2020 growing season (May – 

197 September). Samples were collected in triplicate within an approximately 1-meter radius at each 

198 sampling location and the top 30 cm segment of each core was reserved for further analysis. If 

199 sufficiently intact, additional segments were collected from 40 to 60 and 70 to 90 cm. Each 

200 sampling location was occupied with a GPS unit until roughly 1-meter horizontal accuracy was 

201 achieved. Triplicate core segments were placed in a plastic sample bag in the field and placed 

202 on ice before transporting to the laboratory. Segments were then air dried at room temperature 

203 in a constantly flowing exhaust hood until reaching a stable mass. This mass was normalized to 

204 the known volume of each segment to calculate the bulk density (BD). Triplicate segments were 

205 then homogenized into one sample, ground, and sieved to 2 mm to remove large stones and 

206 pieces of undecomposed plant material. 

207 

208 Samples were analyzed for organic matter content via loss on ignition (LOI) following a 

209 similar method to Heiri et al. (2001). Approximately 10 g of homogenized sample was placed 

210 into foil containers with small perforations to allow gas to escape. Samples were combusted at 

211 550 °C for 6 hours in a vented furnace and reweighed after cooling. This amount of time was 

212 found to yield a stable final mass (several preliminary test samples were combusted for 4, 6, 

213 and 8 hours). LOI was calculated as a percentage of mass loss before and after combustion. 

214 SOM density per unit volume was then calculated as the LOI multiplied by the sample BD (g cm -

215 3). For surface samples, organic matter density was then converted to a mass per unit area (kg 

216 m-2) by multiplying by sample depth of 30 cm, from here on referred to as SOM30. Subsamples 

217 of combusted residue were retained for elemental (C and N) analysis to estimate the inorganic 

218 fraction of carbon in the soils. 



  

                 

               

                

                 

                  

               

                

                 

  

                 

            

                   

                

              

             

                 

              

               

            

  

        

             

                 

               

              

219 

220 Samples from St. Laurent et al. (2020) were collected in the top 30 cm during the 

221 growing seasons of 2017 and 2019 but were sectioned differently than the previously described 

222 method. Most samples were sectioned at 0-15 and 15-30 cm while some were sectioned at 0-

223 7.6 and 22.8-30.4 cm. Each sample was similarly analyzed for BD, LOI, and percent C content. 

224 To account for differences in the core sectioning, soil property values for the upper 30 cm were 

225 calculated as a weighted sum based on relative segment lengths and their corresponding soil 

226 properties. This allowed for comparisons across both datasets, though we note that this may be 

227 a cause of minor uncertainty in SOM30 values for samples sectioned at 0-7.6 and 22.8-30.4 cm. 

228 

229 All samples were analyzed for elemental C and N content using an Elementar Vario EL 

230 Cube at the University of Delaware Advanced Materials Characterization Laboratory (Newark, 

231 DE, USA). Dried soils were ground to a fine powder, and between 40 and 100 mg of sample 

232 was encapsulated in tin foil capsules, with final weights recorded to four decimal places. Lower 

233 weights were used for high LOI samples to avoid potential detector saturation. Duplicate 

234 capsules were used to ensure consistency in elemental composition within samples. All 

235 samples were analyzed for C and N content, and a majority of post-LOI residues from surficial 

236 samples were analyzed to estimate inorganic fractions of C. Using this information, we 

237 estimated the percentage of organic C (OC) contained in total organic matter. This percentage 

238 was later used for whole marsh estimates of SOC content. 

239 

240 2.3 Landsat images and derived spectral indices 

241 This study employed spectral imagery from the Landsat-8 OLI for generating spatial 

242 predictors of marsh SOM30 density. This platform passes the study area at 15:40 GMT with a 

243 16-day revisit cycle and provides imagery in multiple spectral bands. This study employed blue 

244 (450-510 nm), green (530-590 nm), red (640-670 nm), near-infrared (NIR; 850-880 nm), and 



              

                 

                

                

               

                 

                      

               

               

                     

                 

               

               

               

   

  

  

245 shortwave infrared (SWIR1; 1570-1650 nm and SWIR2; 2110-2290 nm) bands. Tier 1 scenes 

246 from 2014 to 2023 with less than 30% cloud cover were downloaded using the US Geological 

247 Survey Earth Explorer “landsatxplore” Python API, yielding a total of 75 scenes within a roughly 

248 3- to 4-year time interval of soil sample collections. This collection of scenes captured both 

249 seasonal variations in plant phenology and the broad range of tidal conditions present during 

250 the period of record. Scenes were nearly evenly distributed across winter (DJF; n = 18), spring 

251 (MAM; n = 16), summer (JJA; n = 20), and fall (SON; n = 21). Tidal records from the mouth of 

252 the nearby Murderkill River (USGS gauge 01484085) were compared to tidal conditions at the 

253 time of Landsat-8 flyover. Although Landsat-8 collections did not replicate the frequency of the 

254 higher end of the tidal cycle, they did capture the full range of tidal stages at this gage (Fig 2). 

255 Thus, it should be noted that the Landsat-8 imagery collection utilized in this study may skew 

256 slightly towards lower tidal conditions. It should also be noted that tidal schedules and 

257 amplitudes at the reference gage are not necessarily representative of those within the study 

258 marshes, as tides are dampened and require time to propagate through the marsh channel 

259 networks. 

260 

261 
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262 Figure 2. Kernel density estimates were used to visually compare distributions of hourly 

263 tide gauge levels (blue) from the nearby Murderkill River from 2014 to 2023 (USGS 

01484085) to those at the time of Landsat-8 image collections (red) during this same 

study period. 

Pixels flagged for clouds and cloud shadows in the Landsat-8 Level-1 Quality 

Assessment (QA) band were removed to include only pixels corresponding to clear land surface 

and open water. These filtered scenes were stacked into a data cube, and a variety of 

normalized difference spectral indices (NDIs) were calculated as potential predictors for SOM30. 

These follow a generalized formula of: 

NDI�,� = ( Band� − Band� )/(Band� + Band�) [1] 

Where NDIa,b is the normalized difference index and Bands a and b are specific Landsat-8 

spectral bands. A full list and description of indices considered in this study are available in 

Table 1. This list includes indices developed for mapping vegetation phenology and productivity, 

litter biomass, and surface water features. 

Decadal statistics of mean (.mean), standard deviation (.sd), range (.rng), and coefficient 

of variation (.cv) of each spectral index were calculated for each pixel over the study period 

(2014-2023). These statistics were calculated at the same 30 by 30 m pixel resolution of the 

original Landsat-8 images, though we note that there can be some blurring from image to image 

that may introduce small errors into single pixel time series. Once derived, spectral index 

statistics were extracted for each pixel corresponding to a soil core sampling location. In 18 

cases, multiple core samples corresponded to one single pixel, and these were used in later 

assessments of sub-pixel SOM 30 heterogeneity. It should be noted that no significant 



              

      

288 construction or land modifications occurred in the two marshes during the time interval 

289 considered in this study. 



  

                

    
  
   

     
   

  
  

   
 

   
  

   
   

 

 
 

  
  

   
  

    
 

   
   

  

  
  

    
    

   
 

   
   

    
    

   
     

    

   
 

               
              
               

              
    

  

   

               

               

               

                 

                

             

               

               

290 

291 Table 1. Overview of spectral indices considered as predictors of SOM30 in this study. 

Name Formula Description Citation 
Normalized Difference 
Vegetation Index (NDVI) 

NDINIR,Red A commonly used index 
for assessing vegetation 
greenness and 
phenological stage 

Rouse et al. 
1974 

Normalized Difference Water 
Index (NDWI) 

NDIGreen,NIR Developed for 
delineating surface water 
features 

McFeeters 
1996 

Nonphotosynthetic Vegetation 
Index-1 (NPV1) 

NDIBlue,Green Developed for 
differentiating vegetation 
types, living and dead 
biomass*. 

Beana et al. 
2017; Byrd et 
al. 2018 

Nonphotosynthetic Vegetation 
Index-2 (NPV2) 

NDISWIR1,SWIR2 Developed for estimating 
crop residues in fields*. 

Daughtry et al. 
2006 

Modified Normalized Difference 
Water Index-2 (MNDWI2) 

NDIGreen,SWIR2 Developed for identifying 
fine drainage canals and 
hydrologic features. This 
index is also affected by 
soil moisture content. 

Reddy et al. 
2018 

292 *NPV is often modeled with indices derived from fine differences in shortwave infrared (SWIR) 
293 spectral region, however Landsat-8 OLI lacks sufficient band resolution in this region to 
294 generate the most commonly accepted spectral NPV indices (Dennison et al., 2023). For this 
295 reason, we assessed the potential performance of two less-common indices that align with 
296 Landsat-8 OLI bands. 
297 

298 2.4 Modeling 

299 The first step in modeling SOM30 based on spectral characteristics was to extract all 

300 spectral index statistics for pixels containing a sample site to their corresponding SOM30 value 

301 (or values, in the cases of pixels containing multiple sampling sites). SOM30 and corresponding 

302 spectral index statistics were split into training (80%) and testing (20%) sets. The next step was 

303 to pare down the list of potential predictors (e.g., NDVI.mean or NPV2.sd) to remove poorly 

304 correlated and/or redundant predictors. This was done by iteratively excluding each potential 

305 predictor from a series of multiple linear regressions with SOM30 and calculating the variance 

306 inflation factors and correlation coefficients for each iteration. This ultimately yielded a final set 



                 

           

  

               

              

             

                 

                 

           

                

              

                

                  

              

        

  

   

           

                     

                  

                         

                     

                     

                   

  

307 of strong predictors all with a variance inflation factor of less than 1.5, indicating very little 

308 multicollinearity amongst predictors. Weak or redundant predictors were discarded. 

309 

310 These final predictors were used to generate a multiple linear regression and a gradient 

311 boosted regression trees model for predicting SOM30 based on the spectral characteristics of 

312 pixels corresponding to sampling locations. Gradient boosted tree is a regression tree-based 

313 algorithm that builds a series of weak learning trees using residuals of previous trees over a 

314 series of training iterations. This algorithm was chosen due to its relative ease of training, ability 

315 incorporate non-linear variable relationships, and established performance in blue carbon 

316 mapping (Pham et al., 2023). In the case of the gradient boosted trees regression, model 

317 hyperparameters were tuned via 5-fold cross validation using the “caret” (Kuhn 2008) and 

318 “xgboost” (Chen et al. 2024) packages in R statistical software version 4.3.3 (R Core Team 

319 2024). After tuning, the final models were fit and extrapolated to our testing set data to generate 

320 performance evaluation metrics of mean absolute error (MAE), root mean square error (RMSE), 

321 and the coefficient of determination (R2). 

322 

323 3. Results 

324 3.1 Soil bulk density, organic matter density, and carbon content 

325 Soil bulk density ranged from 0.23 to 1.5 g cm-3 in the upper 30 cm with a mean of 0.65 

326 g cm-3 . Deeper soil layers had significantly higher bulk density (t-test, p = 0.004) than the upper 

327 30 cm, with a mean of 1.0 g cm-3 , ranging from 0.2 to 2.04 g cm-3 . The upper soil layer of 0 – 30 

328 cm had a mean (± 1 S.D.) SOM density of 0.096 ± 0.035 g OM cm-3 with values ranging from 

329 0.021 to 0.21 g OM cm-3 . Soil core sections below the 0 – 30 cm interval had a mean SOM 

330 density of 0.095 ± 0.047 g OM cm-3 with values ranging from 0.053 to 0.34 g OM cm-3 . 

331 



                  

                

                

                

              

                   

             

  

    

                 

                 

                    

              

       

  

  

332 Our elemental analysis found that SOM30 had a mean of 25% SOC (21 - 27%; 95% C.I.). 

333 Inorganic carbon accounted for an average of 2.5% (2.1 - 2.9%; 95% C.I.) of post-combusted 

334 soil dry mass (i.e., total carbon content of residues from LOI analysis). The percentage SOC 

335 values were later used for scaling predictions of SOM30 to estimate total SOC stocks and 

336 uncertainties. No significant differences or correlations in OM density or C content existed 

337 between the 0-30, 40-60, and 70-90 cm sections of cores. Similar to the findings of Morris et al. 

338 (2016), we found a strong inverse relationship between LOI and bulk density. 

339 

340 3.2 Sub-pixel heterogeneity 

341 A total of eighteen pixels contained multiple (2 or 3) soil core sites. SOM density varied 

342 by less than 0.025 g OM cm-3 within fifteen of these pixels, however sub-pixel heterogeneity was 

343 over 0.05 g OM cm-3 in three pixels (Fig 3). We examined field notes and aerial photos of these 

344 pixels to investigate potential explanations for higher and lower sub-pixel heterogeneity, which is 

345 reported in the Results section. 

346 

347 
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348 Figure 3. Histogram of sub-pixel variability of SOM30 expressed as the absolute 

349 difference between minimum and maximum of observations within a given Landsat-8 

pixel. 

3.3 Model performance 

The variable selection process yielded a set of three predictor statistics derived from the 

decade-long collection of Landsat-8 spectral indices. Final predictors were the mean value of 

NPV1 (NPV1.mean) and the standard deviations of NDVI (NDVI.sd) and MNDWI2 

(MNDWI2.sd). These three predictors were used for model training and extrapolation of model 

predictions, while all other predictors were discarded. 

The multiple linear regression fit to the training set had the formula: 

SOM�� = 3.40 ∗ NPV1. mean – 0.15 ∗ NDVI. sd + 2.48 ∗ MNDWI2. sd – 0.20 [2] 

The gradient boosted trees hyperparameter tuning process yielded a final model with 

100 iterations, a learning rate of 0.03, gamma value of 0.9 (the minimum loss reduction 

necessary to continue splitting a regression tree), maximum tree depth of 2 (the number of 

potential splits in a regression tree), and subsample fraction of 0.5 (the fraction of randomly 

selected data for training a regression tree). 

The gradient boosted trees model outperformed the multiple linear regression in all 

performance metrics, showing a strong predictive performance of SOM30 on both the testing and 

training sets (Table 2; Fig 4). 

https://2.48*MNDWI2.sd�0.20
https://3.40*NPV1.mean�0.15*NDVI.sd
https://MNDWI2.sd


               
           

          
  

 
      

  
 

      

  

  

              

              

   

  

             

                 

               

            

375 

373 Table 2. Performance evaluation metrics for testing set (and training set) for the multiple 
374 linear regression and gradient boosted trees model. 

Model -3)MAE (g OM cm -3)RMSE (g OM cm R2 

Multiple linear 
regression 

0.016 (0.020) 0.022 (0.026) 0.48 (0.47) 

Gradient boosted 
trees 

0.012 (0.018) 0.016 (0.023) 0.67 (0.65) 

376 

377 Figure 4. Observed and model predicted (gradient boosted trees) SOM30 for training (red 

378 circles) and testing (blue triangles) datasets. The black line represents an exact 1:1 

379 equivalent. 

380 

381 Despite its superior performance, the gradient boosted trees model has the drawback 

382 that it is more complicated to implement and less easy to interpret than a linear regression. 

383 However, there are still ways to assess its internal variable relationships. To investigate the 

384 relative influence of each predictor variable, we calculated Individual Conditional Expectations 



                  

                

               

              

                 

             

                 

                

                

               

               

               

385 (ICE) for each training data sample (Fig 5). ICE plots indicate how a prediction of a given 

386 instance (predicted SOM value in this case) will change over the range of each predictor 

387 variable within a complex machine learning model, allowing for some degree of interpretation of 

388 its individual variable dependencies. Seeing each instance allows the viewer to assess how 

389 consistent the response of a dependent variable is for a given predictor. If all instances show 

390 distinctly different responses, it may indicate complex variable relationships within the model. 

391 This is termed as the “marginal effect” of a predictor’s value on the model prediction. Overlaid 

392 on these plots is a smoothed general response across all training samples to illustrate the 

393 general effects of each predictor (Fig 5). We found that both NPV1.mean and MNDWI2.sd had 

394 generally positive effects on predicted SOM30 similar to the coefficients in the linear regression 

395 (Eq. 2), while NDVI.sd effects varied substantially among samples (Fig 5). ICE curves were 

396 generated using the package “iml” in R (Interpretable Machine Learning; Molnar et al. 2018). 

https://MNDWI2.sd


  

             

             

             

  

          

           

                 

                

397

398

399

400

401

402

403

404

405

Figure 5. Individual Conditional Expectation (ICE) curves plotted along with the general 

trend of marginal effects for each predictor variable on model predictions. Marginal 

histograms indicate the frequency distribution of predictors across the sample domain. 

3.4 Mapped OM density and total C stock estimation 

Extrapolation of the gradient boosted trees model produced predicted spatial 

distributions of SOM30 over a total of 14310 and 16550 Landsat-8 pixels for the Blackbird Creek 

and St. Jones River tidal marshes, respectively. These predictions were scaled to units of kg 



                    

                     

                 

                 

                     

                  

                

                 

    

  

              

      

406 OM m-2 (within the upper 30 cm; Fig 6) and multiplied by the 30-by-30 m pixel area. This yielded 

407 a final estimate of 334.2 ∓ 68.8 Gg SOM (95% C.I.) and 438.0 ∓ 79.5 Gg SOM (95% C.I.) storage 

408 in the upper 30 cm of Blackbird Creek and St. Jones River tidal marshes, respectively. Using 

409 the estimated percentage of SOC in SOM from our LOI and elemental analysis, this equates to 

410 an estimated 76.9 (56.8 – 90.2) Gg OC and 100.7 (74.5 – 118.3) Gg OC storage in the upper 30 

411 cm, respectively. Predicted SOM30 tended to be greater in the high marsh of the central or lower 

412 reaches of the marsh systems and lesser in more inland and peripheral reaches (Fig 6). 

413 Predicted SOM30 was generally lower in Blackbird Creek tidal marsh than in St. Jones River tidal 

414 marsh. 

415 



  

              

              

           

   

416

417

418

419

420

Figure 6. Predicted spatial distributions of surficial soil organic matter (upper 30 cm) 

across the two study marshes. Warmer yellow and orange colors correspond to higher 

SOM density while darker tones correspond to lower densities. 



   

    

             

               

                 

                 

              

               

                 

               

              

                 

              

                 

               

               

              

             

                

                

                  

                 

                

                

               

               

421 4. Discussion 

422 4.1 Model predictors 

423 The findings of this study demonstrated the potential of decadal spectral characteristics 

424 derived from the Landsat-8 OLI for modeling and mapping organic matter density in surficial 

425 tidal marsh soils. We found SOM30 to vary spatially both within and across the two study 

426 marshes, indicating that some areas of the marshes store more SOM than others in their upper 

427 soil layers. This spatial heterogeneity was related to the average of a non-photosynthetic 

428 vegetation index and standard deviations of NDVI and a modified water index over the Landsat-

429 8 record spanning from 2014-2023. The ICE plots in Figure 5 showed a positive marginal effect 

430 on predicted SOM30 in pixels with high NPV1.mean and high MNDWI2.sd, which was also 

431 reflected in the positive coefficients of the multiple linear regression. The normalized difference 

432 between blue and green Landsat-8 bands (i.e., NPV1 in this study) has been identified as a 

433 predictor of aboveground biomass alongside other spectral indices (Byrd et al., 2018). MNDWI2 

434 was developed to work in conjunction with NDVI as a spectral index for identifying small surface 

435 waterbodies and fine scale canal features (Reddy et al., 2018). Thus, the positive marginal 

436 effects of these predictors in our model suggest high SOM30 in areas with abundant 

437 aboveground dead biomass and variable inundation status. The effects of NDVI.sd on model 

438 predictions were less clear, with some instances showing positive relationships and others 

439 negative (Fig 5). This would suggest that the variability of NDVI may have complex interactions 

440 with other predictors, and it may reflect the interactions of NDVI and MNDWI2 in identifying 

441 standing water on a landscape (Reddy et al., 2018). Maxwell et al. (2024) also found NDVI.sd to 

442 be a variable of moderate predictive importance for SOC density, but it is unclear what the 

443 variables effects were within that model. We note that while these predictors performed well in 

444 this study, their applicability may not be universal across all tidal salt marsh systems. Villoslada 

445 et al. (2022) found that the performance of different spectral predictors from aerial imagery 

446 varied across study sites and vegetation types, suggesting that some degree of local calibration 

https://MNDWI2.sd


                 

               

             

                

   

  

              

             

              

               

               

              

             

            

                

               

               

             

             

           

              

        

  

        

                

                 

447 may be necessary to maximize model performance in a given region of interest. This, along with 

448 the substantial landscape scale variation that this and other studies have observed, suggest that 

449 a single standardized approach for blue carbon inventorying with remotely sensed predictors 

450 would be less accurate, or inappropriate, when applied in a tidal salt marsh without local 

451 calibration. 

452 

453 The long period of record and high collection frequency of satellite missions like 

454 Landsat-8 allows for assessments of seasonal phenological and tidal inundation patterns. Such 

455 characteristics are not easily determined from data sources with infrequent collections, such as 

456 airborne LiDAR and aerial imagery programs like NAIP. However, these products are able to 

457 achieve much higher spatial resolution, and the fusion of such products with long-term satellite 

458 datasets may help overcome the limitations of any individual data source. For example, 

459 classification models of marsh fringe forests have recently demonstrated improved accuracy by 

460 incorporating airborne LiDAR information alongside multispectral aerial imagery (Powell et al., 

461 2022). The results of this study reinforce the importance of ongoing and future remote sensing 

462 missions for blue carbon mapping and carbon cycle research at large. The upcoming Landsat 

463 Next mission will provide data products with higher spatial and spectral resolution, particularly in 

464 wavelengths relevant to NPV mapping (Dennison et al., 2023), and next-generation synthetic 

465 aperture radar could provide enhanced capabilities for deriving patterns of inundation and 

466 vegetation structural characteristics. These enhanced remote sensing products may improve 

467 blue carbon inventory accuracy and lead to better standardization of mapping techniques using 

468 publicly available satellite remote sensing data. 

469 

470 4.2 SOM and SOC characteristics and comparisons 

471 Our observed percentage of SOC in SOM (25%) was lower than the average of 37% 

472 observed by (Wang et al., 2017) among salt marsh systems in Louisiana, USA, but fell within 



                

                 

               

                

               

             

    

                

                 

                    

                 

                       

                

                  

                

                 

                  

               

                   

                  

                

               

                  

             

                

473 the broad range that they observed (12%-84%) and within the range observed previously in salt 

474 marshes in North Carolina, USA (22%-60%) (Craft et al., 1991). From the literature, it is clear 

475 this percentage can vary substantially across systems and soil textures. While we did not 

476 observe such large variability in percentages across the two study marshes, we note that local 

477 variability in the percentages of SOC in SOM could substantially influence estimates of salt 

478 marsh carbon stocks based on SOM measured with low-cost LOI analysis. 

479 

480 Scaling our mean observed surficial SOM30 density to a volume of one cubic meter and 

481 multiplying by our estimated SOM:SOC ratio yielded an estimated SOC density (± 1 S.D.) of 24 

482 ± 8.8 kg m-3 , which is only slightly lower the national mean value of 27 kg m-3 proposed for 

483 coastal wetlands in the United States (Holmquist et al., 2018). At a per hectare scale, our 

484 estimates of SOC in the upper 30 cm were 60 (44 – 70) and 68 (50 – 79) Mg C ha-1 for 

485 Blackbird Creek and St. Jones River tidal marshes, respectively. This was lower than a recent 

486 estimated global average of 83.1 Mg C ha-1 (Maxwell et al., 2024), though well within its margin 

487 of uncertainty. This may suggest that the Blackbird Creek and St. Jones River coastal marshes 

488 may have a surficial SOC density typical of other salt marsh ecosystems in the USA and 

489 globally. However, comparing our whole marsh estimates of SOC in the top 30 cm to those of 

490 Wardrup et al. (2021), we estimated substantially lower SOC stored in both Blackbird Creek 

491 (this study: 77 Gg SOC, Wardrup et al.: 169 Gg SOC) and St. Jones River tidal marshes (this 

492 study: 101 Gg SOC, Wardrup et al.: 152 Gg SOC). The latter study utilized a regional scale 

493 model with training data from sites spanning the entirety of the northeastern United States. The 

494 discrepancy between these estimates may reflect the influence of local factors in our study 

495 marshes, such as the generally low SOC:SOM ratio we found in salt marsh soils. We note that 

496 local geology, vegetation, and geomorphology may all influence soil formation, and some 

497 degree of variability in SOM content across different systems is to be expected. These findings 



              

          

  

                  

                

               

                

                  

                 

                 

                

              

                

                 

                

              

             

               

                

          

  

        

               

                   

             

             

498 reinforce the importance of considering local characteristics in salt marsh SOM mapping, similar 

499 to the findings of Villoslada et al. (2022). 

500 

501 From our limited number of samples deeper than 30 cm, we found SOM content to be highly 

502 variable, with some samples exceeding the SOM content of the surface layer while others were 

503 much lower, which prevented us from projecting SOC estimates into deeper layers with much 

504 certainty. The total amount of SOC stored in these coastal marshes is certainly much higher 

505 than our estimates, but the thickness of marsh sediments (as well as its variability in space) is 

506 poorly understood in our study marshes. Some areas, such as the far upstream sites in St. 

507 Jones marsh had shallow sediment deposits with dense sand and gravel layers less than 30 cm 

508 from the surface, while most other areas extended deeper than our equipment was able to 

509 capture. Characterizing the depth of marsh sediment deposits is critical for accurately estimating 

510 the total amount of carbon and organic matter stored within coastal marshes (van Ardenne et 

511 al., 2018). This is no simple task, as sampling deep soils and measuring soil thickness requires 

512 larger, bulkier equipment that is logistically challenging to use in salt marsh systems and may 

513 require additional permits and regulatory review. The need for more observations and a 

514 fundamentally better understanding of deep salt marsh soil processes has been noted 

515 previously (Holmquist et al., 2018; Steinmuller & Chambers, 2019; van Ardenne et al., 2018; 

516 Wardrup, 2021), and we echo that here. This remains a major challenge in blue carbon 

517 accounting and a limitation for potential crediting systems. 

518 

519 4.3 Sub-pixel heterogeneity and limitations of scale 

520 An obvious limitation of this study is the discrepancy between Landsat-8 pixel size (30 

521 by 30 m) and the spatial coverage of individual soil cores. The long period of record and high 

522 collection frequency of satellite missions like Landsat-8 allows for assessments of seasonal 

523 phenological and tidal inundation patterns. Such characteristics are not easily determined from 



              

               

              

            

              

              

              

              

              

             

               

            

          

              

               

              

             

             

           

              

          

  

                

               

             

                

524 high resolution data sources with infrequent collections, such as airborne LiDAR and aerial 

525 imagery programs like NAIP. We found that SOM30 varied little in most Landsat-8 pixels 

526 containing multiple soil coring locations (Fig 3). However, several pixels had large discrepancies 

527 in SOM30 values, potentially due to heterogeneous vegetation patches and/or microtopography. 

528 The more heterogeneous pixels occupied areas of transitional marsh fringe vegetation or areas 

529 of “hummocky” marsh characteristics, where small tufts, or hummocks, of marsh grasses and 

530 sediments are interspersed with dense networks of drainage channels. Pixels with low sub-pixel 

531 SOM heterogeneity tended to be in the marsh interior with relatively homogenous vegetation 

532 and medium-to-high soil bulk densities. Future research that fuses high spatial, low temporal 

533 resolution products like aerial photographs, drone photogrammetry, and LiDAR with low spatial, 

534 high temporal resolution products like Landsat-8 may help resolve some of this sub-pixel spatial 

535 heterogeneity. For example, classification models of marsh fringe forests have recently 

536 demonstrated improved accuracy by incorporating airborne LiDAR information alongside 

537 multispectral aerial imagery (Powell et al., 2022). Future satellite remote sensing missions will 

538 also benefit blue carbon mapping efforts and carbon cycle research at large. The upcoming 

539 Landsat Next mission will provide data products with higher spatial and spectral resolution, 

540 particularly in wavelengths relevant to NPV mapping (Dennison et al., 2023), and next-

541 generation synthetic aperture radar could provide enhanced capabilities for deriving patterns of 

542 inundation and vegetation structural characteristics. These enhanced remote sensing products 

543 may improve blue carbon inventory accuracy and lead to better standardization of mapping 

544 techniques using publicly available satellite remote sensing data. 

545 

546 Another limitation of this work is the “snapshot” nature of sample collection. All soil cores 

547 were collected in growing season months over the course of several years, which prevents 

548 assessments of potential seasonal and interannual variations in SOM30. Previous studies have 

549 found that both salt marsh SOM concentrations and lateral OM export can vary on seasonal 



               

                 

             

            

   

   

            

                 

                     

             

                   

               

               

          

                

              

               

                

                

                 

             

           

           

               

                

  

550 scales due to changes in salinity, inundation patterns, and vegetation phenology (Fettrow et al., 

551 2023; Yuan et al., 2022; Zhao et al., 2016). Capturing a broad spatial assemblage of samples 

552 that also reflect seasonal or interannual variability would help enhance scientific understanding 

553 of blue carbon storage and accumulation rates in tidal salt marshes. 

554 

555 5. Conclusions 

556 This study demonstrated the application of decadal statistics of satellite-derived spectral 

557 indices (in this case from the Landsat-8 OLI) for mapping surficial SOM stocks in tidal salt 

558 marshes. In just the to the top 30 cm of the marsh soil profile, we estimated that our two study 

559 marshes contain a combined 133-208 Gg SOC, the equivalent of roughly 490,000-760,000 

560 metric tons of CO2 if it were to be released to the atmosphere. Though this study was somewhat 

561 limited in sampling density and scope, we found substantial spatial heterogeneity of SOM within 

562 marsh systems in Delaware that may be driven by distributions of aboveground litter biomass 

563 (NPV1.mean), vegetation phenology (NDVI.sd), and tidal inundation patterns (MNDWI2.sd). 

564 However, we note that the performance of these predictors may vary in different systems. Our 

565 results indicate inconsistent levels of sub-pixel heterogeneity of SOM, which appear to be 

566 highest in fringe and hummocky marsh areas. Future research that fuses high resolution spatial 

567 datasets with multi-year satellite records may help resolve this, along with an increased in situ 

568 sampling density. Although we found no consistent spatial patterns in deeper soil layers in this 

569 specific study, we echo previous researchers in the need for greater accounting of deep SOM in 

570 blue carbon stock estimates. Larger and longer investigations may be facilitated through 

571 collaborations with National Estuarine Research Reserves and other established, on-site, 

572 coastal wetland management organizations. Improved methods for mapping landscape scale 

573 distributions of blue carbon and SOM will help guide targeted carbon inventorying and habitat 

574 protection efforts to minimize carbon loss due to human activities and sea level rise. 

575 

https://MNDWI2.sd
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