

1 Title: Identifying challenges of the US domestic seaweed aquaculture industry

2 Authors: Dawn M. Kotowicz (corresponding author)^a, Anoushka Concepcion^b, Gabriella Bradt^c,
3 Meg Chadsey^d, Antionette Clemetson^e, Melissa Good^f, Joshua Reitsma^g, and Jaclyn Robidoux^h

4 ^aUniversity of Rhode Island, Graduate School of Oceanography, 220 South Ferry Road,
5 Narragansett, RI 02882, USA email: dkotowicz@uri.edu

6 ^bConnecticut Sea Grant, University of Connecticut Cooperative Extension, 1080 Shennecossett
7 Road, Groton, CT 06340, USA, email: anoushka.concepcion@uconn.edu

8 ^cNew Hampshire Sea Grant, University of New Hampshire, 8 College Road, Morse Hall, Durham,
9 NH 03824, USA, email: Gabriela.Bradt@unh.edu

10 ^dWashington Sea Grant, University of Washington, 3716 Brooklyn Avenue NE, Seattle, WA
11 98105, email: mchadsey@uw.edu

12 ^eNew York Sea Grant, Stonybrook University, 500 Innovation Road, Stony Brook, NY 11794,
13 USA, email: aoc5@cornell.edu

14 ^fAlaska Sea Grant, University of Alaska Fairbanks, 118 Trident Way, Kodiak, AK 99615, USA,
15 email: melissa.good@alaska.edu

16 ^gCape Cod Cooperative Extension and Woods Hole Oceanographic Institution Sea Grant, PO Box
17 367, Barnstable, MA 02630, USA, email: jreitsma@whoi.edu

18 ^hMaine Sea Grant, University of Maine Cooperative Extension, 5741 Libby Hall Suite 110, Orono
19 ME 04469, email: jaclyn.robidoux@maine.edu

20

21 **Abstract**

22 Interest and engagement in aquaculture has been increasing in recent years to meet aquatic
23 resource demands, and much attention has been directed to growing seaweed in the United

24 States. However, research and regulatory environments have not kept pace with its growth,

25 leading to challenges to expanding the industry, and in many cases, these developments may

26 be ahead of available peer-reviewed literature, resulting in a dearth of information from

27 industry participants about their needs and perspectives. The results of the first survey of

28 industry members and those adjacent to the US domestic seaweed aquaculture industry are

29 presented. Presenting contributions of participants throughout the supply chain from seaweed

30 seed string producers through to processors and culinary professionals, and including

31 regulators and researchers. A total of 268 respondents responded to the needs assessment

32 survey, with engagement from fourteen states, primarily representing the U.S. northeast and

33 west coasts. Results describe a wide differential in levels of industry engagement and

34 development across states with Maine providing an example of a well-developed industry, and
35 others just beginning to develop seaweed growing permits and infrastructure. Respondents
36 were asked to identify challenges which were then categorized as: (1) production systems
37 (32%); (2) market opportunities, including both supply and demand (26%); (3) regulations
38 (26%); and (4) post-harvest opportunities and infrastructure (i.e., processing facilities) (16%).
39 Considering these challenges collectively, a holistic approach to scaling up the industry is
40 needed to address challenges throughout the supply chain and across states. The paper
41 concludes with recommendations for policy makers, regulators, extension professionals and
42 researchers to assist this nascent industry in scaling up domestically by working to facilitate
43 information transfer across states and roles within the industry to increase capacity at various
44 levels of the supply chain, address remaining scientific questions, and move toward a regulatory
45 framework for an inter-state (or domestic) industry.

46

47

48 **Keywords:** seaweed, kelp aquaculture, needs assessment, seaweed industry, United States

49 **Highlights**

50 - Seaweed aquaculture is garnering much attention in the United States as a sustainable
51 food source and use of aquatic resources, yet research and regulations have not kept
52 pace with its growth.

53 - The first needs assessment of US domestic seaweed aquaculture industry members and
54 those adjacent to the industry is presented and discussed.

55 - Levels of engagement and industry development differ drastically across states and
56 though some lessons can be transferred between states where the industry is further
57 developed and those at earlier stages of development, differences between states may
58 present different types of challenges.

59
60 - Scaling up the industry overall necessitates coordinated efforts at the federal level on
61 certain issues, especially from a regulatory perspective.

62
63 - Industry-wide challenges were identified by participants throughout the value chain,
64 suggesting that participants approach the industry from a holistic perspective.

65
66 - Policy makers, regulators, extension professionals and researchers to assist this nascent
67 industry in scaling up, domestically, by facilitating information transfer within the
68 industry to increase capacity and move toward a regulatory framework for a cross-state
69 industry.

70
71 1. Introduction

72 1.1. United States seaweed industry

73 Interest and engagement in aquaculture has been increasing in recent years to meet aquatic
74 resource demands, and much attention has been directed to growing seaweed in the United
75 States (Alleway et al. 2023, Rubino 2023, Spillias et al. 2023, Kim et al. 2027, Grebe et al. 2019).

76 Seaweed aquaculture in the US encompasses a variety of species and farming techniques,
77 including ocean farms and tank-based systems. The predominant type of seaweed farming
78 happening in the US currently is kelp farming, where kelp species are grown on ocean-based
79 farms on the east and west coasts.

80
81 Although seaweed aquaculture has occurred in different locations in the United States since the
82 1970s, the current era of seaweed production began in 2010 in Maine, the state with the most
83 developed industry (see Kim et al. 2019 for a brief history). At the same time, on the west coast

84 in California, seaweed was grown in land-based tanks for feedstock for abalone farms (CA Sea
85 Grant 2024). In 2022, total production for farmed sugar kelp (*Saccharina latissima*) was
86 reported to be approximately 3 million pounds, with other seaweed species reported to be
87 under 2 million pounds combined (National Seaweed Hub 2023a). However, the United States
88 only contributed 263 tonnes (or 0.0007%) to the global market (Cai et al. 2021).

89

90 Sugar kelp is the predominant seaweed species cultivated in 9 coastal states – Alaska,
91 Washington, California, Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut and
92 New York. In addition to ocean-based cultivation of sugar kelp, land-based tank cultivation of
93 other species including dulse (*Palmaria* sp.), *Gracilaria*, *Ulva*,

94 is also occurring in Washington, Oregon, California and Hawaii (National Seaweed
95 Hub 2023). Seaweed aquaculture is an emerging industry in the United States, with eleven
96 states at varying scales of production ranging from small-scale cultivation for research purposes
97 to significant commercial production (National Seaweed Hub 2023a). The industry is evolving at
98 different rates across states, often outpacing capacities in research and regulatory
99 environments to support its growth. As opposed to the kelp grown in Asia and imported to the
100 United States, the kelp grown in the Americas and Europe is a sustainable specialty product in
101 domestic markets due to its sustainable production systems along with domestic production,
102 resulting in a higher level of supply chain transparency along with lower transportation costs
103 (Cai et al. 2021, Grebe et al. 2019).

104

105 Potential economic benefits of this industry in the U.S. include job creation, increased revenue
106 for existing aquaculture leaseholders, and diversification of products (Kim et al. 2017, Grebe et
107 al. 2019). Since kelp aquaculture occurs mostly in winter and spring, it can provide a diverse
108 source of employment and income for fishermen and shellfish growers during slower months

109 (Engle et al. 2018, Rubino 2023). Using seaweed for restorative aquaculture, (i.e., to improve
110 water quality), is another potential benefit of this industry for coastal communities (Spillias et
111 al. 2023, Alleway et al. 2023). Recent research is exploring new avenues for expanding seaweed
112 farming. An inexpensive, mobile gear system for farming kelp was tested over three years in
113 Maine. Designed to be integrated with existing fishing infrastructure, this system is proposed to
114 facilitate fishermen to supplement their fishing income with seaweed farming (St-Gelais et al.
115 2022). There is also potential for expansion of seaweed aquaculture to the offshore
116 environment, especially in conjunction with offshore wind farms, but the regulatory
117 environment does not yet support this form of multi-use (Rubino 2023).

118

119 This purpose of this paper is to describe challenges and opportunities of the U.S. seaweed
120 aquaculture industry as reported by its prospective and current participants. The seaweed
121 aquaculture industry is similar to, but different from, both, other aquaculture products (i.e.,
122 shellfish) and land-based agriculture products (i.e., leafy greens), presenting unique challenges
123 and opportunities surrounding its regulation and market chains. While seaweed aquaculture is
124 thriving in specific states, this industry still differs greatly in its development between states,
125 and bridging gaps between them to scale up is a major challenge to moving to a domestic
126 industry.

127

128 1.2. Benefits of seaweed

129

130 Seaweeds are a healthy food source with high nutritional value. Although there are differences
131 by species, seaweeds are generally low in fat and calories, high in dietary fiber, and they
132 contain a range of essential nutrients including omega-3 and omega-6 polyunsaturated fatty
133 acids, vitamins (i.e., A, C, E and B12), and iodine (FAO and WHO 2022, Cherry et al. 2019).

134 Polyphenols, found in seaweeds in various amounts depending on species and season, also
135 provide important antioxidants to support human health (Zhang et al. 2022, Cherry et al. 2019,
136 Roleda et al. 2019). Brown algae species, including sugar kelp, have high levels of protein,
137 carbohydrates and antioxidants, along with low fat content (Nakhate and van der Meer 2021).
138 Although the nutritional makeup of seaweeds has been established, more research is needed
139 on humans' ability to absorb seaweeds' bioactive components (Cherry et al. 2019). Varying
140 levels of nutrition were also found to change with season and type of processing, where for
141 example, drying reduced nutrition levels more than blanching, for sugar kelp (Nielsen et al.
142 2021). For example, Nielsen et al. (2021) showed that although all seaweeds contain some
143 Vitamin C, brown seaweeds, including *Saccarina spp.*, have relatively low levels and while they
144 contribute to daily vitamin C intake, should not be considered a rich source of it for dietary
145 purposes (Nielsen et al. 2021).

146

147 Health benefits of eating seaweeds have also been documented, and include regulation of
148 blood sugar and cholesterol, weight loss, cardiac health improvement and improved intestinal
149 health (for a review, see Forster and Radulovich 2015). In a review of the literature on the
150 health benefits of eating seaweeds, Cherry et al. (2019) note that observational studies indicate
151 potential benefits but, there is a need for more research to identify benefits and risks of
152 consuming different types of seaweeds and at what levels. There are also concerns about
153 health risks of seaweed consumption, especially in significant amounts and with regularity
154 (Cherry et al. 2019). Potential risks associated with seaweed consumption include chemical,
155 microbiological and physical hazards, with varying levels of risk associated with different
156 species. An assessment of consumption of *Palmaria*, *Saccharina*, and *Alaria*, revealed low levels
157 of risk of heavy metals (Roleda et al. 2019). Heavy metal concentrations are generally below
158 toxic levels, however, there is consensus that heavy metal contamination in seaweeds depends

159 upon habitat or ecology, leading to inconsistent reported findings (Cherry et al. 2019, Kim et al.
160 2019). Microbiological hazards found to be associated with seaweed including *Salmonella*,
161 *Vibrio*, and *E. coli*, and can be found in fresh or processed seaweed. Food safety protocols
162 should be followed when handling and processing seaweed to limit introducing these hazards
163 after harvesting (Barberi et al. 2020, Banach et al. 2020, Bilkra et al. 2018). Even with low
164 bacterial levels, foodborne pathogens were found on samples of kelp using molecular testing
165 methods (Barberi et al. 2020). Bilkra et al. (2018) found low levels of microorganisms on tested
166 samples, however, and noted that dehydration and freezing both decrease the activity of water
167 within seaweed, which limits microorganisms' ability to cause negative health effects in humans
168 (Bilkra et al. 2018). Physical hazards that may be present in the ocean captured by algae include
169 small pieces of shells and rocks (Zhang et al. 2022, Concepcion et al. 2020).

170

171 Production of seaweed-based products have a low carbon footprint, especially if grown and
172 consumed in relative proximity as in the U.S. (Duarte et al. 2017, Cerca et al. 2023, Grebe et al.
173 2019). Seaweed is also a low-trophic food that requires few inputs. It can be farmed to
174 supplement plants grown by agriculture without using arable land since it is grown in seawater
175 and requires no freshwater or nutrients to grow after its nursery stage (Gephart et al. 2021,
176 Forster and Radulovich 2015). Inputs are needed for juvenile seaweed plant cultivation
177 including electricity, water, and nutrients such as phosphorus, magnesium, zinc and nitrogen,
178 and outputs include liquid and solid waste (Nakhate and van der Meer 2021). Resources and
179 energy are required to transport kelp between nursery production and farm site, and farm site
180 to processing (Nakhate and van der Meer 2021). Cerca et al. (2023) note that growing seaweed
181 also requires dedicated marine space where multiple uses have already been established (Cerca

182 et al. 2023). Further, ocean-farming practices for seaweed in the US do not use freshwater,
183 fertilizers, or pesticides.

184

185 Seaweed aquaculture may also provide increased food security and corresponding decreased
186 reliance on imported foods (Kim et al 2017, Forster and Radulovich 2015). In considering the
187 potential for seaweed to contribute to food security, there is a need to answer questions about
188 humans' ability to absorb seaweeds' nutrients and health benefits. As Cherry et al. (2019) and
189 Forster and Radulovich (2015) note, seaweed consumption is assumed to be in relatively small
190 quantities for these studies, not in amounts that can be considered significant contributions to
191 dietary needs, as would be needed if seaweed were to be consumed to support food security.

192

193 1.3. Challenges and opportunities for the US seaweed aquaculture industry

194

195 Despite these potential benefits, environmental and social challenges to advancing the industry
196 in the U.S. exist. The seaweed aquaculture industry needs social and economic improvements
197 to scale up into a mature industry across states including: expanding processing capacity;
198 establishing developed value chains; designing a regulatory environment to support growth;
199 and local community acceptance of seaweed farms (Piconi et al. 2020, Rubino 2023).

200 Additionally, challenges faced by aquaculture in general in the US, such as using public marine
201 waters for private business, a complex governance system for leasing and regulation including a
202 patchwork state-level regulations without coordinating policies at the national level, have
203 compounding effects on the aquaculture seaweed industry (Lester et al. 2021, Knapp and
204 Rubino 2016). New partnerships, for example, with other marine sectors, can be an opportunity
205 for sharing marine space and facilities as well as knowledge transfer (Engle et al. 2018).

206

207 Cerca et al. (2023) identify barriers to scaling up of seaweed aquaculture in Ireland, similar to
208 those facing the US industry, including difficult licensing procedures, questionable local support
209 for cultivation sites, and lack of regulation for seaweed products. The responsible expansion of
210 the industry depends on viable business models that enable socially responsible production
211 systems and ecosystem considerations so that customers can connect the product with
212 livelihoods in coastal ecosystems (Cerca et al. 2023).

213

214 A change in dietary habits to increase seaweed consumption is needed, along with public
215 support to encourage that shift (Cai et al. 2021). An opportunity for the industry is the
216 expansion in the use of seaweed in food in the Western world due in part to its sustainable
217 cultivation practices and in part, to its nutritional profile - high content of minerals, vitamins
218 and trace elements, high dietary fiber and protein (Blikra et al. 2019, Cherry et al. 2019, Engle
219 et al. 2018, Grebe, et al. 2019). Figueroa et al. (2023) note that mindful consumers looking for
220 nutritional and sustainable foods are likely to incorporate seaweeds into their diet if tasty and
221 appealing products are developed. Recent research into food applications has included high-
222 value products with health benefits that can be added to foods, for example pasta, to improve
223 nutritional quality (Zhang et al. 2022).

224

225 Grebe et al. (2019) describe the kelp grown in the Americas and Europe as a specialty product,
226 distinct from its Asian counterpart which is treated and consumed as a commodity. One
227 approach to this product distinction is the development of fresh and fresh-frozen kelp products
228 like kelp noodles and slaws (Kim et al. 2019). Another is to promote aquaculture seaweed as
229 providing a “sense of place” as a socio-cultural service provided by coastal ecosystems (Cerca et
230 al. 2023). They suggest that growers create social value in growing a sustainable product while

231 being connected to local settings in coastal communities but note the challenge is to capture
232 and deliver this value to customers for a profit (Cerca et al. 2023).

233

234 1.4. The need for industry participant perspectives

235 The future of seaweed's role has been considered in the European food system and global
236 value chains (Cerca et al. 2023, Banach et al. 2020, Campbell et al. 2019), and using an
237 ecosystem approach to kelp aquaculture considering the environmental and social impacts in
238 the Americas and Europe (Grebe et al. 2019). A recent assessment of marine aquaculture,
239 including seaweed, has also been considered from a policy perspective for the United States
240 (Rubino 2023). However, the US domestic industry is rapidly developing and, in many cases,
241 these developments may be ahead of available peer-review literature, resulting in a dearth of
242 information from industry participants about their needs and perspectives.

243

244 Established in 2019 by the National Oceanic Atmospheric Administration's National Sea Grant
245 Program, the National Seaweed Hub is a collaboration of eleven Sea Grant programs - Alaska,
246 California, Connecticut, Maine, New Hampshire, New York, Oregon, Rhode Island, Washington,
247 Wood Hole, and the National Sea Grant Law Center - that identified the need to understand the
248 seaweed aquaculture industry and its associated sectors through the perspectives of its
249 members to guide the National Seaweed Hub's extension and outreach efforts. In response to
250 this need, a needs assessment was conducted. Responses to the needs assessment survey of
251 the U.S. seaweed aquaculture industry as reported by its prospective and current participants
252 are presented in this paper. Respondents include individuals throughout the value chain of
253 cultivated seaweed from permitting and seed production through point of sale to consumers.
254 The seaweed aquaculture industry is similar to, but different from, both, other aquaculture

255 products (i.e., shellfish) and land-based agriculture products (i.e., leafy greens), presenting
256 unique challenges and opportunities surrounding its regulation and market chains. In addition,
257 this nascent industry has footholds in specific states, especially Maine, but faces challenges in
258 scaling up to a larger geography.

259

260 First, there is a summary of contextual information from survey respondents grouped by their
261 role in the domestic seaweed industry, followed by needs identified by each group. Finally, the
262 paper describes categorized challenges of the industry defined by stakeholders across the
263 industry. This information will be used by the National Seaweed Hub to assist the industry and
264 increase access for consumers to domestically-grown seaweed. These results are presented to
265 guide potential and current industry participants, decision-makers, policymakers, and
266 researchers in engaging with the U.S. seaweed aquaculture industry to determine future
267 directions.

268

269 2. Methods

270 2.1. Survey development with Seaweed Hub members

271 The needs assessment was collaboratively developed with National Seaweed Hub extension
272 staff representing each of the participating Sea Grant programs. This survey effort was
273 approved by the Institutional Review Board for Human Subject Research at the University of
274 Rhode Island (IRB#1546677-1).

275

276 Respondents selected one or more roles from those identified within the seaweed aquaculture
277 industry (For further definition, see Supplemental Material).

278

279 Based on their role selection(s), respondents were presented with questions specifically based
280 upon their sector role(s). However, to identify issues across geographies and roles, some of the
281 survey questions were asked of all participants regardless of their role (e.g., identifying
282 challenges for the industry as a whole). National Seaweed Hub extension staff are well
283 connected with participants in this industry in their states, therefore, this effort brought
284 together the national network to collect input from a broad geographic range of stakeholders.
285 These responses represented an industry at differing stages of development, and results should
286 be viewed as an overall snapshot of industry needs while recognizing state and regional
287 differences in scales of production and regulations. The authors cannot estimate the
288 representativeness of this sample due to the nature of the industry, for which we have no
289 official numbers.

290

291 2.2. Survey topics

292 Questions were designed to identify the status of the industry (i.e., production volumes,
293 product forms, and market outlets); describe the contributions of different roles to the
294 industry; and identify challenges and opportunities for future directions of the industry. For all
295 respondents, survey questions included state(s) in which respondents engaged with the
296 industry; role(s) in the industry; years of experience; species of seaweed grown or used; and
297 challenges. Additional questions differed by identified sector role (i.e., grower, processor, etc.),
298 and included specific questions pertaining to their selected role (e.g., price information for
299 growers and processors; and familiarity with preparation for culinary professionals).

300

301 2.3. Survey administration

302 The survey was developed and administered on the Qualtrics XM platform. National Seaweed
303 Hub members sent recruitment emails, including an anonymous link to the survey, to their

304 respective list of contacts connected to the seaweed aquaculture industry to solicit responses.
305 Approximately two weeks later, extension representatives followed with a reminder email. The
306 initial wave of responses was collected between January 6, 2019 and February 18, 2020. A
307 second wave of responses - February 22 through April 1, 2020 - were collected following a
308 preliminary presentation of results, to provide stakeholders in California and Hawai'i (not
309 originally represented in the National Seaweed Hub), an opportunity to contribute their
310 perspectives. Responses were analyzed using SPSS 29.

311

312 3. Results

313 3.1. Response overview

314 In total, there were 268 responses to the needs assessment survey, with engagement from
315 fourteen states, primarily representing the U.S. northeast and west coasts (Figure 1.).
316 Respondents were asked to report all states in which they engaged in the industry. The three
317 most-commonly reported states were Washington, Maine and New York. Higher numbers of
318 responses should not be interpreted strictly as more interest due to relative population size and
319 development of the industry. However, Maine's seaweed industry is both the largest and most
320 well-developed and therefore, Maine's high response reflects these aspects. There is a high
321 level of interest, engagement with extension, and potential opportunity surrounding growing
322 seaweed in Washington state, however, there are currently only three farms growing seaweed
323 (National Seaweed Hub 2023a). A high number of respondents also reported engagement in
324 the industry in Alaska where there is significant interest and opportunity with a large coastal
325 and ocean area, and only second to Maine in seaweed landings in 2022 (National Seaweed Hub
326 2023a).

327

328 Respondents represented a diversity of roles in or adjacent to the industry from nursery/seed
329 producers through culinary professionals; with prospective growers (N=88), researchers (N=91)
330 and permitted growers (N=56) represented in highest numbers (Figure 2). The number of
331 responses is greater than the number of respondents because selection of roles and states of
332 engagement were not mutually exclusive. Therefore, given the diversity of perspectives
333 represented by these responses, the following section provides an overview of survey
334 responses by selected roles in the seaweed aquaculture industry.

335

336 3.2. Responses by industry role

337 3.2.1. Permitted growers

338

339 Forty-five permitted seaweed growers responded to the needs assessment, with the largest
340 proportion of individuals reporting 1 to 3 years of experience (N=15, 38%), 13 respondents
341 reporting greater than 5 years of experience, 8 reporting less than 1 year, and 4 respondents
342 reporting 4 to 5 years of experience.

343

344 Reported experience with the process of obtaining a permit for growing seaweed differed
345 widely among permitted growers, with costs ranging from \$0 to \$5,000, and timelines ranging
346 from less than 6 months to more than 2 years. However, the majority of permitted growers
347 reported a permitting process timeline between 6 months and 2 years (68%).

348

349 Permitted growers report growing a variety of seaweed species. The majority of respondents
350 reported growing sugar kelp (55%), while *Gracilaria* and sea lettuce (10% each), and bull kelp
351 and *Alaria* (8% each), were also reportedly grown by respondents. Of the growers reporting
352 sales of their seaweed, most sold their product fresh (Figure 3). However, more than a quarter

353 of growers reported they hadn't yet sold seaweed. Sugar kelp was the most-commonly
354 reported species of seaweed grown by permitted growers, and they most often sold this
355 seaweed fresh. Fresh sugar kelp has a short shelf-like, is heavy and complicated to ship while
356 maintaining product quality and food safety.

357

358 Seventy-one percent of growers reported harvesting seaweed in the year prior to survey
359 administration, and 84% percent of permitted growers reported growing seaweed from seed
360 provided by a nursery. Ten growers reported to not have harvested any seaweed in the year
361 prior to the survey and one grower preferred not to disclose the amount they produced. Of the
362 twenty-six growers that reported harvesting seaweed, half of them reported producing less
363 than 1,000 pounds and 39% reported harvesting more than 5,000 pounds while only 8%
364 reported harvesting between 1,000 and 3,000 pounds and 4% reported harvesting between
365 3,000 and 5,000 pounds. There are many new seaweed growers entering this industry, as
366 evidenced by the more than one quarter who have permits but have not yet sold any seaweed.
367 Regarding buyers for this product, forty-nine percent of permitted growers reported they had
368 identified a buyer for their seaweed in the year prior to the survey. Eleven percent reported
369 this question didn't apply to them, suggesting that these growers supplied their product for
370 research or some other outlet for which they didn't require a buyer.

371

372 Forty-nine percent of growers who reported selling their seaweed, also reported processing it
373 in some way before selling it (N=17). Of these growers, most reported drying it themselves
374 (36%). However, growers also reported processing their seaweed into powdered, blanched,
375 frozen, noodles (blanched and frozen), and pureed forms before selling it. Growers reported
376 selling their seaweed to a variety of outlets (N=37), with restaurants and chefs the most
377 common buyers (22% each), and in lesser numbers, institutional buyers (19%), processors (11%)

378 and other outlets including wholesalers, online direct sales, farmers and unspecified other
379 buyers (collectively, 24%) made up the remaining reported sales outlets. Although 48% of
380 growers preferred not to disclose the prices they received for their product, reported prices
381 growers received for their seaweed of all species, and in both fresh and processed form ranged
382 from \$0.55 to \$20.00/lb (N=14, median = \$5.00). The higher end of this range of prices can be
383 attributed to niche marketing, usually of fresh seaweed in line with recommendations of Grebe
384 et al. (2019) and findings by Cerca et al. (2023) in the Irish seaweed aquaculture industry.

385

386 Due to lack of processing infrastructure to increase shelf-life, the majority of permitted growers
387 sell most of their seaweed in its fresh form, mainly to restaurants and chefs. The range of prices
388 suggests a wide variety of outlets for the harvested product, and prices are likely to differ
389 greatly between geographies with differing levels of industry engagement. Almost half reported
390 identifying a buyer for their product. Almost a third of growers reported not needing to find a
391 buyer, which suggests there is a significant outlet for seaweed for research purposes, an
392 alternative to the commercial market. However, research should not be considered a viable
393 outlet for seaweed for a mature, financially stable industry because research is highly
394 subsidized (Duarte et. al. 2017; Theurkauf et. al. 2021).

395

396 Over three-quarters (79%) of permitted growers reported they deployed seeded-string in the
397 year the survey was administered. The majority of growers reported buying seeded-string from
398 a commercial nursery (32%), with other growers obtaining seeded-string from non-profit
399 sources (27%), culturing their own (24%) and a small portion from university suppliers (9%). Of
400 the growers who reported they did not deploy seeded-string, the reasons varied including high
401 cost of seeded-string, farm site not ready, and poor growth.

402

403 Most-common industry challenges reported by permitted growers were market options (20%),
404 access to seeded-string (15%), and profitability ((14%), respectively (Figure 4a). The most
405 commonly-reported challenges for growers in the industry – market options, access to seed,
406 and profitability – are indicative of a nascent industry where several aspects of the market
407 chain need to be developed before the industry can thrive (Buschmann et. al. 2017).

408

409 3.2.2. Processor

410 Thirty respondents reported that they are seaweed processors in the domestic seaweed
411 industry. This industry includes processors of both farmed and wild harvested seaweed. Almost
412 half of seaweed processors reported 1 to 5 years of experience in processing seaweed (47%).
413 Eight respondents reported more than 5 years of seaweed processing experience, four
414 respondents reported between 4 and 5 years of experience, and three respondents reported to
415 have less than 1 year of experience processing seaweed. Five respondents reported they had
416 not yet processed seaweed. Processors reported processing more than 50 species of seaweed
417 in the year prior to the survey. The inclusion of processors of wild harvested seaweed accounts
418 for this high species diversity because the U.S. seaweed industry currently farms very few
419 species. Sugar kelp (N = 15) was the most-commonly reported species for processing, followed
420 by dulse (N = 7), and bull kelp and sea lettuce (both, N = 6). Processors in the year prior to the
421 survey overwhelmingly purchased their seaweed from domestic sources (N = 23) as opposed to
422 imported sources (N = 1) and more often bought their seaweed from a local grower (N = 13)
423 rather than a wild harvester (N = 10). Three respondents reported processing self-grown (N = 2)
424 or self-harvested (N = 1) seaweed in the year prior to the survey. When asked about
425 purchasing, seven processors reported that they purchased their seaweed at a set price, nine
426 reported that they did not purchase at a set price, and six respondents (20%) preferred not to
427 disclose the price for which they purchased their seaweed to be processed. Of those processors

428 who purchased raw seaweed of any species (including farmed and wild-harvested) and
429 reported prices, the prices ranged from \$0.56/lb to \$22/lb (N = 5, median = \$3.00). Processor
430 respondents most often reported consistent supply (28%) and source options (26%) as
431 challenges (Figure 4b).

432

433 Many processors responding to the survey reported to have had several years of experience
434 processing seaweed, suggesting that this role is relatively more experienced than others in the
435 industry, like permitted growers and nursery producer. This is likely because processors have
436 experience in longer-established wild harvest seaweed industries. Processors reported to work
437 with a wide variety of seaweed species with contributions from both aquaculture and wild
438 harvest sources. There was a large range in the prices processors reportedly paid to purchase
439 raw seaweed which could reflect the large number of species handled in processing and
440 variations in seaweed quality.

441

442 3.2.3. Nursery

443 A total of 26 respondents reported producing seaweed seed (i.e. seeded-string for kelp
444 growers). Half of these respondents (N = 13) did not sell their product. Of the producers who
445 reported that they sold their seed (N = 13), 85% (N = 11) of them reported to have the capacity
446 to produce more than 30 spools of seed while 8% reported a capacity of 1-10 spools and 8%
447 preferred not to report the number of spools. Respondents focused their efforts on sugar kelp
448 (N = 10) and bull kelp (N = 4), with one respondent reportedly producing *Alaria spp.* as well. The
449 frequency of industry challenges identified by nursery respondents were distributed across
450 topics (Figure 4c). Finding buyers was the most-commonly reported challenge (21%), however,
451 each of the other industry challenge options provided in the survey was selected by several
452 nursery respondents.

453

454 Only half of nursery respondents reported that they sold their product. This could be due to
455 new entrants into the industry, as many new seaweed nurseries have been established in the
456 past five years and may not yet have the capacity to sell their seed. However, data on years of
457 experience was not collected from this group. Other nursery producers may be growing seed
458 for research or personal use purposes, and not for sale. Seeded-string producers focus mostly
459 on kelp species (primarily sugar kelp and bull kelp). Most nursery producers have the capacity
460 to produce over 30 spools of seed and nursery respondents most-often reported finding a
461 buyer for their seed. These results suggest that nursery production could be scaled up as the
462 industry grows.

463

464 3.2.4. Culinary professional

465

466 Nine culinary professionals responded to the needs assessment survey, eight of whom had
467 reportedly prepared seaweed in the year prior to the survey and one for whom it had been 1 to
468 3 years since they prepared seaweed (Table 1. Culinary Professional Summary of Responses).
469 Respondents used a variety of forms of seaweed, most often reporting dried 25%, fresh and
470 frozen (21%, each), but also blanched, powdered, pureed and salted (N=1, each). Culinary
471 professionals reported experience preparing a wide variety of species in the past year, with
472 kelp, nori and wakame (27%, 18% and 15%, respectively) reported most often. When asked
473 about species they are most interested in preparing, kelp (28%) was the most often reported,
474 followed by dulse and nori (15% and 13%, respectively). Most-commonly reported uses for
475 seaweed in food prepared by culinary professionals included soup (with seaweed as an
476 additive) (29%), followed by seaweed salad, and as an additive or spice (25%, each). Other uses
477 reported included seaweed as noodles in a mixed dish, seaweed snacks/chips, and as a

478 substitute for spinach (N=1, each). Culinary professional respondents purchased seaweed from
479 domestic sources (N = 6) slightly more often than from imported sources (N = 5). Of the culinary
480 professional purchasing from imported sources, four (67%) reported they purchased seaweed
481 from a local harvester. There were only 2 responses to prices paid for locally-produced
482 seaweed, \$5/lb and \$30/lb.

483

484 Table 1. Culinary Professional Summary of Responses

		N	Percentage
Last time prepared seaweed	<1 year ago	8	89%
	1-3 years ago	1	11%
	Total	9	
Forms of seaweed used	Fresh	5	21%
	Dried	6	25%
	Powdered	2	8%
	Blanched	4	17%
	Frozen	5	21%
	Pureed	1	4%
	Other	1	4%
Total		24	
Types of seaweed used	Kelp	9	27%
	Nori	6	18%
	Wakame	5	15%
	Dulse	4	12%
	Kombu	3	9%
	Alaria	2	6%
	Laver	1	3%
	Irish moss	1	3%
	Other	2	6%
Total		33	
Types of seaweed of interest	Kelp	13	28%
	Dulse	7	15%
	Nori	6	13%
	Kombu	5	11%
	Wakame	4	9%
	Alaria	4	9%
	Laver	3	6%

	Irish moss	3	6%
	Other	2	4%
Total		47	
Culinary uses of seaweed			
	Soup	7	29%
	Seaweed salad	6	25%
	Seaweed as spice	6	25%
	Seaweed snacks/chips	4	17%
	Seaweed noodles	4	17%
	Other	4	17%
Total		24	

485

486

487 Challenges most often identified by this group included availability of the desired form of
 488 seaweed (20%), obtaining locally-produced seaweed and consumer demand (16%, each) (Figure
 489 4d). Culinary professionals also reported challenges in sourcing seaweed and seaweed products
 490 in the desired form, but with more growth, market connections could be made more easily.
 491 Consumer demand was also reported as a challenge for culinary professionals indicating
 492 consumers are not currently driving demand for value-added seaweed products and seaweed in
 493 restaurant dishes.

494

495 Culinary professionals who responded to the survey expressed high levels of interest in sugar
 496 kelp, and other types of seaweed. These results support the expansion of the seaweed
 497 aquaculture industry for culinary purposes. Culinary use of fresh (unprocessed) seaweed can
 498 only be supported for a short time since the shelf-life of sugar kelp is short. However, reported
 499 use of different forms of seaweed could provide an opportunity for processors as they expand
 500 their capacity to supply culinary outlets with different forms of their product.

501

502

503 3.2.5. Regulators

504 There were 43 responses from regulators to the survey (Table 2. Summary of regulator
505 responses). The majority of regulators reported to work at the state level (69%), with others
506 representing federal, municipal, tribal and 'Other' jurisdictions.¹ Respondents reported their
507 regulatory focus was most often aquaculture permitting (72%), followed by public health/food
508 safety (28%). Regulators reported seaweed growers (44%), followed by seaweed wild
509 harvesters (18%), processors (15%) and dealers (13%) as their primary audiences, with the
510 remaining respondents reporting a variety of different audiences in smaller percentages.

511

512 Table 2. Summary of Regulator Responses

		N	Percentage
Jurisdiction	State	29	69%
	Federal	8	19%
	Municipal	3	7%
	Tribal	1	2%
	Other	1	2%
	Total	42	
Regulatory Focus			
	Aquaculture permitting	33	72%
	Public health/food safety	13	28%
	Total	46	
Primary audience	Growers	36	44%
	Wild harvesters	15	18%
	Processors	12	15%
	Dealers	11	13%
	Culinary professionals	1	1%
	Other	7	9%
	Total	82	
Additional management entities reviewing applications	1 - 3	11	34%
	4 - 6	12	38%
		9	28%
	More than 6		
	Total	32	

¹ The 'Other' response did not include any further information.

513

514

515 Aquaculture permitting regulators reported a complex regulatory structure for prospective
516 seaweed growers which differs between states. Permitting regulators most often reported "4-
517 6" management entities (other than the one they represented) reviewing aquaculture permit
518 applications (38%). However, this number differs between states with 34% of regulators
519 reporting 1 – 3 other reviewing entities and 28% of regulators reporting more than 6 other
520 management entities reviewing applications. Costs, and the cost structure to maintain an
521 aquaculture permit to grow seaweed also differs between states. Regulators reported vastly
522 differing cost structures for growing seaweed. Fees are charged for permit applications; annual
523 per acre charges; and additional charges such as yearly license renewal fees and rental fees to
524 use the submerged lands on which the seaweed is grown. Permitting regulators also reported
525 that seaweed growers are required to report seaweed landings in states for 21 of 29
526 respondents.

527

528 Differing regulatory requirements and cost structures between states can make working in this
529 regulatory environment difficult for regulators and for others in the industry. Additionally,
530 these costs and cost structures are evolving in many states, as the industry is becoming more
531 established, creating further complexity for permitting regulators who are responsible for
532 providing updated information to their constituents.

533

534 Permitting regulators' most-commonly reported gear design and/or farming infrastructure as a
535 challenge to the seaweed industry (19%) while other industry challenges commonly reported
536 included clear regulations (16%); information on the spread of non-native species, pathogens
537 and harmful algal blooms (HABs) (13%); source of seed (12%); and assistance for growers to

538 navigate the permitting process (12%) (Figure 5a). Interestingly, several permitting regulators
539 (5%) also added comments identifying a lack of market as an industry challenge.

540

541 Commonly reported challenges by permitting regulators suggest an emerging industry in which
542 gear design and farming infrastructure, clear regulations and assistance for growers to navigate
543 the permitting process are still evolving. Concerns (i.e. information) about seaweed farms
544 spreading non-native species, pathogens and HABs; and understanding environmental
545 conditions for favorable growing environments were also reported challenges for regulators
546 working on permitting seaweed aquaculture. Though these regulators are not responsible for
547 seaweed after it has been grown, their reported concern for a lack of market illustrates their
548 awareness of the larger need for increased options for growers to sell their seaweed.

549

550 Regulators focusing on public health and food safety most-commonly reported industry
551 challenges related to food safety (26%), but also respondents also reported other challenges
552 including clear regulations (23%), education on regulations for industry participants (21%), and
553 information about safe growing environments (18%) (Figure 5b).

554

555 Public health and food safety regulators reported challenges suggesting that the science (or
556 information to support regulations) and the regulations themselves, are not yet adequate for
557 regulators to effectively guide participants in the industry.

558

559 3.2.6. Prospective growers

560 Prospective growers (N = 76) reported anticipated engagement most often in Washington state
561 (N = 34), New York (N = 14) and Alaska (N = 13) (See Figure 2). Respondents most-commonly
562 reported environmental benefits (48%) and source of income (46%), as their interest in growing

563 seaweed (Table 3. Summary of prospective grower responses). Respondents' interest is most
564 often in growing sugar kelp (27%), however, there was interest in a wide variety of species
565 reported. Prospective growers reported to be currently working in a variety of related
566 industries, most-commonly aquaculture (48%), commercial fisheries (13%), and science and
567 research (8%).

568

569 Table 3. Summary of prospective grower responses

		N	Percentage
Interest in industry participation	Environmental benefits	62	48%
	Source of income	59	46%
	Other	7	5%
Total	128		
Types of interest	Sugar kelp	54	27%
	Bull kelp	26	13%
	Allaria spp.	25	13%
	Gracilaria	15	8%
	Dulse	29	15%
	Nori/Laver	22	11%
	Irish moss	11	6%
	Sea lettuce	16	8%
Total	198		
Current industry of work	Aquaculture	29	48%
	Commercial fisheries	13	22%
	Science & Research	8	13%
	Marina/maritime infrastructure-related	4	7%
	Biofuels	3	5%
	Food	3	5%
Total	60		

570

571 At the time of the survey, these respondents were not actually growing seaweed yet, and were
572 at different stages in the process of becoming a permitted grower. Their reported industry
573 challenges (N=182) suggest a need for assistance with technical aspects of production, such as

574 setting up a farm (22%), more information on the permitting process (19%), market
575 opportunities (16%), and access to seaweed seed (15%) (Figure 5c).

576

577 The high level of response from prospective growers illustrates a high interest in growing
578 seaweed products, however, because they are not yet actively participating in the industry,
579 these respondents may not be as informed as those in other roles.

580

581

582 3.2.7. Researchers

583 Sixty-three researchers responded to this survey, representing interests from a wide variety of
584 biophysical and social science research related to seaweed. The most-commonly reported
585 research foci are ecology (21%), biology (19%) and food science and product development (14)
586 (Table 4. Summary of researcher responses). More than two-thirds (81%) of researcher
587 respondents reported to be actively engaged in seaweed-related research at the time of the
588 survey, representing a spectrum of research including seed cultivation, food pathogens,
589 ecological design of farms, and seaweed's potential to sequester carbon. Types of seaweed of
590 interest for researchers reported most often are sugar kelp (27%) and bull kelp (15%). However,
591 researchers reported to have worked with many other seaweed species. Most often,
592 researchers reported working with seaweed producers and regulators (28%, each) on their
593 research, while also reporting research with processors (16%), value-added processors (14%)
594 and culinary professionals (14%) in significant proportions.

595 Table 4. Summary of researcher responses

		N	Percentage
Research Focus	Ecology	45	21%
	Biology	40	19%

	Food science & product development	31	14%
	Production technology	27	13%
	Non-food uses for seaweed	26	12%
	Economics	21	10%
	Social science	17	8%
	Other	8	4%
Total		215	
Currently involved in related research	Yes	47	81%
	No	11	19%
Total		58	
Types of seaweed of interest	Sugar kelp	45	27%
	Bull kelp	25	15%
	Alaria	14	8%
	Dulse	13	8%
	Nori/Laver	10	6%
	Irish moss	7	4%
	Gracilaria	19	11%
	Sea lettuce	19	11%
	Other	14	8%
Total		166	
Partner role within industry	Seaweed producers	37	28%
	Regulators	37	28%
	Processors	21	16%
	Culinary professionals	19	14%
	Value-added processors	18	14%
Total		132	

596

597 Industry challenges most-commonly reported by researchers were guidance on the permitting
 598 process (22%), understanding post-harvest opportunities (both infrastructure and market
 599 outlets) (21%), followed by concerns about food safety (13%) and access to local seeded-string
 600 (12%) (Figure 5d).

601

602 There was a high level of interest in research on seaweed and the domestic seaweed industry in
603 the research community with a variety of topics represented. Researchers reportedly are well-
604 integrated into the industry, working with all other seaweed sectors represented in the survey.

605

606 3.3. Overall U.S. Seaweed Industry Challenges

607

608 Responses about seaweed industry-wide challenges were separated into the following four
609 categories: (1) production systems (32%); (2) market opportunities (26%); (3) regulations (26%);
610 and (4) post-harvest opportunities and infrastructure (i.e. processing facilities) (16%). These
611 categories were identified to include industry members in various roles together to work
612 together toward solutions that would be beneficial for the overall industry. Production systems
613 includes concerns related to obtaining seaweed seeded string, managing nursery operations
614 and maintaining quality in seaweed seed production. Market opportunities includes both
615 supply and demand concerns for connecting seaweed – in various product forms – to several
616 audiences including processors, buyers for culinary uses, and consumers. Regulations topics
617 cover concerns about the regulatory environment throughout the value chain from obtaining
618 seaweed seed, through permitting for growing and transporting seaweed, to processing and
619 producing safe seaweed products for end users. Finally, post-harvest opportunities and
620 infrastructure involve concerns about transporting, storage and processing seaweed while
621 maintaining its taste, nutrition and safety.

622 Industry challenges in each of the categories were identified by respondents engaging in the
623 seaweed industry in most states, except those (i.e., Oregon and Hawai'i) with less than 10
624 responses (Figure 6). The distribution of challenges is fairly even across categories, indicating
625 that these challenges resonate in each state. Two exceptions to this pattern are responses from

626 Alaska and Washington respondents. Alaska respondents more often reported challenges
627 related to production systems (35%) than the other categories, suggesting that the industry in
628 Alaska is primarily focused on growing seaweed (i.e., producing seaweed), and less so on the
629 latter parts of establishing an industry (i.e., markets, processing, regulations). Washington is
630 another exception with more respondents identifying production systems and regulations
631 (both, 35%) than market opportunities (23%), and post-harvest identified the least often (8%).

632 These results indicate that participants in Washington are also focusing on earlier stages of
633 establishing the industry, both growing seaweed and establishing the industry's regulatory
634 structure.

635 Although three of these categories - production systems, post-harvest opportunities, and
636 market opportunities – focus on discrete stages of the seaweed industry, challenges in these
637 areas were highlighted by respondents from many different roles (Figure 7). Additionally,
638 regulations, which affect each of the other stages of the industry, is also recognized as a
639 challenge by almost all roles (the exception is culinary professionals). These results suggest that
640 respondents - regardless of their specific role – view the industry from a holistic perspective.

641

642 4. Discussion

643

644 4.1. Geography and Roles Represented

645

646 Respondents to this survey primarily represented US states in the northeast and west coast.
647 These geographies are where the seaweed aquaculture industry is most developed and/or
648 where there is the most interest. Responses include contributions from members involved in,
649 or associated with, the industry from seaweed seed production through market opportunities.

650 Thus, the results can be viewed as representing a holistic view of the US domestic seaweed
651 aquaculture industry.

652

653 4.2. Seaweed Industry Challenges

654

655 Respondents from all geographies and roles identified industry challenges falling into each of
656 the four categories. This suggests that actors within the industry are aware of not just their
657 challenges related to growing, processing and using seaweed, but that they are aware of the
658 need to address the entire market chain to support growing the industry as a whole. Challenges
659 related to production systems are reported in highest proportions in Alaska, Maine,
660 Massachusetts and Connecticut. These states all have established seaweed growers who are
661 actively facing the challenges of acquiring seeded string, setting up farms and transporting their
662 seaweed product to be processed. Responses from California and Oregon are also higher for
663 production systems challenges, which is likely surrounding establishing production since these
664 states are at the very beginning of establishing a seaweed industry with two active permits for
665 California and no ocean-based permitted farms in Oregon yet. Challenges related to market
666 opportunities are reported in higher percentages in Washington state. This is likely associated
667 with two significant operations just beginning to produce seaweed in significant amounts in
668 Washington, for which growers will need markets to sell their seaweed. Post-harvest
669 infrastructure challenges are reported in relatively lower proportions by respondents in all
670 states responding to the survey except for Rhode Island, where there is a lack of seaweed
671 processing capacity within its borders. For states where seaweed growers are well-established,
672 most growers have already established their post-harvest buyers or processing but for states
673 with new growers, respondents are more likely to be concerned with production systems and
674 market opportunities in early years of establishing the industry. Regulatory challenges are

675 reported in higher proportions in New York and Washington states. In New York, this may be
676 related to a lack of clarity in post-harvest regulations for seaweed, given the interest in market
677 opportunities in this state, and it may also be related to ongoing efforts to survey areas to
678 determine locations where seaweed farms will be permitted. In Washington, the two new
679 growers are likely facing regulatory questions as they begin to navigate the process of growing
680 and transporting seaweed.

681

682 Concerns about supply and demand are reported challenges for more than a quarter of
683 respondents. Recognizing and marketing US-grown seaweed as a niche product, as
684 recommended by Grebe et al. (2019) can provide marketing opportunities. These marketing
685 opportunities can tap into the demand from consumers interested in nutritional and
686 sustainable foods, with further development of culinary dishes and products showcasing this
687 product (Figueroa et. al 2023). These findings also lend themselves to exploring the need for
688 development of new seaweed-based foods as a dual opportunity for the culinary industry to
689 work with researchers to develop new dishes and to work with nutritionists to learn more
690 about the ability for humans to absorb nutrients from seaweed (Chambers et al 2015, Cherry et
691 al. 2019).

692

693 Cerca et al. (2023) note that demand for seaweed as a raw material is reported to be high, but
694 challenges of processing capacity and methods, and lack of consumer awareness about
695 preparing it can be a barrier. To address this concern, production systems, post-harvest
696 processing, food safety, market development, and regulatory guidelines are all needed to
697 enable the industry to take advantage of an opportunity to meet higher consumer demands for
698 seaweed.

699 At the time the survey was conducted, some states represented were home to an established,
700 seaweed industry (i.e., Maine) while others were just beginning to permit seaweed growers
701 (i.e., New York and Washington). However, some seaweed-growing states are just beginning to
702 establish the necessary infrastructure and regulations to support the industry while others,
703 such as Maine, have established nurseries, growers, processors, and markets. Therefore, survey
704 responses represent perspectives from participants acting (or interested in acting, in the case of
705 prospective growers) at different regional stages of development. These findings suggest that
706 those states at earlier stages of industry development can learn from the experience of those
707 with a more-developed industry. However, differences in geographic, demographic, regulatory
708 and economic environments can present new kinds of challenges as these states develop their
709 seaweed industry.

710 A major challenge to establishing a domestic seaweed industry for all participants is how to
711 expand beyond in-state operations and supply chains to regional and national market chains,
712 while accommodating the differences in scales of production, availability of infrastructure, and
713 regulatory environments.

714

715

716 4.3. Working to address industry challenges

717

718 Survey results were used to identify common themes across geographies and roles in the
719 industry. Challenges suggest an industry at a vital point in development, where technical,
720 regulatory, and infrastructure needs must be addressed to expand seaweed aquaculture into a
721 mature industry in the US.

722

723 Based on the results presented above, the Seaweed Hub established four virtual work groups,
724 facilitated by the Seaweed Hub members, to support expansion of this emerging industry. Work
725 group participants represented a mix of roles in the industry to ensure that the strategies they
726 developed reflected diverse perspectives and met industry-wide needs. Since the survey was
727 conducted, these groups have made progress in each category:

728

729 (1) The Production Systems Work Group focused on nursery supply and connecting
730 potential providers to potential buyers. The group developed a National Seaweed
731 Nursery Directory of seaweed nursery suppliers and the products they provide. This
732 directory is publicly accessible on the National Seaweed Hub's website and updated
733 regularly as new suppliers emerge (National Seaweed Hub 2023b).

734

735 (2) The Post-harvest and Processing Infrastructure Work Group developed a guide providing
736 key parameters for testing in seaweed, and the importance of setting standards for each
737 for the industry. The information will inform processors, regulators and end-users about
738 food safety and product quality considerations.

739

740 (3) The Market Opportunities Work Group produced a publicly accessible National Seaweed
741 Marketing Toolkit that includes targeted marketing language, social media assets and
742 marketing tips for growers to utilize in their marketing and public relations strategies
743 (Seaweed Hub 2023c).

744

745 (4) The Regulations Work Group created a reference document comparing two similar
746 federal food safety programs (Seafood HACCP and FSMA Preventive Controls) enforced
747 by regulatory agencies (Seaweed Hub 2023d). This resource provides guidance to

748 seaweed businesses to determine which program applies to their operation and
749 considerations for transitioning between types of businesses.

750

751 4.4. Limitations of the study

752 The COVID-19 pandemic and its associated closures, which affected development of the industry
753 and its markets, began just after this needs assessment began. Continued contact with
754 members of the industry, especially through the Seaweed Hub initiative, confirm that results
755 presented here are consistent with current needs despite unanticipated COVID-19-related
756 interruptions.

757

758 Certain aspects of the domestic seaweed aquaculture industry differ drastically between states
759 and are continuously changing in response to needs. Therefore, data on permitting processes
760 and associated costs are presented to provide an understanding of the range of industry
761 members' experience, but should not be used as a guide for prospective entrants.

762

763 5. Conclusions

764 The U.S. domestic seaweed aquaculture industry is at a pivotal point in its development, in
765 parallel with global challenges to seaweed industry expansion such as uncertain demand,
766 questions of nearshore farm site availability, and reliable seaweed value chains (Cai et al. 2021).
767 Actors both within the industry and adjacent to it, are eager to address the needs and
768 overcome the challenges. The future growth of the industry depends upon both internal and
769 external forces of interest, markets, and institutional capacity to facilitate growth of this
770 industry from small, state-level focused operations, to a well-developed domestic industry. This
771 paper summarizes results of a needs assessment of prospective and current participants in the

772 U.S. seaweed aquaculture industry. Challenges in production systems, market opportunities,
773 regulations and post-harvest opportunities were identified by participants in various roles
774 within the industry, and across states involved in the industry at various stages of development.

775

776 The following are several initiatives, ongoing and recommended, that can assist in overcoming
777 the challenges and taking advantage of the opportunities identified by survey respondents. The
778 National Seaweed Hub continues to address emerging needs of the domestic seaweed industry
779 through (1) sharing evidence-based information about the industry with resources developed in
780 collaboration with seaweed industry members and (2) providing opportunities for seaweed
781 industry members to connect with each other through a variety of mechanisms, enabling them
782 to continue to collaborate. These opportunities for sharing information can help states in
783 earlier stages of industry development, e.g. Washington and New York, learn from the
784 experience of those states in latter stages of development, e.g. Maine and Alaska, while
785 allowing the newer states to the industry to bring their unique ideas which states with more
786 experience may be able to use as well.

787

788 Partnerships between science and industry can be used to fund continued work to address the
789 challenges identified here. The science/industry partnerships have been a successful way to
790 address information gaps in other areas of aquaculture, and in seaweed aquaculture in more
791 developed regions of the country. These science-industry initiatives, such as those used by Sea
792 Grant, provide farmers with an opportunity to work with researchers on research questions
793 that they collaboratively identify, who provide their expertise to the investigation by providing
794 funding and extensions services. Farmers can provide their lease, product or experience and
795 benefit from participating in the research process. Sea Grant's extension professionals have

796 unique knowledge of the industry both within specific states, and across state lines. Their
797 expertise lends itself to encouraging and facilitating a regulatory structure (i.e., environmental
798 regulations, spatial planning, food safety, and best practices) to guide sustainable growth of the
799 industry, an essential part of industry expansion (Cai et al. 2021).

800

801 The results of this needs assessment point to a chicken-and-egg problem that has also been
802 identified in nascent seaweed industries in other geographies. There is interest in seaweed in
803 many parts of the industry (e.g., growing, processing, and using in culinary preparation), but
804 there continues to be a lack of consumer demand for consuming seaweed (Chambers et al.
805 2015). Cai et al. (2021) note that market demand was a driving force in increasing seaweed
806 production in Scotland and Eastern Asia. Therefore, research into desired dishes and value-
807 added seaweed products for a western palate (for example, Chambers et al. 2015), along with
808 establishment of the nutritional benefits of seaweed consumption (Cherry et al. 2019) need to
809 continue so that increased interest in consuming seaweed can drive expansion of the seaweed
810 industry (Cai et al. 2021).

811

812 Finally, in alignment with other recommendations for this burgeoning industry, future efforts
813 should strive to expand this industry into new markets at various levels (Grebe et al. 2019).
814 While investigating increasing options for culinary and value-added seaweed products is one
815 avenue to explore, investments in expanding options for using and processing seaweed in
816 various ways should also be explored to assist in growing this potentially sustainable and
817 valuable industry.

818

819 6. References

820 Alleway, H.K., T.J. Waters, R. Brummett, J. Cai, L. Cao, M.R. Cayten, B.A. Costa-Pierce, et al. 2023. Global
821 Principles for Restorative Aquaculture to Foster Aquaculture Practices That Benefit the Environment.
822 Conservation Science and Practice 5(8): e12982. <https://doi.org/10.1111/csp2.12982>.

823 Banach, J.L., van den Burg, S.W.K., and H.J. van der Fels-Klerx. 2020. Food safety during
824 seaweed cultivation at offshore wind farms: an exploratory study in the North Sea. Marine
825 Policy 120:104082. DOI:10.1016/j.marpol.2020.104082

826 Barberi, O.N., C.J. Byron, K.M. Burkholder, A.T. St. Gelais, and A.K. Williams. 2020. Assessment
827 of bacterial pathogens on edible macroalgae in coastal waters. Journal of Applied Phycology 32:
828 683-696. <https://link.springer.com/article/10.1007/s10811-019-01993-5>

829 Billing, S., Rostan, J., Tett, P., and A. Macleod. 2021. Is social license to operate relevant for
830 seaweed cultivation in Europe? Aquaculture 534: 736203.
831 <https://doi.org/10.1016/j.aquaculture.2020.736203>

832 Blikra, M. J., Løvdal, T., Vaka, M. R., Røiha, I. S., Lunestad, B. T., Lindseth, C. and D. Skipnes.
833 2019. Assessment of food quality and microbial safety of brown macroalgae (*Alaria esculenta*
834 and *Saccharina latissima*). Journal of the Science of Food and Agriculture 99: 1198–1206. DOI:
835 10.1002/jsfa.92893

836 Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, A., Hernández-González, M.C., Pereda,
837 S.V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N., and A.T. Critchley. 2017. Seaweed
838 production: overview of global state of exploitation, farming and emerging research activity.
839 European Journal of Phycology 52(4):391–406. doi:10.1080/09670262.2017.1365175

840

841 Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S.,
842 Garrido Gamarro, E., Geehan, J., Hurtado, A., Luente, D., Mair, G., Miao, W., Potin, P., Przybyla,
843 C., Reantaso, M., Roubach, R., Tauati, M. and Yuan, X. 2021. Seaweeds and microalgae: an
844 overview for unlocking their potential in global aquaculture development. FAO Fisheries and
845 Aquaculture Circular No. 1229. Rome, FAO. <https://doi.org/10.4060/cb5670en>

846 Campbell, I., Macleod, A., Sahlmann, C., Neves, L., Funderud, J., Øverland, M., Hughes, A.D. and
847 Stanley, M. 2019. The environmental risks associated with the development of seaweed
848 farming in Europe – prioritizing key knowledge gaps. *Frontiers in Marine Science* 6:107.
849 <https://doi.org/10.3389/fmars.2019.00107>

850 California Sea Grant (CA Sea Grant). 2024. Seaweed Aquaculture.
851 <https://caseagrant.ucsd.edu/our-work/discover-california-seafood/seaweed-aquaculture#cite->
852 1. Accessed June 3, 2024.

853 Cerca, M., Sosa, A., and F. Murphy. 2023. Responsible supply systems for macroalgae: Upscaling
854 seaweed cultivation in Ireland. *Aquaculture* 563: 738996.
855 <https://doi.org/10.1016/j.aquaculture.2022.738996>

856 Cherry, P., O'Hara, C., Magee, P.J., McSorley, E.M., and P.J. Allsopp. 2019. Risks and benefits of
857 consuming edible seaweeds. *Nutrition Reviews* 77(5): 307-329.
858 <https://doi.org/10.1093/nutrit/nuy066>

859 Concepcion, A., DeRosia-Banick, K. and Balcom, N. 2020. Seaweed production and processing in
860 Connecticut: A guide to understanding and controlling potential food safety hazards. Groton,
861 Connecticut, USA. seagrant.uconn.edu/wp-content/uploads/sites/1985/2020/01/Seaweed-Hazards-Guide_Jan2020_accessible.pdf

863 Duarte, C.M., Wu, J., Xiao, X., Bruhn, A. and Krause-Jensen, D. 2017. Can seaweed farming play
864 a role in climate change mitigation and adaptation? *Frontier in Marine Science* 4:100.
865 <https://doi.org/10.3389/fmars.2017.00100>

866 Engle, C., A. Cygler, D. Kotowicz, and J. McCann. 2018. Potential Supply Chains for Seaweed
867 Produced for Food in the Northeast United States. University of Rhode Island, Narragansett, RI,
868 60pp.

869 FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.
870 Rome, FAO. <https://doi.org/10.4060/cc0461en>

871 FAO and WHO. 2022. Report of the expert meeting on food safety for seaweed – Current status
872 and future perspectives. Rome, 28–29. October 2021. Food Safety and Quality Series No. 13.
873 Rome. <https://doi.org/10.4060/cc0846en>

874 Figueroa, V., M. Farfán and J.M. Aguilera. 2023. Seaweeds as Novel Foods and Source of
875 Culinary Flavors. *Food Reviews International* 39(1):1-26. doi: 10.1080/87559129.2021.1892749

876 Forster, J. and R. Radulovich. 2015. Seaweed and food security. In: Tiwari B, Troy TJ, editors.
877 Seaweed sustainability, food and non-food applications. Amsterdam (Netherlands): Elsevier; p.
878 289–313. doi:10.1016/B978-0-12-418697-2.00011-8.

879 Gao, K. and K.R. McKinley. 1994. Use of macroalgae for marine biomass production and CO₂
880 remediation – a review. *Journal of Applied Phycology* 6:45-60.
881 <https://doi.org/10.1007/BF02185904>

882 Gephart, J.A., Henriksson, P.J. G., Parker, R.W.R., Shepon, A., Gorospe, K.D., Bergman, K., Eshel,
883 G., et al. 2021. Environmental Performance of Blue Foods. *Nature* 597(7876): 360-65.
884 <https://doi.org/10.1038/s41586-021-03889-2>

885 Grebe, G.S., Byron, C.J., Gelais, A.S., Kotowicz, D.M. & Olson, T.K. 2019. An ecosystem approach
886 to kelp aquaculture in the Americas and Europe. *Aquaculture Reports*, 15: 100215. doi:
887 10.1016/j.aqrep.2019.100215

888 Hurd, Catriona L., Law, C.S., Bach, L.T., Britton, D., Hovenden, M., Paine, E.R., Raven, J.A.,
889 Tamsitt, V., and P.W. Boyd. 2022. Forensic carbon accounting: assessing the role of seaweeds
890 for carbon sequestration. *Journal of Phycology* 58(3): 347-363.

891 Kim J.K., C. Yarish, E.K. Hwang, M.S. Park and Y.D. Kim. 2017. Seaweed aquaculture: cultivation
892 technologies, challenges and its ecosystem services. *Algae* 32(1): 1-13.
893 <https://doi.org/10.4490/algae.2017.32.3.3>

894 Kim, J.K., M. Stekoll, and C. Yarish. 2019. Opportunities, challenges and future directions of
895 open-water seaweed aquaculture in the United States. *Phycologia* 58(5): 446-461.
896 <https://doi.org/10.1080/00318884.2019.1625611>

897 Knapp, G., and M.C. Rubino. 2016. The Political Economics of Marine Aquaculture in the United
898 States. *Reviews in Fisheries Science & Aquaculture* 24(3): 213-29.
899 <https://doi.org/10.1080/23308249.2015.1121202>

900 Kraemer, G., J. Kim, and C. Yarish. 2014. Seaweed Aquaculture: Bioextraction of Nutrients to
901 Reduce Eutrophication. *AMWS Newsletter*. 89:16-17.

902 Kübler, J.E., S.R. Dudgeon and D. Bush. 2021. Climate change challenges and opportunities for
903 seaweed aquaculture in California, the United States. *Journal of the World Aquaculture Society*
904 52(5): 1069-1080. <https://doi.org/10.1111/jwas.12794>

905 Lester, S.E., R.R. Gentry, H.R. Lemoine, H.E. Froehlich, L.D. Gardner, M. Rennick, E.O. Ruff, and
906 K.D. Thompson. 2021. Diverse State-Level Marine Aquaculture Policy in the United States:

907 Opportunities and Barriers for Industry Development. *Reviews in Aquaculture* 14(2): 890-906.

908 <https://doi.org/10.1111/raq.12631>.

909 Nakhate, P. and Y. van der Meer. 2021. A Systematic Review on Seaweed Functionality: A

910 Sustainable Bio-Based Material. *Sustainability* 13(11):6174.

911 <https://doi.org/10.3390/su13116174>

912 National Seaweed Hub 2023a. State of the States, Status of U.S. Seaweed Aquaculture. 57p.

913 <https://seaweedhub.extension.uconn.edu/wp-content/uploads/sites/3646/2023/04/State-of-the-States-May2023.pdf> Accessed October 3, 2023.

915

916 National Seaweed Hub 2023b. National Seaweed Nursery Directory.

917 5p. https://seaweedhub.org//wp-content/uploads/2022/07/National-Seaweed-Nursery-Directory_Final2022.pdf Accessed October 23, 2023.

919 National Seaweed Hub 2023c. Let Seaweed Surprise You - Seaweed Marketing Toolkit.

920 11p.<https://static1.squarespace.com/static/6425b71909ee9a616051143a/t/6480862eb217631664fd6679/1686144561450/Seaweed-Toolkit.pdf> Accessed October 23, 2023.

922 National Seaweed Hub 2023d. Seaweed Food Safety: Comparing Compliance with Preventative

923 Controls for Human Foods and Seafood HACCP. 17p.

924 <https://nsglc.olemiss.edu/projects/regulatingseaweed/files/seaweedfoodsafety.pdf> Accessed

925 October 23, 2023.

926 Nielsen, C.W., T. Rustad, and S.L. Holdt. 2021. Vitamin C from Seaweed: A Review Assessing

927 Seaweed as Contributor to Daily Intake. *Foods* 10: 198. <https://doi.org/10.3390/foods10010198>

928 Piconi P., Veidenheimer R., Chase B. 2020. Edible seaweed market analysis (Rockland, ME:
929 Island Institute), 60p. Available at: <https://oceansalaska.org/wp-content/uploads/2021/06/Edible-Seaweed-Market-Analysis-1.17.20.pdf>

931 Racine, P., Marley, A.C., Froehlich, H.E., Gaines, S.D., Ladner, I., MacAdam-Somer, I. & Bradley,
932 D. 2021. A case for seaweed aquaculture inclusion in U.S. nutrient pollution management.
933 Marine Policy, 129. <https://doi.org/10.1016/j.marpol.2021.104506>

934 Ricart, A. M., D. Krause-Jensen, K. Hancke, N. N. Price, P. Masque and C. M. Duarte. 2022.
935 Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the
936 ethics. Environmental Research Letters 17(8): 081003.

937 Roleda, M. Y., Marfaing, H., Desnica, N., Jónsdóttir, R., Skjermo, J., Rebours, C., and U. Nitschke.
938 2019. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated
939 seaweed bulk biomass: Health risk assessment and implication for food applications. Food
940 Control 95:121-134. <https://doi.org/10.1016/j.foodcont.2018.07.031>

941 Rubino, M.C., 2023. Policy Considerations for Marine Aquaculture in the United States, Reviews
942 in Fisheries Science & Aquaculture, 31:1, 86-102, DOI: 10.1080/23308249.2022.2083452

943 St-Gelais, A.T., Fredriksson, D.W., Dewhurst, T., Miller-Hope, Z.S., Costa-Pierce, B.A. and K.
944 Johndrow. 2022. Engineering A Low-Cost Kelp Aquaculture System for Community-Scale
945 Seaweed Farming at Nearshore Exposed Sites via User-Focused Design Process. Frontiers in
946 Sustainable Food Systems 6:848035. doi: 10.3389/fsufs.2022.848035

947 Spillias, S., R. Kelly, R.S. Cottrell, K.R. O'Brien, R. Im, J.Y. Kim, C. Lei, et al. 2023. The Empirical
948 Evidence for the Social-Ecological Impacts of Seaweed Farming. PLOS Sustainability and
949 Transformation 2(2): e0000042. <https://doi.org/10.1371/journal.pstr.0000042>

950 Umanzor, S., Y. Li, D. Bailey, S. Augyte, M. Huang, M. Marty-Rivera, J.L. Jannink, C. Yarish and S.
951 Lindell. 2021. Comparative analysis of morphometric traits of farmed sugar kelp and skinny
952 kelp, *Saccharina* spp., strains from the Northwest Atlantic. Journal of the World Aquaculture
953 Society 52(5):1059-1068. <https://doi.org/10.1111/jwas.12783>

954 Webb, R., Silverman-Roati, K., and M. Gerrard. 2021. Removing Carbon Dioxide Through Ocean
955 Alkalinity Enhancement and Seaweed Cultivation: Legal Challenges and Opportunities. Sabin
956 Center for Climate Change Law, Columbia Law School, Columbia Public Law Research Paper
957 February 2021. https://scholarship.law.columbia.edu/faculty_scholarship/2739

958 Zhang, L., Liao, W., Huang, Y., Wen, Y., Chu, Y. and C. Zhao. 2022. Global seaweed farming and
959 processing in the past 20 years. Food Production, Processing and Nutrition 4:23
960 <https://doi.org/10.1186/s43014-022-00103-2>

961

Title: Identifying challenges of the US domestic seaweed aquaculture industry

Corresponding Author: Dawn M. Kotowicz

Figures

Figure 1. State Engagement in the Seaweed Industry (N = 301). Other responses included Hawai'i, Delaware and Missouri

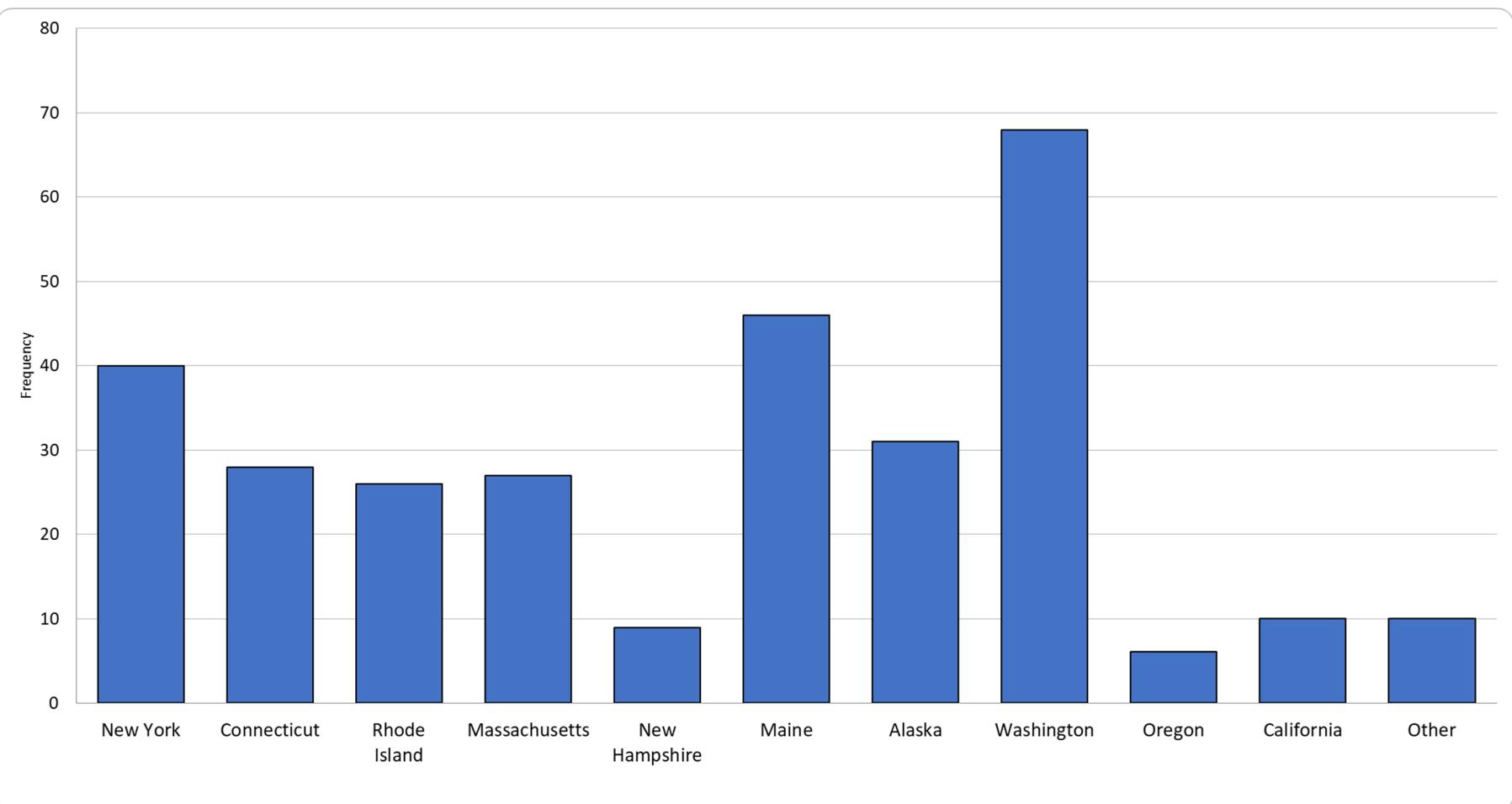


Figure 2. Role in seaweed industry by state (N = 479). Note: Number of responses is higher than respondents because responses regarding state and role are not mutually exclusive.

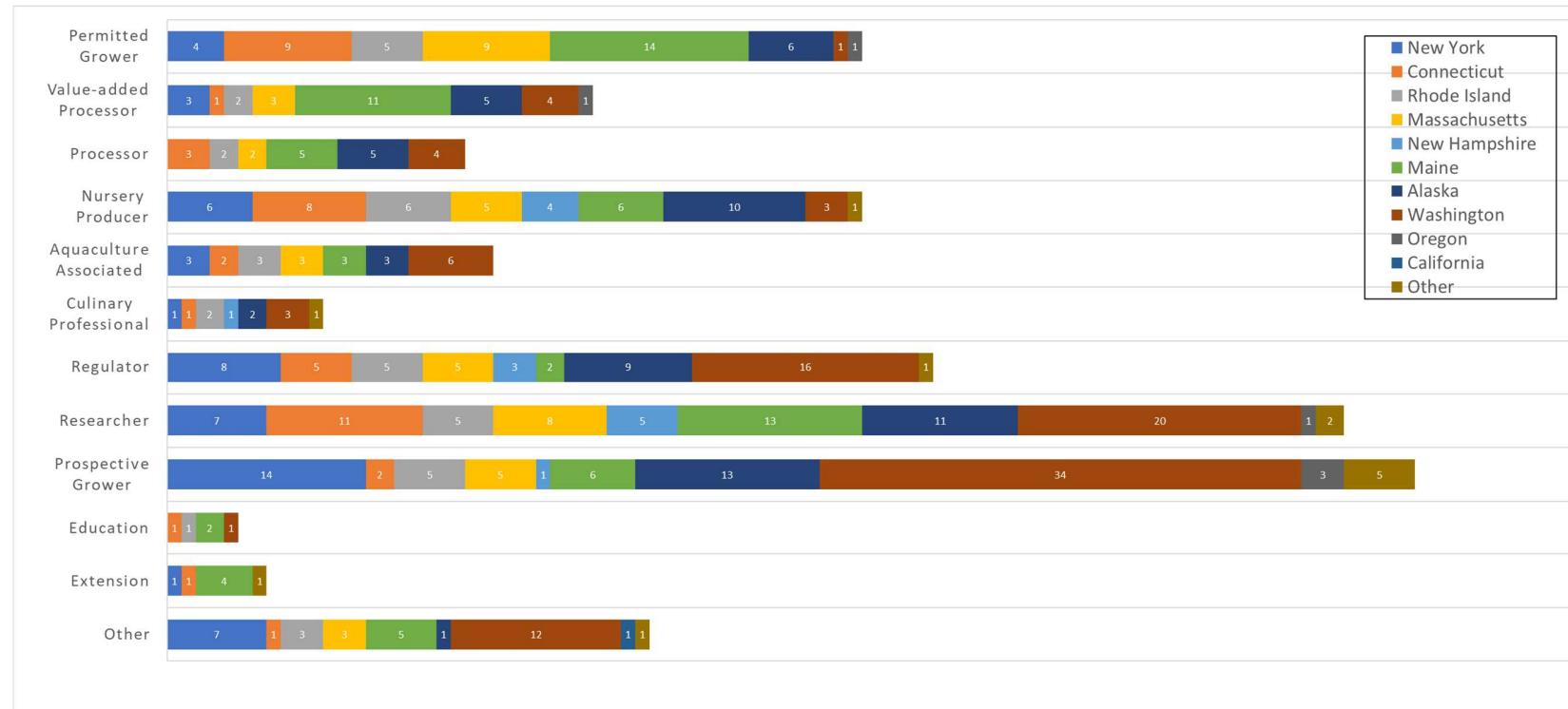


Figure 3. Percentage of seaweed sold by permitted growers by form (Total N=55; numbers in each section represent frequency).

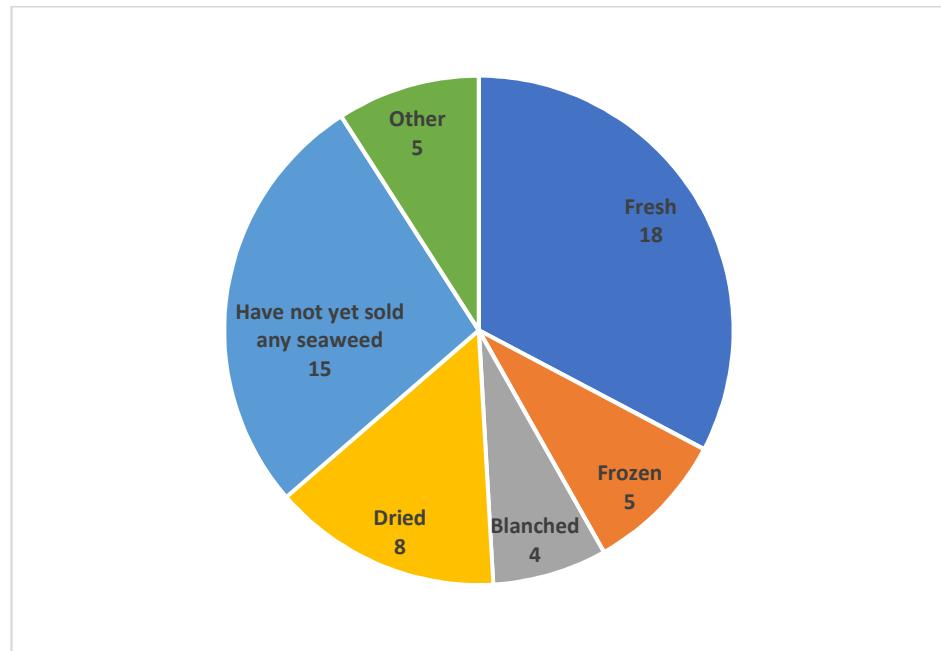


Figure 4. Industry challenges by group a) growers, b) processors, c) nurseries, and d) culinary professionals

Figure 4. Industry challenges by group: a) growers, b) processors, c) nurseries, and d) culinary professionals.

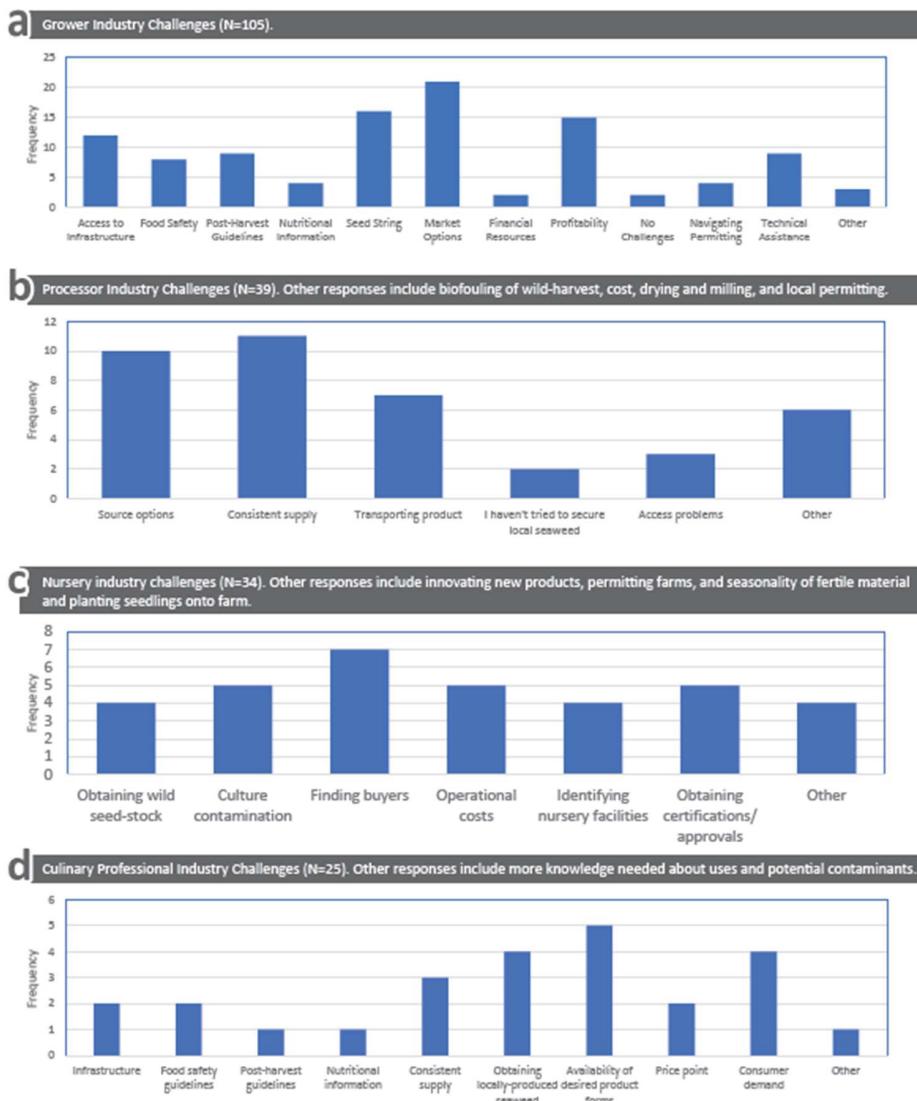


Figure 5. Industry challenges by group a) permitting regulators, b) public health/food safety regulators, c) prospective growers and d) researchers.

Figure 5. Industry challenges by group: a) permitting regulators, b) public health/food safety regulators, c)prospective growers, and d) researchers.

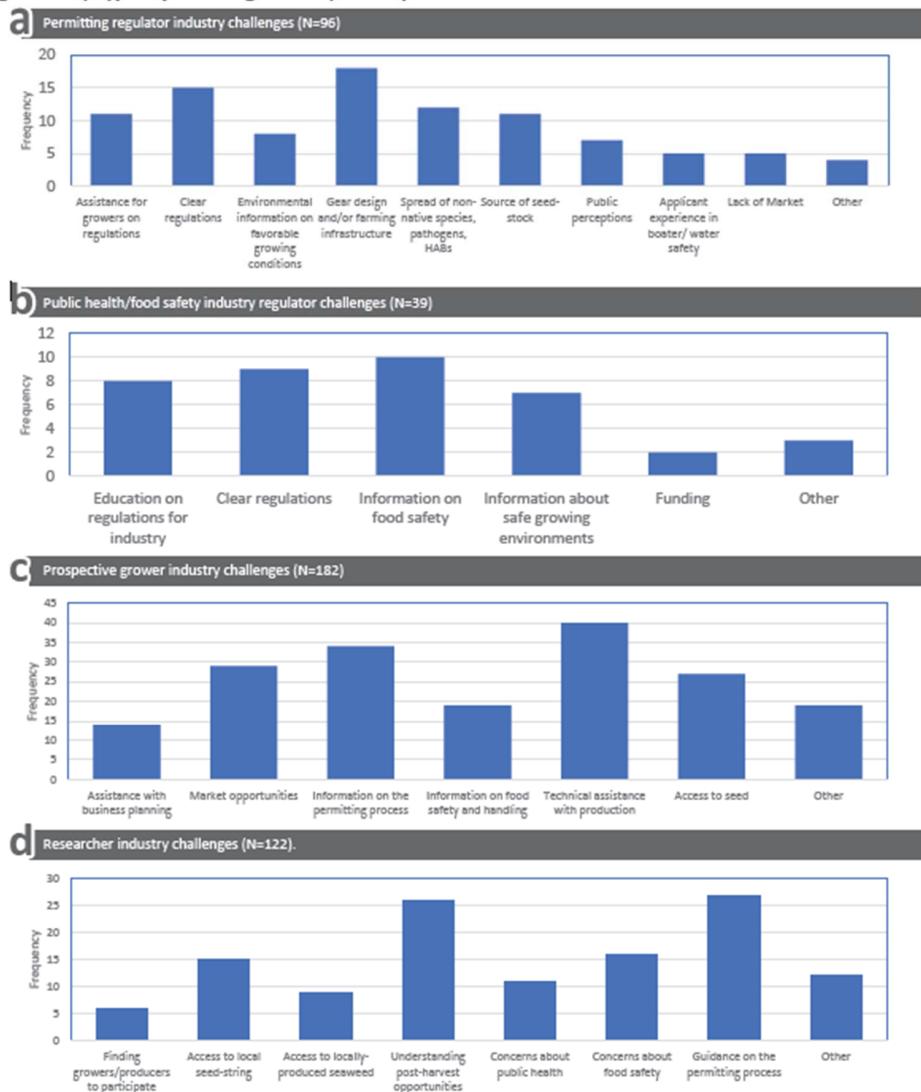


Figure 6. Overall industry challenges by State (N=519). Note: respondents selecting states other than those listed in the figure were not included.

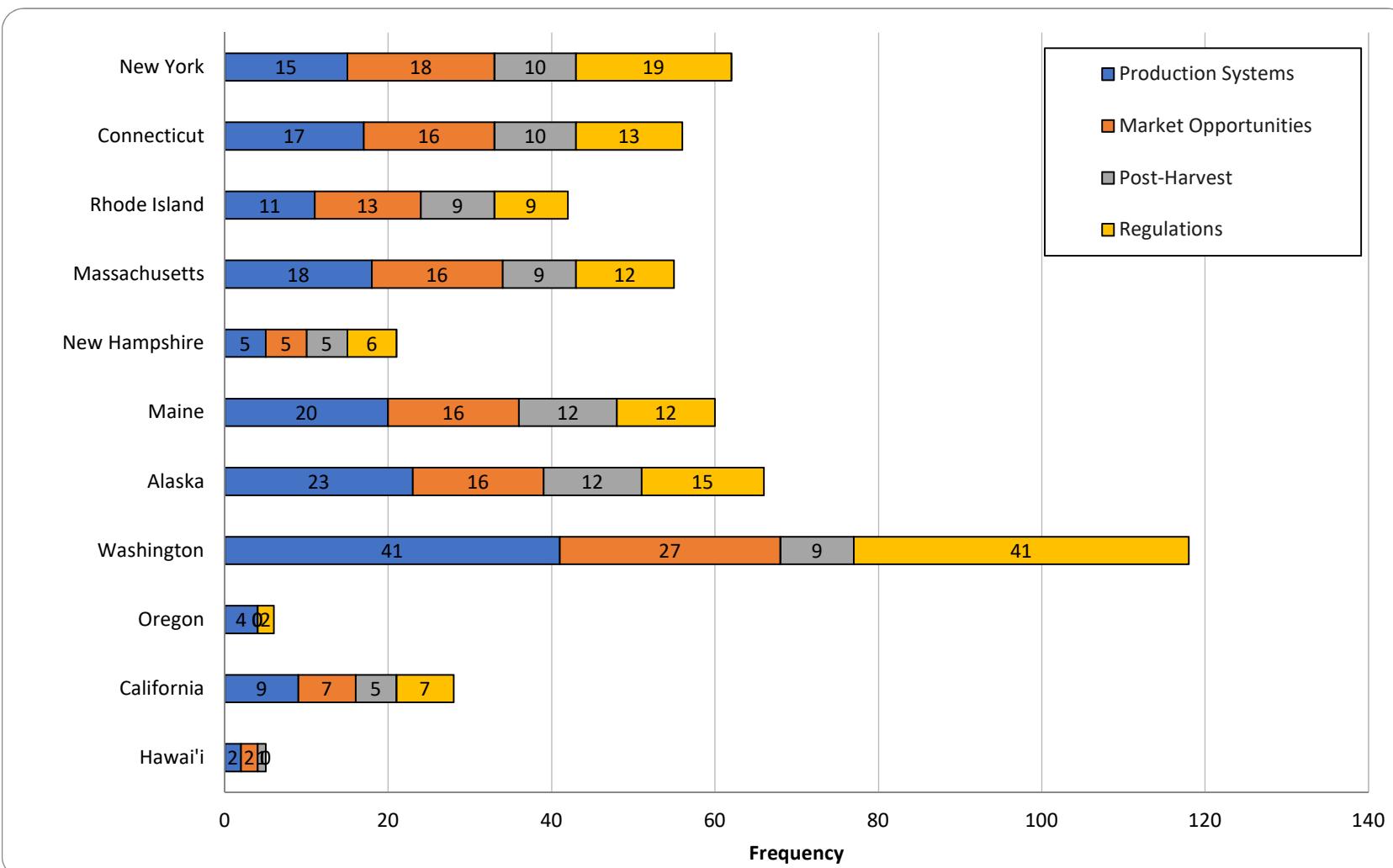
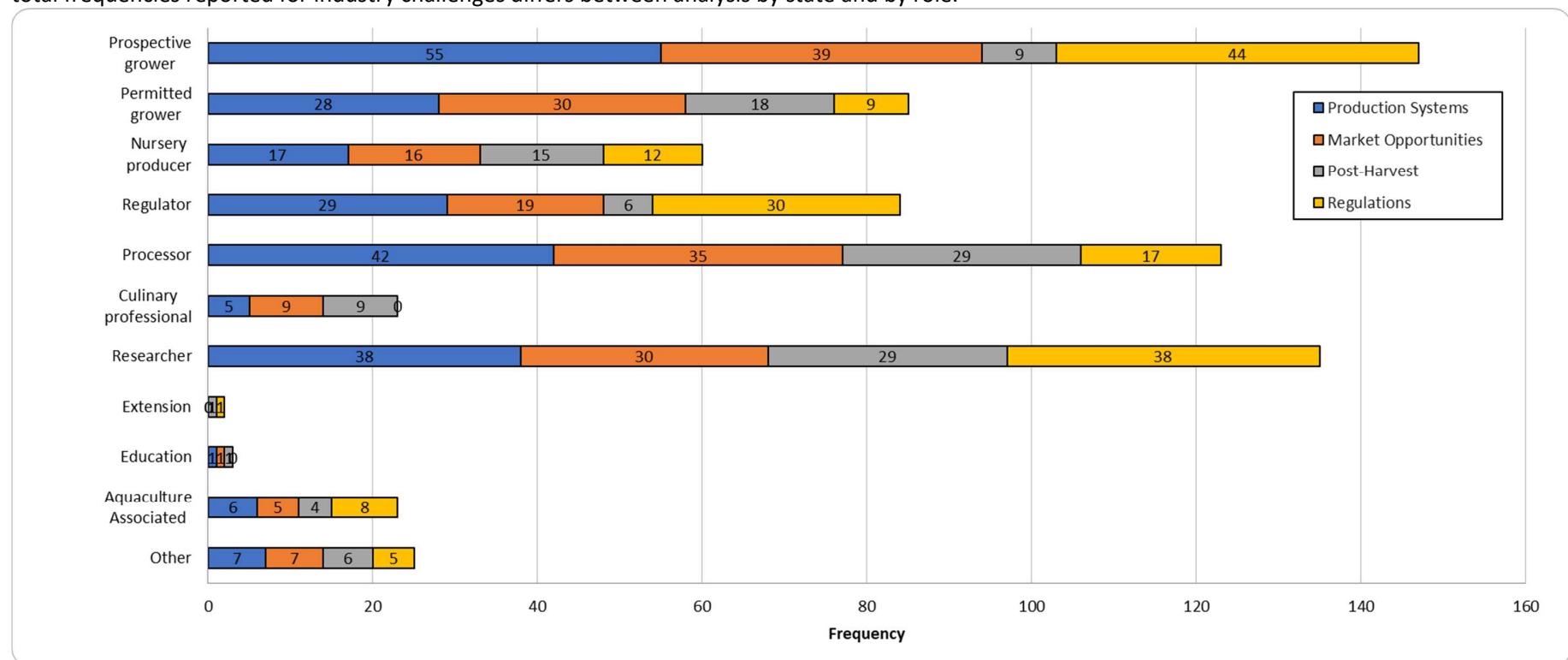



Figure 7. Overall industry challenges by role (N=685). Note: since respondent roles and states of engagement are not mutually exclusive, the total frequencies reported for industry challenges differs between analysis by state and by role.

