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Abstract 

As offshore wind development continues across the globe, accurate spatial data are required to characterize fishing activity, inform 

wind farm siting decisions, and estimate economic exposure. We assess the influence of fishing behavior and fleet definition within a 
multispecies fishery on coarse (logbook-based) footprint biases using a precise (GPS-based) approach. We constructed precise foot- 
prints for 838 trips that caught summer flounder ( Paralichthys dentatus ) trips and 1439 trips that caught any species in the Summer 
Flounder, Scup ( Stenotomus chrysops ), and Black Sea Bass ( Centropristis striata ) Fishery Management Plan from 2016 to 2021. Using 

the precise footprints as a ground truth, we compared the intersections and estimated economic exposure between coarse footprints 
(restricted to the 90th, 75th, 50th, and 25th percentiles) for 37 wind farms in the northeast USA. Unrestricted coarse footprints (90th 

percentile) consistently identified all “true” intersections with wind farms while also overestimating economic exposure. For the mul- 
tispecies fisheries, restricting footprints between 25th and 50th percentile yielded the most accurate estimates of economic exposure. 
This contrasts previous work that found the 25th percentile was most accurate for the targeted longfin squid ( Doryteuthis pealeii ) fish- 
ery, highlighting the importance of fleet definition in this process. Replicating this approach for other fisheries will allow development 
of a tool to accurately estimate economic exposure by restricting coarse footprints in the absence of fine-scale data. 
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Introduction 

Power production from offshore wind is rapidly developing 
around the world, including across the northeast USA, in 

an effort to shift energy usage to more renewable sources 
(Methratta et al. 2020 ). As of July 2024, the United States 
Department of Interior has approved projects that will pro- 
duce 13 gigawatts of energy from offshore wind sources (DOE 

2023 , DOI 2024 ). Currently, the majority of proposed off- 
shore wind leases and planning areas are in the northeast USA,
where designated lease areas cover 930 777 ha (2.3 million 

acres) (Methratta et al. 2023 ). Installation of offshore wind 

supports national strategies to decrease reliance on fossil fu- 
els, reduce carbon emissions, and mitigate climate change ef- 
fects. However, proposed wind developments will have im- 
pacts for marine ecosystems and will overlap with areas that 
are already being used by other marine industries, like com- 
mercial and recreational fisheries (Willsteed et al. 2017 , Gill et 
al. 2020 ). In the northeast USA, there is growing concern that 
offshore wind energy development will impede sustainable 
seafood production and introduce economic hardship for fish- 
ing communities (Scheld et al. 2022 , Chaji and Werner 2023 ).
Thus, understanding spatial conflicts and socioeconomic 
implications of offshore wind for the commercial fishing 
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
ommunity have risen to the top as research priorities for off-
hore wind development (Methratta et al. 2023 ). 

In many cases, offshore wind farms overlap with histori- 
al fishing grounds and displace fishing activity (Gray et al.
016 , De Backer et al. 2019 , Gill et al. 2020 ). Although fish-
ng within wind farms is allowed in the USA, the feasibility
f doing so will vary based on many factors, including vessel
ize, gear used, vessel operator experience, and weather con- 
itions (Methratta et al. 2020 ). For example, bottom-tending 
obile gear (e.g. bottom trawls and dredges) may be more

hallenging to operate near turbine structures than fixed gear 
e.g. trap, rod, and reel), because of the risk of hangs (hav-
ng the gear become stuck). Hangs on turbine scour protec-
ion or undersea cable protection could lead to gear loss and
e reflected in insurance coverage and gear-specific premiums,
hich may cause an indirect exclusion from fishing near wind

arm structures for some operators (Gill et al. 2020 , Methratta
t al. 2020 ). Exclusion from historical fishing areas and ac-
ivities will likely have broader socioeconomic consequences 
e.g. increased transit costs, lower profit margin, loss of mar-
ets for some seafood products, loss of jobs, environmental 
ustice), for at least some fisheries and for local communities
NEFSC 2024 ). 
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In the USA, offshore wind developers have been tasked with
llocating funds to compensate commercial fishers for revenue
oss due to offshore wind installation. State agencies and in-
ividual developers have used a variety of commercial fishing
ata and different mapping and trip selection approaches that
ave produced vastly different estimates of economic expo-
ure. For example, Livermore (2017) used vessel trip reports
nd Vessel Monitoring System (VMS) data to quantify expo-
ure. An alternative approach using vessel trip reports and
bserver data was developed by the NOAA Northeast Fish-
ries Science Center (DePiper 2014 , Benjamin et al. 2018 ).
dditionally, some estimations have been based on all pur-
orted trips for a specific fishery, while others have only eval-
ated trips with potential spatial overlaps. Inconsistent meth-
ds of economic exposure estimation may hinder accurate and
quitable compensation for commercial fishers who are ex-
luded from historical fishing grounds. Thus, there is a need to
valuate a diverse set of approaches and develop an accurate
nd standardized approach to estimate economic exposure for
ommercial fishers that operate in areas slated for offshore
ind energy development (Hogan et al. 2023 , Livermore and
uilfoos 2024 ). 

sing fishing footprints to estimate economic 

xposure 

valuating how offshore wind energy development impacts
istorical fishing operations and seafood production is a re-
earch priority in the northeast USA; specifically, this includes
esearch considering spatial overlaps between fishing areas
nd offshore wind, economic exposure of fishing operations
o offshore wind, and impacts on fisheries with different gear
ypes (Methratta et al. 2023 ). To evaluate spatial overlap be-
ween fishing activities and offshore wind farms, we need to
nderstand where and when fishing occurs. Researchers have
sed a variety of datasets from distinct fisheries monitoring
nd research programs to build fishing footprints, each with a
nique spatial and temporal resolution (Jennings et al. 2012 ,
igaard et al. 2017 , Amoroso et al. 2018 , Scheld et al. 2022 ,
llen-Jacobson et al. 2023 , Livermore and Guilfoos 2024 ,
amhouri et al. 2024 ). Fishing footprints can be used to eval-
ate the number of vessels and the amount of fishing effort
xposed to offshore wind development, which can be linked
ith revenue data to provide estimates of economic losses due

o offshore wind development (Benjamin et al. 2018 , Allen-
acobson et al. 2023 ). 

At present, the Northeast Fisheries Science Center (NEFSC)
nd Greater Atlantic Regional Fisheries Office (GARFO) esti-
ate exposure by using logbooks (Vessel Trip Reports), land-

ngs reported by seafood dealers, and data collected from at-
ea observer programs (Brooke 2015 , Benjamin et al. 2018 ).
ogbooks provide a census of fishing activity (e.g. statistical
eporting areas) for federally managed fleets in the region, be-
ause commercial fishers are required to submit logbook re-
orts for all trips. Data on fishing effort from logbooks can be
inked to associated seafood dealer reports for landings and
evenue from individual fishing trips. The spatial resolution
f logbook data, however, is coarse, including only the cen-
ral location of fishing for an entire fishing trip, which can
over tens of square kilometers. Fishery observers, tasked with
ollecting data primarily used in bycatch estimation, are de-
loyed on a random sample of trips, and they collect more
recise information on fishing position (location of individual
ear deployments). Observer data, however, are not available
or all fisheries or fishing trips. The NEFSC and GARFO have
sed the available logbook reports and observer data to cre-
te coarse fishing footprints with four percentiles of the ob-
erved spatial distribution (25th, 50th, 75th, and 90th) that
eflect the percentage of trips expected to occur within certain
istances of the trip center that was reported in the logbook
DePiper 2014 , Benjamin et al. 2018 ). These revenue density
ata products are used to estimate economic exposure of fish-
ries to offshore wind farms, inform siting of offshore wind
nergy areas, and develop compensation plans for individual
ind farms (Kirpatrick et al. 2017 ). Coarse footprints have
een used to assess exposed revenues for fleets defined by
pecies, gear type, and fisheries management plan groupings
Kirpatrick et al. 2017 ), which may not reflect the complexi-
ies of economic exposure for multispecies fisheries. 

Coarse locations reported in logbooks are available for all
shing effort in federally managed fisheries in the USA; how-
ver, coarse footprints are often based on one recorded loca-
ion per fishing trip and may not reflect the true spatial extent
f hauls that occurred on a trip, which likely varies based on
ear and target species (Allen-Jacobson et al. 2023 ). Allen-
acobson et al. (2023) used high-resolution data collected by
he NEFSC Study Fleet (Palmer 2007 , Jones et al. 2022 ) to
valuate biases in coarse footprint estimates of exposed rev-
nue for the longfin squid ( Doryteuthis pealeii ) fishery. The
ongfin squid fishery is a targeted bottom-trawl fishery and
llen-Jacobson et al. (2023) assessed trips where longfin squid
omprised at least 39% of landings (by weight) and likely rep-
esented the majority of trip revenues. For the longfin squid
shery, unrestricted footprints (90th percentile) detected all
rips that were exposed to wind farms, but also detected false
ntersections and underestimated per-trip exposed revenue. As
oarse footprints were restricted to lower percentiles, fewer
alse intersections with wind energy areas were detected while
ore true intersections were missed. Exposed revenue for the

ongfin squid fishery was best estimated by coarse footprints
hat were restricted to the 25th percentile. This is because the
ow resolution of unrestricted coarse footprints spreads rev-
nue and fishing activity over larger areas than would be rep-
esented in footprints based on more fine-scale data (Allen-
acobson et al. 2023 ). 

Based on analyses of the targeted longfin squid fishery, re-
tricting coarse footprints may improve exposure analysis in
he absence of fine-scale data; however, the utility of restricting
ootprints may vary among fleets depending on target species
nd gear type. Fleet definitions also differ for more targeted
sheries. For example, fleets that target multiple species (e.g.
ixed groundfish, summer flounder) may have wider spatial
istributions compared to fleets that target a single species
e.g. longfin squid), which may have smaller or patchier spa-
ial distributions (Allen-Jacobson et al. 2023 ). Additionally,
or multispecies fisheries, revenue will be distributed across
ore species than targeted fisheries, which means that ex-
osed revenue for multispecies fisheries may be underesti-
ated if only target species revenues are considered. There-

ore, more research is needed to better understand biases in
eet definitions and coarse footprints for multispecies fish-
ries. Comparing fine-scale data and coarse data on fishing
ocations for other fisheries will also facilitate understanding
f how logbook data can be used to accurately estimate eco-
omic exposure across fleets, including those lacking fine-scale
ata. 
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Table 1. Terms and definitions for this paper 

Term Definition 

Summer flounder trips Trips that landed summer flounder, which are defined as trips that have any ( > 0 pounds) summer flounder kept catch. 
FMP trips Trips that landed species included in the summer flounder, scup, and black sea bass fishery management plan and include 

any kept catch ( > 0 pounds) from at least one relevant species. 
Coarse footprints Fishing footprints that are derived from Vessel Trip Report (logbook) logbook data. 
Precise footprints Fishing footprints that were created using fine-scale GPS and haul-by-haul data from the NEFSC Study Fleet. 
True positive Both the coarse and precise footprint intersect with a wind farm. 
False positive The coarse footprint intersects with a wind farm but the precise footprint does not. 
True negative Neither the coarse nor the precise footprint intersects with a wind farm. 
False negative The precise footprint intersects with a wind farm but the coarse footprint does not. 
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Our objective was to quantify biases in coarse fishing foot- 
prints and their estimates of economic exposure for a mul- 
tispecies fishery. The mid-Atlantic large-mesh trawl fishery 
targets multiple demersal species, including summer flounder 
or “fluke” ( Paralichthys dentatus ), which is the focus of this 
research. Summer flounder is the most commercially valu- 
able flatfish in the mid-Atlantic region and supports produc- 
tive recreational and commercial fisheries (Collette and Klein- 
Macphee 2002 ). Vessels fishing for summer flounder often co- 
incidentally catch several other species, including scup ( Steno- 
tomus chrysops ) and black sea bass ( Centropristis striata ).
Thus, the Fishery Management Plan (FMP) used by the Mid- 
Atlantic Fishery Management Council is inclusive of all three 
species. In 2022, the commercial fisheries in the USA landed 

4634 metric tons of summer flounder valued at over $26 mil- 
lion, 5492 metric tons of scup valued at over $10 million,
and 2336 metric tons of black sea bass valued at over $14 

million (NOAA 2024 ). We chose the summer flounder fish- 
ery because it is a multispecies fishery, which operates in a 
distinct manner from the more targeted longfin squid fish- 
ery, making it a well-suited comparison. Additionally, spatial 
data for summer flounder fishery were well represented in our 
fine-scale (Study Fleet) and coarse-scale (logbook) datasets.
To test whether optimal footprint calculation methods varied 

by fishery, we applied the analytical approach used by Allen- 
Jacobson et al. (2023) to compare precise fishing footprints 
(based on fine-scale data) to coarse fishing footprints (based 

on logbook data) for longfin squid and estimate economic ex- 
posure of these fisheries to wind farms. To better understand 

exposed revenue for the multispecies summer flounder fishery 
and FMP, we considered species-specific and all multispecies 
revenues. Comparing our results for more diversified fisheries 
(summer flounder and the summer flounder, black sea bass,
and scup FMP) to each other and to those for the single-species 
fishery (longfin squid) allows a better understanding of how 

fleet definition and fishery type influence fishing footprint def- 
inition and revenue exposures. 

Materials and methods 

We used fine-scale GPS data from the NEFSC Study Fleet to 

create precise fishing footprints for vessels targeting summer 
flounder and for vessels targeting other species in the FMP 

between 2016 and 2021 ( Table 1 ). Since 2014, the NEFSC 

Study Fleet has engaged 37–42 vessels annually with partic- 
ipants from Maine to North Carolina, USA. Study Fleet ves- 
sels collect detailed data on fishing operations and catch from 

each haul, which supports fisheries science and management 
efforts (Palmer 2007 , Jones et al. 2022 , 2025 ). During their 
fishing trips, Study Fleet vessels collect Global Positioning 
System (GPS) locations every minute, and captains manually 
ecord the start and end locations of each gear haul, making
he dataset well suited for constructing precise fishing foot- 
rints. We used the Catch and Accounting Monitoring Sys-
em (CAMS) to retrieve total landings, trips, and vessels for
he summer flounder fishery and to then calculate Study Fleet
overage from 2006 to 2023 (Supplementary Table S1 and 

ig. S1 ). CAMS is a collaborative effort between the NEFSC
nd GARFO to provide a comprehensive source of landings 
or all catch in the Greater Atlantic region of the USA. Be-
ween 2006 and 2023, overall landings for summer flounder 
ecreased while the number of participating Study Fleet ves- 
els increased, which led to higher rates of coverage by Study
leet-affiliated vessels in more recent years. Based on our as-
essment of Study Fleet coverage, we selected fishing trips from
ears for which Study Fleet vessels harvested at least 10%
f landings for the entire commercial summer flounder fish- 
ry (2016–2023). From 2016 to 2023, Study Fleet summer 
ounder landings represented 10%–15% of all commercial 
ummer flounder landings (Supplementary Materials: Fig. S1 ).

hen conducting this research, complete Study Fleet GPS and 

evenue data were not yet available for 2022 or 2023 due to
ata processing lags, so only data from 2016 to 2021 were

ncluded in our study. 
We completed two analyses using different subsets of fish- 

ng trips that harvested summer flounder with the goal of test-
ng how each fleet definition influenced our estimations of in-
ersections with wind farms and revenue exposure. Our selec- 
ion criteria are based on existing management definitions for 
ultispecies fisheries, where fleets are defined by permit, pos- 

tive catch of target species, gear, and region (McAfee 2024 ).
ne of the goals of this research was to better understand how

he characterization of a fishery influenced economic exposure 
esults. For the summer flounder fishery, we first selected trips
hat the Study Fleet captains designated as targeting summer 
ounder in their reporting. Upon doing this, we found that
any trips had zero revenue or pounds of kept summer floun-
er catch and that we were missing a fair amount of summer
ounder revenue that was caught on trips that were not des-
gnated as targeting summer flounder. This is due to the mul-
ispecies and opportunistic nature of summer flounder fishing 
rips, which often target other species (primarily black sea bass
nd scup). Thus, to accurately account for summer flounder 
shing effort and revenue, we selected all Study Fleet trips with
t least 1 pound of summer flounder kept catch. This approach
s consistent with the requirement of a summer flounder per-
it to retain them and used for defining fleets in our region

or bycatch monitoring and standardized catch rates. We con- 
idered selecting a landings threshold, but wanted to be as in-
lusive as possible of trips with exposed summer flounder rev-
nue. Thus, the first analysis included all trips that had sum-
er flounder kept catch (hereafter, “summer flounder trips”).

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
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ummer flounder trips were defined as large-mesh otter trawl
 > 5 inches) trips that targeted and landed summer flounder. 

To account for the multispecies nature of the summer floun-
er fishery, we also selected trips based on the associated FMP.
he second analysis included trips that had kept catch for any
pecies included in the summer flounder, scup, and black sea
ass FMP (hereafter, “FMP trips”). FMP trips were defined
s targeting the FMP by large mesh trawls ( > 5 inches) with
reater than 0 pounds kept catch for at least one of the FMP
pecies. For both analyses, we selected all NEFSC Study Fleet
rips that occurred between 2016 and 2021, had fine-scale
PS location data, and met the gear and catch criteria. We
sed the most recent 5 years of data to best reflect the current
tate of the fishery and mirror data requirements in compen-
ation claim instructions, which request the most recent 3–5
ears of data. As summer flounder are included in the FMP,
e expected summer flounder trips to overlap with FMP trips,
hich would allow us to better evaluate how different defini-

ions of the multispecies fishery (summer flounder or FMP)
ay influence the biases in estimates of economic exposure to
ind farms. 
We calculated trip-specific revenues based on logbook and

ealer information extracted from NOAA databases. For the
ummer flounder trips, we calculated summer flounder rev-
nue by summing revenue by logbook trip identification codes,
onitoring program, and northeastern commercial species

ode for records of summer flounder, following methods de-
eloped by Allen-Jacobson et al. (2023) . We also calculated to-
al species revenue for each summer flounder targeted trip by
umming revenue across all reported species codes with kept
atch for that trip. Similarly, for the FMP trips, we calculated
MP revenue by summing revenue by logbook trip identifica-
ion codes, monitoring program, and the northeastern com-
ercial species codes for records of all three FMP species. We

lso calculated the per-trip total species revenue for all FMP
rips. We adjusted revenue to reflect the 2022 Gross Domestic
roduct, as that was the most recent deflator available from
he Federal Reserve Economic Database (FRED) at the time
f writing. For each trip, we multiplied revenue by the ratio
f the nominal year’s value to the 2022 deflator. 

ishing footprints 

e used fine-scale GPS data to create precise fishing footprints
ollowing Allen-Jacobson et al. (2023) . Specifically, we used
shing location data to construct convex hulls with a 50-m
uffer for each recorded fishing haul. Hauls were then merged
y trip to create a “precise fishing footprint” (PFF) for each
rip (Supplementary Fig. S2 ). To estimate exposed revenue, we
ransformed precise fishing footprint polygons into grids of
ells (rasters) and then evenly distributed total trip revenues
cross the fishing footprint cells. This means that total trip
evenue would be the sum of the revenue per cell for all cells
n the precise fishing footprint. 

We used logbook identifiers to match logbook footprints
coarse fishing footprints) to each of the selected trips. Coarse
ogbook footprints were developed by the NEFSC using log-
ook fishing locations, validated against observer-based haul
ocations to produce a modeled representation of fishing ac-
ivity (DePiper 2014 , Benjamin et al. 2018 ). Covariates based
n fishing gear and trip length were produced and then ap-
lied to the logbook-based positions and transformed to a
ridded representation of fishing activity intensity. These grids
an then be applied to trip-based values for a coarse repre-
entation of spatial valuation. To better understand the trade-
ffs of percentile restriction inherent in the coarse logbook
ootprints, we restricted logbook footprints to four different
ercentile levels (90th, 75th, 50th, and 25th) to assess biases
cross a range of possible restrictions that could be used. We
pplied the methods developed by Allen-Jacobson et al. (2023)
o modify rasters and assign revenues based on restricted per-
entiles. GARFO reports logbook footprints that are restricted
o the 90th percentile, for which 25% of the revenue is dis-
ributed to each percentile level. We modified the standard
ogbook footprints by restricting them to the 75th, 50th, and
5th percentiles. As percentile was restricted, revenue was dis-
ributed across a smaller footprint with 33%, 50%, or 100%
f the revenue distributed across each percentile level when
ootprints were restricted to the 75th, 50th, and 25th per-
entiles. Thus, revenue was more concentrated in the center
f the coarse footprints. 
We completed analyses in R (R Core Team 2023 ) and used

he “terra” (Hijmans et al. 2024 ), “raster” (Hijmans et al.
025 ), “dplyr” (Wickham et al. 2023 ), and “ggplot” (Wick-
am 2016 ) packages to complete analyses and create figures. 

valuating exposure to wind areas 

e evaluated fishing exposure to offshore wind for 37 wind
evelopment areas (8 planning areas and 29 leased areas),
hich ranged in area from 2.34 km 

2 to 14 251 km 

2 with a
edian area of 328.52 km 

2 , as defined in November 2023
BOEM 2023 ). Since our goal was to assess all possible in-
ersections of fishing footprints with offshore wind, we in-
luded all planned and leased wind energy areas across the
S East Coast. We also included planned and installed sub-
arine transmission cables extending between offshore wind

urbines and from offshore wind farms to shore. We evaluated
iases in coarse footprints assessment of exposure to offshore
ind areas for summer flounder and FMP-targeted trips by

omparing (1) intersections of coarse and precise footprints
nd (2) exposed revenue across percentile restrictions and fleet
efinitions. 
First, we compared intersections of coarse and precise fish-

ng footprints with wind farms across coarse footprint per-
entiles for summer flounder and FMP trips. For each trip,
e evaluated how coarse and precise footprints overlapped
ith each other and with wind farms for each of the four
ercentile restrictions (90th, 75th, 50th, and 25th). We clas-
ified intersections into four possible outcomes, which we or-
anized into a confusion matrix: (1) neither footprint inter-
ected with a wind farm (True Negative, TN), (2) both foot-
rints intersected with a wind farm (True Positive, TP), (3)
nly the coarse footprint intersected with a wind farm (False
ositive, FP), (4) only the precise footprint intersected with a
ind farm (False Negative, FN). We then used a binary classi-
cation metric (F1 score) to measure differences in coarse and
recise fishing footprint agreement for summer flounder trips
nd FMP trips and find the “optimal” percentile restriction to
ssess intersections with wind farms. 

F1 scores can be used to compare an estimated classifica-
ion from a model to a ground truth (Goodwin et al. 2022 ).
1 scores range from 0 to 1, with 1 representing the best clas-
ification ability for the model. In the context of our study, we
ssumed that precise fishing footprints and their intersections
ere “true” representations of fishing activity, and we used F1

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
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Figure 1. Precise footprints for (a) summer flounder targeted trips and (b) FMP-targeted trips. 
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scores to compare them to “modeled”coarse fishing footprints 
intersections. F1 scores use weighted average of precision and 

recall to evaluate model performance. Precision evaluates the 
correctness of positive model classifications and can be used 

to evaluate a model’s ability to provide relevant results. Re- 
call indicates how many positive cases are predicted correctly 
when all the positive cases in the data are considered. For our 
study, higher recall would suggest more instances that coarse 
footprints and precise footprints agreed in their intersection 

with wind farms. Finally, F1 scores combine precision and re- 
call into a single composite metric to rate overall performance 
and agreement for categorization of both true positives and 

true negatives. F1 scores are calculated as: 

Precision = 

True Positive 
True Positive + False Positive 

Recall = 

True Positive 
True Positive + False Neg ativ e 

F 1 = 2 × Precision × Recall 
Precision + Recall 

. 

To facilitate comparisons of biases across fleet classification,
we calculated F1 scores for each percentile (90th, 75th, 50th,
25th) for both summer flounder and FMP trips. We also used 

results reported by Allen-Jacobson et al. (2023) to calculate 
an F1 score for longfin inshore squid trips. 

Second, for trips that intersected with wind farms, we com- 
pared exposed revenue estimates for summer flounder and 

FMP trips across percentiles for both target species and to- 
al species revenue. Following Allen-Jacobson et al. (2023) ,
e estimated economic exposure for each intersecting trip by 

alculating the amount of revenue assigned to the portion of
he precise or coarse footprint that overlapped with the wind
arm. For summer flounder trips we calculated exposed rev- 
nue for summer flounder and for all kept species. For FMP-
argeted trips we calculated exposed revenue for FMP species 
nd for all kept species (all species revenue). We considered ex-
osed revenue for all intersecting trips (total exposed revenue) 
nd calculated an average per-trip exposed revenue (per-trip 

xposed revenue). 
We defined the “optimal” percentile restrictions as those 

hat best matched estimates of exposure and intersections pro- 
uced by precise footprints. In the context of our study, the
optimal” percentile restriction for identifying intersections 
ould be the percentile with highest F1 score, while the “op-

imal” percentile restriction for estimating revenue exposure 
ould be the percentile that produced an estimate of economic

xposure that best matched the precise footprint estimate. 

esults 

e analyzed 838 trips which caught summer flounder com- 
leted by 17 vessels between April 2016 and September 
021 representing $1 739 880 in summer flounder revenue 
nd $2 948 640 total multispecies revenue ( Fig. 1 a). Fish-
ng effort ranged from 1 to 22 trawl hauls per trip with
 mean of 2 (SD: 1.8) hauls per trip, with 75 (SD 46.4)
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Table 2. Summary of data, landings, and re v enue f or summer flounder and 
FMP-targeted trips. 

Range Median Mean (SD) 

Summer flounder 
targeted trips (838) 

Hauls per trip 1–22 2 2 (1.8) 
GPS points per haul 1–396 70 75 (46.4) 

Landings 
Summer flounder (mt) 0.001–7 0.05 0.2 (0.6) 
Summer flounder (%) 0–100 3 15 (28) 
All species (mt) 0.03–10 2.13 2.5 (1.7) 

Revenue 
Summer flounder ($) $7–$45 817 $502 $1 805 ($4 797) 
Summer flounder (%) 1–100 27 37 (28) 
All species ($) $133–$47 054 $2 165 $3 394 ($5 168) 

FMP targeted trips 
(1439) 

Hauls per trip 1–22 2 2 (1.6) 
GPS points per haul 1–396 70 72 (39.2) 

Landings 
Summer flounder (mt) 0–8 0.05 0.2 (0.6) 
Summer flounder (%) 0–100 2 13 (25) 
Black sea bass (mt) 0–2 0.00 0.02 (0.09) 
Black sea bass (%) 0–100 0 2 (7) 
Scup (mt) 0–6 0.01 0.13 (0.42) 
Scup (%) 0–100 1 7 (18) 
FMP (mt) 0–9 0.11 0.32 (0.72) 
FMP (%) 0–100 6 22 (35) 
All species (mt) 0–32 2 3 (2.3) 

Revenue 
Summer flounder $0–$46 817 $480 $1 440 ($3 975) 
Summer flounder (%) 0–100 27 36 (31) 
Black sea bass $0–7 672 $3 $128 ($567) 
Black sea bass (%) 0–100 0 5 (11) 
Scup $0–21 449 $20 $173 ($831) 
Scup (%) 0–100 1 6 (14) 
FMP $2–$46 959 $674 $1 741 ($4 215) 
FMP (%) 0–100 40 47 (31) 
All species $13–$47 054 $2 035 $2 914 ($4 205) 

Statistics represent per-trip summaries. 
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Figure 2. Precise (black polygons) and coarse (colored circles) footprints 
for 838 summer flounder targeted trips and revenue. Leased wind farms 
are indicated in teal and planning areas are indicated in green. The 
polygon (with blank space) on the upper right of the figure reflects a 
fishing closure area. 
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PS points per haul ( Table 2 ). Summer flounder comprised a
ean of 15% (SD 28%) of total landings per trip. Revenue

rom summer flounder ranged from $7 to $45 817 (mean:
1805, SD: $4797) per-trip, which represented a mean of
7% (SD 28%) of total trip revenue ( Table 2 and Supple-
entary Figs S3 –S4 ). Many other species contributed to rev-

nue from summer flounder trips, with little skate ( Leucoraja
rinacea ), haddock ( Melanogrammus aeglefinus ), and tautog
 Tautoga onitis ) contributing the most, after summer flounder
Supplementary Figs S5 –S7 ). 

We assessed 1 439 FMP trips that occurred between Febru-
ry 2016 and September 2021 and were completed by 17
essels, representing $2 810 903 in FMP species revenue and
4 722 340 in all species revenue ( Fig. 1 b). As expected, many
f the FMP trips were also included in our summer flounder
nalysis (838, 58%), with some additional FMP trips (601,
3%) occurring south of Cape Cod, MA. Fishing effort and
PS coverage for FMP trips were very similar to summer
ounder trips ( Table 2 ). Per trip revenue from FMP species
summer flounder, scup, and black sea bass) ranged from $2
o $46 959, with a mean of $1 741 (SD $4 215). On average,
MP species represented 47% (SD: 31) of total trip revenues.
f the FMP species, summer flounder generally represented
ore revenue on each trip (median: 27%; mean: 36%; SD:
1%) compared to scup (median: 1%; mean: 6%; SD: 14%)
nd black sea bass (median: 0.1%; mean: 5%; SD: 11%)
 Table 2 ). 

stimating footprint intersections with wind energy
reas 

ased on precise fishing footprints, 120 of the 838 summer
ounder trips (14%) and 200 of the 1439 FMP trips (14%)
ntersected with wind areas. We used a confusion matrix to
valuate coarse and precise fishing footprint intersections with
ll 37 wind farms ( Fig. 2 , Figure 3 ), resulting in 31 006 pos-
ible intersections for summer flounder trips (838 trips � 37
ind farms) and 53 243 possible intersections for FMP trips

1439 trips � 37 wind farms). Overall, the majority (94.3%–
9.5%) of footprints at all restrictions did not intersect with
ind farms. Considering all possible intersections, 0.4% (120)
f precise footprints for summer flounder trips and FMP trips
200) intersected with wind farms ( Table 3 , Fig. 4 ). For both
MP and summer flounder trips, unrestricted coarse foot-
rints (90th percentile) captured all precise footprint intersec-
ions with wind farms, but also predicted many false inter-
ections (summer flounder: 5.3% (1 655), FMP: 4.5%; Table
 , Fig. 4 ). Logbook fidelity (the ability of coarse footprints
o capture precise fishing footprint intersections with wind
nergy areas) decreased with percentile restriction for both
ummer flounder (90th: 100%; 75th: 95%; 50th: 66%; 25th:
4%) and the FMP (90th: 100%; 75th: 95%; 50th: 72%;
5th: 48%). 
For both summer flounder and FMP trips, true and false

ositives were highest when logbook footprints were re-
tricted to the 90th percentile and both declined with per-
entile restriction ( Fig. 4 ). True negatives and false negatives

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf124#supplementary-data
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Figure 3. Precise (black polygons) and coarse (colored circles) footprints for 1439 FMP-targeted trips and revenue. Leased wind farms are indicated in 
teal and planning areas are indicated in green. The polygon (with blank space) on the upper right of the figure reflects a fishing closure area. 

Table 3. Summary of agreement between coarse and precise footprint intersections with wind farms for each coarse footprint percentile (90th, 75th, 
50th, 25th) along with recall (Re.), precision (Pr.), and F1 score (F1) metrics 

Types of intersections with wind farms 

Percentile restrictions True positives False positives True negatives False negatives Performance metrics 

% (#) % (#) % (#) % (#) Re. Pr. F1 

Summer flounder 
90th 0.4% (120) 5.3% (1655) 94.3% (29 231) 0% (0) 1.00 0.07 0.13 
75th 0.4% (114) 0.8% (239) 98.8% (30 647) < 0.1% (6) 0.95 0.32 0.48 
50th 0.3% (79) 0.2% (53) 99.4% (30 833) 0.1% (41) 0.66 0.60 0.63 
25th 0.2% (53) 0.1% (16) 99.6% (30 870) 0.2% (67) 0.44 0.77 0.56 
FMP 

90th 0.4% (200) 4.5% (2386) 95.1% (50 657) 0% (0) 1.00 0.08 0.14 
75th 0.4% (189) 0.9% (462) 98.8% (52 581) < 0.1% (11) 0.95 0.29 0.44 
50th 0.3% (143) 0.2% (125) 99.4% (52 918) 0.1% (57) 0.72 0.53 0.61 
25th 0.2% (95) 0.1% (50) 99.5% (52 993) 0.2% (105) 0.48 0.66 0.55 
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increased as the percentile was restricted for both fisheries.
Precision increased as coarse footprints were restricted for 
both summer flounder and FMP trips, indicating that coarse 
fishing footprints predicted positive intersections more cor- 
rectly as they were restricted ( Fig. 5 a). As coarse footprints 
were restricted, many fewer false positives were detected. Con- 
versely, recall decreased as coarse footprints were restricted for 
both summer flounder and FMP trips, which reflects the re- 
uction in true positives detected as footprints were restricted 

 Fig. 5 b). For both summer flounder and FMP trips, F1 scores
ere lowest when coarse footprints were unrestricted (sum- 
er flounder F1 = 0.13; FMP F1 = 0.14) and highest when

oarse footprints were restricted to the 50th percentile (sum- 
er flounder F1 = 0.63; FMP F1 = 0.61) ( Fig. 5 c). Precision

nd recall metrics for the longfin squid fishery followed the
ame patterns as the summer flounder and FMP trips. How-
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Figure 4. Intersections with wind energy areas for coarse and precise 
f ootprints f or summer flounder targeted and fishery management plan 
(FMP) targeted trips. This plot includes the results of our confusion 
matrix, specifically the % of total possible intersections (Summer 
flounder: 838 trips � 37 wind farms, 31 006 possible intersections; FMP: 
1439 trips � 37 wind farms, 52, 243 possible intersections) for three 
possible intersection types. “True positive” indicates that both the 
coarse and precise footprint intersected with wind farms. “False 
positive” indicates that only the coarse footprint intersects with wind 
f arms. “F alse negativ e” indicates that only the precise f ootprint 
intersected with wind farms. Percentiles (90th, 75th, 50th, 25th) 
represent restrictions of the coarse footprint. This plot does not include 
footprints that did not intersect with any wind farms (“True negatives”), 
which are included in Table 3 . 
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ver, for longfin squid coarse footprints restricted to the 25th
ercentile ( Fig. 5 c) produced the highest F1 score (0.72). 

stimating exposed revenue 

ummer flounder trips 
or trips that caught summer flounder, we found that 120
recise footprints intersected with wind farms and exposed
.71% of summer flounder revenue and 1.12% of revenue for
ll kept species ( Fig. 6 a; Table 4 ). When considering individual
rips, on average 5.68% ($103, SE: $4.77) of summer flounder
evenue and 8.09% ($275, SE: $8.5) of total species revenue
ere exposed for each intersecting precise fishing footprint

 Fig. 6 b; Table 4 ). Unrestricted coarse footprints (90th per-
entile) estimated higher total exposed revenue (2.56% of to-
al revenue) than precise footprints (summer flounder: 2.56%
$44 566); all kept species: $75 364). However, unrestricted
oarse footprints also estimated lower per-trip exposed rev-
nue than precise footprints (summer flounder: 1.25% ($25,
E: $0.1); all kept species: 1.34% ($42, SE: $0.1); Fig. 6 b].
oarse footprint estimates of total exposed revenue were clos-

st to precise footprint estimates when coarse footprints were
estricted to the 25th percentile (summer flounder: 0.99%; all
ept species: 1.10%); however, coarse footprints restricted to
he 25th percentile also overestimated average exposed rev-
nue per trip [summer flounder: 13.77% ($249, SE: $13.5); all
pecies: 13.90% ($472, SE: $20.8)] when compared to precise
ootprints. For summer flounder revenue, coarse footprint es-
imates of exposed revenue per trip best matched precise foot-
rint estimates at the midpoint of the 50th [summer flounder:
.59% ($155, SE: $5.0)] and 75th [4.88% ($88; SE: $1.0)]
ercentiles ( Fig. 6 b). For total species revenue, coarse foot-
rint estimates of exposed revenue per trip best matched pre-
ise footprint estimates at the 50th percentile (all kept species:
.92%, $269, SE: $6.6; Fig. 6 b). 

MP trips 
MP precise footprints had 200 intersections with wind farms,
hich exposed 0.72% of FMP species revenue and 1.12%
f all kept species revenue ( Table 4 , Fig. 4 ). As with sum-
er flounder trips, unrestricted FMP coarse footprints (90th
ercentile) estimated the highest total exposed revenue (FMP
pecies: 2.14%; all kept species: 2.10%; Fig. 6 c) and the
owest per-trip exposed revenue (FMP species: 1.34%; all
pecies: 1.31%; Fig. 6 d). Coarse footprint estimates of to-
al exposed revenue best matched precise footprint estimates
hen restricted to the 25th percentile for FMP species revenue

0.90%) and the 50th percentile for all kept species revenue
1.14%). Per-trip exposed revenue for FMP trips was high-
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Figure 6. Total and per-trip exposed revenue for the summer flounder targeted (a, b) and FMP-targeted trips (c, d). “PFF” refers to exposed revenue 
calculated based on the precise fishing footprint. “Summer Flounder Only” refers to exposed revenue from summer flounder catch. “FMP Species 
Only” refers to exposed revenue from all three species in the Fishery Management Plan (Summer Flounder, Scup, and Black Sea Bass). “Total (All 
species)” refers to exposed revenue from all species landed. 

Table 4. Summary of exposed revenue for precise footprints and coarse footprints that intersected wind farms at each coarse footprint percentile (90th, 
75th, 50th, 25th). 

Exposed revenue 

Analysis 
Percentile 
restriction Exposed trips (#) 

Total exposed 
($) 

Percent of total 
revenue (%) Mean per-trip SE ($) 

Percent of per-trip 
revenue exposed (%) 

Summer flounder trips 
Summer flounder only 90th 1 775 $44 566 2.56% $25 $0.08 1.39% 

75th 353 $31 112 1.79% $88 $1.04 4.88% 

50th 132 $20 475 1.18% $155 $5.02 8.59% 

25th 69 $17 154 0.99% $249 $16.25 13.77% 

PFF 120 $12 310 0.71% $103 $4.77 5.68% 

All species 90th 1 775 $75 364 2.56% $42 $0.10 1.25% 

75th 353 $48 447 1.64% $137 $1.36 4.04% 

50th 132 $35 497 1.20% $269 $6.55 7.92% 

25th 69 $32 543 1.10% $472 $20.83 13.90% 

PFF 120 $32 945 1.12% $275 $8.48 8.09% 

FMP trips 
FMP species only 90th 2 586 $60 172 2.14% $23 $0.05 1.34% 

75th 651 $42 764 1.52% $66 $0.48 3.77% 

50th 268 $30 055 1.07% $112 $1.96 6.44% 

25th 145 $25 373 0.90% $175 $5.83 10.05% 

PFF 200 $20 324 0.72% $102 $2.53 5.84% 

All species 90th 2 586 $98 966 2.10% $38 $0.06 1.31% 

75th 651 $66 945 1.42% $103 $0.61 3.53% 

50th 268 $53 947 1.14% $201 $2.63 6.91% 

25th 145 $51 214 1.08% $353 $7.74 12.12% 

PFF 200 $53 068 1.12% $265 $4.49 9.11% 
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st when coarse footprints were restricted to the 25th per-
entile (FMP species: 10.05%; all kept species: 12.12%). Pre-
ise footprint per-trip exposed revenue (FMP species: 5.84%;
ll kept species: 9.11%) best matched per-trip exposed rev-
nue for coarse footprints restricted to the 50th percentile for
MP species (6.44%) and between the 50th (6.91%) and 25th
12.12%) percentiles for all kept species. 

iscussion 

s offshore wind development evolves, evaluating spatial
verlap between commercial fisheries and offshore wind farms
s necessary to assess economic and practical implications for
shing communities and the seafood supply chain. Ideally, pre-
ise spatial data, including catch and revenue information,
ould be available for all fishing trips to assess where fish-

ng is occurring in relation to offshore wind areas. However,
ince precise information on fishing locations is not collected
or many fishing trips and some entire fisheries, there is a need
o estimate offshore wind impacts using coarse footprints.
oarse fishing footprint data are available for many more fish-

ng trips, but may provide biased estimates of fishing locations
nd revenue exposure depending on the fishery and gear type.
ine-scale data can be used to refine coarse footprints and
rovide more robust estimates of fishing locations and eco-
omic exposure, as has been demonstrated for the targeted
mall-mesh longfin squid fishery (Allen-Jacobson et al. 2023 ).
n this study, we used fine-scale data collected by the NEFSC
tudy Fleet to evaluate tradeoffs in coarse footprint construc-
ion methods for the summer flounder fishery and FMP with
he goal of better understanding biases in coarse footprints for
 multispecies fishery that used large mesh trawls. 

Our results demonstrate the importance of spatial scale and
eet definitions when using fishery-dependent data to estimate
conomic impacts of offshore wind on fisheries. Coarse data
ollected for fisheries management purposes was not designed
o evaluate offshore wind development and fisheries interac-
ions, but these data can be refined based on fine-scale datasets
nd trends in specific fisheries. Although coarse footprints ef-
ectively detected all fishing trips that intersected with wind
reas, they also detected many false positives and overesti-
ated total exposed revenue while underestimating per-trip

xposed revenue. Restricting footprints may reduce false pos-
tives but may also result in missing intersections and, conse-
uently, underestimate economic exposure. This general trend
as consistent across assessed fishery types (summer flounder,

ummer flounder FMP, and longfin squid), though the optimal
oarse footprint restriction differed by fishery. Based on our
nalysis, marine resource managers working to site offshore
ind farms to minimize socioeconomic impacts should con-

ider these trade-offs when using coarse footprints to estimate
ffshore wind impacts. Ultimately, the optimal restriction of a
oarse fishing footprint may be dependent on specific project
oals; for example, one might use unrestricted footprints to
ssess the presence/absence of fishing and use restricted foot-
rints to estimate economic exposure. 

iases in unrestricted coarse footprints 

e assumed that intersections between wind development ar-
as and precise footprints represented “true” exposure for
ach trip. When coarse footprints were restricted to the 90th
ercentile (unrestricted footprints), they detected all trips with
true” exposure for summer flounder trips and FMP trips. At
he same time, unrestricted footprints detected the most false
ositive intersections. As coarse footprints were restricted to
maller percentiles, true positives decreased while false neg-
tives increased. These results corroborate those found with
ongfin inshore squid (Allen-Jacobson et al. 2023 ), and further
uggest that restricting coarse footprints comes with a trade-
ff between more false negatives and fewer false positives for
oth targeted and multispecies fisheries. 
When the goal is to assess all at-risk trips and their ge-

graphic attributes, unrestricted coarse footprints should be
sed since restricted footprints have the potential to miss at-
isk trips. If the goal is to assess the general trends in the num-
ers and locations of trips that may be at risk, F1 scores could
e a useful tool to pick an optimal coarse footprint percentile
estriction. The F1 scores assessed trade-offs between true and
alse positives and varied between fisheries. For summer floun-
er and FMP trips the highest F1 score occurred when coarse
ootprints were restricted to the 50th percentile, while for
ongfin squid, the highest F1 score occurred when coarse foot-
rints were restricted to the 25th percentile. This difference in
ptimal restriction may reflect differences in species distribu-
ion, fishing behavior, and gear types. Summer flounder and
MP trips were limited to large mesh trawls, while longfin
quid trips tend to use small mesh trawls. Summer flounder
nd FMP trips may more consistently cover larger spatial ar-
as than longfin squid trips due to differences in species dis-
ribution, which is reflected in the optimal coarse footprint
estrictions. If we had considered fixed gears commonly used
n black sea bass trips (e.g. fish pots), we would expect to see
imilar restrictions, or greater, to the longfin fishery. This is
n important consideration in our fleet definition, as summer
ounder are managed within a multispecies, multi-gear FMP. 
We found that unrestricted footprints underestimated per-

rip exposed revenue for summer flounder and FMP trips. As
oarse footprints are restricted, revenue is concentrated into
maller areas, and more revenue is exposed in detected inter-
ections. When considering exposure for individual trips and
essels, using unrestricted footprints may underestimate ex-
osed revenue and reduce vessel operator access to compen-
ation. For mixed-species fisheries like summer flounder, con-
idering species- and FMP-specific revenues greatly reduced
stimates of economic exposure. If the goal is to estimate over-
ll economic exposure for a set of trips or a specific vessel, one
hould use total species revenue rather than species- or FMP-
pecific revenue. 

Based on F1 scores and our exposed revenue analysis, re-
tricting coarse footprints to the 50th percentile may provide
he optimal spread to balance detection of true and false pos-
tives and accurately estimate total and per-trip exposed rev-
nue for both summer flounder and FMP trips. For the more
argeted longfin squid fishery, restricting coarse footprints to
he 25th percentile produced the most accurate exposed rev-
nue estimates and best balanced true and false positive de-
ections. Restricting footprints based on fishery-specific F1
cores and our assessments of exposed revenue may support
ore balanced estimations of intersections with wind areas

nd economic exposure. Restricting coarse footprints and in-
luding all landed species provided more realistic estimates of
xposed revenues for individual trips when compared to us-
ng unrestricted coarse footprints and species or FMP-specific
evenues. Species-specific revenues may not accurately repre-
ent trip revenue exposure for multispecies fisheries like the
ummer flounder fishery or groundfish fishery. 
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Economic exposure and compensation 

Precise estimates of per-trip and vessel-specific exposed rev- 
enue are increasingly important as developers begin offering 
compensation to commercial fishers who are affected by 
offshore wind farms (Lennon 2024 , Zuckoff 2024 ). Al- 
though compensation processes differ between developers, 
these programs generally require applicants to submit data 
proving that they have recently fished within specific wind 

farm areas, as well as revenue data for those fishing trips.
Revenue data might include an estimate of exposed revenue 
or the operation’s total revenue. Logbook-based data are an 

accepted form of spatial data for these claims. For commer- 
cial fishers submitting claims to offshore wind companies,
unrestricted coarse footprints may overestimate intersections 
with wind energy areas while also underestimating economic 
exposure for individual trips, which could result in reduced 

or inaccurate compensation. Restricting footprints based on 

fishery biases may provide more representative estimates of 
lost revenues for both developers and affected commercial 
fishers so that total compensation settlements can cover the 
claims. As commercial fishers go through the compensation 

process, it will be important to document the process and 

evaluate how offered compensation matches expectations 
based on available data and perceived economic impacts.
Future research may consider evaluating coarse footprints 
for additional fishery types, using more widely collected fine- 
scale data (e.g. vessel monitoring system data), or considering 
other methods of constructing precise fishing footprints to 

produce more accurate fishing footprints. For example, since 
our primary goal in this paper was to make a comparison 

between a targeted fishery (Allen-Jacobson et al. 2023 ) and a 
multispecies fishery, we chose to use convex hulls to maintain 

consistency between the two studies. As depicted in Figs. 2 

and 3 , the convex hulls are much smaller than the coarse 
footprints and additional precision may not be required for 
the purpose of evaluating intersections between fishing trips 
and offshore wind areas. More precise “linestrings” may be 
useful for other applications, like estimating overlaps with 

aquaculture. Future studies may consider comparing methods 
of constructing precise footprints, including “linestrings” and 

convex hulls, to better assess biases. 
It is important to note that our research only considered 

exposed revenue from reported landings for fishing footprints 
that overlapped with proposed and leased offshore wind 

farms. Economic exposure represents one facet of overall eco- 
nomic impacts for commercial fisheries (Chaji and Werner 
2023 ). For example, we have not considered how vessels may 
change transit routes to accommodate wind areas, which may 
result in increased fuel usage (Samoteskul et al. 2014 ). We 
have also not considered other indirect impacts of offshore 
wind on fisheries operations, like higher insurance costs (Hall 
and Lazarus 2015 , Hooper et al. 2015 ). Additionally, this 
analysis does not consider broader impacts on shoreside sup- 
port businesses and communities (Chaji and Werner 2023 ). 

Collaboration with the fishing community was a key com- 
ponent of this research, from collection of high-resolution 

catch and effort data through Study Fleet to review and 

interpretation of results. Communication mechanisms with 

commercial fishers included individual phone calls, one-page 
research summaries, in-person presentations, and in-person 

conversations. Each form of communication yielded unique 
feedback and insights that were used in the interpretation 

of results. Further, as compensation programs have moved 
orward, the data processing and summarization methods de- 
eloped through this research have been used to provide com-
ercial fishers with quantitative evidence of fishing within and 

round offshore wind farms. Several compensation programs 
re ongoing and are likely to reveal the value of having high-
esolution catch and effort data for individual fishing vessels.
eveloping useful data products for collaborating fishers is 

ritical for maintaining motivation and engagement in data 
ollection activities. 

xpanding to other fine-scale datasets 

ur study relied on fine-scale data from the NEFSC Study
leet, which partners with commercial fishers to generate time 
eries of research-quality self-reported data. The Study Fleet 
rogram partners with vessels, rather than sampling across 
he fleets, and may not reflect the diversity of fishing occurring
n the northeast USA. Our studies analyzed some of the fleets
ith the best coverage in the Study Fleet. Other fine-scale

patial datasets—including the Vessel Monitoring System 

VMS) and Automatic Identification System (AIS)—may be 
seful to produce precise footprints for a broader range 
f vessels, but they also have limitations. VMS tracking is
equired for a large proportion of federally managed fisheries 
nd thus covers more vessels than Study Fleet; however, VMS
olling frequency is every 30–60 minutes and these data 
re not freely available due to their confidential nature. AIS
ata are publicly available and include one location every 
 seconds–3 minutes, thus providing finer spatial data than 

MS. However, AIS is only required for vessels that are
onger than 19.81 m (65 ft.) and the system can be turned off
y the vessel operator once vessels are > 19.31 km (12 miles)
rom shore. Further, Study Fleet data includes descriptions of 
shing behavior—like the start and end of each haul—which 

llows researchers to create specific footprints to reflect when 

shing is occurring. AIS and VMS data cannot be readily used
o identify fishing activity since they are not annotated and do
ot distinguish between fishing and other activities, including 
ransit, processing, preparing, or repairing gear. Additionally,
ach of these fishing activities will vary by fishery. Research
s underway to utilize deep learning techniques to parse 
n-annotated AIS data based on available fishing behavior 
ata (including vessel position, haul start and end, and vessel
peed) from fisheries observers for the New England scallop 

shery (Livermore and Guilfoos 2024 ). 
Fishing behavior varies by fishing gear and fishery type, and

esearchers may consider using annotated Study Fleet data 
long with deep learning techniques to predict fishing activ- 
ty for other fisheries using other fine-scale datasets that lack
shing behavior information (AIS, VMS). Using more broadly 
vailable fine-scale data would allow researchers to construct 
ore precise fishing footprints for a larger proportion of ac-

ive vessels and build a more realistic picture of spatial pat-
erns and exposed trips. 

onclusions 

revious studies suggested fine-scale data could be used to in-
estigate the accuracy of fishing footprints and test the gener-
lity of prior findings that restricting lower-resolution coarse 
shing footprints improved their accuracy. Using a second,
nd behaviorally distinct fishery, we found that restricted log- 
ook footprints were the most accurate, and had the high-
st F1 score. Because these coarse logbook footprints are 
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urrently being used to evaluate impacts of offshore wind de-
elopment, we suggest restricting them or evaluating whether
estricted footprints would increase their accuracy. Our re-
ults underscore the importance of collecting fine-scale data
o evaluate spatial patterns for commercial fishing. Fisheries
onitoring systems, such as Vessel Trip Reports, were devel-
ped to support fisheries management and enforcement, not
o make precise spatial determinations. 

Our results also demonstrate that fleet definition influenced
ur evaluation of economic exposure for the multispecies
ummer flounder fishery. When considering the economic ex-
osure of species that are part of a multispecies fishery, evalu-
tions conducted at the FMP level may produce more realistic
stimations of fishery impacts than considerations of a single
pecies. Additionally, we found that inclusion of total species
evenue for a trip is more important in calculations of eco-
omic exposure for multispecies fisheries compared to more
argeted fisheries. Managers may consider these results when
eevaluating methods for defining the summer flounder fishery
r other multispecies fisheries. 
As ocean use priorities change, there is an opportunity to

eevaluate fisheries-dependent data collection efforts and in-
roduce new protocols to meet new data needs. Implement-
ng broader fine-scale data collection programs requires addi-
ional resources and considerations of data confidentiality, but
an provide many benefits. In addition to their utility in eval-
ating offshore wind impacts, fine-scale spatial data supports
onstruction of more accurate fishing footprints, which can
e used for other research priorities. For example, they may
e used to evaluate changes in species spatial distributions re-
ated to climate change, changes in ocean use, effects of pro-
osed marine protected areas, and other spatial management
ctions. For commercial fishers, collection of fine-scale spatial
ata may also support compensation claims as offshore wind
evelopments are constructed and become operational. 
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