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Abstract

As offshore wind development continues across the globe, accurate spatial data are required to characterize fishing activity, inform
wind farm siting decisions, and estimate economic exposure. We assess the influence of fishing behavior and fleet definition within a
multispecies fishery on coarse (logbook-based) footprint biases using a precise (GPS-based) approach. We constructed precise foot-
prints for 838 trips that caught summer flounder (Paralichthys dentatus) trips and 1439 trips that caught any species in the Summer
Flounder, Scup (Stenotomus chrysops), and Black Sea Bass (Centropristis striata) Fishery Management Plan from 2016 to 2021. Using
the precise footprints as a ground truth, we compared the intersections and estimated economic exposure between coarse footprints
(restricted to the 90th, 75th, 50th, and 25th percentiles) for 37 wind farms in the northeast USA. Unrestricted coarse footprints (90th
percentile) consistently identified all “true” intersections with wind farms while also overestimating economic exposure. For the mul-
tispecies fisheries, restricting footprints between 25th and 50th percentile yielded the most accurate estimates of economic exposure.
This contrasts previous work that found the 25th percentile was most accurate for the targeted longfin squid (Doryteuthis pealeii) fish-
ery, highlighting the importance of fleet definition in this process. Replicating this approach for other fisheries will allow development

of a tool to accurately estimate economic exposure by restricting coarse footprints in the absence of fine-scale data.

Keywords: offshore wind; fishing footprints; fishery dependent data; economic exposure; study fleet

Introduction

Power production from offshore wind is rapidly developing
around the world, including across the northeast USA, in
an effort to shift energy usage to more renewable sources
(Methratta et al. 2020). As of July 2024, the United States
Department of Interior has approved projects that will pro-
duce 13 gigawatts of energy from offshore wind sources (DOE
2023, DOI 2024). Currently, the majority of proposed off-
shore wind leases and planning areas are in the northeast USA,
where designated lease areas cover 930777 ha (2.3 million
acres) (Methratta et al. 2023). Installation of offshore wind
supports national strategies to decrease reliance on fossil fu-
els, reduce carbon emissions, and mitigate climate change ef-
fects. However, proposed wind developments will have im-
pacts for marine ecosystems and will overlap with areas that
are already being used by other marine industries, like com-
mercial and recreational fisheries (Willsteed et al. 2017, Gill et
al. 2020). In the northeast USA, there is growing concern that
offshore wind energy development will impede sustainable
seafood production and introduce economic hardship for fish-
ing communities (Scheld et al. 2022, Chaji and Werner 2023).
Thus, understanding spatial conflicts and socioeconomic
implications of offshore wind for the commercial fishing

community have risen to the top as research priorities for off-
shore wind development (Methratta et al. 2023).

In many cases, offshore wind farms overlap with histori-
cal fishing grounds and displace fishing activity (Gray et al.
2016, De Backer et al. 2019, Gill et al. 2020). Although fish-
ing within wind farms is allowed in the USA, the feasibility
of doing so will vary based on many factors, including vessel
size, gear used, vessel operator experience, and weather con-
ditions (Methratta et al. 2020). For example, bottom-tending
mobile gear (e.g. bottom trawls and dredges) may be more
challenging to operate near turbine structures than fixed gear
(e.g. trap, rod, and reel), because of the risk of hangs (hav-
ing the gear become stuck). Hangs on turbine scour protec-
tion or undersea cable protection could lead to gear loss and
be reflected in insurance coverage and gear-specific premiums,
which may cause an indirect exclusion from fishing near wind
farm structures for some operators (Gill et al. 2020, Methratta
et al. 2020). Exclusion from historical fishing areas and ac-
tivities will likely have broader socioeconomic consequences
(e.g. increased transit costs, lower profit margin, loss of mar-
kets for some seafood products, loss of jobs, environmental
justice), for at least some fisheries and for local communities
(NEFSC 2024).
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In the USA, offshore wind developers have been tasked with
allocating funds to compensate commercial fishers for revenue
loss due to offshore wind installation. State agencies and in-
dividual developers have used a variety of commercial fishing
data and different mapping and trip selection approaches that
have produced vastly different estimates of economic expo-
sure. For example, Livermore (2017) used vessel trip reports
and Vessel Monitoring System (VMS) data to quantify expo-
sure. An alternative approach using vessel trip reports and
observer data was developed by the NOAA Northeast Fish-
eries Science Center (DePiper 2014, Benjamin et al. 2018).
Additionally, some estimations have been based on all pur-
ported trips for a specific fishery, while others have only eval-
uated trips with potential spatial overlaps. Inconsistent meth-
ods of economic exposure estimation may hinder accurate and
equitable compensation for commercial fishers who are ex-
cluded from historical fishing grounds. Thus, there is a need to
evaluate a diverse set of approaches and develop an accurate
and standardized approach to estimate economic exposure for
commercial fishers that operate in areas slated for offshore
wind energy development (Hogan et al. 2023, Livermore and
Guilfoos 2024).

Using fishing footprints to estimate economic
exposure

Evaluating how offshore wind energy development impacts
historical fishing operations and seafood production is a re-
search priority in the northeast USA; specifically, this includes
research considering spatial overlaps between fishing areas
and offshore wind, economic exposure of fishing operations
to offshore wind, and impacts on fisheries with different gear
types (Methratta et al. 2023). To evaluate spatial overlap be-
tween fishing activities and offshore wind farms, we need to
understand where and when fishing occurs. Researchers have
used a variety of datasets from distinct fisheries monitoring
and research programs to build fishing footprints, each with a
unique spatial and temporal resolution (Jennings et al. 2012,
Eigaard et al. 2017, Amoroso et al. 2018, Scheld et al. 2022,
Allen-Jacobson et al. 2023, Livermore and Guilfoos 2024,
Sambhouri et al. 2024). Fishing footprints can be used to eval-
uate the number of vessels and the amount of fishing effort
exposed to offshore wind development, which can be linked
with revenue data to provide estimates of economic losses due
to offshore wind development (Benjamin et al. 2018, Allen-
Jacobson et al. 2023).

At present, the Northeast Fisheries Science Center (NEFSC)
and Greater Atlantic Regional Fisheries Office (GARFO) esti-
mate exposure by using logbooks (Vessel Trip Reports), land-
ings reported by seafood dealers, and data collected from at-
sea observer programs (Brooke 2015, Benjamin et al. 2018).
Logbooks provide a census of fishing activity (e.g. statistical
reporting areas) for federally managed fleets in the region, be-
cause commercial fishers are required to submit logbook re-
ports for all trips. Data on fishing effort from logbooks can be
linked to associated seafood dealer reports for landings and
revenue from individual fishing trips. The spatial resolution
of logbook data, however, is coarse, including only the cen-
tral location of fishing for an entire fishing trip, which can
cover tens of square kilometers. Fishery observers, tasked with
collecting data primarily used in bycatch estimation, are de-
ployed on a random sample of trips, and they collect more
precise information on fishing position (location of individual
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gear deployments). Observer data, however, are not available
for all fisheries or fishing trips. The NEFSC and GARFO have
used the available logbook reports and observer data to cre-
ate coarse fishing footprints with four percentiles of the ob-
served spatial distribution (25th, 50th, 75th, and 90th) that
reflect the percentage of trips expected to occur within certain
distances of the trip center that was reported in the logbook
(DePiper 2014, Benjamin et al. 2018). These revenue density
data products are used to estimate economic exposure of fish-
eries to offshore wind farms, inform siting of offshore wind
energy areas, and develop compensation plans for individual
wind farms (Kirpatrick et al. 2017). Coarse footprints have
been used to assess exposed revenues for fleets defined by
species, gear type, and fisheries management plan groupings
(Kirpatrick et al. 2017), which may not reflect the complexi-
ties of economic exposure for multispecies fisheries.

Coarse locations reported in logbooks are available for all
fishing effort in federally managed fisheries in the USA; how-
ever, coarse footprints are often based on one recorded loca-
tion per fishing trip and may not reflect the true spatial extent
of hauls that occurred on a trip, which likely varies based on
gear and target species (Allen-Jacobson et al. 2023). Allen-
Jacobson et al. (2023) used high-resolution data collected by
the NEFSC Study Fleet (Palmer 2007, Jones et al. 2022) to
evaluate biases in coarse footprint estimates of exposed rev-
enue for the longfin squid (Doryteuthis pealeii) fishery. The
longfin squid fishery is a targeted bottom-trawl fishery and
Allen-Jacobson et al. (2023) assessed trips where longfin squid
comprised at least 39% of landings (by weight) and likely rep-
resented the majority of trip revenues. For the longfin squid
fishery, unrestricted footprints (90th percentile) detected all
trips that were exposed to wind farms, but also detected false
intersections and underestimated per-trip exposed revenue. As
coarse footprints were restricted to lower percentiles, fewer
false intersections with wind energy areas were detected while
more true intersections were missed. Exposed revenue for the
longfin squid fishery was best estimated by coarse footprints
that were restricted to the 25th percentile. This is because the
low resolution of unrestricted coarse footprints spreads rev-
enue and fishing activity over larger areas than would be rep-
resented in footprints based on more fine-scale data (Allen-
Jacobson et al. 2023).

Based on analyses of the targeted longfin squid fishery, re-
stricting coarse footprints may improve exposure analysis in
the absence of fine-scale data; however, the utility of restricting
footprints may vary among fleets depending on target species
and gear type. Fleet definitions also differ for more targeted
fisheries. For example, fleets that target multiple species (e.g.
mixed groundfish, summer flounder) may have wider spatial
distributions compared to fleets that target a single species
(e.g. longfin squid), which may have smaller or patchier spa-
tial distributions (Allen-Jacobson et al. 2023). Additionally,
for multispecies fisheries, revenue will be distributed across
more species than targeted fisheries, which means that ex-
posed revenue for multispecies fisheries may be underesti-
mated if only target species revenues are considered. There-
fore, more research is needed to better understand biases in
fleet definitions and coarse footprints for multispecies fish-
eries. Comparing fine-scale data and coarse data on fishing
locations for other fisheries will also facilitate understanding
of how logbook data can be used to accurately estimate eco-
nomic exposure across fleets, including those lacking fine-scale
data.
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Table 1. Terms and definitions for this paper

Term Definition

Summer flounder trips
EMP trips

Trips that landed summer flounder, which are defined as trips that have any (>0 pounds) summer flounder kept catch.
Trips that landed species included in the summer flounder, scup, and black sea bass fishery management plan and include

any kept catch (>0 pounds) from at least one relevant species.

Coarse footprints
Precise footprints
True positive
False positive
True negative
False negative

Fishing footprints that are derived from Vessel Trip Report (logbook) logbook data.

Fishing footprints that were created using fine-scale GPS and haul-by-haul data from the NEFSC Study Fleet.
Both the coarse and precise footprint intersect with a wind farm.

The coarse footprint intersects with a wind farm but the precise footprint does not.

Neither the coarse nor the precise footprint intersects with a wind farm.

The precise footprint intersects with a wind farm but the coarse footprint does not.

Our objective was to quantify biases in coarse fishing foot-
prints and their estimates of economic exposure for a mul-
tispecies fishery. The mid-Atlantic large-mesh trawl fishery
targets multiple demersal species, including summer flounder
or “fluke” (Paralichthys dentatus), which is the focus of this
research. Summer flounder is the most commercially valu-
able flatfish in the mid-Atlantic region and supports produc-
tive recreational and commercial fisheries (Collette and Klein-
Macphee 2002). Vessels fishing for summer flounder often co-
incidentally catch several other species, including scup (Steno-
tomus chrysops) and black sea bass (Centropristis striata).
Thus, the Fishery Management Plan (FMP) used by the Mid-
Atlantic Fishery Management Council is inclusive of all three
species. In 2022, the commercial fisheries in the USA landed
4634 metric tons of summer flounder valued at over $26 mil-
lion, 5492 metric tons of scup valued at over $10 million,
and 2336 metric tons of black sea bass valued at over $14
million (NOAA 2024). We chose the summer flounder fish-
ery because it is a multispecies fishery, which operates in a
distinct manner from the more targeted longfin squid fish-
ery, making it a well-suited comparison. Additionally, spatial
data for summer flounder fishery were well represented in our
fine-scale (Study Fleet) and coarse-scale (logbook) datasets.
To test whether optimal footprint calculation methods varied
by fishery, we applied the analytical approach used by Allen-
Jacobson et al. (2023) to compare precise fishing footprints
(based on fine-scale data) to coarse fishing footprints (based
on logbook data) for longfin squid and estimate economic ex-
posure of these fisheries to wind farms. To better understand
exposed revenue for the multispecies summer flounder fishery
and FMP, we considered species-specific and all multispecies
revenues. Comparing our results for more diversified fisheries
(summer flounder and the summer flounder, black sea bass,
and scup FMP) to each other and to those for the single-species
fishery (longfin squid) allows a better understanding of how
fleet definition and fishery type influence fishing footprint def-
inition and revenue exposures.

Materials and methods

We used fine-scale GPS data from the NEFSC Study Fleet to
create precise fishing footprints for vessels targeting summer
flounder and for vessels targeting other species in the FMP
between 2016 and 2021 (Table 1). Since 2014, the NEFSC
Study Fleet has engaged 37-42 vessels annually with partic-
ipants from Maine to North Carolina, USA. Study Fleet ves-
sels collect detailed data on fishing operations and catch from
each haul, which supports fisheries science and management
efforts (Palmer 2007, Jones et al. 2022, 2025). During their
fishing trips, Study Fleet vessels collect Global Positioning
System (GPS) locations every minute, and captains manually

record the start and end locations of each gear haul, making
the dataset well suited for constructing precise fishing foot-
prints. We used the Catch and Accounting Monitoring Sys-
tem (CAMS) to retrieve total landings, trips, and vessels for
the summer flounder fishery and to then calculate Study Fleet
coverage from 2006 to 2023 (Supplementary Table S1 and
Fig. S1). CAMS is a collaborative effort between the NEFSC
and GARFO to provide a comprehensive source of landings
for all catch in the Greater Atlantic region of the USA. Be-
tween 2006 and 2023, overall landings for summer flounder
decreased while the number of participating Study Fleet ves-
sels increased, which led to higher rates of coverage by Study
Fleet-affiliated vessels in more recent years. Based on our as-
sessment of Study Fleet coverage, we selected fishing trips from
years for which Study Fleet vessels harvested at least 10%
of landings for the entire commercial summer flounder fish-
ery (2016-2023). From 2016 to 2023, Study Fleet summer
flounder landings represented 10%-15% of all commercial
summer flounder landings (Supplementary Materials: Fig. S1).
When conducting this research, complete Study Fleet GPS and
revenue data were not yet available for 2022 or 2023 due to
data processing lags, so only data from 2016 to 2021 were
included in our study.

We completed two analyses using different subsets of fish-
ing trips that harvested summer flounder with the goal of test-
ing how each fleet definition influenced our estimations of in-
tersections with wind farms and revenue exposure. Our selec-
tion criteria are based on existing management definitions for
multispecies fisheries, where fleets are defined by permit, pos-
itive catch of target species, gear, and region (McAfee 2024).
One of the goals of this research was to better understand how
the characterization of a fishery influenced economic exposure
results. For the summer flounder fishery, we first selected trips
that the Study Fleet captains designated as targeting summer
flounder in their reporting. Upon doing this, we found that
many trips had zero revenue or pounds of kept summer floun-
der catch and that we were missing a fair amount of summer
flounder revenue that was caught on trips that were not des-
ignated as targeting summer flounder. This is due to the mul-
tispecies and opportunistic nature of summer flounder fishing
trips, which often target other species (primarily black sea bass
and scup). Thus, to accurately account for summer flounder
fishing effort and revenue, we selected all Study Fleet trips with
atleast 1 pound of summer flounder kept catch. This approach
is consistent with the requirement of a summer flounder per-
mit to retain them and used for defining fleets in our region
for bycatch monitoring and standardized catch rates. We con-
sidered selecting a landings threshold, but wanted to be as in-
clusive as possible of trips with exposed summer flounder rev-
enue. Thus, the first analysis included all trips that had sum-
mer flounder kept catch (hereafter, “summer flounder trips”).
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Summer flounder trips were defined as large-mesh otter trawl
(> 5 inches) trips that targeted and landed summer flounder.

To account for the multispecies nature of the summer floun-
der fishery, we also selected trips based on the associated FMP.
The second analysis included trips that had kept catch for any
species included in the summer flounder, scup, and black sea
bass FMP (hereafter, “FMP trips”). FMP trips were defined
as targeting the FMP by large mesh trawls (>5 inches) with
greater than 0 pounds kept catch for at least one of the FMP
species. For both analyses, we selected all NEFSC Study Fleet
trips that occurred between 2016 and 2021, had fine-scale
GPS location data, and met the gear and catch criteria. We
used the most recent 5 years of data to best reflect the current
state of the fishery and mirror data requirements in compen-
sation claim instructions, which request the most recent 3-5
years of data. As summer flounder are included in the FMP,
we expected summer flounder trips to overlap with FMP trips,
which would allow us to better evaluate how different defini-
tions of the multispecies fishery (summer flounder or FMP)
may influence the biases in estimates of economic exposure to
wind farms.

We calculated trip-specific revenues based on logbook and
dealer information extracted from NOAA databases. For the
summer flounder trips, we calculated summer flounder rev-
enue by summing revenue by logbook trip identification codes,
monitoring program, and northeastern commercial species
code for records of summer flounder, following methods de-
veloped by Allen-Jacobson et al. (2023). We also calculated to-
tal species revenue for each summer flounder targeted trip by
summing revenue across all reported species codes with kept
catch for that trip. Similarly, for the FMP trips, we calculated
FMP revenue by summing revenue by logbook trip identifica-
tion codes, monitoring program, and the northeastern com-
mercial species codes for records of all three FMP species. We
also calculated the per-trip total species revenue for all FMP
trips. We adjusted revenue to reflect the 2022 Gross Domestic
Product, as that was the most recent deflator available from
the Federal Reserve Economic Database (FRED) at the time
of writing. For each trip, we multiplied revenue by the ratio
of the nominal year’s value to the 2022 deflator.

Fishing footprints

We used fine-scale GPS data to create precise fishing footprints
following Allen-Jacobson et al. (2023). Specifically, we used
fishing location data to construct convex hulls with a 50-m
buffer for each recorded fishing haul. Hauls were then merged
by trip to create a “precise fishing footprint” (PFF) for each
trip (Supplementary Fig. S2). To estimate exposed revenue, we
transformed precise fishing footprint polygons into grids of
cells (rasters) and then evenly distributed total trip revenues
across the fishing footprint cells. This means that total trip
revenue would be the sum of the revenue per cell for all cells
in the precise fishing footprint.

We used logbook identifiers to match logbook footprints
(coarse fishing footprints) to each of the selected trips. Coarse
logbook footprints were developed by the NEFSC using log-
book fishing locations, validated against observer-based haul
locations to produce a modeled representation of fishing ac-
tivity (DePiper 2014, Benjamin et al. 2018). Covariates based
on fishing gear and trip length were produced and then ap-
plied to the logbook-based positions and transformed to a
gridded representation of fishing activity intensity. These grids
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can then be applied to trip-based values for a coarse repre-
sentation of spatial valuation. To better understand the trade-
offs of percentile restriction inherent in the coarse logbook
footprints, we restricted logbook footprints to four different
percentile levels (90th, 75th, 50th, and 25th) to assess biases
across a range of possible restrictions that could be used. We
applied the methods developed by Allen-Jacobson et al. (2023)
to modify rasters and assign revenues based on restricted per-
centiles. GARFO reports logbook footprints that are restricted
to the 90th percentile, for which 25% of the revenue is dis-
tributed to each percentile level. We modified the standard
logbook footprints by restricting them to the 75th, 50th, and
25th percentiles. As percentile was restricted, revenue was dis-
tributed across a smaller footprint with 33%, 50%, or 100%
of the revenue distributed across each percentile level when
footprints were restricted to the 75th, 50th, and 25th per-
centiles. Thus, revenue was more concentrated in the center
of the coarse footprints.

We completed analyses in R (R Core Team 2023) and used
the “terra” (Hijmans et al. 2024), “raster” (Hijmans et al.
2025), “dplyr” (Wickham et al. 2023), and “ggplot” (Wick-
ham 2016) packages to complete analyses and create figures.

Evaluating exposure to wind areas

We evaluated fishing exposure to offshore wind for 37 wind
development areas (8 planning areas and 29 leased areas),
which ranged in area from 2.34 km? to 14251 km? with a
median area of 328.52 km?2, as defined in November 2023
(BOEM 2023). Since our goal was to assess all possible in-
tersections of fishing footprints with offshore wind, we in-
cluded all planned and leased wind energy areas across the
US East Coast. We also included planned and installed sub-
marine transmission cables extending between offshore wind
turbines and from offshore wind farms to shore. We evaluated
biases in coarse footprints assessment of exposure to offshore
wind areas for summer flounder and FMP-targeted trips by
comparing (1) intersections of coarse and precise footprints
and (2) exposed revenue across percentile restrictions and fleet
definitions.

First, we compared intersections of coarse and precise fish-
ing footprints with wind farms across coarse footprint per-
centiles for summer flounder and FMP trips. For each trip,
we evaluated how coarse and precise footprints overlapped
with each other and with wind farms for each of the four
percentile restrictions (90th, 75th, 50th, and 25th). We clas-
sified intersections into four possible outcomes, which we or-
ganized into a confusion matrix: (1) neither footprint inter-
sected with a wind farm (True Negative, TN), (2) both foot-
prints intersected with a wind farm (True Positive, TP), (3)
only the coarse footprint intersected with a wind farm (False
Positive, FP), (4) only the precise footprint intersected with a
wind farm (False Negative, FN). We then used a binary classi-
fication metric (F1 score) to measure differences in coarse and
precise fishing footprint agreement for summer flounder trips
and FMP trips and find the “optimal” percentile restriction to
assess intersections with wind farms.

F1 scores can be used to compare an estimated classifica-
tion from a model to a ground truth (Goodwin et al. 2022).
F1 scores range from 0 to 1, with 1 representing the best clas-
sification ability for the model. In the context of our study, we
assumed that precise fishing footprints and their intersections
were “true” representations of fishing activity, and we used F1
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Figure 1. Precise footprints for (a) summer flounder targeted trips and (b) FMP-targeted trips.

scores to compare them to “modeled” coarse fishing footprints
intersections. F1 scores use weighted average of precision and
recall to evaluate model performance. Precision evaluates the
correctness of positive model classifications and can be used
to evaluate a model’s ability to provide relevant results. Re-
call indicates how many positive cases are predicted correctly
when all the positive cases in the data are considered. For our
study, higher recall would suggest more instances that coarse
footprints and precise footprints agreed in their intersection
with wind farms. Finally, F1 scores combine precision and re-
call into a single composite metric to rate overall performance
and agreement for categorization of both true positives and
true negatives. F1 scores are calculated as:

.. True Positive
Precision =

True Positive + False Positive

Recall = True Positive

True Positive + False Negative
Precision x Recall
F1 = 2x

Precision + Recall’

To facilitate comparisons of biases across fleet classification,
we calculated F1 scores for each percentile (90th, 75th, 50th,
25th) for both summer flounder and FMP trips. We also used
results reported by Allen-Jacobson et al. (2023) to calculate
an F1 score for longfin inshore squid trips.

Second, for trips that intersected with wind farms, we com-
pared exposed revenue estimates for summer flounder and
FMP trips across percentiles for both target species and to-

tal species revenue. Following Allen-Jacobson et al. (2023),
we estimated economic exposure for each intersecting trip by
calculating the amount of revenue assigned to the portion of
the precise or coarse footprint that overlapped with the wind
farm. For summer flounder trips we calculated exposed rev-
enue for summer flounder and for all kept species. For FMP-
targeted trips we calculated exposed revenue for FMP species
and for all kept species (all species revenue). We considered ex-
posed revenue for all intersecting trips (total exposed revenue)
and calculated an average per-trip exposed revenue (per-trip
exposed revenue).

We defined the “optimal” percentile restrictions as those
that best matched estimates of exposure and intersections pro-
duced by precise footprints. In the context of our study, the
“optimal” percentile restriction for identifying intersections
would be the percentile with highest F1 score, while the “op-
timal” percentile restriction for estimating revenue exposure
would be the percentile that produced an estimate of economic
exposure that best matched the precise footprint estimate.

Results

We analyzed 838 trips which caught summer flounder com-
pleted by 17 vessels between April 2016 and September
2021 representing $1739 880 in summer flounder revenue
and $2 948640 total multispecies revenue (Fig. 1a). Fish-
ing effort ranged from 1 to 22 trawl hauls per trip with
a mean of 2 (SD: 1.8) hauls per trip, with 75 (SD 46.4)
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Table 2. Summary of data, landings, and revenue for summer flounder and
FMP-targeted trips.

Range Median  Mean (SD)
Summer flounder
targeted trips (838)
Hauls per trip 1-22 2 2 (1.8)
GPS points per haul 1-396 70 75 (46.4)
Landings
Summer flounder (mt) 0.001-7 0.05 0.2 (0.6)
Summer flounder (%) 0-100 3 15 (28)
All species (mt) 0.03-10 2.13 2.5(1.7)
Revenue
Summer flounder ($) $7-$45817 $502  $1805 ($4797)
Summer flounder (%) 1-100 27 37 (28)
All species ($) $133-$47054 $2165 $3394 ($5168)
FMP targeted trips
(1439)
Hauls per trip 1-22 2 2 (1.6)
GPS points per haul 1-396 70 72 (39.2)
Landings
Summer flounder (mt) 0-8 0.05 0.2 (0.6)
Summer flounder (%) 0-100 2 13 (25)
Black sea bass (mt) 0-2 0.00 0.02 (0.09)
Black sea bass (%) 0-100 0 2(7)
Scup (mt) 0-6 0.01  0.13(0.42)
Scup (%) 0-100 1 7(18)
FMP (mt) 0-9 0.11 0.32 (0.72)
FMP (%) 0-100 6 22 (35)
All species (mt) 0-32 2 3(2.3)
Revenue
Summer flounder $0-$46 817 $480 $1440 ($3975)
Summer flounder (%) 0-100 27 36 (31)
Black sea bass $0-7672 $3 $128 ($567)
Black sea bass (%) 0-100 0 5(11)
Scup $0-21449 $20  $173 ($831)
Scup (%) 0-100 1 6 (14)
FMP $2-$46 959 $674  $1741 ($4215)
FMP (%) 0-100 40 47 (31)
All species $13-$47054  $2035 $2914 ($4205)

Statistics represent per-trip summaries.

GPS points per haul (Table 2). Summer flounder comprised a
mean of 15% (SD 28%) of total landings per trip. Revenue
from summer flounder ranged from $7 to $45817 (mean:
$1805, SD: $4797) per-trip, which represented a mean of
37% (SD 28%) of total trip revenue (Table 2 and Supple-
mentary Figs $3-S4). Many other species contributed to rev-
enue from summer flounder trips, with little skate (Leucoraja
erinacea), haddock (Melanogrammus aeglefinus), and tautog
(Tautoga onitis) contributing the most, after summer flounder
(Supplementary Figs S5-S7).

We assessed 1 439 FMP trips that occurred between Febru-
ary 2016 and September 2021 and were completed by 17
vessels, representing $2 810 903 in FMP species revenue and
$4 722 340 in all species revenue (Fig. 1b). As expected, many
of the FMP trips were also included in our summer flounder
analysis (838, 58%), with some additional FMP trips (601,
43%) occurring south of Cape Cod, MA. Fishing effort and
GPS coverage for FMP trips were very similar to summer
flounder trips (Table 2). Per trip revenue from FMP species
(summer flounder, scup, and black sea bass) ranged from $2
to $46 959, with a mean of $1 741 (SD $4 215). On average,
FMP species represented 47% (SD: 31) of total trip revenues.
Of the FMP species, summer flounder generally represented
more revenue on each trip (median: 27%; mean: 36%; SD:
31%) compared to scup (median: 1%; mean: 6%; SD: 14%)
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Figure 2. Precise (black polygons) and coarse (colored circles) footprints
for 838 summer flounder targeted trips and revenue. Leased wind farms
are indicated in teal and planning areas are indicated in green. The
polygon (with blank space) on the upper right of the figure reflects a
fishing closure area.

and black sea bass (median: 0.1%; mean: 5%; SD: 11%)
(Table 2).

Estimating footprint intersections with wind energy
areas

Based on precise fishing footprints, 120 of the 838 summer
flounder trips (14%) and 200 of the 1439 FMP trips (14%)
intersected with wind areas. We used a confusion matrix to
evaluate coarse and precise fishing footprint intersections with
all 37 wind farms (Fig. 2, Figure 3), resulting in 31006 pos-
sible intersections for summer flounder trips (838 trips % 37
wind farms) and 53 243 possible intersections for FMP trips
(1439 trips 8 37 wind farms). Overall, the majority (94.3 %—
99.5%) of footprints at all restrictions did not intersect with
wind farms. Considering all possible intersections, 0.4 % (120)
of precise footprints for summer flounder trips and FMP trips
(200) intersected with wind farms (Table 3, Fig. 4). For both
FMP and summer flounder trips, unrestricted coarse foot-
prints (90th percentile) captured all precise footprint intersec-
tions with wind farms, but also predicted many false inter-
sections (summer flounder: 5.3% (1655), FMP: 4.5%; Table
3, Fig. 4). Logbook fidelity (the ability of coarse footprints
to capture precise fishing footprint intersections with wind
energy areas) decreased with percentile restriction for both
summer flounder (90th: 100%; 75th: 95%; 50th: 66 %; 25th:
44%) and the EMP (90th: 100%; 75th: 95%; 50th: 72%;
25th: 48%).

For both summer flounder and FMP trips, true and false
positives were highest when logbook footprints were re-
stricted to the 90th percentile and both declined with per-
centile restriction (Fig. 4). True negatives and false negatives
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Figure 3. Precise (black polygons) and coarse (colored circles) footprints for 1439 FMP-targeted trips and revenue. Leased wind farms are indicated in
teal and planning areas are indicated in green. The polygon (with blank space) on the upper right of the figure reflects a fishing closure area.

Table 3. Summary of agreement between coarse and precise footprint intersections with wind farms for each coarse footprint percentile (90th, 75th,

50th, 25th) along with recall (Re.), precision (Pr.), and F1 score (F1) metrics

Types of intersections with wind farms

Percentile restrictions  True positives False positives

True negatives

False negatives Performance metrics

% #) % #) #) % #) Re. Pr. F1

Summer flounder

90th 04% (1200  53%  (1655) 94.3%  (29231) 0% 0) 1.00 0.07 0.13
75th 0.4% (114) 0.8% (239) 98.8% (30647) <0.1% (6) 0.95 0.32 0.48
50th 0.3% (79) 0.2% (53) 99.4% (30833) 0.1% (41) 0.66 0.60 0.63
25th 0.2% (53) 0.1% (16)  99.6%  (30870)  0.2% (67) 0.44 0.77 0.56
FMP

901h 04%  (200)  4.5%  (2386) 95.1%  (50657) 0% 0) 1.00 0.08 0.14
75th 0.4% (189) 0.9% (462) 98.8% (52581) <0.1% (11) 0.95 0.29 0.44
50th 03%  (143)  02%  (125)  99.4%  (52918)  0.1% (57) 0.72 0.53 0.61
25th 0.2% (95) 0.1% (50) 99.5% (52993) 0.2% (105) 0.48 0.66 0.55

increased as the percentile was restricted for both fisheries.
Precision increased as coarse footprints were restricted for
both summer flounder and FMP trips, indicating that coarse
fishing footprints predicted positive intersections more cor-
rectly as they were restricted (Fig. 5a). As coarse footprints
were restricted, many fewer false positives were detected. Con-
versely, recall decreased as coarse footprints were restricted for
both summer flounder and FMP trips, which reflects the re-

duction in true positives detected as footprints were restricted
(Fig. 5b). For both summer flounder and FMP trips, F1 scores
were lowest when coarse footprints were unrestricted (sum-
mer flounder F1 = 0.13; FMP F1 = 0.14) and highest when
coarse footprints were restricted to the 50th percentile (sum-
mer flounder F1 = 0.63; FMP F1 = 0.61) (Fig. 5¢). Precision
and recall metrics for the longfin squid fishery followed the
same patterns as the summer flounder and FMP trips. How-
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Figure 4. Intersections with wind energy areas for coarse and precise
footprints for summer flounder targeted and fishery management plan
(FMP) targeted trips. This plot includes the results of our confusion
matrix, specifically the % of total possible intersections (Summer
flounder: 838 trips ¥ 37 wind farms, 31 006 possible intersections; FMP:
1439 trips % 37 wind farms, 52, 243 possible intersections) for three
possible intersection types. “True positive” indicates that both the
coarse and precise footprint intersected with wind farms. “False
positive” indicates that only the coarse footprint intersects with wind
farms. “False negative"” indicates that only the precise footprint
intersected with wind farms. Percentiles (90th, 75th, 50th, 25th)
represent restrictions of the coarse footprint. This plot does not include
footprints that did not intersect with any wind farms (“True negatives”),
which are included in Table 3.

ever, for longfin squid coarse footprints restricted to the 25th
percentile (Fig. 5¢) produced the highest F1 score (0.72).

Estimating exposed revenue
Summer flounder trips

For trips that caught summer flounder, we found that 120
precise footprints intersected with wind farms and exposed
0.71% of summer flounder revenue and 1.12% of revenue for
all kept species (Fig. 6a; Table 4). When considering individual
trips, on average 5.68% ($103, SE: $4.77) of summer flounder
revenue and 8.09% ($275, SE: $8.5) of total species revenue
were exposed for each intersecting precise fishing footprint
(Fig. 6b; Table 4). Unrestricted coarse footprints (90th per-
centile) estimated higher total exposed revenue (2.56 % of to-
tal revenue) than precise footprints (summer flounder: 2.56 %
($44 566); all kept species: $75 364). However, unrestricted
coarse footprints also estimated lower per-trip exposed rev-
enue than precise footprints (summer flounder: 1.25% ($235,
SE: $0.1); all kept species: 1.34% ($42, SE: $0.1); Fig. 6b].
Coarse footprint estimates of total exposed revenue were clos-
est to precise footprint estimates when coarse footprints were
restricted to the 25th percentile (summer flounder: 0.99%; all
kept species: 1.10%); however, coarse footprints restricted to
the 25th percentile also overestimated average exposed rev-
enue per trip [summer flounder: 13.77% ($249, SE: $13.5); all
species: 13.90% ($472, SE: $20.8)] when compared to precise
footprints. For summer flounder revenue, coarse footprint es-
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Figure 5. Precision (a), recall (b), and F1 scores (c) to evaluate coarse
footprint and precise footprint agreement on intersections with wind
farms for longfin squid, summer flounder, and FMP (Summer Flounder,
Scup, and Black Sea Bass) trips. Percentile indicates the restriction of
coarse footprints (25th, 50th, 75th, 90th).

timates of exposed revenue per trip best matched precise foot-
print estimates at the midpoint of the 50th [summer flounder:
8.59% ($155, SE: $5.0)] and 75th [4.88% ($88; SE: $1.0)]
percentiles (Fig. 6b). For total species revenue, coarse foot-
print estimates of exposed revenue per trip best matched pre-
cise footprint estimates at the 50th percentile (all kept species:

7.92%, $269, SE: $6.6; Fig. 6b).

FMP trips

FMP precise footprints had 200 intersections with wind farms,
which exposed 0.72% of FMP species revenue and 1.12%
of all kept species revenue (Table 4, Fig. 4). As with sum-
mer flounder trips, unrestricted FMP coarse footprints (90th
percentile) estimated the highest total exposed revenue (FMP
species: 2.14%; all kept species: 2.10%; Fig. 6¢) and the
lowest per-trip exposed revenue (FMP species: 1.34%; all
species: 1.31%; Fig. 6d). Coarse footprint estimates of to-
tal exposed revenue best matched precise footprint estimates
when restricted to the 25th percentile for FMP species revenue
(0.90%) and the 50th percentile for all kept species revenue
(1.14%). Per-trip exposed revenue for FMP trips was high-
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Figure 6. Total and pertrip exposed revenue for the summer flounder targeted (a, b) and FMP-targeted trips (c, d). “PFF" refers to exposed revenue
calculated based on the precise fishing footprint. “Summer Flounder Only” refers to exposed revenue from summer flounder catch. “FMP Species
Only” refers to exposed revenue from all three species in the Fishery Management Plan (Summer Flounder, Scup, and Black Sea Bass). “Total (All
species)” refers to exposed revenue from all species landed.

Table 4. Summary of exposed revenue for precise footprints and coarse footprints that intersected wind farms at each coarse footprint percentile (90th,

75th, 50th, 25th).

Exposed revenue

Percentile Total exposed Percent of total Percent of per-trip
Analysis restriction Exposed trips (#) ($) revenue (%) Mean per-trip  SE ($) revenue exposed (%)
Summer flounder trips
Summer flounder only 90th 1775 $44 566 2.56% $25 $0.08 1.39%
75th 353 $31112 1.79% $88 $1.04 4.88%
50th 132 $20475 1.18% $155 $5.02 8.59%
25th 69 $17154 0.99% $249 $16.25 13.77%
PFF 120 $12310 0.71% $103 $4.77 5.68%
All species 90th 1775 $75364 2.56% $42 $0.10 1.25%
75th 353 $48447 1.64% $137 $1.36 4.04%
50th 132 $35497 1.20% $269 $6.55 7.92%
25th 69 $32 543 1.10% $472 $20.83 13.90%
PFF 120 $32 945 1.12% $275 $8.48 8.09%
EMP trips
FMP species only 90th 2586 $60172 2.14% $23 $0.05 1.34%
75th 651 $42 764 1.52% $66 $0.48 3.77%
50th 268 $30055 1.07% $112 $1.96 6.44%
25th 145 $25373 0.90% $175 $5.83 10.05%
PFF 200 $20324 0.72% $102 $2.53 5.84%
All species 90th 2586 $98 966 2.10% $38 $0.06 1.31%
75th 651 $66 945 1.42% $103 $0.61 3.53%
50th 268 $53947 1.14% $201 $2.63 6.91%
25th 145 $51214 1.08% $353 $7.74 12.12%

PFF 200 $53 068 1.12% $265 $4.49 9.11%
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est when coarse footprints were restricted to the 25th per-
centile (FMP species: 10.05%; all kept species: 12.12%). Pre-
cise footprint per-trip exposed revenue (FMP species: 5.84%;
all kept species: 9.11%) best matched per-trip exposed rev-
enue for coarse footprints restricted to the 50th percentile for
FMP species (6.44%) and between the 50th (6.91%) and 25th
(12.12%) percentiles for all kept species.

Discussion

As offshore wind development evolves, evaluating spatial
overlap between commercial fisheries and offshore wind farms
is necessary to assess economic and practical implications for
fishing communities and the seafood supply chain. Ideally, pre-
cise spatial data, including catch and revenue information,
would be available for all fishing trips to assess where fish-
ing is occurring in relation to offshore wind areas. However,
since precise information on fishing locations is not collected
for many fishing trips and some entire fisheries, there is a need
to estimate offshore wind impacts using coarse footprints.
Coarse fishing footprint data are available for many more fish-
ing trips, but may provide biased estimates of fishing locations
and revenue exposure depending on the fishery and gear type.
Fine-scale data can be used to refine coarse footprints and
provide more robust estimates of fishing locations and eco-
nomic exposure, as has been demonstrated for the targeted
small-mesh longfin squid fishery (Allen-Jacobson et al. 2023).
In this study, we used fine-scale data collected by the NEFSC
Study Fleet to evaluate tradeoffs in coarse footprint construc-
tion methods for the summer flounder fishery and FMP with
the goal of better understanding biases in coarse footprints for
a multispecies fishery that used large mesh trawls.

Our results demonstrate the importance of spatial scale and
fleet definitions when using fishery-dependent data to estimate
economic impacts of offshore wind on fisheries. Coarse data
collected for fisheries management purposes was not designed
to evaluate offshore wind development and fisheries interac-
tions, but these data can be refined based on fine-scale datasets
and trends in specific fisheries. Although coarse footprints ef-
fectively detected all fishing trips that intersected with wind
areas, they also detected many false positives and overesti-
mated total exposed revenue while underestimating per-trip
exposed revenue. Restricting footprints may reduce false pos-
itives but may also result in missing intersections and, conse-
quently, underestimate economic exposure. This general trend
was consistent across assessed fishery types (summer flounder,
summer flounder FMP, and longfin squid), though the optimal
coarse footprint restriction differed by fishery. Based on our
analysis, marine resource managers working to site offshore
wind farms to minimize socioeconomic impacts should con-
sider these trade-offs when using coarse footprints to estimate
offshore wind impacts. Ultimately, the optimal restriction of a
coarse fishing footprint may be dependent on specific project
goals; for example, one might use unrestricted footprints to
assess the presence/absence of fishing and use restricted foot-
prints to estimate economic exposure.

Biases in unrestricted coarse footprints

We assumed that intersections between wind development ar-
eas and precise footprints represented “true” exposure for
each trip. When coarse footprints were restricted to the 90th
percentile (unrestricted footprints), they detected all trips with
“true” exposure for summer flounder trips and FMP trips. At
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the same time, unrestricted footprints detected the most false
positive intersections. As coarse footprints were restricted to
smaller percentiles, true positives decreased while false neg-
atives increased. These results corroborate those found with
longfin inshore squid (Allen-Jacobson et al. 2023), and further
suggest that restricting coarse footprints comes with a trade-
off between more false negatives and fewer false positives for
both targeted and multispecies fisheries.

When the goal is to assess all at-risk trips and their ge-
ographic attributes, unrestricted coarse footprints should be
used since restricted footprints have the potential to miss at-
risk trips. If the goal is to assess the general trends in the num-
bers and locations of trips that may be at risk, F1 scores could
be a useful tool to pick an optimal coarse footprint percentile
restriction. The F1 scores assessed trade-offs between true and
false positives and varied between fisheries. For summer floun-
der and FMP trips the highest F1 score occurred when coarse
footprints were restricted to the 50th percentile, while for
longfin squid, the highest F1 score occurred when coarse foot-
prints were restricted to the 25th percentile. This difference in
optimal restriction may reflect differences in species distribu-
tion, fishing behavior, and gear types. Summer flounder and
EMP trips were limited to large mesh trawls, while longfin
squid trips tend to use small mesh trawls. Summer flounder
and FMP trips may more consistently cover larger spatial ar-
eas than longfin squid trips due to differences in species dis-
tribution, which is reflected in the optimal coarse footprint
restrictions. If we had considered fixed gears commonly used
on black sea bass trips (e.g. fish pots), we would expect to see
similar restrictions, or greater, to the longfin fishery. This is
an important consideration in our fleet definition, as summer
flounder are managed within a multispecies, multi-gear FMP.

We found that unrestricted footprints underestimated per-
trip exposed revenue for summer flounder and FMP trips. As
coarse footprints are restricted, revenue is concentrated into
smaller areas, and more revenue is exposed in detected inter-
sections. When considering exposure for individual trips and
vessels, using unrestricted footprints may underestimate ex-
posed revenue and reduce vessel operator access to compen-
sation. For mixed-species fisheries like summer flounder, con-
sidering species- and FMP-specific revenues greatly reduced
estimates of economic exposure. If the goal is to estimate over-
all economic exposure for a set of trips or a specific vessel, one
should use total species revenue rather than species- or FMP-
specific revenue.

Based on F1 scores and our exposed revenue analysis, re-
stricting coarse footprints to the 50th percentile may provide
the optimal spread to balance detection of true and false pos-
itives and accurately estimate total and per-trip exposed rev-
enue for both summer flounder and FMP trips. For the more
targeted longfin squid fishery, restricting coarse footprints to
the 25th percentile produced the most accurate exposed rev-
enue estimates and best balanced true and false positive de-
tections. Restricting footprints based on fishery-specific F1
scores and our assessments of exposed revenue may support
more balanced estimations of intersections with wind areas
and economic exposure. Restricting coarse footprints and in-
cluding all landed species provided more realistic estimates of
exposed revenues for individual trips when compared to us-
ing unrestricted coarse footprints and species or FMP-specific
revenues. Species-specific revenues may not accurately repre-
sent trip revenue exposure for multispecies fisheries like the
summer flounder fishery or groundfish fishery.
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Economic exposure and compensation

Precise estimates of per-trip and vessel-specific exposed rev-
enue are increasingly important as developers begin offering
compensation to commercial fishers who are affected by
offshore wind farms (Lennon 2024, Zuckoff 2024). Al-
though compensation processes differ between developers,
these programs generally require applicants to submit data
proving that they have recently fished within specific wind
farm areas, as well as revenue data for those fishing trips.
Revenue data might include an estimate of exposed revenue
or the operation’s total revenue. Logbook-based data are an
accepted form of spatial data for these claims. For commer-
cial fishers submitting claims to offshore wind companies,
unrestricted coarse footprints may overestimate intersections
with wind energy areas while also underestimating economic
exposure for individual trips, which could result in reduced
or inaccurate compensation. Restricting footprints based on
fishery biases may provide more representative estimates of
lost revenues for both developers and affected commercial
fishers so that total compensation settlements can cover the
claims. As commercial fishers go through the compensation
process, it will be important to document the process and
evaluate how offered compensation matches expectations
based on available data and perceived economic impacts.
Future research may consider evaluating coarse footprints
for additional fishery types, using more widely collected fine-
scale data (e.g. vessel monitoring system data), or considering
other methods of constructing precise fishing footprints to
produce more accurate fishing footprints. For example, since
our primary goal in this paper was to make a comparison
between a targeted fishery (Allen-Jacobson et al. 2023) and a
multispecies fishery, we chose to use convex hulls to maintain
consistency between the two studies. As depicted in Figs. 2
and 3, the convex hulls are much smaller than the coarse
footprints and additional precision may not be required for
the purpose of evaluating intersections between fishing trips
and offshore wind areas. More precise “linestrings” may be
useful for other applications, like estimating overlaps with
aquaculture. Future studies may consider comparing methods
of constructing precise footprints, including “linestrings” and
convex hulls, to better assess biases.

It is important to note that our research only considered
exposed revenue from reported landings for fishing footprints
that overlapped with proposed and leased offshore wind
farms. Economic exposure represents one facet of overall eco-
nomic impacts for commercial fisheries (Chaji and Werner
2023). For example, we have not considered how vessels may
change transit routes to accommodate wind areas, which may
result in increased fuel usage (Samoteskul et al. 2014). We
have also not considered other indirect impacts of offshore
wind on fisheries operations, like higher insurance costs (Hall
and Lazarus 2015, Hooper et al. 2015). Additionally, this
analysis does not consider broader impacts on shoreside sup-
port businesses and communities (Chaji and Werner 2023).

Collaboration with the fishing community was a key com-
ponent of this research, from collection of high-resolution
catch and effort data through Study Fleet to review and
interpretation of results. Communication mechanisms with
commercial fishers included individual phone calls, one-page
research summaries, in-person presentations, and in-person
conversations. Each form of communication yielded unique
feedback and insights that were used in the interpretation
of results. Further, as compensation programs have moved

forward, the data processing and summarization methods de-
veloped through this research have been used to provide com-
mercial fishers with quantitative evidence of fishing within and
around offshore wind farms. Several compensation programs
are ongoing and are likely to reveal the value of having high-
resolution catch and effort data for individual fishing vessels.
Developing useful data products for collaborating fishers is
critical for maintaining motivation and engagement in data
collection activities.

Expanding to other fine-scale datasets

Our study relied on fine-scale data from the NEFSC Study
Fleet, which partners with commercial fishers to generate time
series of research-quality self-reported data. The Study Fleet
program partners with vessels, rather than sampling across
the fleets, and may not reflect the diversity of fishing occurring
in the northeast USA. Our studies analyzed some of the fleets
with the best coverage in the Study Fleet. Other fine-scale
spatial datasets—including the Vessel Monitoring System
(VMS) and Automatic Identification System (AIS)—may be
useful to produce precise footprints for a broader range
of vessels, but they also have limitations. VMS tracking is
required for a large proportion of federally managed fisheries
and thus covers more vessels than Study Fleet; however, VMS
polling frequency is every 30-60 minutes and these data
are not freely available due to their confidential nature. AIS
data are publicly available and include one location every
2 seconds-3 minutes, thus providing finer spatial data than
VMS. However, AIS is only required for vessels that are
longer than 19.81 m (65 ft.) and the system can be turned off
by the vessel operator once vessels are >19.31 km (12 miles)
from shore. Further, Study Fleet data includes descriptions of
fishing behavior—Ilike the start and end of each haul—which
allows researchers to create specific footprints to reflect when
fishing is occurring. AIS and VMS data cannot be readily used
to identify fishing activity since they are not annotated and do
not distinguish between fishing and other activities, including
transit, processing, preparing, or repairing gear. Additionally,
each of these fishing activities will vary by fishery. Research
is underway to utilize deep learning techniques to parse
un-annotated AIS data based on available fishing behavior
data (including vessel position, haul start and end, and vessel
speed) from fisheries observers for the New England scallop
fishery (Livermore and Guilfoos 2024).

Fishing behavior varies by fishing gear and fishery type, and
researchers may consider using annotated Study Fleet data
along with deep learning techniques to predict fishing activ-
ity for other fisheries using other fine-scale datasets that lack
fishing behavior information (AIS, VMS). Using more broadly
available fine-scale data would allow researchers to construct
more precise fishing footprints for a larger proportion of ac-
tive vessels and build a more realistic picture of spatial pat-
terns and exposed trips.

Conclusions

Previous studies suggested fine-scale data could be used to in-
vestigate the accuracy of fishing footprints and test the gener-
ality of prior findings that restricting lower-resolution coarse
fishing footprints improved their accuracy. Using a second,
and behaviorally distinct fishery, we found that restricted log-
book footprints were the most accurate, and had the high-
est F1 score. Because these coarse logbook footprints are
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currently being used to evaluate impacts of offshore wind de-
velopment, we suggest restricting them or evaluating whether
restricted footprints would increase their accuracy. Our re-
sults underscore the importance of collecting fine-scale data
to evaluate spatial patterns for commercial fishing. Fisheries
monitoring systems, such as Vessel Trip Reports, were devel-
oped to support fisheries management and enforcement, not
to make precise spatial determinations.

Our results also demonstrate that fleet definition influenced
our evaluation of economic exposure for the multispecies
summer flounder fishery. When considering the economic ex-
posure of species that are part of a multispecies fishery, evalu-
ations conducted at the FMP level may produce more realistic
estimations of fishery impacts than considerations of a single
species. Additionally, we found that inclusion of total species
revenue for a trip is more important in calculations of eco-
nomic exposure for multispecies fisheries compared to more
targeted fisheries. Managers may consider these results when
reevaluating methods for defining the summer flounder fishery
or other multispecies fisheries.

As ocean use priorities change, there is an opportunity to
reevaluate fisheries-dependent data collection efforts and in-
troduce new protocols to meet new data needs. Implement-
ing broader fine-scale data collection programs requires addi-
tional resources and considerations of data confidentiality, but
can provide many benefits. In addition to their utility in eval-
uating offshore wind impacts, fine-scale spatial data supports
construction of more accurate fishing footprints, which can
be used for other research priorities. For example, they may
be used to evaluate changes in species spatial distributions re-
lated to climate change, changes in ocean use, effects of pro-
posed marine protected areas, and other spatial management
actions. For commercial fishers, collection of fine-scale spatial
data may also support compensation claims as offshore wind
developments are constructed and become operational.
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