

1 *Molecular indicators of warming and other climate stressors in larval Pacific cod*
2 Laura H Spencer^{1,2}, Emily Slesinger³, Ingrid Spies¹, Benjamin J Laurel³, Thomas P. Hurst³
3 1. Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center,
4 National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600
5 Sand Point Way NE, Seattle, WA 98115, USA
6 2. University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St,
7 Seattle, WA 98195
8 3. Fisheries Behavioral Ecology Program, Alaska Fisheries Science Center, National Marine
9 Fisheries Service, National Oceanic and Atmospheric Administration, 3020 SE Marine
10 Science Dr, Newport, OR 97365, USA
11 Corresponding author: Ingrid Spies, ingrid.spies@noaa.gov

12 Abstract

13 Recent marine heatwaves in the Gulf of Alaska negatively impacted Pacific cod (*Gadus*
14 *macrocephalus*) through a series of failed year classes and poor recruitment to the fishery.
15 Experimental work by Slesinger et al. (2024) corroborated the hypothesis that warming directly
16 impacts recruitment by increasing larval mortality rates. In this companion study we applied
17 transcriptomics with larvae from Slesinger et al. (2024) to better understand how warming
18 affected their physiology and identify potential mechanisms contributing to mortality. RNASeq
19 data reveal that warm-exposed larvae have unique gene expression profiles that may reflect
20 high levels of inflammation, lipid dysregulation or depletion, and altered development of visual
21 systems and neurological pathways. Warming may therefore cause a metabolic mismatch
22 whereby energy-demanding activities (development, inflammation, growth) exceed energy
23 production capacity despite access to prey. We also report the less pronounced transcriptional
24 differences in larvae exposed to cold, acidification, and a combination of stressors reflecting

25 future climate scenarios. This information will guide future genetic and experimental work that
26 will ultimately inform recruitment forecasts in years with conditions similar to those tested here.

27 **Keywords:** transcriptomics; functional genomics, Pacific cod, ocean warming, ocean
28 acidification

29 Introduction

30 Climate change is causing complex changes in the world's oceans (Harley et al., 2006).
31 Increasing concentrations of greenhouse gasses have contributed to higher average ocean
32 temperatures and are linked to more frequent marine heatwaves (Frölicher et al., 2018).
33 Increasing dissolved carbon dioxide levels are shifting carbonate parameters and reducing
34 ocean pH (Doney et al., 2009). Climatologists predict that marine heatwaves may be more
35 common in the future (Walsh et al., 2018) and that ocean acidification will intensify, particularly
36 at high latitudes of the Arctic and Antarctica (Fabry et al., 2009). An unprecedented
37 reorganization of marine communities has begun (Grebmeier et al. 2006) and will likely continue
38 as conditions continue to change (Worm and Lotze, 2021). Notably, loss or decline of species
39 that have large effects on trophic interactions may result in extensive changes to entire
40 ecosystems. In the case of commercial fisheries, climate-induced changes may be further
41 exacerbated by fishing pressure.

42 Pacific cod, *Gadus macrocephalus*, is a commercially fished marine species that is
43 important both as predator and prey in the North Pacific, a region that is experiencing
44 substantial environmental changes (Laurel et al., 2023; Mathis et al., 2014; Walsh et al., 2018).
45 Pacific cod support the region's second most valuable fishery after walleye pollock (*Gadus*
46 *chalcogrammus*), valued at \$446 million in the Bering Sea and \$113 million in Gulf of Alaska in
47 2021 (Abelman et al., 2023). Despite its importance, population declines have occurred across
48 much of the Pacific cod range over the past several decades, concurrent with increases in
49 climate stressors (e.g. Barbeaux et al., 2020). The southern end of the Pacific cod range, Puget

50 Sound, Washington State, USA, once supported a commercial fishery from which catches just
51 under 1,000 tons (t) were taken annually from 1956 to 1967 (Alderdice and Forrester, 1971).
52 Currently, Pacific cod are inconsistently encountered in the Puget Sound due to their low
53 population size (Spies et al., 2020; Pacunski, R., WDFW, pers. comm.). Similarly, Pacific cod
54 catches have declined by ~2 orders of magnitude from 1958 to 2021 off the coasts of
55 Washington and Oregon (reviewed by Laurel et al. 2023). These declines are notable, as they
56 occurred at the southern extent of the range, and thus may forecast future population changes
57 in Alaska waters.

58 While it is difficult to draw a strong cause-and-effect relationship between environmental
59 variables and the stock status of a single species, recent failed recruitment in Gulf of Alaska cod
60 deserve mention. Between 2013 and 2016, Gulf of Alaska sea surface temperature was 3-4°C
61 above the 1980-2010 average (Bond et al., 2015), and in the central Gulf of Alaska, heatwave
62 conditions persisted over 89% of days from May 2014 to January 2017 (Barbeaux et al., 2020).
63 Concurrently, Gulf of Alaska Pacific cod biomass declined by 58% between surveys conducted
64 in 2015 and 2017 (Barbeaux et al., 2020). The 2017 biomass estimate was the lowest ever
65 recorded from standardized surveys from 1984 to 2017 by more than half (Barbeaux et al.,
66 2020). Beach seine surveys in the Central and Western Gulf of Alaska observed record low
67 levels of age-0 juveniles arriving to summer nurseries during heatwave years (Abookire et al.,
68 2022; Laurel et al., 2023; Hulson et al., 2023), suggesting that elevated water temperatures
69 during spring increase egg and larval mortality.

70 Experimental work has shown that Pacific cod early life stages are sensitive to
71 temperature. Temperature affects embryonic development and metabolic demand, driving
72 growth and survival of Pacific cod larvae and egg development (Laurel et al., 2008). Successful
73 egg development is optimal within a narrow temperature range (4-6°C), beyond which it
74 declines (Bian et al., 2016; Laurel et al., 2008, 2023), which may reflect historically stable
75 temperatures in the demersal environment where eggs incubate (Laurel and Rogers, 2020).

76 Larvae hatch at significantly larger sizes in cooler temperatures, despite hatching later (Laurel et
77 al., 2008, 2012). The direct effects of ocean acidification on Pacific cod are less clear, in part
78 because there is limited experimental data, but also because results vary among life stages
79 (Hurst et al., 2019) and gadid species (Frommel et al., 2011; Hurst et al., 2012, 2013; Stiasny et
80 al., 2016; Leo et al., 2017). As this experimental work progresses, it is important to also
81 document the genetic control underlying the effects of climate stressors on Pacific cod.
82 Identifying climate-sensitive genes and associated processes will guide researchers to pinpoint
83 genetic variation within the species that could fuel climate-dependent selection.

84 Slesinger et al. (2024) recently reared Pacific cod from embryos to feeding-stage larvae
85 in conditions resembling recent marine heat wave events in the Gulf of Alaska (10°C) and cold
86 environments reflective of northward range shifts (3°C) compared to optimal temperature for
87 growth and survival (6°C). They also investigated the effects of high pCO₂ levels projected for
88 the northeast Pacific Ocean (~1,560 μ atm, Pilcher et al., 2022) as a single exposure and when
89 combined with suboptimal temperatures. Larval mortality was very high in warming (10°C)
90 regardless of pCO₂ level (Slesinger et al., 2024). In this companion study, we examine
91 molecular pathways that likely underlie the observed phenotypic effects reported by Slesinger et
92 al. (2024) using gene expression analysis. Our primary goal is to present hypotheses as to why
93 warming causes high larval mortality rates in order to understand the observed failed
94 recruitment of Pacific cod during marine heatwaves. Secondarily, we describe processes that
95 differ in cold and acidification-reared larvae that reflect acclimation but could carry over to affect
96 physiology or recruitment at later stages.

97 The physiological effects of climate stressors presented here are derived from gene
98 activity differences among treatments detected using RNASeq. RNASeq is a sequencing
99 approach that simultaneously quantifies mature messenger RNA (mRNA, or transcripts) for all
100 expressed genes in a tissue sample. For this study, 11-14 individual whole-body larvae were
101 sequenced from each of six treatments. RNAseq does not directly measure standard

102 physiological metrics such as metabolic rate or lipid content. Instead, this approach provides a
103 snapshot of gene activity, which reveals how energy is allocated and prioritized and thus
104 describes more broadly the physiological state of each Pacific cod larva. Results of these gene
105 expression data are interpreted in the context of larval performance indicators (Slesinger et al.
106 2024 and summarized here), and also reveal possible impacts of warming and acidification not
107 apparent in phenotypic data, as well as providing direction for future studies to examine the
108 genes and gene variants that could enable adaptation.

109

110 Methods

111 Larval Incubations

112 Larval husbandry and exposure to treatments are described in detail in Slesinger et al. (2024)
113 and are summarized here. Gametes of wild-caught adult Pacific cod (1 female; 3 males)
114 captured via pot gear set off Kodiak Island, AK, on April 4th, 2022 were used to generate
115 embryos representing three half-sib families. Embryos were transported to NOAA's Alaska
116 Fisheries Science Center laboratory in Newport, OR and reared in one of six experimental
117 treatments encompassing a full cross of three temperatures (3°C, 6°C, 10°C) and two pCO₂
118 levels (ambient: ~360μatm; high ~1,560μatm) with four replicate tanks per treatment (24 tanks
119 total). Embryos and larvae were reared in cylindrical 50-L experimental tanks in a flow-through
120 upwelling system with a flow rate of 0.5 L min⁻¹. Photoperiod was set to a 12:12 h schedule,
121 and larvae were provided live rotifers (*Brachionus plicatilis*) twice daily at a density of 5 rotifers
122 mL⁻¹ with green water (RotiGreen Nanno; Instant Algae), which reflects high food levels used in
123 prior laboratory experiments (Hurst et al. 2010; Laurel et al. 2011).

124 Source water was conditioned to maintain target temperatures and pH levels (Table 1).

125 Target temperatures were achieved by mixing ambient water from Yaquina Bay (average

126 temperature ~11°C) with glycol-chilled water (average temperature ~2°C). Target pH levels
127 were achieved by CO₂ injections into three separate header tanks, one per temperature
128 treatment, which were monitored and controlled by Durafet III pH probes (Honeywell) and a dual
129 input analytical analyzer (Honeywell). Temperature and pH measurements were collected daily,
130 and discrete samples were fixed weekly to measure total alkalinity (TA) and dissolved inorganic
131 carbon (DIC). pH and pCO₂ were calculated from temperature and salinity measurements
132 (collected daily) and DIC and TA measurements (collected weekly). Daily mean temperatures
133 were maintained within 0.1°C of target conditions in all tanks, and weekly mean pCO₂ ranged
134 from 297 – 410 μatm in the ambient pCO₂ treatments and 1435 – 1780 μatm in the high pCO₂
135 treatments (Table 1).

136 Hatching occurred 8–9, 11–12, and 17–18 days after 2-day old embryos entered 10°C,
137 6°C, and 3°C, respectively. During the experiment, larvae were counted twice: once at hatch
138 and once at the end of the experiment. These counts were used to determine an instantaneous
139 daily mortality rate. Larvae were also sampled at regular intervals to calculate growth and
140 condition factors (15 larvae per replicate tank at each sampling timepoint for 60 larvae total per
141 treatment), which were analyzed using linear mixed effects models to account for potential
142 variation introduced by the replicate tanks (Slesinger et al. 2024). Two growth rates were
143 calculated, one based on standard length (G_L; mm day⁻¹) and one for dry weight (G_M; % day⁻¹).
144 Two condition factors were also calculated, which are morphometric-based condition (K_{MH}) that
145 reflects the relationship between myotome height and standard length, and weight-based
146 condition (K_{DW}) that reflects the measured dry weight relative to predicted dry weight based on
147 standard length. While in Slesinger et al. (2024) survival, growth and condition were assessed
148 across the entire study timeframe and at specific intervals, for this study values were assessed
149 on or up to the date of gene expression sampling (see below). Pairwise comparisons between
150 control conditions (6°C, 390 μatm pCO₂) and all other treatments were conducted with
151 condition, growth, and survival rates using pairwise t-tests with Bonferroni adjustment to control

152 for multiple testing. Effect sizes were estimated by Cohen's d (Cohen 1969) using pooled
153 standard deviation. Total survival percentages were calculated for the period from hatch to gene
154 expression sampling.

155 Fish were sampled for gene expression analyses at the post-yolk absorption, pre-flexion,
156 feeding stage (~6-7 mm, Hurst et al. 2010), the timing of which varied among temperature
157 treatments and occurred 13, 21, and 28 days post-hatch for the larvae exposed to 10°C, 6°C,
158 and 3°C treatments, respectively (Table 2). This staggered sampling approach was necessary
159 to ensure that all larvae were developmentally comparable, as developmental rate is affected by
160 temperature. For each of the six treatments, 11-14 larvae (Table 2) were sampled in the
161 morning prior to feeding and preserved individually for RNA-Seq by placing whole fish in
162 RNAlater per manufacturer's instructions (Thermofisher Scientific, Waltham, MA). For most
163 treatments, larvae were sampled from the four replicate tanks. For the cold-ambient pCO_2
164 treatment larvae were sampled from one tank (12 larvae total). Fewer fish were available for
165 sampling in the cold treatment due to the slower larval development rate resulting in fewer
166 larvae being at the specified developmental stage for all assays when sampling occurred, and
167 lower cumulative survival compared to the control treatment (Table 3).

168 RNA Extraction, Sequencing, and Data Processing

169 RNASeq generates sequence data from all mature messenger RNA (mRNA) transcripts that
170 were extracted from a tissue sample. The half-life of an mRNA molecule is short (~9 h as
171 measured in mammals, Schwahnässer et al. 2011), thus RNASeq measures the activity level
172 of all recently transcribed genes and provides a snapshot of active processes in the tissue. For
173 our study, RNA was isolated from homogenized whole-body larvae, thus the RNASeq analysis
174 characterized gene activity and energy allocation across all tissues.

175 Detailed extraction, sequencing, and data processing methods are described in detail in
176 the supplementary materials, and broadly here. After RNA isolation and library construction,

177 paired-end sequencing was conducted on one lane of a NovaSeq 6000 Sequencing System
178 (Illumina, Inc., San Diego, CA) with 150 bp read length. Sequence data was processed to
179 produce a gene count matrix, which quantifies the number of mRNA transcripts per gene per
180 sample. First, raw reads were separated by sample (demultiplexed), trimmed to remove known
181 sequences that were added for library prep and Illumina sequencing (adapters), and filtered to
182 ensure quality. These trimmed/filtered reads were then mapped (i.e. aligned) to the Atlantic cod
183 (*Gadus morhua*) genome assembly v3 (gadMor3.0, Genbank accession GCA_902167405.1).
184 Once aligned, it is possible to quantify mRNA transcript levels for genome features of interest.
185 Here, we quantified the number of read pairs (i.e. fragments) that mapped to protein-coding-
186 genes, and are thus functionally important, which generated a gene count matrix. Gene
187 functions were predicted by comparing gene coding sequences of the *G. morhua* genome,
188 which are published along with the *G. morhua* genome, against gene sequences in the
189 Uniprot/Swissprot database (UniProt Consortium, 2021), and filtering hits for sequences that are
190 highly similar (e-value < 1^{-10}). The sequences contained in the Uniprot/Swissprot database are
191 manually curated and derived from experimental work, largely in model organisms, and thus
192 provide high-confidence predictions of protein functions based on sequences. Prior to
193 comparing gene counts among treatments, genes were removed from the matrix if they
194 contained very few reads across all samples (mean count <10 across all samples or those with
195 counts <30 across at minimum 10% of the samples). The remaining gene count matrix was
196 inspected for outlier samples using principal component analysis (PCA), and the total number of
197 fragments was compared among treatments using ANOVA.
198 Controlling for length/development
199 Warm-reared larvae were smaller at the time of sampling than the other two temperature
200 treatments (no difference in size in pCO₂ treatments), despite being collected at the same
201 developmental stage (post-yolk absorption, pre-flexion, feeding) and at similar degree days

202 post-hatch (Table 1). Given the possible associations among larval size, development, and
203 expression patterns, genes associated with larval length were removed from the dataset prior to
204 the comparative analyses. The removal of length-associated genes did not affect the overall
205 conclusions drawn about the effects of temperature and acidification. For a gene to be removed
206 from the analysis because it was considered length-associated, it had to 1) be associated with
207 length as per the core differential expression analysis, 2) respond linearly to length when all
208 three treatments were considered, and 3) respond linearly to length without the warm treatment
209 (see Supplemental Materials for more details). This final length-controlled gene count matrix
210 was used in comparative gene expression analyses.

211 Global expression patterns

212 Genome-wide gene expression patterns were explored with PCA, using `prcomp` from the R
213 package `vegan` v.2.5-7 on all gene counts that were transformed via variance-stabilization.
214 Principal components that explained a significant amount of variance were identified using
215 Cattell's rule (Cattell, 1966). Genome-wide differences among temperature and pCO₂
216 treatments were assessed by permutational pairwise permANOVA with `pairwise.adonis`
217 from the `pairwiseAdonis` package, which is a wrapper for `adonis` from the `vegan` package. The
218 level of biological variation in global gene expression was explored by calculating Euclidean
219 distances to treatment centroids (means) in multivariate space (PC1 x PC2) and differences
220 among treatments were assessed using ANOVA.

221 Differential gene expression analysis

222 Gene counts, i.e. the number of transcripts that mapped to each gene, were compared in each
223 of the five experimental treatments (Table 2) relative to the control (6°C-390 µatm) to identify
224 differentially expressed genes (DEGs). This was conducted using individual larval cod samples
225 as replicates on a per-gene basis using `DESeq2` (Love et al., 2014), which models raw gene

226 counts with a negative binomial distribution, normalizes across samples based on overall
227 sequencing depth, stabilizes dispersion estimates, estimates effect size (log-2 fold change,
228 L_2FC) using Wald tests, and accounts for multiple comparisons using the Benjamini-Hochberg
229 method. For each gene, outliers were handled using *DESeq2*'s built-in replacement method,
230 where Cook's Distance was used to identify influential outliers and then the original count values
231 were replaced with trimmed means, and using an additional iterative Leave-One-Out (iLOO)
232 approach to identify and remove DEGs with outlier samples (n=887 genes) (George et al.,
233 2015). In the five treatments for which samples from multiple tanks were available, we identified
234 and removed genes from the DEG lists that were differentially expressed among replicate tanks
235 within each treatment (total of 104 unique genes across five treatments, Table S6) using
236 $\alpha=0.01$ to ensure sizable tank effects. The resulting lists of differentially expressed genes
237 represent those with differences in mean expression levels between control and each treatment,
238 accounting for library size normalization and biological variability (n=11-14 replicate cod larvae
239 per treatment).

240 Enrichment Analysis

241 We conducted enrichment analyses to identify biological processes that differed in larvae
242 exposed to experimental treatments compared to control. Enrichment analysis leverages terms
243 manually assigned to many genes (here, Uniprot Keywords & Gene Ontology Terms) to identify
244 biological processes overrepresented in DEGs relative to all genes and processes that were
245 captured by RNASeq. Two enrichment analyses were performed for each of the five
246 experimental treatments to identify the functions of genes that were upregulated ($L_2FC > 0.5$)
247 and downregulated ($L_2FC < -0.5$). For all DEG sets, genes were filtered for those that map to
248 the Uniprot/Swissprot database (UniProt Consortium, 2021), and enriched biological process
249 Uniprot Keywords and Gene Ontology Terms were identified by entering UniprotID's into the

250 Gene-Enrichment and Functional Annotation Tool from DAVID v2021 (Sherman et al., 2022),
251 which were defined as those with at minimum three genes contributing to each process.
252
253 All analyses were performed in R v4.1.2 using RStudio interface v2021.09.1 (R Core Team,
254 2021; RStudio Team, 2020), and unless otherwise specified significance thresholds were alpha
255 = 0.05.

256 Results

257 Mortality, growth, and condition
258 Larval phenotypic responses were previously reported by Slesinger et al. (2024) across multiple
259 time points. Here, we report phenotypic differences in larvae exposed to treatments relative to
260 control fish, focusing on measurements taken on or near (≤ 2 days) the day of sampling for gene
261 expression (Table 3, see Slesinger et al. for broader effects, including time-series trends and
262 embryonic effects). Warming increased daily larval mortality rates as a single stressor and when
263 combined with acidification. Larvae reared in warm treatments grew and developed quickly such
264 that they reached the developmental stage for sampling seven days earlier than control larvae
265 (Table 2). However, their morphometric-based condition and mass-based growth rates were
266 lower relative to the control larvae sampled at the same developmental stage seven days later.
267 Cold temperature did not affect daily mortality rates, but it reduced both growth rates such that
268 they reached the developmental stage for sampling seven days later than control larvae
269 resulting in a lower cumulative survival rate at sampling. Cold temperature reduced condition
270 indices as a single stressor and combined with acidification, except for the weight-based
271 condition index, which was unaffected by combined cold and acidification. Acidification as a
272 single stressor did not affect any phenotypic metric at the time of sampling. However, the
273 broader timer-series of morphometric-based condition indicates that acidification-reared larvae

274 were becoming thinner, while control fish were not (Slesinger et al. 2024). For all measured
275 metrics, there was minimal to no effect of replicate tank on the results (Slesinger et al. 2024).
276 Overall, the effects of temperature were more pronounced than the effects of acidification.

277 RNA-Seq pre-processing

278 On average $49.0M \pm 6.8M$ RNASeq reads derived from larval Pacific cod uniquely aligned to the
279 *G. morhua* genome ($81.1\% \pm 1.8\%$ alignment rate), and $45.4M \pm 6.4M$ were assigned to gene-
280 coding regions ($75.2\% \pm 2.1\%$). Reads mapped with sufficient depth to 21,076 of the genes in the
281 *G. morhua* genome, 19,424 of which mapped to genes in the Uniprot/Swissprot database (e-
282 value $< 1e^{-10}$). Of those, we removed 6,664 genes that were associated with fish length, resulting
283 in 14,412 genes for comparative analyses. Additional genes were later removed during the
284 differential expression analysis as they were strongly influenced by outliers (n=606) or by tank-
285 specific expression (n=104).

286 Global expression patterns

287 Global expression profiles of Pacific cod larvae were strongly influenced by temperature (Figure
288 1). Pairwise permANOVA tests detected significant differences in multivariate space among
289 control temperature (6°C) and both cold (3°C : $F(1)=6.0$, $p\text{-adj}=3.0e^{-3}$) and warm (10°C :
290 $F(1)=4.7$, $p\text{-adj}=3.0e^{-3}$) temperatures, which is evident from the biplot of principal components
291 one and two, which combined explained 30.1% of variation in global gene expression (Figure 1).
292 The scree test (Cattell, 1966) indicated that principal components 3, 4, 5, and 6 also explained a
293 significant amount of variation (7.3%, 5.8%, 4.5%, and 3.9%, respectively) (Figure S1).
294 Euclidean distances to treatment centroids (means) in PC space (PC1xPC2) did not differ
295 significantly among treatments and were not affected by the number of replicate tanks from
296 which larvae were sampled for RNASeq (one tank for the cold treatment, four tanks for other
297 treatments Figure S18).

298 Differential gene expression analysis

299 Relative to control conditions, transcriptional differences were largest in response to warm
300 temperature, and more moderate in response to acidification and cold conditions (Figure 2). The
301 effect of acidification on gene expression was also highly dependent on temperature, as no
302 genes were differentially expressed between ambient and high pCO₂ at 3°C or 10°C, which is
303 evident from the overlap between ambient- and high pCO₂-exposed fish at 3°C and at 10°C in
304 the PCA (Figure 1, contrasts not shown in Figure 2).

305 Larvae exposed to both warm temperature and high pCO₂ had fewer transcriptional
306 differences from larvae reared in control conditions compared to those exposed to just warm
307 temperature (Figure 2). Similarly, combined exposure to cold temperature and high pCO₂ had
308 fewer DEGs than cold alone.

309 Functional analysis

310 Genes that were expressed at higher levels (henceforth “more active”) were enriched for
311 biological processes associated with cell connectivity and signaling, vision, immune function,
312 blood coagulation, and protein production (Figure 3). Cell adhesion and vision were more active
313 in larvae reared in warming as a single stressor and when combined with acidification, and
314 immunity, sensory transduction, and calcium transport were more active in warming as a single
315 stressor (Figure 3). Inflammatory response genes were more active in acidification as a single
316 stressor, and when combined with warming acidified conditions resulted in more active blood
317 coagulation and hemostasis genes. Molecular chaperone stress-response genes (relating to
318 heat shock protein activity) were more active in both cold conditions as a single stressor and
319 when combined with acidification, and ribosome biogenesis and rRNA processing genes were
320 more active in combined cold and acidified conditions.

321 Genes that were expressed at lower levels (henceforth “less active”) were largely
322 enriched for lipid metabolism processes (Figure 3). Lipid metabolism was less active in four of

323 the five treatments (acidified, warm, warm + acidified, and cold conditions), lipid biosynthesis
324 was less active in warm + acidified conditions, and steroid metabolism was less active in cold
325 conditions. Digestion and electron transport (relating to mitochondrial energy production) was
326 less active in acidified conditions as a single stressor and when combined with warming.

327 Discussion

328 In this companion study to Slesinger et al. (2024), we sought to identify possible mechanisms of
329 mortality and low Pacific cod larval recruitment during marine heatwaves, and to deepen our
330 understanding of how shifting ocean conditions will affect Pacific cod. Broadly, a large
331 percentage of the transcriptome was expressed differently in larvae that were reared in warm
332 conditions as a single stressor (3,411 genes, or 16%) and when combined with acidification
333 (2,890 genes, or 14%). Processes enriched in these genes may provide insight into the
334 mechanisms of warming-associated mortality, and hint at the potential for acidification to
335 mitigate some molecular effects of heatwave conditions. Fewer genes were affected by
336 acidification (9%), cold conditions (9%), and combined acidification and cold conditions (6%)
337 than in warm conditions. Processes associated with cold and acidified conditions may point to
338 causes of lower condition and growth rate, but also acclimatory responses that enable survival.
339 In the remainder of this section, we compile biological processes that are impacted by warming,
340 cold conditions, and acidification, including possible mechanisms underlying phenotypic effects
341 of each environmental variable. Finally, we discuss how hypotheses generated here relate to
342 observed and predicted changes in recruitment to the fishery.

343 Effects of warming

344 *Warming may cause mortality due to depleted or dysregulated lipids*

345 Genes associated with lipid metabolism were less active (i.e. fewer gene transcripts were
346 present) in larvae reared in warming as a single stressor and when combined with acidification
347 (Figure 3 & S3). Less active lipid metabolism-associated genes likely indicate a concomitant
348 decrease in lipid processes. Genes involved in a variety of lipid components were affected,
349 including those that store and catabolize lipids for energy, and those that incorporate lipids into
350 cellular membranes and for use in signaling pathways. This broad, consistent effect of warming
351 on lipid metabolism genes suggests that demand may have outpaced lipid availability or lipid
352 mobilization capacity. We did not directly measure lipid levels or liver sizes, but by
353 homogenizing whole-body larvae this RNASeq data captures system-wide lipid metabolism
354 gene activity. From this data, we hypothesize that larval Pacific cod mortality under heatwave
355 scenarios may relate to altered lipid utilization or depletion (similar repercussions of warming
356 are hypothesized for adults; Barbeaux et al., 2020), even when prey densities are high. Gene
357 expression data from Atlantic cod larvae reared in warming also suggests major shifts in
358 energetic demand (Oomen et al., 2022). Both studies link high mortality rates to energy
359 depletion.

360 Among the affected lipid metabolism genes were those involved in fatty acid processes,
361 including beta-oxidation. Fatty acid beta-oxidation modeled across temperatures was highest in
362 larvae reared at 6°C (control temperature, see non-linear response genes, Figure S12), which
363 also produced larvae with high body condition and growth rates and low mortality rates. Fatty
364 acid beta-oxidation expression can represent the contribution of fatty acids as a fuel source to
365 generate energy via oxidative phosphorylation, which is an efficient source of ATP. Lower beta-
366 oxidation activity in warm-reared larvae may reflect lower fatty acid availability (i.e. energetic
367 limitation) due to depletion or reallocation (e.g. to immune functions, described below), a shift in

368 metabolic strategy, reduced mitochondrial efficiency at suboptimal temperatures, or varying
369 tissue ratios (e.g. liver, muscle) (Norambuena et al. 2015; Yoon et al. 2022). Changes in larval
370 fatty acid metabolism can be driven by prey lipid composition (Copeman and Laurel, 2010;
371 Tocher 2003), although experimental larvae in our study were fed high densities of prey
372 enriched with a complement of essential fatty acids, which has been used in previous larval
373 studies (Hurst et al. 2010; Laurel et al. 2011). Therefore, the differential lipid metabolism gene
374 expression was likely driven by warming rather than an artifact of the larval diet. That being
375 said, quantifying lipid components alongside gene expression analyses with varying feeding
376 levels and/or lipid composition (e.g. Hurst et al. 2019) would clarify any additional sensitivities to
377 warming when prey quality and/or quantity is reduced.

378 *Inflammation may exacerbate energetic limitations in warming*

379 Fish immune systems are known to be sensitive to temperature (Bowden, 2008; Pérez-
380 Casanova et al., 2008). Here, immune system gene activity increased with temperature and was
381 particularly high in warm-reared larvae (Figure 3 & S4). While inflammation can successfully
382 fight infection, it is energetically demanding, and can itself be a stressor. Larsen et al. (2018)
383 demonstrated the cost of heightened immune activation in Atlantic cod: Interleukin 1 β and other
384 pro-inflammatory transcripts were higher in larvae exposed to warming with and without
385 bacterial infection, and while warm-exposed larvae cleared bacterial pathogens faster than
386 those held at control temperature, they died at higher rates (Larsen et al., 2018). Many of the
387 affected genes identified here interact with proinflammatory interleukins (Figure S8, Table S2),
388 which are cytokines that regulate the immune response and are often used in immune-response
389 assays (Hu et al., 2018; Secombes et al., 2011), and indicate immune system hyperactivity in
390 warm-reared larvae. Bacterial community shifts could also have affected immune activity in the
391 warm treatments. Changes to immune function could therefore cause high mortality in warm-
392 reared larvae directly due to the energetic costs of heightened immune system activation, or

393 indirectly due to increased infection rates or an ineffective immune response. High mortality and
394 low recruitment rates may in part be associated with inflammation, contributing to the
395 pathogenesis of warming in Pacific cod larvae.

396 *Warming may alter visual and neurological development rates relative to growth rates*

397 Genes involved in vision and cell adhesion were more active in response to warming (Figure 3,
398 S5 & S6). Visual opsin genes affected by warming are notable because they may provide
399 adaptive differences among Pacific cod populations (Spies et al. 2022) and Atlantic cod
400 ecotypes (Pamplouie et al. 2015) occupying varying light environments which often covary with
401 temperature. While it is tempting to suggest that warming may have triggered tuning of vision
402 components in larval Pacific cod, it is more likely that larvae reared in warming differed in their
403 visual and neurological development. More specifically, higher expression of specific genes
404 (e.g. green-cone sensitive opsin-2) which decrease throughout the larval stage in Atlantic cod
405 (Valen et al., 2016), indicates that the warm-reared larvae visual systems may have been less
406 developed. Other eye lens, retinal, phototransduction, and neurogenesis genes were expressed
407 at higher levels in warm-reared larvae, which probably reflects actively forming eyes. Visual
408 development appears to be decoupled from size-associated development, as we sampled
409 similarly sized larvae and excluded size-associated genes from our analysis (Supplemental
410 Materials). Measuring vision-related gene activity in later Pacific cod stages would clarify
411 whether visual plasticity is possible in response to warming.

412 A large number of cell adhesion genes were more active in response to warming (Figure
413 4, Figure S6). Cell adhesion is fundamental to the establishment and maintenance of tissue
414 structure and connectivity, and affected genes include core extracellular matrix proteins (e.g.
415 collagen, fibronectin), which could reflect cellular destabilization in warm-reared larvae. The
416 majority of affected adhesion genes are specific to nervous and visual systems and may be
417 linked to differential neurological development. Nevertheless, given the large effect of warming

418 on cell adhesion genes and their essential role in structural integrity, growth, and development,
419 future genetic studies could explore cell adhesion genes identified here for signals of
420 environment-dependent selection.

421 Effects of acidification

422 *Acidification may affect larval lipid digestion*

423 Acidification has been shown to affect lipid metabolism in marine organisms (e.g. Diaz-Gil et al.
424 2015; Gibbs et al. 2021; Strader et al. 2020), including gadids (Frommel et al. 2011, 2020; Hurst
425 et al. 2019, 2021). However, the specific mechanism of action is often unclear, as impacts vary
426 among developmental stages and lipid classes (Frommel et al., 2011; Hurst et al., 2019, 2021).

427 Our gene expression data suggests that acidification reduces lipid digestion in pre-flexion
428 staged Pacific cod larvae, which may explain why larvae became thinner over time in acidified
429 conditions as reported by Slesinger et al. (2024). While our data provides indirect evidence of a
430 link between acidification and altered digestion, more direct evidence has previously found that
431 acidification reduces digestive enzyme activity in post-metamorphic flatfish larvae (Pimentel et
432 al., 2015), and prolongs the specific dynamic action (SDA) in Atlantic cod, which the authors
433 posited could explain lower feeding rates, growth, and condition (Tirsgaard et al., 2015a).

434 Feeding efficiency and SDA are also modulated by temperature (Tirsgaard et al., 2015b), which
435 may explain why digestion was not impacted by combined stressors in our study (Cominassi et
436 al., 2020; Rosa et al., 2016). It is possible that acidification decreases feeding efficiency by
437 lengthening digestion time and slowing stomach clearance rate, which in turn would lower food
438 intake in larval Pacific cod. Alternative hypotheses are that acidification damaged gut tissue
439 (Frommel et al., 2011) or affected intestinal development (Tillner et al., 2013), which would also
440 likely affect digestion-related expression profiles. A handful of genes that negatively regulate
441 inflammation were also expressed at higher levels, which suggests acidified-reared larvae were

442 actively suppressing inflammatory pathways, possibly to conserve energy or to prevent
443 overactivation of immune responses (Figure 3). Overall, given that survival and growth
444 remained high in the acidified treatment, the digestion and inflammatory effects were rather
445 benign under experimental conditions, especially in contrast to the broad changes that occurred
446 in the warm treatment. Negative effects may be exacerbated by more energy-demanding
447 activities in the wild (e.g. predator avoidance) and under low-food conditions not tested here.

448 *Acidification mutes some effects of warming on lipid and immune process, but may affect larval*
449 *aerobic capacity*

450 Acidification did not exacerbate effects of warming at the organismal level (Slesinger et al.,
451 2024). Our gene expression data showed that acidification offset some impacts of warming.
452 Broadly, the overall percentage of genes that were differentially expressed was lower in
453 combined stressors (14%) compared to warming alone (16%), as was the effect size to
454 differentially expressed genes (i.e. fold change, Table S1). Immune system and lipid processes,
455 while still affected, were less so in combined warming and acidification compared to warming
456 alone (Figure S3 & S5). Acidification may have depressed metabolic rate (Muller et al. 2021),
457 partially counteracting the effects of higher metabolic rate that very likely occurred in response
458 to warm temperature. Other possible explanations include less inflammation, possibly due to
459 altered pathogen communities at lower pH levels or changes in mucosal immunity, and
460 prolonged digestion impacting a cascade of energetic processes which are otherwise
461 accelerated in warm conditions. These findings are somewhat counterintuitive because
462 acidification is thought to elicit stress responses similar to warming in marine organisms (e.g.
463 oxidative stress, Messina et al. 2023), and additive or synergistic effects are commonly
464 predicted for organisms experiencing combined stressors. Despite the weaker transcriptional
465 effects of combined stressors, the overwhelming effect of warming masks the signal of
466 acidification at the organismal level (Table 3, Slesinger et al., 2024). In heatwave conditions

467 similar to those tested here, acidification will not likely affect larval mortality, growth, or body
468 condition; however, it is possible that mitigating effects of acidification could offset heatwave
469 impacts during later stages or in more natural settings.

470 One possible exception is that acidification and warming could impact larval aerobic
471 capacity by impacting hemoglobin properties. Fish hemoglobins bind, transport, and deliver
472 oxygen to peripheral tissues based on pH-dependent oxygen affinity (Wells, 2009). Gadid
473 hemoglobin are particularly pH-sensitive (Barlow et al., 2016), and can polymerize in low pH
474 levels, distorting red blood cell shape which is commonly referred to as sickling. Genes
475 associated with mitochondrial electron transport and heme/iron binding were less active, and
476 those associated with blood coagulation were more active (coagulation is a prominent feature in
477 sickle-cell disease, Faes et al., 2018). While speculative, we suggest that combined warming
478 and acidification could affect larval Pacific cod blood oxygen-carrying capacity and aerobic
479 scope due to changes in hemoglobin properties. Validation is needed to confirm the
480 hypothesized effects of combined warming and acidification on blood cells and how they might
481 affect larval health.

482 *Cold-reared larvae may acclimatize by increasing protein synthesis machinery and altering
483 energy homeostasis*

484 Understanding mechanisms associated with cold tolerance in Pacific cod is important as
485 northern shifts have been observed in Pacific cod (Spies et al., 2020) and other fish species
486 (Pinsky et al. 2013). Daily mortality rates were low in cold-reared larvae, while growth and
487 development were prolonged and larvae were thinner (Table 3, Slesinger et al., 2024). Larval
488 recruitment is not likely to be impacted by cold temperatures directly except at extremes
489 (Zhuang and Chen 2021), but may be indirectly affected by slow growth and development. The
490 most pronounced transcriptional differences in cold-reared larvae were changes in protein
491 production and catabolism, indicative of higher protein concentration requirements. Expression

492 was higher for ribosomal biogenesis and molecular chaperone processes, which are
493 responsible for protein synthesis, folding, and stability. Higher protein production could be
494 needed to compensate for slower protein synthesis and enzymatic rates under cold conditions
495 (Long et al., 2012; Storch et al., 2005). This compensatory mechanism was clearly
496 demonstrated in cold-acclimated Atlantic cod, which had lower translation rates that were offset
497 by higher concentrations of RNA, resulting in no change to mean RNA activities (Foster et al.,
498 1992). Protein synthesis is energetically expensive and may have contributed to the slightly
499 lower condition of cold-reared larvae (Houlihan, 1991). Genes involved in multiple lipid
500 pathways were also affected (e.g. fatty acid biosynthesis, cholesterol metabolism, retinoic acid
501 response), which could enable larval fish to prioritize energy conservation and survival over
502 growth and development (Figure 3). Interestingly, lipid processes were not similarly affected in
503 larvae reared in the cold + acidified treatment, and protein synthesis-related gene expression
504 was higher (Figure S8). Larvae exposed to combined cold and acidified conditions were better
505 conditioned than those in cold alone (Table 3, Slesinger et al. 2024), which suggests that
506 acidification may stimulate or necessitate additional acclimatory mechanisms (e.g. protein
507 synthesis) that could affect energy homeostasis in cold temperatures. These data reveal genes
508 and processes that are important for larval Pacific cod acclimation to cold temperatures, which
509 could be monitored in cod exhibiting northward migration.

510 *Experimental considerations*

511 This study does not capture variability due to genetic, epigenetic, or parental carryover factors
512 (Almeida et al., 2024). Collecting thermal performances across multiple families or populations
513 could reveal genotype-specific tolerances to suboptimal conditions. Larvae were sampled for
514 gene expression after a 13-28-day larval incubation phase in which daily mortality rates were
515 high, although not uncommon for larval Pacific cod (Copeman & Laurel 2010; Laurel, Hurst, &
516 Cianelli 2011). Transcriptional patterns reported here therefore reflect those in surviving larvae,

517 and despite the relatedness of all larvae entering treatments (three half-sibling families)
518 survivors may have been genetically or phenotypically distinct. Larvae were sampled at similar
519 sizes and degree-days among temperature treatments (but different calendar days) to control
520 for development. Still, developmental differences are possible given the strong temperature-
521 dependent developmental rates. Warm-reared larvae were smaller than the other temperatures,
522 which could have resulted in size-specific expression. We removed genes that correlated
523 strongly with larval size, which is a good proxy for development. While this approach did not
524 affect overall conclusions, it could not control for developmental differences that are decoupled
525 from size and may not capture all processes affected by treatments. For instance, a number of
526 genes involved in ion transport, neurological activity, and circadian rhythm were more active in
527 response to warm temperatures in the unfiltered dataset but were removed due to their
528 association with length (Figure S17, Table S5). Future studies should strive to target more
529 genetically diverse cohorts, and to accommodate sampling at multiple time-points. These
530 approaches would enable descriptions of how molecular signatures change over the course of a
531 mortality event in developmentally similar larvae and to capture genotype x environment
532 interactions.

533 It must also be noted that larvae that were sampled for gene expression analysis from
534 the cold treatment were from a single tank (Table 2). Tank-specific responses can occur,
535 however the potential effect of replicate tank was assessed and was not found to influence the
536 measured phenotypic responses (Slesinger et al., 2024). In this study's gene expression
537 analysis, tank did not significantly influence expression in the treatments with samples from
538 multiple replicate tanks (Table S6), and expression variability among larvae in the cold
539 treatment did not differ from that observed in the other five treatments which included larvae
540 sampled from all four replicate tanks (Figure S18). Additionally, no genes were expressed at
541 significantly different levels in cold-exposed larvae (from a single tank) compared to larvae

542 exposed to cold + acidified conditions (from four tanks), which indicates that cold temperature
543 was the primary factor influencing gene expression.

544 Hypothesized impacts of climate stressors on recruitment

545 Pacific cod recruitment has significantly and consistently declined subsequent to heatwave
546 years in the Gulf of Alaska (e.g. Laurel et al., 2023; Abookire et al. 2024). Recent empirical data
547 (Slesinger et al., 2024) supports the theory that heat waves contributed to recruitment failure by
548 reducing larval survival. In this companion study, molecular data reveal that metabolic shifts and
549 inflammation are possible mechanisms of warming-associated mortality (Figure 4). Specifically,
550 we suggest that warming increases energetic demands due to rapid development, growth, and
551 higher metabolic rate, which likely outpaces lipid metabolism capacity. In an energy-depleted
552 condition, the costly process of mounting an immune response further reduces energy
553 mobilization and may decrease its effectiveness (Arts and Kohler, 2009). Larvae are equipped
554 with compensatory mechanisms that allow them to acclimate to and survive colder
555 temperatures, but recruitment rates are likely affected by a prolonged larval phase (Figure 4).
556 As reported by Slesinger et al. (2024), acidification as a single stressor would not likely reduce
557 recruitment directly by increasing larval mortality rates. However, acidification may reduce larval
558 body condition over time by possibly impacting lipid digestion, and effects may be more relevant
559 when prey is scarce (Figure 4). If acidification occurs during heatwave events or in cold
560 conditions, larval recruitment patterns will predominantly be determined by temperature.
561 Molecular data suggest that acidification may mitigate some negative effects of warming (e.g.
562 more muted immune and metabolic response) that could potentially benefit phenotypes in later
563 stages or in the natural environment, and may augment protein synthesis machinery in cold
564 temperatures which may actually improve larval condition.

565 Our findings and those from Slesinger et al. (2024) support the hypothesis that warming
566 events directly affect Pacific cod larval physiology and likely contribute to recruitment failures.

567 Larvae are more capable of acclimating to acidified and colder conditions, although predation
568 rates and effects on growth and condition could become more impactful in later stages such as
569 overwintering juveniles (Abookire et al. 2024). Taken together, results indicate it may be
570 appropriate to apply higher natural mortality to early life stages in modeling efforts in response
571 to heatwave conditions to capture expected declines in recruitment.

572 Acknowledgments

573 Thank you to Alisa Abookire for collecting gametes for this experiment, Louise Copeman for
574 insights into lipid processes, Aaron Seltzer for graphic design, and Sean Rohan, Bianca
575 Prohaska, and two anonymous reviewers for comments.

576 Funding

577 This work was supported by the NOAA Ocean Acidification Program and the Cooperative
578 Institute for Climate, Ocean and Ecosystem Studies (CICOES, #2025-1453).

579 Competing Interests

580 Competing interests: The authors declare there are no competing interests.

581 Data and Code Availability

582 Raw sequence data is published on NCBI under BioProject PRJNA1154236. Code and
583 metadata is available in the GitHub repository, <https://doi.org/10.5281/zenodo.15399957>.

584 References

585 Abelman, A., Dalton, M., Fissel, B., Garber-Yonts, B., Kasperski, S., Lee, J., Lew, D., Seung, C.,
586 Smith, M. D., Szymkowiak, M., et al. (2023). Stock Assessment and Fishery Evaluation
587 Report for the Groundfish Fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands

588 Area. North Pacific Fishery Management Council, 1007 West 3rd Ave., Suite 400, L92

589 Building, 4th floor, Anchorage, AK 99501.

590 Abookire, A. A., Litzow, M. A., Malick, M. J. and Laurel, B. J. (2022). Post-settlement

591 abundance, condition, and survival in a climate-stressed population of Pacific cod. *Can. J.*

592 *Fish. Aquat. Sci.* 79, 958–968.

593 Abookire, A.A., Copeman, L.A., Litzow, M.A. and Laurel, B.J., 2024. Seasonal shift in energy

594 allocation from somatic growth to lipid storage and the link between pre-winter condition

595 and overwintering potential in juvenile Pacific cod. *ICES Journal of Marine Science*, 81(4),

596 pp.710-723.

597 Alderdice, D. F. and Forrester, C. R. (1971). Effects of salinity, temperature, and dissolved

598 oxygen on early development of the Pacific cod (*Gadus macrocephalus*). *J. Fish. Res. Bd.*

599 *Can.* 28, 883–902.

600 Almeida, L. Z., Laurel, B. J., Thalmann, H. L. and Miller, J. A. (2024). Warmer, earlier, faster:

601 Cumulative effects of Gulf of Alaska heatwaves on the early life history of Pacific cod.

602 *Elementa: Sci. Anthropocene* 12, 00050.

603 Arts, M. T. and Kohler, C. C. (2009). Health and condition in fish: the influence of lipids on

604 membrane competency and immune response, p. 237–256. *In* *Lipids in Aquatic*

605 *Ecosystems* (ed. Kainz, M.), Brett, M. T.), and Arts, M. T.). New York, NY: Springer New

606 York.

607 Barbeaux, S. J., Holsman, K. and Zador, S. (2020). Marine heatwave stress test of ecosystem-

608 based fisheries management in the Gulf of Alaska Pacific cod fishery. *Front. Mar. Sci.* 7.

609 <https://doi.org/10.3389/fmars.2020.00703>.

610 Barlow, S. L. (2016). Temperature sensitivity of red blood cell physiology in Atlantic cod, *Gadus*

611 *morhua*: Comparative, molecular, evolutionary and environmental aspects. University of

612 Liverpool Repository. <https://dx.doi.org/10.17638/03004526>.

613 Bian, X., Zhang, X., Sakurai, Y., Jin, X., Wan, R., Gao, T. and Yamamoto, J. (2016). Interactive
614 effects of incubation temperature and salinity on the early life stages of Pacific cod *Gadus*
615 *macrocephalus*. *Deep Sea Res. Pt. 2 Top. Stud. Oceanogr.* 124, 117–128.

616 Bond, N.A., Cronin, M.F., Freeland, H. and Mantua, N. (2015). Causes and impacts of the 2014
617 warm anomaly in the NE Pacific. *Geophys. Res. Lett.*, 42(9), 3414-3420.
618 <https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2015GL063306>

619 Bowden, T. J. (2008). Modulation of the immune system of fish by their environment. *Fish*
620 *Shellfish Immunol.* 25, 373–383.

621 Cattell, R. B. (1966). The scree test for the number of factors. *Multivariate Behav. Res.* 1, 245–
622 276.

623 Cohen, J. (1969). Statistical power analysis for the behavioral sciences. New York, NY:
624 Academic Press.

625 Cominassi, L., Moyano, M., Claireaux, G., Howald, S., Mark, F. C., Zambonino-Infante, J.-L. and
626 Peck, M. A. (2020). Food availability modulates the combined effects of ocean acidification
627 and warming on fish growth. *Sci. Rep.* 10, 2338.

628 Copeman, L. A. and Laurel, B. J. (2010). Experimental evidence of fatty acid limited growth and
629 survival in Pacific cod larvae. *Mar. Ecol. Prog. Ser.* 412, 259–272.

630 Copeman, L. A., Laurel, B. J., Spencer, M. and Sremba, A. (2017). Temperature impacts on
631 lipid allocation among juvenile gadid species at the Pacific Arctic-Boreal interface: an
632 experimental laboratory approach. *Mar. Ecol. Prog. Ser.* 566, 183–198.

633 Copeman, L.A., Salant, C.D., Stowell, M.A., Kimmel, D.G., Pinchuk, A.I., Laurel, B.J., 2022.
634 Annual and spatial variation in the condition and lipid storage of juvenile Chukchi Sea
635 gadids during a recent period of environmental warming (2012 to 2019). *Deep Sea Res.*
636 Part II Top. Stud. Oceanogr. 205, 105180. <https://doi.org/10.1016/j.dsr2.2022.105180>

637 Díaz-Gil Carlos, Catalán Ignacio A., Palmer Miquel, Faulk Cynthia K. and Fuiman Lee A.

638 2015 Ocean acidification increases fatty acids levels of larval fish *Biol. Lett.* 11:20150331

639 <http://doi.org/10.1098/rsbl.2015.0331>

640 Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A. (2009). Ocean acidification: the other

641 CO₂ problem. *Ann. Rev. Mar. Sci.* 1, 169–192.

642 Fabry, V., McClintock, J., Mathis, J. and Grebmeier, J. (2009). Ocean acidification at high

643 latitudes: the bellwether. *Oceanography* 22, 160–171.

644 Faes, C., Sparkenbaugh, E. M. and Pawlinski, R. (2018). Hypercoagulable state in sickle cell

645 disease. *Clin. Hemorheol. Microcirc.* 68, 301–318.

646 Foster, A. R., Houlihan, D. F., Hall, S. J. and Burren, L. J. (1992). The effects of temperature

647 acclimation on protein synthesis rates and nucleic acid content of juvenile cod (*Gadus*

648 *morhua* L.). *Can. J. Zool.* 70, 2095–2102.

649 Frölicher, T. L., Fischer, E. M. and Gruber, N. (2018). Marine heatwaves under global warming.

650 *Nature* 560, 360–364.

651 Frommel, A. Y., Maneja, R., Lowe, D., Malzahn, A. M., Geffen, A. J., Folkvord, A., Piatkowski,

652 U., Reusch, T. B. H. and Clemmesen, C. (2011). Severe tissue damage in Atlantic cod

653 larvae under increasing ocean acidification. *Nat. Clim. Change* 2, 42–46.

654 Frommel, A.Y., Hermann, B.T., Michael, K., Lucassen, M., Clemmesen, C., Hanel, R., Reusch,

655 T.B.H., 2020. Differential gene expression patterns related to lipid metabolism in response

656 to ocean acidification in larvae and juveniles of Atlantic cod. *Comp. Biochem. Physiol. Mol.*

657 *Integr. Physiol.* 247, 110740.

658 George, N. I., Bowyer, J. F., Crabtree, N. M. and Chang, C.-W. (2015). An iterative leave-one-

659 out approach to outlier detection in RNA-seq data. *PLoS One* 10, e0125224.

660 Gibbs, M.C.; Parker, L.M.; Scanes, E.; Byrne, M.; O'Connor, W.A.; Ross, P.M. Energetic lipid

661 responses of larval oysters to ocean acidification. *Mar. Pollut. Bull.* 2021, 168, 112441.

662 <https://doi.org/10.1016/j.marpolbul.2021.112441>

663 Grebmeier, J.M., Overland, J.E., Moore, S.E., Farley, E.V., Carmack, E.C., Cooper, L.W., Frey,

664 K.E., Helle, J.H., McLaughlin, F.A. and McNutt, S.L., 2006. A major ecosystem shift in the

665 northern Bering Sea. *Science*, 311(5766), pp.1461-1464.

666 Harley, C. D. G., Randall Hughes, A., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C.

667 S., Rodriguez, L. F., Tomanek, L. and Williams, S. L. (2006). The impacts of climate

668 change in coastal marine systems. *Ecol. Lett.* 9, 228–241.

669 Houlihan, D. F. (1991). Protein turnover in ectotherms and its relationships to energetics, p. 1–

670 43. *In Advances in Comparative and Environmental Physiology: Volume 7* (ed. Houlihan, D.

671 F.), Livingstone, D. R.), and Lee, R. F.), Berlin, Heidelberg: Springer Berlin Heidelberg.

672 Hu, B., Chen, B., Mao, M., Chen, M., Liu, X., Cui, Q., Liu, Y. and Jiang, C. (2018). Molecular

673 characterization and expression analysis of the interleukin 1b gene in Pacific cod (*Gadus*

674 *macrocephalus*). *Dev. Comp. Immunol.* 88, 213–218.

675 Hulson, P.-J. F., Barbeaux, S. J., Ferriss, B., Echave, K., Nielsen, J., Shotwell, S. K., Laurel, B.,

676 & Spies, I. (2023). Assessment of the Pacific cod stock in the Gulf of Alaska. North Pacific

677 Fishery Management Council. [https://apps-](https://apps-afsc.fisheries.noaa.gov/Plan_Team/2023/GOApcod.pdf)

678 [afsc.fisheries.noaa.gov/Plan_Team/2023/GOApcod.pdf](https://apps-afsc.fisheries.noaa.gov/Plan_Team/2023/GOApcod.pdf)

679 Hurst, T. P., Cooper, D. W., Scheingross, J. S., Seale, E. M., Laurel, B. J. and Spencer, M. L.

680 (2009). Effects of ontogeny, temperature, and light on vertical movements of larval Pacific

681 cod (*Gadus macrocephalus*). *Fish. Oceanogr.* 18, 301–311.

682 Hurst, T. P., Laurel, B. J. and Ciannelli, L. (2010). Ontogenetic patterns and temperature-

683 dependent growth rates in early life stages of Pacific cod (*Gadus macrocephalus*). *Fish.*

684 *Bull., U.S.* 108(4), 382-392.

685 Hurst, T. P., Fernandez, E. R., Mathis, J. T., Miller, J. A., Stinson, C. M. and Ahgeak, E. F.
686 (2012). Resiliency of juvenile walleye pollock to projected levels of ocean acidification.
687 *Aquat. Biol.* 17, 247–259.

688 Hurst, T. P., Fernandez, E. R. and Mathis, J. T. (2013). Effects of ocean acidification on hatch
689 size and larval growth of walleye pollock (*Theragra chalcogramma*). *ICES J. Mar. Sci.* 70,
690 812–822.

691 Hurst, T. P., Copeman, L. A., Haines, S. A., Meredith, S. D., Daniels, K. and Hubbard, K. M.
692 (2019). Elevated CO₂ alters behavior, growth, and lipid composition of Pacific cod larvae.
693 *Mar. Environ. Res.* 145, 52–65.

694 Hurst, T. P., Copeman, L. A., Andrade, J. F., Stowell, M. A., Al-Samarrie, C. E., Sanders, J. L.
695 and Kent, M. L. (2021). Expanding evaluation of ocean acidification responses in a marine
696 gadid: elevated CO₂ impacts development, but not size of larval walleye pollock. *Mar. Biol.*
697 168, 119.

698 Khan, F. U., Hu, M., Kong, H., Shang, Y., Wang, T., Wang, X., Xu, R., Lu, W. and Wang, Y.
699 (2020). Ocean acidification, hypoxia and warming impair digestive parameters of marine
700 mussels. *Chemosphere* 256, 127096.

701 Klepsatel, P., Gáliková, M., Xu, Y. and Kühlein, R. P. (2016). Thermal stress depletes energy
702 reserves in *Drosophila*. *Sci. Rep.* 6, 33667.

703 Larsen, A. K., Nymo, I. H., Sørensen, K. K., Seppola, M., Rødven, R., Jiménez de Bagüés, M.
704 P., Al Dahouk, S. and Godfroid, J. (2018). Concomitant temperature stress and immune
705 activation may increase mortality despite efficient clearance of an intracellular bacterial
706 infection in Atlantic cod. *Front. Microbiol.* 9, 2963.

707 Laurel, B. J., Hurst, T. P., Copeman, L. A. and Davis, M. W. (2008). The role of temperature on
708 the growth and survival of early and late hatching Pacific cod larvae (*Gadus*
709 *macrocephalus*). *J. Plankton Res.* 30, 1051–1060.

710 Laurel, B. J., Hurst, T. P., & Ciannelli, L. (2011). An experimental examination of temperature
711 interactions in the match-mismatch hypothesis for Pacific cod larvae. *Canadian Journal of
712 Fisheries and Aquatic Sciences*, 68(1), 51–61. <https://doi.org/10.1139/F10-130>

713 Laurel, B. J., Copeman, L. A. and Parrish, C. C. (2012). Role of temperature on lipid/fatty acid
714 composition in Pacific cod (*Gadus macrocephalus*) eggs and unfed larvae. *Mar. Biol.* 159,
715 2025–2034.

716 Laurel, B. J., Spencer, M., Iseri, P. and Copeman, L. A. (2016). Temperature-dependent growth
717 and behavior of juvenile Arctic cod (*Boreogadus saida*) and co-occurring North Pacific
718 gadids. *Polar Biol.* 39, 1127–1135.

719 Laurel, B. J. and Rogers, L. A. (2020). Loss of spawning habitat and prerecruits of Pacific
720 cod during a Gulf of Alaska heatwave. *Can. J. Fish. Aquat. Sci.* 77, 644–650.

721 Laurel, B. J., Abookire, A., Barbeaux, S. J., Almeida, L. Z., Copeman, L. A., Duffy-Anderson, J.,
722 Hurst, T. P., Litzow, M. A., Kristiansen, T., Miller, J. A., et al. (2023). Pacific cod in the
723 Anthropocene: An early life history perspective under changing thermal habitats. *Fish Fish.*
724 doi: 10.1111/faf.12779.

725 Leo, E., Kunz, K. L., Schmidt, M., Storch, D., Pörtner, H.-O. and Mark, F. C. (2017).
726 Mitochondrial acclimation potential to ocean acidification and warming of polar cod
727 (*Boreogadus saida*) and Atlantic cod (*Gadus morhua*). *Front. Zool.* 14, 21.

728 Long, Y., Li, L., Li, Q., He, X. and Cui, Z. (2012). Transcriptomic characterization of temperature
729 stress responses in larval zebrafish. *PLoS One* 7, e37209.

730 Love, M. I., Huber, W. and Anders, S. (2014). Moderated estimation of fold change and
731 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 550.

732 Mathis, J. T., Cross, J. N., Monacci, N., Feely, R. A. and Stabeno, P. (2014). Evidence of
733 prolonged aragonite undersaturations in the bottom waters of the southern Bering Sea shelf

734 from autonomous sensors. *Deep Sea Res. Pt. II Top. Stud. Oceanogr.* 109, 125–133.

735 Messina, S., Costantini, D., Eens, M., 2023. Impacts of rising temperatures and water
736 acidification on the oxidative status and immune system of aquatic ectothermic vertebrates:
737 A meta-analysis. *Sci. Total Environ.* 868, 161580
738 <https://doi.org/10.1016/j.scitotenv.2023.161580>

739 Morshed, S. M., and Lee, T.-H. (2023). The role of the microbiome on fish mucosal immunity
740 under changing environments. *Fish Shellfish Immunol.* 139, 108877.

741 Muller C, Childs A-R, James NC, Potts WM (2021) Effects of experimental ocean acidification
742 on the larval morphology and metabolism of a temperate sparid, *Chrysoblephus laticeps*.
743 *Oceans* 2:26–40

744 Norambuena F, Morais S, Emery JA, Turchini GM (2015) Arachidonic Acid and
745 Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water
746 Temperature. *PLOS ONE* 10(11): e0143622. <https://doi.org/10.1371/journal.pone.0143622>

747 Oomen, R. A., Knutson, H., Olsen, E. M., Jentoft, S., Stenseth, N. C. and Hutchings, J. A.
748 (2022). Warming accelerates the onset of the molecular stress response and increases
749 mortality of larval Atlantic cod. *Integr. Comp. Biol.* 62, 1784–1801.

750 Pérez-Casanova, J. C., Rise, M. L., Dixon, B., Afonso, L. O. B., Hall, J. R., Johnson, S. C. and
751 Gamperl, A. K. (2008). The immune and stress responses of Atlantic cod to long-term
752 increases in water temperature. *Fish Shellfish Immunol.* 24, 600–609.

753 Pilcher, D. J., Cross, J. N., Hermann, A. J., Kearney, K. A., Cheng, W., and Mathis, J. T. (2022).
754 Dynamically downscaled projections of ocean acidification for the Bering Sea. *Deep Sea
755 Res. Pt. II Top. Stud. Oceanogr.* 198, 105055.

756 Pimentel, M. S., Faleiro, F., Diniz, M., Machado, J., Pousão-Ferreira, P., Peck, M. A., Pörtner,
757 H. O. and Rosa, R. (2015). Oxidative stress and digestive enzyme activity of flatfish larvae

758 in a changing ocean. *PLoS One* 10, e0134082.

759 Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L. and Levin, S.A., 2013. Marine taxa track
760 local climate velocities. *Science*, 341(6151), pp.1239-1242.

761 R Core Team (2021). R: A language and environment for statistical computing. <https://www.R-project.org>.

762

763 Rosa, R., Pimentel, M., Galan, J. G., Baptista, M., Lopes, V. M., Couto, A., Guerreiro, M.,
764 Sampaio, E., Castro, J., Santos, C., et al. (2016). Deficit in digestive capabilities of bamboo
765 shark early stages under climate change. *Mar. Biol.* 163, 60.

766 Rosado, D., Xavier, R., Cable, J., Severino, R., Tarroso, P. and Pérez-Losada, M. (2021).
767 Longitudinal sampling of external mucosae in farmed European seabass reveals the impact
768 of water temperature on bacterial dynamics. *ISME Commun.* 1, 28.

769 RStudio Team (2020). RStudio: Integrated Development for R. Boston, MA.

770 Schwanhäusser, B., Busse, D., Li, N. et al. Global quantification of mammalian gene expression
771 control. *Nature* 473, 337–342 (2011). <https://doi.org/10.1038/nature10098>

772 Secombes, C. J., Wang, T. and Bird, S. (2011). The interleukins of fish. *Dev. Comp. Immunol.*
773 35, 1336–1345.

774 Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T. and Chang,
775 W. (2022). DAVID: a web server for functional enrichment analysis and functional
776 annotation of gene lists (2021 update). *Nucleic Acids Res.* Jul 5;50(W1):W216-W221. doi:
777 10.1093/nar/gkac194. PMID: 35325185; PMCID: PMC9252805.

778 Slesinger, E., Mundorff, S., Laurel, B.J., and Hurst, T.P. (2024). The combined effects of ocean
779 warming and ocean acidification on Pacific cod (*Gadus macrocephalus*) early life stages.
780 *Mar. Biol.* 171, 121. doi:
781

782 Spencer, L. H., Slesinger, E., Spies, I., Laurel, B. J., & Hurst, T. P. (2025). Data and analysis
783 scripts for: Molecular indicators of warming and other climate stressors in larval Pacific cod
784 (Version 1.0.0) [Data and code repository]. Zenodo.
785 <https://doi.org/10.5281/zenodo.15399957>

786 Spies, I., Gruenthal, K. M., Drinan, D. P., Hollowed, A. B., Stevenson, D. E., Tarpey, C. M. and
787 Hauser, L. (2020). Genetic evidence of a northward range expansion in the eastern Bering
788 Sea stock of Pacific cod. *Evol. Appl.* 13, 362–375.

789 Spies, I., C. Tarpey, T. Kristiansen, M. Fisher, S. Rohan, and L. Hauser. 2022. "Genomic
790 Differentiation in Pacific Cod Using Pool-Seq." *Evolutionary Applications* 15, no. 11: 1907–
791 1924. <https://doi.org/10.1111/eva.13488>.

792 Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M., Puvanendran,
793 V., Mortensen, A., Reusch, T. B. H. and Clemmesen, C. (2016). Ocean acidification effects
794 on Atlantic cod larval survival and recruitment to the fished population. *PLoS One* 11,
795 e0155448.

796 Storch, D., Lannig, G. and Pörtner, H. O. (2005). Temperature-dependent protein synthesis
797 capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). *J. Exp. Biol.* 208, 2409–
798 2420.

799 Strader, M.E., Wong, J.M. & Hofmann, G.E. Ocean acidification promotes broad transcriptomic
800 responses in marine metazoans: a literature survey. *Front Zool* 17, 7 (2020).
801 <https://doi.org/10.1186/s12983-020-0350-9>

802 Tillner, R., Rønnestad, I., Harboe, T. and Ueberschär, B. (2013). Hormonal control of tryptic
803 enzyme activity in Atlantic cod larvae (*Gadus morhua*): Involvement of cholecystokinin
804 during ontogeny and diurnal rhythm. *Aquaculture* 402-403, 133–140.

805 Tirsgaard, B., Moran, D. and Steffensen, J. F. (2015a). Prolonged SDA and reduced digestive
806 efficiency under elevated CO₂ may explain reduced growth in Atlantic cod (*Gadus morhua*).

807 *Aquat. Toxicol.* 158, 171–180.

808 Tirsgaard, B., Svendsen, J. C. and Steffensen, J. F. (2015b). Effects of temperature on specific
809 dynamic action in Atlantic cod *Gadus morhua*. *Fish Physiol. Biochem.* 41, 41–50.

810 Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. *Rev.*
811 *Fish. Sci.* 11, 107–184.

812 UniProt Consortium (2021). UniProt: the universal protein knowledgebase in 2021. *Nucleic*
813 *Acids Res.* 49, D480–D489.

814 Valen, R., Eilertsen, M., Edvardsen, R. B., Furmanek, T., Rønnestad, I., van der Meeren, T.,
815 Karlsen, Ø., Nilsen, T. O. and Helvik, J. V. (2016). The two-step development of a duplex
816 retina involves distinct events of cone and rod neurogenesis and differentiation. *Dev. Biol.*
817 416, 389–401.

818 Walsh, J. E., Thoman, R. L., Bhatt, U. S., Bieniek, P. A., Brettschneider, B., Brubaker, M.,
819 Danielson, S., Lader, R., Fetterer, F., Holderied, K., et al. (2018). The high latitude marine
820 heat wave of 2016 and its impacts on Alaska. *Bull. Am. Meteorol. Soc.* 99, S39–S43.

821 Wells, R. M. G. (2009). Chapter 6 blood-gas transport and hemoglobin function: Adaptations for
822 functional and environmental hypoxia, p. 255–299. *In* Fish Physiology (ed. Richards, J. G.),
823 Farrell, A. P.), and Brauner, C. J.). Academic Press.

824 Worm, B. and Lotze, H. K. (2021). Chapter 21 - Marine biodiversity and climate change, p. 445–
825 464. *In* Climate Change (Third Edition) (ed. Letcher, T. M.). Elsevier.

826 Yoon, G.R., Bugg W.S., Fehrmann F., Yushishen M.E., Suh M., Anderson W.G. 2022a. Long-
827 term effects of temperature during early life on growth and fatty acid metabolism in age-0
828 lake sturgeon (*Acipenser fulvescens*). *J. Therm. Biol.* 105: 103210.

829 Zhuang, X, Cheng, CC. Propagation of a de novo gene under natural selection: antifreeze
830 glycoprotein genes and their evolutionary history in codfishes. *Genes (Basel)*.

831 2021;12(11):1777. <https://doi.org/10.3390/genes12111777>.

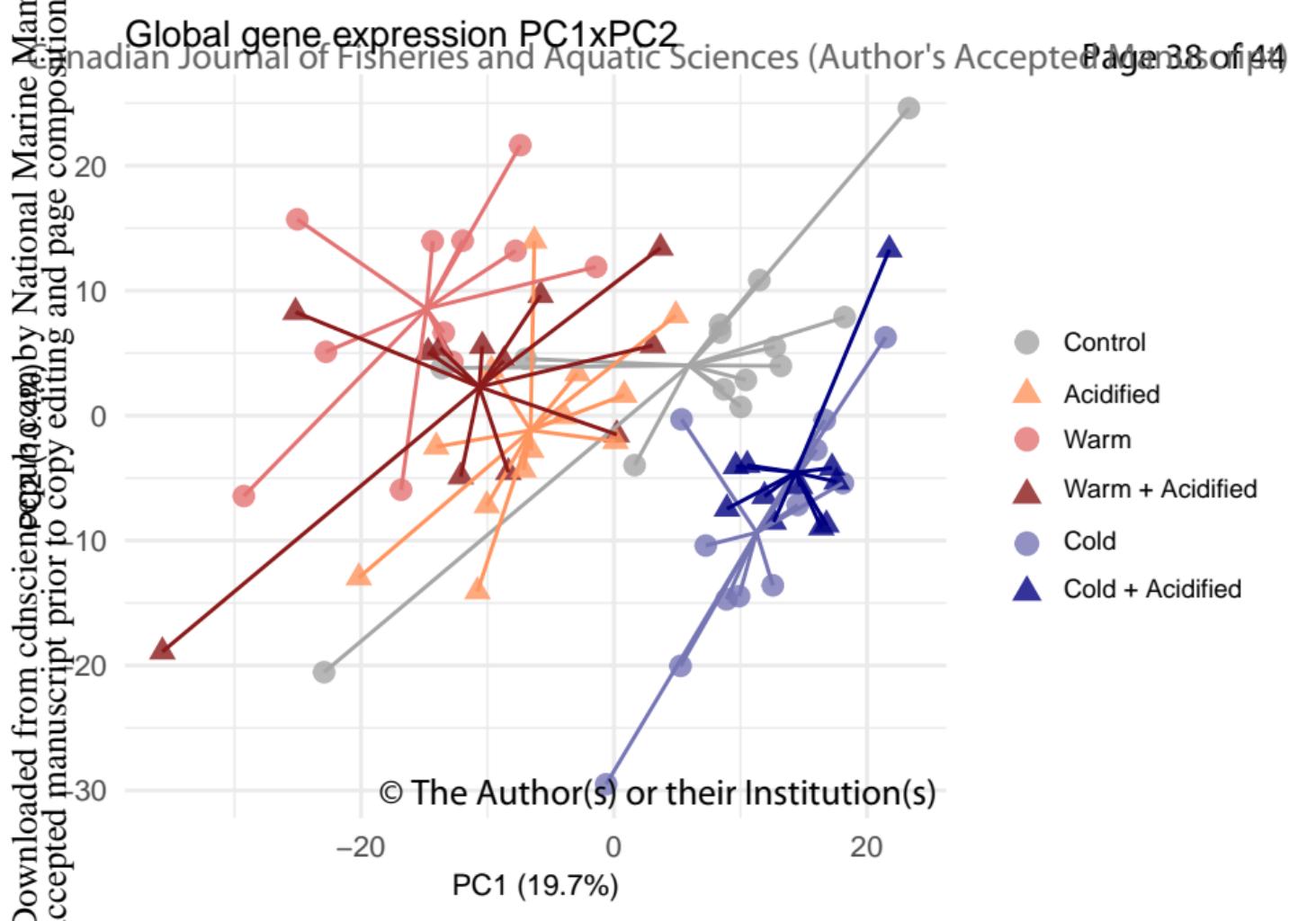
832

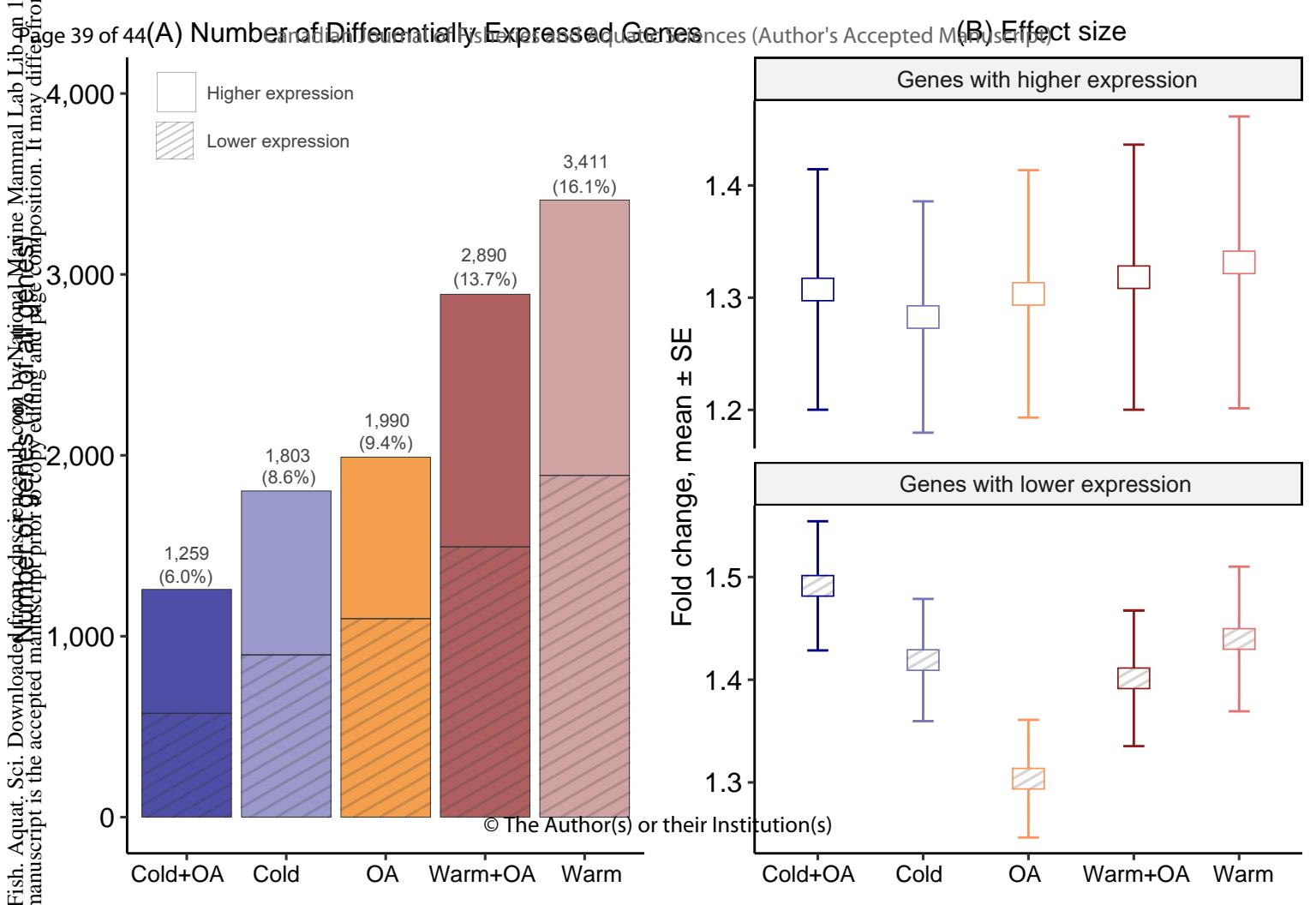
833 **Figure Captions**

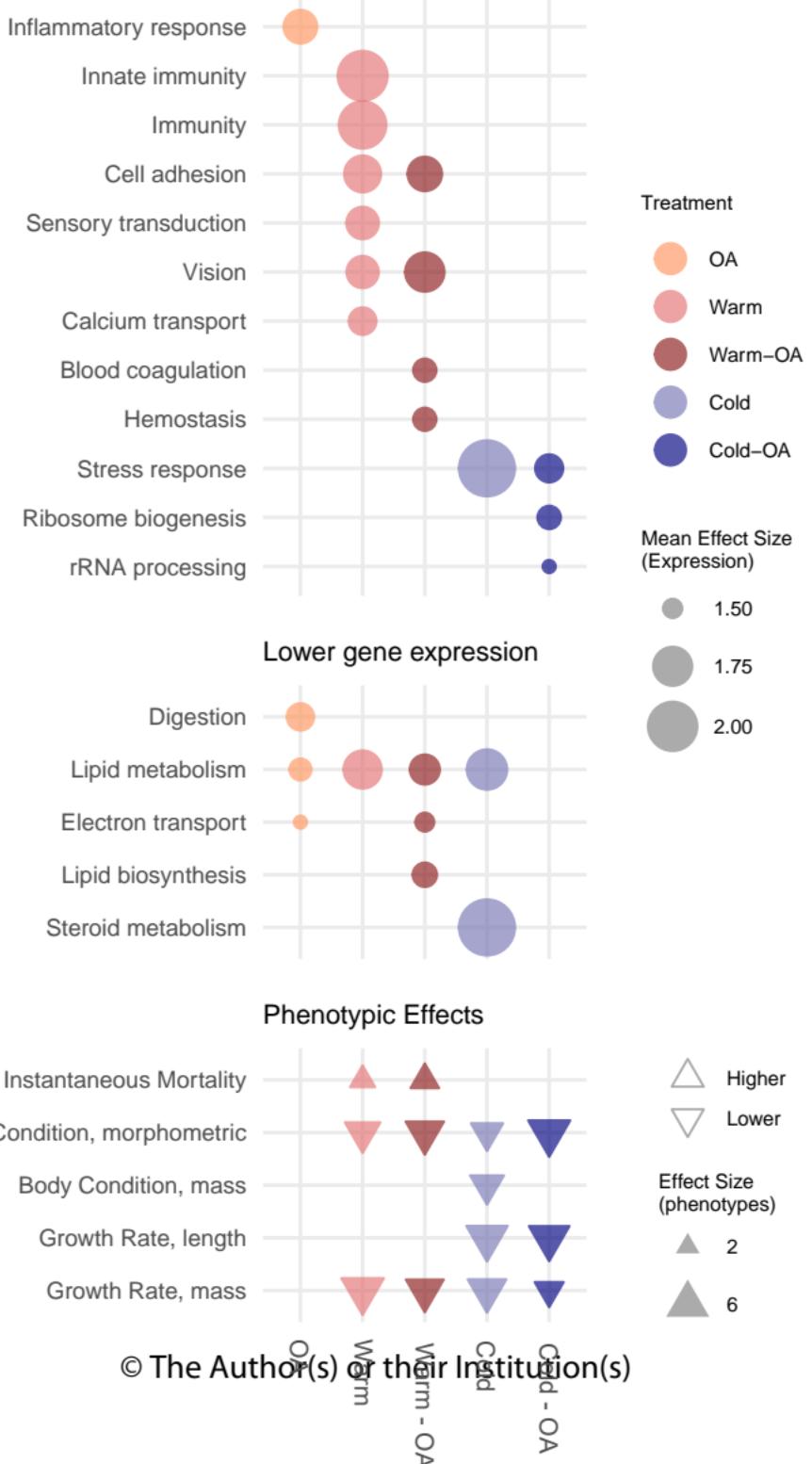
834 **Figure 1.** PCA biplot of principal components one and two, constructed from all examined
835 genes. Points represent global expression patterns for individual larval fish reared in control
836 conditions (6°C, 390 μ atm CO₂) and combinations of suboptimal temperatures (Cold=3°C,
837 Warm=10°C) and acidification (1560 μ atm CO₂), and lines radiate out from treatment centroids.

838

839 **Figure 2.** (A) The number of genes that were differentially expressed (DEGs) in response to
840 temperature and acidification treatments as single stressors (Warm=10°C, Cold=3°C, OA =
841 ~1,560 μ atm pCO₂) and when combined, all compared to the control conditions (6°C, pCO₂ =
842 ~390 μ atm). Percentages are relative to all known genes detected in this study (n=21,076) (B)
843 Mean effect size (fold change) of all DEGs that were expressed at higher levels (top) and lower
844 levels (bottom) compared to control condition, where error bars represent the variability of effect
845 size among DEGs within each treatment (SE). DEGs were determined from 11-14 individual
846 larvae per treatment, sampled across four tanks for all treatments except the cold treatment
847 (one tank).


848


849 **Figure 3.** Enriched biological processes (Uniprot keyword) in genes with higher expression (top)
850 and lower expression (middle) in response to temperature and pCO₂ stressors alone (Cold=3°C,
851 Warm=10°C, High pCO₂= ~1,560 μ atm), and when combined, and phenotypic effects at the
852 time of sampling for gene expression (bottom). All enriched processes and phenotypic effects
853 are relative to the control conditions (6°C, pCO₂ ~390 μ atm). Point sizes indicate the mean
854 effect size of differentially expressed genes involved in each affected process (fold change), and
855 effect size for phenotypes (Cohen's d). See Figures S3 and S4 and Table S2 for enriched Gene
856 Ontology terms, and Slesinger et al. (2024) for phenotypic effects across multiple time periods.


857

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by National Marine Mammal Lab Lib on 11/26/25
For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

858 **Figure 4:** Hypothesized molecular mechanism associated with phenotypic responses to climate
859 stressors and likely impacts on recruitment. Hypotheses are based on RNASeq-generated
860 transcriptomes from whole-body larvae that were exposed to warm (10°C), acidified (pH 7.47,
861 1,560 μ atm pCO₂), cold (3°C), and combined warm + acidified and cold + acidified conditions.

Pacific Cod in the Gulf of Alaska

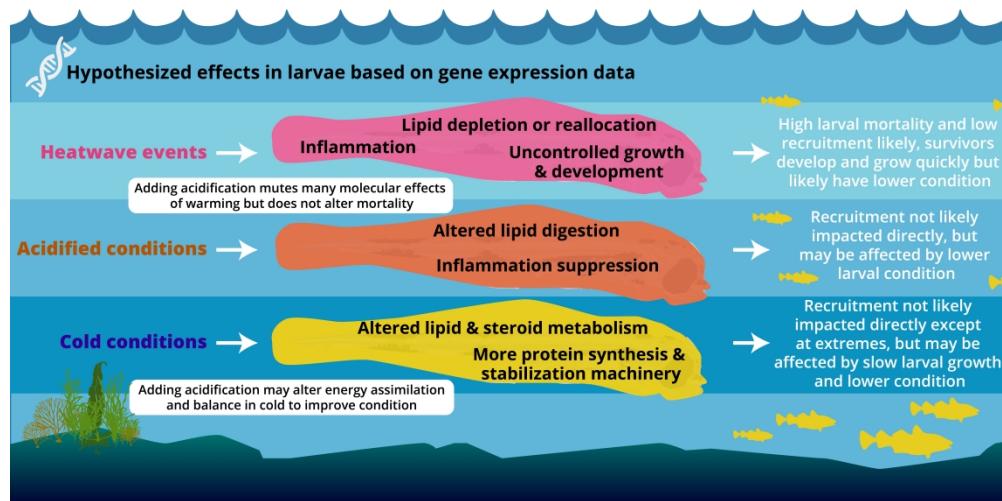


Figure 4. Hypothesized molecular mechanism associated with phenotypic responses to climate stressors and likely impacts on recruitment. Hypotheses are based on RNASeq-generated transcriptomes from whole-body larvae that were exposed to warm (10°C), acidified (pH 7.47, 1,560 μ atm pCO₂), cold (3°C), and combined warm + acidified and cold + acidified conditions.

1722x968mm (118 x 118 DPI)

Tables

Table 1. Seawater carbonate chemistry during larval incubations. Values indicate mean \pm SD through time where temperature and salinity were measured daily, and dissolved inorganic carbon (DIC) and total alkalinity (TA) were measured from preserved bottle samples that were collected weekly. Weekly pH_{SWS} and pCO_2 were calculated from temperature, salinity, DIC and TA. Reproduced from Slesinger et al. (2024).

Treatment	pH_{SWS}	pCO_2 (μatm)	Temperature ($^{\circ}\text{C}$)	Salinity	DIC (mol/kg)	TA (mol/kg)
Control	8.03 \pm 0.11	394.28 \pm 132.84	6.14 \pm 0.29	29.84 \pm 1.48	1943.38 \pm 105.62	2063.08 \pm 84.73
Acidified	7.47 \pm 0.03	1480.80 \pm 126.37	6.04 \pm 0.51	29.36 \pm 1.31	2078.14 \pm 81.47	2042.54 \pm 84.58
Warm	8.00 \pm 0.03	409.60 \pm 36.75	10.22 \pm 0.24	29.63 \pm 0.67	1911.35 \pm 22.43	2040.80 \pm 21.72
Warm + Acidified	7.40 \pm 0.06	1780.01 \pm 245.48	10.20 \pm 0.37	29.63 \pm 0.67	2076.27 \pm 24.75	2038.04 \pm 22.15
Cold	8.12 \pm 0.07	297.20 \pm 65.51	3.03 \pm 0.39	30.21 \pm 1.11	1936.76 \pm 76.24	2074.63 \pm 65.73
Cold + Acidified	7.48 \pm 0.09	1434.95 \pm 304.70	3.10 \pm 0.18	29.77 \pm 1.30	2093.99 \pm 76.91	2050.55 \pm 68.72

Table 2. Gene expression sampling scheme. For each treatment, gene expression data was generated from 11-14 individual whole-body larvae using separate RNASeq libraries, sampled across four replicate tanks in all but the cold treatment. Larvae from the cold treatment were sampled from one tank (see Methods and Supplemental for more details). Treatment duration from hatch until gene expression sampling are provided in both Julian days and Degree-Days (DD) calculated from average temperatures. Differential expression analysis was performed for all treatments relative to control conditions (6°C, 390 μatm pCO₂).

Treatment <i>Mean conditions</i>	Replicate larvae	Number of tanks sampled for RNASeq	Duration Days (Degree Days)	Larval length Mean \pm SE
Control 6.1°C, 394 μatm pCO ₂	14	4	21 (129)	6.5 \pm 0.2
Acidified 6.1°C, 1,481 μatm pCO ₂	13	4	21 (127)	6.7 \pm 0.1
Warm 10.1°C, 410 μatm pCO ₂	11	4	13 (133)	5.7 \pm 0.1
Warm + Acidified 10.2°C, 1,780 μatm pCO ₂	12	4	13 (133)	6.0 \pm 0.1
Cold 3.0°C, 297 μatm pCO ₂	12	1	28 (85)	6.7 \pm 0.1
Cold + Acidified 3.1°C, 1,435 μatm pCO ₂	11	4	28 (87)	6.4 \pm 0.2

Table 3. Summary of phenotypic effects of treatments on mortality, growth, and condition during the larval stage, adapted from data previously reported in Slesinger et al. (2024). Phenotypic values represent measurements that were taken on or near (≤ 2 days) the day of sampling for gene expression (condition factors) or calculated between hatch and sampling date (growth and mortality), and are mean \pm SD across three (\dagger) or four replicate tanks. Values with asterisks (*) indicate pairwise differences among each treatment and the control (6.1°C , $390 \mu\text{atm}$). Temperature and pCO_2 represent treatment means across four replicate tanks.

Treatment	Control	Acidified	Warm	Warm + Acidified	Cold	Cold + Acidified
Temperature, pCO_2 (Mean \pm SD)	$6.1 \pm 0.3^{\circ}\text{C}$, $394 \pm 133 \mu\text{atm}$	$6.0 \pm 0.5^{\circ}\text{C}$, $1,481 \pm 126 \mu\text{atm}$	$10.2 \pm 0.2^{\circ}\text{C}$, $410 \pm 37 \mu\text{atm}$	$10.2 \pm 0.4^{\circ}\text{C}$, $1,780 \pm 245 \mu\text{atm}$	$3.0 \pm 0.4^{\circ}\text{C}$, $297 \pm 66 \mu\text{atm}$	$3.1 \pm 0.2^{\circ}\text{C}$, $1,435 \pm 305 \mu\text{atm}$
Total survival (%)	$23.0 \pm 20.8\%$	$35.1 \pm 15.0 \pm$	$5.7 \pm 4.2\%$	$4.1 \pm 2.0\%$	$12.1 \pm 13.3\%$	$13.5 \pm 4.9\%$
Instantaneous daily mortality rate (%)	0.097 ± 0.06	0.053 ± 0.02	$0.24 \pm 0.05 *$	$0.25 \pm 0.04 *$	0.11 ± 0.07	0.074 ± 0.01
Morphometric-based condition factor, K_{MH}	0.019 ± 0.02	0.014 ± 0.018	$0.002 \pm 0.02 *$	$-0.001 \pm 0.019 *$	-0.003 ± 0.022 †*	$-0.007 \pm 0.021 *$
Dry weight-based condition factor, K_{DW}	1.06 ± 0.08	1.05 ± 0.05	1.09 ± 0.11	1.08 ± 0.13	0.96 ± 0.07 †*	1.00 ± 0.08
Growth rate, length-based G_L (mm/day)	0.071 ± 0.005	0.075 ± 0.01	0.055 ± 0.014	0.062 ± 0.003	0.041 ± 0.007 †*	$0.046 \pm 0.005 *$
Growth rate, mass-based, G_M (%/day)	4.76 ± 0.40	4.78 ± 0.25	$2.72 \pm 0.68 *$	$3.77 \pm 0.54 *$	$2.43^{\dagger} \pm 0.41 *$	$3.37 \pm 0.41 *$