

1 **Conservation hatchery effects on the abundance and spawn timing of**
2 **natural steelhead populations: A replicated, before-after-control-**
3 **impact experiment in the Hood Canal Watershed.**

4

5

6 Barry A. Berejikian^{1*}, Michael J. Malick¹, Joy Lee-Waltermire², Mark R. Downen³, Katy K. Shelby³,
7 Robert Endicott¹, Anthony Batista⁴

8 ¹Environmental and Fisheries Sciences, National Marine Fisheries Service, National Oceanic and
9 Atmospheric Administration, 7305 Beach Drive East, Port Orchard, WA 98366, USA

10 ²Long Live the Kings, 1326 5th Avenue, Seattle, WA 98101, USA

11 ³Washington Department of Fish and Wildlife, 600 Capitol Way North, Olympia WA 98501, USA

12 ⁴Skokomish Indian Nation, 541 N Tribal Center Rd, Skokomish Nation 98584

13

14 *Corresponding author: barry.berejikian@noaa.gov

15 Barry Berejikian: <http://orcid.org/0000-0003-2933-7806>

16 Michael Malick: <https://orcid.org/0000-0002-8376-5476>

17

18

19 **Abstract**

20 A 17-year, replicated, before-after-control-impact experiment involving seven natural steelhead
21 populations from the same geographic region compared three conservation hatchery-supplemented
22 populations to four non-supplemented (control) populations. Spawn timing varied among the
23 populations with the average median spawn day ranging from late February to the middle of May.
24 Among-population diversity in spawn timing persisted throughout the study period, and there was no
25 evidence for changes in spawn timing across the study period for either the control or supplemented
26 populations. For the supplemented populations, releases of hatchery-reared smolts and adults from the
27 conservation hatcheries caused a substantial increase in the number of redds constructed. After
28 supplementation ended, redd abundance returned to levels only slightly greater than before
29 supplementation. In contrast, the control populations that received no hatchery steelhead had
30 moderately lower redd abundance in the after period compared to the before period. Taken together,
31 the results suggest that the conservation hatcheries contributed to a marginal improvement in adult
32 abundance relative to the control populations. This and the few previous studies that have included
33 non-supplemented reference populations suggest that neutral-to-positive population-level demographic
34 benefits should be expected for carefully planned conservation hatchery programs.

35

36 **Keywords:** steelhead, *Oncorhynchus mykiss*, conservation, hatchery, before-after-control impact, BACI,
37 supplementation, redd, salmonid

38

39 **Introduction**

40 Anadromous salmonid hatcheries have been used to augment natural populations for over a century
41 and have proven effective at increasing the abundance of sexually maturing adults available for harvest
42 (Waples et al. 2007; Jaeger and Scheuerell 2023). In fact, the continued human demand for hatchery-
43 produced salmon to support harvest combined with widespread human-caused declines in natural
44 populations contributed to increasing reliance on hatcheries (Lichatowitch 1999), which reached a peak
45 around the 1980's with over 500 million salmon released annually (Naish et al. 2008). Since then,
46 refinements to hatchery operations evident across broad geographic areas suggest collective knowledge
47 and experience of the public salmon hatchery system has converged on improved approaches that
48 reduce the ranges of size and timing of release (Nelson et al. 2019). Experimental studies have also
49 contributed to improvements in hatchery operations by identifying strategies to favor physiological and
50 behavioral traits that maximize survival rates and production of returning adults. (Johnsson et al. 2014;
51 Larsen et al. 2019; Tatara et al. 2021). But, the use of hatcheries as a strategy to conserve and rebuild
52 depleted natural populations is far less certain. Therefore, it's important to carefully evaluate the
53 effectiveness of conservation hatcheries on key indicators of population viability.

54 Several lines of investigation have shed light on the effects of hatcheries on natural anadromous
55 salmonid populations. Hatcheries may inadvertently select for traits conducive to survival and growth in
56 the hatchery environment (Reisenbichler et al., 2004; Wessel et al. 2006; Howe et al. 2024) with
57 unknown consequences on fitness` in the natural environment (Naish et al. 2008). Estimating the
58 reproductive success of comingled hatchery and natural-origin salmon has proven useful in determining
59 whether hatchery rearing can affect fitness, and in some cases leading to reasonable inferences about
60 genetic and environmental (rearing) mechanisms (Christie et al. 2014; Ford et al. 2016; Theriault et al.
61 2011; Williamson et al. 2010) causing reduced fitness (or not) in hatchery populations. However,

62 estimating the effect of hatchery inputs on population-level productivity is difficult without a control or
63 reference point (Hess et al. 2012). Hatchery effects can be estimated by incorporating hatchery
64 production (e.g., the number of smolts released or hatchery adults spawning naturally) as an
65 explanatory variable into models attempting to explain changes in productivity or abundance, but the
66 importance of hatchery effects are relative to other factors selected for the analysis, such as streamflow,
67 marine conditions, climate, habitat, hydropower, or other factors. Before-after-control impact (BACI)
68 experimental designs provide perhaps the most rigorous approach to assessing human impacts (in this
69 case, hatcheries) on ecological responses in the face of natural temporal and spatial variability (Stewart-
70 Oaten and Bence 2001; Underwood 1994). A pre-planned replicated, BACI design would provide a more
71 direct comparison of supplemented to non-supplemented populations experiencing similar broad-scale
72 ecological conditions, such as regional precipitation and temperature patterns, and perhaps most
73 importantly, early marine survival (Moore et al. 2010) and ocean conditions affecting smolt-to-adult
74 survival (Welch et al. 2000) for steelhead (Kendall et al. 2017). The lack of BACI-type investigations of
75 hatchery effectiveness stem from a number of factors including: insufficient monitoring of 'control'
76 populations, the unavailability of comparable reference populations (because hatchery releases are so
77 widespread), the absence of baseline data before hatchery programs are initiated, and difficulties with
78 terminating hatchery programs once they have started (ISAB 2005, AHSWG 2008).

79 While the majority of published information indicates that anadromous hatcheries have negative
80 consequences, broadly considered, on fish reared in captivity or co-mingling natural populations
81 (McMillan et al. 2023), few studies have been designed, *a priori*, to specifically test the effects of
82 conservation hatcheries on key measures of population viability, such as abundance and life history
83 diversity. Populations at low abundance face greater risk of extinction from environment fluctuations,
84 chance events that can reduce productivity, and destabilizing depensatory mechanisms (McElhany et al.
85 2000). A key, largely unanswered, question is whether increases in abundance from the addition of

86 hatchery-reared adults (Waples et al. 2007) will persist in subsequent generations, given the generally
87 lower reproductive success of hatchery-origin fish in natural rivers (Christie et al. 2014). Spawn timing is
88 a trait with generally high heritability (Tillotson et al. 2019; Abadía-Cardoso et al. 2013) and among the
89 most important life history traits known to be altered by hatcheries, both intentionally and
90 unintentionally (McLean et al. 2005; Quinn 2018). Spawn timing in natural populations probably reflects
91 trade-offs between a number of survival factors including hydrologic conditions that affect risks to
92 embryos from scour during high flows or dewatering during declining flows. Together with incubation
93 temperatures, spawn timing will determine emergence timing and the ecological conditions experienced
94 by young offspring (Baldock et al. 2023), the temporal (and thermal) opportunity for growth before the
95 first winter, and therefore possibly age-at-smoltification, which is a threshold trait in steelhead (Arriaza
96 et al. 2017).

97 There are good reasons to distinguish between the effects of hatcheries intended to support harvest
98 and those designed for conservation. Conservation programs often take large portions of small natural
99 populations into captivity, which may require non-conventional techniques, such as collecting adults
100 from spawning grounds or collecting embryos or juveniles for rearing to sexual maturity (Ford et al.
101 2015; Venditti et al. 2013). Spawning practices have been designed to mitigate genetic risks that are
102 amplified in small populations, including low effective population size, inbreeding, drift and
103 domestication selection (Fisch et al. 2015). Rearing and release strategies may also incorporate more
104 experimental techniques that have less of a track record (Johnson et al. 2020; Berejikian et al. 2004; Carr
105 et al. 2004) than increasingly uniform strategies implemented by production-oriented programs (e.g.,
106 Nelson et al. 2019) where maximizing in-hatchery survival and smolt-to-adult returns are the primary
107 goals. Paradoxically, in many cases, conservation hatchery programs designed to support the most
108 imperiled anadromous salmonid populations implement strategies that are more experimental in nature

109 than production-oriented hatchery programs, and it's reasonable to expect that the effects of hatcheries
110 operated in disparate manners should manifest in differential impacts on natural populations.

111 The 'Hood Canal Steelhead Project', was a pre-planned experiment to study the effects of conservation
112 hatchery programs on natural populations of steelhead in rivers flowing into the Hood Canal in
113 Washington State. The project was designed and carried out as a replicated BACI experiment wherein all
114 populations were simultaneously monitored for key metrics of population viability, including abundance
115 and life history and genetic diversity before, during and after supplementation. The present study
116 estimates changes in abundance and spawn timing in supplemented and control populations. A
117 subsequent analysis and manuscript will estimate effects on juvenile life history traits, life history
118 transitions, and measures of genetic variability.

119 **Methods and materials**

120 **Study populations and design**

121 The study included seven steelhead populations and spanned the years 2007-2023. Four of the
122 populations were designated as "controls" and were not supplemented throughout the study. The other
123 three populations were designated experimental populations and received both smolt and adult
124 supplementation. Throughout all three phases of the study, we conducted redd surveys to estimate
125 spawner abundance and spawn timing. The "before" period consisted of the first four years (2007-2010)
126 where only naturally produced steelhead were spawning in each of the populations. The "during" period
127 consisted of the years 2011-2019 when adults returning from age-2 smolt releases would have been
128 present on the spawning grounds along with age-4 and age-5 captively reared adults released into the
129 experimental streams (Figure 1; Table S1). This accounts for smolts last released in 2014 that may have
130 matured at age-4 or 5 or age-4 and age-5 captively reared adults that may have survived and spawned a
131 second time, even though repeat spawning is rare in steelhead. The "after" period consisted of the years

132 2020-2023 when all of the adult steelhead were of natural-origin. Throughout the study, no adults were
133 collected and artificially spawned. Rather, eyed embryos were collected from nests naturally produced
134 by the populations selected for supplementation beginning in 2007. Releases of age-2 smolts, the modal
135 age-at-smoltification in the natural populations, began in 2009, and releases of age-4 captively reared
136 adults began in 2011 (Figure 1). As planned at the outset of the study, smolt releases were terminated in
137 2016 and adult releases in 2019 (Figure 1). Endangered Species Act (ESA) permitting was obtained
138 through the National Marine Fisheries Service (NMFS) Evaluation of Hatchery and Genetic Management
139 Plans for Hood Canal Salmon under Limit 6 of the ESA Section 4(d) Rule (NMFS Consultation Number:
140 WCRO-2021-03133), and animal care in accordance with NMFS Policy 04-112.

141 The Hood Canal is a glacial-carved fjord approximately 100 km long, and the surrounding watersheds
142 range from the steep western slopes of the Olympic Mountains to the lowlands on the Kitsap Peninsula
143 (Figure 2) creating a range of temperature and hydrologic regimes and other macro-scale habitat
144 features in the study streams (Berejikian et al. 2013). All of the steelhead populations included in this
145 study were listed as Threatened under the US Endangered Species Act (ESA) in 2007 (Federal
146 Register/Vol. 72, No. 91/Friday, May 11, 2007/Rules and Regulations), which is the same year we began
147 collecting data on redd abundance and spawn timing. The seven populations included in the study
148 represent a single Major Population Group (MPG) and four Demographically Independent Populations
149 (DIPs) as defined in the recovery plan for the Puget Sound Steelhead distinct population segment (NMFS
150 2019). Only one of the major steelhead-producing watersheds in Hood Canal was excluded (Dosewallips
151 River) because flow and turbidity conditions during the spawning season precluded consistently
152 complete redd counts. The remaining seven populations included in the study represented the most
153 productive steelhead watersheds in Hood Canal. The three populations designated for supplementation
154 (Dewatto River, South Fork Skokomish River, Duckabush River) and the four that were monitored as
155 experimental 'controls' (Tahuya River, Big Beef Creek, Union River, and Little Quilcene River) were

156 selected so that both treatments would encompass a mix of hydrological regimes (rain dominant and
157 snow-rain transitional), habitat types (high and low gradient), and geographic distribution throughout
158 Hood Canal (Figure 2; Berejikian et al. 2013).

159 Hatchery-reared winter-run hatchery steelhead, derived initially from the Chambers Creek hatchery
160 population in South Puget Sound were periodically released into all of the Hood Canal populations until
161 release year 2002, with one additional release into the Duckabush River in 2003 and in the Mainstem
162 Skokomish River in 2003 and 2004 (Hard et al. 2015). Releases were terminated largely because survival
163 rates were poor and reproductive success of the source hatchery population (Chambers Creek) had been
164 found to be very low relative to natural populations (Berejikian and Ford 2004, (Araki et al. 2007)).

165 Genetic analyses conducted in the 1990's (Phelps et al 1997) and again during the pre-supplementation
166 phase of this project (Van Doornik and Berejikian 2015) have indicated no evidence of introgression
167 from the Chambers Creek stock into any of the study populations, perhaps because of their low fitness
168 and very early spawn timing, which peaks in January (NMFS 2019). Therefore, at the onset of the study,
169 all populations were presumed to represent the endemic, self-sustaining, natural populations, with only
170 natural-origin steelhead spawning each year.

171 **Redd surveys**

172 Female steelhead construct and spawn in a series of nests, contiguously referred to as a 'redd'
173 (Berejikian et al. 2020). Redds provide a more precise measure of spawn timing than run timing,
174 especially for steelhead which can spend days to months in freshwater prior to spawning. Redds also
175 serve as a critical indicator of female abundance in situations where returning adults cannot be captured
176 at a weir or trap, and redd counts closely approximate adult abundance in small populations (Gallagher
177 et al. 2010). Typically, females will construct either one or two redds with each containing between one
178 and eight individual nests with each nest containing eggs from a single spawning event; the average
179 number of redds constructed per female has been estimated at about 1.5 (Gallagher and Gallagher

180 2005; Kuligowski et al. 2005). Spawning events involve one or more anadromous (steelhead) males and
181 may involve participation by one or more non-anadromous ('resident') males (McMillan et al. 2007).
182 Redds are visually identified from a number of characteristics, including: a large area of 'clean' gravel, a
183 crescent shaped mound at the downstream end, and a pit at the upstream end (Gallagher et al. 2007).
184 The shape is typically oblong (from downstream to upstream), but can be as wide as they are long in
185 some cases. Streambed position, gradient, and substrate size and composition, are also evaluated in
186 order to distinguish from flow generated scour.

187 Redd surveys were conducted in all streams every year from 2006 through 2023 by experienced, trained
188 surveyors operating from the same set of shared protocols (Gallagher et al. 2007). Surveyors were
189 aware of the streams that were being supplemented, which could introduce unconscious bias, but the
190 survey effort and redd identification methodologies were clearly defined, shared among all groups, and
191 re-visited annually, as were detailed discussions to help ensure unbiased counts. Each stream was
192 surveyed, from the mouth of each stream to the upstream-most point accessible to adult steelhead
193 (Table S1) with the exception of the Duckabush River where two reaches (river km 4.3-7.7 and 9.6-11.7)
194 were too difficult to survey on higher flows and were not surveyed regularly. Surveys commenced as
195 early in the spawning season as flow conditions would allow, which varied among watersheds, and were
196 conducted weekly except where high flow events precluded a survey. Individual redds were marked
197 with flagging attached to vegetation at the nearest point on shore indicating the date of detection and
198 channel location to prevent duplicate counting. Redds were also often marked with a weighted piece of
199 flagging placed near the pit and tailspill of the redd. Redds under construction that were enlarged within
200 a week were counted as one redd. Redds separated by more than 1 m, or a redd that was enlarged after
201 1 week of no new activity, were considered separate because redd construction takes approximately 3-4
202 days (Berejikian et al. 2020). Surveys continued until no new redds (i.e., not previously observed) were
203 detected in a given stream. Surveyors were highly experienced, working together across watersheds,

204 and several surveyors conducted surveys throughout the entire duration of the 18-year study, providing
205 consistency in the implementation of methodologies. We assumed that variation in redd counts caused
206 by natural variability in flows that affected visibility or access were uniform across drainages and did not
207 affect the comparison of redd counts or timing between supplemented and control populations.

208 **Embryo collections, hatchery rearing, and release strategies**

209 The following briefly describes the approach to supplementation in treatment streams. Redds identified
210 during approximately weekly redd surveys were precisely located by triangulating to two points on
211 shore (Berejikian et al. 2011). Accumulated temperature units (ATU; daily average temperature x
212 number of days) were monitored for each redd to determine when the embryos would have developed
213 externally visible eyes, which occurred between approximately 210-250 ATU, and could be collected
214 from each redd and transported without harm. A hydraulic process was used to remove 'eyed' embryos
215 from portions of the redds (Berejikian et al. 2011). The embryos from the Dewatto and Duckabush
216 Rivers were transferred to the USFWS Quilcene National Fish Hatchery, incubated on pathogen free
217 water and ponded into small circular rearing vessels for rearing to approximately 30 days. Juveniles
218 were transferred to the Long Live the Kings, Lilliwaup Hatchery for rearing to smolt and adult stages
219 (Table S2, Fig 1). Embryos from the SF Skokomish River were transferred to the McKernan salmon
220 hatchery within the SF Skokomish watershed and incubated then subsequently reared on pathogen free
221 spring water supplies for rearing to the same ages as the other two populations (Table S2, Fig 1).

222 Rearing conditions to the smolt release stage, similarities and differences in smolt characteristics
223 between the two hatcheries, and some measures of post-release performance are well documented in
224 (Berejikian et al. 2012; Moore et al. 2012). In short, temperature-based feeding regimes were developed
225 to regulate growth rates to produce smolts of a similar size to natural-origin smolts in two years to
226 match the modal age-at-smoltification in natural populations. Smolts were loaded into transport tanks

227 and trucked and released in late April, which is near the peak outmigration timing, in the lower to
228 middle reaches of each of the three rivers (Figure 2, Supplementary Table S3).

229 A portion of the smolt release groups were retained, reared to the adult stage (hereafter, the adult
230 release groups), and released at either age-4 or age-5 (Figure 2, Supplementary Table S4). The
231 Duckabush and Dewatto smolts were reared to the adult stage in freshwater at the Lilliwaup Hatchery.
232 The SF Skokomish smolts were transferred to the Manchester Research Station for rearing in seawater
233 with the exception of a portion of the smolts from Brood year 2011. The procedures for smolt-to-adult
234 rearing and release were documented in detail for one particular brood year (Van Doornik et al. 2022),
235 which is characteristic of rearing procedures and conditions in the other years. Table S2 provides the
236 numbers of embryos collected and smolts and adult releases for every year of the study. Annually, the
237 timing of adult releases was based on the earliest determination that females had begun to ovulate,
238 which was determined by the ability to express eggs with pressure applied to the abdomen. The
239 approach attempted to balance the risk of pre-spawning mortality (e.g., predation) from releasing fish
240 too early with the risk of over-ripening of eggs, which can reduce viability beginning approximately one
241 week post-ovulation (Springate et al. 1984). Most often adults were released in two or more groups
242 (Supplement Table S4). The first group would include females that had ovulated and those whose bellies
243 felt softer and were expected to ovulate in the next couple of weeks. Subsequent groups were released
244 when the first of the remaining females had ovulated. Males were considered mature and ready for
245 release when milt could be manually expressed. In each pulse the attempt was made to release females
246 with a roughly equal number of sexually mature males. The study was not designed to determine the
247 relative contributions of fish released as smolts and those released as adults.

248 **Statistical analyses**

249 We used Bayesian regression models to estimate the change in mean abundance and spawn timing
250 between each phase for the control and treatment streams (McElreath 2016). We fit separate models

251 for abundance and spawn timing, but both models had the same structure. The response variable for
252 the abundance model was log abundance ($\log_e(\text{abundance} + 1)$) and the response for the spawn timing
253 model was median spawning day of the year. Both models included main effects for phase (before,
254 during, after), treatment (control, supplemented), and their interaction, as well as random stream and
255 year effects (non-nested). To account for serial dependence, we modeled the residuals of both models
256 as a first order autocorrelated process.

257 Change in mean abundance and median spawning day across phases for the control and supplemented
258 groups was quantified as the difference in the posterior means between phases for each treatment
259 group, which is analogous in concept to effect size. Differences in the phase-wise change in abundance
260 and spawn timing between the control and supplemented groups were quantified as the percent
261 overlap between posterior distributions between the two treatment groups, which can be thought of as
262 a measure of confidence that the distributions are different (Pastore and Calcagni 2019). Combined,
263 these two methods allowed us to examine the degree that phase-wise changes in abundance or spawn
264 timing are dependent on the treatment group.

265 We used weakly informative student-t prior distributions for all model parameters with 3 degrees of
266 freedom and standard deviations of 2.5 (Lemoine 2019; Banner et al. 2020). The prior for the
267 autocorrelation term was truncated to the domain -1, 1 and the priors for the random effect standard
268 deviations and residual standard deviation were restricted to be positive.

269 Models were estimated using the “brms” R package and Stan (version 2.26.1) using four chains run for
270 2000 iterations each following a 500-iteration warm-up (6000 total posterior samples; Bürkner 2017)
271 (Carpenter et al. 2017). Convergence and fit were assessed using effective sample size, R-hat, and visual
272 methods (e.g., trace-plots and posterior predictive checks; Gabry et al. 2019). All estimated parameters

273 had an effective sample size of at least 1000, R-hat values less than 1.05, and no divergent transitions
274 were observed.

275 We assessed variance in spawn timing because variance can be reduced in hatchery populations and has
276 been shown to be highly heritable (Abadía-Cardoso et al. 2013). We used a nonparametric bootstrap
277 approach to evaluate whether spawn timing variance (variance in the day of year of spawning) changed
278 across experimental stages (Efron and Tibshirani 1993). Specifically, we generated 1,000 bootstrap data
279 sets by resampling the daily redd count data for each stream with replacement. We then calculated
280 summary statistics for each bootstrap dataset, which provided a distribution of spawn timing variances
281 by stream and stage. Our primary test statistic was the ratio of the spawn timing variance in the before
282 period to the after period for each stream; ratio values greater than one indicate a reduction in spawn
283 timing variance from the before to the after period.

284 **Results**

285 **Abundance**

286 Over the entire study period, redd abundance ranged from zero for Big Beef Creek in 2022 to 809 for the
287 Skokomish River in 2015 (Figure 3; Figure S1). For all three supplemented populations, maximum
288 abundance occurred during the supplementation phase, whereas only one of the four control
289 populations had maximum abundance during the supplementation phase (Union River in 2019).
290 Conversely, for three of the four control populations, minimum abundance occurred during the
291 supplement phase (2017 for Little Quilcene River, Tahuya River, and Union River), whereas minimum
292 abundance only occurred during the supplementation phase for one of the supplemental populations
293 (Dewatto River in 2019).

294 Comparing changes in abundance between the supplemented and control population across the three
295 phases provided a test of whether supplementation caused an increase or decrease in abundance and

296 whether any changes during supplementation would persist in the generation after supplementation
297 was terminated. Changes in abundance across the three phases were influenced more by
298 supplementation than natural variability. For the supplemented populations, model results showed an
299 increase in abundance from the before phase to the during phase with the entirety of the posterior
300 distribution for the during-before contrast greater than 0. The effect waned in the generation after
301 supplementation, but still 67% of the posterior distribution for the after-before contrast was greater
302 than 0 (Table 1; Figure 4). In the control populations, abundance tended to decline over the course of
303 the study period to the point where 91% of the posterior distribution for the after-before comparison
304 was less than 0 (Table 1; Figure 4). For the during-before contrast, the posterior distributions of
305 supplemented and control populations had little overlap (3.5%), indicating a substantial increase in
306 spawner abundance caused by supplementation (Figure 4). For the after-before contrast, the decline in
307 control populations and modest increase in the supplemented populations resulted in a 39.3% overlap
308 in the posterior distributions (Figure 4). Taken together, the analysis demonstrates a strong positive
309 effect of conservation hatcheries on abundance during supplementation that diminished to some
310 degree after supplementation, but still indicates weakly positive effects from supplementation in a
311 single generation after supplementation was terminated.

312 **Spawn timing**

313 Across all years, spawning in Hood Canal steelhead populations spanned six months, occurring as early
314 as mid-January and extending as late as mid-July. Spawn timing varied among the populations with the
315 average median spawn day ranging from late February (day 59) for Big Beef Creek to the middle of May
316 (day 138) for the Skokomish River (Figure 5). Among-population diversity in spawn timing persisted
317 throughout the study period as there was no evidence for changes in spawn timing across the study
318 period for either the control or supplemented populations (Figure 6). For both treatment groups,
319 differences in median spawn day across phases were not discernable from zero at the 95% credibility

320 level (Table 2). There was also considerable overlap in the posterior distributions of the phase-wise
321 differences between the control and supplemented populations (> 45% for all comparisons; Figure 6),
322 providing no support for an interaction between phase and treatment for spawn timing.

323 We found no evidence for consistent changes in spawn timing variance from the before stage to the
324 after stage in either the supplemented or control populations (Figure 7). In particular, two of the
325 supplemented streams showed an increase in spawn timing variance from the before to the after period
326 (Duckabush and Dewatto) and one stream had a reduction in spawn timing variance (Skokomish).
327 Similarly, for the control streams, two showed increases in variance and two showed declines in
328 variance across the study period (Figure 7).

329 **Discussion**

330 Determining whether conservation hatcheries have provided a benefit to natural populations depends
331 on the objectives of the programs and the corresponding population response. The conservation
332 hatchery programs clearly increased the number of redds constructed in the supplemented streams
333 during supplementation, but the number of redds produced by natural-origin returning adults in the first
334 generation after supplementation was only slightly greater than pre-supplementation levels. However,
335 the abundance of redds in the control populations generally declined over the duration of the study.
336 Ultimately, there was a 39% overlap in the posterior distributions of supplemented and control
337 populations for the after-before contrast. Thus, the supplemented populations were in a modestly
338 improved condition relative to control populations after supplementation than they were before. There
339 was little evidence to suggest any shifts in median spawn timing in either the supplemented or control
340 populations, as indicated by the considerable (68%) overlap in the after-before posterior distributions of
341 supplemented and control populations. We also found evidence for stronger year effects on abundance

342 than spawn timing, possibly suggesting that inter-annual variability in broad scale environmental
343 conditions influenced abundance more strongly than spawn timing (Figure S2).

344 Anadromous salmonid supplementation programs increase the total number of spawning adults during
345 the supplementation period (Waples et al. 2007; Paquet et al. 2011; Koch et al. 2022), but the effects on
346 natural-origin spawner abundance and productivity are much more equivocal when considered across
347 several species and a diversity of habitats (e.g., Buhle et al. 2009, Janowitz et al. 2017, Scheuerell et al.
348 2015, Courter et al. 2019). Two previous studies, one of Chinook salmon (Venditti et al. 2018) and one of
349 steelhead (Berejikian and Van Doornik 2018), included reference (natural) populations and both pre-
350 supplementation and post-supplementation periods when only natural-origin adults were spawning.
351 Both indicated the expected immediate increase in spawner abundance with the return of hatchery-
352 produced fish. The addition of Chinook salmon spawners resulted in more juvenile offspring during the
353 supplementation period while increases in adult abundance were less evident, and after
354 supplementation abundance and productivity measured at all stages returned to roughly pre-
355 supplementation levels (Venditti et al. 2018). A retrospective analysis of long-term data sets containing
356 both hatchery and natural-origin fish throughout the time series, indicated little change in natural-origin
357 Chinook salmon spawner density in supplemented populations (Scheuerell et al. 2015) relative to the
358 same reference populations analyzed by Venditti et al. (2018). In a previous study, the Hamma Hamma
359 River steelhead population in Hood Canal exhibited significantly greater redds post supplementation
360 than pre-supplementation relative to four control populations and some measures of genetic diversity
361 actually increased, apparently as an outcome of increased spawner abundance (Berejikian and Van
362 Doornik 2018). Based on the two BACI-type analyses and Scheuerell et al. (2015), we would thus far
363 conclude limited effects of supplementation programs on natural population abundance, and a slightly
364 greater potential for positive demographic outcomes than negative.

365 Other studies lacking reference populations have typically modelled hatchery releases or adults on the
366 spawning grounds as a covariate to potentially explain changes on abundance or productivity relative to
367 other covariates. Hatcheries were associated with positive (Courter et al. 2022), negative (Buhle et al.
368 2009; Scheuerell et al. 2021) and no detectable changes in natural populations (Courter et al. 2019). A
369 primary limitation of these observation studies is accounting for confounding factors and the challenges
370 that creates with allocating variance in abundance or productivity in natural populations to specific
371 factors, which may partly explain the inconsistent results among the studies (Courter 2022). For
372 example, large-scale climate indicators were often included in top models explaining variation in the
373 abundance and productivity metrics (Buhle et al. 2009; Scheuerell et al. 2015; Courter et al. 2019;
374 Scheuerell et al. 2021; Courter et al. 2022), highlighting the importance of incorporating reference
375 populations that experience similar early marine environments and interannual variability in Pacific
376 Ocean conditions.

377 In the present study, redd abundance in the supplemented populations did not increase relative to
378 control populations to the same extent as one similarly supplemented Hood Canal Stream (Hamma
379 Hamma River, Berejikian and Van Doornik 2018). Ultimately, the Hamma Hamma River program resulted
380 in a 2.6-fold increase in the number of redds after, compared to before, supplementation, and an
381 increase in the effective population size and some measures of genetic variability. The redd abundance
382 has since averaged 23 redds per year through 2023; near the post-supplementation level (26 redds per
383 year). Neither study was designed to investigate component effects of the supplementation program on
384 population metrics, such as survival of released fish or the relative fitness of hatchery- and natural-origin
385 spawners, but previous research provides information on the factors that may have limited the
386 effectiveness of supplementation in the three populations included in this study. First generation
387 hatchery-reared adult steelhead that were released as smolt (similar to the smolt release groups in this
388 study) have been shown to exhibit variable, but lower fitness relative to natural-origin adults in the

389 same environment (Araki et al. 2007; Berntson et al. 2011; Ford et al. 2016). The effectiveness of
390 releasing adult females may have been compromised even further by their smaller body size (Table S4),
391 and possibly other behavioral or physiological factors that appear to be common in captively reared
392 salmon and steelhead (Venditti et al. 2013; Carr et al. 2004; Berejikian et al. 2008). For a single brood
393 year in the Skokomish River, steelhead released at age-4 and age-5 represented 58% of adult steelhead
394 sighted during snorkel surveys, and produced 31% of the juvenile offspring (Van Doornik et al. 2022),
395 suggesting they were not as reproductively successful on a per individual basis. Even though the
396 hatchery-produced adults released as smolts and adults were not as successful as natural-origin adults,
397 they likely added to the juvenile offspring population in the Skokomish River (Van Doornik and
398 Berejikian 2022) as well as the other two populations (Van Doornik et al. in prep). Understanding
399 ecological conditions in both freshwater and marine environments, discussed below, may help to
400 explain why increased production did not carry over to the post-supplementation phase.

401 The increased abundance during supplementation may not have sufficiently increased smolt production
402 to support a more positive post-supplementation response. We speculate that density-dependent
403 freshwater growth and survival may have played a role in limiting the long-term effectiveness of these
404 conservation hatchery programs. Density-dependent processes appear to be limiting the recovery of
405 anadromous salmonid populations in the Pacific Northwestern United States, even though adult
406 abundance is a small fraction of historic levels. A basin-wide analysis in the Columbia and Snake Rivers
407 indicated compensation was evident in the great majority of populations based on declining recruit-to-
408 spawner ratios with increasing numbers of spawners (ISAB 2015). For Puget Sound steelhead,
409 Scheuerell et al. (2021) found evidence of compensatory density dependent regulation in a natural
410 Steelhead population in the Skagit River (Puget Sound), at levels of spawner abundance an order of
411 magnitude below its historic population size (Gayeski et al. 2011). This finding was coupled with
412 evidence that juvenile survival was limited by low food consumption rates (Thompson and Beauchamp

413 2016; Thompson and Beauchamp 2014) similar to food limited growth in one of the supplemented rivers
414 in the present study (Duckabush River; Marston et al. 2017). Steelhead respond to food limitations by
415 increasing territory size, emigrating or reduced growth rates (Keeley 2000; Keeley 2000). In another
416 more comprehensively monitored system, Keogh River (Vancouver Island BC), steelhead have most
417 recently experienced a regime characterized by low freshwater productivity (despite low spawner
418 abundance) and low marine survival, which appears to extend to other systems (Wilson et al. 2021)

419 The implementation of conservation hatchery programs evaluated in this study were partly motivated
420 by the reasonable hypothesis that depensatory mechanisms (i.e, positive density dependence; Liermann
421 and Hilborn 2001) were limiting the productivity of these relatively small populations and that providing
422 a demographic boost would lessen depensatory predation on outmigrating smolts (Furey et al. 2021;
423 Quinn et al. 2014). Steelhead smolts are the largest-bodied among anadromous salmonids in the region,
424 and susceptible to considerable predation by avian and mammalian predators, particularly in Puget
425 Sound and Hood Canal, where pinniped populations have been increasing for decades (NMFS 2019;
426 Sobocinski et al. 2020). While the addition of hatchery smolts and adults appears to have contributed to
427 the juvenile populations (Van Doornik et al. 2022), any increases in smolt production may have been
428 insufficient to overcome high predation rates that can occur within hours to days after marine entry (see
429 Moore et al. 2024).

430 Beyond the delta estuaries and Hood Canal, the end of the pre-supplementation phase and post-
431 supplementation phase coincided with declines in steelhead abundance along the Washington Coast
432 (McMillan et al. 2022). While this should have affected all study populations in a similar fashion, possible
433 slight demographic increases in supplemented populations may have been muted by large-scale factors
434 in the North Pacific Ocean. Climate change and the coastwide declines in steelhead marine survival have
435 been evident since the 1980's (Sobocinski et al. 2020), and abundance declines appear to have

436 intensified during the latter half of this study; particularly following the marine heat wave in 2014-2016
437 (coast-wide abundance trends available at <https://www.psmfc.org/steelhead/>).

438 Spawn timing does not appear to have been altered by the supplementation programs, and there
439 remains substantial spawn timing diversity among Hood Canal steelhead populations. Peak spawn
440 timing ranged from early February (BBC) to late May (SF Skokomish River). In other larger river systems
441 receiving hatchery inputs and over a longer period of time, there is evidence of shifts in spawn timing
442 that relate to selecting early returning hatchery fish for spawning coupled with temporally-biased
443 harvest strategies (McMillan et al. 2023). No artificial spawning was implemented in this conservation
444 program, rather embryos were collected from naturally produced redds over substantial portions of the
445 spawning seasons, and the programs spanned just two generations. Harvest was limited to small-scale
446 subsistence fisheries on the SF Skokomish River. These factors likely limited the potential for reduced
447 diversity or directional shifts in spawn timing, which is a highly heritable trait (Abadía-Cardoso et al.
448 2013; Manhard et al. 2018) and therefore susceptible to artificial selection (Tillotson et al. 2019). The
449 considerable spawn timing diversity among Hood Canal steelhead populations appears to be associated
450 with adaptations to temperature or possibly hydrologic differences among systems, which range from
451 later spawning in colder, transitional (rain-snow) driven systems to earlier spawning in warmer, lowland,
452 rain-driven systems (see Berejikian et al. 2013 for a characterization of the watersheds). The spawn
453 timing diversity that still exists among populations may be important for the long-term viability of this
454 population group. However, some of that diversity may now be imperiled because the earliest spawn
455 timing occurred in one of the control populations (Big Beef Creek), which has declined to very low levels
456 and had no redds observed in 2022. We did not detect consistent changes in spawn timing diversity
457 within populations from before to after supplementation, suggesting that changes in diversity within
458 populations reflected interannual variability in river conditions.

459 Reviews of the published literature have compiled substantial evidence that hatchery propagation of
460 anadromous salmonid can affect genetic and phenotypic traits of hatchery population that may
461 negatively impact natural populations (McMillan et al. 2023, Riddell et al. 2024). However, in situ
462 studies conducted to date suggest that thoughtfully designed and carefully implemented conservation-
463 oriented hatchery programs should be expected to have neutral to positive demographic effects on the
464 natural populations they are designed to support. Genetic risks of hatcheries have been well
465 documented (Naish et al. 2008) and may not be immediately evident or may extend beyond the
466 timeframes of the BACI-type demographic-oriented studies discussed here. Genetic management of
467 conservation programs aiming to minimize unintended changes has been considered for some time and
468 continues to evolve (Faser et al. 2008, Waters et al. 2015). Science-based recommendations on best
469 practices for supplementing salmon and other marine species (e.g., Lorenzen et al. 2012) have been
470 developed over the past couple of decades. Improving the likelihood that conservation hatcheries will
471 meet objectives will partly depend on understanding the ecological conditions of the target natural
472 populations. Carefully planned evaluations of hatchery programs, ideally including monitored reference
473 populations, will provide a basis for future efforts, which are sure to follow.

474 **Acknowledgements**

475 We are thankful for the collaborative efforts of the Skokomish Indian Tribe, Washington Department of
476 Fish and Wildlife, US Fish and Wildlife Service, US Forest Service, Long Live the Kings, Hood Canal Salmon
477 Enhancement Group, and NOAA Fisheries West Coast Regional Office and Northwest Fisheries Science
478 Center, and private landowners in the Hood Canal watershed. The following individuals from these
479 organizations contributed in various important ways to egg collection, fish rearing, field data collection,
480 and logistics: Thom Johnson, Rick Eretz, Bill Evans, Jorge Villarreal, Rick Endicott, Megan Moore, Jeff

481 Atkins, Chris Tatara, Mendy Harlowe, Clayton David, Cindy Gray, Matthew Kowalski, Kevin Swager,
482 Michael Schmidt, Richard Bush, Aaron Johnson, Teresa Sjostrom, Mark McHenry, Dan Magneson.

483 **Competing interests**

484 The authors declare no competing interests

485 **Author contribution statement**

486 BAB: Conceptualization, Funding acquisition, Writing original draft, Writing - review and editing,
487 Investigation, Methodology, Project Administration;
488 MJM: Data curation, Formal analysis, Visualization, Writing original draft, Writing - review and editing;
489 JL-W: Conceptualization, Data curation, Investigation, Project administration, Writing -review and
490 editing;
491 MRD: Investigation, Data curation, Validation, Methodology, Writing original draft, Writing - review and
492 editing;
493 KKS: Project administration, Investigation, Data curation, Validation, Writing - review and editing;
494 RE: Investigation, Data curation, Validation, Writing - review and editing;
495 AB: Investigation, Data curation, Validation, Writing - review and editing

496

497 **Data and code availability statement:** The data and code that support the findings of this study are
498 openly available at [_____](#)

499

500 **Literature Cited**

501 Abadía-Cardoso, A., Anderson, E.C., Pearse, D.E., and Garza, J.C. 2013. Large-scale parentage analysis
502 reveals reproductive patterns and heritability of spawn timing in a hatchery population of
503 steelhead (*Oncorhynchus mykiss*). *Molecular Ecology* **22**(18): 4733-4746.
504 doi:10.1111/mec.12426.

505 Ad Hoc Supplementation Monitoring and Evaluation Workgroup (AHSWG). 2008. Recommendations for
506 broad scale monitoring to evaluate the effects of hatchery supplementation on the fitness of
507 natural salmon and steelhead populations. Final Draft Report of the Ad Hoc Supplementation
508 Monitoring and Evaluation Workgroup. (Available from: <https://www.nwcouncil.org/fish-and-wildlife/previous-programs/recommendations-to-amend-the-columbia-river-basin-fish-and-wildlife-program/ad-hoc-supplementation-workgroup/>).

511 Araki, H., Ardren, W.R., Olsen, E., Cooper, B., and Blouin, M.S. 2007. Reproductive success of captive-
512 bred steelhead trout in the wild: Evaluation of three hatchery programs in the Hood River.
513 *Conservation Biology* **21**(1): 181-190. doi:10.1111/j.1523-1739.2006.00564.x.

514 Arriaza, J.L., Boughton, D.A., Urquhart, K., and Mangel, M. 2017. Size-conditional smolting and the
515 response of carmel river steelhead to two decades of conservation efforts. *Plos One* **12**(11).
516 doi:10.1371/journal.pone.0188971.

517 Baldock, J.R., Al-Chokhachy, R.K., Campbell, M.R., and Walters, A. 2023. Timing of reproduction
518 underlies fitness tradeoffs for a salmonid fish. *Oikos* **2023**(11). doi:10.1111/oik.10184.

519 Banner, K., Irvine, K., and Rodhouse, T. 2020. The use of bayesian priors in ecology: The good, the bad
520 and the not great. In *Methods in Ecology and Evolution*. pp. 882-889.

521 Berejikian, B.A., Campbell, L.A., and Moore, M.E. 2013. Large-scale freshwater habitat features influence
522 the degree of anadromy in eight hood canal *Oncorhynchus mykiss* populations. *Canadian Journal*
523 of *Fisheries and Aquatic Sciences* **70**(5): 756-765. doi:10.1139/cjfas-2012-0491.

524 Berejikian, B., Flagg, T., and Kline, P. 2004. Release of captively reared adult anadromous salmonids for
525 population maintenance and recovery: Biological trade-offs and management considerations.
526 *Propagated Fish in Resource Management*. American Fisheries Society. **44**: 233-245.

527 Berejikian, B.A., and Ford, M.J. 2004. Review of the relative fitness of hatchery and natural salmon.
528 NOAA Tech. Memo. No. NMFS-NWFSC-61. US Dept. Commerce.

529 Berejikian, B.A., Gable, J.T., and Vidergar, D.T. 2011. Effectiveness and trade-offs associated with
530 hydraulic egg collections from natural salmon and steelhead redds for conservation hatchery
531 programs. *Transactions of the American Fisheries Society* **140**(3): 549-556.
532 doi:10.1080/00028487.2011.583540.

533 Berejikian, B.A., Johnson, T., Endicott, R.S., and Lee-Waltermire, J. 2008. Increases in steelhead
534 (*Oncorhynchus mykiss*) redd abundance resulting from two conservation hatchery strategies in
535 the hamma hamma river, washington. *Canadian Journal of Fisheries and Aquatic Sciences* **65**(4):
536 754-764. doi:10.1139/F08-014.

537 Berejikian, B.A., Larsen, D.A., Swanson, P., Moore, M.E., Tatara, C.P., Gale, W.L., Pasley, C.R., and
538 Beckman, B.R. 2012. Development of natural growth regimes for hatchery-reared steelhead to
539 reduce residualism, fitness loss, and negative ecological interactions. *Environmental Biology of*
540 *Fishes* **94**(1): 29-44. doi:10.1007/s10641-011-9788-0.

541 Berejikian, B.A., Tatara, C.P., Van Doornik, D.M., Humling, M.A., Cooper, M.R., Pasley, C.R., and Atkins,
542 J.J. 2020. Duration in captivity affects competitive ability and breeding success of male but not
543 female steelhead trout (*Oncorhynchus mykiss*). *Canadian Journal of Fisheries and Aquatic*
544 *Sciences* **77**(6): 1000-1009. doi:10.1139/cjfas-2019-0255.

545 Berejikian, B.A., and Vandoornik, D.M. 2018. Increased natural reproduction and genetic diversity one
546 generation after cessation of a steelhead trout (*Oncorhynchus mykiss*) conservation hatchery
547 program. *Canadian Journal of Fisheries and Aquatic Sciences*. PLoS ONE **13**(1):e0190799.
548 doi:10.1371/journal.pone.0190799.

549 Berntson, E.A., Carmichael, R.W., Flesher, M.W., Ward, E.J., and Moran, P. 2011. Diminished
550 reproductive success of steelhead from a hatchery supplementation program (Little Sheep
551 Creek, Imnaha Basin, Oregon). *Transactions of the American Fisheries Society* **140**(3): 685-698.
552 doi:10.1080/00028487.2011.584489.

553 Buhle, E.R., Holsman, K.K., Scheuerell, M.D., and Albaugh, A. 2009. Using an unplanned experiment to
554 evaluate the effects of hatcheries and environmental variation on threatened populations of
555 wild salmon. *Biological Conservation* **142**(11): 2449-2455. doi:10.1016/j.biocon.2009.05.013.

556 Bürkner, P. 2017. brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical*
557 *Software*. **80**(1):1-28. doi:10.18637/jss.v080.i01

558 Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li,
559 P., & Riddell, A. 2017. Stan: A Probabilistic Programming Language. *Journal of Statistical*
560 *Software*, **76**(1): 1–32. <https://doi.org/10.18637/jss.v076.i01>.

For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

561 Carr, J.W., Whoriskey, F., and O'Reilly, P. 2004. Efficacy of releasing captive reared broodstock into an
562 imperilled wild atlantic salmon population as a recovery strategy. *Journal of Fish Biology* **65**: 38-
563 54. doi:10.1111/j.0022-1112.2004.00546.x.

564 Christie, M.R., Ford, M.J., and Blouin, M.S. 2014. On the reproductive success of early-generation
565 hatchery fish in the wild. *Evolutionary Applications* **7**(8): 883-896. doi:10.1111/eva.12183.

566 Courter, I., Chance, T., Gerstenberger, R., Roes, M., Gibbs, S., and Spidle, A. 2022. Hatchery propagation
567 did not reduce natural steelhead productivity relative to habitat conditions and predation in a
568 mid-columbia river subbasin]. *Canadian Journal of Fisheries and Aquatic Sciences*. **79**(11): 1879-
569 1895. <https://doi.org/10.1139/cjfas-2021-0351>.

570 Courter, I., Wyatt, G., Perry, R., Plumb, J., Carpenter, F., Ackerman, N., Lessard, R., and Galbreath, P.
571 2019. A natural-origin steelhead population's response to exclusion of hatchery fish.
572 *Transactions of the American Fisheries Society*. **148**(2): 339-351.
573 <https://doi.org/10.1002/tafs.10140>

574 Efron, B., and Tibshirani, R.J. 1993. An introduction to the bootstrap. Chapman & Hall.

575 Fisch, K.M., Kozfkay, C.C., Ivy, J.A., Ryder, O.A., and Waples, R.S. 2015. Fish hatchery genetic
576 management techniques: Integrating theory with implementation. *North American Journal of
577 Aquaculture* **77**(3): 343-357. doi:10.1080/15222055.2014.999846.

578 Ford, M., Parsons, T.N., and Murdoch, A. 2015. The spawning success of early maturing resident
579 hatchery Chinook salmon in a natural river system. *Transactions of the American Fisheries
580 Society* **144**(3): 539-548. doi:10.1080/00028487.2015.1009561.

581 Ford, M.J., Murdoch, A.R., Hughes, M.S., Seamons, T.R., and LaHood, E.S. 2016. Broodstock history
582 strongly influences natural spawning success in hatchery steelhead (*Oncorhynchus mykiss*). *Plos
583 One* **11**(10). doi:10.1371/journal.pone.0164801.

584 Furey, N.B., Martins, E.G., and Hinch, S.G. 2021. Migratory salmon smolts exhibit consistent interannual
585 depensatory predator swamping: Effects on telemetry-based survival estimates. *Ecology of
586 Freshwater Fish* **30**(1): 18-30. doi:10.1111/eff.12556.

587 Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. 2019. Visualization in Bayesian
588 workflow. *Journal of the Royal Statistical Society Series A: Statistics in Society*. **182**(2): 389-402.
589 <https://doi.org/10.1111/rssa.12378>.

590 Gallagher, S.P., Adams, P.B., Wright, D.W., and Collins, B.W. 2010. Performance of spawner survey
591 techniques at low abundance levels. *North American Journal of Fisheries Management* **30**(5):
592 1086-1097. doi:10.1577/m09-204.1.

593 Gallagher, S.P., and Gallagher, C.M. 2005. Discrimination of Chinook salmon, coho salmon, and
594 steelhead redds and evaluation of the use of redd data for estimating escapement in several
595 unregulated streams in northern California. *North American Journal of Fisheries Management*
596 **25**(1): 284-300. doi:10.1577/m04-016.1.

597 Gallagher, S.P., P.K.J. Hahn, and D.H. Johnson. 2007. Redd counts. Edited by D.H. Johnson, B M. Shrier,
598 J.S. O'Neal, J.A. Knutzen, X. Augerot, T.A. O'Neill, and T.N. Parsons. American Fisheries Society.
599 pp. 197-234. 5. Salmonid field protocols handbook: techniques for assessing status and trends in
600 salmon and trout populations. Bethesda, Maryland.

601 Gayeski, N., McMillan, B., and Trotter, P. 2011. Historical abundance of Puget Sound steelhead,
602 *Oncorhynchus mykiss*, estimated from catch record data. *Canadian Journal of Fisheries and
603 Aquatic Sciences* **68**(6): 1155-1155. doi:10.1139/F2011-043.

604 Hard, J.J., Myers, J.M., Ford, M.J., Kope, R.G., Pess, G.R., Waples, R.S., et al. 2007. Status review of Puget
605 Sound steelhead (*Oncorhynchus mykiss*). NOAA Tech Memo NMFS-NWFSC-81, US Dept.
606 Commerce.

607 Hess, M.A., Rabe, C.D., Vogel, J.L., Stephenson, J.J., Nelson, D.D., and Narum, S.R. 2012. Supportive
608 breeding boosts natural population abundance with minimal negative impacts on fitness of a

609 wild population of Chinook salmon. *Molecular Ecology* **21**(21): 5236-5250.
610 doi:10.1111/mec.12046.

611 Howe N.S., Hale, M.C., Waters, C.D., Schaal, S.M., Shedd, K.R., Larson, W.A. Genomic evidence for
612 domestication selection in three hatchery populations of Chinook salmon, *Oncorhynchus*
613 *tshawytscha*. *Evolutionary Applications* **17**(2): doi: 10.1111/eva.13656.

614 Jaeger, W.K., and Scheuerell, M.D. 2023. Return(s) on investment: Restoration spending in the columbia
615 river basin and increased abundance of salmon and steelhead. *Plos One* **18**(7).
616 doi:10.1371/journal.pone.0289246.

617 Johnson, E.L., Kozfkay, C.C., Powell, J.H., Peterson, M.P., Baker, D.J., Heindel, J.A., Plaster, K.E.,
618 McCormick, J.L., and Kline, P.A. 2020. Evaluating artificial propagation release strategies for
619 recovering endangered snake river sockeye salmon. *North American Journal of Aquaculture*
620 **82**(3): 331-344. doi:10.1002/naaq.10148.

621 Johnsson, J.I., Brockmark, S., and Naeslund, J. 2014. Environmental effects on behavioural development
622 consequences for fitness of captive-reared fishes in the wild. *Journal of Fish Biology* **85**(6): 1946-
623 1971. doi:10.1111/jfb.12547.

624 Keeley, E. 2000. An experimental analysis of territory size in juvenile steelhead trout. *Animal Behavior*.
625 **59**(3): 477-490. doi.org/10.1006/anbe.1999.1288.

626 Kendall, N.W., Marston, G.W., and Klungle, M.M. 2017. Declining patterns of Pacific Northwest
627 steelhead trout (*Oncorhynchus mykiss*) adult abundance and smolt survival in the ocean.
628 *Canadian Journal of Fisheries and Aquatic Sciences* **74**(8): 1275-1290. doi:10.1139/cjfas-2016-
629 0486.

630 Koch, I., Seamons, T., Galbreath, P., Nuetzel, H., Matala, A., Warheit, K., Fast, D., Johnston, M., Strom, C.,
631 Narum, S., and Bosch, W. 2022. Effects of supplementation in upper Yakima River Chinook
632 salmon]. *Transactions of the American Fisheries Society*. **151**(3): 373-388.
633 doi:10.1002/tafs.10354.

634 Kuligowski, D.R., Ford, M.J., and Berejikian, B.A. 2005. Breeding structure of steelhead inferred from
635 patterns of genetic relatedness among nests. *Transactions of the American Fisheries Society*
636 **134**(5): 1202-1212. doi:10.1577/T04-187.1.

637 Larsen, D.A., Harstad, D.L., Fuhrman, A.E., Knudsen, C.M., Schroder, S.L., Bosch, W.J., Galbreath, P.F.,
638 Fast, D.E., and Beckman, B.R. 2019. Maintaining a wild phenotype in a conservation hatchery
639 program for Chinook salmon: The effect of managed breeding on early male maturation. *Plos*
640 *One* **14**(5). doi:10.1371/journal.pone.0216168.

641 Lemoine, N. 2019. Moving beyond noninformative priors: Why and how to choose weakly informative
642 priors in Bayesian analyses. *Oikos*. **128**(7): 912-928. doi:10.1111/oik.0598.

643 Lichatowitch, J. 1999. *Salmon Without Rivers: A History of the Pacific Salmon Crisis*. Washington, D.C.:
644 Island Press.

645 Liermann, M., and Hilborn, R. 2001. Depensation: Evidence, models and implications. *Fish and Fisheries*
646 **2**(1): 33-58. doi:10.1046/j.1467-2979.2001.00029.x.

647 Lorenzen, K., Leber, K.M., & Blankenship, H.L. 2010. Responsible approach to marine stock
648 enhancement: An Update. *Reviews in Fisheries Science* **18**(2), 189–210.
649 doi:10.1080/10641262.2010.491564

650 Manhard, C.V., Adkison, M.D., Hard, J.J., Smoker, W.W., and Gharrett, A.J. 2018. Local adaptation of
651 phenology revealed in outcrosses between spawning segments of a salmonid population.
652 *Molecular Ecology* **27**(23): 4698-4710. doi:10.1111/mec.14908.

653 McElhany, P., Ruckelshaus, M.H., Ford, M.J., Wainwright, T.C. and Bjorkstedt, E.P. 2000. Viable salmonid
654 populations and the recovery of evolutionarily significant units. NOAA Tech. Memo. NMFS-
655 NWFSC-42, US Dept. Commerce.

656 McElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and STAN. 2nd edition.
657 Chapman and Hall/CRC, New York, NY.

658 McLean, J.E., Bentzen, P., and Quinn, T.P. 2005. Nonrandom, size- and timing-biased breeding in a
659 hatchery population of steelhead trout. *Conservation Biology* **19**(2): 446-454.

660 McMillan, J.R., Katz, S.L., and Pess, G.R. 2007. Observational evidence of spatial and temporal structure
661 in a sympatric anadromous (winter steelhead) and resident rainbow trout mating system on the
662 olympic peninsula, washington. *Transactions of the American Fisheries Society* **136**(3): 736-748.
663 doi:10.1577/T06-165.1.

664 McMillan, J.R., Morrison, B., Chambers, N., Ruggerone, G., Bernatchez, L., Stanford, J., and Neville, H.
665 2023. A global synthesis of peer-reviewed research on the effects of hatchery salmonids on wild
666 salmonids. *Fisheries Management and Ecology*. **30**(5): 446-463. doi:10.1111/fme.12643.

667 McMillan, J.R., Sloat, M.R., Liermann, M., and Pess, G. Historical Records Reveal Changes to the
668 Migration timing and abundance of winter steelhead in Olympic Peninsula Rivers, Washington
669 State, USA. *North American Journal of Fisheries Management*. **42**:3-23. doi:
670 10.1002/nafm.10722.

671 Moore, M.E., Berejikian, B.A., and Tezak, E.P. 2010. Early marine survival and behavior of steelhead
672 smolts through hood canal and the strait of juan de fuca. *Transactions of the American Fisheries
673 Society* **139**(1): 49-61. doi:10.1577/t09-012.1.

674 Moore, M., Berejikian, B.A., and Tezak, E.P. 2012. Variation in the early marine survival and behavior of
675 natural and hatchery-reared hood canal steelhead. *Plos One* **7**(11). doi:ARTN
676 e4964510.1371/journal.pone.0049645.

677 Moore, M.E., Malick, M.J., Thomas, A.C., Klungle, M.M., and Berejikian, B.A. 2024. Harbor seal predation
678 on migrating steelhead smolts entering marine waters. *Marine Ecology Progress Series*. **743**:139-
679 157. <https://doi.org/10.3354/meps14639>

680 Naish, K.A., Taylor, J.E., Levin, P.S., Quinn, T.P., Winton, J.R., Huppert, D., and Hilborn, R. 2008. An
681 evaluation of the effects of conservation and fishery enhancement hatcheries on wild
682 populations of salmon. *Advances in Marine Biology*. **53**: 61-194. doi:10.1016/S0065-
683 2881(07)53002-6.

684 Nelson, B.W., Shelton, A.O., Anderson, J.H., Ford, M.J., and Ward, E.J. 2019. Ecological implications of
685 changing hatchery practices for Chinook salmon in the salish sea. *Ecosphere* **10**(11).
686 doi:10.1002/ecs2.2922.

687 NMFS (National Marine Fisheries Service). 2019. ESA Recovery Plan for the Puget Sound Steelhead
688 Distinct Population Segment (*Oncorhynchus mykiss*). National Marine Fisheries Service. Seattle,
689 WA. (Available from: <https://www.fisheries.noaa.gov/resource/document/esa-recovery-plan-puget-sound-steelhead-distinct-population-segment-oncorhynchus>).

690 Paquet, P.J., Flagg, T., Appleby, A., Barr, J., Blankenship, L., Campton, D., Delarm, M., Evelyn, T., Fast, D.,
691 Gislason, J., Kline, P., Maynard, D., Mobrand, L., Nandor, G., Seidel, P., and Smith, S. 2011.
692 Hatcheries, conservation, and sustainable fisheries-achieving multiple goals: Results of the
693 hatchery scientific review group's columbia river basin review. *Fisheries* **36**(11): 547-561.
694 doi:10.1080/03632415.2011.626661.

695 Pastore, M., and Calcagni, A. 2019. Measuring distribution similarities between samples: A distribution-
696 free overlapping index. *Frontiers in Psychology*. **10**: 1089. doi:10.3389/fpsyg.2019.01089

697 Phelps, S.P., S.A. Leider, P.L. Hulett, B.M. Baker, and T. Johnson. 1997. Genetic analyses of Washington
698 Steelhead: preliminary results incorporating 36 new collections from 1995 and 1996. WDFW
699 Progress Report. (Available from:
700 <https://wdfw.wa.gov/sites/default/files/publications/01388/wdfw01388.pdf>).

701 Quinn, T.P. 2018. The Behavior and Ecology of Pacific Salmon and Trout. 2nd Edition. University of
702 Washington Press. 562 p.

704 Quinn, T.P., Cunningham, C.J., Randall, J., and Hilborn, R. 2014. Can intense predation by bears exert a
705 depensatory effect on recruitment in a pacific salmon population? *Oecologia* **176**(2): 445-456.
706 doi:10.1007/s00442-014-3043-2.

707 Reisenbichler, R., Rubin, Wetzel, L. and Phelps, S. 2004. Natural selection after release from a hatchery
708 leads to domestication in steelhead, *Oncorhynchus mykiss*. Edited by K. Leber, S. Kitada, H.
709 Blankenship, and T. Svåsand. Stock enhancement and sea ranching (pp. 371–384). Blackwell
710 Publishing. <https://doi.org/10.1002/9780470751329.ch27>.

711 Salmon Recovery Science Review Panel (SRSRP). Report for Meeting Held 30 August–2 September
712 2004. Seattle, WA: National Marine Fisheries Service, Northwest Fisheries Science Center;
713 2004. http://www.nwfsc.noaa.gov/trt/rsrp_docs/rsrpreportsept30-2004b.pdf.

714 Scheuerell, M., Ruff, C., Anderson, J., and Beamer, E. 2021. An integrated population model for
715 estimating the relative effects of natural and anthropogenic factors on a threatened population
716 of steelhead trout. *Journal of Applied Ecology*. **58**(1): 114-124. doi:10.1111/1365-
717 2664.13789114-124.

718 Scheuerell, M.D., Buhle, E.R., Semmens, B.X., Ford, M.J., Cooney, T., and Carmichael, R.W. 2015.
719 Analyzing large-scale conservation interventions with bayesian hierarchical models: A case study
720 of supplementing threatened pacific salmon. *Ecology and Evolution* **5**(10): 2115-2125.
721 doi:10.1002/ece3.1509.

722 Sobociński, K., Kendall, N., Greene, C., and Schmidt, M. 2020. Ecosystem indicators of marine survival in
723 Puget Sound steelhead trout]. *Progress in Oceanography*. **188**: 102419.
724 doi:10.1016/j.pocean.2020.102419

725 Springate, J.R.C., Bromage, N.R., Elliott, J.A.K., and Hudson, D.L. 1984. The timing of ovulation and
726 stripping and their effects on the rates of fertilization and survival to eying, hatch and swim-up
727 in the rainbow-trout (*Salmo gairdneri*). *Aquaculture* **43**(1-3): 313-322. doi:10.1016/0044-
728 8486(84)90032-2.

729 Stewart-Oaten, A., and Bence, J.R. 2001. Temporal and spatial variation in environmental impact
730 assessment. *Ecological Monographs* **71**(2): 305-339. doi:10.1890/0012-
731 9615(2001)071[0305:tasvie]2.0.co;2.

732 Tatara, C.P., Endicott, R.C., Atkins, J.J., and Berejikian, B.A. 2021. Plasticity of behavioral and growth
733 responses to two feeding regimes and implications for the domestication of steelhead trout.
734 *North American Journal of Aquaculture* **83**(2): 83-94. doi:10.1002/naaq.10174.

735 Theriault, V., Moyer, G.R., Jackson, L.S., Blouin, M.S., and Banks, M.A. 2011. Reduced reproductive
736 success of hatchery coho salmon in the wild: Insights into most likely mechanisms. *Molecular
737 Ecology* **20**(9): 1860-1869. doi:10.1111/j.1365-294X.2011.05058.x.

738 Thompson, J.N., and Beauchamp, D.A. 2014. Size-selective mortality of steelhead during freshwater and
739 marine life stages related to freshwater growth in the Skagit river, Washington. *Transactions of
740 the American Fisheries Society* **143**(4): 910-925. doi:10.1080/00028487.2014.901253.

741 Thompson, J.N., and Beauchamp, D.A. 2016. Growth of juvenile steelhead (*Oncorhynchus mykiss*) under
742 size-selective pressure limited by seasonal bioenergetic and environmental constraints. *Journal
743 of Fish Biology* **89**(3): 1720-1739. doi:10.1111/jfb.13078.

744 Tillotson, M.D., Barnett, H.K., Bhuthimethee, M., Koehler, M.E., and Quinn, T.P. 2019. Artificial selection
745 on reproductive timing in hatchery salmon drives a phenological shift and potential
746 maladaptation to climate change. *Evolutionary Applications* **12**(7): 1344-1359.
747 doi:10.1111/eva.12730.

748 Underwood, A.J. 1994. On beyond baci - sampling designs that might reliably detect environmental
749 disturbances. *Ecological Applications* **4**(1): 3-15. doi:10.2307/1942110.

750 Van Doornik, D., Berejikian, B., Moore, M., Claiborne, A., Downen, M., Waltermire, J., Doctor, K., and
751 Endicott, R. 2022. The influences of pre- and post-smolt captive rearing environments on

752 growth, maturation, body size, and reproductive success of steelhead (*Oncorhynchus mykiss*)
753 released as adults]. Canadian Journal of Fisheries and Aquatic Sciences. **79**(5): 749-760.
754 doi:10.1139/cjfas-2021-0028.

755 Van Doornik, D.M., and Berejikian, B.A. 2015. Landscape factors affect the genetic population structure
756 of *Oncorhynchus mykiss* populations in hood canal, washington. Environmental Biology of Fishes
757 **98**(2): 637-653. doi:10.1007/s10641-014-0301-4.

758 Venditti, D.A., James, C.A., and Kline, P. 2013. Reproductive behavior and success of captive-reared
759 Chinook salmon spawning under natural conditions. North American Journal of Fisheries
760 Management **33**(1): 97-107. doi:10.1080/02755947.2012.746244.

761 Venditti, D., Kinzer, R.N., Apperson, K.A., Barnet, B., Belnap, M., Copeland, T., Corsi, M.P., and Tardy, K.
762 2018. Effects of hatchery supplementation on abundance and productivity of natural-origin
763 Chinook salmon: two decades of evaluation and implications for conservation programs.
764 Canadian Journal of Fisheries and Aquatic Sciences. **75**: 1495-1510

765 Waples, R.S., Ford, M.J., and Schmitt, D. 2007. Empirical results of salmon supplementation in the
766 northeast pacific: A preliminary assessment. Edited by T.M. Bert. Springer, Dordrecht. pp. 383-
767 403. Ecological and genetic implications of aquaculture activities.

768 Welch, D.W., Ward, B.R., Smith, B.D., and Eveson, J.P. 2000. Temporal and spatial responses of british
769 columbia steelhead (*Oncorhynchus mykiss*) populations to ocean climate shifts. Fisheries
770 Oceanography **9**(1): 17-32. Doi: 10.1046/j.1365-2419.2000.00119.x

771 Wessel, M., Smoker, W., Fagen, R., and Joyce, J. 2006. Variation of agonistic behavior among juvenile
772 Chinook salmon (*Oncorhynchus tshawytscha*) of hatchery, hybrid, and wild origin. Canadian
773 Journal of Fisheries and Aquatic Sciences. **63**(2): 438-447. doi:org/10.1139/f05-227.

774 Wilson, K.L., Bailey, C.J., Davies, T.D., and Moore, J.M. 2021. Marine and freshwater regime changes
775 impact a community of migratory Pacific salmonids in decline. Global Change Biology. **28**:72–85.
776 DOI: 10.1111/gcb.15895.

777 Williamson, K.S., Murdoch, A.R., Pearson, T.N., Ward, E.J., and Ford, M.J. 2010. Factors influencing the
778 relative fitness of hatchery and wild spring Chinook salmon (*oncorhynchus tshawytscha*) in the
779 wenatchee river, washington, USA. Canadian Journal of Fisheries and Aquatic Sciences **67**(11):
780 1840-1851. doi:10.1139/f10-099.

781

782

Table 1. Posterior means and credibility intervals for the phase-wise abundance changes. All values are in units of number of redds (back transformations included bias correction).

Comparison	Treatment	Mean	Lower 95% CI	Upper 95% CI
during - before	Control	-5.7	-28.8	6.4
after - during	Control	-2.9	-17.4	7.5
after - before	Control	-8.5	-36.9	4.2
during - before	Supplemented	76.9	9.6	253.3
after - during	Supplemented	-69.5	-241.8	-7.1
after - before	Supplemented	7.5	-28.8	55.6

Table 2. Posterior means and credibility intervals for the phase-wise spawn timing changes. All values are in days.

Comparison	Treatment	Mean	Lower 95% CI	Upper 95% CI
during - before	Control	0.8	-3.0	5.0
after - during	Control	-2.3	-7.4	2.6
after - before	Control	-1.5	-6.2	2.8
during - before	Supplemented	-1.4	-7.3	3.7
after - during	Supplemented	2.0	-4.5	8.8
after - before	Supplemented	0.6	-5.4	7.0

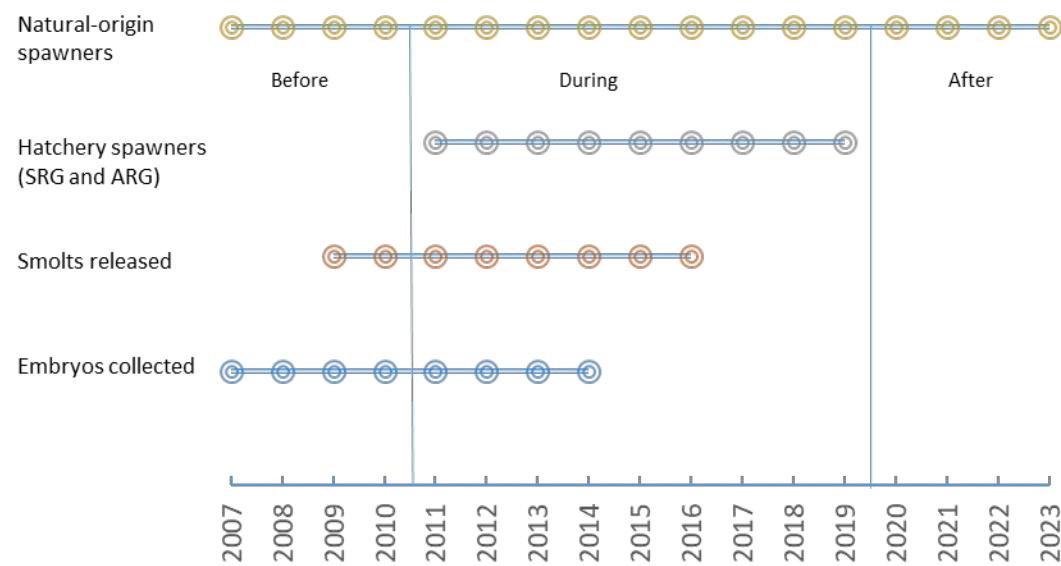


Figure 1. Timeline showing years in which embryos were collected to initiate captive rearing groups. Embryos were reared to age-2 and released as smolts and years when captively reared steelhead released as smolts (SRG) and as adults (ARG) were present on the spawning grounds.

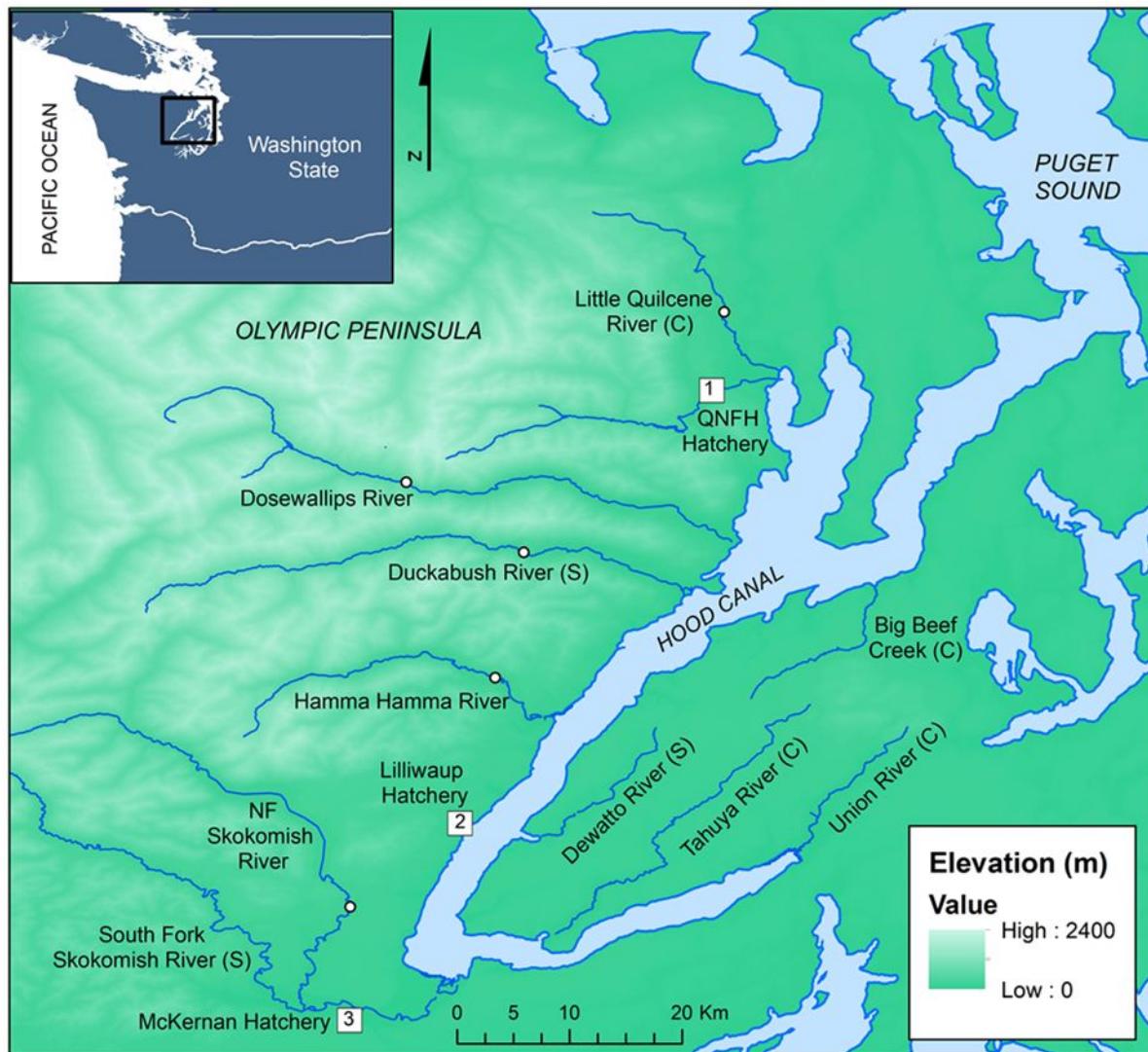


Figure 2. Map of the study area including streams that were supplemented (S) with smolts and adults and streams that were non-supplemented controls (C). Embryos for two populations (Dewatto and Duckabush) were incubated at the USFWS Quilcene National Fish Hatchery (1), transported to the Lilliwaup Hatchery (2) for rearing to the smolt and adult stages. South Fork Skokomish River steelhead were reared at the McKernan Hatchery (3). White circles indicate natural and human-made barriers to upstream migration (xy coordinate system: GCS_WGS_1984, datum: D_WGS_1984; Map created by M.E. Moore).

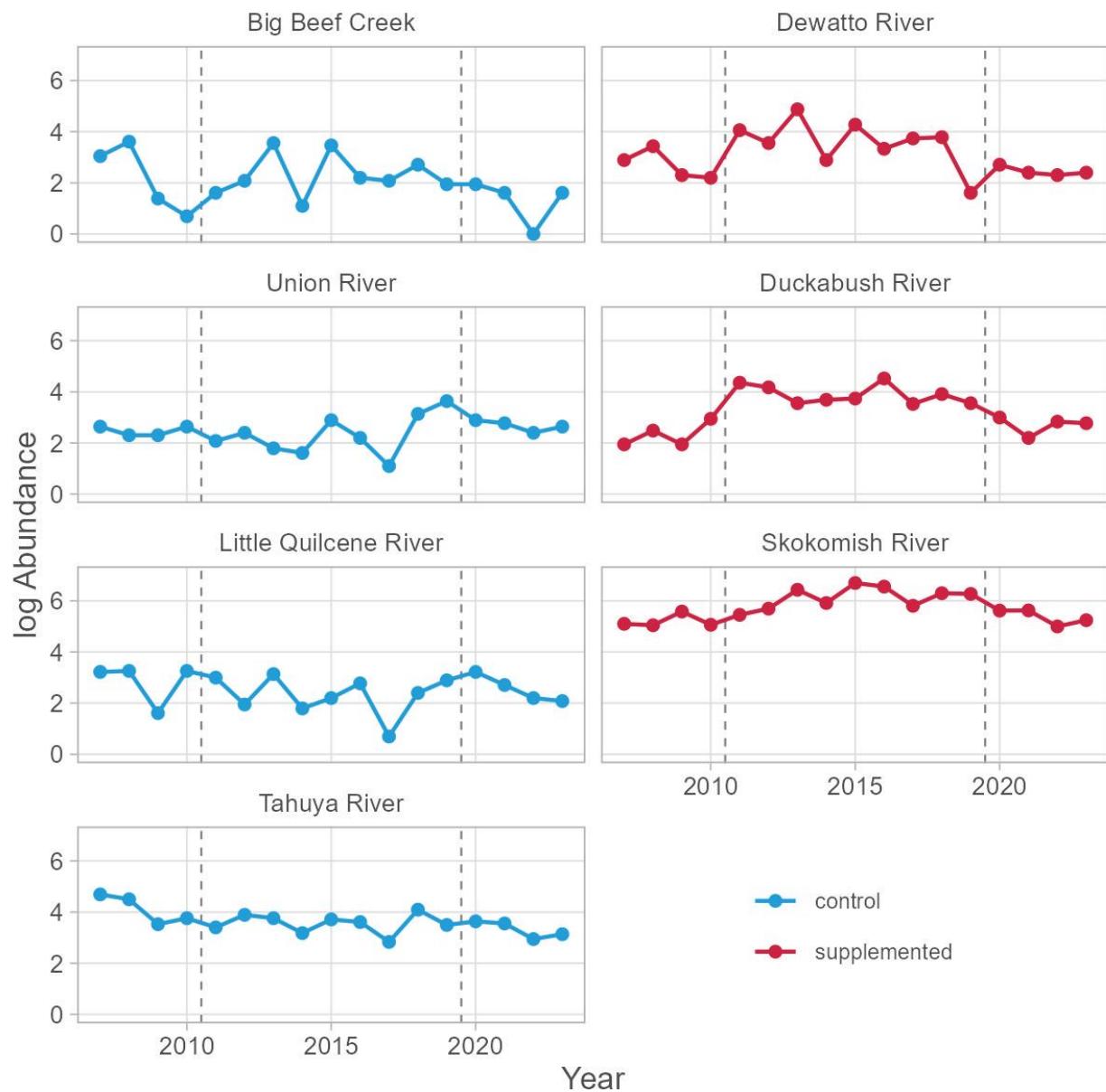


Figure 3. Steelhead abundance time series (log scale). Blue series show the control populations and red series show the supplemented populations. Dashed vertical lines indicate the breaks between the before, during, and after phases.

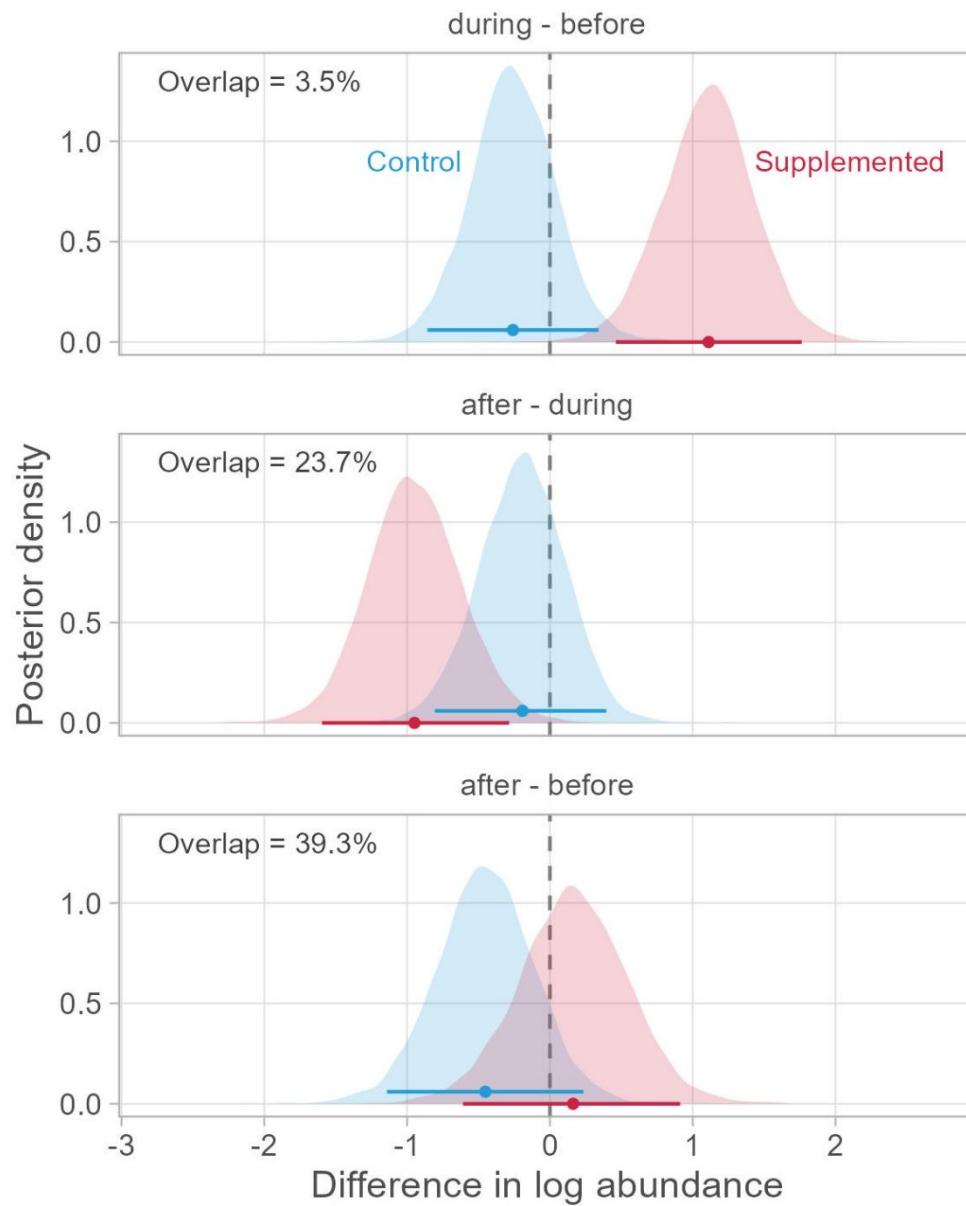


Figure 4. Posterior distributions of phase-wise differences in log abundance. Top panel shows the change in abundance between the before and during phases, middle panel shows the change between the during and after phases, and bottom panel shows the change between the before and after phases. Dots show the posterior mean and horizontal lines indicate the 95% credibility interval. Blue distributions are the control populations and red distributions are the supplemented populations. Overlap percentage is the percent of the treatment posterior distributions that overlap (lower number indicates less overlap in the distributions).

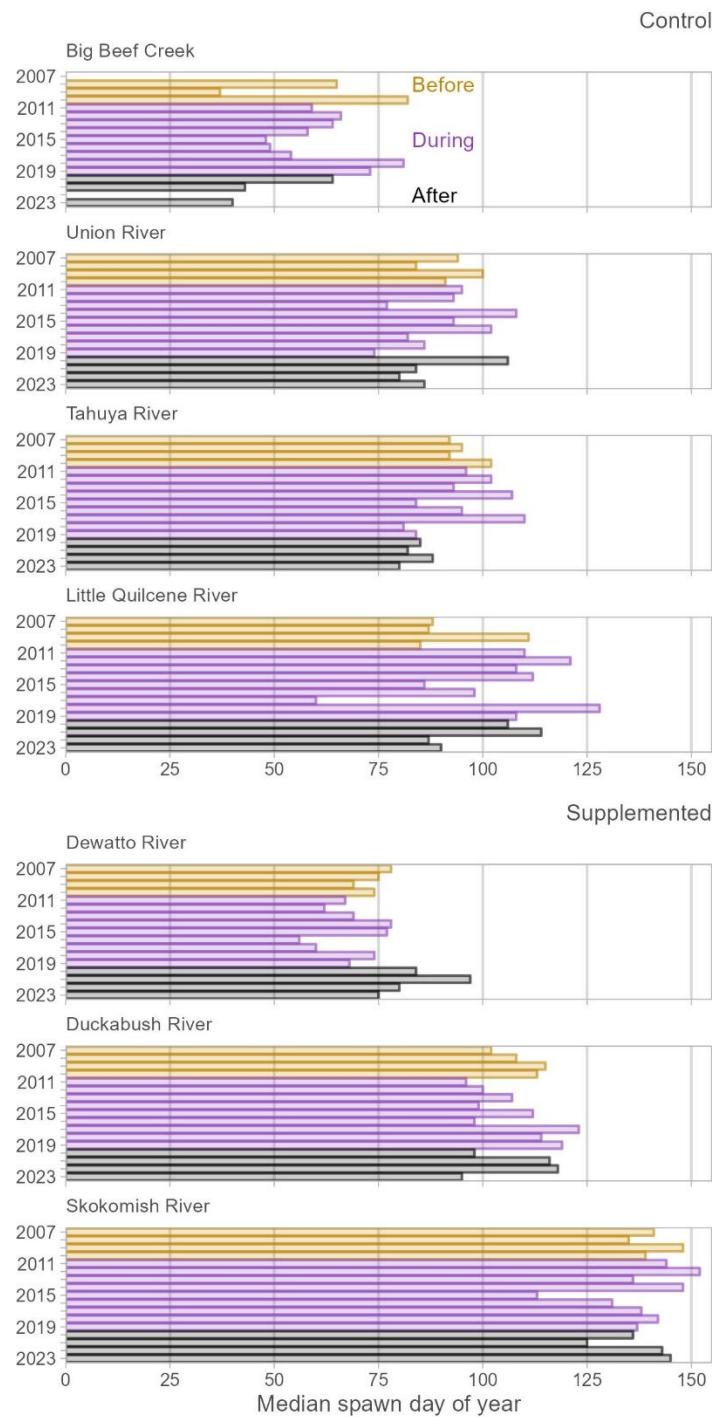


Figure 5. Time series of steelhead spawn timing. Blue series show the control populations and red series show the supplemented populations. Dashed vertical lines indicate the breaks between the before, during, and after phases.

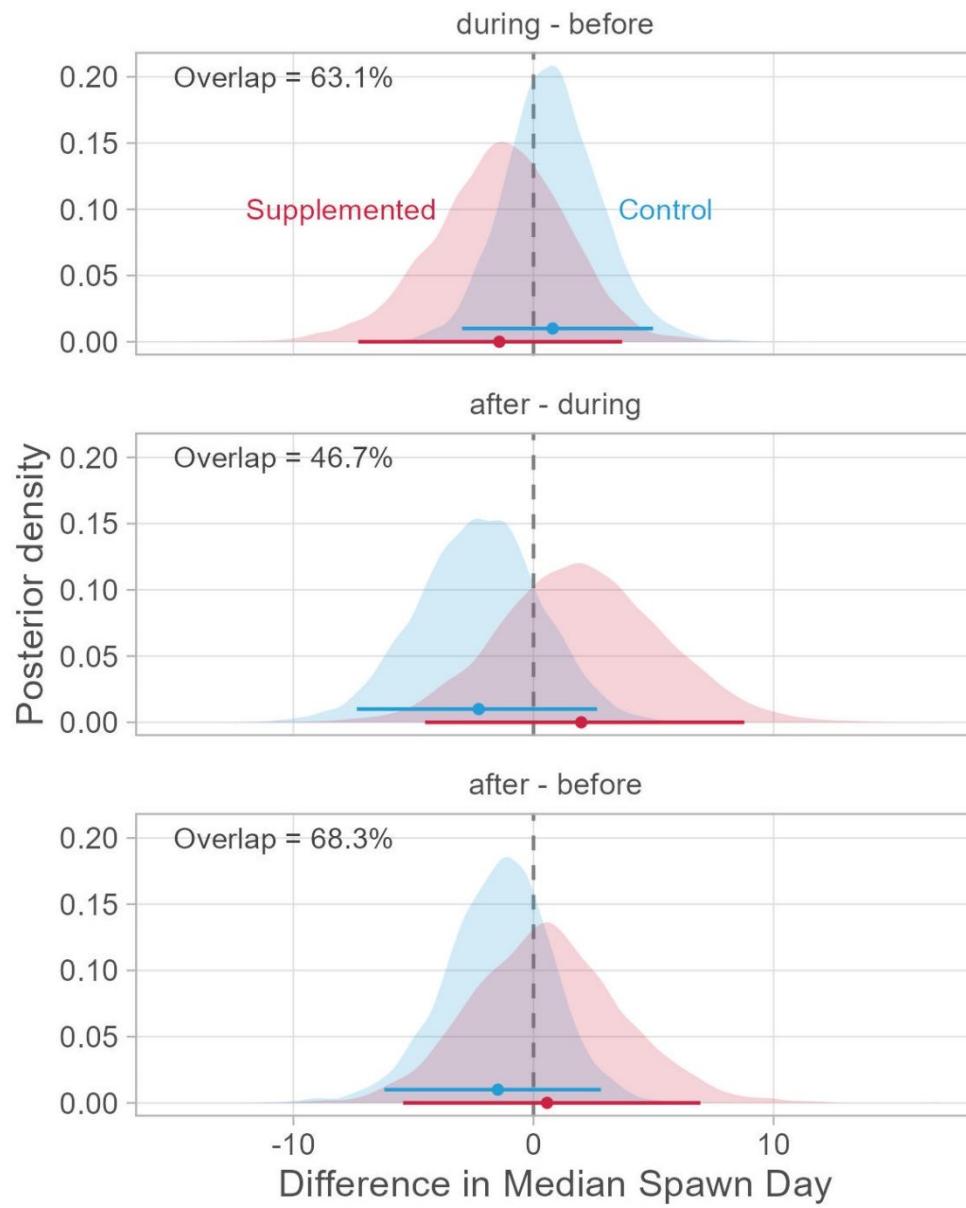


Figure 6. Posterior distributions of phase-wise differences in spawn timing. Top panel shows the change in abundance between the before and during phases, middle panel shows the change between the during and after phases, and bottom panel shows the change between the before and after phases. Dots show the posterior mean and horizontal lines indicate the 95% credibility interval. Blue distributions are the control populations and red distributions are the supplemented populations. Overlap percentage is the percent of the treatment posterior distributions that overlap (lower number indicates less overlap in the distributions).

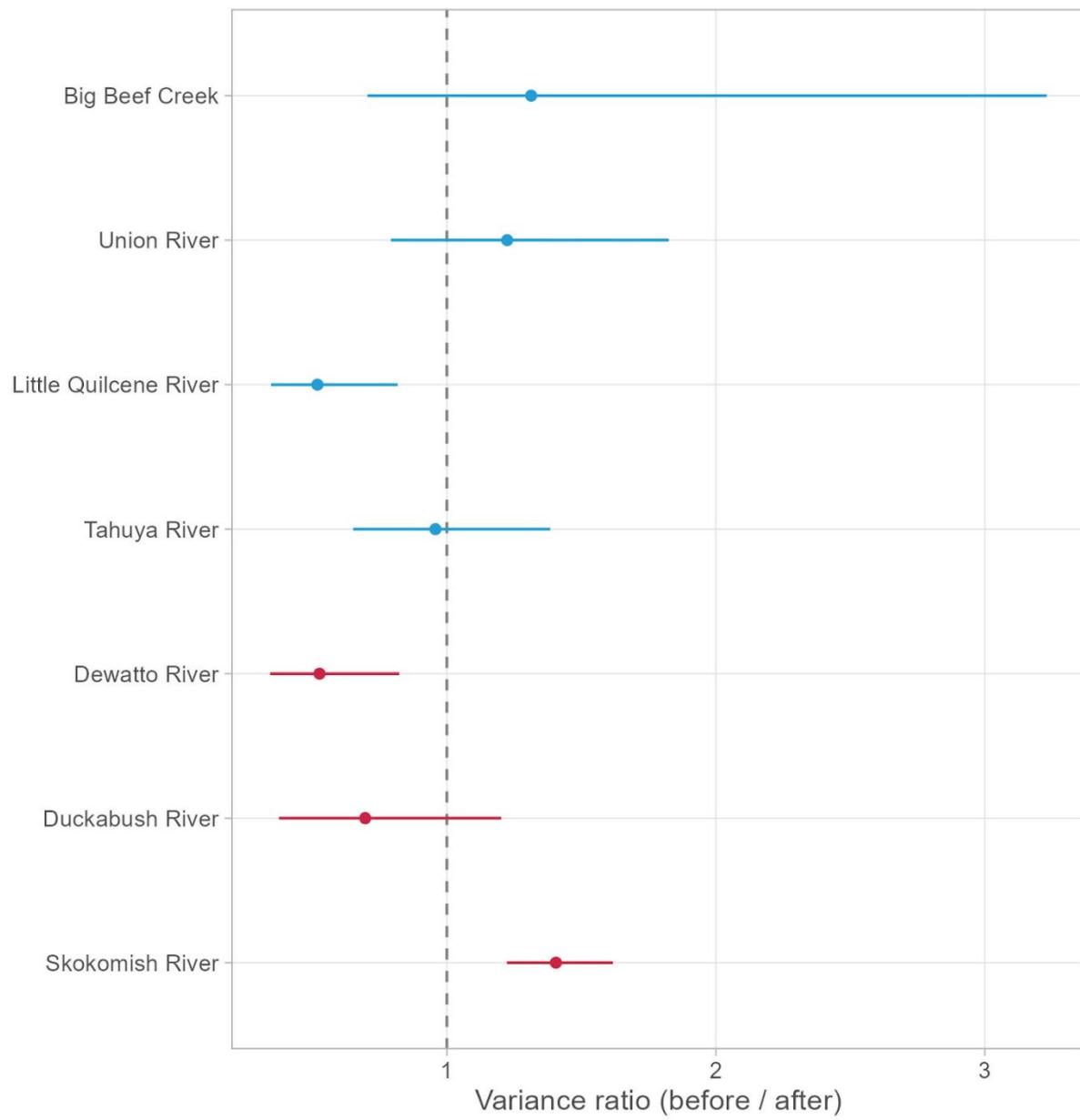


Figure 7. Spawn timing variance ratios for the before period compared to the after period for each stream. Dots show the median bootstrap ratio and horizontal lines show the 95% confidence interval.