

Energetic limitations and mass mortality of Bering Sea snow crab: Interacting effects of warming and density on collapse and recovery

Erin J. Fedewa^{1*}, Louise A. Copeman² and Michael A. Litzow¹

¹Alaska Fisheries Science Center, National Marine Fisheries Service, 301 Research Court, Kodiak, AK 99615, USA

²Alaska Fisheries Science Center, National Marine Fisheries Service, 2030 SE Marine Science Dr.,
Newport, OR 97365, USA

*Corresponding author: erin.fedewa@noaa.gov

ORCHID IDs

Erin J. Fedewa: 0009-0009-4965-8886

Louise A. Copeman: 0000-0002-8851-7586

Michael A. Litzow: 0000-0003-1611-4881

18 **ABSTRACT**

19 Marine heatwaves can result in mass mortality events, but the mechanisms underlying population collapse
20 and recovery dynamics are often poorly understood. Here, we employed a comparative analysis between
21 collapsing and non-collapsing portions of the Bering Sea snow crab population to evaluate linkages
22 between energetic condition and population abundance during and after a recent collapse. We show that
23 abundance declines during the collapse were associated with dramatic declines in energetic condition, and
24 the negative impact of high population density on energetic reserves was intensified by warming during a
25 marine heatwave. Elevated energetic condition coincided with strong recruitment post-collapse,
26 suggesting rapid initial population recovery in the eastern Bering Sea. However, we show that cold-water
27 habitat ($\leq 0^{\circ}\text{C}$) is critical for supporting high snow crab density in rebuilding towards a pre-collapse state.
28 These results suggest that warming and loss of sea ice will exacerbate the risk of collapse in snow crab
29 through energetic constraints on survival. Furthermore, we highlight the validation of an indirect
30 energetic condition metric that will facilitate continued energetics monitoring and rapid integration into
31 management.

32

33

34 *Key words: Bering Sea, Chionoecetes opilio, energetics, fatty acids, marine heatwave, population*
35 *collapse*

36

37 **INTRODUCTION**

38 Climate change is rapidly increasing thermal risk for populations, and mass mortality events
39 related to marine heatwaves are increasingly common, most notably for invertebrates (Fey et al. 2015).
40 Discrete and prolonged periods of anomalously warm water that define marine heatwaves have increased
41 in frequency, duration and spatial extent during the past decade in northern latitudes such as the Bering
42 Sea (Hobday et al. 2016; Carvalho et al. 2021). Snow crab (*Chionoecetes opilio*),

43 in particular, are highly vulnerable to marine heatwaves, as they are highly stenothermic and rely on cold
44 bottom waters associated with seasonally ice-covered habitats. Recent and rapid sea ice loss in
45 the Bering Sea have exacerbated the loss of these cold-water habitats, and predictions of ice-free
46 conditions in coming decades raise concern for ice-associated species (Wang and Overland 2012; Notz
47 and Stroeve 2016; Overland and Wang 2025). During 2018-2019, a marine heatwave in the Bering Sea
48 resulted in the lowest winter sea ice extent on record and extreme bottom water warming (Stabeno and
49 Bell, 2019). The snow crab population in the eastern Bering Sea abruptly collapsed following the marine
50 heatwave, declining from the highest-observed abundance in 2018 to the lowest-observed in 2021
51 (Szuwalski et al. 2023). The highly valuable fishery for Bering Sea snow crab was subsequently closed
52 for the first time in history during the 2022-2023 and 2023-2024 seasons.

53 Considered one of the largest mass mortality events of motile marine macrofauna in recent
54 history, the snow crab collapse was attributed to the 2018-2019 marine heatwave and unprecedented sea
55 ice loss (Szuwalski et al. 2023; Litzow et al. 2024). In particular, elevated snow crab mortality during the
56 collapse was linked to high population density and a temperature-driven increase in metabolic demand,
57 suggesting that starvation was the proximate cause for the collapse. However, these conclusions
58 concerning the role of starvation were drawn, in part, from reductions in snow crab body weight-at-size
59 (Szuwalski et al. 2023), despite evidence that morphological indices of condition are highly insensitive in
60 detecting energy depletion and starvation-induced mortality in snow crab (Hardy et al. 2000; Lorentzen et
61 al. 2020; Kruse 2023). Biochemical indices (e.g., lipid and fatty acid content) provide direct estimates of
62 energetic condition (Copeman et al. 2018; Copeman et al. 2021) and, as such, are better suited to evaluate
63 energetic constraints and bottom-up food limitation (Stevenson and Woods 2006). Energetic status can
64 have a strong effect on starvation and mortality risk, and declines in population abundance are often
65 closely linked to reduced energetic condition (Dutil and Lambert 2000). Likewise, energetic metrics
66
67 (Mullowney and Rose 2014; Receveur et al. 2022), while rebounding energetic condition can

68 reflect population recovery. Despite the potential for energetic condition indices to improve our
69 understanding of population fluctuations and to provide early detection of impending mortality events,
70 energetic condition is not routinely monitored in Bering Sea snow crab. This paucity of data is, in part,
71 due to the absence of practical condition metrics that 1) have been validated against more sensitive
72 biochemical indices, and 2) can be rapidly measured and analyzed in time to directly inform fisheries
73 management decisions each fall.

74 Patterns of variability in energetic condition are often reflective of environmental conditions,
75 food quantity and quality, and density dependence. While reductions in sea ice cover and warming in the
76 Bering Sea are predicted to alter benthic-pelagic coupling and reduce energy available to benthic
77 communities (Overland and Stabeno 2004; Grebmeier et al. 2006; Liovorn et al. 2016), our
78 understanding of snow crab prey availability remains limited. Declines in juvenile snow crab body
79 condition have been associated with warmer temperatures and declines in ice-associated diatom
80 production in the Bering Sea, suggesting that temperature is an indirect driver of shifts in prey quality
81 (Copeman et al. 2021). Likewise, evidence for climate-driven range contractions in snow crab points
82 towards potential reductions in foraging area and prey availability as outcomes of warming (Fedewa et al.
83 2020; Szwalski et al. 2023). Because population collapses can alter responses to environmental drivers
84 (Durant et al. 2024), energetic responses to warming and record-high population density preceding the
85 snow crab collapse may fundamentally differ from post-collapse responses when abundances are low.
86 Elucidating the magnitude, direction and potential interactions between population density and
87 temperature effects is critical in identifying drivers of collapse risk in the Bering Sea snow crab
88 population.

89 To date, efforts to understand the snow crab collapse have solely focused on the eastern Bering
90 Sea portion of the population despite support for high connectivity with snow crab in the northern Bering
91 Sea (Ernst et al. 2005; Parada et al. 2010) Juvenile snow crab occupy a latitudinal gradient in the Bering
92 Sea, with high densities extending northward into more consistently ice-covered areas of the northern

93 Bering Sea (north of ~60°N). The southern extent of their range is limited to shallow, cold-water habitats
94 in the eastern Bering Sea (Murphy et al. 2010). While the largest magnitude of decline during the snow
95 crab collapse occurred in juvenile nursery grounds in the eastern Bering Sea, the northern Bering Sea
96 population also experienced declines in abundance coinciding with the 2018-2019 marine heatwave
97 (Fedewa et al. 2020). However, sea ice loss and population declines in the north were less pronounced
98 than in the eastern Bering Sea. This latitudinal population gradient and contrast in vulnerability to
99 collapse provide a novel opportunity to compare energetic responses to population density and warming
100 in collapsing and non-collapsing portions of the juvenile snow crab population during a marine heatwave.

101 The north-south latitudinal gradient in juvenile snow crab habitat and seasonal ice coverage also
102 offers an opportunity to define optimal thermal habitat for snow crab by evaluating regional differences in
103 energetic status across the full spatial extent of the Bering Sea. Anticipating the impacts of warming on
104 thermal habitat suitability necessitates a better understanding of temperature effects on direct drivers of
105 mortality risk such as energetic state. Bottom temperature appears to be an important predictor of snow
106 crab habitat in the Bering Sea, and maximum thermal thresholds for snow crab have traditionally been
107 defined as 2°C (Mueter and Litzow 2008; Murphy 2020). However, realized thermal niches likely differ
108 in more consistently seasonally ice-covered habitat in the northern Bering Sea, and lower thermal
109 preferences proposed for ice-associated species suggest that 1°C may be more biologically meaningful in
110 delineating optimal thermal habitat for snow crab (Kotwicki and Lauth 2013). Furthermore, ecological
111 insight into snow crab thermal preferences is critical for defining suitable habitat for population
112 rebuilding, and predicting climate-mediated changes in habitat use and availability.

113 Here, we evaluate the role of energetics in collapse and recovery potential using a direct measure
114 of energetic condition (i.e., total fatty acids in the hepatopancreas) applied across the collapsing (eastern)
115 and non-collapsing (northern) portions of the Bering Sea snow crab population. Our specific objectives
116 are to 1) test the hypothesis that energetic condition of juvenile snow crab covaries with population
117 abundance during and after the collapse in the two regions; 2) test for regional differences in the

118 interactive effect of snow crab density and temperature on energetic condition; 3) use energetic condition
119 to test for thermal optima that define suitable habitat for population recovery; and 4) evaluate an indirect
120 condition metric (i.e., hepatopancreas percent dry weight) to allow routine rapid monitoring of energetic
121 condition for early detection of future population declines. Ultimately, our approach will shed light on the
122 causes and consequences of a mortality event underlying one of the largest marine invertebrate population
123 collapses in recent history, and facilitate a better understanding of population recovery potential.

124 **MATERIALS AND METHODS**

125

126 *Study site and study population*

127 We collected hepatopancreas samples from juvenile snow crab (i.e., immature, pre-terminal molt
128 individuals) across a latitudinal gradient on Alaska Fisheries Science Center Bering Sea bottom trawl
129 surveys to allow for comparison of energetic condition in the northern and eastern portions of the Bering
130 Sea continental shelf within the U.S. Exclusive Economic Zone. These two regions of the Bering Sea are
131 targeted by separate bottom trawl surveys (annual in the eastern Bering Sea, biennial in the northern
132 Bering Sea), and the fishery occurs exclusively in the eastern Bering Sea. Furthermore, these two
133 portions of the snow crab population experienced different population trajectories following the extreme
134 low-ice years of 2018-2019. Estimated snow crab abundance in the eastern Bering Sea reached a time
135 series high in 2018 but declined more than 92% by 2021 (Fig. 1a). Abundance in the northern Bering Sea
136 reached a similar high point in 2017 and declined 60% by 2021. In addition to the smaller proportional
137 decline in the northern Bering Sea, this portion of the population showed a more rapid recovery, with
138 abundance in 2022-2023 reaching 48-60% of the 2017 high point, while abundance in the eastern Bering
139 Sea remained depressed until 2024 (Fig. 1a).

140

141

142

143 *Sampling design and data collection*

144 We sampled juvenile snow crab during the 2019 and 2021-2024 eastern Bering Sea bottom trawl
145 surveys, and the 2019 and 2021-2023 northern Bering Sea bottom trawl surveys. The northern Bering Sea
146 trawl survey was not conducted in 2024 following its transition to a biennial survey, and neither survey
147 was conducted in 2020 due to the COVID-19 pandemic. The eastern Bering Sea bottom trawl survey
148 occurs annually during May-July, with sampling conducted across 375 stations. The northern Bering Sea
149 bottom trawl survey encompasses an additional 144 standardized stations that are sampled in August.
150 Surveys in both regions utilize a systematic design (20 × 20 nautical mile grid) and an 83-112 Eastern
151 bottom trawl (Stauffer 2004).

152

153 To ensure representative spatial coverage for energetics sampling in the two regions, we defined
154 eight strata within the eastern and northern survey grids for stratified random sampling of juvenile snow
155 crab habitat encompassing the middle and outer shelf of the Bering Sea. Stratum boundaries were
156 delineated using marine regions developed by Ortiz et al. (2013), which are characterized by distinct
157 ecological domains and oceanographic and bathymetric features. In each study year, we collected juvenile
158 snow crab at a minimum of five survey stations within each stratum, aiming for a collection goal of 20
159 male and 20 female snow crab per stratum (Table 1). We limited our collections to juvenile snow crab
160 because energetic constraints on survival may be significantly more pronounced in juveniles as they
161 undergo energetically costly molting events. Furthermore, baseline levels of total lipids and fatty acids
162 vary with ontogeny and molt stage (Copeman et al. 2012), so we minimized potential age-based or
163 ontological variability in our samples by employing minimum carapace width size thresholds to target
164 pseudo-cohorts of newshell immature snow crab in the eastern Bering Sea (≥ 70 mm carapace width
165 males, ≥ 45 mm carapace width females) and the northern Bering Sea (≥ 50 mm carapace width males, \geq
166 40 mm carapace width females). The size classes we targeted in the eastern Bering Sea portion of the
167 population are expected to molt to maturity the following spring. Slightly smaller pseudo-cohorts were
168 collected in the northern Bering Sea portion of the population because large immature snow crab are

169 encountered infrequently in this region due to smaller size at maturity (Divine et al. 2019) and directional
170 northeast to southwest ontogenetic migrations (Ernst et al. 2005, Parada et al. 2010). Morphometric
171 maturity in female snow crab was determined visually by assessing abdomen flap morphology (Jadamec
172 et al. 1999). Male maturity was estimated with a distribution-based cutline approach that utilizes an
173 allometric relationship between chela height and carapace width (Richar and Foy 2022). Specimen
174 collections were conducted under permits from the Alaska Department of Fish and Game (permit
175 numbers CF-19-032BT and CF-22-022BT).

176

177 *Modeling Covariates*

178 We estimated snow crab density at each station sampled by dividing the total number of all snow
179 crab caught by area-swept effort (catch per unit effort; crab/nm²). Density estimates were right-skewed, so
180 we fourth-root transformed CPUE data prior to use in statistical models to improve model fits. To
181 compare snow crab population abundance trajectories in each region (Fig. 1a), we multiplied average
182 snow crab density estimates across all survey stations within the respective eastern and northern Bering
183 Sea survey grids by the survey grid area for each region. While our calculated abundance estimates do not
184 implicitly account for poor survey gear selectivity of snow crab < 40 mm carapace width (Somerton et al.
185 2013), abundance estimates are assumed to be a consistent measure of population size because selectivity
186 is unlikely to have changed during our study period.

187

188 We measured bottom temperature at each station using a Sea-Bird SBE-39 datalogger (Sea-Bird
189 Electronics Inc., Bellevue, WA) attached to the trawl headrope. Because summer bottom temperatures in
190 the Bering Sea are significantly influenced by the maximum extent of spring sea ice, the timing of its
191 retreat, and the formation of a cold, dense bottom-water layer (Stabeno et al. 2012), we also compared the
192 magnitude of sea ice loss in the eastern and northern Bering Sea to characterize region-specific impacts of
193 the 2018-2019 marine heatwave relative to our summer sampling efforts and estimates of energetic
194 condition. To quantify sea ice loss, we plotted the spatial extent of average March sea ice concentration \geq

195 15% using data from the ERA5 global reanalysis (Dee et al. 2011). This regional sea ice extent
196 comparison shows that the eastern Bering Sea experienced a near-complete loss of sea ice in spring 2019,
197 followed by the return of sea ice in 2021-2024, whereas the northern Bering Sea received at least partial
198 ice coverage each spring (Fig. 1b).

199 *Energetic analyses*

200 Because the hepatopancreas is the primary energy storage organ in crustaceans, we collected
201 hepatopancreas samples at sea for fatty acid analyses used to measure snow crab energetic condition.
202 Snow crab were dissected on the survey vessel by opening the carapace and removing approximately 1g
203 of hepatopancreas tissue from the body cavity, above the heart and gonads. Hepatopancreas samples were
204 frozen at -40°C in sealed Eppendorf tubes wrapped in Teflon tape for three to six months prior to
205 processing. To measure hepatopancreas percent dry weight (i.e. indirect energetic condition metric),
206 samples were briefly thawed and rigorously mixed to a homogeneous consistency.

207 $(\pm 0.001 \text{ g})$

208 pre-weighed aluminum tray, drying at 65 °C for 72 hours to a constant mass, and then weighing to
209 determine the dry weight (DWT, g).

210

211 To measure total fatty acid concentration (i.e. direct energetic condition metric), we used a 100
212 mg sample of wet hepatopancreas. Tissues were weighed (approx. $100 \pm 0.001 \text{ mg}$) into lipid-cleaned 15
213 mL thick-walled glass tubes with Teflon-lined screw caps. An internal standard (23:0 methyl ester) was
214 added at 10% of the estimated total fatty acid weight. We dried internal standards and hepatopancreas
215 tissues under a steady stream of nitrogen gas until all visible moisture was removed from the sample.
216 Fatty acid methyl esters (FAME) were synthesized using a rapid one-step acid-catalyzed direct extraction
217 and methylation procedure. Following Meier et al. (2006), 1 ml of anhydrous methanol containing 2.5M
218 HCl was added to tissue samples and derivatized. Select samples were checked to assure complete
219 derivatization of lipids to FAMEs using thin-layer chromatography with flame ionization detection
220 (TLC_FID) on a Mark VI Iatroskan (Copeman et al. 2021). Quantitative FAME measures were

221 determined using gas chromatography with flame ionization detection (GC-FID) on a HP 7890 GC-FID
222 equipped with an autosampler and a DB wax + GC column (Agilent Technologies, Inc., U.S.A.). The
223 column was 30 m in length, the internal diameter was 0.25 mm and the column film thickness was 0.25
224 μm . The oven temperature began at 65°C and was held at this temperature for 0.5 min. Oven temperature
225 was increased to 195°C (40°C/min), held for 15 min then increased again (2 °C/min) to a final
226 temperature of 220°C, which was held for 1 min. The hydrogen carrier gas flowed at a rate of 2 ml/min
227 and the injector and detector temperatures were set at 250°C. Peaks were identified using retention times
228 based upon standards purchased from Supelco (37 component FAME, BAME, PUFA 1, PUFA 3).
229 Chromatograms were integrated using Chem Station (version A.01.02, Agilent). Total fatty acid
230 concentration in the hepatopancreas was expressed as either total fatty acids (mg) per wet weight (WWT,
231 g) or dry weight (DWT, g).

232

233 *Data analyses*

234 *Objective 1: Covariation between energetic condition and snow crab abundance.* To evaluate evidence
235 for regional variation in energetic condition during and after the snow crab collapse, we used Bayesian
236 hierarchical regression models to generate annual estimates of mean energetic condition and 95% credible
237 intervals for the collapsing (eastern) and non-collapsing (northern) portions of the population. We began
238 by estimating annual mean energetic condition and uncertainty for each region to compare time series of
239 energetic status for the two portions of the population. These estimates were generated using separate
240 models for each region, since we were not interested in sharing information across regions. The model for
241 each region took the form:

$$242 Y_{t,i,j,s} = \beta_0 + \beta_1 YEAR_t + f_1(SIZE_s) + f_2(DOY_{t,i}) + \alpha STRATUM_j + \varepsilon_{t,i,j,s} \quad (1)$$

243 where $Y_{t,i,j,s}$ is the total fatty acids per wet weight estimate for a snow crab sampled in year t at station i in
244 stratum j at size s , β_0 is the intercept, YEAR is a categorical population-level (fixed) effect, f_1 is a smooth
245 function of crab carapace width (SIZE), f_2 is a smooth function of the Julian day at which station i was
246 sampled in year t (day of year, DOY), α_j is a group-level (random) effect to account for spatial

247 autocorrelation of samples collected within sampling stratum j , and $\varepsilon_{t,i,j,s}$ is the individual-level residual
248 error. We included snow crab carapace width and sampling day as control variables to account for
249 potentially confounding influences of seasonality and ontogeny on our energetic condition estimates.
250 Non-linear relationships were accounted for in the effect of continuous variables (i.e., crab size and
251 sampling day) using thin plate regression splines, and smooths were limited to three basis functions to
252 avoid overfitting. Models utilized a zero-truncated Gaussian response distribution and flat priors.

253
254 Next, we used these model-derived annual estimates of energetic condition to support a
255 comparative analysis between energetic condition and population change to assess whether stronger and
256 more persistent declines in abundance in the collapsing eastern Bering Sea covaried with declines in
257 energetic condition. Our study design provides a dataset spanning five years and two regions, which we
258 judged as too small to support a robust regression-based analysis of region-specific energetic condition at
259 an annual scale. Accordingly, we used the annual energetic condition estimates produced from region-
260 specific regression models (Eq. 1) and compared these to eastern and northern Bering Sea snow crab
261 population-level abundance estimates derived from the full survey grid for each respective region (Fig.
262 1a) to qualitatively assess for covariation (i.e., synchronous changes in the direction of abundance and
263 energetic condition estimates).

264
265 *Objective 2: Interactive effects of population density and temperature.* To evaluate evidence for an
266 interactive effect of population density and bottom temperature on energetic condition, and to test
267 whether the strength and direction of this interaction differed between the collapsing and non-collapsing
268 portions of the snow crab population, we fit a single Bering Sea-wide Bayesian regression model that
269 pooled energetic condition estimates across both regions. The full model took the form:

$$270 \quad Y_{t,i,j,s} = \beta_0 + \beta_1(CPUE_{t,i}, TEMP_{t,i}, REGION) + f_1(SIZE_s) + f_2(DOY_{t,i}) + \alpha STRATUM_j + \varepsilon_{t,i,j,s} \quad (2)$$

272 where $Y_{t,i,j,s}$ is the total fatty acids per wet weight estimate for a snow crab sampled in year t at station i in
273 stratum j at size s , β_0 is the intercept, CPUE is the population-level snow crab density at station i sampled
274 in year t that interacts with bottom temperature at station i sampled in year t (TEMP) and the Bering Sea
275 region (REGION), f_1 is a smooth function of crab carapace width (SIZE), f_2 is a smooth function of the
276 Julian day at which station i was sampled in year t (day of year, DOY), α_j is a group-level (random) effect
277 to account for spatial autocorrelation of samples collected within sampling stratum j , and $\varepsilon_{t,i,j,s}$ is the
278 individual-level residual error. The full model was fit using a zero-truncated Gaussian response
279 distribution and flat priors, and smooths were limited to three basis functions to avoid overfitting. We
280 evaluated model performance and out-of-sample predictive skill with the Bayes R^2 (Gelman et al. 2019).

281

282 *Objective 3: Defining optimal thermal habitat.* If there was support for an interaction between
283 temperature and density, we used the Bering Sea-wide regression model (Eq. 2) to evaluate the effect of
284 density dependence on energetic condition at a representative range of temperatures. We *a priori* defined
285 four representative bottom temperature values (0°, 1°, 2°, and 3°C) based on previous research, and
286 evaluated the conditional effects of the density \times temperature interaction on energetic condition of
287 collapsing and non-collapsing portions of the population at these four temperature values. This approach
288 enabled us to determine the relative energetic consequences of changes in density and temperature, and to
289 define thermal habitat optima that may promote population recovery.

290

291 *Objective 4. Evaluating an indirect condition metric.* To assess the predictive accuracy of
292 hepatopancreas percent dry weight as a rapid, indirect metric to monitor energetic condition, we used a
293 Bayesian regression model to evaluate the relationship between hepatopancreas percent dry weight and
294 hepatopancreas total fatty acid concentration per dry weight of individual snow crab samples with paired
295 measurements. For this analysis, we fit data from 2021 to 2024 at-sea collections, pooling eastern and
296 northern Bering Sea samples ($n = 974$). The regression model was fit using a Gaussian response
297 distribution and flat priors.

298
299 All Bayesian analyses were conducted in the Stan computational framework (Stan Development
300 Team 2024) and implemented in the 'brms' package (Bürkner et al. 2017) in R v4.4.2 (R Core Team
301 We conducted estimation with four parallel MCMC chains and 10,000 iterations. Chain
302 convergence and model fits were examined using the potential scale reduction factor ($\hat{R} < 1.05$), effective
303 sample sizes, Leave One Out Probability Integral Transform (LOO-PIT) plots, simulated DHARMA
304 residual plots (Hartig and Hartig 2017) and posterior predictive checks (Gabry et al. 2019; Gelman et al.
305 2020). We also investigated the sensitivity of the posterior to perturbations of the prior and likelihood to
306 diagnose any prior-data conflicts (Kallioinen et al. 2023). Posterior summaries (means and 80/90/95%
307 credible intervals) of conditional effects were estimated to compare energetic condition across collapsing
308 and non-collapsing portions of the population, and
309 temperature and density effects on energetic condition.

310

311 RESULTS

312 Overall, a total of 1,325 juvenile snow crab hepatopancreas samples were collected from mid-
313 June to mid-August during the 2019-2024 eastern and northern Bering Sea surveys. Sampled snow crab
314 ranged in size from 40.16 to 113.2 mm carapace width. Over the five-year sampling period, trajectories of
315 snow crab density and bottom temperature at sampled stations differed substantially between the eastern
316 and northern Bering Sea. The collapsing eastern Bering Sea portion of the population showed an 84%
317 decline in mean density from 2019 to 2021 (Fig. 2a). In contrast, density in the non-collapsing northern
318 Bering Sea portion of the population remained, on average, nearly four times higher than density in the
319 collapsing portion of the population from 2021 to 2023. However, the eastern Bering Sea portion of the
320 population showed a possible sign of recovery in 2024, with density increasing over 10-fold from 2023 to
321 2024. Average bottom temperatures in the eastern Bering Sea exceeded 3°C in 2019, while the northern
322 Bering Sea average bottom temperature remained below 1.5°C during the study period (Fig. 2b).

323

324

325 *Covariation between energetic condition and population change*

326 The posterior means estimated from our region-specific eastern and northern Bering Sea models
327 indicate substantial interannual variability in energetic condition in the collapsing (eastern) portion of the
328 population, as evidenced by nonoverlapping 95% credible intervals (Fig. 3). Furthermore, changes in
329 energetic condition in the two regions reflected differences in population trajectories between the
330 collapsing and non-collapsing portions of the population. Mid-collapse (2019), eastern Bering Sea snow
331 crab mean energetic condition fell to 51 mg FA/g WWT (95% credible interval [CI] = 36-73 mg fatty
332 acid /g WWT), a 49-63% decrease relative to posterior means in years following the collapse (101-139
333 mg fatty acid/g WWT; Fig. 3). Furthermore, a post-collapse increase in energetic condition coincided
334 with substantial increases in eastern Bering Sea snow crab abundance from 2021 to 2024. In contrast,
335 annual estimates of energetic condition were more constant in the non-collapsing northern portion of the
336 population, and mean energetic condition never fell below 80 mg fatty acid/g WWT during the study
337 period (Fig. 3).

338

339 *Interactive effects of population density and temperature.*

340 The Bering Sea-wide model showed clear support for interactive effects of population density and
341 temperature that differed between the collapsing and non-collapsing portions of the population (density x
342 temperature x region interaction estimate = 1.44, 95% CI = [0.60, 2.29]). Specifically, we found strong
343 support for a negative interaction between temperature and population density on energetic condition in
344 the collapsing portion of the population. Plots of posterior density effects for the collapsing region at four
345 representative temperatures (0°, 1°, 2°, and 3°C) showed negative effects of snow crab density at warmer
346 temperatures (1°C-3°C) and a neutral effect of snow crab density at 0°C (Fig. 4a). In contrast, we did not
347 find support for an interactive effect of temperature and population density on energetic condition in the
348 non-collapsing portion of the population. Instead, posterior density effects at all four temperature levels
349 for the non-collapsing region could not be distinguished from a zero-slope line, and energetic condition

350 remained stable at high densities and high temperatures (Fig. 4b). We also observed a seasonal increase in
351 energetic condition from mid-June to early August (Fig. S1a), and found no evidence for a crab size effect
352 (i.e., the effect could not be distinguished from a zero-slope line; Fig. S1b). The Bering Sea-wide model
353 for energetic condition across collapsing and non-collapsing portions of the snow crab population
354 returned a Bayesian $R^2 = 0.17$. This relatively low proportion of variance explained is likely due to the
355 inclusion of northern Bering Sea data that showed weak responses to model covariates, whereas a reduced
356 version of the model fit only to eastern Bering Sea samples explained roughly a quarter of variance
357 (Bayesian $R^2 = 0.24$).

358

359 *Performance of a rapid condition metric*

360 We found that the proposed rapid metric was a good predictor of energetic condition, supported
361 by a strong positive relationship between hepatopancreas percent dry weight and total fatty acid
362 concentration (mg/g DWT) across the four years of data (Fig. 5). Percent dry weight of the
363 hepatopancreas explained 64% of the variation in hepatopancreas total fatty acids. The strength of this
364 relationship was consistent among sampling years and regions, indicating strong predictive ability of
365 hepatopancreas percent dry weight as an indicator of energetic reserves in juvenile snow crab.

366 DISCUSSION

367 Population collapses are often associated with low rates of recovery (Hutchings and Reynolds
368 2004), highlighting the need for improved understanding of factors associated with persistent population
369 decline and recovery potential. Here, we used a direct measure of energetic condition in juvenile snow
370 crab to demonstrate empirical linkages between energetic reserves and collapse and population recovery
371 trajectories. Synchronous declines in energetic condition and abundance in the collapsing portion of the
372 Bering Sea snow crab population point to energetic limitations during a marine heatwave as a proximate
373 mechanism for increased mortality and population collapse. While our study adds to the growing
374 evidence linking poor energetic condition to marine population collapses (e.g. Dutil and Lambert 2000;

375 Sherwood et al. 2007; Barbeaux et al. 2020), our results provide novel insights into collapse risk and
376 vulnerability to warming. We demonstrate that the non-collapsing, northern portion of the snow crab
377 population maintained relatively stable energetic condition associated with a reduced magnitude of
378 warming during the 2018-2019 marine heatwave relative to the eastern Bering Sea. We also show that
379 energetic condition rebounded rapidly in the eastern Bering Sea portion of the population following the
380 collapse and marine heatwave. This finding, coinciding with strong recruitment and increasing population
381 abundance from 2021 to 2024 in the eastern Bering Sea (Fig. 1a), demonstrates support for initial
382 population recovery post-collapse. Likewise,

383 suggests that the snow crab collapse may be reversible when the ecosystem returns to pre-
384 heatwave conditions. While initial recovery appears to be relatively rapid compared to collapses in other
385 species (Hutchings 2000; Neubauer et al. 2013), our results emphasize that successful recruitment to the
386 fishable portion of the snow crab population is critically dependent on conditions that promote increased
387 energetic condition and survival of juveniles. Our study is the first to provide critical perspectives on
388 region-specific energetic outcomes through the inclusion of the non-collapsing portion of the snow crab
389 population, and our results highlight how this comparative approach can improve our understanding of
390 collapse and recovery dynamics.

391 We attributed declines in energetic condition in the collapsing portion of the population to a
392 strong negative interaction between elevated bottom temperatures and high population density, and we
393 found that temperature mediates the direction and magnitude of density-dependent effects on energetic
394 condition. The ecological interaction detected in our study underscores the energetic consequences
395 associated with the combination of high snow crab density and bottom temperatures $\geq 1^{\circ}\text{C}$. We also show
396 that cold-water habitat ($\leq 0^{\circ}\text{C}$) in the eastern Bering Sea is critical for sustaining high snow crab densities
397 consistent with rebuilding and population recovery. This result is supported by the understanding that
398 snow crab are highly stenothermic and critically reliant on cold temperatures (Dionne et al. 2003).
399 However, our results highlight that an additive interpretation of temperature and density effects on snow

400 crab is inappropriate, as the strength of density-dependent processes was highly influenced by bottom
401 temperature and the effect may, instead, be synergistic. While high population density and unusually
402 warm bottom temperatures have previously been linked to the eastern Bering Sea snow crab collapse
403 (Szuwalski et al. 2023), our approach revealed that energetic responses to density and temperature effects
404 differed regionally between collapsing and non-collapsing portions of the snow crab population. We
405 found no support for interactive effects on energetic condition in the non-collapsing portion of the
406 population to the north, where our results suggest that juvenile snow crab are able to maintain energetic
407 reserves across the full range of temperatures and population densities observed in the northern Bering
408 Sea during our study period. Strong benthic-pelagic coupling and carbon flux to the benthos have
409 historically supported high macrofaunal biomass in the northern Bering Sea (Grebmeier et al. 1988),
410 suggesting that ample benthic prey resources may buffer juvenile snow crab from potential declines in
411 energetic condition despite increased metabolic demand at higher temperatures. Conversely, high
412 population densities and extreme temperatures in the collapsing portion of the population may require
413 snow crab to utilize energetic reserves to offset density-dependent reductions in prey availability and
414 thermally-driven increases in metabolic rates. However, we caution that our conclusion supporting
415 interactive density and temperature effects is based on a limited set of observations in our study period. In
416 particular, energetic responses have not yet been observed under a combination of high temperatures and
417 low densities in the collapsing portion of the population.

418 Past studies have defined snow crab thermal habitat preferences in the Bering Sea using
419 presence/absence or abundance data derived from fishery-independent surveys (Murphy 2020; Fedewa et
420 al. 2020), although these approaches lack causal mechanisms. We improve on this limitation by utilizing
421 energetic condition as a proximate mechanism for survival to demonstrate that temperatures $\leq 0^{\circ}\text{C}$ are
422 more meaningful in defining optimal thermal habitat for high-density juvenile snow crab nurseries than
423 previously-defined 2-3 $^{\circ}\text{C}$ Bering Sea thresholds (Litzow and Mueter 2008; Murphy 2020). Similarly, the
424 cold intermediate layer (CIL) in Atlantic Canada, defined as waters below 0 $^{\circ}\text{C}$, is closely associated with

425 snow crab spatial distributions and habitat (Dionne et al. 2003), lending support to our findings. However,
426 this 0°C temperature optimum appears to be biologically meaningful to the collapsing portion of the snow
427 crab population only, and we found evidence for a larger realized thermal niche in the non-collapsing
428 portion of the population. While laboratory studies indicate that thermal tolerances were likely not
429 exceeded during the 2018-2019 marine heatwave (Foyle 1989), laboratory conditions often poorly predict
430 realized thermal niches. Our study, instead, highlights the importance of conspecific density, availability
431 of bottom waters $\leq 0^{\circ}\text{C}$, and energetic status when defining thermal preferences for Bering Sea snow
432 crab.

433 Despite the strengths of our approach, a direct mechanism for regionally-varying thermal
434 responses observed in this study remains unclear. Declines in eastern Bering Sea snow crab abundance
435 during the marine heatwave were driven by a broader ecosystem transition from Arctic to boreal
436 conditions, and an index of this ecosystem reorganization outperformed bottom temperatures alone as a
437 predictor of declining snow crab abundance (Litzow et al. 2024). This result, combined with illustrated
438 linkages between snow crab productivity and both sea ice extent and large-scale climate indices
439 (Szuwalski et al. 2020; Mullowney et al. 2023), suggest that invoking temperature as a mechanistic driver
440 for shifts in energetic condition likely oversimplifies complex ecosystem responses linked to spring sea
441 ice dynamics and food availability to the benthos (Copeman et al. 2025). Given that the northern Bering
442 Sea has not yet reached environmental extremes evidenced in the eastern Bering Sea in recent decades
443 (Stabeno and Bell 2019; Overland et al. 2024) and spring sea ice covered the majority of snow crab
444 habitat in the northern Bering Sea during the marine heatwave (Fig. 1b), we propose that the presence of
445 spring sea ice may mediate the negative consequences of elevated temperatures and high population
446 density that impacted the collapsing portion of the population to the south. This idea is further supported
447 by findings that minimum sea ice extent thresholds drive shifts in the northern Bering Sea zooplankton
448 community (Kimmel et al. 2023) and the prevalence of open-water spring phytoplankton blooms (Nielsen
449 et al. 2024), which collectively influence the availability of basal resources to the benthos. Taken

450 together, these results emphasize that continued warming and loss of sea ice in the northern Bering Sea
451 may reveal temperature thresholds and critical tipping points in the non-collapsing portion of the
452 population as this system continues to encounter conditions that are outside the envelope of historic
453 observations.

454 Rapid warming in the Bering Sea poses a pressing challenge to fisheries management, and
455 decision makers are increasingly reliant on real-time indicators of ecosystem and population conditions to
456 capture shifts in stock productivity (Caddy 2004). Here, we present a rapid indirect measure of energetic
457 condition (i.e., percent dry weight of the hepatopancreas) that effectively tracks bottom-up effects on
458 snow crab productivity, and accurately predicts direct biochemical energetic condition measurements that
459 are highly sensitive to environmental change in the Bering Sea. Our results also highlight the utility of a
460 rapid energetic condition metric that effectively replaces time-intensive and cost-prohibitive biochemical
461 analyses that can delay the uptake of energetics data. While percent dry weight of the hepatopancreas has
462 previously been utilized to estimate energetic condition in laboratory-reared snow crab (Hardy et al. 2000;
463 Godbout et al. 2002), we are unaware of any efforts to date that have employed this metric annually to
464 provide a rapid health assessment for monitoring snow crab populations. Co-varying energetic condition
465 and population abundance trajectories in this study suggest that our validated rapid energetic condition
466 metric can provide inference about likely population trends, thus providing strong support for operational
467 use in fisheries management. The recent development and integration of stock-specific Ecosystem and
468 Socioeconomic Profiles (Shotwell et al. 2023) and risk tables (Dorn and Zador 2020) into the North
469 Pacific Fishery Management Council decision-making process provides a mechanism for direct
470 integration of our rapid condition metric into Bering Sea crab management decisions, and supports
471 approaches to ecosystem-based fisheries management (Kruse et al. 2025).

472 Our work highlights the importance of continued field collections and energetic-based monitoring
473 to facilitate a more robust exploration of mechanistic relationships between energetics, sea ice dynamics,
474 and population outcomes, which are critical to developing skillful forecasts of collapse potential and

475 climate change impacts. While we consider our energetics dataset to be highly effective in tracking
476 population trajectories in Bering Sea snow crab, our results are inherently limited in scope due to our
477 short observation period (five years). Our models explained a fairly low amount of variation in energetic
478 condition estimates, suggesting that future efforts should focus on elucidating direct drivers of energetic
479 condition such as prey quantity and quality. Furthermore, while there is strong evidence that depleted
480 hepatopancreas lipid stores are indicative of starvation-induced mortality in snow crab (Hardy et al.
481 2000), groundtruthoring our field-collected measures of energetic condition with demographic outcomes in
482 laboratory experiments is a necessary next step to determine critical energetic thresholds and
483 physiological tipping points for survival (Lambert and Dutil 1997; Dutil and Lambert 2000). Such
484 applications would facilitate the development of operational, condition-corrected natural mortality rates
485 for direct incorporation into stock assessments (Casini et al. 2016; Regular et al. 2022; Björnsson et al.
486 2022), or provide a mechanistic basis for time-varying natural mortality estimates (Szuwalski 2022).
487 Despite these limitations, our findings highlight important advances in the understanding of collapse and
488 recovery dynamics, and we anticipate that our empirical approach and development of a rapid energetic
489 condition metric will improve the ability to detect impending population collapses.

490

491 **Acknowledgements:** We would like to thank Michelle Stowell, Samantha Mundorff, Michele Ottmar,
492 Emily Vernon, and Joletta Silva for assistance with sample processing and laboratory analyses. We thank
493 scientists and crew on the FV Alaska Knight, FV Vesteraalen and FV Northwest Explorer for assistance
494 with at-sea sample collection on the eastern and northern Bering Sea bottom trawl surveys. Comments
495 provided by L. Zacher, C. Szuwalski, M. Olmos, A. Favreau and three anonymous reviewers helped
496 improve this manuscript. The findings and conclusions in this paper are those of the authors and do not
497 necessarily represent the views of the National Marine Fisheries Service, NOAA. Reference to trade
498 names does not imply endorsement from the National Marine Fisheries Service, NOAA.

499

500
501 **Competing Interests Statement:** The authors declare there are no competing interests.
502
503 **Author Contribution Statement:** **EJF:** Conceptualization, Funding acquisition, Investigation,
504 Visualization, Methodology, Formal analysis, Writing - original draft, Writing - review & editing, **LAC:**
505 Conceptualization, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing -
506 review & editing, **MAL:** Methodology, Formal analysis, Writing - original draft, Writing - review &
507 editing
508
509 **Funding Statement:** This research was supported through the North Pacific Research Board,
510 www.nprb.org; NPRB Core Project Number 1911.
511
512 **Data Availability Statement:** Raw data, metadata and R code for reproducing all analyses are publicly
513 available on Zenodo (DOI: 10.5281/zenodo.17246422).
514
515
516
517
518
519
520
521

522 **References**

523 Barbeaux, S.J., Holsman, K., and Zador, S. 2020. Marine heatwave stress test of ecosystem-based
524 fisheries management in the Gulf of Alaska Pacific cod fishery. *Front. Mar. Sci.* 7: 703.
525 doi:10.3389/fmars.2020.00703.

526 Björnsson, B., Sólmundsson, J., and Woods, P.J. 2022. Natural mortality in exploited fish stocks: annual
527 variation estimated with data from trawl surveys. *ICES J. Mar. Sci.* 79(5): 1569-1582.
528 doi:10.1093/icesjms/fsac063.

529 Bürkner, P-C. 2017. brms: An R package for Bayesian Multilevel Models using Stan. *J. Stat. Software*
530 80(1): 1 - 28. doi:10.18637/jss.v080.i01.

531 Caddy, J.F. 2004. Current usage of fisheries indicators and reference points, and their potential
532 application to management of fisheries for marine invertebrates. *Can. J. Fish. Aquat. Sci.* 61(8):
533 1307-1324. doi:10.1139/f04-132.

534 Carvalho, K.S., Smith, T.E., and Wang, S. 2021. Bering Sea marine heatwaves: Patterns, trends and
535 connections with the Arctic. *Journal of Hydrology* 600: 126462.
536 doi:<https://doi.org/10.1016/j.jhydrol.2021.126462>.

537 Casini, M., Eero, M., Carlshamre, S., and Lövgren, J. 2016. Using alternative biological information in stock assessment: condition-corrected
538 natural mortality of Eastern Baltic cod. *ICES Journal of Marine Science* 73(10): 2625-2631.
539 doi:10.1093/icesjms/fsw117.

540 Copeman, L.A., Stoner, A.W., Ottmar, M.L., Daly, B., Parrish, C.C., and Eckert, G.L. 2012. Total lipids,
541 lipid classes, and fatty acids of newly settled red king crab (*Paralithodes camtschaticus*):
542 comparison of hatchery-cultured and wild crabs. *J. Shellfish Res.* 31(1): 153-165.
543 doi:10.2983/035.031.0119.

544 Copeman, L., Ryer, C., Spencer, M., Ottmar, M., Iseri, P., Sremba, A., Wells, J., and Parrish, C. 2018.
545 Benthic enrichment by diatom-sourced lipid promotes growth and condition in juvenile Tanner
546 crabs around Kodiak Island, Alaska. *Mar. Ecol. Progr. Ser.* 597: 161-178.

547 Copeman, L.A., Ryer, C.H., Eisner, L.B., Nielsen, J.M., Spencer, M.L., Iseri, P.J., and Ottmar, M.L.
548 2021. Decreased lipid storage in juvenile Bering Sea crabs (*Chionoecetes* spp.) in a warm (2014)
549 compared to a cold (2012) year on the southeastern Bering Sea. *Polar Biol.* 44(9): 1883-1901.
550 doi:10.1007/s00300-021-02926-0.

551 Copeman, L.A., Mundorff, S.M., Ottmar, M.L., Stowell, M.A., and Spencer, M.L. 2025. Temperature
552 affects growth rates while dietary lipid influences condition metrics in juvenile Tanner crab
553 (*Chionoecetes bairdi*). *J Exp Mar Biol Ecol* 588: 152105.
554 doi:<https://doi.org/10.1016/j.jembe.2025.152105>.

555 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
556 M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J.,
557 Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B.,
558 Hersbach, H., Hölm, E.V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally, A.P.,
559 Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
560 Thépaut, J.-N., and Vitart, F. 2011. The ERA-Interim reanalysis: configuration and performance
561 of the data assimilation system. *Q. J. Royal Meteorol. Soc.* 137(656): 553-597.
562 doi:10.1002/qj.828.

563 Dionne, M., Sainte-Marie, B., Bourget, E., and Gilbert, D. 2003. Distribution and habitat selection of
564 early benthic stages of snow crab *Chionoecetes opilio*. *Mar. Ecol. Progr. Ser.* 259: 117-128.

565 Divine, L.M., Mueter, F.J., Kruse, G.H., Bluhm, B.A., Jewett, S.C., and Iken, K. 2019. New estimates of
566 weight-at-size, maturity-at-size, fecundity, and biomass of snow crab, *Chionoecetes opilio*, in the
567 Arctic Ocean off Alaska. *Fisheries Research* 218: 246-258.
568 doi:<https://doi.org/10.1016/j.fishres.2019.05.002>.

569 Dorn, M.W., and Zador, S.G. 2020. A risk table to address concerns external to stock assessments when
570 developing fisheries harvest recommendations. *Ecosyst. Health Sustain.* 6(1): 1813634.
571 doi:10.1080/20964129.2020.1813634.

572 Durant, J.M., Holt, R.E., and Langangen, Ø. 2024. Large biomass reduction effect on the relative role of
573 climate, fishing, and recruitment on fish population dynamics. *Sci. Rep.* 14(1): 8995.
574 doi:10.1038/s41598-024-59569-4.

575 Dutil, J.D., and Lambert, Y. 2000. Natural mortality from poor condition in Atlantic cod (*Gadus morhua*).
576 *Can. J. Fish. Aquat. Sci.* 57(4): 826-836. doi: 10.1139/cjfas-57-4-826.

577 Ernst, B., Orensanz, J., and Armstrong, D. 2005. Spatial dynamics of female snow crab (*Chionoecetes*
578 *opilio*) in the eastern Bering Sea. *Canadian Journal of Fisheries and Aquatic Sciences* 62(2): 250-
579 268.

580 Fedewa, E.J., Jackson, T.M., Richar, J.I., Gardner, J.L., and Litzow, M.A. 2020. Recent shifts in northern
581 Bering Sea snow crab (*Chionoecetes opilio*) size structure and the potential role of climate-
582 mediated range contraction. *Deep-Sea Res. Pt. II Top. Stud. Oceanogr.* 181: 11.
583 doi:10.1016/j.dsr2.2020.104878.

584 Fey, S.B., Siepielski, A.M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J.L., Huber, E.R., Fey, M.J.,
585 Catenazzi, A., and Carlson, S.M. 2015. Recent shifts in the occurrence, cause, and magnitude of
586 animal mass mortality events. *Proc. Nat. Acad. Sci.* 112(4): 1083-1088.
587 doi:10.1073/pnas.1414894112.

588 Foyle, T.P., Odor, R.K., and Elner, R.W. 1989. Energetically defining the thermal limits of the snow crab.
589 *J. Exp. Biol.* 145: 371-393.

590 Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. 2019. Visualization in Bayesian
591 workflow. *J. Royal Stat. Soc. Ser. A: Stat. Soc.* 182(2): 389-402. doi:10.1111/rssa.12378.

592 Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A. 2019. R-squared for Bayesian regression models.
593 *Am. Stat.* 73(3): 307-309.

594 Gelman, A., Vehtari, A., Simpson, D., Margossian, C.C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J.,
595 Bürkner, P.-C., and Modrák, M. 2020. Bayesian Workflow. *arXiv:2011.01808*.

596 Godbout, G., Dutil, J.-D., Hardy, D., and Munro, J. 2002. Growth and condition of post-moult male snow
597 crab (*Chionoecetes opilio*) in the laboratory. *Aquaculture* 206(3): 323-340

598 Grebmeier, J.M., McRoy, C.P., and Feder, H.M. 1988. Pelagic-benthic coupling on the shelf of the
599 northern Bering and Chukchi seas. 1. Food-supply source and benthic biomass. *Mar. Ecol. Progr. Ser.* 48(1): 57-67. doi:10.3354/meps048057.

600 Grebmeier, J.M., Overland, J.E., Moore, S.E., Farley, E.V., Carmack, E.C., Cooper, L.W., Frey, K.E.,
601 Helle, J.H., McLaughlin, F.A., and McNutt, S.L. 2006. A major ecosystem shift in the northern
602 Bering Sea. *Science* 311(5766): 1461-1464. doi:10.1126/science.1121365.

603 Hardy, D., Dutil, J.-D., Godbout, G., and Munro, J. 2000. Survival and condition of hard shell male adult
604 snow crabs (*Chionoecetes opilio*) during fasting at different temperatures. *Aquaculture* 189(3-4):
605 259-275.

606 Hartig, F., and Hartig, M.F. 2017. Package ‘dharma’. R package 531: 532.

607 Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C.J., Benthuysen, J.A.,
608 Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Sen Gupta,
609 A., and Wernberg, T. 2016. A hierarchical approach to defining marine heatwaves. *Prog
610 Oceanogr* 141: 227-238. doi:<https://doi.org/10.1016/j.pocean.2015.12.014>.

611 Hutchings, J. 2000. Collapse and recovery of marine fishes. *Nature* 406: 882-885.
612 doi:10.1038/35022565.

613 Hutchings, J.A., and Reynolds, J.D. 2004. Marine fish population collapses: consequences for recovery
614 and extinction risk. *BioScience* 54(4): 297-309.
615 doi:10.1641/0006568(2004)054[0297:Mfpccf]2.0.Co;2.

617 Jadamec, L., Donaldson, W., and Cullenberg, P. 1999. Biological field techniques for *Chionoecetes* crabs.
618 University of Alaska Sea Grant AK-SG-99-02, Fairbanks, AK.

619 Kallioinen, N., Paananen, T., Bürkner, P-C., and Vehtari, A. 2023. Detecting and diagnosing prior and
620 likelihood sensitivity with power-scaling. *Stat. Comput.* 34(1): 57. doi:10.1007/s11222-023-
621 10366-5.

622 Kimmel, D.G., Eisner, L.B., and Pinchuk, A.I. 2023. The northern Bering Sea zooplankton community
623 response to variability in sea ice: evidence from a series of warm and cold periods. *Mar Ecol
624 Prog Ser* 705: 21-42. doi:10.3354/meps14237.

625 Kotwicki, S., and Lauth, R.R. 2013. Detecting temporal trends and environmentally-driven changes in the
626 spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. *Deep-Sea Res. Pt.
627 II* 94: 231-243. doi:10.1016/j.dsr2.2013.03.017.

628 Kruse, G.H. 2023. Are crabs in hot water? *Science* 382(6668): 260-261. doi:10.1126/science.adk7565.

629 Kruse, G.H., Daly, B.J., Fedewa, E.J., Stram, D.L., and Szuwalski, C.S. 2025. Ecosystem-based fisheries
630 management of crab fisheries in the Bering Sea and Aleutian Islands. *Fish. Res.* 281: 107236.
631 doi:10.1016/j.fishres.2024.107236.

632 Lambert, Y., and Dutil, J-D. 1997. Condition and energy reserves of Atlantic cod (*Gadus morhua*) during
633 the collapse of the northern Gulf of St. Lawrence stock. *Can. J. Fish. Aquat. Sci.* 54(10): 2388-
634 2400. doi:10.1139/f97-145.

635 Laufkötter, C., Zscheischler, J., and Frölicher, T.L. 2020. High-impact marine heatwaves attributable to
636 human-induced global warming. *Science* 369(6511): 1621-1625.
637 doi: .

638 Litzow, M.A., Fedewa, E.J., Malick, M.J., Connors, B.M., Eisner, L., Kimmel, D.G., Kristiansen, T.,
639 Nielsen, J.M., and Ryznar, E.R. 2024. Human-induced borealization leads to the collapse of
640 Bering Sea snow crab. *Nat. Clim. Change.* doi:10.1038/s41558-024-02093-0.

641 Lorentzen, G., Lian, F., and Siikavuopio, S.I. 2020. Live holding of snow crab (*Chionoecetes opilio*) at 1
642 and 5 degrees C without feeding - Quality of processed clusters. *Food Control* 114: 9.
643 doi:10.1016/j.foodcont.2020.107221.

644 Lovvorn, J.R., North, C.A., Kolts, J.M., Grebmeier, J.M., Cooper, L.W., and Cui, X.H. 2016. Projecting
645 the effects of climate-driven changes in organic matter supply on benthic food webs in the
646 northern Bering Sea. *Mar Ecol Prog Ser* 548: 11-30. doi:10.3354/meps11651.

647 Meier, S., Mjøs, S.A., Joensen, H., and Grahl-Nielsen, O. 2006. Validation of a one-step
648 extraction/methylation method for determination of fatty acids and cholesterol in marine tissues.
649 *J. Chromatogr. A* 1104(1-2): 291-298. doi:10.1016/j.chroma.2005.11.045

650 Mueter, F.J., and Litzow, M.A. 2008. Sea ice retreat alters the biogeography of the Bering Sea continental
651 shelf. *Ecol. Appl.* 18(2): 309-320.

652 Mullowney, D., Baker, K., Szuwalski, C., Boudreaud, S., Cyrid, F., and Kaiserid, B. 2023. Sub-Arctic no
653 more: Short-and long-term global-scale prospects for snow crab (*Chionoecetes opilio*) under
654 global warming. *PLOS Clim.* 2(10): e0000294. doi:10.1371/journal.pclm.0000294.

655 Mullowney, D.R.J., and Rose, G.A. 2014. Is recovery of northern cod limited by poor feeding? The
656 capelin hypothesis revisited. *ICES J. Mar. Sci.* 71(4): 784-793. doi:10.1093/icesjms/fst188.

657 Murphy, J.T., Hallowed, A.B., and Anderson, J.J. Snow crab spatial distributions: Examination of
658 density-dependent and independent processes. In *Biology and Management of Exploited Crab
659 Populations under Climate Change*. Anchorage, AK 2010. Edited by G.H. Kruse and G.L. Eckert
660 and R.J. Foy and R.N. Lipcius and B. Sainte-Marie and D.L. Stram and D. Woodby. Alaska Sea
661 Grant College Program, University of Alaska Fairbanks. pp. 49-79.

662 Murphy, J.T. 2020. Climate change, interspecific competition, and poleward vs. depth distribution shifts:
663 Spatial analyses of the eastern Bering Sea snow and Tanner crab (*Chionoecetes opilio* and *C.
664 bairdi*). *Fish. Res.* 223: 105417. doi: 10.1016/j.fishres.2019.105417.

665 Neubauer, P., Jensen, O.P., Hutchings, J.A., and Baum, J.K. 2013. Resilience and recovery of
666 overexploited marine populations. *Science* 340(6130): 347-349. doi:10.1126/science.1230441.

667 Nielsen, J.M., Sigler, M.F., Eisner, L.B., Watson, J.T., Rogers, L.A., Bell, S.W., Pelland, N., Mordy,
668 C.W., Cheng, W., Kivva, K., Osborne, S., and Stabeno, P. 2024. Spring phytoplankton bloom
669 phenology during recent climate warming on the Bering Sea shelf. *Prog Oceanogr* 220: 103176.
670 doi:<https://doi.org/10.1016/j.pocean.2023.103176>.

671 Notz, D., and Stroeve, J. 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO₂
672 emission. *Science* 354(6313): 747-750. doi:10.1126/science.aag2345.

673 Ortiz, I., Wiese, F., Greig, A., 2013. Marine Regions Boundary Data for the Bering Sea Shelf and Slope,
674 Version 1.0. UCAR/NCAR - Earth Observing Laboratory. <http://dx.doi.org/10.5065/D6DF6P6C>

675 Overland, J.E., and Stabeno, P.J. 2004. Is the climate of the Bering Sea warming and affecting the
676 ecosystem? *EOS* 85(33): 309-316.

677 Overland, J.E., Siddon, E., Sheffield, G., Ballinger, T.J., and Szuwalski, C. 2024. Transformative
678 ecological and human impacts from diminished sea ice in the northern Bering Sea. *Weather*
679 *Clim. Soc.* 6(2): 303-313. doi:10.1175/WCAS-D-23-0029.1.

680 Overland, J.E., and Wang, M. 2025. Future climate change in the northern Bering Sea. *Int. J. Climatol.*
681 45(1): e8697. doi:10.1002/joc.8697.

682 Parada, C., Armstrong, D.A., Ernst, B., Hinckley, S., and Orensanz, J. 2010. Spatial dynamics of snow
683 crab (*Chionoecetes opilio*) in the eastern Bering Sea-putting together the pieces of the puzzle. *B*
684 *Mar Sci* 86(2): 413-437.

685 R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for
686 Statistical Computing, Vienna, Austria. <<https://www.R-project.org/>>

687 Receveur, A., Bleil, M., Funk, S., Stöter, S., Gräwe, U., Naumann, M., Dutheil, C., and Krumme, U.
688 2022. Western Baltic cod in distress: decline in energy reserves since 1977. *ICES J. Mar. Sci.*
689 79(4): 1187-1201. doi:10.1093/icesjms/fsac042.

690 Regular, P.M., Buren, A.D., Dwyer, K.S., Cadigan, N.G., Gregory, R.S., Koen-Alonso, M., Rideout,
691 R.M., Robertson, G.J., Robertson, M.D., Stenson, G.B., Wheeland, L.J., and Zhang, F. 2022.
692 Indexing starvation mortality to assess its role in the population regulation of Northern cod.
693 *Fisheries Research* 247: 106180. doi.org/10.1016/j.fishres.2021.106180.

694 Richar, J.I., and Foy, R.J. 2022. A novel morphometry-based method for assessing maturity in male
695 Tanner crab, *Chionoecetes bairdi*. *Facets* 7: 1598-1616. doi:10.1139/facets-2021-0061.

696 Rohan S. 2024. akgfmaps: Alaska Groundfish and Ecosystem Survey Area Mapping. Available
697 from <https://github.com/afsc-gap-products/akgfmaps> [accessed 29 January 2025].

698 Sherwood, G.D., Rideout, R.M., Fudge, S.B., and Rose, G.A. 2007. Influence of diet on growth,
699 condition and reproductive capacity in Newfoundland and Labrador cod (*Gadus morhua*):
700 Insights from stable carbon isotopes ($\delta^{13}\text{C}$). *Deep-Sea Res. Pt. II Top. Stud. Oceanogr.* 54(23):
701 2794-2809. doi:10.1016/j.dsr2.2007.08.007.

702 Shotwell, S.K., Blackhart, K., Cunningham, C., Fedewa, E., Hanselman, D., Aydin, K., Doyle, M., Fissel,
703 B., Lynch, P., Ormseth, O., Spencer, P., and Zador, S. 2023. Introducing the ecosystem and
704 socioeconomic profile, a proving ground for next generation stock assessments. *Coast.*
705 *Manage.* 51(5-6): 319-352. doi:10.1080/08920753.2023.2291858.

706 Somerton, D.A., Weinberg, K.L., and Goodman, S.E. 2013. Catchability of snow crab (*Chionoecetes*
707 *opilio*) by the eastern Bering Sea bottom trawl survey estimated using a catch comparison
708 experiment. *Canadian Journal of Fisheries and Aquatic Sciences* 70(12): 1699-1708.
709 doi:10.1139/cjfas-2013-0100.

710 Stabeno, P.J., and Bell, S.W. 2019. Extreme conditions in the Bering Sea (2017–2018): Record-breaking
711 low sea-ice extent. *Geophys. Res. Letters* 46(15): 8952-8959. doi:10.1029/2019GL083816.

712 Stabeno, P.J., Farley, E.V., Kachel, N.B., Moore, S., Mordy, C.W., Napp, J.M., Overland, J.E., Pinchuk,
713 A.I., and Sigler, M.F. 2012. A comparison of the physics of the northern and southern shelves of
714 the eastern Bering Sea and some implications for the ecosystem. *Deep-Sea Res. Pt. II Top. Stud.*
715 *Oceanogr.* 65-70: 14-30. doi:10.1016/j.dsr2.2012.02.019.

716 Stan Development Team. 2024. "RStan: the R interface to Stan." R package version 2.32.3, <https://mc-stan.org/>.

718 Stauffer, G. 2004. NOAA protocols for groundfish bottom trawl surveys of the Nation's fishery
719 resources. U.S. Department of Commerce, NOAA, Technical Memorandum NMFS-SPO-65.

720 Stevenson, R.D., and Woods, W.A., Jr. 2006. Condition indices for conservation: new uses for evolving
721 tools. *Integr. Comp. Biol.* 46(6): 1169-1190. doi:10.1093/icb/icl052.

722 Szwalski, C., Cheng, W., Foy, R., Hermann, A.J., Hollowed, A., Holsman, K., Lee, J., Stockhausen, W.,
723 and Zheng, J. 2020. Climate change and the future productivity and distribution of crab in the
724 Bering Sea. *ICES Journal of Marine Science*. doi:10.1093/icesjms/fsaa140.

725 Szwalski, C. 2022. Estimating time-variation in confounded processes in population dynamics
726 modeling: A case study for snow crab in the eastern Bering Sea. *Fish. Res.* 251: 11.
727 doi:10.1016/j.fishres.2022.106298.

728 Szwalski, C.S., Aydin, K., Fedewa, E.J., Garber-Yonts, B., and Litzow, M.A. 2023. The collapse of
729 eastern Bering Sea snow crab. *Science* 382(6668): 306-310. doi:10.1126/science.adf6035.

730 Wang, M., and Overland, J. 2012. A sea ice free summer Arctic within 30 years: An update from CMIP5
731 models. *Geophys. Res. Letters* 39: 18501. doi:10.1029/2012GL052868..

732

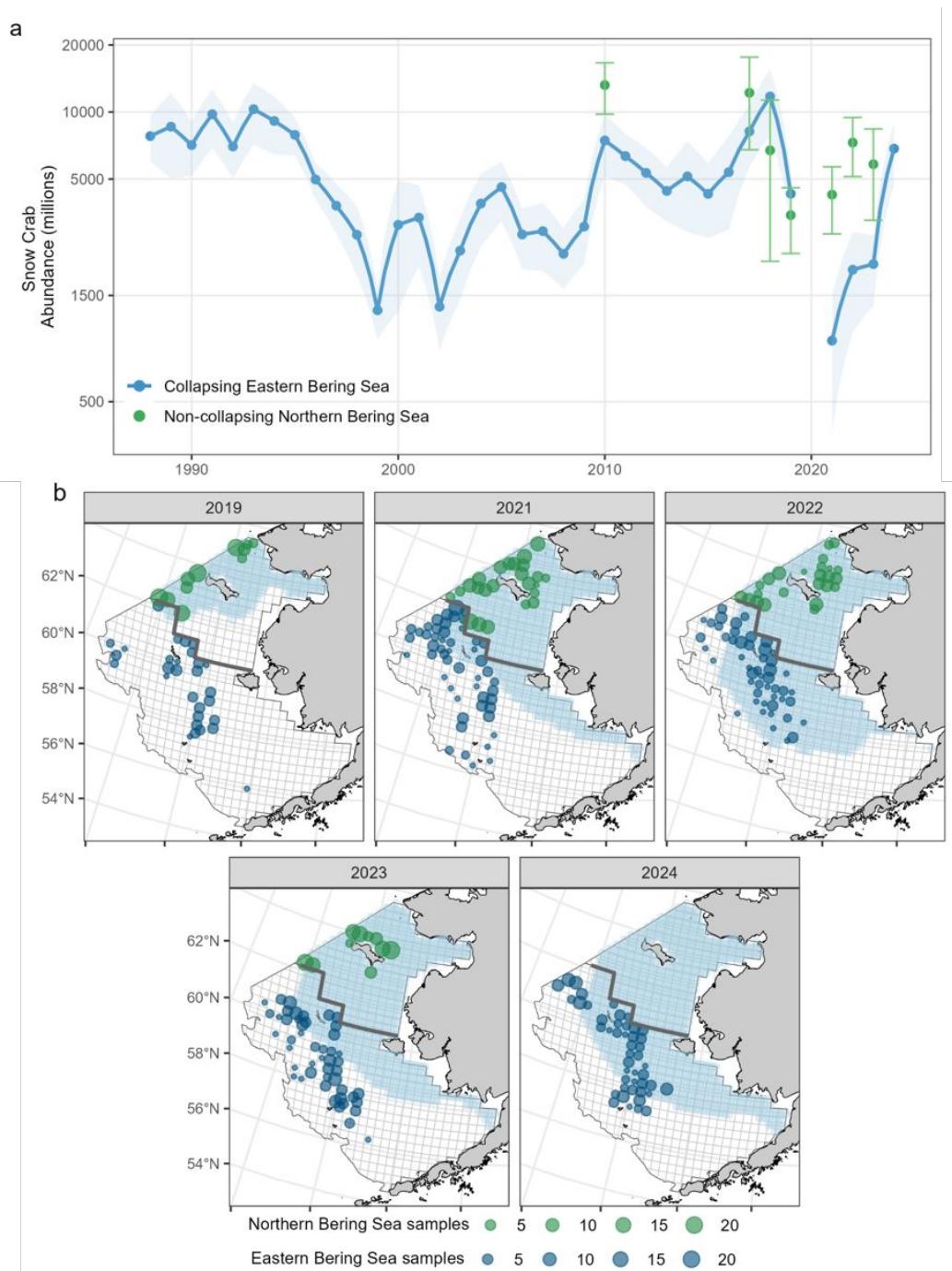
733

734

735

736

737


738

739

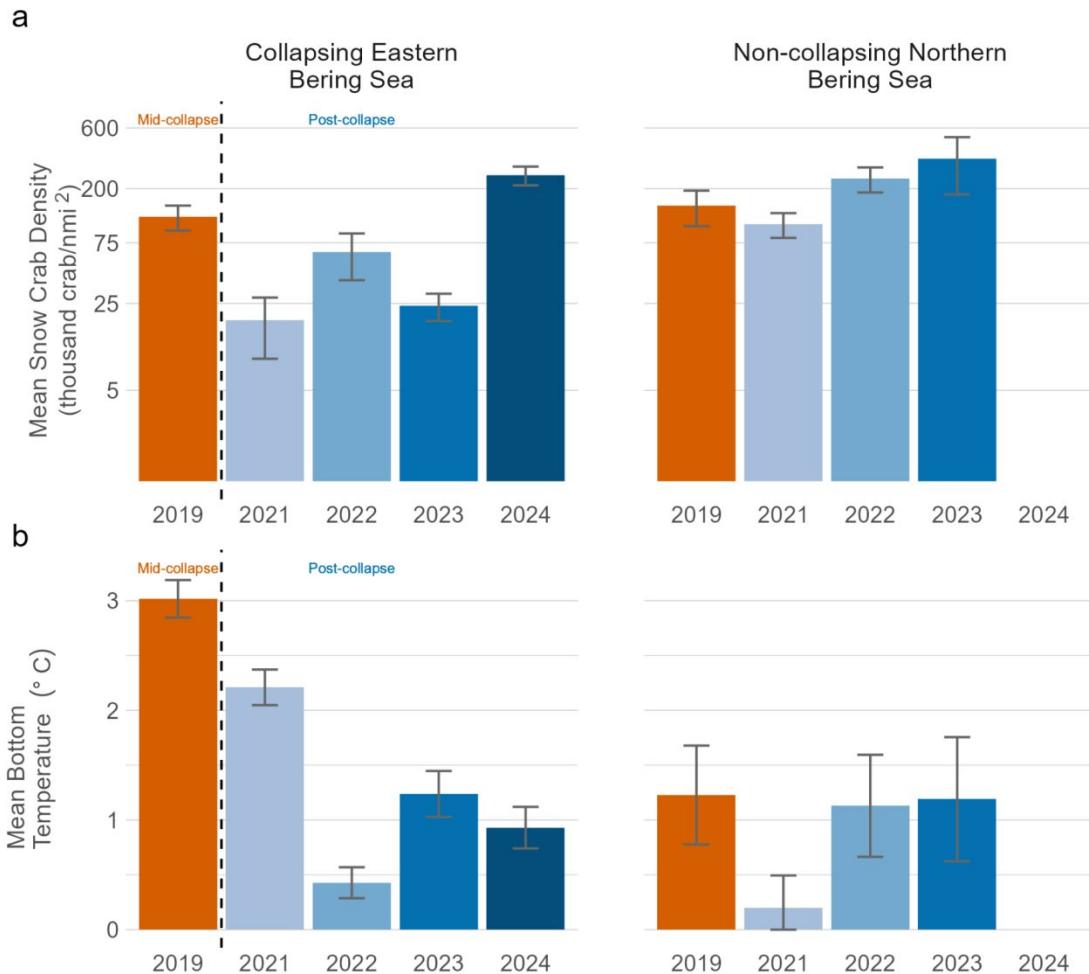
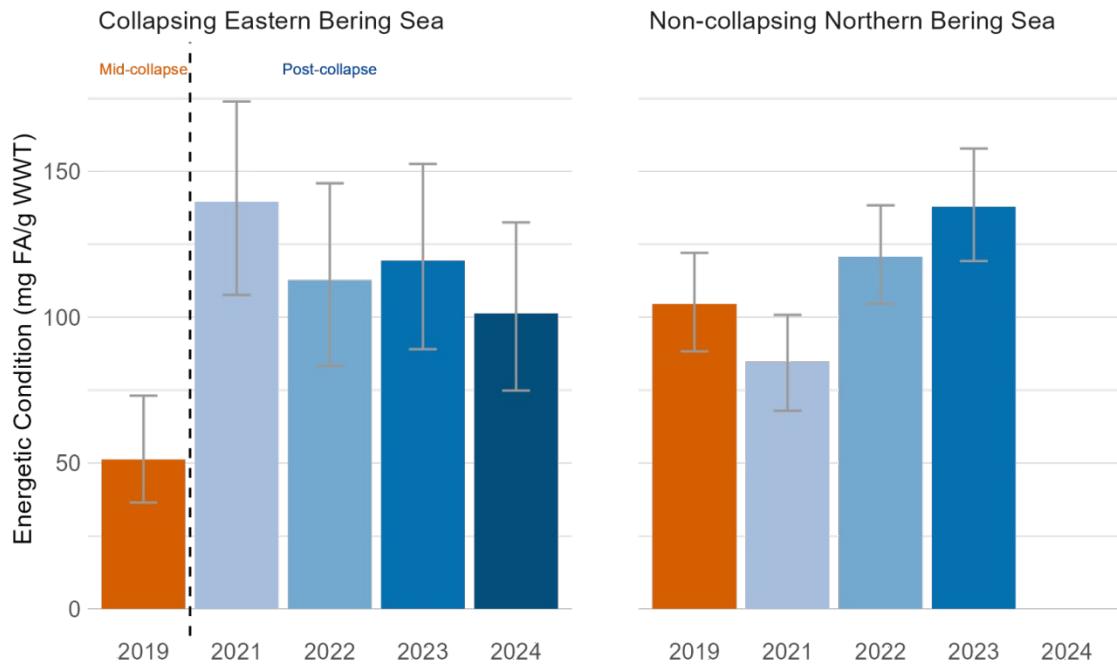
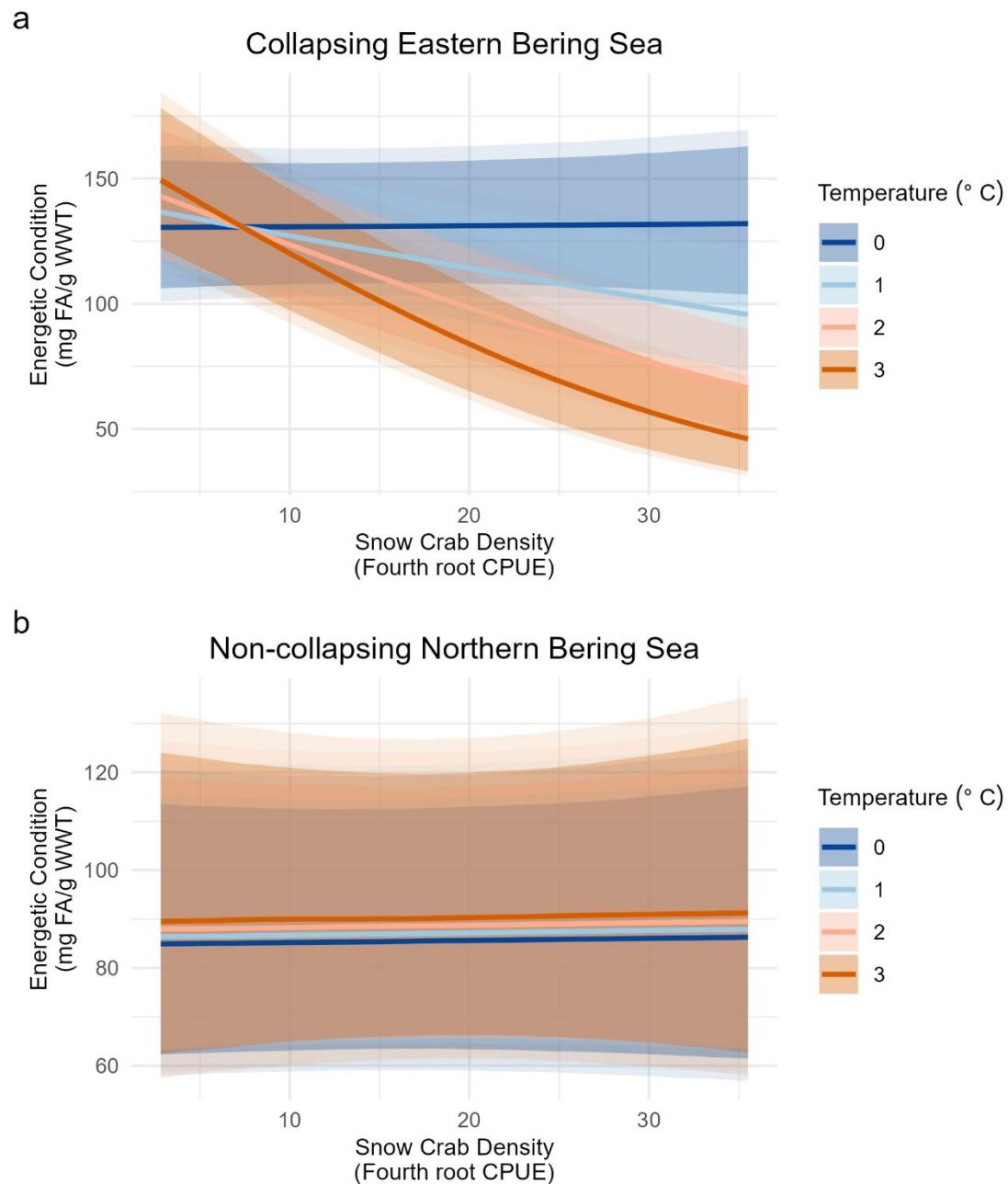

740

Table 1. Sample sizes for hepatopancreas collections from juvenile snow crab to estimate energetic condition in the collapsing eastern Bering Sea and non-collapsing northern Bering Sea portions of the snow crab population.


	2019	2021	2022	2023	2024	Total
Eastern Bering Sea	98	168	138	189	178	771
Northern Bering Sea	126	192	127	109		554
Total	224	360	265	298	178	1325


Figure 1. Study system. a) Abundance estimates for the collapsing eastern Bering Sea (blue line \pm 95% CI) and non-collapsing northern Bering Sea (green points \pm 95% CI) portions of the snow crab population. Note log scale on y-axis. b) Juvenile snow crab hepatopancreas sampling effort on eastern Bering Sea bottom trawl surveys (2019, 2021-2024) and northern Bering Sea bottom trawl surveys (2019, 2021-2023) relative to sea ice cover. Blue shaded areas indicate regions with mean March sea ice concentration $\geq 15\%$, grid cells indicate standard survey stations, heavy grey line indicates the boundary between the eastern and northern Bering Sea study regions, and green and blue bubbles indicate snow crab sample size by region. Note that the northern Bering Sea was not sampled in 2024. Maps use the Alaska Albers projection and NAD83 datum (Rohan 2024).

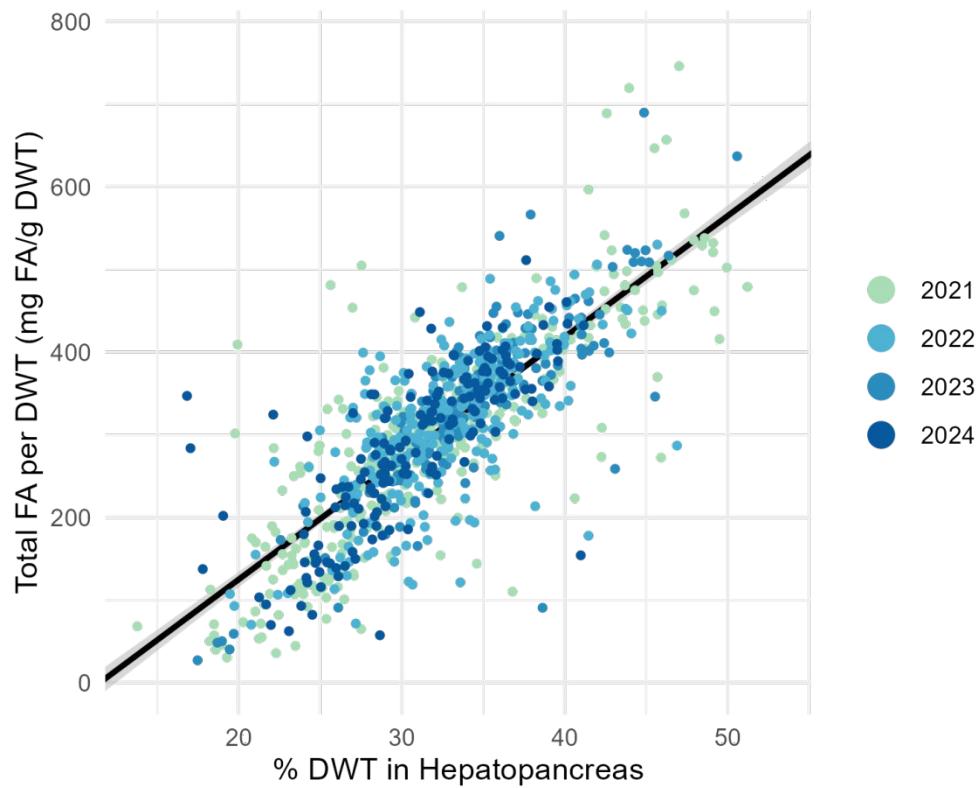

Figure 2. Observed snow crab densities and temperatures coinciding with the eastern Bering Sea population collapse and marine heatwave in 2019. a) Average snow crab population density (\pm SE) at sampled eastern and northern Bering Sea survey stations during (2019) and after (2021-2024) the eastern Bering Sea population collapse. Note log scale on y-axis. b) Average bottom temperature (\pm SE) at sampled eastern and northern Bering Sea survey stations. Note that the northern Bering Sea was not sampled in 2024.

Figure 3. Annual estimates of Bering Sea snow crab energetic condition. Colors designate sampling years during the eastern Bering Sea population collapse (2019) and following the population collapse (2021-2024). Plotted values are posterior means of energetic condition (total fatty acids per wet weight) with 95% credible intervals from a Bayesian regression model controlling for crab size and seasonality.

Figure 4. Population density and temperature effects on energetic condition of the collapsing eastern Bering Sea and non-collapsing northern Bering Sea portion of the snow crab population. (a) Predicted conditional effects (posterior means \pm 90/95% CIs) of the interaction between snow crab density and bottom temperature on eastern Bering Sea snow crab energetic condition (total fatty acids per wet weight) across all years sampled (2019, 2021-2024); (b) and (c) Predicted conditional effects (posterior means \pm 80/90/95% CIs) of the interaction between snow crab density and bottom temperature on northern Bering Sea snow crab energetic condition across all years sampled (2019, 2021-2023).

Figure 5. The linear relationship between the percentage dry weight and total fatty acids per dry weight of the hepatopancreas in juvenile snow crab. Plotted values are the predicted relationship and 95% credible intervals from a Bayesian regression model fit to observed data (2021-2024).