

A Gas Tension Device for the Mesopelagic Zone

Andrew Reed^{a,b,*}, Craig McNeil^{a,b}, Eric D'Asaro^{a,b}, Mark Altabet^c, Annie Bourbonnais^c, and Bruce Johnson^d

^aSchool of Oceanography, University of Washington, 1503 NE Boat Street, Box 357940, Seattle, WA 98195, USA

^bApplied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA

^cSchool for Marine Science and Technology, University of Massachusetts Dartmouth, 706 Rodney French Blvd, New Bedford, MA 02744, USA

^dDepartment of Oceanography, Dalhousie University Faculty of Science, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H 4R2

*Corresponding Author: Andrew Reed, AIRS, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA. Email: reedan@uw.edu

31 **Abstract**

32 Gas Tension Devices (GTDs) are used to acquire accurate and stable measurements of gas
33 tension, or total dissolved air pressure of the gases dissolved in water. GTDs operate by
34 measuring the barometric pressure of a small sample volume of air separated from the water by a
35 gas-permeable membrane resting on a rigid permeable support. Existing GTDs use a
36 compressible polydimethylsiloxane (PDMS) membrane which exhibit several undesirable
37 features: the membrane collapses with increasing hydrostatic pressure, which reduces the
38 permeability; a collapsed membrane increases the response; collapse and expansion generate
39 large transient signals [McNeil et al 2006a]. Also, reverse osmosis becomes a problem at depths
40 greater than approximately 330 m in seawater. We present a new GTD that solves the hydrostatic
41 pressure-generated transients and changing response times, and alleviates reverse-osmosis. These
42 improvements allow the new GTD to be used in the mesopelagic zone. The new GTD uses a
43 custom designed small diameter (4 cm) thin (130 μ m) incompressible composite Teflon-AF
44 2400 membrane. It can operate to a depth of at least 1000 m with a depth-independent response
45 time of approximately 35 minutes. We estimated the hydrostatic pressure dependence of Henry's
46 Law solubilities as we characterized the new Teflon-membrane GTD using data collected in the
47 laboratory. Field testing occurred on two APL/UW Gas-Profiling Floats deployed in the Eastern
48 Tropical North Pacific (ETNP) for 15 days during May 2014. The floats profiled between the
49 surface and 400 m depth, sampling gas tension within the Oxygen Deficient Zone. The gas
50 tension-profiles from the two GTDs were validated against gas tension derived from independent
51 $\text{N}_2:\text{Ar}$ and Ar concentrations measured by mass spectrometry, agreeing to within $\pm 0.6\%$ and
52 $\pm 0.4\%$.

53 **Keywords:** Gas Tension Device, Nitrogen, Dissolved Gas measurements

54 **1. Introduction**

55 Measurements of dissolved gases are widely used in oceanography, limnology, and
56 aquaculture, with dissolved O₂ being the third most frequently measured property of seawater
57 after temperature and salinity. Dissolved gas measurements have been used to study: ocean
58 carbon uptake and acidification [Takahashi et al. 1997]; bubble mediated air-sea gas exchange
59 [Emerson & Bushinsky 2016]; biological production and net community metabolism [McNeil et
60 al. 2006b]; water quality for juvenile hatchery fish downstream of dam spillways [Bragg &
61 Johnston 2016]; denitrification/anammox in anoxic natural and waste waters [Löffler et al.
62 2011]; and groundwater recharge and trapped gas phases [Manning et al. 2003]. The four major
63 atmospheric components, namely nitrogen (N₂), oxygen (O₂), argon (Ar), and carbon-dioxide
64 (CO₂), are most easily measured using conventional techniques thanks to their large dissolved
65 concentrations and partial pressures. Since they are important to numerous biological and
66 chemical processes, and noting the widespread use of these measurements, there is a continued
67 need to improve dissolved gas sensor measurement technology to overcome current limitations,
68 such as depth dependence, response time, calibration stability, interferences, cost, cross-
69 sensitivity, and power consumption, and improve basic performance characteristics, such as
70 accuracy and resolution.

71 Of these four gases, dissolved CO₂ and O₂ are the most chemically reactive. Dissolved
72 aqueous CO₂ is normally measured using a nondispersive infrared sensor (NDIR) [Hales et al.
73 2004]. Dissolved O₂ is measured most accurately using discrete water samples analyzed by the
74 Winkler titration method [Langdon 2010]. Several commercially-available in-situ sensors based
75 on polarographic or fluorescence quenching methods are also used for O₂. Less-reactive
76 dissolved N₂:Ar are measured by mass spectrometry (MS) or gas chromatography [Groffman et

77 al. 2006]. All techniques that require collection, storage, transport, and subsequently analysis of
78 discrete water samples are subject to numerous opportunities for contamination or alteration of
79 the water samples. An in-situ sampling method for measuring dissolved N₂ will help address
80 most of these issues.

81 A gas tension device (GTD) measures the gas tension which is subsequently used to
82 derive in-situ dissolved N₂ if dissolved O₂ is also measured [McNeil et al. 1995]. The first in-situ
83 dissolved gas measurements made using the tensiometer from D'Aoust et al. [1975] and the
84 Weiss saturometer, had accuracies of 3% [Fickeisen et al. 1975]. Gas tension is the total pressure
85 of dissolved gases in a parcel of water. In a GTD, a semipermeable membrane is used to
86 equilibrate a small volume of gas trapped behind the membrane with the gases dissolved in the
87 surrounding water. When the GTD's gas volume is equilibrated with the seawater sample, a
88 barometer in the GTD measures gas tension. Using concurrent measurements of gas tension,
89 dissolved O₂, temperature and salinity, and measured or assumed saturation levels for Ar and
90 pCO₂, dissolved N₂ can also be determined to a final accuracy of $\pm 0.7\%$ [McNeil et al. 1995;
91 McNeil et al. 2005].

92 A custom GTD was designed and used on profiling floats [McNeil et al. 2006a] to
93 measure the rapid changes in gas tension in the ocean mixed layer during the passage of a
94 hurricane [D'Asaro & McNeil 2007]. That GTD used a tubular polydimethylsiloxane (PDMS)
95 membrane with a large surface area and low-internal volume to achieve a response time of
96 minutes. The compressibility of PDMS resulted in two major complications with this GTD. First,
97 the membrane's permeability decreased with increased hydrostatic pressure which resulted in a
98 significantly slower response at increased depths and a hysteresis in the gas tension profiles.
99 Second, the release (uptake) of gases from the membrane during compression (decompression)

100 resulted in large transient positive (negative) pressure fluctuations in the raw GTD
101 measurements. Another more severe problem was sporadic clogging of the membrane, likely
102 caused by reverse osmosis of liquid water through the membrane into the barometer. These
103 limitations excluded GTD-equipped floats from deep (below 60 meters) or extended deployment
104 and increased measurement error.

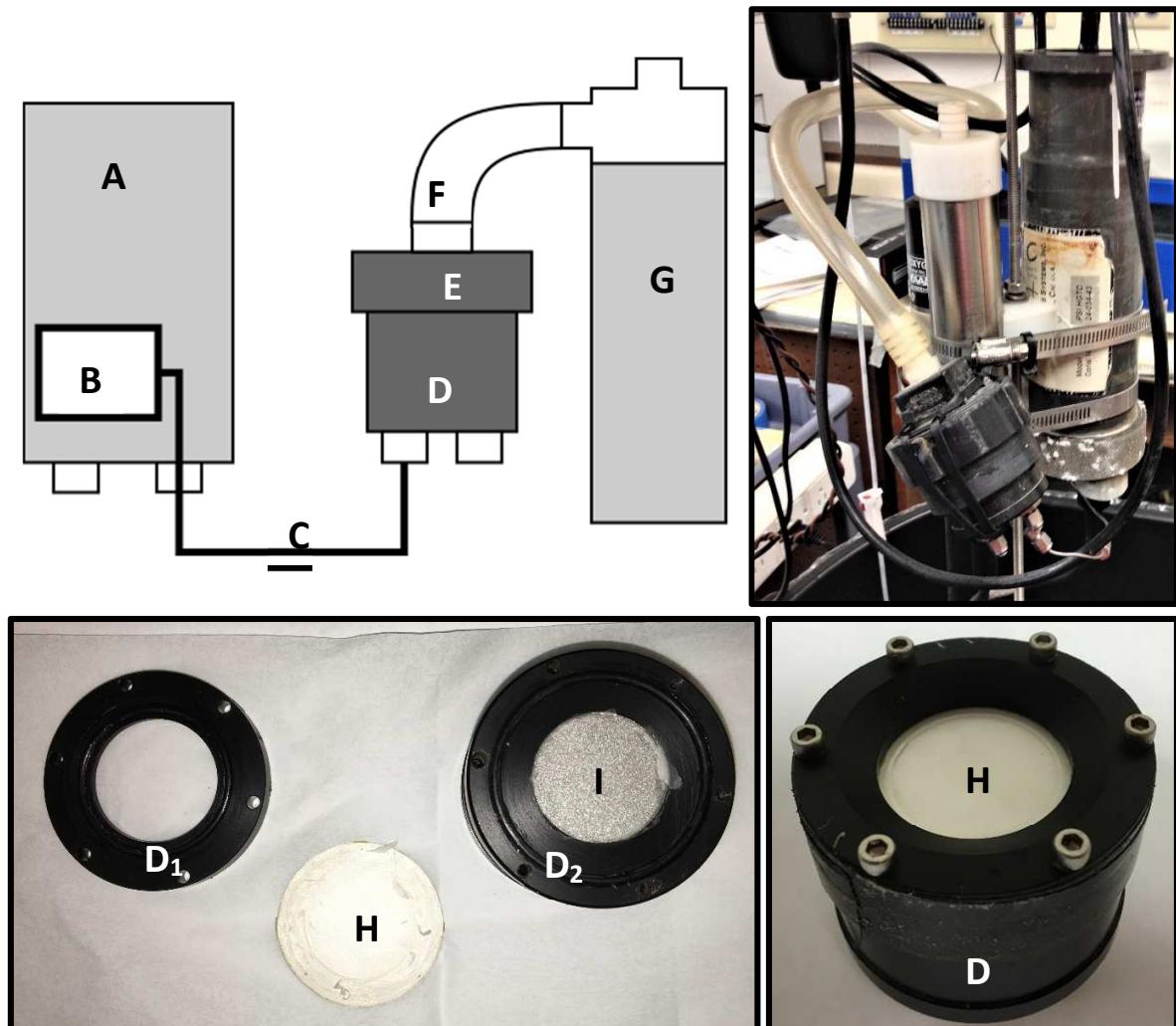
105 This paper describes a new GTD designed to overcome these limitations. Our motivation
106 is to measure dissolved N₂ on profiling floats deeper in the ocean and specifically in oxygen
107 deficient zones (ODZs) to study the biological production of N₂ via the denitrification and
108 anammox processes. We expect a N₂-excess signal of 10 – 20 mbar out of a background 850
109 mbar based on the N-excess from Chang et al. [2012]. We begin by presenting the design of the
110 new GTD and describing the new materials involved. Next, we lay out the background theory of
111 gas tension measurements, which is used to construct a model which describes the temperature
112 and hydrostatic pressure dependencies. The GTD is then characterized in the laboratory using the
113 developed model, followed by testing in the Puget Sound, and finally deployment in the Eastern
114 Tropical North Pacific (ETNP) ODZ. Then, we present the results of the lab experiments and
115 field testing, with the Puget Sound and ETNP results validated against an independent gas
116 tension estimate calculated with concurrent measurements of dissolved O₂ and N₂:Ar ratios
117 determined by mass spectrometry. Lastly, we discuss how the new GTD-design is an
118 improvement over the previous versions, what needs further development, and future field
119 applications.

120

121

122

123 **2. Instrument Design**


124 Autonomous profiling Gas-floats (Applied Physics Lab, University of Washington),
125 which alter their buoyancy to settle at different isopycnals in the water column, offer a platform
126 for frequent sampling of multiple seawater properties through time and space. An ideal float-
127 mounted gas tension device would measure the gas tension with a rapid (seconds) equilibration
128 (response) time, function independently of temperature and hydrostatic pressure, and function
129 reliably for long-periods of time on autonomous platforms. The previous float-mounted GTD
130 utilized a large (1 m length x 3 cm diameter) tubular PDMS membrane to achieve minute
131 response times [McNeil et al. 2006a]. However, the previously discussed issues of the PDMS-
132 membrane meant the GTD required frequent maintenance and limited possible applications
133 [McNeil et al. 2005; McNeil et al. 2006a].

134 The new GTD design is shown in Figure 1. It has three main components: (1) a pressure
135 housing, (2) a flushed membrane interface, and (3) a seawater pump. The new design is more
136 compact than the previous version, making it easier to mount and protect. The compressible
137 PDMS membrane is replaced with a nearly-incompressible Teflon-AF 2400 membrane
138 (DuPont). This switch of material reduces response times with hydrostatic pressure and the
139 hysteresis, improving performance and accuracy of the instrument.

140 However, Teflon-AF 2400 is a difficult material to make flat membranes from because it
141 is brittle and thin sheets of it tend to curl. We settled on a 4 cm diameter by 130 μm thick
142 membrane after some experimentation. The membrane is supported on the non-water side by a
143 fine stainless-steel support mesh. The membrane and support mesh are anchored in a membrane-
144 housing manufactured from Delrin. Stainless-steel 1/16" tubing connects the membrane housing
145 to a Paroscientific Digiquartz Pressure transducer (0-30 psia), which has a manufacturer's stated

146 precision of 0.0001%, accuracy of 0.01%, and drift of a few parts-per-million per year. The
147 pressure transducer and associated electronics are protected in a separate pressure-housing.
148 Barometric pressure and internal temperature of the GTD is recorded by the float.

149 The water-side face of the membrane is covered with a plenum that is connected to a
150 SBE5T seawater pump. Flushing the membrane significantly reduces the equilibration time by
151 shrinking the boundary-layer that forms along the membrane-seawater interface. The plenum is a
152 plastic cap with the water inlet situated over the membrane and several small outlets, with their
153 total area less than the inlet, spaced radially around the side of the plenum. This directs the water
154 onto the membrane and shears radially, and maintains a slight positive pressure to ensure the
155 membrane is held flat against its support. The pump is controlled by the GTD electronics and
156 operates on three settings: 100% (continuous), 50% (laboratory only), and 10% (pulse) pumping
157 cycles. Pulse mode is preferred to conserve energy and prolong battery life. Continuous mode is
158 activated during surfacing to protect the membrane from possible damage when bubble and
159 temperature-induced supersaturations at the surface may exceed the hydrostatic pressure, causing
160 ballooning and tearing in the membrane. The GTD mounted on the Argo-float is the same as
161 those mounted on the gas-sensing floats, except it is unpumped and the membrane is left
162 uncovered to improve passive flushing.

163

164 Figure 1. Schematic and pictures of the new GTD, showing clockwise from the top left, the
 165 assembled GTD with pump, the disassembled membrane housing, and the membrane housing.
 166 A: Pressure housing and electronics, B: Paroscientific barometer, C: 1/16" stainless steel tubing,
 167 D: assembled membrane housing (D₁: membrane collar, D₂: main membrane housing), E:
 168 plenum, F: plastic tubing, G: Seabird 5T pump, H: Teflon membrane and support, I: Stainless
 169 steel mesh support.

170

171

172 **3. Methods**173 **3.1. Theory & Modeling**174 **3.1.1. Gas Tension in Seawater**

175 A measurement of gas tension in seawater needs to be corrected for hydrostatic pressure
 176 and temperature [Hamme et al. 2015]. This can be seen with the following derivation for the gas
 177 tension changes in a parcel of water. Gas tension (GT) of seawater is defined as the sum of all the
 178 partial pressures (p_i) of the dissolved gases in seawater:

$$179 \quad GT = \sum_i p_i = pN_2 + pO_2 + pAr + pH_2O + pCO_2 + pTrace \quad \text{Eq. (1)}$$

180 In the above equation i denotes contributions due to individual gases [McNeil et al. 1995]. We
 181 define the total contribution to gas tension of all traces gases (including neon, krypton, nitrous
 182 oxide, methane, etc.) with partial pressures less than pCO_2 by $pTrace$. The relative contribution
 183 of each denoted gas to a measurement of gas tension in two different types of seawater are
 184 shown in Table 1. For the first water type (Table 1, Column 1a) we chose representative values
 185 of the core of the ODZ in the ETNP off Mexico. Since these waters are anoxic, there is no
 186 contribution to gas tension by dissolved oxygen. Dissolved nitrogen contributes more than 97.3%
 187 of the gas tension, with another 1.3% from water vapor, 1.1% from argon, 0.16% from carbon
 188 dioxide, and less than 0.02% from other trace gases. In anoxic ODZ core waters, a small
 189 percentage (typically <4% or <30 mbar) of the measured pN_2 is associated with microbial
 190 denitrification and anammox of nitrogen containing nutrients. For the second water type (Table
 191 1, Column 2a), we chose surface waters in equilibrium with the atmosphere in the same location.
 192 Compared to the ODZ core waters, gas tension in the oxygenated surface water is significantly
 193 larger (>15%), and pH_2O increased sharply with increased temperature by approximately a
 factor of three.

194 The classical Henry's Law is used to relate the partial pressure, p_i , of a dissolved gas in
 195 water to the concentration, $[C_i]$, of the dissolved gas by:

$$p_i = \frac{[C_i]}{Sol_i(T, S)} \quad \text{Eq. (2)}$$

196 The Henry's Law solubility $Sol_i(T, S)$ for a gas is dependent on water temperature (T) and
 197 salinity (S). However, Klots [1961] identified that hydrostatic pressure also influenced
 198 Sol_i , which depended on the partial molal volume of the gas in solution. The importance of this
 199 effect when utilizing a GTD was identified by Hamme et al. [2015].

200 The GTD makes a measurement of the pressures of all the dissolved gases at equilibrium
 201 with the surrounding water. Consequently, we used a modified form of Henry's Law in which
 202 the gas partial pressures were replaced with the gas fugacities, which more accurately
 203 represented the effective partial pressures of the gases in chemical equilibrium with the effective
 204 (i.e. actual) concentrations. Following Ludwig and MacDonald [2005], the effect of hydrostatic
 205 pressure on gas fugacities was expressed as:

$$\left(\frac{\partial \ln(f_i)}{\partial P} \right)_{T, C_i} = \frac{V_i}{RT_K} \quad \text{Eq. (3)}$$

206 where f is the fugacity (atm), V_i is the molal volume (ml mol⁻¹), R is the universal gas constant
 207 (≈ 82.057 mL atm mol⁻¹ K⁻¹), and (T_K) is the absolute temperature (K). Assuming constant molal
 208 volumes and concentrations, integrating between hydrostatic pressures and solving for the
 209 fugacity yielded [Ludwig & MacDonald 2005]:

$$f_i(P) = f_i(P_{1 \text{ atm}}) \cdot e^{\frac{V_i * \Delta P_H}{RT_K}} \quad \text{Eq. (4)}$$

210 Thus, the in-situ gas fugacity $f_i(P)$ at a particular hydrostatic pressure P is equal to the gas
 211 fugacity at the sea surface $f_i(P_{1 \text{ atm}})$ scaled by the change in hydrostatic pressure ΔP_H (atm) and
 212 the gas molal volume (V_i). Equation 4 predicted an increase in gas tension of approximately 14%

213 per 1000 dbar using partial molal volumes of $N_2 \approx 33.1 \text{ ml mol}^{-1}$, $O_2 \approx 32.0 \text{ ml mol}^{-1}$, and $Ar \approx$
 214 32.1 ml mol^{-1} [Hamme et al. 2015]. This agreed with the results from an experiment by Enns et
 215 al. [1964].

216 The physical interpretation of Equation 4 is that increased hydrostatic pressure increased
 217 the tendency of gas to leave solution, or, equivalently, increased hydrostatic pressure decreased
 218 gas solubility (concentrations remain unchanged). We recast Equation 2 to relate the in-situ gas
 219 fugacity as a function of dissolved gas concentrations and a hydrostatic pressure dependent gas
 220 solubility:

$$f_i(P) = \frac{[C_i]}{Sol_i(T, S, P)} \quad \text{Eq. (5)}$$

221 The effect of rapidly (i.e. adiabatically and with no change in the dissolved gas
 222 concentrations [$\mu\text{M/kg}$]) altering hydrostatic pressure by 400 dbar on seawater gas tension is
 223 shown in Table 1 for representative ODZ core waters (Column 1b), and for air-saturated surface
 224 waters (Column 2b). For a surface seawater sample that was initially in equilibrium with the
 225 atmosphere and then taken rapidly to 400 dbar, the sample's gas tension will increase by
 226 approximately 5.2% due to a decrease in the solubility of the gases. Conversely, bringing a
 227 seawater sample from the ODZ core to the sea surface, as occurs during a hydrocast, will cause a
 228 decrease in gas tension of approximately 5.4% due to an increase in gas solubilities. Note that in
 229 both examples, the effects of changes in temperature ($< 0.1 \text{ }^{\circ}\text{C}$) due to adiabatic
 230 expansion/contraction on gas solubility are small (5.4% vs 5.2%). Not correcting for the
 231 hydrostatic pressure effect will lead to systematic overestimation of in-situ gas tension and,
 232 consequently, gas concentrations. The effect of the pump's pressure head is negligible if the
 233 hydrostatic pressure is relatively large.

	Anoxic ODZ Seawater T=9.6°C, S=34.65			Atm. Equilibrated Seawater T=28.0°C, S=34.72		
Column	1a	1b	% Total	2a	2b	% Total
Hydrostatic Pressure	400 dbar	<i>0 dbar</i>		0 dbar	<i>400 dbar</i>	
Gas Tension	878.9 ± 1.2	$831.2 \pm 1.2^*$	100	$1013.3 \pm 0.2^*$	1066.0 ± 3.8	100
fN_2	855.4 ± 2.6	$808.7 \pm 2.6^*$	97.3	$762.3 \pm 1.1^*$	803.5 ± 1.2	75.2
fO_2	< 0.1	$< 0.1^*$	< 0.1	$204.5 \pm 1.0^*$	215.2 ± 1.1	20.2
fAr	9.9 ± 0.5	$9.4 \pm 0.5^*$	1.1	$9.1 \pm 0.5^*$	9.6 ± 0.5	0.9
fCO_2	1.4 ± 0.2	$1.3 \pm 0.2^*$	0.2	$0.3 \pm 0.2^*$	0.3 ± 0.2	< 0.1
$fTrace$	< 0.2	$< 0.2^*$	< 0.1	$< 0.2^*$	< 0.2	< 0.1
fH_2O	11.8 ± 0.3	$11.7 \pm 0.3^*$	1.4	$37.1 \pm 0.3^*$	37.4 ± 0.3	3.7

235 Table 1. Dissolved gas composition of a seawater parcel varies significantly between the oxic
236 and anoxic ocean. The individual partial pressures of dissolved gases with their approximate
237 absolute levels (in mbar) and best error estimates that comprise the gas tension of seawater for
238 anoxic core ODZ (Column 1a) using our measurements at 400 dbar in the ETNP, and for surface
239 seawater in equilibrium with the atmosphere (Column 2a) using observations at the sea surface at
240 the same location. Calculations based on an assumed adiabatic change in hydrostatic pressure of
241 400 dbar by either raising a sample of the anoxic core to the sea surface (Column 1b) or lowering
242 a sample from the sea surface to 400 dbar depth (Column 2b). Argon is assumed saturated $\pm 5\%$,
243 which is a maximum likely deviation from equilibrium [Hamme & Emerson 2004]. Oxygen
244 within the ETNP ODZ core was measured on the order of ≈ 100 nM [Tiano et al. 2014]. CO₂ is
245 taken from the World Ocean Database [Boyer et al. 2013]. Water vapor is assumed to be 100%
246 saturated and calculated as an explicit function of temperature and adjusted for salinity effects
247 [Kennish 1989]. Gas tension values are taken from lab and/or field measurements. *We assume
248 that at the ocean surface the gas fugacities behave as ideal gases such that the fugacity is equal to
249 the gas partial pressures p_i . This means that there is no hydrostatic pressure effect at 0 dbar.

250

251 **3.1.2. Observing Temporal Changes of Gas Tension**

252 Observations of gas tension are first made in the laboratory using a sealed pressure test
253 vessel to understand how the new GTD responds to rapid in situ changes in hydrostatic pressure
254 at constant temperature and dissolved gas concentrations. In practice, the test vessel slowly
255 warmed as the room changed temperature and the dissolved oxygen concentration inside the test
256 tank decreased due to oxidation (microbial and chemical). We compensated for these relatively
257 small and slow variations in gas tension during analysis. In the field, a Lagrangian float carried

258 the new GTD which equilibrated to the gas tension of individual parcels of water which the float
 259 tracked over time. There are similarities between these two measurement approaches which
 260 influenced how we formulated the description of the sensor response below. Our intent is to
 261 process both data sets similarly. For both types of data sets, changes in temperature and
 262 dissolved gas concentrations in the water parcel or enclosed in the pressure test tank are assumed
 263 to vary slowly compared to the response time of the sensor to achieve equilibrium of the GTD.
 264 We do not use the GTD in a CTD-like profiling mode.

265 We start by considering the changes to the gas tension of a single water parcel with time
 266 (dGT^{sw}/dt). We decompose the changes into several independent components: those due to the
 267 temperature effect on solubility ($\partial GT^{sw}/\partial T$), the hydrostatic pressure effect on
 268 solubility ($\partial GT^{sw}/\partial P$), the water vapor partial pressure ($\partial p_{H_2O}/\partial T$), and any internal sources
 269 or sinks (R):

$$\frac{dGT^{sw}}{dt} = \frac{\partial GT^{sw}}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial GT^{sw}}{\partial P} \frac{\partial P}{\partial t} + \frac{\partial (p_{H_2O})}{\partial T} \frac{\partial T}{\partial t} + Q \quad \text{Eq. (6)}$$

270 The superscript *sw* indicates seawater. The temperature and hydrostatic pressure terms are a
 271 combination of the individual solubility changes to dissolved N₂, O₂, and Ar, scaled by their
 272 respective atmospheric mole fractions. For simplicity we separate the water vapor partial
 273 pressure contribution to the gas tension. We ignore the small changes in solubility due to salinity
 274 variations.

275 We linearize the dependencies of Equation 6 with the following substitutions: α (%/°C)
 276 for the temperature effect on gas tension, β (%/1000 dbar) for the hydrostatic pressure effect on
 277 gas tension, and γ (mbar/°C) for change in water vapor due to temperature, and scale the
 278 changes with respect to the initial gas tension of the seawater parcel GT_0^{sw} :

279
$$\alpha \equiv \frac{1}{GT_0^{sw}} \frac{\partial GT^{sw}}{\partial T}, \quad \beta \equiv \frac{1}{GT_0^{sw}} \frac{\partial GT^{sw}}{\partial P}, \quad \gamma \equiv \frac{\partial p_{H_2O}}{\partial T}$$

280 This yielded a simplified linear expression for Equation 6:

$$\frac{dGT^{sw}}{dt} = GT_0^{sw} \left(\alpha \frac{\partial T}{\partial t} + \beta \frac{\partial P}{\partial t} \right) + \gamma \frac{\partial T}{\partial t} + Q \quad \text{Eq. (7)}$$

281 The above equation described the specific case where the sampled water parcel has no external
282 exchange with the surrounding environment, such as in a laboratory setting.

283 Integrating Equation 7 with respect to time yielded a discrete expression for the water gas
284 tension at time t (subscript t) with changes due to temperature, hydrostatic pressure, and biology:

$$GT_t^{sw} = GT_0^{sw} + GT_0^{sw} (\alpha(T_t - T_0) + \beta(P_t - P_0)) + \gamma(T_t - T_0) + Q(t - t_0) \quad \text{Eq. (8)}$$

285 Note that Equation 8 describes the actual gas tension in the water parcel, which responds
286 instantaneously to changes in the driving forces P , T , and Q .

287 Now we discuss the response of the sensor, i.e. the GTD, to the change in gas tension of
288 the water parcel surrounding the sensor. A change in the gas tension of the surrounding water
289 parcel (Equation 6) creates a gas pressure differential across the GTD membrane between the dry
290 and water-facing sides. This difference in pressure equilibrates with a characteristic response
291 time τ . The sensor output (GT_t^{GTD}) is a low-pass filtered (i.e. smoothed) version of the water gas
292 tension (GT_t^{sw}). Note the use of superscripts to differentiate between the gas tension in the water
293 (sw) and the output from the GTD (GTD). We modeled the change in the GTD output
294 (dGT^{GTD}/dt) as a mathematical convolution operation (*) of the changing seawater gas tension
295 (dGT^{sw}/dt) with the sensor response $\left(\frac{1}{\tau} e^{\frac{-t}{\tau}}\right)$:

$$\frac{dGT^{GTD}}{dt} = \frac{dGT^{sw}}{dt} * \frac{1}{\tau} e^{\frac{-t}{\tau}} \quad \text{Eq. (9)}$$

296 Importantly, the pressure measured by the barometer in the GTD is not the seawater gas tension
 297 until the GTD is fully equilibrated (i.e. $t > 5\tau$). In-situ seawater gas tension is obtained by
 298 deconvolving (i.e. reversing the convolution in Equation 9) the measured GTD time series with
 299 the sensor response. The response time of the GTD depends on both the flushing of the water-
 300 side boundary layer and the gas flux through the membrane, which is temperature dependent.
 301 Consequently, the response time for any particular deployment or experiment may vary based on
 302 the environment, the geometry of the GTD setup, and available power for pumping or flushing.
 303 As a result, we calculate a new optimal response time for each individual deployment or
 304 laboratory experiment. However, convolution/deconvolution of a time series requires that the
 305 response time be constant for the entire time series. For an analysis of how pumping affects the
 306 response of a GTD (not the same as the one analyzed here), please see McNeil et al [2006a].

307 The temperature dependence of the response time is related to the temperature
 308 dependence of the membrane permeability. Gas transport across a non-porous polymer, such as
 309 Teflon-AF, occurs via a solution-diffusion process. The membrane permeability P_m is a function
 310 of the membrane solubility S_m and membrane diffusivity D_m [Pinna & Toy 1996]:

311

$$P_m = S_m \times D_m \quad \text{Eq. (10)}$$

312 Previous characterization of Teflon-AF 1600 demonstrated that the permeation rates of light
 313 gases, such as N_2 , O_2 , and CO_2 , increased with increasing temperatures and concentrations but
 314 were independent of pressure [Alentiev et al. 2002]. Additionally, permeability was inversely
 315 related to molecular size [Alentiev et al. 2002; Bernardo et al. 2009]. These properties indicate
 316 that permeability of Teflon-AF is diffusion-limited, and hence the temperature dependence (i.e.,

317 $\partial P_m / \partial T$) is primarily controlled by the temperature dependence of D_m rather than S_m
 318 (i.e., $S_m \times \partial D_m / \partial T \gg D_m \times \partial S_m / \partial T$).

319 Equilibration time for a diffusion-limited process was calculated as a function of the
 320 membrane diffusivity (D_m), the membrane thickness (h), surface area (A), and the total sample
 321 volume of the GTD (V) using:

$$\tau(T) = \frac{hV}{D_m(T)A} \quad \text{Eq. (11)}$$

322 The thickness, surface area, and volume were constants independent of temperature. Thus, the
 323 response time is a function of temperature ($\tau(T)$) and will be inversely related to the
 324 temperature-induced changes in membrane diffusivity.

325 Diffusion-dominated gas-permeation temperature dependence through Teflon-AF is
 326 typically empirically fit using an Arrhenius equation [Pinna & Toy 1996; Alentiev et al. 2002].
 327 We assumed a similar temperature-dependence of the response times:

$$\frac{1}{\tau(T)} = \frac{1}{\tau_0} e^{-\frac{E}{RT}} \quad \text{Eq. (12)}$$

328 The pre-exponential factor τ_0 (s^{-1}) and constant E ($kJ mol^{-1}$) are calculated from a linear fit to the
 329 plot of $\ln(1/\tau)$ against $1/T$ (Arrhenius plot).

330 Teflon-AF is eight-fold more permeable to water vapor than nitrogen [Bernardo et al.
 331 2009]. Thus, we calculated the water vapor contribution as an instantaneous signal. Gas tension
 332 with the water vapor subtracted is referred to as dry gas tension. Substituting Equation 7 into
 333 Equation 9 and integrating with respect to time yielded an analytical solution of the GTD
 334 behavior to a change in the gas tension of the water parcel:

$$GT_t^{GTD} = GT_0^{GTD} + (GT_0^{sw}(\alpha(T_t - T_0) + \beta(P_t - P_0)) + Q(t - t_0)) * \frac{1}{\tau} e^{-\frac{t}{\tau}} + \gamma(T_t - T_0) \quad \text{Eq. (13)}$$

335

336 **3.1.3. Modeling Gas Tension**

337 We adapted Equation 13 by letting $GT_t^{GTD} = GT_t^{Model}$. We also assume that the GTD
 338 starts out in both thermal and gas tension equilibrium with the surrounding seawater, so that
 339 $GT_0^{GTD} = GT_0^{SW}$. The result is a step-response model that predicted the gas tension recorded by
 340 the GTD at time t . This model was applied to derive the best fits for the parameters α, β, τ , and
 341 Q , which were calculated using a global unconstrained minimization routine [Lagarias et al.
 342 1998]. The algorithm trained the best-fit parameter values by minimizing the MSE between the
 343 measured time series (GT_t^{GTD}) and the model of the GTD (GT_t^{Model}):

$$(\alpha, \beta, \tau, Q)_{mmse} = \min \left[\frac{1}{n} \sum_{t=1}^n (GT_t^{GTD} - GT_t^{Model})^2 \right] \quad \text{Eq. (14)}$$

344 Using the best fit α, β , and Q , we can calculate a normalized gas tension (GT_t^{norm}) time
 345 series by removing the effects of temperature, hydrostatic pressure, biology, and water vapor:

$$GT_t^{norm} = GT_t^{GTD} - GT_0^{GTD} \alpha(T_t - T_0) - GT_0^{GTD} \beta(P_t - P_0) - Q(t - t_0) - \gamma(T_t - T_0) \quad \text{Eq. (15)}$$

346 Applying Equation 15 yielded an idealized isothermal, isobaric model of constant gas
 347 tension with an explicit solution for an individual re-equilibration:

$$GT_t^{Model} = GT_0^{norm} + (GT_0^{SW} - GT_0^{norm}) e^{-\frac{t}{\tau}} \quad \text{Eq. (16)}$$

348 An example is shown in Figure 3. This idealized model allowed an independent check of the
 349 response time of the sensor by a regression fit of the data from the experiment to Equation 16.
 350 The result was multiple estimates of τ at different hydrostatic pressures to determine the pressure
 351 dependence of τ .

352 In addition to changing gas levels, profiling between surface and depth may also create a
 353 difference between the internal GTD temperature (T^{GTD}) and surrounding water temperature as

354 measured by the float CTD (T^{CTD}). This difference exists because the barometer and the
 355 electronics pressure housing contain significant mass, much of which is not in direct contact with
 356 the surrounding water (Figure 1). The GTD thermal response time φ described the equilibration
 357 of T^{GTD} to T^{CTD} . We constructed a model to fit φ by first quantifying the changes of the GTD
 358 temperature with respect to time (dT^{GTD}/dt) as a convolution of the change in temperature
 359 measured by float CTD (dT^{GTD}/dt) with a characteristic temperature equilibration $\left(\frac{1}{\varphi} e^{-\frac{t}{\varphi}}\right)$:

$$\frac{dT^{GTD}}{dt} = \frac{dT^{CTD}}{dt} * \frac{1}{\varphi} e^{-\frac{t}{\varphi}} \quad \text{Eq. (17)}$$

360 Equation 17 has an explicit solution of the same form as Equation 16. This resulted in a model of
 361 the GTD temperature (T^{Model}) at time t :

$$T_t^{Model} = T_0^{CTD} + (T_0^{GTD} - T_0^{CTD}) e^{-\frac{t}{\varphi}} \quad \text{Eq. (18)}$$

362 The value for φ is calculated in a similar manner to the parameters in Equation 13 by minimizing
 363 the MSE between T_t^{GTD} and T_t^{Model} as followed in Equation 14.

364 The thermal response time introduced a lag between the internal GTD temperature (°C)
 365 and the surrounding water temperature as measured by the CTD. Starting with the ideal gas law,
 366 we relate the disequilibrium ΔT^{Dis} due to the lag between the CTD temperature and the GTD
 367 temperature to a disequilibrium ΔGT^{Dis} between the actual gas tension and the GTD reading:

$$\frac{GT_t^{GTD}}{(T_t^{CTD} + 273.15)} = \frac{(GT_t^{GTD} + \Delta GT_t^{Dis})}{((T_t^{CTD} + 273.15) + \Delta T_t^{Dis})} \quad \text{Eq. (19)}$$

368 This assumes both no net transfer of gas across membrane (constant n) and the volume of the
 369 GTD remains unchanged (constant V). Rearranging, we have an equation describing the gas
 370 tension disequilibrium as a function of the temperature disequilibrium:

$$\Delta GT_t^{Dis} = GT_t^{GTD} \frac{\Delta T_t^{Dis}}{(T_t^{CTD} + 273.15)} \quad \text{Eq. (20)}$$

371 Since the temperature disequilibrium is a transient, its effect on the gas tension is also transient
 372 and dependent on the temperature equilibration timescale. So long as $\varphi \leq \tau$, we did not
 373 explicitly account for the transient when fitting the GTD observations, because the signal
 374 disappeared as the GTD reached gas tension equilibrium with the surrounding water. However, it
 375 is important to remain aware of this effect, as the specific configuration of the instrument on a
 376 platform may alter the thermal equilibration time.

377 The time series collected by the GTD required processing to arrive at a sample seawater
 378 gas tension. Initially, the water vapor is subtracted from the GTD time series. Then the dry GTD
 379 time series is deconvolved with the response time by inverting Equation 9. Next, the
 380 deconvolved time series is low-pass filtered. The filtered data is then averaged over each
 381 segment of the time series that the GTD was held at the same isopycnal, which we labelled
 382 ‘drifts’. The result was a single measurement of the dissolved gas tension minus water vapor,
 383 referred to as dry gas tension, for each float drift.

384

385 **3.2. Experimental Methods**

386 **3.2.1. Laboratory Methods**

387 GTD performance, design limits, and membrane-properties were assessed in the
 388 laboratory with several experiments. In Experiment 1, two GTDs with Teflon-membranes (S/N
 389 43 & 44) were placed in a large pressure test vessel (PTV) filled with freshwater at equilibrium
 390 with one standard atmosphere. Over 15 days the hydrostatic pressure was changed in increments
 391 of approximately 70 dbar up to a maximum of 300 dbar, with variability of ± 2.5 dbar. Each

392 isobaric test was maintained for a minimum of 24 hours. Pumping was set at 50% cycle.
393 Temperature, GTD barometric pressure, and hydrostatic pressure were recorded once per minute.

394 The collected time series were modeled using the model described by Equation 13. The
395 effects of hydrostatic pressure, temperature, respiration on gas tension (via decreasing oxygen),
396 along with the response times, were fit following Equation 14. Parameter standard errors are the
397 diagonal of the covariance matrix (C), which is calculated following the equation $C =$
398 $\sigma^2(J^T J)^{-1}$, where J is the Jacobian matrix. With the fitted model parameters, the gas tension time
399 series were normalized following Equation 15. Each equilibration of the GTD, identified by
400 discontinuities in the normalized time series, was fit using the simplified model in Equation 16 to
401 investigate any effect of hydrostatic pressure on the response times of the GTD.

402 Another experiment assessed the operational hydrostatic pressure range of the Teflon
403 membranes. Two Teflon-membranes and housings were placed in a PTV and the hydrostatic
404 pressure slowly raised to 550 dbar. The membranes were held at 550 dbar for over 24 hours. This
405 was followed by rapid cycling between ambient pressure (60 dbar) and 550 dbar in the PTV.
406 Using a custom-design bulkhead that allowed us access to the dry side of the membrane and
407 housing while the system is pressurized, we tested for presence of water using a syringe to
408 evacuate the volume behind the dry-side of the membrane, which would indicate membrane
409 failure or reverse osmosis.

410 Separately with Experiment 2, the Teflon-temperature dependence was assessed by
411 measuring the equilibration time of the GTD from 5 – 30°C, a typical range for field
412 measurements. The GTDs were submerged in a containment vessel filled with atmospheric-
413 equilibrated freshwater. The containment vessel is placed within a temperature-controlled water
414 bath. Addition of degassed water (by boiling for > 10 minutes and cooling while sealed from the

415 atmosphere) induced a step-change in the gas tension. Gas tension and temperature were
416 recorded once every 30 seconds. The GTDs equilibrated for a minimum of six e-folding times,
417 and the resulting curves fit to estimate the effect of temperature on response times.

418

419 **3.2.2. Site Descriptions and Field Methods**

420 Initial field-testing in seawater occurred off Shilshole, Seattle, Washington, in the Puget
421 Sound April 16th – 20th 2014 aboard the UW/APL vessel *R/V Robertson*. Two UW/APL Gas
422 Floats #77 and #78 (F77 & F78) were respectively equipped with pumped GTDs #44 and #43
423 (GTD#44 & GTD#43). First, the floats were attached to a stand and lowered by crane to set
424 depths off the side of the ship. This was followed by a series of untethered calibration dives
425 between the surface, 140 dbar, and 70 dbar. Discrete water samples were collected at 5 meter
426 increments bracketing the calibration depths of the GTDs.

427 The two UW/APL Gas-Profiling Floats F77 and F78 equipped with pumped GTDs, along
428 with a prototype un-pumped GTD-equipped Argo float (GTD-Argo), were deployed from the
429 *R/V New Horizon* in the ETNP as part of the *NH1410* research cruise. In May 2014, the floats
430 were deployed approximately 2 kilometers apart at 20.08°N 107.07°W for cross-calibration of
431 the instrumentation, and subsequently drifted northwest over the course of the 15-day
432 deployment.

433 During initial deployment, both floats performed a series of calibration profiles with
434 concurrent CTD casts. Niskin bottles at the calibration pressures were collected for N₂:Ar
435 measurements and Winkler titrations. The float profiles targeted predetermined isopycnals by
436 adjusting their density to be neutrally buoyant. A profile consisted of an initial dive to a max
437 density, followed by a series of drifts at decreasing densities in the water column. Each float drift

438 lasted 2-3 hours, sufficient time for the GTD to fully equilibrate. Float 77 was recovered during
439 initial deployment due to a malfunction and redeployed for four days at the end of *NH1410*.

440

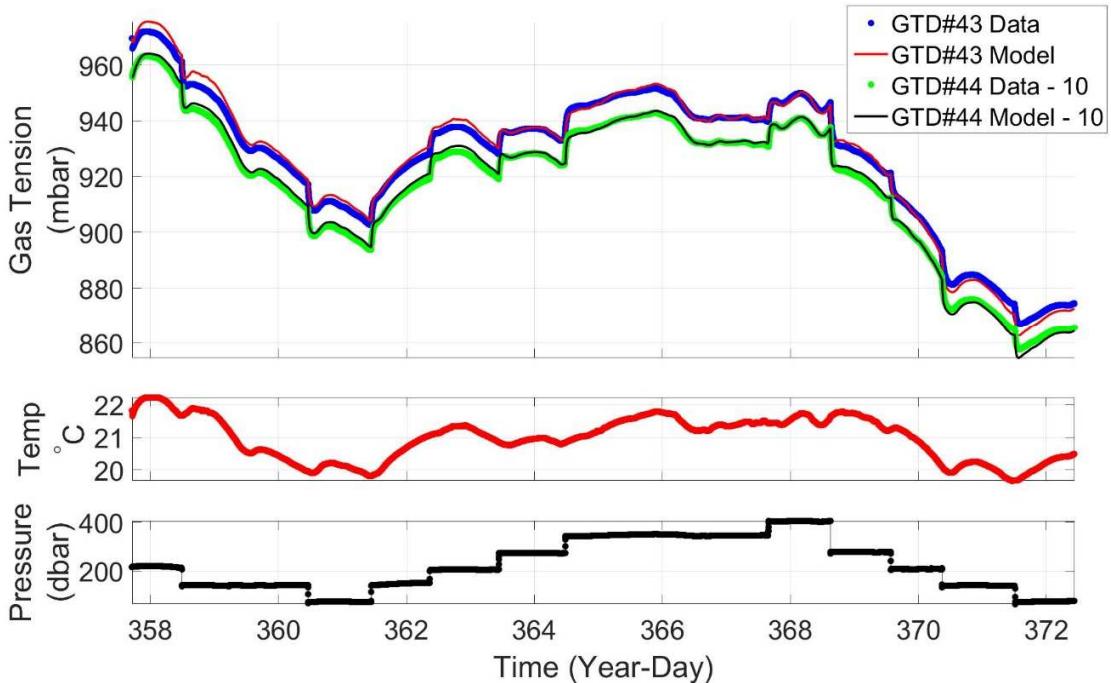
441 **3.2.3. Standard Reference Methods**

442 Gas tension measurements by the GTD were validated against a gas tension estimate
443 calculated from independent dissolved gas concentration measurements of N₂, O₂, and Ar. The
444 SeaBird 43 and Anderaa optode dissolved oxygen data were calibrated using in situ Winkler
445 titration measurements. N₂:Ar ratios were measured by the Isotope Biogeochemistry Group
446 (School of Marine Science and Technology, University of Massachusetts-Dartmouth). Puget
447 Sound N₂:Ar and O₂:Ar ratios were measured from discrete bottle samples in the lab at UMass-
448 Dartmouth by Isotope-Ratio Mass Spectrometry [Charoenpong et al. 2014]. ETNP N₂:Ar ratios
449 were sampled at sea via Quadrupole Mass Spectrometry.

450 ETNP background argon concentrations are provided by Clara Fuchsman, which were
451 collected as an onshore-offshore transect from 18.39°N 104.99°W to 14.00°N 110.00° in the
452 ETNP in 2012 as part of a separate project [Fuchsman et al 2017]. Argon concentrations were
453 measured by isotope dilution [Hamme and Emerson 2004b]. Then, we developed and used a
454 linear-mixing-model based on T-S analysis to interpolate the ETNP 2012 argon concentration
455 data to our observations.

456 To derive an independent gas tension for validating the GTD in the OMZ, first the
457 measured N₂:Ar ratios were multiplied by the interpolated background argon concentrations to
458 calculate the nitrogen concentrations. Next the nitrogen and argon concentration were converted
459 to partial pressures using Henry's Law including the literature hydrostatic pressure dependence
460 of 14% 1000 dbar⁻¹ [Enns et al. 1964; Ludwig & MacDonald 2005]. Water vapor pressure was

461 explicitly calculated assuming 100% saturation [Kennish 1989]. The pCO_2 was taken from
462 climatology (≈ 1.4 mbar in the ETNP OMZ) [Boyer et al. 2013]. Typical concentrations of the
463 remaining trace gases contributions fall below the instrument noise level and thus are considered
464 negligible.

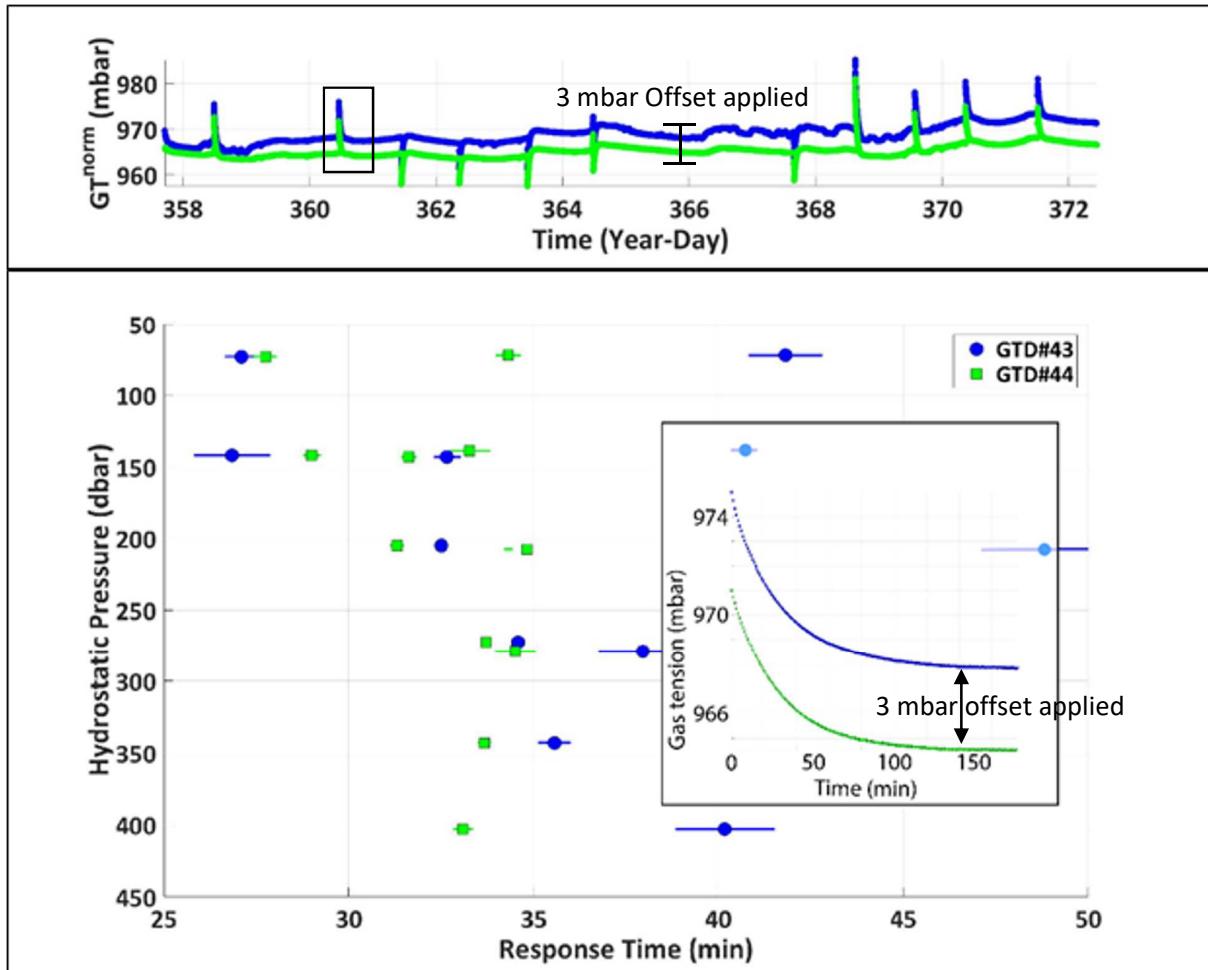

465

466 **4. Results**

467 **4.1. Laboratory Characterization**

468 In the laboratory, the two GTDs measured ± 0.2 mbar of each other (Figure 2, note the
469 timeseries are purposefully offset for clarity of presentation). Temperature varied between 20 –
470 22°C. Using Equation 14 best-fit values for τ , α , β , and Q , are shown in Table 2. The modeled
471 time series calculated using Equation 16 and the results in Table 2 compared with the collected
472 time series have standard deviations of 1.87 and 1.25 mbar ($\approx 0.2\%$) for GTD#43 and GTD#44,
473 respectively (Figure 2).

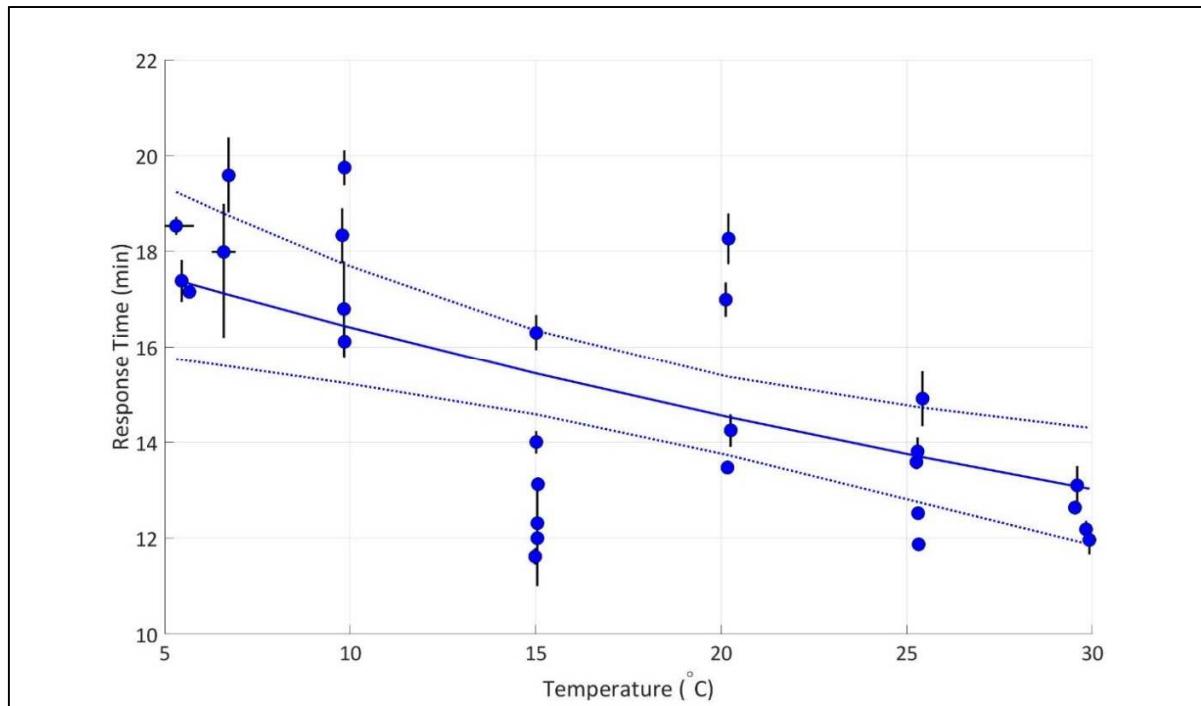
474 Applying Equation 15 to normalize the gas tension time series, the response times
475 calculated with Equation 16 range from 26.8 min to 48.8 min (Figure 3) with a mean $\tau \cong 35$
476 min, independent of hydrostatic pressure. The response times for GTD#43 also increased over
477 time. This compares with $\tau \cong 20$ min calculated using Equation 14. This difference between
478 response times and the individual curve fits are due to the fitting procedure. The model is finding
479 global parameter values that best reproduce the time series, whereas the individual curve fits are
480 optimally-fitting the transient response of the GTD to a large change in gas tension. The best-fit
481 response time for the field deployments was $\tau \cong 36$ min.



482

483 Figure 2. Results of lab experiment 1 - The model described by Equation 13 successfully
 484 recreates the observed gas tension time series to within ± 1.87 (GTD#43) and ± 1.25 mbar
 485 (GTD#44) using the best fit parameters (Table 2) calculated following Equation 14. Note the
 486 GTD#44 data and model is offset by 10 mbar for both time series to be visible.

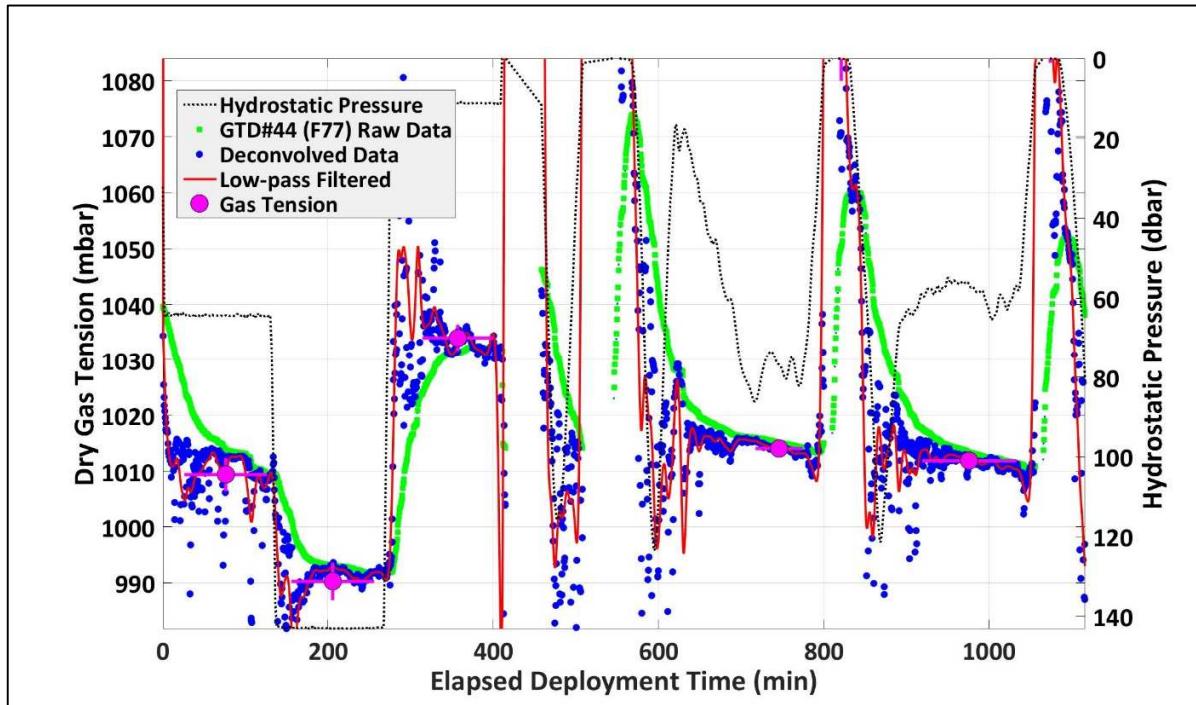
Parameter \pm SE	GTD#43	GTD#44
τ (min)	21.36 ± 0.30	20.22 ± 0.34
α (%/°C)	1.67 ± 0.03	1.63 ± 0.02
β (%/1000 dbar)	12.78 ± 0.2	12.98 ± 0.14
Q (mbar/min)	$-2.70 \times 10^{-3} \pm 2.31 \times 10^{-6}$	$-2.60 \times 10^{-3} \pm 1.41 \times 10^{-6}$
GT σ (mbar)	± 1.87	± 1.25


487 Table 2. Lab experiment 1 - Model parameter best-fit values and standard errors trained on the
 488 laboratory gas tension time series from the first laboratory experiment. Data collected with 50%
 489 pumping. Response time τ is assumed independent of hydrostatic pressure and temperature.

490

491 Figure 3. Results of lab experiment 1 - Top: The normalized gas tension time series corrects for
 492 the effects of temperature, hydrostatic pressure, and biology, using the best fit parameters from
 493 Table 2. Each discontinuity in the normalized gas tension time series occurs at a change in
 494 hydrostatic pressure, when the GTDs re-equilibrate. The highlighted box represents the time series
 495 below. A 3 mbar offset is applied to the GTD#44 time series to make the time series visible.
 496 Bottom: GTD#43 (blue circles) and GTD#44 (green squares) response times are independent of
 497 hydrostatic pressure, a significant advance over previous GTD versions. An individual response
 498 time is calculated by fitting a curve to a GTD equilibration (inset, curves offset by 3 mbar). Data
 499 collected with 50%-pumping. Response times for GTD#43 increased over time (print: color)

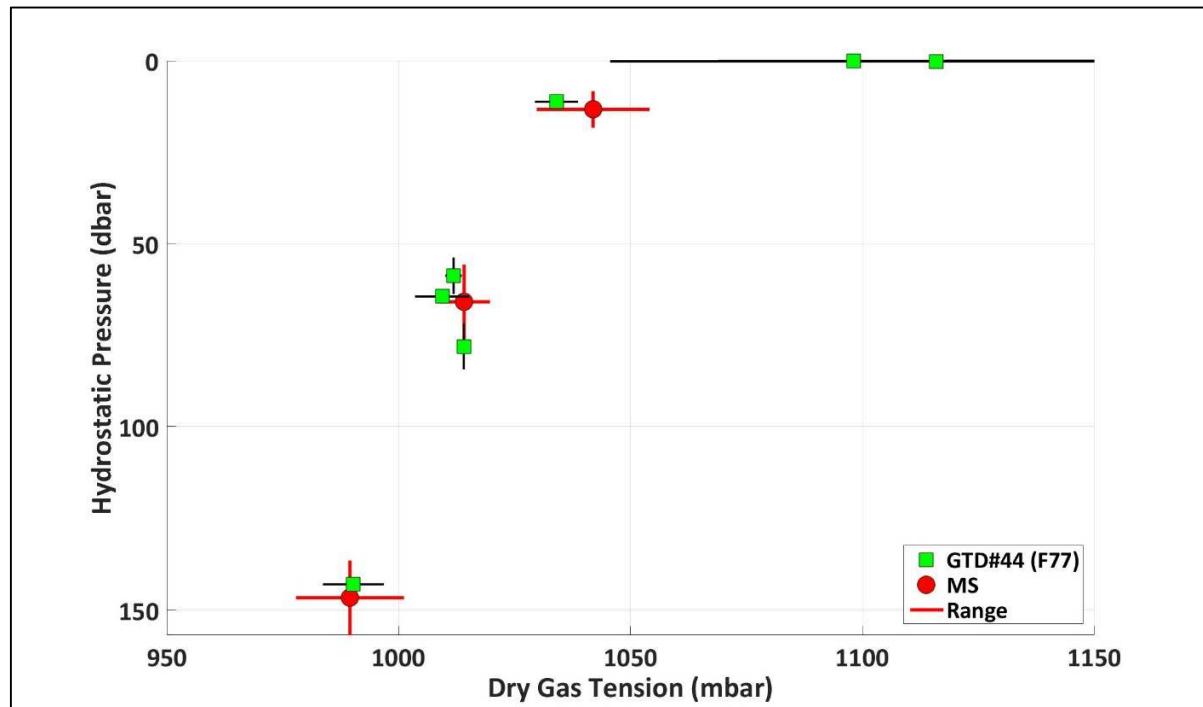
500 Response times for an atmospheric mixture of dissolved gases showed an inverse linear
 501 relationship with temperature (Figure 4), decreasing from 17.4 ± 1.8 min at 5.3°C to 13.0 ± 1.2
 502 min at 29.9°C . Calculated exponential constant was 7.7 ± 2.2 kJ/mol. Literature comparisons
 503 were 4.6 (N_2) and 3.4 (O_2) kJ/mol for Teflon-AF 2400 [Alementev et al. 2002].


504
 505 Figure 4. Results of lab experiment 2 - Continuously-pumped response times of the Teflon-
 506 membrane mounted in GTD#43 are inversely dependent on temperature. The dependence and
 507 95% confidence intervals are fit following Equation 12. Note that the thermal response time for a
 508 pulse-pumped system will be larger.

509

510 **4.2. Puget Sound**

511 Gas tension was successfully recorded only by GTD#44 mounted on Float 77 (GTD#43
 512 did not record properly) (Figure 5). Both GTDs successfully recorded internal temperatures. The


513 seawater temperature ranged from 10.4°C at the surface to 8.0°C at 140 dbar. Salinity varied
514 from 27.77 psu at the surface to 29.72 psu at 140 dbar. Thermal equilibration times (ϕ) were
515 21.4 ± 7.0 min and 28.2 ± 4.8 min for GTD43 and GTD44, respectively. Response times with
516 pulse-pumping (10 %) averaged $\tau = 36$ minutes, which is still larger than the thermal response
517 time. Argon was calculated from the O₂:Ar and SBE43 oxygen concentrations. Estimated gas
518 tension agrees, to within 2 – 4 mbar (0.2% - 0.4%), with the independent IRMS N₂:Ar and O₂:Ar
519 gas tension (Figure 6).

520
521 Figure 5. Successful measurements of gas tension in the Puget Sound by GTD#44 on Float 77.

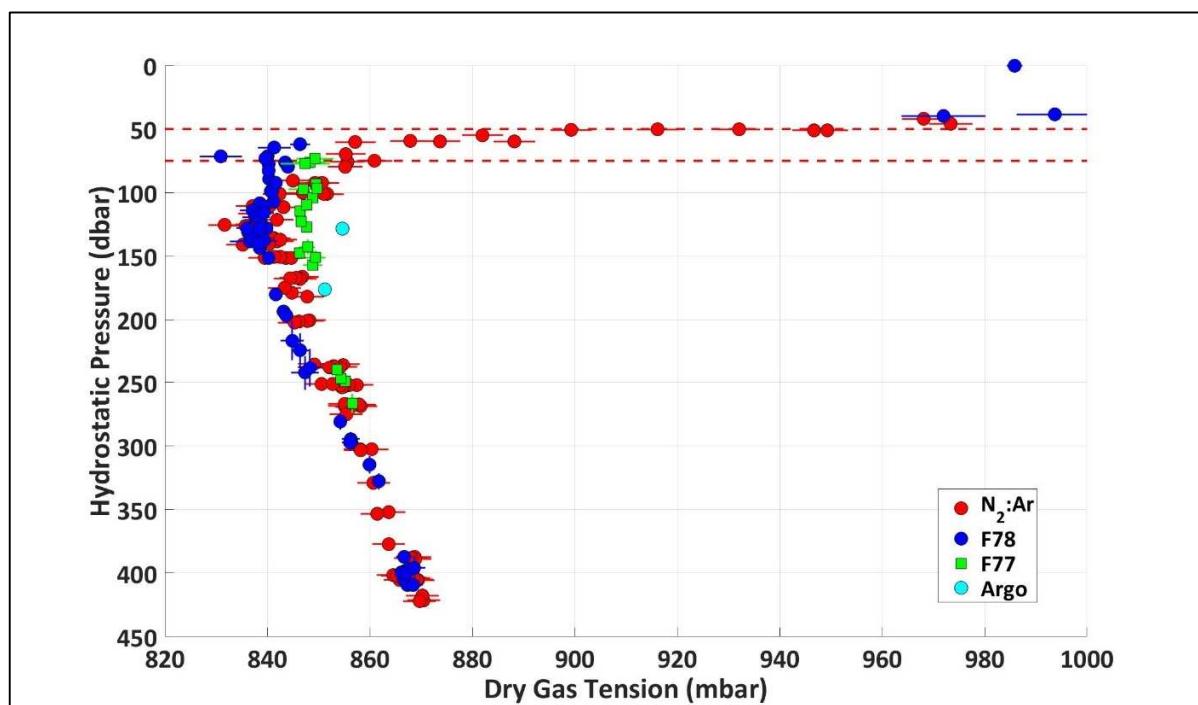
522 The procedure deriving the gas tension from the collected raw data is demonstrated. The raw
523 data from GTD#44 on Float 77 (green squares) is deconvolved (blue circles) with a pulse-
524 pumping response time $\tau = 36$ minutes, and low-pass filtered (red line), which is averaged over a
525 constant hydrostatic pressure (black lines) to arrive at the gas tension measurement (magenta
526 circles). Floats were attached to the ship winch before the 500 minute mark and freely profiling
527 after. (print: color)

528

529

530 Figure 6. GTD#44 on Float 77 successfully measured gas tension throughout the water column
 531 in the Puget Sound, whether the sensor was tethered or freely drifting. The mass spectrometry
 532 (MS) data points show the target range of measured gas tension. The GTD agrees within 2 – 4
 533 mbar (0.2 – 0.4%).

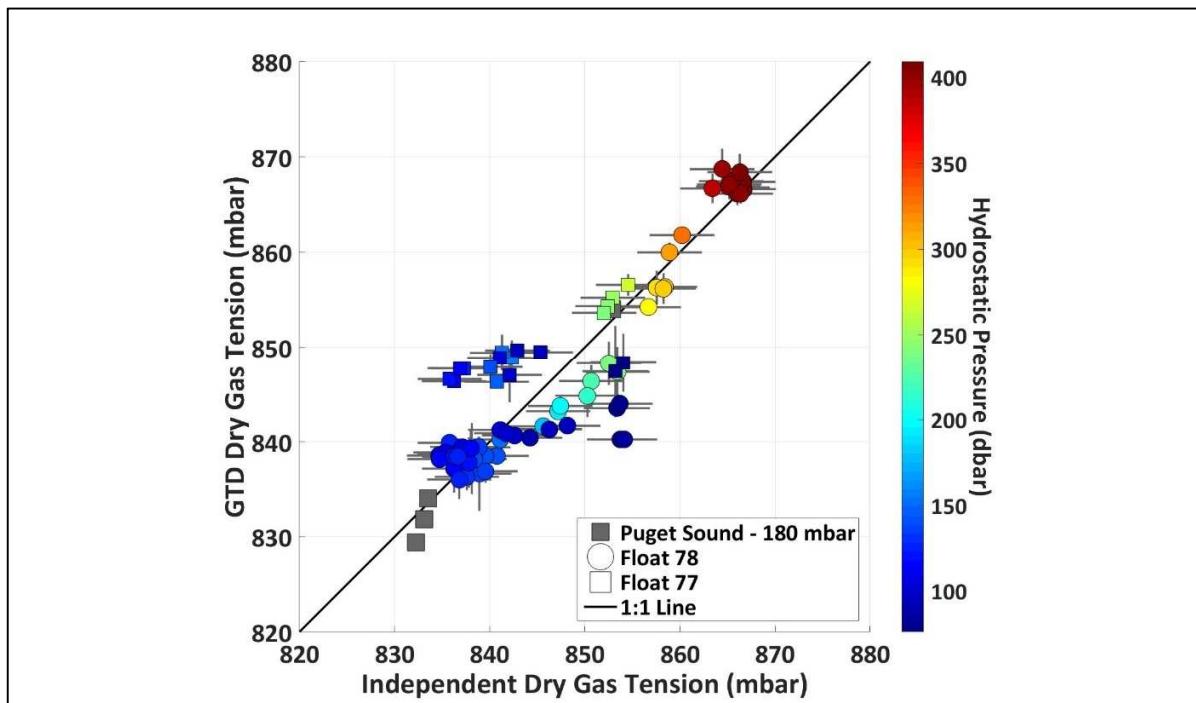
534


535 4.3. Eastern Tropical North Pacific

536 The oxycline, where oxygen rapidly decreases from saturation to anoxia, was located at
 537 approximately 50 – 70 dbar in the water column. Gas tension decreased from approximately
 538 atmospheric at the surface to a local minimum just below the oxycline, then a small local
 539 maximum, and then an absolute minimum of 836 mbar at 127 dbar (Figure 7). Below the
 540 absolute minimum the gas tension increases with depth. Both GTDs operated without displaying
 541 any behavior indicative of a blockage as occurred in the Puget Sound. The Argo float

542 successfully equilibrated and measured gas tension twice during separate 12-hour drifts. The
 543 GTDs did not fully equilibrate at the surface due to the profiling schedule set for the floats.

544 Gas tension from Float 77 is approximately 7 mbar higher than gas tension from Float 78
 545 throughout the anoxic portion of the water column without any dependence on hydrostatic
 546 pressure or temperature (Figure 7). Argo float measurements are approximately 3 mbar higher
 547 than the Float 77 measurements. Measured gas tension agrees to within error with the calibration
 548 gas tension (Figure 8).


549

550
 551 Figure 7. Gas tension within the anoxic portion of the water column was successfully measured
 552 to within ± 3.13 mbar of the N₂:Ar-derived validation gas tension in the ETNP ODZ. The
 553 oxycline, located from approximately 50 – 70 dbar and identified with the two red lines, is where
 554 the oxygen concentrations decline from saturation to sub-micromolar (< 1 μ M/kg)
 555 concentrations. The GTD on Float 77 measures approximately 7 mbar higher than Float 78

556 within the anoxic portion of the water column. The GTDs were pulse-pumped and floats freely-
 557 drifting. The Argo float is unpumped. (print: color)

558

559
 560 Figure 8. Validation that we successfully measured gas tension using the GTDs in the ETNP
 561 ODZ. The gas tension measured by the GTD (y-axis) generally agrees within error with the
 562 independent gas tension derived from the N₂:Ar measurements (x-axis). Puget Sound (grey
 563 squares) are adjusted 180 mbar to fit on scale. Hydrostatic pressure of the measurements shown
 564 with a linear color scale. (print: color)

565

566 **4.4. Sources of Error**

567 Changes in temperature and hydrostatic pressure not only alter the gas tension in the
 568 water but may also affect how well the GTDs operate. Under the tightly controlled conditions of

569 the laboratory PTV, GTD#43 and GTD#44 measure to within ± 0.2 mbar of each other. Model
570 characterization describes the GTD response to ± 2.13 (GTD#43) and ± 1.32 mbar (GTD#44).

571 In the Puget Sound and ETNP, uncertainty in determining the end-point equilibrated gas
572 tension is affected by the background geophysical noise. The uncertainties following
573 deconvolution and low-pass filtering, which are calculated by taking the standard deviation of
574 the low-pass filtered data for a drift following GTD equilibration, average ± 1.29 mbar (0.15%)
575 and ± 1.44 mbar (0.17%) for GTD#44 (Float 77) and GTD#43 (Float 78), respectively.

576 Geophysical noise is comprised of physical processes, such as internal waves, which alter in-situ
577 gas tension and temperature faster than the GTD can equilibrate, introducing high-frequency
578 variability. The high-frequency variability is further amplified by applying the deconvolution
579 procedure.

580 Assessment of the accuracy of the GTD gas tension is influenced by how well we can
581 independently determine the gas tension in the water column from the N₂:Ar and O₂
582 measurements. The N₂:Ar measurements themselves have a precision of 0.23‰ [Charoenpong et
583 al. 2014]. Seabird and optode oxygen errors are ≈ 2 μ M/kg with respect to Winkler titrations.
584 However, the oxygen errors only contribute to uncertainty within the oxycline and surface; in the
585 anoxic portion of the water column, oxygen is below 100 nM and its contribution to the total
586 uncertainty is negligible [Tiano et al. 2014]. Interpolation of the argon concentrations measured
587 by Fuchsman et al [2017] has an uncertainty of 0.03 μ M/kg, which with solubility uncertainty of
588 0.13% results in an average *p*Ar uncertainty of 0.03 mbar (0.26%) [Hamme & Emerson 2004].
589 Propagation of the argon uncertainty when calculating the nitrogen concentrations from N₂:Ar is
590 the dominant source of the uncertainty in the final *p*N₂ of 3.15 mbar (0.31%). The total
591 uncertainty amounts to 3.42 mbar (0.40%), of which 92% is attributed to uncertainty on *p*N₂,

592 7.8% to $p\text{O}_2$, and 0.2% to $p\text{Ar}$. The final uncertainties are 15 – 30% the size of the signal we aim
593 to resolve.

594 Final accuracy of the GTDs, assessed by comparison of the GTD gas tension with the
595 independent gas tension calculated from the $\text{N}_2:\text{Ar}$ measurements, are 0.6% (GTD#44; Float 77)
596 and 0.4% (GTD#43; Float 78; refer to Figure 8). We take this as a conservative error estimate,
597 since at this time we cannot claim that the differences are due to a systematic bias rather than
598 random error and uncertainty.

599

600 5. Discussion

601 GTD#43 on Float 78 successfully measured gas tension in the ETNP ODZ to within
602 0.40%. This compares favorably with the error estimate of 0.7% on previous GTD versions
603 [McNeil et al. 1995]. The cause of the 7-mbar offset of GTD#44 relative to GTD#43 cannot yet
604 be determined. The two barometers measured to within less than 0.2 mbar difference in pre-and-
605 post cruise calibrations. Additionally, the difference between the two deployed GTDs is constant
606 throughout the water column, and shows no change with depth or temperature. However, this
607 does suggest we successfully characterized the effects of changing temperature and hydrostatic
608 pressure on the GTDs. Additionally, our final uncertainties are about 15-30% of the expected 10
609 - 20 mbar N_2 signal produced by denitrification in the ETNP, which is the primary motivation for
610 this work. Thus, these GTDs are sufficiently precise to separate a small 20 mbar signal from a
611 large 850 mbar signal.

612 Our descriptive model estimates the Henry's Law pressure dependence as $12.8 \pm 0.3\%$
613 per 1000 dbar. This is lower than the limited literature estimates of 14% per 1000 dbar [Ludwig
614 & Macdonald 2005]. Additionally, we fit a simple linear regression of gas tension vs hydrostatic

615 pressure from the gas tension minimum to the maximum depth measured, spanning 300 dbar.
616 The fit yielded a $13.2 \pm 2.8\%$ increase per 1000 dbar. This agrees with the literature values, but
617 ignores the microbial-processes which alter gas tension in the OMZ [Klots 1961; Enns et al.
618 1964; Ludwig & Macdonald 2005].

619 The estimates of the hydrostatic pressure effect and equilibration times are complicated
620 by confounding factors not explicitly controlled. In the lab, changes in hydrostatic pressure are
621 altered using a secondary steel overflow tank with a bladder that forces water into or accepts
622 water from the main tank. The water within the secondary tank was rapidly reduced via oxidation
623 of the steel tank. Thus, changes in hydrostatic pressure create instantaneous jumps in dissolved
624 oxygen that are not readily quantifiable. Biology and rust products may also alter flow of or
625 physically coat the membrane from the water, impeding gas exchange and equilibration. This
626 complicates and introduces error to the interpretation of the hydrostatic pressure effect on gas
627 tension in the lab. It also adds variability when calculating the equilibration times from the
628 individual curve fits, because equilibration is dependent on renewal of the water-side membrane
629 boundary layer. Additionally, we suspect that these processes disproportionately affected
630 GTD#43 in the PTV over GTD#44 because GTD#43 response times increased over time. We are
631 unsure why GTD#43 was affected, but suspect its placement in the PTV relative to the overflow
632 tank and pressurization bladder was important.

633 In the ETNP ODZ, active nitrogen loss processes such as denitrification and anammox
634 actively alter the dissolved nitrogen levels [Gruber & Sarmiento 1997; Paulmier & Ruiz-Pino
635 2008; Chang et al. 2012]. Knowing the effect of hydrostatic pressure on gas solubility is
636 necessary to accurately calculate the nitrogen concentrations from the gas tension measurements.
637 Similarly, both the Aanderaa Oxygen Optode and SBE43 oxygen sensor functionally measure the

638 partial pressure of oxygen, not the concentration [Demas et al. 1999; Carlson 2002]. Although
639 both oxygen sensors have confounding hydrostatic pressure effects, they are calibrated to the
640 surface solubility [Uchida et al. 2008; McNeil & D'Asaro 2014]. This led us to utilize the
641 literature value of 14% 1000 dbar^{-1} for our calculations. Consequently, we aim to further refine
642 the hydrostatic pressure effect on gas tension by future experimentation utilizing the new GTD.

643 Gas tension sampling was not flawless. There was an apparent internal blockage in
644 GTD#44 during field testing in the Puget Sound. While the source of the blockage is not yet
645 certain, we suspect condensation of water vapor on internal piping due to rapid profiling because
646 the floats were tethered to the ship winch. This should not be an issue when the floats profile
647 autonomously by adjusting their buoyancy, since it results in much slower ascent and descent
648 rates. Indeed, we observed no blockages in the ETNP. The goal is to keep the internal GTD
649 temperature close to equilibrium with the surrounding water temperature to avoid condensation
650 of water vapor. Additionally, membrane diffusion coefficients change by $\approx 28.5\%$ over the
651 operational temperature range of the GTD. However, the response of $\tau(T)$ is linear and is simple
652 to adjust needed response times based on water temperature.

653

654 **6. Conclusions**

655 The new Teflon-membrane GTD offers a compact, stable method for in-situ
656 determination of total dissolved gas pressure. It eliminates, or at the least minimizes, many of
657 the complications of the previous PDMS-membrane version: the response time is independent of
658 hydrostatic pressure, there is no apparent reverse-osmosis, and it functions uniformly throughout
659 operational water depths. We demonstrate that two GTDs successfully measured to within an
660 error of 0.4% and 0.6% the gas tension in the ETNP ODZ. Additionally, we showed that a GTD

661 can equilibrate and measure gas tension on an Argo-float. Using previously published methods
662 for determining dissolved nitrogen from measured gas tension, the new GTD opens up the
663 possibility for in-situ investigation of denitrification within pelagic ODZs [McNeil et al. 2005;
664 McNeil et al. 2006a]. An additional advantage to this version of the float-mounted GTD is it is
665 significantly more compact than the previous PDMS-version. Further reduction in response time
666 should be possible using a pressure sensor with a very small internal volume. A faster response
667 time should also reduce the uncertainty due to geophysical noise.

668 We envision a variety of future applications for our new GTD. Its compact size and low-
669 power makes it an ideal candidate to be incorporated onto biogeochemical-Argo-floats for long
670 term in-situ studies of denitrification in ODZs, air-sea gas exchange, and net community
671 production in the surface ocean. Continuing improvements in shrinking the size and response
672 time are also targeted at future incorporation onto CTDs as part of the standard instrument
673 package. Our goal is to make gas tension measurements and dissolved-N₂ gas a regularly
674 collected parameter, alongside T, S, and O₂.

675

676

677

678

679

680

681 **Acknowledgements**

682 The authors would like to thank the Captain and crew of the *R/V New Horizon*, Co-Chief
683 Scientist Frank Stewart for providing ship space, Happy Hu for Winkler collection and sampling,

684 and Anne Cruz for sample collection, and Clara Fuchsman for sharing her argon concentration
685 profiles from the ETNP. We would also like to thank the reviewers of our manuscript for the
686 helpful comments and suggestions during revisions.

687

688 **Funding:** This work was supported by the National Science Foundation Grant numbers 1153295
689 (McNeil & D'Asaro) and 1154741 (Altabet).

690

691 **COI Statement:** B. Johnson and C. McNeil disclose significant financial interests as they are
692 president and vice president, respectively, of Pro-Oceanus Systems, Inc. (Bridgewater, NS,
693 Canada). Pro-Oceanus is the manufacturer of the GTDs used in this study.

694

695

696

697

698

699

700

701

702

703

704 **References**

- 705 1. Alentiev, A.Y., Shantarovich, V.P., Merkel, T.C., Bondar, V.I., Freeman, B.D., Yampolskii,
706 Y.P. 2002. Gas and Vapor Sorption, Permeation, and Diffusion in Glassy Amorphous Teflon
707 AF1600. *Macromol.* 35, 9513-9522. DOI:10.1021/ma020494f
- 708 2. Bernardo, P., Drioli, E., Golemme, G. 2009. Membrane Gas Separation: A Review/State of
709 the Art. *Ind. Eng. Chem. Res.* 48, 4638-4663. DOI:10.1021/ie8019032
- 710 3. Boyer, T.P., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A.,
711 Johnson, D.R., Locarnini, R.A., Mishonov, A.V., O'Brien, T.D., Paver, C.R., Reagan, J.R.,
712 Seidov, D., Smolyar, I.V., Zweng, M.M. 2013. World Ocean Database 2013, NOAA Atlas
713 NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp.,
714 DOI:10.7289/V5NZ85MT
- 715 4. Bragg, H.M., Johnston, M.W. 2016. Total dissolved gas and water temperature in the lower
716 Columbia River, Oregon and Washington, water year 2015. U.S. Geological Survey Open-
717 File Report 2015-1212, 26p., DOI:10.3133/ofr20151212
- 718 5. Carlson, J. 2002. Development of an Optimized Dissolved Oxygen Sensor for Oceanographic
719 Profiling. *International Ocean Systems* 6(5), 20-21
- 720 6. Chang, B.X., Devol, A.H., Emerson, S.R. 2012. Fixed nitrogen loss from the eastern tropical
721 North Pacific and Arabian Sea oxygen deficient zones determined from measurements of
722 N₂:Ar. *Global Biogeochem. Cycles* 26(3), GB3030. DOI
- 723 7. Charoenpong, C., Bristow, L.A., Altabet, M.A. 2014. A continuous flow isotope ratio mass
724 spectrometry method for high precision determination of dissolved gas ratios and isotopic
725 composition. *Limnol. Oceanogr. Methods* 12, 323-337. DOI:

- 726 8. D'Asaro, E., McNeil, C.M. 2007. Air-sea gas exchange at extreme wind speeds measured by
727 autonomous oceanographic floats. *J. Mar. Syst.* 66, 92-109.
728 DOI:10.1016/j.jmarsys.2006.06.007
- 729 9. D'Aoust, B.G., White, R., Seibold, H. 1975. Direct measurement of total dissolved gas
730 pressure. *Undersea Biomedical Research* 2(2), 141-149
- 731 10. Demas, J.N., DeGraff, B.A., Coleman, P.B. 1999. Oxygen Sensors based on luminescence
732 quenching. *Anal. Chem.* 71, 793A-800A.
- 733 11. Emerson, S., Bushinsky, S. 2016. The role of bubbles during air-sea gas exchange. *J.*
734 *Geophys. Res. Oceans* 121, 4360-4376. DOI:10.1002/2016JC011744
- 735 12. Enns, T., Scholander, P.F., Bradstreet, E.D. 1964. Effect of Hydrostatic Pressure on Gases
736 Dissolved in Water. *J. Phys. Chem.* 69(2), 389-391
- 737 13. Fickeisen, D.H., Schneider, M.J., Montgomery, J.C. 1975. A Comparative Evaluation of the
738 Weiss Saturometer. *Trans. American Fisheries Soc.* 104(4), 816-820
- 739 14. Fuchsman, C.A., Devol, A.H., Casciotti, K.L., Buchwald, C., Chang, B.X., Horak, R.E.A.
740 2017. An N isotopic mass balance of the Eastern Tropical North Pacific oxygen deficient
741 zone. *DSR II: Topical Studies in Oceanography*, doi:10.1016/j.dsr2.2017.12.013
- 742 15. Groffman, P.M., Altabet, M.A., Böhlke, J.K., Butterback-Bahl, K., David, M.B., Firestone,
743 M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A. 2006. Methods for Measuring
744 Denitrification: Diverse Approaches to a Difficult Problem. *Ecol. Appl.* 16(6), 2091-2122.
745 DOI: 10.1890/1051-0761(2006)016[2091:MFMDA]2.0.CO;2
- 746 16. Gruber, N., Sarmiento, J.L. 1997. Global patterns of marine nitrogen fixation and
747 denitrification. *Global Biogeochem. Cycles* 11(2), 235-266. DOI:

- 748 17. Hales, B., Chipman, D., Takahashi, T. 2004. High-frequency measurement of partial pressure
749 and total concentration of carbon dioxide in seawater using microporous hydrophobic
750 membrane contactors. *Limnol. Oceaongr. Methods* 2, 356-364.
- 751 18. Hamme, R.C., Emerson, S.R. 2004. The solubility of neon, nitrogen, and argon in distilled
752 water and seawater. *Deep-Sea Res. I* 51, 1517-1528. doi:10.1016/j.dsr.2004.06.009
- 753 19. Hamme, R.C., Emerson, S.R. 2004b. Measurement of dissolved neon by isotope dilution
754 using a quadrupole mas spectrometer. *Mar. Chem.* 91, 53-64.
755 doi:10.1016/j.marchem.2004.05.001
- 756 20. Hamme, R.C., Berry, J.E., Klymak, J.M., Denman, K.L. 2015. In situ O₂ and N₂
757 measurements detect deep-water renewal dynamics in seasonally-anoxic Saanich Inlet. *Cont.*
758 *Shelf Res.* 106, 107-117. doi:10.1016/j.csr.2015.06.012
- 759 21. Kennish, M.J. (editor) (1989) *Practical Handbook of Marine Science*. C.R.C. Press, Inc.,
760 Boca Raton, Florida, 710 pp.
- 761 22. Klots, C.E. 1961. Effect of Hydrostatic Pressure upon the solubility of gases. *Limnol.*
762 *Oceaongr.* 6(3), 365-366. doi:10.4319/lo.11961.6.3.0365
- 763 23. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E. 1998. Convergence Properties of the
764 Nelder-Mead Simplex Method in Low Dimensions. *SIAM J. of Optim.* 9(1), 112-147.
765 doi:10.1137/S1052623496303470
- 766 24. Langdon, C. 2010. Determination of dissolved oxygen in seawater by Winkler titration using
767 the amperometric technique. *The GOSHIP Repeat Hydrography Manual: a Collection of*
768 *Expert Reports and Guidelines*, edited by: Hood, EM, Sabine, CL, and Sloyan, BM.

- 769 25. Löffler, A., Schneider, B., Schmidt, M., Nausch, G. 2011. Estimation of denitrification in
770 Baltic Sea deep water from gas tension measurements. *Marine Chemistry* 125, 91-100.
771 doi:10.1016/j.marchem.2011.02.006
- 772 26. Ludwig, H., Macdonald, A.G. 2005. The significance of the activity of dissolved oxygen, and
773 other gases, enhanced by high hydrostatic pressure. *Comp. Biochem. Physiol. Part A* 140,
774 387-395. doi:10.1016/j.cbpb.2005.02.001
- 775 27. Manning, A.H., Solomon, D.K., Sheldon, A.L. 2003. Application of a total dissolved gas
776 pressure probe in ground water studies. *Ground Water* 41(4): 440-448. DOI:10.1111/j.1745-
777 6584.2003.tb02378.x
- 778 28. McNeil, C.L., Johnson, B.D., Farmer, D.M. 1995. *In-situ* measurement of dissolved nitrogen
779 and oxygen in the ocean. *Deep-Sea Res. I* 42(5), 819-826. DOI:10.1016/0967-
780 0637(95)97829-W
- 781 29. McNeil, C., Katz, D., Wanninkhof, R., Johnson, B. 2005. Continuous shipboard sampling of
782 gas tension, oxygen, and nitrogen. *Deep-Sea Res. I* 52, 1767-1785.
783 doi:10.1016/j.dsr.2005.04.003
- 784 30. McNeil, C., D'Asaro, E., Johnson, B., Horn, M. 2006a. A Gas Tension Device with
785 Response Times of Minutes. *J. Atmos. Oceanic Tech.* 23, 1539-1558.
786 doi:10.1175/JTECH1974.1
- 787 31. McNeil, C.L., D.R. Katz, B. Ward, W.R. McGillis, and B.D. Johnson. 2006b. A method to
788 estimate net community metabolism from profiles of dissolved O₂ and N₂. *Hydrobiologia*
789 571:181-190. DOI:10.1007/s10750-006-0236-7
- 790 32. McNeil, C.L., and E.A. D'Asaro. 2007. Parameterization of air-sea gas fluxes at extreme
791 wind speeds. *J. Mar. Syst.* 66, 110-121. doi:10.1016/j.jmarsys.2006.05.013

- 792 33. McNeil, C.L, D'Asaro, E.A. 2014. A calibration equation for oxygen optodes based on
793 physical properties of the sensing foil. *Limnol. Oceanogr. Methods*, 12, 139-154.
794 doi:10.4319/lom.2014.12.139
- 795 34. Paulmier, A., Ruiz-Pino, D. 2008. Oxygen minimum zone (OMZs) in the modern ocean.
796 *Prog. Oceanogr.* 80, 113-128. doi:10.1016/j.pocean.2008.08.001
- 797 35. Pinna, I., Toy, L.G. 1996. Gas and vapor transport properties of amorphous perfluorinated
798 copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-
799 diioxole/tetrafluoroethylene. *J. Membr. Sci.* 109, 125-133. doi:10.1016/0376-7388(95)00193-
800 X
- 801 36. Takahashi, T., Feely, R.A., Weiss, R.F., Wanninkhof, R.H., Chipman, D.W., Sutherland,
802 S.C., Takahashi, T.T. 1997. Global air-sea flux of CO₂: An estimate based on measurements
803 of sea-air pCO₂ difference. *PNAS* 94(16), 8292-8299.
- 804 37. Tiano, L., Garcia-Robledo, E., Dalsgaard, T., Devol, A.H., Ward, B.B., Ulloa, O., Canfield,
805 D.E., Revsbech, N.P. 2014. Oxygen distribution and aerobic respiration in the north and
806 south eastern tropical Pacific oxygen minimum zones. *Deep-Sea Res. I* 94, 173-183.
807 doi:10.1016/j.dsr.2014.10.001
- 808 38. Uchida, H., Kawano, T., Kaneko, I., Fukasawa, M. 2008. In Situ Calibration of Optode-
809 Based Oxygen Sensors. *J. Atmos. Oceanic Techn.* 25, 2271-2281.
810 doi:10.1175/2008JTECHO549.1
- 811
- 812