

The creation and utility of an app as a reporting tool in the charter for-hire fishery

Tara S. Topping^{1*}

Megan R. Robillard¹

Jennifer J. Wetz¹

Matthew W. Johnson²

David W. Yoskowitz³

Gregory W. Stunz¹

¹Harte Research Institute for Gulf of Mexico Studies, Texas A&M University- Corpus Christi
6300 Ocean Drive, Corpus Christi, TX 78412, USA

²NOAA/NMFS/SEFSC, Population and Ecosystem Monitoring Division, 3500 Delwood Beach
Road, Panama City, FL 32408, USA

³Texas Parks and Wildlife, 4200 Smith School Road, Austin, TX 78744, USA

*Corresponding author: Tara.Topping@tamucc.edu

Running head: Electronic reporting in the for-hire industry

Impact Statement: Accurate catch, effort, and supplementary data can be collected from the charter for-hire industry using an app created for a phone or tablet.

Abstract

Objective: One of the most difficult aspects of recreational fisheries management is the ability to collect and have immediate access to fisheries-dependent data. The advent of smart devices has created a novel way to collect self-reported data. Working with 16 for-hire vessel captains from across the Gulf of Mexico, we developed an electronic logbook application, iSnapper, to test the quality and quantity of data an app could provide researchers and fisheries managers.

Methods: Captains tested iSnapper by recording catch and effort data on a tablet or smartphone during the 2011 recreational Red Snapper *Lutjanus campechanus* fishing season (June 1, 2011 – July 18, 2011) and provided recreational anglers aboard those vessels the opportunity to participate in a voluntary socioeconomic survey. Submitted trips were validated by comparing the app data to those collected at dockside creels.

Result: During the 6-week trial, 17,926 fish were caught, from a total of 60 species, with Red Snapper comprising most of the catch (61%). Red Snapper had a reported discard rate of 38% with 86% of those reported as released alive. Over 70% of trips with reported depths were fishing between 30-59m. Validation of harvest data showed no major differences between independent creel surveys and data reported to the iSnapper program.

Conclusion: Overall, we demonstrated that an electronic reporting app such as iSnapper can produce high quality and valid catch data for use by fishery managers. These electronic reporting apps could also be used to help with data gaps in recreational fisheries where little or no data is currently being collected.

Introduction

The state of the world's fisheries has been the subject of much attention in recent years, as many are overfished or fully exploited (Pauly et al. 1998; Pauly et al. 2003). Overfishing has clearly contributed to the demise of some fisheries (Jackson et al. 2001) and rebuilding severely depleted stocks is hindered by substantial data gaps. One such hindrance is the lack of real-time fisheries-dependent data, particularly for the recreational sector (Walters and Martell 2004). Without available real-time data, fisheries managers must use untimely data for their stock assessment models which may not accurately reflect the current state of the fishery and can result in stakeholders and management groups having very different opinions about the fishery. This can lead to conflicts between user groups and management agencies. The most effective way to manage fisheries is to increase the amount of high-quality timely data collected, providing near real-time trends in the fishery (Claroa et al. 2009).

To estimate catch and effort data from recreational fisheries, the National Marine Fisheries Service (NMFS) developed a nationwide network of surveys (e.g., in person creel surveys, telephone, and mail) originating in 1979 as the Marine Recreational Fisheries Statistics Survey (MRFSS). Following a redesign in 2008, the current reporting program (Marine Recreational Information Program, MRIP), is used to estimate recreational harvest on a state-by-state basis throughout the coastal United States and its territories. Texas Parks and Wildlife (TPWD) has been exempt from these programs, instead opting to continue collecting data with their own intercept surveys that began in 1974. Both programs collect catch and effort data from anglers to determine a total harvest of all reported species. However, predictions based on any type of after-the-fact survey can result in a high degree of error due to recollection bias (National Research Council [NRC] 2006). According to the NRC (2006), one of the most important tools needed to

improve estimates derived from recreational fisheries was better data from the for-hire sector. To address this, the National Oceanic and Atmospheric Administration (NOAA) Fisheries approved a policy in 2013 wherein electronic technologies could be used to complement or improve fishery-dependent data collection programs. These programs included tablet-based field data collection and angler reporting applications (“apps”). Electronic logbooks have the potential to allow for more accurate catch and effort estimations, can easily be validated when paired with traditional creel surveys, and the data is available more quickly than with traditional paper logbooks (Sauls et al. 2012).

Currently, more than 3,000 commercial fishing vessels throughout the U.S. are using a form of electronic reporting (NOAA Fisheries 2022). These programs require a geographic positioning system (GPS) or a vessel monitoring system (VMS) that provides continuous location tracking of the vessel throughout the trip. These systems can be expensive (~\$3,000 for the unit, and \$30-\$60 per month service fees; South Atlantic Fisheries Management Council 2024), unreliable (Gulf of Mexico Fisheries Management Council 2022), and are permanently fixed to the vessel causing concerns about privacy when mandated for use in the for-hire fishery (New Civil Liberties Alliance 2021). Large headboats throughout the Gulf of Mexico and up the east coast to North Carolina are required to report their catch and effort through the Southeast Region Headboat Survey (SRHS). Captains report trips electronically weekly, with generalized fishing locations (fishable waters are gridded into 16 km by 16 km boxes) as opposed to active GPS tracking. These reports allow NOAA Fisheries to collect effort and landings, as well as biological samples from dockside intercepts. Similar to this reporting style, the costs of a mobile app are considerably less than that of a VMS system; almost 90% of adults own a smartphone

(Pew Research Center, 2024), so there is no “hardware” cost and users can use their data plans or WiFi to submit trips, so no additional monthly charges are accrued.

Most recently, the Gulf of Mexico for-hire industry was required to report their trips using similar electronic data collection methods in January 2021. However, the reporting requirements proved to be intrusive and burdensome to some captains and after significant pushback, ultimately culminating in a federal lawsuit (Mexican Gulf Fishing Co. v. U.S. Department of Commerce 2023), the mandatory reporting requirements were removed in February 2023. As a result of the litigation, this sector no longer has any legal obligation to report trip or harvest data. This latest policy change highlights the need for a more simplified data collection technique that can cater to and accommodate the variety of vessels and captains in this fleet.

The Gulf of Mexico Red Snapper fishery provides an ideal testing ground for a simplified electronic logbook for the for-hire recreational fishing industry. Red Snapper is the most economically important reef fish in the Gulf of Mexico; however, until only recently it had been classified as overfished and undergoing overfishing (SEDAR 2018). The overall goal of this project was to develop a user-friendly electronic reporting app through the cooperation of scientists, managers, and fishermen to determine the quantity and quality of data that an electronic logbook is capable of collecting during the 2011 Red Snapper recreational fishing season. Data submitted through the app was compared with dockside creel surveys (MRIP and TPWD) to calculate reporting rates and reporting errors to evaluate the potential for self-reported electronic data to be used for harvest estimation. With the recent push for electronic reporting in fisheries data collection, we also provide recommendations and considerations for future app design.

Methods

Development

To develop an app that was a suitable platform as an electronic logbook for use in the for-hire sector, we evaluated several operating systems and determined that Apple's iOS® software platform provided a good combination of computing power, ease of use, and brand name recognition by the participants. In addition, the iOS® platform was available as both a smartphone (iPhone®) and a tablet (iPad®), providing a similar working environment between devices. We also chose these devices because both provide a fast, wireless internet connection and can be GPS enabled, allowing for the collection of location specific data whether in or out of cellular range. Additionally, an iPad® was specifically requested by many users.

The app was designed to record catch and trip data from individual vessels by having the captain enter information such as number and species of fish harvested, the weight and fate of those fish, and the locations fish were captured using the internal GPS. Upon submission, these data were uploaded to the Bluefin reporting software used by the SRHS. The integration was critical, as some boats were already providing their data in SRHS and we did not want them to have to report in both systems. The app was also designed to include a voluntary socioeconomic survey for individual anglers (paying clients) to complete at the end of the trip. In addition, a web portal was developed that interfaced with iSnapper and allowed fishermen to submit data from a traditional computer if they could not or chose not to use the iSnapper app on their device. The iSnapper website also allowed captains access to each submitted trip, the ability to edit trips, export data, and print reporting forms.

For-hire captain recruitment

Once a prototype was developed, 16 for-hire vessels were recruited to participate in the iSnapper pilot. The recruitment process was done through word of mouth. Several well-known

charter captains were initially contacted, some of which provided recommendations of other captains to reach out to and/or talked about the project to their counterparts within the industry. An initial one-day workshop was provided for all participating captains. During this workshop, captains filled out an initial questionnaire asking their motivations and opinions about electronic monitoring. Captains were then trained about the functionality of the app and the process of submitting their data. These captains all had a desire to be part of this study, knowing that if electronic reporting was possible, it could revolutionize data collection (personal communication). They also were willing to provide continuous feedback about the app as they began working with it and critique what could be improved. Each vessel captain was required to report their catch in iSnapper before returning to the dock from any for-hire trip that the vessel took, regardless of trip type, for the 2011 Red Snapper recreational fishing season (June 1, 2011 – July 18, 2011). Captains were also asked to offer their customers a socioeconomic survey at the end of the trip and for the captains to evaluate the utility of the app and suggest modifications to improve the app for future use. Nine of the vessels were based in central Texas, and the remaining seven were in north Texas (2), Panama City, FL (2), Fourchon, LA, Orange Beach, AL, and Destin, FL (Figure 1). The vessels represented a variety of vessel types (private charter, small head boats, and large head boats) and captains had a variety of experience using apps prior to downloading iSnapper. To determine the type of for-hire vessel, we calculated the mean number of anglers per trip that were reported in iSnapper. Vessels were assigned into one of three categories: large headboats were any vessel that had a reported mean number of anglers > 20 ; private charters were any vessel with a reported mean number of anglers ≤ 6 , and small headboats were any vessel with a mean of 6-20 anglers (Table 1). As an incentive for their participation in the pilot study, each vessel captain was provided an iPhone or iPad and was

reimbursed for a monthly data plan. Reimbursement was contingent on active participation in the program. At the end of the project, captains were invited to participate in a final meeting to provide feedback about the app and see summary data from the study.

Program description and use

The iSnapper app was designed to collect data from individual vessels; thus, a login system was created where each vessel was assigned a unique identification code ("Vessel ID"), and each captain had a unique identification number. The login system was important because some of the participating headboats had numerous captains running the same vessel, and this allowed the ability to link all the trip information back to the same vessel. After logging in, participants started a new trip report for that day and began entering basic trip information (number of passengers, anglers, crew, fishing method, and target species). The program was designed to allow data input throughout the day at each stop made by the vessel to provide catch information for all fishing locations. The iSnapper app automatically recorded the vessel's position using the internal GPS when catch information was entered at a new fishing stop.

At each fishing location the species caught, number harvested and discarded, and total (approximated) weight of harvested fish were recorded. At the end of the day, the "trip close" information was entered, which included trip duration, pay type, minimum and maximum depth fished, total hours fished, and general fishing location (inland, <10 miles offshore, or >10 miles offshore). When the captains returned to port or were within cellular data range, they would submit the trip, and the information was wirelessly uploaded and stored in Bluefin, a cloud-based online hosting server. All the data was available to download by the Harte Research Institute for storage and analysis. As programming problems were uncovered, updates to iSnapper were done wirelessly by prompting the user to manually load the app and allowing it to update. Despite

different screen sizes, each smart device collected identical information.

Validation

All of the vessels could be randomly intercepted for a creel survey by MRIP or TPWD creel agents during the season; therefore, for validation purposes we obtained data from those agencies that corresponded to the vessels in our program. Specifically, we compared the number of Red Snapper harvested and discarded for trips that were both submitted using iSnapper and intercepted by a creel agent to calculate the reporting error. The reporting error for Red Snapper harvested weight was also compared between reporting methods. A Pearson's correlation was calculated to determine the relationship between the two methods of reporting for the number of harvested and discarded Red Snapper.

Socioeconomics Survey

To test the utility of mobile technologies in collecting socioeconomic data from participants in the reef fish fishery, we created a survey page within the iSnapper program. Participation by anglers (paying clients) was strictly voluntary and anonymous. Questions mirrored some of those used in the Coastal Household Telephone Survey and Angler Catch Survey (intercept) as part of the MRIP program. The one-page survey was designed so that the respondent would not have to spend more than five minutes answering the questions and was approved by the Texas A&M Universities Institutional Review Board. Captains of private charter vessels offered the opportunity to their customers to participate in the survey while traveling among sites or after the vessel has returned to the dock. All headboats were excluded because the crowds on the vessels were larger than it could reasonably be expected for the captain to interact with while safely operating the vessel. At the discretion of the captain, the device would be handed to the angler and the angler would choose whether or not to participate in the survey. Customers were advised

to only answer questions they felt comfortable with.

Results

App creation and modification

Engagement with and feedback from the for-hire captains was a critical part of the app creation process. During initial training and following an entrance questionnaire, a majority (85%) of captains felt less than 20 minutes a day was appropriate and reasonable for submitting their data electronically. In addition, several screens were redesigned based on initial feedback to allow for more intuitive navigation during data submission. Captains were apprehensive about iSnapper collecting GPS locations with concerns about the loss of “secret” fishing spots if the data were published. As a result, GPS related data were truncated to reduce resolution, and the captains were given the option to turn off the internal GPS and manually enter a location. Additionally, captains were allowed to edit and enter the latitude and longitude of their fishing locations making it possible to submit this information at the end of the day.

Trip information and data collection

Between June 1 and July 18, 2011 there were 327 trips logged using iSnapper by participating for-hire captains in the Gulf of Mexico. Most of the trips were reported in Texas, with this region having the most participating vessels (11 total). Red Snapper were the most dominant species, caught on 83% of the trips, with Florida and Alabama reporting the highest percentage of trips collecting Red Snapper, followed by Louisiana and Texas (Table 2). Although Texas had the lowest percent of trips with Red Snapper caught, they harvested the greatest percentage of Red Snapper (65%) likely due to having the highest vessel participation and that Texas was the only state that included reporting from large headboats (2 vessels). Captains also provided the primary and secondary species targeted for each trip. Interestingly,

despite this pilot being conducted during Red Snapper season, approximately 39% of trips targeted species other than Red Snapper (Table 3).

A total of 10,920 Red Snapper were captured during the 2011 recreational season comprising 61% of the overall catch, of which a total of 6,719 were harvested (Table 4). Red Snapper also had the highest discard rate (38%), and captains reported that the majority (86%) were released alive (Table 4). The next most common species caught were Vermilion Snapper and King Mackerel which, when included with Red Snapper, made up 85% of the total catch (Table 4).

Large headboats harvested 50% of the total Red Snapper, which is not surprising as they also reported the greatest number of anglers (Table 1). They caught approximately one-third of the total number of Red Snapper but discarded very few individuals (9%). Small headboats made up an additional 35% of the total Red Snapper harvest but also discarded a large portion of their catch (49%). Private charters caught and harvested the fewest Red Snapper but discarded approximately 52% of their catch.

Of the 517 fishing locations reported to iSnapper by the captains, 113 (22%) were from locations that were not fishable and likely reported at the end or after the trip based on their pin location following trip submission. This included locations inland, near the passes, and inside harbors. The remaining 78% of locations were within the Gulf of Mexico (Figure 1). Excluding errant reporting locations, iSnapper vessels travelled an average of 65km per trip. To examine the use of various habitat types, trips taken by vessels in the Port Aransas, TX area were mapped with known structured habitats (natural banks, standing rigs, artificial reefs; Figure 2). While the location data was truncated to encourage reporting, there was an obvious preference to fish well-known structured habitats (either natural or man-made). In this area, vessels were typically

fishing in waters less than 80m. Overall, a total of 296 (90.5%) trips reported their maximum fishing depth. From these trips, 91.6% were in waters less than 60m. A vast majority (71.6%) were between 30-59m, with only 8.4% occurring at depths greater than 60m.

1 *Validation*

2 For the 7 vessels being monitored by SRHS, 122 trips were logged electronically using
3 iSnapper. From these trips, a 9.0% validation rate (11 trips) occurred, resulting from data
4 submitted by only three vessels (Table 5). A total of 16 dockside intercepts occurred, wherein
5 five trips intercepted by creel agents were not reported in the iSnapper program, indicating that
6 some portion (in this case at least 31%) of trips fished during the season were not self-reported.
7 The number of harvested Red Snapper between the two reporting systems was equivalent for all
8 but one trip, resulting in a highly significant correlation between the reporting methods ($r =$
9 0.998, $P < 0.001$). The difference in harvest was one fish, for an overall reporting error of 1.0%.
10 The reported discards varied between the two survey methods (Table 5). The overall discard
11 reporting error was -6.0%, however the two reporting methods were still significantly correlated
12 ($r = 0.931$, $P < 0.001$) despite the variability. The harvested weight of fish was only measured in
13 seven creel surveys. Overall, the total weight of harvested fish was underestimated by 15.9%
14 when reported using iSnapper. However, this discrepancy is expected since few vessels weigh
15 fish while at sea and participants were estimating weights by fish size when logging data.

16 *Socioeconomics*

17 Overall, 64 socioeconomic surveys were completed on 34 different non-headboat trips (191
18 non-headboat trips total). Although it is unknown how many individual passengers were given
19 the opportunity to participate in the socioeconomic survey, we assumed based on the voluntary
20 nature of this project that at least one client was given the opportunity to take the survey on every

21 trip, since captains were already willing to submit catch and effort data. Therefore, the minimum
22 trip survey response was 18%. However, the response rate was potentially higher, if captains
23 declined to provide clients with this additional survey. There were cases where surveys were
24 administered to multiple customers on the same vessel. Of those that took the survey, there were
25 very few individual questions with no response (29 out of 512, or 5.6%). Thirty percent of the
26 respondents' saltwater fishing time was spent fishing offshore (2.5 days out of 8.2 days per year).
27 The average number of days for the entire trip (travel, fishing, other recreation) was 3.8 and the
28 clients travelled an average of 330 miles to get the charter boat location. In addition, 55% of the
29 respondents indicated a household income over \$100,000 and 80% of the respondents were male
30 (Table 6).

31 *Exit Interview Questionnaire*

32 Two final wrap-up presentations were completed at the end of the project, with 11 captains
33 in total attending at least one. These presentations were provided to allow for face-to-face
34 interactions with the captains and to discuss their experiences with electronic reporting.
35 Following the summary presentation and discussions, all captains were asked to fill out a
36 questionnaire to evaluate the app and its potential use in the for-hire fishery. A total of 4 surveys
37 were completed. While this is not enough to draw any statistically significant conclusions from,
38 we did find several similarities in responses. When asked if the program was user-friendly, all
39 four captains indicated yes it was easy and/or intuitive to use. One captain mentioned that he
40 would have preferred to use a tablet due to the larger screen size as opposed to the phone
41 (captains were given a choice between the two). When asked how iSnapper compared to other
42 electronic reporting systems all respondents indicated it was better than the other systems. The
43 critiques of the app included connectivity issues when not in WiFi range, field considerations

44 (waterproofing, difficulty seeing the screen in direct sunlight), navigation within the app, and the
45 utility of providing discard data.

46 **Discussion**

47 This project demonstrated the versatility and functionality of smart devices as electronic
48 logbooks to capture near real-time catch data in the recreational reef fish fishery. Because of the
49 availability of smart devices, there are few other data collection methods that could be integrated
50 as easily or as rapidly. These devices are user-friendly, portable, capable of running apps that can
51 collect virtually unlimited amounts of catch and effort data, are easily modified, are able to
52 seamlessly integrate with databases, and are commonly used by the general public. Results from
53 the iSnapper program also suggest that some captains in the for-hire industry are willing to be
54 proactive in developing a solution for obtaining valid catch data, and they were instrumental in
55 the success of this pilot study. Despite the project being incentivized (iPad or iPhone to keep
56 following the project), we do not think that was the ultimate motivator for why these captains
57 agreed to participate. Instead, our interactions with them indicated that they had concerns about
58 the way the fishery was being managed and saw this as a potential way to help solve a problem.
59 In addition to these conversations, some captains (18 in 2012, 10 in 2013) continued voluntary
60 reporting with no incentivization for two years following the project. All of these indicate a
61 motivated group of individuals willing to actively participate in data collection. However, the
62 data reported by these captains may not be representative of the entire for-hire fleet due to the
63 recruitment process and the limited number of individuals participating.

64 One important consideration was the overall design of the application itself. Keeping the data
65 entry simple and intuitive seemed to reduce the intimidation factor for captains, since
66 iPhones/iPads were still unfamiliar and novel to most participants. The data entry burden was

67 also considered appropriate by the captains when discussed during the final workshop, as most
68 reported that they spent less than 20 min per day entering their trip and catch information. Many
69 expressed that they liked being able to enter data throughout the day rather than having to log it
70 into a journal and then enter it into a program dockside at the end of the day. However, some of
71 the recorded fishing locations were near their port of origin, suggesting these captains entered
72 their catch information while or after returning to port. Captains may have done this because they
73 did not want to report their actual fishing locations, as many tend to be protective of their ‘spots’.
74 No matter the reason, this study shows potential utility of using the GPS capabilities of
75 smartphone and tablet devices in allowing for easier data submission. However, for captain buy-
76 in, it was critical that the GPS data was truncated and editable. Finally, despite requiring captains
77 to report prior to returning to the dock, they did have the option to use the web portal
78 (www.isnapper.org) to enter their data when they were back in port. However, during the pilot
79 program none of the reports were entered using the web portal, despite some of the trips being
80 logged outside of fishable locations and therefore had the potential to be entered using a
81 computer or web browser. This indicates the app was the preferable method of data input, both
82 with captains that adhered to mandatory reporting and those that reported following the trip. This
83 is encouraging from a design standpoint, demonstrating that the app was an easy and convenient
84 way to report trip information as opposed to a web page.

85 The primary goal of this project was to determine the feasibility of using an app to collect
86 meaningful real-time fisheries-dependent data and if that data could be usable for management
87 purposes. iSnapper generated substantial data throughout the 48-day mandatory reporting period,
88 including the number of trips logged by state and port, number of vessels targeting specific
89 species, capture and harvest by species, discard rates, and general fishing locations. Participation

90 was anticipated to be high, and self-reported harvest and effort potentially more accurate than a
91 general user, as individuals were selected due to an expressed desire to provide their data.

92 For electronic data to be used for management purposes, submitted data must be validated to
93 assure proper reporting (Sauls et al. 2012). Both the non-reporting and error rates are required to
94 extrapolate self-reported data to a total estimate of fishing effort and harvest. These rates can be
95 estimated with a robust validation component, if the electronic data fields mirror the in-person
96 creel intercept survey (Liu et al. 2017). Site pressure estimates from the creel survey can then be
97 used to calculate the total harvest and effort for the reported fishery (Liu et al. 2017). Accurate
98 estimates rely on high validation rates and require users to submit trips prior to being intercepted
99 at boat ramps. Despite the mandatory reporting requirement, at least 30% of trips were not
100 reported based on the validation data. It is unclear if captains forgot to report, or assumed they
101 did not have to due to being interviewed at the dock, but whatever the reason this is a serious
102 consideration and these factors would have to be addressed if the purpose of electronic data
103 collection is for effort and harvest estimation.

104 Although the amount of data available for validation of iSnapper data was limited, the
105 reporting error between iSnapper data and creel survey data demonstrates that electronic self-
106 reporting can be accurate depending on the motivations of the user and data being collected. The
107 number of Red Snapper reported harvested was almost identical to what was seen at dockside
108 interviews. Despite this, discard estimates were variable when compared to the dockside surveys.
109 The data submission process for both harvest and discards was the same, so the accuracy should
110 have been similar. However, in the exit interview questionnaire, one captain wrote, “Most
111 discard data from me is only wild guessing.” Depending on the number of anglers on the boat
112 and that captains typically go to known fishing hot spots, reporting discards can easily become

113 overwhelming for one person to attempt to quantify during that fishing period, and even more
114 difficult to recall when intercepted by a creel agent upon returning to port. Due to the nature of
115 data collection (automatically recorded GPS locations), it is a reasonable assumption that the
116 iSnapper data was more accurate due to there being an unlikelihood of recall bias, provided the
117 captains were entering their data at each site. We believe this to be the case, based on the
118 discussions with captains at the final workshop and the comments from the exit questionnaire. In
119 addition, a majority of Red Snapper were reported to be released alive. However, the fates of
120 these fish following release is unknown. Captains were not asked about their gear or release
121 methods and release data was not validated. This additional data would need to be collected and
122 validated before being incorporated into management. Thus, this small pilot project reveals the
123 extent of data collection that is possible with electronic reporting in a portion of the recreational
124 fisheries sector. Total recreational harvest for Red Snapper is managed based on the estimated
125 harvest and an assumed discard mortality rate. However, the discard mortality rate for this sector
126 is poorly understood due to the difficulty in collecting accurate discard rates. An electronic app
127 such as iSnapper could be a tool to collect such data.

128 Additionally, the app collected other ancillary data, such as the depth that vessels were
129 fishing. This depth information paired with release data proved to be important in Red Snapper
130 stock assessments because it was one of the only sources of data available in the entire Gulf.
131 Moreover, spatially referenced data obtained from iSnapper has the potential to provide
132 important fisheries information relevant at multiple scales. By integrating with a GIS mapping
133 program and other commercially available data sets (e.g. bathymetry, reef locations, and oil
134 platform locations), critical information related to aspects of the fishery like travel routes, bottom
135 types fished, high-use areas, seasonal patterns, and vessel home ranges could be examined for a

136 single port, among regions, or Gulf-wide. Understanding how recreational anglers are fishing
137 (e.g., depth, general locations, number and fate of discards) could be helpful in stock assessment
138 models, which has the potential to effect management decisions and regulations. The need for
139 accurate discard data is becoming a higher priority with NOAA and using a platform like
140 iSnapper with some specific modifications could be a solution to this problem. While the discard
141 data from iSnapper was highly correlated with the creel data, both reporting systems are not
142 specifically designed to accurately collect this data. However, the app could easily be modified
143 for the purpose of collecting discard data if submission was done concurrent with fishing, so that
144 anglers do not have to remember how many fish were released at each site thereby eliminating
145 errors due to recall bias. This self-reported discard data would have to be validated, potentially
146 with the use of mounted cameras, or using fishery observers similar to what is being done for
147 commercial vessels.

148 There are also many benefits of using app technology not only in the for-hire but the entire
149 recreational sector. For example, because the program can be modified by sending updates to
150 each device wirelessly, it can easily be modified and adapted, and allows the ability for critical or
151 timely information to be sent out to the entire fishery at once (e.g. harvest estimates and changes
152 in open/closed fisheries). Additionally, the iSnapper app could supplement data collected
153 through dockside surveys, thus allowing managers to track species harvest in near-real time and
154 while also minimizing recall bias. Another benefit of iSnapper is it also allows for collecting
155 socioeconomic information about fishermen. The program collected informative data about the
156 anglers participating in the for-hire industry; however, there were relatively few surveys
157 completed compared to the number of trips taken throughout the 2011 Red Snapper season,
158 especially when considering that each vessel had multiple passengers. Responses from the exit

159 questionnaire indicated that clients were skeptical of the survey or that the captains did not want
160 to bother their customers by having them fill out the survey during a "recreational" trip.
161 Following discussions with captains at the final meeting it was also mentioned that deckhands in
162 particular were not willing to offer the survey because they were afraid it would affect their tip at
163 the end of the day. These factors would need to be considered for further implementation of
164 these types of surveys and perhaps if this information collection should be mandatory. Thus, we
165 recommend including "survey refusal" (by a client) and "declined to offer survey" options as
166 part of the data collection (Fisher 1996).

167 Following the success of the pilot of iSnapper during the 2011 Red Snapper recreational
168 fishing season, several other Gulf states began their own electronic reporting apps. For example,
169 Snapper Check (AL), Tails 'N Scales (MS), and iAngler (FL), were all created to help collect
170 data predominately for the Red Snapper recreational fishery, with two of the apps having been
171 developed using iSnapper's framework. Throughout the years, these apps have since been
172 modified in a variety of ways based on the current interests of state fisheries managers and
173 researchers. In the case of iSnapper, this includes creating an Android version, options to use the
174 app if the user is either a private or for-hire (or both), allowing for the user to create their own
175 username and password for ease of recollection, and eliminating the site-by-site reporting with a
176 total trip harvest and discard for each species caught. In addition, virtually any type of data can
177 be incorporated into the reporting process, the key is to make the process efficient and user-
178 friendly. Based on our results, data entry should be limited to less than 20 minutes per trip to
179 prevent user burnout.

180 For an electronic reporting app to be integrated into management, it has to be certified by
181 NOAA Fisheries. This process involves stock assessment modelers being able to standardize

182 their data with the new electronic data, which is a laborious process. For example, LA Creel,
183 which was fully implemented for all saltwater recreational fisheries in January 2014, did not
184 become a certified data source until January 2018. It is unclear whether iSnapper could be
185 certified or if there is any benefit to such a process, as Texas does not participate in MRIP. The
186 current benefit of iSnapper is its versatility and adaptability, having a reporting system that can
187 be changed dependent on the current needs of fishery managers. While harvest estimations from
188 the app might not be integrated in stock assessments, it is possible that the cursory data could
189 actually be of greater value. As mentioned earlier, more accurate discard data is becoming a
190 priority for NOAA, and an electronic reporting app such as iSnapper could easily be modified to
191 address and answer such questions.

192 It was clearly demonstrated that iSnapper has the potential to generate near real-time, valid,
193 and usable data for fisheries managers. Building on these successes, managers could create an
194 app such as iSnapper to address many of the data gaps in recreational fisheries not currently
195 collected. This study showed smart-device applications are viable tools for data collection in
196 recreational fisheries, where data is more difficult to accurately obtain because fishermen are the
197 final consumer, leave and return to a variety of destinations including private docks where no
198 state surveys can be conducted, and return from fishing after intercept surveys are completed.
199 Electronic logbooks provide an ideal format to collect catch and effort data if time is taken to
200 create them with both fisheries managers and recreational anglers in mind.

201 Acknowledgement

202 Funding for this study was provided by the National Marine Fisheries Service, Cooperative
203 Research Program. We would like to thank the for-hire vessel owners and captains who
204 voluntarily participated in this study and acknowledge that iSnapper would not have been

205 successful without their willingness and cooperation. As agreed, we have purposely left out their
206 names to ensure confidentiality of their data; however, we want to acknowledge their hard work
207 and overwhelming support of this program. These captains continued to champion iSnapper,
208 which allowed us to expand it further than we had ever intended. We also acknowledge the Port
209 Aransas Boatmen, Inc. for helping recruit many of the for-hire captains, as well as providing
210 space and contacts for the initial meetings with the captains. We also thank Andy Strelcheck and
211 his staff at the Southeast Regional Office, particularly Dax Ruiz, for their support for the
212 duration of this project. We also acknowledge Ken Brennan, Coordinator of the Southeast
213 Region Headboat Survey, for his advice and guidance while developing this project. We extend
214 our appreciation to the Marine Recreational Information Program (MRIP) for providing
215 information to help make iSnapper successful, including data to allow us to complete the
216 validation portion of the study. Finally, we would like to thank Elemental Methods, LLC,
217 particularly Michael Christopher, for developing iSnapper. There is no conflict of interest
218 declared in this article. For D. Yoskowitz: The views expressed in this article do not necessarily
219 reflect the views or position of the Texas Parks and Wildlife Department or its Texas Parks and
220 Wildlife Commission.

221

222

223 Data Availability statement- Research data are not shared.

224 Ethics statement- There were no ethical guidelines applicable to this study.

225 **References**

226 Claroa, R., Y. S. d. Mitchesonb, K. C. Lindemanc, and A. R. García-Cagidea. 2009. Historical
227 analysis of Cuban commercial fishing effort and the effects of management interventions
228 on important reef fishes from 1960–2005. Canadian Journal of Fisheries and Aquatic
229 Sciences 99:7-16.

230 Fisher, M. R. 1996. Estimating the effect of nonresponse bias on angler surveys. Transactions of
231 the American Fisheries Society 125:118-126.

232 Gulf of Mexico Fishery Management Council, 288th meeting. 2022. Full council session,
233 webinar. Tampa, FL. Available: [https://gulfcouncil.org/wp-content/uploads/A-4-
234 GMFMC-Full-Council-Minutes-January-2022.pdf](https://gulfcouncil.org/wp-content/uploads/A-4-GMFMC-Full-Council-Minutes-January-2022.pdf)

235 Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R.
236 H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange,
237 H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner, and R. R.
238 Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems.
239 Science 293(5530):629-638.

240 Liu, B., L.S. Stokes, T.S. Topping, G.W. Stunz. 2017. Estimation of a Total from a Population of
241 Unknown Size and Application to Estimating Recreational Red Snapper Catch in Texas.
242 Journal of Survey Statistics and Methodology 5(3):350-371.

243 Mexican Gulf Fishing Company v. United States Department of Commerce. 2023. 60 F.4th 956
244 (5th Cir.)

245 National Research Council. 2006. Review of Recreational Fisheries Survey Methods. National
246 Academies Press, Washington, D.C.

247 New Civil Liberties Alliance. 2021. First amendment complaint in the U.S. District Court for the

248 eastern district of Louisiana. Civil Action No. 2:20-cv-2312. Available:
249 https://nclalegal.org/wp-content/uploads/2021/06/ECF-No.-54_-First-Am.-Complaint.pdf

250 NOAA Fisheries. 2022. Recreational electronic reporting at-a-glance. Office of Science and
251 Technology. Available at: <https://www.fisheries.noaa.gov/recreational-fishing-data/recreational-electronic-reporting-glance>

252

253 Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F. Torres, Jr. 1998. Fishing down marine
254 food webs. *Science* 279(5352):860-863.

255 Pauly, D., J. Alder, E. Bennett, V. Christensen, P. Tyedmers, and R. Watson. 2003. The future
256 for fisheries. *Science* 302(5649):1359-1361.

257 Pew Research Center. 2024. Mobile fact sheet, Fact sheets: tech adoption trends. Washington,
258 DC. Available: <https://www.pewresearch.org/internet/fact-sheet/mobile/>

259 Sauls, B., S. Freed, B. Cermak, P. Campbell, A. Best, K. Doyle, A. Strelcheck, K. Brennan, M.
260 Kaiser, and R. Trumble. 2012. For-Hire Electronic Logbook Pilot Study in the Gulf of
261 Mexico Final Report.

262 Southeast Data, Assessment, and Review (SEDAR) 52. 2018. Gulf of Mexico Red Snapper
263 Stock Assessment Report. SEDAR, North Charleston, South Carolina. Available:
264 https://sedarweb.org/docs/sar/S52_Final_SAR_v2.pdf

265 South Atlantic Fishery Management Council. 2024. Vessel monitoring systems- What you need
266 to know. North Charleston, South Carolina. Available:
267 https://safmc.net/documents/attach2_vms_qa_041013-pdf/

268 Walters, C. J., and S. J. D. Martell. 2004. *Fisheries Ecology and Management*. Princeton
269 University Press, Princeton, N.J.

270 **Tables**

271 Table 1. Detailed vessel information for iSnapper participants. A large headboat was any vessel
 272 that had a reported mean number of anglers >20; Private charter was any vessel with a reported
 273 mean number of anglers \leq 6; Small headboat was any vessel with a reported mean number of
 274 anglers between 6-20. Port of origin is the location where the vessel is docked and/or the launch
 275 location. Device indicates which type of platform was given to the captain to submit catch data.

Vessel type	Port of origin	Device	Mean number of anglers	Mean number of trips	Percent of total trips (%)
Large headboat	Port Aransas, TX	iPad	42	38	12
Large headboat	Port Aransas, TX	iPad	40	35	11
Private charter	Freeport, TX	iPad	3	19	6
Private charter	Galveston, TX	iPad	5	26	8
Private charter	Port Aransas, TX	iPad	6	7	2
Private charter	Port Aransas, TX	iPad	4	10	3
Private charter	Port Aransas, TX	iPhone	4	21	6
Private charter	Port Aransas, TX	iPad	4	13	4
Private charter	Port Aransas, TX	iPhone	4	16	5
Private charter	Port Aransas, TX	iPad	2	3	1
Private charter	Port Aransas, TX	iPad	6	4	1
Small headboat	Destin, FL	iPad	7	27	8
Small headboat	Fourchon, LA	iPhone	16	11	3
Small headboat	Orange Beach, AL	iPad	9	27	8
Small headboat	Panama City, FL	iPad	9	34	10
Small headboat	Panama City, FL	iPad	11	36	11

276

277 Table 2. Summary of vessel participation and trips logged by state during the iSnapper pilot
278 program. Red Snapper trips is the total number of trips where at least one angler caught a Red
279 Snapper and the number in parenthesis indicates the percentage of trips that caught Red Snapper
280 in each state. Red Snapper harvested is the number of Red Snapper harvested in each state and
281 the number in the parentheses is the total percentage each state harvested.

State	Number of vessels	Number of trips	Red Snapper trips (%)	Red Snapper harvested (%)
Texas	11	192	147 (77)	4363 (65)
Florida	3	97	90 (93)	1686 (25)
Alabama	1	27	25 (93)	368 (6)
Louisiana	1	11	9 (82)	302 (4)
Total	16	327	271	6719

282

283 Table 3. Primary target species recorded in iSnapper pilot program.

Primary target species	Number of trips	Percent of trips
Red Snapper	201	61.5
King Mackerel	76	23.2
Others	13	4.0
Gray Snapper	9	2.8
Blacktip Shark	7	2.1
Blue marlin	7	2.1
Sand Trout	3	0.9
Greater Amberjack	2	0.6
Yellowfin Tuna	2	0.6
Blackfin Snapper	1	0.3
Bull Shark	1	0.3
Cobia	1	0.3
Red Drum	1	0.3
Red Grouper	1	0.3
Silver Sea Trout	1	0.3
Vermilion Snapper	1	0.3

284

285 Table 4. Catch summary data from iSnapper. Table only includes fish with at least 10 individuals
 286 captured.

Common name	Scientific name	Number captured	Number harvested	Discard rate (%)	Released alive (%)
Red Snapper	<i>Lutjanus campechanus</i>	10920	6719	38	86
Vermilion Snapper	<i>Rhomboplites aurorubens</i>	3301	3214	3	91
King Mackerel	<i>Scomberomorus cavalla</i>	951	807	15	93
Red Porgy	<i>Pagrus pagrus</i>	397	391	2	100
Gray Triggerfish	<i>Balistes capriscus</i>	370	231	38	99
Gray Snapper	<i>Lutjanus griseus</i>	308	308	0	-
Atlantic Sharpnose Shark	<i>Rhizoprionodon terraenovae</i>	246	187	24	100
Red Grouper	<i>Epinephelus morio</i>	179	90	50	73
Dolphinfish	<i>Coryphaena hippurus</i>	178	165	7	100
Gag	<i>Mycteroperca microlepis</i>	138	1	99	72
Cobia	<i>Rachycentron canadum</i>	129	102	23	96
Sand Seatrout	<i>Cynoscion arenarius</i>	128	98	23	83
Greater Amberjack	<i>Seriola dumerili</i>	127	1	99	95
Blackfin Snapper	<i>Lutjanus buccanella</i>	96	85	11	82
Banded rudderfish	<i>Seriola zonata</i>	58	58	0	-
Little Tunny	<i>Sarda sarda</i>	57	53	7	75
Wahoo	<i>Acanthocybium solandri</i>	32	32	0	-
Scamp	<i>Mycteroperca phenax</i>	31	22	29	67
Blackfin Tuna	<i>Thunnus atlanticus</i>	26	26	0	-
Spanish Mackerel	<i>Scomberomorus maculatus</i>	22	22	0	-
Great Barracuda	<i>Sphyraena barracuda</i>	20	14	30	100
Almaco Jack	<i>Seriola rivoliana</i>	17	17	0	-
Spadefish	<i>Chaetodipterus faber</i>	17	17	0	-
Blacktip Shark	<i>Carcharhinus limbatus</i>	14	4	71	100
Dog Snapper	<i>Lutjanus jocu</i>	13	13	0	-
Red Drum	<i>Sciaenops ocellatus</i>	11	5	55	100
Bull Shark	<i>Carcharhinus leucas</i>	10	1	90	100
Yellowtail Snapper	<i>Ocyurus chrysurus</i>	10	10	0	-
Total Catch		17,926	12,774	29	87

287 Table 5. Individual trip validations comparing the dockside creel data with iSnapper data for
 288 harvested and released Red Snapper.

Vessel	Number harvested (creel)	Number harvested (iSnapper)	Difference	Number released (creel)	Number released (iSnapper)	Difference
Vessel A	16	16	0	30	30	0
Vessel A	16	16	0	4	10	6
Vessel B	5	4	1	0	1	1
Vessel C	8	8	0	30	31	1
Vessel C	8	8	0	20	16	-4
Vessel C	4	4	0	14	14	0
Vessel C	8	8	0	15	9	-6
Vessel C	10	10	0	6	5	-1
Vessel C	8	8	0	10	3	-7
Vessel C	9	9	0	8	8	0
Vessel C	12	12	0	12	13	1
Total	104	103	1	149	140	-9

289

290 Table 6. Socioeconomic survey questions provided to recreational anglers following a fishing
291 trip. Participants were also asked their zip code but this information was not included in the
292 table.

Socioeconomic survey questions (n = 64)	Mean
1 How many people in total, including yourself, live in your household? Please include those people who fish and who don't fish.	3.9
2 How many people in your household, including children and adults, have been recreational saltwater fishing in the last 12 months anywhere in the Gulf of Mexico region including inshore and offshore?	2
3 How many days did you spend saltwater fishing in the last 12 months?	8.2
4 How many of these days were spent offshore?	2.5
5 If this fishing trip is part of a longer trip in which you will spend at least one night away from your permanent residence, how many days will this trip last?	3.8
6 Distance traveled to destination	329 mi
7 Gender of respondent	Male=53 Female=11
8 Which of the following best describes your household's annual income, before taxes?	
Less than \$10,000	1
\$10,000 — 14,999	1
\$15,000 — 24,999	0
\$25,000 — 34,999	3
\$35,000 — 49,999	0
\$50,000 — 74,999	7
\$75,000 — 99,999	8
\$100,000 — 149,999	21
\$150,000 — 199,999	10
\$200,000 or more	7
Don't Know / Not Applicable	6

293

294 **Figure Captions**

295 Figure 1. Vessel port of origin (white stars) and general fishing locations as recorded by iSnapper
296 pilot program during the 2011 Red Snapper recreational season (6/1/2011 – 7/18/2011).
297 Locations were either automatically recorded by the internal GPS on the iPhone or iPad, or
298 manually edited by vessel captains. Locations on land are due to captains completing the survey
299 after the trip was completed.

300

301 Figure 2. Example of how reporting locations can be useful for fishery managers when combined
302 with habitat and bathymetry data. Red dots are the reporting locations with natural banks,
303 artificial reefs, and surface oil/gas rigs denoted.