

The rise of long-sediment-laden algal turfs: an additional negative feedback process limiting reef resilience

Mark C. Ladd¹ · Andrew A. Shantz² · Alastair R. Harborne³ · Andrew G. Bauman⁴ · Alain Duran³

Received: 21 July 2025 / Accepted: 19 November 2025

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025

Abstract In an era of increasing disturbances, understanding the capacity for coral reefs to recover and the drivers that underpin resilience is critical for predicting the health of future coral reefs. Traditional resilience paradigms for Western Atlantic reefs suggest that high herbivore biomass and low macroalgal cover are tenets of resilient systems. Yet, it is clear that some locations, such as Florida's reefs, and potentially other locations, are not well explained by this paradigm. Here, we suggest that the proliferation and increased dominance of long-sediment-laden algal turfs (LSATs) create an additional negative feedback process that helps explain the compromised resilience of Florida's reefs and further extends the existing Western Atlantic model. Collectively, coral mortality, reef flattening, and intense grazing appear to have created a series of negative feedback processes that reinforce a flat, sediment-laden benthos that impedes the recovery of already diminished coral populations. Importantly, feedbacks associated with LSATs could be strengthened in the presence of high herbivore biomass, thereby undermining foundational expectations of resilience based on grazing pressure alone. Here, we outline this destructive cycle and provide support for the mechanisms that drive these feedbacks. Although we focus on the

ecological context of Florida's reefs, our expansion of the conceptual framework will likely apply to other reef systems in the Caribbean with similar ecological attributes. Mounting evidence suggests that LSAT dominance represents a novel ecosystem state for Western Atlantic reefs.

Keywords Coral reef · Negative feedbacks · Long-sediment-laden algal turfs · Parrotfish · Resilience · Bioerosion · Herbivory · Hysteresis

Introduction

As global coral populations continue to decline, understanding their capacity to recover and the drivers that underpin resilience is critical for predicting the health of future coral reefs (Bellwood et al. 2004; Putnam et al. 2017). To this end, decades of coral reef research have been synthesized to inform an understanding of reef resilience for the Western Atlantic (e.g., Mumby et al. 2007a). Under this paradigm, processes that facilitate coral success underpin a series of positive feedbacks that support the persistence of structurally complex reefs (Mumby and Steneck 2008). Top-down control by herbivores (e.g., parrotfishes and urchins) is a particularly critical process for preventing, and potentially reversing, shifts from coral to macroalgal dominance following large-scale disturbances (Bellwood et al. 2004; Hughes et al. 2007; Burkepile and Hay 2009; Kubicek and Reuter 2016). Recruitment-driven population recovery in turn hinges on larval supply, suitable recruitment substrate, and the post-settlement survival of corals (Ritson-Williams et al. 2016; Gouzeau et al. 2019; Edmunds 2023; Edmunds et al. 2024). Without top-down control, macroalgae can rapidly colonize open spaces and prevent the settlement, survivorship, and growth of new corals, thereby limiting the recovery

✉ Mark C. Ladd
mark.ladd@noaa.gov

¹ Population and Ecosystems Monitoring Division, NOAA Southeast Fisheries Science Center, Miami, FL, USA

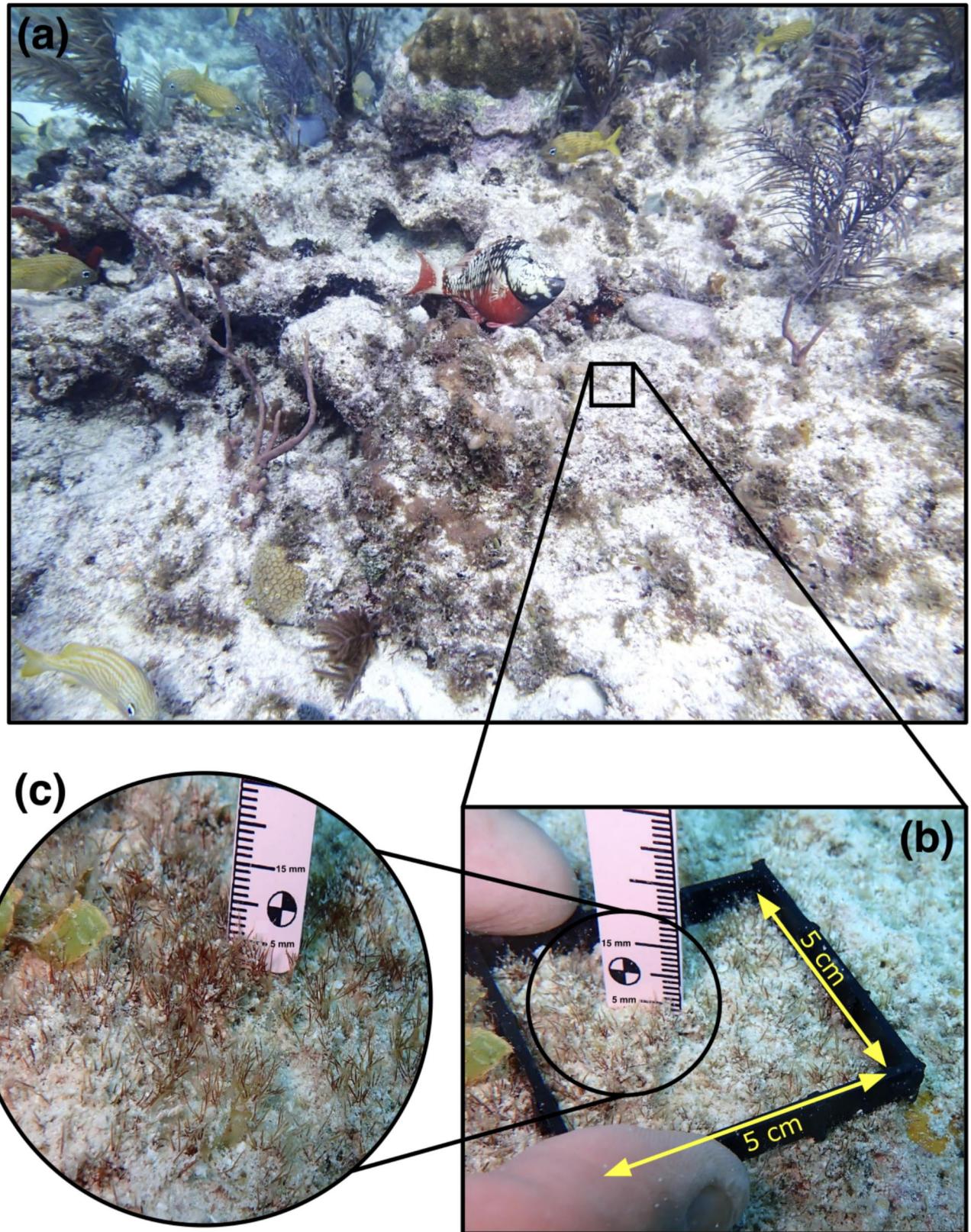
² Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Manoa, Honolulu, HI, USA

³ Department of Biological Sciences, Institute of the Environment, Florida International University, Miami, FL 33199, USA

⁴ National Coral Reef Institute, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL 33004, USA

of coral populations following disturbances (Hughes et al. 2007; Adam et al. 2015).

When corals die and fail to recover, the expected trajectory of change in the Western Atlantic follows a transition from coral- to macroalgal-dominated reef systems (Littler & Littler 1985; Hughes 1994; Scheffer et al. 2001; Mumby & Steneck 2008; Schmitt et al. 2019). Phase shifts from coral-dominated to macroalgae-dominated reefs are problematic because of negative processes: Macroalgae often outcompete corals for space, reduce recruitment opportunities, and alter reef dynamics by providing suboptimal habitat for associated species, including the loss of structural complexity necessary to support large grazing fish populations (Hughes et al. 2007; Mumby and Steneck 2008). Once established, degraded states can hinder efforts to restore coral dominance, even when initial stressors are mitigated (Mumby 2009; Steneck et al. 2019). These unexpected dynamics are often explained by hysteresis, a phenomenon in which the return to coral-dominated states requires significantly more effort than might be expected because of negative feedback processes (Scheffer et al. 2001; Mumby et al. 2013).


In an era of rapid global environmental change, coral reef paradigms require evolving scientific approaches, refinement, and recognition of a more nuanced understanding to capture the dynamics of contemporary coral reefs (Williams et al. 2019). For example, in the Western Atlantic, evidence shows that benthic trajectories of Florida reefs are poorly represented by the prevailing resilience model, with coral cover typically < 5% but high grazing intensity and only modest macroalgal cover (Ruzicka et al. 2013; NCRMP 2018; Shantz et al. 2020). Consequently, on contemporary Florida reefs, and possibly other locations, additional pathways that explain reef trajectories may be missing from our conceptual model of reef change. Here, we propose that additional negative feedback processes promote the proliferation and stability of long-sediment-laden algal turfs (henceforth, LSATs; Goatley et al. 2016) and help explain compromised resilience on Florida's coral reefs (Fig. 1). Mounting evidence suggests that LSAT dominance may represent a widespread novel ecosystem state for Western Atlantic reefs (Duran et al. 2024). Interestingly, in addition to terrestrial inputs from increasing coastal populations (Rogers and Ramos-Scharrón 2022), a portion of the sediment available to accumulate in LSATs is of biogenic origin, created from the bioerosion of calcium carbonate reef framework by parrotfish protected to increase grazing and promote resilience (Bruggeman et al. 1996; Molina-Hernández et al. 2022; 2024). Consequently, the ecological context of Florida's reefs provides an interesting case study on the challenges of establishing well-meaning conservation initiatives in isolation while failing to address other stressors that erode resilience, including climate change, disease, and decreased water quality.

Disturbances typify Florida reefs and alter ecological contexts

Coral communities in Florida have declined for at least 50 years as a consequence of disease outbreaks, thermal stress events, and chronic local stressors like sedimentation and pollution (Jackson et al. 2014). Regional disease events starting in the 1970s marked a turning point on Florida's reef, driving catastrophic losses of Acroporids and massive corals (Dustan 1977, Porter and Meir 1992, Richardson and Voss 2005; Lirman et al. 2014), as well as the near extirpation of herbivorous sea urchins (Lessios 2016). These catastrophes were followed by a series of new disease outbreaks, cold-water mortality events (Porter et al. 1982; Roberts et al. 1982; Lirman et al. 2011), and six major coral bleaching events (Manzello 2015). By 2014, mean coral cover across Florida reefs was ~ 6.7% (NOAA National Coral Reef Monitoring Program 2018) when a novel disease, stony coral tissue loss disease (SCTLD), emerged to cause mass mortality of numerous species and decimate remaining coral populations (Precht et al. 2016; Muller et al. 2020). The onset of SCTLD coincided with recurrent bleaching events (2014 and 2015) and a new reality for Florida's reef in which temperatures in the Florida Keys have exceeded the traditional 4 °C heating week bleaching threshold every year since (NOAA Coral Reef Watch 2018). These annual thermal stress events have driven further declines of Florida's corals, punctuated by the 2023 marine heat wave, which shattered previous records for heat stress on Florida's reefs. This marine heat wave caused catastrophic losses of the already severely depleted populations of the key reef-building species *Acropora palmata* and *A. cervicornis*, two of the few species not impacted by SCTLD, resulting in a significant setback to years of coral restoration efforts (Williams et al. 2024; Manzello et al. 2025). Coinciding with the loss of live coral cover on Florida's reefs, there has been a near complete shutdown of recruitment of the remaining reef-building species (i.e., *Orbicella* and *Montastraea*). Despite the potential for high larval connectivity within the Florida Reef Tract (Frys et al. 2020) and potential larval supply from reefs in Cuba and the Yucatan Peninsula in Mexico (Holstein et al. 2014), a three-year recruitment study across the Florida Reef Tract (2015 to 2018) found no *Orbicella* or *Montastraea* recruits and a single *Acropora* recruit (Harper et al. 2023), indicating that one or more processes operating on Florida's reefs are contributing to reduced recruitment.

Contemporary Florida reefs: fundamental shifts in benthic communities and ecological processes

One of the most striking shifts in benthic composition on Florida's reefs is the proliferation of LSATs. LSATs develop

Fig. 1 **a** A coral depauperate LSAT-dominated reef in Florida, **b** close-up photograph of intact LSAT, and **c** the same area with the sediments removed from the turf algae near the ruler

when there is an increase in the accumulation and retention of sediments within the short, productive algal turfs that are commonly targeted by herbivores (Goatley et al. 2016; Speare et al. 2019; Duran et al. 2024). Data from the National Oceanic and Atmospheric Administration's National Coral Reef Monitoring Program (NOAA NCRMP) show that sediment-laden algal turfs now cover > 30% of the benthos across Florida's reefs (NCRMP 2018), and other data show up to 60% cover of LSATs at some reefs (Speare et al. 2019; Duran et al. 2024). Changes in south Florida's benthic community composition mirror global patterns suggesting that low-lying algal turfs are increasing in abundance and poised to dominate future reef systems (Tebbett et al. 2023). The increasing abundance of LSATs coincides with declines in reef accretion, and the vast majority of reefs in southeast Florida are now in a state of net erosion, with some locations losing as much as ~ 8.5 kg of calcium carbonate $m^{-2} \text{ year}^{-1}$ (Toth et al. 2018; Morris et al. 2022).

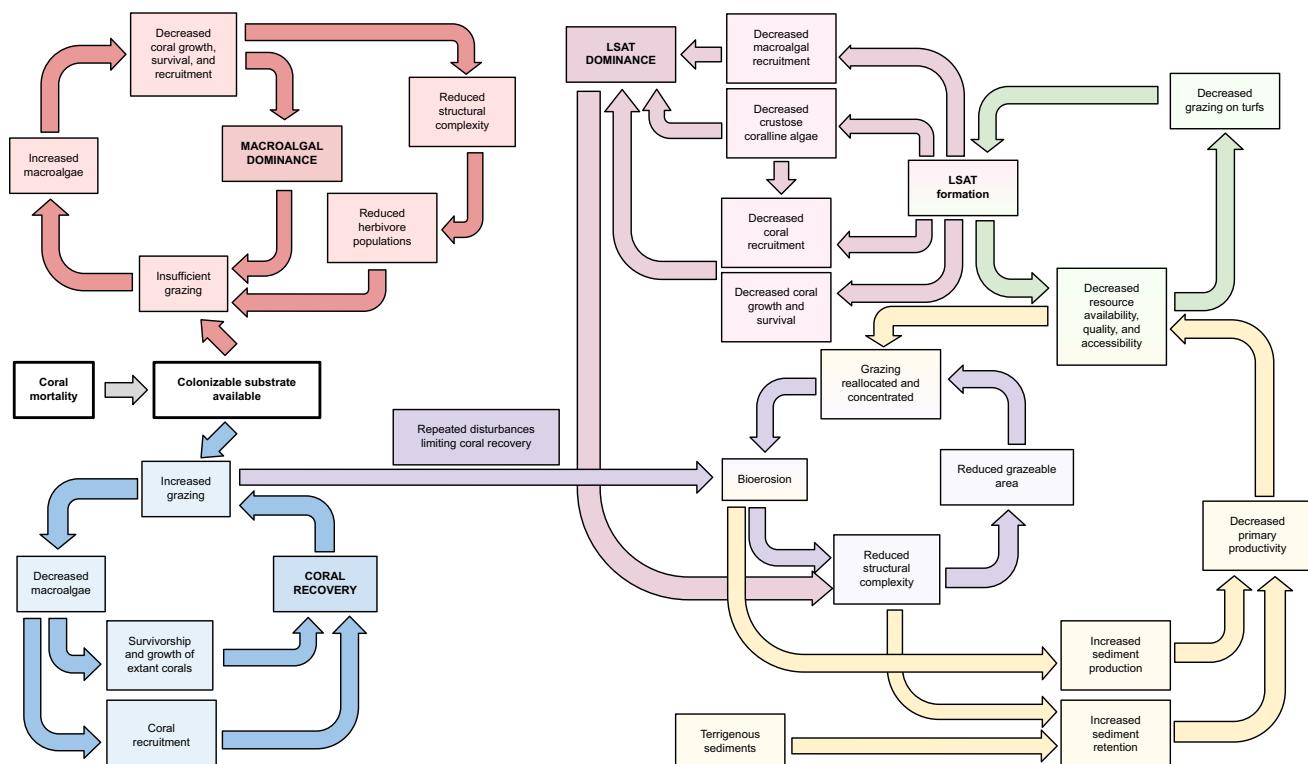
Declines in reef accretion on Florida's reefs will likely further weaken positive feedback processes that promote recovery and expose a nuanced challenge for Florida's reefs—grazing by parrotfishes. Thirty years of legal protection have allowed south Florida reefs to house some of the largest and most abundant parrotfish populations in the Western Atlantic (Shantz et al. 2020; Zuercher et al. 2023). Grazing and removal of algae ('realized function' sensu Bellwood et al. 2019) are key ecosystem functions important for controlling macroalgal growth. However, intense grazing by parrotfishes can also negatively affect coral recruit survival via incidental mortality (Edmunds 2023), serving as a potential mechanism limiting coral recovery. Additionally, without reef accretion grazing by parrotfishes can increase net bioerosion and the loss of structural complexity (Molina-Hernández and Álvarez-Filip 2024). The loss of complexity promotes the establishment of low-lying algal turfs that when containing high sediment loads can impair coral growth, reduce recruitment, and thus hinder reef recovery (Speare et al. 2019). Due to the lack of vertical relief and an increasing supply of sediments from terrestrial (Fabricius 2005; Erfemeijer et al. 2012) and biological (Bruggeman et al. 1994; Perry et al. 2020) sources, algal turfs eventually become saturated with sediment and are avoided by parrotfish, which in turn are hypothesized to redirect grazing to increasingly scarce rugose areas and further accelerate reef flattening (Tebbett et al. 2020a, b). Collectively, coral mortality, reef flattening, and intense grazing appear to have created a series of negative feedback processes that reinforce a flat, sediment-laden benthos that impedes the recovery of already diminished coral populations. Below, we outline this destructive cycle and provide support for the mechanisms that drive these feedbacks. Here we focus on the ecological context of Florida reefs; however, our conceptual framework, which extends the existing resilience paradigm

in the Western Atlantic, will likely apply to other reef systems in the Caribbean with similar ecological attributes. Although sediment-related processes on Indo-Pacific reefs are important (Tebbett and Bellwood 2019, 2021), resilience processes are markedly different (Roff & Mumby 2012) and therefore the application to these reefs is unclear.

Processes on contemporary coral reefs give rise to negative feedbacks

Coral mortality redistributes grazing pressure and promotes bioerosion

When corals die, their skeletons are often rapidly colonized by algal turfs (Diaz-Pulido and McCook 2002; Leggat et al. 2019) and endolithic communities (Tribollet et al. 2006). Turf communities are often highly productive and palatable to herbivores (Carpenter 1985; Aedy and Goertemiller 1987; reviewed in Tebbett and Bellwood 2021) while the endolithic communities that develop in the upper layer of the dead coral skeleton can be rich in protein, lipids, and limiting nutrients (Clements et al. 2017). Parrotfishes that target epilithic algal turfs and endolithic communities are broadly classified as scrapers and excavators (Bellwood and Choat 1990; Clements et al. 2017; Adam et al. 2018), feeding behaviors that remove calcium carbonate material and contribute to bioerosion (Fyrdl and Stearn 1978; Bruggeman et al. 1994; Molina-Hernández et al. 2022). Five of the nine most common parrotfish species in Florida (*Sparksoma viride*, *Scarus guacamaia*, *Sc. coeruleus*, *Sc. vetula*, and *Sc. taeniopterus*) feed primarily through scraping and excavating the benthos (Adam et al. 2018). Estimated bioerosion rates for *Sc. vetula* and *Sc. viride*, the parrotfish species with the highest potential to contribute to bioerosion, range from ~ 85 to 250 kg $ind^{-1} \text{ year}^{-1}$, respectively, for individuals 41–50 cm in total length (Molina-Hernández and Álvarez-Filip 2024). Similarly, recent work in the Mexican Caribbean revealed that the loss of structural complexity from recently dead corals was positively associated with the presence of parrotfish grazing scars (Molina-Hernández et al. 2022). Thus, the robust parrotfish populations present on Florida's reefs have the potential to remove a substantial amount of calcium carbonate and complex structure from the reef (Morris et al. 2022).


Sediment retention decreases resource quality and availability, further concentrating grazing intensity on existing structure

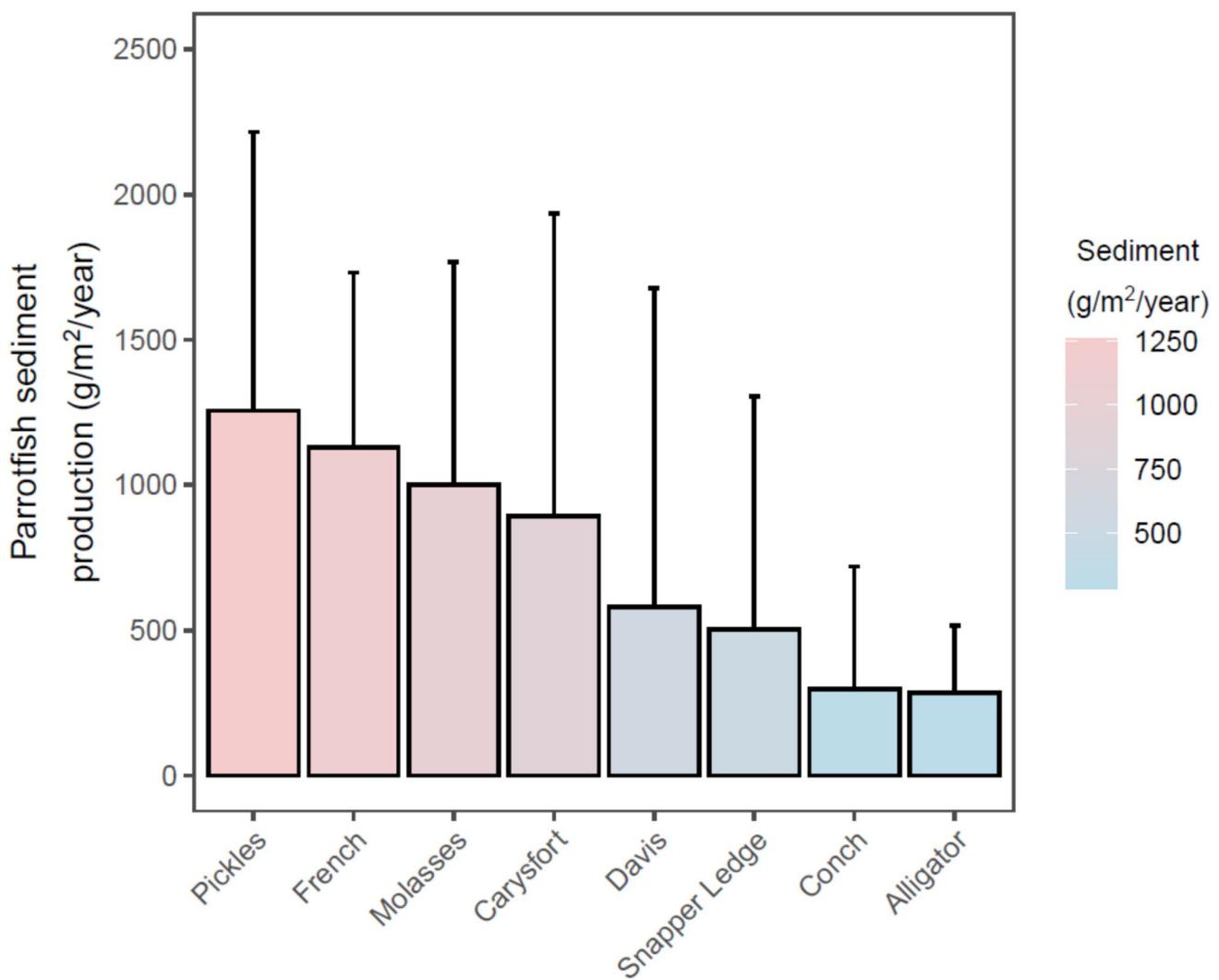
As the calcium carbonate structure of coral skeletons is removed, reefs may lose vertical complexity (Álvarez-Filip et al. 2009; Bozec et al. 2015; Molina-Hernández et al.

2022). Steeper slopes, such as the near-vertical angles on the sides of dead coral colonies, retain less sediment, whereas sediment retention increases with decreasing vertical complexity (Tebbett and Bellwood 2019). Furthermore, these flatter surfaces facilitate the development of turf communities that easily trap sediments (Duran et al. 2018). Ultimately, these losses in complexity help transform more heterogeneous benthic communities comprising areas with short productive algal turfs and LSATs toward a flat, homogeneous, LSAT-dominated reef state.

In turn, sediment retention within algal turf communities on increasingly flat reefs can likely impact grazing via numerous mechanisms. Increased sediment loads can reduce primary productivity (Clausing et al. 2014; Tebbett and Bellwood 2020), with one study from the Great Barrier Reef finding that sediment addition can decrease the potential yield of algal turf biomass by 2000% (Tebbett et al. 2018). Beyond severely reducing resource

availability, sediment retention within algal turfs and the formation of LSATs decreases resource quality (Tebbett et al. 2020a, b) and may suppress the recruitment and growth of macroalgae predicted to increase under classic resilience paradigms (Umar et al. 1998). Foraging theory dictates that diminished resource quality requires parrotfish to graze more to acquire the same level of nutrition, effectively increasing parrotfish grazing pressure without a corresponding increase in the biomass or abundance of the population (MacArthur and Pianka 1966). Lastly, sediment loading in algal turfs reduces resource accessibility (i.e., burial by sediments), redistributing and potentially concentrating grazing pressure to other areas of the reef (Clausing et al. 2014; Tebbett et al. 2020a, b). Ultimately, sediment retention serves to reduce rates of herbivory and promotes the formation of LSATs (Fig. 2; green arrows) (Bellwood and Fulton 2008; Goatley and Bellwood 2012; Clausing et al. 2014).

Fig. 2 Conceptual diagram illustrating top-down pathways of coral benthic community trajectories under different ecological conditions. Following a coral mortality event, substrate is liberated and available for colonization by benthic organisms (white boxes, gray arrow). Blue arrows and boxes represent a simplified traditional resilience pathway in which sufficient herbivory prevents macroalgal colonization and facilitates coral recruitment and recovery. Red arrows and boxes depict recovery failure whereby insufficient herbivory allows a transition to macroalgal dominance and inhibition of coral recovery. Here, we propose a third, distinct recovery failure pathway operating on reefs in Florida: Despite high parrotfish biomass,


coral populations remain extremely low due to persistent disturbances and disease. Under this pathway, high grazing intensity and limited coral recovery initiates a series of reinforcing feedbacks underpinned by bioerosion and reef flattening (purple), sediment generation and retention (yellow), diminished resources for herbivores (green), promoting the formation of long-sediment-laden algal turfs (LSATs; pink). Each set of colored arrows represents a discrete feedback mechanism hypothesized to reinforce LSAT dominance and suppress coral recovery. Collectively, these feedbacks define a novel ecosystem state that is not captured by traditional reef resilience paradigms

Moreover, a reduction in herbivory on areas where LSATs develop would intensify grazing pressure and spatially concentrate them to a smaller area of the reef where LSATs are not present (i.e., areas with more structural complexity), creating an accelerating negative feedback (Williams et al. 2001; Vergés et al. 2011). In turn, the removal of structurally complex reef framework and the loss of vertical relief reduce the total surface area available for grazing and eliminate high-relief areas that support more productive and accessible algal communities (Tebbett and Bellwood 2019). Simultaneously, grazing by scraping and excavating parrotfishes can both rework existing sediments and generate new sediments via the ingestion of reef framework (Bruggeman et al. 1994). For example, applying recently developed sediment budgets to parrotfish surveys conducted in the upper Florida Keys by Shantz and Ladd (2024) suggests parrotfish may

have generated between 250 and 1250 g of sediment per $\text{m}^{-2} \text{ year}^{-1}$ for at least the past decade (Perry et al. 2023; Fig. 3). Much of these biogenic sediments can be deposited back onto the reef (Bruggeman et al. 1994; Tebbett et al. 2017; Perry et al. 2020; Molina-Hernández et al. 2022), where they may be retained in algal turfs and further reinforce the sediment-driven feedback (Fig. 2; yellow arrows).

A novel ecosystem state: LSATs proliferate, accelerate coral decline, and inhibit recovery

Sediments can directly impact corals at all life history stages (Rogers 1990; Fabricius 2005; Risk 2014). Sediments can reduce coral growth rates and cause the partial or complete mortality of colonies through various mechanisms (reviewed in Fabricius 2005; Erfemeijer et al. 2012; Tuttle

Fig. 3 Mean estimated sediment production ($\text{g m}^{-2} \text{ year}^{-1}$) by parrotfishes at eight reef sites in the Florida Keys, USA. Error bars are $\pm \text{SD}$. Estimates were generated using the sediment budget tool

from Perry et al. (2023) and data from parrotfish surveys conducted in the Upper Florida Keys and reported in Shantz and Ladd (2024)

and Donahue 2022). Additionally, sediments can serve as a reservoir and vector for coral disease (Studivan et al. 2022). Beyond impacting coral populations, sediments trapped in algal turfs can inhibit coral recruitment (Birrell et al. 2005; Wakwella et al. 2020), a fundamental process for reef recovery. On reefs in the Florida Keys, multiple studies have found that juvenile coral abundance is negatively related to LSAT cover and that sediment-laden algal turfs can drastically reduce the settlement of major framework-building species in the Caribbean like *Acropora palmata* and *Orbicella faveolata* (Speare et al. 2019; Duran et al. 2024). Indeed, Speare et al. (2019) found that sediments in algal turfs reduced the settlement of *O. faveolata* larvae by 99% compared to turf algae alone. Additionally, the one study that has assessed the impacts of sedimentation on coral recruits in the Caribbean found that just 60 mg cm⁻² of sedimentation reduced the survival probability of 5-month-old *Porites astreoides* to 0%, providing a substantial barrier to the recovery of coral populations (Founrey and Figueiredo 2017). In addition to directly reducing settlement, the establishment of LSATs can further reduce the potential for coral recruitment by decreasing the abundance of crustose coralline algae, an important group of benthic taxa that can promote coral recruitment (Duran et al. 2018). Cumulatively, increased sediment retention and abundance of LSATs are likely to drive further declines in coral populations and inhibit their recovery via additional coral mortality and diminished coral recruitment, further strengthening the negative feedback processes that help to lock Florida's reefs in a degraded state of continued decline (Fig. 2; pink arrows). However, this dominance by LSATs and the consequences for ecosystem functions differ from the traditional degraded state of high macroalgal cover.

The challenges of protecting parrotfishes on contemporary coral reefs

If protecting parrotfishes increases the bioerosion of valuable natural capital (three-dimensional reef structure) while simultaneously generating sediment that contributes to the cover of LSAT, the question arises of whether the ban on parrotfish fishing should be reconsidered. In isolation, there is general agreement that protecting parrotfish is a beneficial management action: There is evidence that parrotfish populations can increase when fishing pressure is removed, which increases grazing intensity, decreases macroalgal cover, and increases coral recruitment and cover in the absence of disturbances or other stressors that limit recovery (Mumby et al. 2006, Mumby et al. 2007b, Mumby and Harborne 2010; but see Bruno et al. 2019). Furthermore, experiments in Florida have shown that exclusion of parrotfishes quickly leads to high coral mortality and reefs being overgrown with macroalgae (Shantz et al. 2020) while research in areas where

coral recruitment remains high has shown parrotfish are critical components of coral recovery following disturbances (Adam et al. 2014; Donovan et al. 2023). Thus, in places like Florida the problem is not necessarily too many parrotfish, but likely the decoupling of parrotfish grazing and natural coral recovery processes. If we remain optimistic about the future of reefs in the region and believe that overarching threats such as climate change and water quality will be addressed, then an intact parrotfish population will be needed to allow coral to recover.

In this light, removing protections from parrotfishes makes little sense. Ultimately, protecting parrotfishes is one of the most successful coral reef public awareness programs in the region. The increased knowledge of reef resilience, incorporating recognition of the importance of parrotfishes in the absence of a significant recovery of *Diadema* (Mumby 2006), has been clearly messaged to coastal communities. In addition to Florida, fishing bans have been established in over half the countries polled in a regional review, including Barbuda, Belize, Bermuda, and Honduras (Harms-Tuohy 2021). There has been no systematic effort to quantify the benefits of this policy across locations, but regional analyses are promising (Shantz et al. 2020). Indeed, large-scale analyses are challenging because of the difficulties of identifying complex trophic cascades (Mumby et al. 2022), especially across broad biophysical gradients (e.g., gradients of nutrient enrichment and sediment load; Suchley et al. 2016). However, the policy is supported by theory and localized case studies (Mumby et al. 2006; Suchley and Alvarez-Filip 2017; Steneck et al. 2018; Shantz et al. 2020). Changing an effective policy sends potentially damaging messages to the public, generates confusion, and may weaken trust between coral reef managers and local resource users.

Rather than protecting parrotfishes being a policy that should be modified, it represents an interesting case study of how well-meaning conservation initiatives can have unintended consequences if instigated in isolation. A holistic approach to conserving reefs requires all global and local stressors including, climate change, water quality, disease, and overfishing of all species to be addressed (Hughes et al. 2003). In contrast, protecting parrotfishes alone maintains or increases bioerosion. Yet, coral recovery is limited by factors such as bleaching events, disease, sediment load, low coral larval supply, and high recruitment mortality (Hughes et al. 2003; Bellwood et al. 2004; Manzello et al. 2015; Edmunds 2023; Duran et al. 2024). Thus, while protecting parrotfishes can lead to the unintended consequence of reducing three-dimensional structure on reefs where corals fail to recover, this represents a failure of our efforts to address other stressors rather than an inherent problem with protecting parrotfishes. There is a growing literature on the unintended consequences of conservation, which can be categorized as flow effects (enhancing or dampening a

preexisting linkage), deletion effects (removal of a preexisting linkage), or addition effects (adding new elements to a system; Larrosa et al. 2016). For example, the flow effect of protecting parrotfishes and enhancing bioerosion of three-dimensional reef structure on Florida's reefs is analogous to the protection of green turtles (*Chelonia mydas*) in the absence of natural shark predation pressure, which has led to overgrazing of seagrass that affects fish populations and carbon sequestration (reviewed by Jones et al. 2022). These unexpected ecological dynamics underscore the urgent need for fundamental research to quantify and better understand the ecological links and feedbacks that promote and stabilize LSAT-dominated ecosystem states on coral reefs (Fig. 4).

Between a rock and a hard place

While we support the protection of parrotfish in Florida and elsewhere, we must also be realistic and recognize that solving all the problems currently facing reefs appears intractable as we enter the Anthropocene (Hughes et al. 2017). Pushing to solve these problems remains critical, and begs the question whether there are other approaches

to minimize the negative effects of parrotfish bioerosion. One effort that is well underway in Florida and elsewhere is coral restoration (reviewed by Boström-Einarsson et al. 2020). When successful, outplanting corals can shift carbonate budgets from negative to positive by allowing reef accretion to outpace bioerosion (Lange et al. 2024). Increasing coral cover also reduces the area available for LSAT growth and potentially generates microhabitats suitable for natural coral settlement. However, the success of coral restoration is inevitably limited while the stressors causing coral mortality remain (Hughes et al. 2023). A potentially useful complementary approach to coral restoration may be structural restoration of the complex habitat that is being lost (Yanovski & Abelson 2019). Indeed, a suite of studies has established strong links between structural complexity and coral recruitment across different spatial scales (mm to m; Edmunds et al. 2014; Carlson et al. 2024). Moreover, corals demonstrate increased success when elevated from the seafloor (Lenihan et al. 2011) and are not in contact with sediments (Clements et al. 2024), suggesting that incorporating structural restoration may be particularly important for locations like Florida where LSATs dominate. Beyond restoration, we encourage efforts to rebuild predator populations

LONG SEDIMENT-LADEN ALGAL TURFS: KNOWLEDGE GAPS & RESEARCH PRIORITIES	
FORMATION & STABILITY	PREVALENCE & DISTRIBUTION
<p>Knowledge Gap: Understanding mechanisms that underpin LSAT formation and stability</p> <p>Research Priorities:</p> <ul style="list-style-type: none"> Drivers of sediment accumulation and retention: <ul style="list-style-type: none"> Substrate slope and surface characteristics Turf characteristics (composition, height, and density) Sediment source/grain size, water flow, resuspension rates, turbation rates Successional dynamics of LSATs: <ul style="list-style-type: none"> Changes in turf composition as LSAT develops and stabilizes Sedimentary processes and their relative contribution to LSAT: <ul style="list-style-type: none"> Sediment source: terrestrial vs. reef sediment Sediment origin: reworked vs. newly generated sediment Role of parrotfish in turf-sediment dynamics 	<p>Knowledge Gap: Identify thresholds and tipping points of LSAT prevalence across spatiotemporal, biological, and abiotic gradients</p> <p>Research Priorities:</p> <ul style="list-style-type: none"> Spatial and seasonal patterns of LSAT: <ul style="list-style-type: none"> Reef zones and habitat type Structural relief, distance from sediment sources Seasonal changes in LSAT composition and abundance Biological drivers: <ul style="list-style-type: none"> Existing benthic community composition (e.g., coral vs. macroalgal vs. turf-dominated) Herbivore abundance, biomass, and composition Abiotic drivers: <ul style="list-style-type: none"> Depth, wave energy, nutrients Sediment size and sediment characteristics
<p>Knowledge Gap: Impacts of LSAT on ecosystem functions and ecological processes</p> <p>Research Priorities:</p> <ul style="list-style-type: none"> Direct effects: <ul style="list-style-type: none"> Growth and survival of corals and other benthic organisms Interactions with substrates that promote coral settlement (e.g., crustose coralline algae) Primary productivity, nutrient cycling and storage, energy transport higher trophic levels Fish behavior and distribution Indirect effects: <ul style="list-style-type: none"> Abiotic conditions (e.g., hypoxia or anoxia, accumulation of contaminants) Microbial dynamics (e.g., potential to serve as a reservoir for disease agents, retain/promote bloom-forming organisms, alter nutrient cycling and primary productivity) 	<p>Knowledge Gap: Strategies to break feedbacks that promote LSAT establishment and reinforce LSAT dominance</p> <p>Research Priorities:</p> <ul style="list-style-type: none"> Herbivore restocking: <ul style="list-style-type: none"> Ability of diverse herbivore assemblages (e.g., urchins, crabs) to reduce turf cover without reinforcing sediment dynamics Structural enhancement: <ul style="list-style-type: none"> Reduce sediment retention, increase coral recruitment, combat effects of bioerosion Bioturbators and detritivore enhancement: <ul style="list-style-type: none"> Prevent/reduce formation and stability of LSATs; make turf algae more accessible to herbivores

Fig. 4 Knowledge gaps and research priorities that should be addressed to better understand the mechanisms underpinning the formation, stabilization, prevalence, and impacts of LSAT-dominated states on coral reefs

while protecting parrotfishes. Abundant predators, such as large groupers, can reduce the abundance of smaller parrotfish through consumptive effects (Mumby et al. 2006). Due to few long-term datasets, it is very difficult to compare current parrotfish biomasses and behaviors to historical norms, but it is reasonable to assume that historically top-down controls were significantly greater. Finally, we encourage further research investigating the functional differences among parrotfishes (e.g., Adam et al. 2018) as this translates to a better understanding of how ecological processes vary in space (Randazzo-Eisemann et al. 2024), but also potentially through time as benthic characteristics change.

Conclusions

Florida's coral reefs exemplify the complex, compounding challenges confronting coral reef ecosystems in the Anthropocene. Here, we propose that LSATs form a series of self-reinforcing negative feedback processes that suppress coral recruitment, accelerate the loss of structural complexity by redistributing grazing pressure, and contribute to the persistence of degraded reef states that do not have high macroalgal cover. Notably, these feedbacks can emerge even under conditions typically associated with resilience—such as high herbivore biomass and low macroalgal cover—exposing critical gaps in prevailing reef resilience paradigms for the Western Atlantic (Mumby & Steneck 2008; Hughes et al. 2010).

Furthermore, large areas of reef covered in LSAT, rather than macroalgae, may represent a poorly recognized ecosystem state for reefs in the region, analogous to concerns that cyanobacterial mats may dominate some reefs (de Bakker et al 2017). In contrast to macroalgal dominance where scenarios, such as the recovery of *Diadema*, could significantly reduce macroalgae and kick-start natural recovery processes, it is not clear what biological process could change LSATs back to high productivity turf areas. While our model is grounded in Florida's ecological and disturbance history, the underlying drivers—chronic coral mortality, reef flattening, sediment retention, and bioerrosive grazing—are increasingly prevalent throughout the Caribbean and beyond. Similar benthic transitions have been documented across multiple reef systems (Tebbett et al. 2023), suggesting that LSAT dominance may represent a more widespread ecosystem state on degraded reefs, particularly where herbivory remains high but recovery potential is constrained by overlapping stressors.

The ecological consequences of LSAT dominance are significant. These reefs exhibit reduced structural complexity and are unlikely to sustain the biodiversity, fishery productivity, or shoreline protection typically associated with coral-dominated systems (Alvarez-Filip et al. 2009; Graham & Nash 2013).

While LSATs may support turf-associated species and provide minimal sediment stabilization, these limited functions are unlikely to compensate for the loss of foundational reef ecosystem services. Furthermore, managing LSAT-dominated reefs requires embracing the inherent complexity of conservation in an era of layered local and global stressors. Rather than reversing successful policies such as parrotfish protection, a more integrative management strategy is needed—one that simultaneously addresses sedimentation, water quality, climate change, reef restoration, and grazer functional diversity (Burkpile and Hay 2008). As reef degradation intensifies, LSAT-dominated states may become increasingly common, necessitating a shift in focus from recovery alone to also preventing the entrenchment of these low-functioning states.

To predict and manage the emergence of LSAT dominance, a targeted research agenda is urgently needed to tease apart the feedbacks and ecological dynamics highlighted in this review. To build this knowledge base, we suggest four main themes of LSAT-focused research: (1) formation and stability, (2) prevalence and persistence, (3) impacts to ecosystem functions, and (4) reversal and restoration (Fig. 4). Ultimately, the rise of LSATs challenges us to refine reef resilience theory and reframe management goals—not only around enabling coral recovery, but also around disrupting feedbacks that stabilize degraded states and limit the ecological and functional recovery of coral reef ecosystems.

Acknowledgements Support for ML is provided by the National Oceanic and Atmospheric Administration's (NOAA) Coral Reef Conservation Program (CRCP) Award No 1091. AS was supported in part by NOAA CRCP Award Number 31499. AB is supported by funding from the National Coral Reef Institute. This is contribution 2081 from the Institute of Environment at Florida International University. This research was supported by NOAA NA23NOS4690272 through the National Coral Reef Institute at Nova Southeastern University. The views, statements, findings, conclusions, and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA. We thank S Tebbett for thoughtful editorial comments and insights that improved the manuscript.

Author contributions ML and AD conceived the idea of the paper. All authors contributed to manuscript writing.

Data availability No datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Adam TC, Brooks AJ, Holbrook SJ, Schmitt RJ, Washburn L, Bernardi G (2014) How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. *Oecologia* 176:285–296. <https://doi.org/10.1007/s00442-014-3011-x>

Adam TC, Burkepile DE, Ruttenberg BI, Paddock MJ (2015) Herbivory and the resilience of Caribbean coral reefs: knowledge gaps and implications for management. *Mar Ecol Prog Ser* 520:1–20

Adam TC, Duran A, Fuchs CE, Roycroft MV, Rojas MC, Ruttenberg BI, Burkepile DE (2018) Comparative analysis of foraging behavior and bite mechanics reveals complex functional diversity among Caribbean parrotfishes. *Mar Ecol Prog Ser* 597:207–220. <https://doi.org/10.3354/meps12600>

Adey WH, Goertemiller T (1987) Coral reef algal turfs: master producers in nutrient poor seas. *Phycologia* 26:374–386. <https://doi.org/10.2216/i0031-8884-26-3-374.1>

Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. *Proc R Soc Lond B Biol Sci* 276:3019–3025. <https://doi.org/10.1098/rspb.2009.0339>

Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. *Environ Biol Fishes* 28:189–214. <https://doi.org/10.1007/BF00751035>

Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea levels and climate change? *Limnol Oceanogr* 53:2695–2701. <https://doi.org/10.4319/lo.2008.53.6.2695>

Bellwood DR, Streit RP, Brandl SJ, Tebbett SB (2019) The meaning of the term 'function' in ecology: a coral reef perspective. *Funct Ecol* 33:948–961. <https://doi.org/10.1111/1365-2435.13265>

Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. *Nature* 429:827–833. <https://doi.org/10.1038/nature02691>

Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. *Mar Pollut Bull* 51:408–414. <https://doi.org/10.1016/j.marpolbul.2004.10.022>

Boström-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SCA, Hancock B, Harrison P, Hein M, Shaver E, Smith A, Suggett D, Stewart-Sinclair PJ, Vardi T, McLeod IM (2020) Coral restoration—a systematic review of current methods, successes, failures and future directions. *PLoS ONE* 15:e0226631. <https://doi.org/10.1371/journal.pone.0226631>

Bozec YM, Alvarez-Filip L, Mumby PJ (2015) The dynamics of architectural complexity on coral reefs under climate change. *Glob Change Biol* 21:223–235. <https://doi.org/10.1111/gcb.12698>

Bruggemann JH, Begeman J, Bosma EM, Verburg P, Breeman AM (1994) Foraging by the stoplight-parrotfish *Sparisoma viride* 2. Intake and assimilation of food, protein and energy. *Mar Ecol Prog Ser* 106:57–72

Bruggemann JH, Van Kessel AM, Van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish *Scarus vetula* and *Sparisoma viride*: implications of fish size, feeding mode and habitat use. *Mar Ecol Prog Ser* 134:59–71. <https://doi.org/10.3354/meps134059>

Bruno JF, Côté IM, Toth LT (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why don't marine protected areas improve reef resilience? *Annu Rev Mar Sci* 11:307–334. <https://doi.org/10.1146/annurev-marine-010318-0095300>

Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. *PNAS* 105:16201–16206. <https://doi.org/10.1073/pnas.0801946105>

Burkepile DE, Hay ME (2009) Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean reef. *Mar Ecol Prog Ser* 389:71–84. <https://doi.org/10.3354/meps08142>

Carlson RR, Crowder LB, Martin RE, Asner GP (2024) The effect of reef morphology on coral recruitment at multiple spatial scales. *Proc Natl Acad Sci USA* 121:e2311661121. <https://doi.org/10.1073/pnas.2311661121>

Carpenter RC (1985) Relationships between primary production and irradiance in coral reef algal communities. *Limnol Oceanogr* 30:784–793. <https://doi.org/10.4319/lo.1985.30.4.0784>

Clausing RJ, Annunziata C, Baker G, Lee C, Bittick SJ, Fong P (2014) Effects of sediment depth on algal turf height are mediated by interactions with fish herbivory on a fringing reef. *Mar Ecol Prog Ser* 517:121–129. <https://doi.org/10.3354/meps11029>

Clements KD, German DP, Pich EJ, Tribollet A, Choat JH (2017) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. *Biol J Linn Soc* 120:729–751. <https://doi.org/10.1111/bij.12914>

Clements CS, Pratte ZA, Stewart FJ, Hay ME (2024) Removal of detritivore sea cucumbers from reefs increases coral disease. *Nat Commun* 15:1338. <https://doi.org/10.1038/s41467-024-45730-0>

de Bakker DM, van Duyl FC, Bak RPM, Nugues MM, Nieuwland G, Meesters EH (2017) 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. *Coral Reefs* 36:355–367

Diaz-Pulido G, McCook L (2002) The fate of bleached corals- patterns and dynamics of algal recruitment. *Mar Ecol Prog Ser* 232:115–128. <https://doi.org/10.3354/meps232115>

Donovan MK, Counsell CW, Donahue MJ, Lecky J, Gajdzik L, Marcoux SD, Sparks R, Teague C (2023) Evidence for managing herbivores for reef resilience. *Proc R Soc Lond B Biol Sci* 290:20232101. <https://doi.org/10.1098/rspb.2023.2101>

Duran A, Collado-Vides L, Palma L, Burkepile DE (2018) Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef. *Mar Biol* 165:156. <https://doi.org/10.1007/s00227-018-3411-2>

Duran A, Speare KE, Fuchs C, Adam TC, Palma L, Miller MW, Collado-Vides L, Harborne AR, Burkepile DE (2024) Long sediment-laden algal turf likely impairs coral recovery on Florida's coral reefs. *Coral Reefs* 43:1109–1120. <https://doi.org/10.1007/s00338-024-02532-6>

Dustan P (1977) Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. *Environ Geol* 2:51–56. <https://doi.org/10.1007/BF02430665>

Edmunds PJ (2023) Coral recruitment: patterns and processes determining the dynamics of coral populations. *Biol Rev* 98:1862–1886. <https://doi.org/10.1111/brv.12987>

Edmunds PJ, Nozawa Y, Villanueva RD (2014) Refuges modulate coral recruitment in the Caribbean and the Pacific. *J Exp Mar Biol Ecol* 454:78–84. <https://doi.org/10.1016/j.jembe.2014.02.009>

Edmunds PJ, Maritorena S, Burgess SC (2024) Early post-settlement events, rather than settlement, drive recruitment and coral recovery at Moorea, French Polynesia. *Oecologia* 204:625–640. <https://doi.org/10.1007/s00442-024-05517-y>

Erfemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on

corals: a review. *Mar Pollut Bull* 64:1737–1765. <https://doi.org/10.1016/j.marpolbul.2012.05.008>

Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. *Mar Pollut Bull* 50:125–146. <https://doi.org/10.1016/j.marpolbul.2004.11.028>

Fournier F, Figueiredo J (2017) Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits. *Sci Rep* 7:12380. <https://doi.org/10.1016/j.marpolbul.2004.11.028>

Frydl P, Stearn CW (1978) Rate of bioerosion by parrotfish in Barbados reef environments. *J Sediment Petrol* 48:1149–1158. <https://doi.org/10.1306/212F7612-2B24-11D7-8648000102C1865D>

Frys C, Saint-Amand A, Le Hénaff M, Figueiredo J, Kuba A, Walker B, Lambrechts J, Vallaeys V, Vincent D, Hanert H (2020) Fine-scale coral connectivity pathways in the Florida Reef Tract: implications for conservation and restoration. *Front Mar Sci* 7:312. <https://doi.org/10.3389/fmars.2020.00312>

Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. *Biol Lett* 8:1016–1018. <https://doi.org/10.1098/rsbl.2012.0770>

Goatley CHR, Bonaldo RM, Fox RJ, Bellwood DR (2016) Sediments and herbivory as sensitive indicators of coral reef degradation. *Ecol Soc* 21:29. <https://doi.org/10.5751/ES-08334-210129>

Gouezo M, Golbuu Y, Fabricius K, Olsudong D, Mereb G, Nestor V, Wolanski E, Harrison P, Doropoulos C (2019) Drivers of recovery and reassembly of coral reef communities. *Proc R Soc Lond B Biol Sci* 286:20182908. <https://doi.org/10.1098/rspb.2018.2908>

Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. *Coral Reefs* 32:315–326. <https://doi.org/10.1007/s00338-012-0984-y>

Harms-Tuohy C A (2021) Parrotfishes in the Caribbean: a regional review with recommendations for management. FAO Fisheries and Aquaculture Circular No. 1240 FAO Rome

Harper LM, Huebner LK, O’Cain ED, Ruzicka R, Gleason DF, Fogarty ND (2023) Multi-year coral recruitment study across the Florida Reef Tract reveals boom-or-bust pattern among broadcast spawners and consistency among brooders. *Mar Ecol Prog Ser* 721:39–58. <https://doi.org/10.3354/meps14399>

Holstein DM, Paris CB, Mumby PJ (2014) Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems. *Mar Ecol Prog Ser* 499:1–18. <https://doi.org/10.3354/meps10647>

Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. *Science* (1979) 265:1547–1551. <https://doi.org/10.1126/science/265.5178.1547>

Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. *Science* 301:929–933. <https://doi.org/10.1126/science.1085046>

Hughes TP, Rodrigues MJ, Bellwood DR et al (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. *Curr Biol* 17:360–365. <https://doi.org/10.1016/j.cub.2006.12.049>

Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. *Trends Ecol Evol* 25:633–642. <https://doi.org/10.1016/j.tree.2010.07.011>

Hughes TP, Barnes ML, Bellwood DR et al (2017) Coral reefs in the anthropocene. *Nature* 546:82–90. <https://doi.org/10.1038/nature22901>

Hughes TP, Baird AH, Morrison TH, Torda G (2023) Principles for coral reef restoration in the anthropocene. *One Earth* 6:656–665. <https://doi.org/10.1016/j.oneear.2023.04.008>

Jackson J, Donovan M, Cramer K, Lam V (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland

Jones BLH, Cullen-Unsworth LC, Torre-Castro M, Nordlund LM, Unsworth RF, Eklof JS (2022) Unintended consequences of sustainable development initiatives: risks and opportunities in seagrass social-ecological systems. *Ecol Soc* 27:10

Kubicek A, Reuter H (2016) Mechanics of multiple feedbacks in benthic coral reef communities. *Ecol Model* 329:29–40. <https://doi.org/10.1016/j.ecolmodel.2016.02.018>

Lange ID, Razak TB, Perry CT, Maulana PB, Prasetya ME, Lamont TA (2024) Coral restoration can drive rapid reef carbonate budget recovery. *Curr Biol* 34:1341–1348. <https://doi.org/10.1016/j.cub.2024.02.009>

Larrosa C, Carrasco LR, Milner-Gulland EJ (2016) Unintended feedbacks: challenges and opportunities for improving conservation effectiveness. *Conserv Lett* 9:316–326. <https://doi.org/10.1111/conl.12240>

Leggat WP, Camp EF, Suggett DJ et al (2019) Rapid coral decay is associated with marine heatwave mortality events on reefs. *Curr Biol* 29:2723–2730. <https://doi.org/10.1016/j.cub.2019.06.077>

Lenihan HS, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Influence of corallivory, competition, and habitat structure on coral community shifts. *Ecology* 92:1959–1971. <https://doi.org/10.1890/11-0108.1>

Lessios HA (2016) The great *Diadema antillarum* die-off: 30 years later. *Ann Rev Mar Sci* 8:267–283. <https://doi.org/10.1146/annurev-marine-122414-033857>

Lirman D, Schopmeyer S, Manzello D et al (2011) Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. *PLoS ONE* 6:e23047. <https://doi.org/10.1371/journal.pone.0023047>

Lirman D, Formel N, Schopmeyer S, Ault JS, Smith SG, Gilliam D, Riegl B (2014) Percent recent mortality (PRM) of stony corals as an ecological indicator of coral reef condition. *Ecol Indic* 44:120–127. <https://doi.org/10.1016/j.ecolind.2013.10.021>

Littler M, Littler D (1985) Factors controlling relative dominance of primary producers on biotic reefs.

MacArthur and Pianka (1966) On optimal use of a patchy environment. *Am Nat* 100:603–609. <https://doi.org/10.1086/282454>

Manzello DP (2015) Rapid recent warming of coral reefs in the Florida Keys. *Sci Rep* 5:e16762. <https://doi.org/10.1038/srep16762>

Manzello DP, Cunning R, Karp RF, Baker AC, Bartels E et al (2025) Heat-driven functional extinction of Caribbean Acropora corals from Florida’s Coral Reef. *Science* 390:361–366. <https://doi.org/10.1126/science.adx7825>

Molina-Hernández A, Álvarez-Filip L (2024) Incorporating parrotfish bioerosion into the herbivory paradigm of coral reef resilience. *Conserv Lett* 17:e13058. <https://doi.org/10.1111/conl.13058>

Molina-Hernández A, Medellín-Maldonado F, Lange ID, Perry CT, Álvarez-Filip L (2022) Coral reef erosion: in situ measurement on different dead coral substrates on a Caribbean reef. *Limnol Oceanogr* 67:2734–2749. <https://doi.org/10.1002/limo.12234>

Morris JT, Enochs IC, Besemer N et al (2022) Low net carbonate accretion characterizes Florida’s coral reef. *Sci Rep* 12:19582. <https://doi.org/10.1038/s41598-022-23394-4>

Muller EM, Sartor C, Alcaraz NI, van Woesik R (2020) Spatial epidemiology of the Stony-Coral-Tissue-Loss disease in Florida. *Front Mar Sci* 7:163. <https://doi.org/10.3389/fmars.2020.00163>

Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. *Ecol App* 16:747–769. [https://doi.org/10.1890/1051-0761\(2006\)016\[0747:TIOEGS\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2)

Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. *Coral Reefs* 28:761–773. <https://doi.org/10.1007/s00338-009-0506-8>

Mumby PJ, Harborne AR (2010) Marine reserves enhance the recovery of corals on Caribbean reefs. *PLoS ONE* 5:e8657. <https://doi.org/10.1371/journal.pone.0008657>

Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. *Trends Ecol Evol* 23:555–563. <https://doi.org/10.1016/j.tree.2008.06.011>

Mumby PJ, Hastings A, Edwards HJ (2007a) Thresholds and the resilience of Caribbean coral reefs. *Nature* 450:98–101. <https://doi.org/10.1038/nature06252>

Mumby PJ, Harborne AR, Williams J, Kappel CV, Brumbaugh DR, Micheli F, Holmes KE, Dahlgren CP, Paris CB, Blackwell PG (2007b) Trophic cascade facilitates coral recruitment in a marine reserve. *Proc Natl Acad Sci USA* 104:8362–8367. <https://doi.org/10.1073/pnas.0702602104>

Mumby PJ, Steneck RS, Hastings A (2013) Evidence for and against the existence of alternate attractors on coral reefs. *Oikos* 122:481–491. <https://doi.org/10.1111/j.1600-0706.2012.00262.x>

Mumby PJ, Chaloupka M, Bozec YM, Steneck RS, Montero-Serra I (2022) Revisiting the evidentiary basis for ecological cascades with conservation impacts. *Conserv Lett* 15:e12847. <https://doi.org/10.1111/conl.12847>

Mumby PJ, Dahlgren CP, Harborne AR et al (2006) Fishing, trophic Cascades, and the process of grazing on coral reefs. *Science* 311(5757):94–98. <https://doi.org/10.1126/science.1121129>

NOAA Coral Reef Watch (2018) updated daily. NOAA Coral Reef Watch Version 3.1 Daily Global 5km Satellite Coral Bleaching Degree Heating Week Product. College Park Maryland USA: NOAA Coral Reef Watch. Data set accessed 2025-04-01 at <ftp://ftp.star.nesdis.noaa.gov/pub/sod/mecb/crw/data/5km/v3.1/nc/v1.0/daily/dhw/>

NOAA Southeast Fisheries Science Center; NOAA National Centers for Coastal Ocean Science (2018) National Coral Reef Monitoring Program: Assessment of coral reef benthic communities in the Florida Reef Tract. NOAA National Centers for Environmental Information. Dataset. <https://doi.org/10.7289/v5xw4h4z>

Perry CT, Morgan KM, Lange ID, Yarlett RT (2020) Bleaching-driven reef community shifts drive pulses of increased reef sediment generation. *R Soc Open Sci* 7:192153. <https://doi.org/10.1098/rsos.192153>

Perry CT, Lange ID, Stuhr M (2023) Quantifying reef-derived sediment generation: introducing the SedBudget methodology to support tropical coastline and island vulnerability studies. Cambridge Prisms: Coastal Futures 1:1–13

Porter JW, Meier OW (1992) Quantification of loss and change in Floridian reef coral populations. *Am Zool* 32:625–640. <https://doi.org/10.1093/icb/32.6.625>

Porter JW, Battey JF, Smith GJ (1982) Perturbation and change in coral reef communities. *Proc Natl Acad Sci* 79:1678–1681. <https://doi.org/10.1073/pnas.79.5.1678>

Precht WF, Gintert BE, Robbart ML, Fura R, Van Woesik R (2016) Unprecedented disease-related coral mortality in Southeastern Florida. *Sci Rep* 6:31374. <https://doi.org/10.1038/srep31374>

Putnam HM, Barott KL, Ainsworth TD, Gates RD (2017) The vulnerability and resilience of reef-building corals. *Curr Biol* 27:R528–R540. <https://doi.org/10.1016/j.cub.2017.04.047>

Randazzo-Eisemann Á, Molina-Hernández AL, Alvarez-Filip L, Garza-Pérez JR (2024) Strong linkage between parrotfish functions and habitat characteristics. *PLoS ONE* 19:e0315179. <https://doi.org/10.1371/journal.pone.0315179>

Richardson LL, Voss JD (2005) Changes in a coral population on reefs of the northern Florida Keys following a coral disease epizootic. *Mar Ecol Prog Ser* 297:147–156. <https://doi.org/10.3354/meps97147>

Risk MJ (2014) Assessing the effects of sediments and nutrients on coral reefs. *Curr Opin Environ Sustain* 7:108–117. <https://doi.org/10.1016/j.cosust.2014.01.003>

Ritson-Williams R, Arnold SN, Paul VJ (2016) Patterns of larval settlement preferences and post-settlement survival for seven Caribbean corals. *Mar Ecol Prog Ser* 548:127–138. <https://doi.org/10.3354/meps11688>

Roberts HH, Rouse LJ, Walker ND, Hudson JH (1982) Cold-water stress in Florida Bay and Northern Bahamas: a product of winter cold-air outbreaks. *J Sediment Res* 52:0145–0155. <https://doi.org/10.1306/212F7EFA-2B24-11D7-8648000102C1865D>

Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. *Trends Ecol Evol* 27:404–413. <https://doi.org/10.1016/j.tree.2012.04.007>

Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. *Mar Ecol Prog Ser* 62:185–202

Rogers CS, Ramos-Scharrón CE (2022) Assessing effects of sediment delivery to coral reefs: a Caribbean watershed perspective. *Front Mar Sci* 8:773968. <https://doi.org/10.3389/fmars.2021.773968>

Ruzicka RR, Colella MA, Porter JA, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlett LA, Meyers MK, Colee J (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. *Mar Ecol Prog Ser* 489:125–141. <https://doi.org/10.3354/meps10427>

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. *Nature* 413:591–596. <https://doi.org/10.1038/35098000>

Schmitt RJ, Holbrook SJ, Davis SL, Brooks AJ, Adam TC, Estes JA (2019) Experimental support for alternative attractors on coral reefs. *Proc Natl Acad Sci* 116:4372–4381. <https://doi.org/10.1073/pnas.1812412116>

Shantz AA, Ladd MC (2024) Shifting patterns in parrotfish corallivory after 12 years of decline on coral depauperate reefs in the Florida Keys, USA. *Coral Reefs* 43:1359–1373. <https://doi.org/10.1007/s00338-024-02543-3>

Shantz AA, Ladd MC, Burkepile DE (2020) Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. *Ecol Monogr* 90:e01403. <https://doi.org/10.1002/ecm.1403>

Speare KE, Duran A, Miller MW, Burkepile DE (2019) Sediment associated with algal turfs inhibits the settlement of two endangered coral species. *Mar Pollut Bull* 144:189–195. <https://doi.org/10.1016/j.marpolbul.2019.04.066>

Steneck RS, Mumby PJ, Macdonald C, Rasher DB, Stoyle G (2018) Attenuating effects of ecosystem management on coral reefs. *Sci Adv* 4:eaao5493. <https://doi.org/10.1126/sciadv.aao5493>

Steneck RS, Arnold SN, Boenish R, de León R, Mumby PJ, Rasher DB, Wilson MW (2019) Managing recovery resilience in coral reefs against climate-induced bleaching and hurricanes: a 15 year case study from Bonaire, Dutch Caribbean. *Front Mar Sci* 6:265. <https://doi.org/10.3389/fmars.2019.00265>

Studman MS, Rossin AM, Rubin E, Soderberg N, Holstein DM, Enochs IC (2022) Reef sediments can act as a Stony Coral Tissue Loss Disease vector. *Front Mar Sci* 8:815698. <https://doi.org/10.3389/fmars.2021.815698>

Suchley A, Alvarez-Filip L (2017) Herbivory facilitates growth of a key reef-building Caribbean coral. *Ecol Evol* 7:11246–11256. <https://doi.org/10.1002/ece3.3620>

Suchley A, McField MD, Alvarez-Filip L (2016) Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. *PeerJ*. <https://doi.org/10.7717/peerj.2084>

Tebbett SB, Bellwood DR (2019) Algal turf sediments on coral reefs: what's known and what's next. *Mar Pollut Bull* 149:110542. <https://doi.org/10.1016/j.marpolbul.2019.110542>

Tebbett SB, Bellwood DR (2020) Sediments ratchet-down coral reef algal turf productivity. *Sci Total Environ* 713:136709. <https://doi.org/10.1016/j.scitotenv.2020.136709>

Tebbett SB, Bellwood DR (2021) Algal turf productivity on coral reefs: a meta-analysis. *Mar Environ Res* 168:105311. <https://doi.org/10.1016/j.marenres.2021.105311>

Tebbett SB, Goatley CHR, Bellwood DR (2017) Algal turf sediments and sediment production by parrotfishes across the continental shelf of the Northern Great Barrier Reef. *PLoS ONE* 12:e170854. <https://doi.org/10.1371/journal.pone.0170854>

Tebbett SB, Bellwood DR, Purcell SW (2018) Sediment addition drives declines in algal turf yield to herbivorous coral reef fishes: implications for reefs and reef fisheries. *Coral Reefs* 37:929–937. <https://doi.org/10.1007/s00338-018-1718-6>

Tebbett SB, Goatley CHR, Streit RP, Bellwood DR (2020a) Algal turf sediments limit the spatial extent of function delivery on coral reefs. *Sci Total Environ* 734:139422. <https://doi.org/10.1016/j.scitotenv.2020.139422>

Tebbett SB, Streit RP, Bellwood DR (2020b) A 3D perspective on sediment accumulation in algal turfs: implications of coral reef flattening. *J Ecol* 108:70–80. <https://doi.org/10.1111/1365-2745.13235>

Tebbett SB, Connolly SR, Bellwood DR (2023) Benthic composition changes on coral reefs at global scales. *Nat Ecol Evol* 7:71–81. <https://doi.org/10.1038/s41559-022-01937-2>

Toth LT, Kuffner IB, Stathakopoulos A, Shinn EA (2018) A 3,000-year lag between the geological and ecological shutdown of Florida's coral reefs. *Glob Chang Biol* 24:5471–5483. <https://doi.org/10.1111/gcb.14389>

Tribollet A, Langdon C, Golubic S, Atkinson M (2006) Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. *J Phycol* 42:292–303. <https://doi.org/10.1111/j.1529-8817.2006.00198.x>

Tuttle LJ, Donahue MJ (2022) Effects of sediment exposure on corals: a systematic review of experimental studies. *Environ Evid* 11:1–33. <https://doi.org/10.1186/s13750-022-00256-0>

Umar M, McCook L, Price I (1998) Effects of sediment deposition on the seaweed Sargassum on a fringing coral reef. *Coral Reefs* 17:169–177. <https://doi.org/10.1007/s003380050111>

Vergés A, Vanderklift MA, Doropoulos C, Hyndes GA (2011) Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. *PLoS ONE* 6:e17115. <https://doi.org/10.1371/journal.pone.0017115>

Wakwella A, Mumby PJ, Roff G (2020) Sedimentation and overfishing drive changes in early succession and coral recruitment: local impacts drive coral reef recovery. *Proc R Soc Lond B Biol Sci* 287:2020575. <https://doi.org/10.1098/rspb.2020.2575>

Williams I, Polunin N, Hendrick V (2001) Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. *Mar Ecol Prog Ser* 222:187–196. <https://doi.org/10.3354/meps222187>

Williams GJ, Graham NAJ, Jouffray JB, Norström M, Gove JM, Heenan A, Wedding LM (2019) Coral reef ecology in the Anthropocene. *Funct Ecol* 33:1014–1022. <https://doi.org/10.1111/1365-2435.13290>

Williams DE, Nedimyer K, Bright AJ, Ladd MC (2024) Genotypic inventory and impact of the 2023 marine heat wave on *Acropora palmata* (elkhorn coral) populations in the Upper Florida Keys USA: 2020–2023 NOAA fisheries SEFSC Miami FL 30p. <https://doi.org/10.25923/37c0-x182>

Yanovski R, Abelson A (2019) Structural complexity enhancement as a potential coral-reef restoration tool. *J Ecol Eng* 132:87–93. <https://doi.org/10.1016/j.ecoleng.2019.04.007>

Zuercher R, Kochan D, Harborne AR (2023) Factors influencing the biomass of large-bodied parrotfish species in the absence of fishing on coral reefs in Florida, USA. *J Fish Biol* 103:1526–1537. <https://doi.org/10.1111/jfb.15557>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.