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ecological context of Florida’s reefs, our expansion of the 
conceptual framework will likely apply to other reef systems 
in the Caribbean with similar ecological attributes. Mount-
ing evidence suggests that LSAT dominance represents a 
novel ecosystem state for Western Atlantic reefs.
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Introduction

As global coral populations continue to decline, understand-
ing their capacity to recover and the drivers that underpin 
resilience is critical for predicting the health of future coral 
reefs (Bellwood et al. 2004; Putnam et al. 2017). To this 
end, decades of coral reef research have been synthesized to 
inform an understanding of reef resilience for the Western 
Atlantic (e.g., Mumby et al. 2007a). Under this paradigm, 
processes that facilitate coral success underpin a series of 
positive feedbacks that support the persistence of structur-
ally complex reefs (Mumby and Steneck 2008). Top-down 
control by herbivores (e.g., parrotfishes and urchins) is a 
particularly critical process for preventing, and potentially 
reversing, shifts from coral to macroalgal dominance follow-
ing large-scale disturbances (Bellwood et al. 2004; Hughes 
et al. 2007; Burkepile and Hay 2009; Kubicek and Reuter 
2016). Recruitment-driven population recovery in turn 
hinges on larval supply, suitable recruitment substrate, and 
the post-settlement survival of corals (Ritson-Williams et al. 
2016; Gouzeau et al. 2019; Edmunds 2023; Edmunds et al. 
2024). Without top-down control, macroalgae can rapidly 
colonize open spaces and prevent the settlement, survivor-
ship, and growth of new corals, thereby limiting the recovery 
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of coral populations following disturbances (Hughes et al. 
2007; Adam et al. 2015).

When corals die and fail to recover, the expected trajec-
tory of change in the Western Atlantic follows a transition 
from coral- to macroalgal-dominated reef systems (Littler & 
Littler 1985; Hughes 1994; Scheffer et al. 2001; Mumby & 
Steneck 2008; Schmitt et al. 2019). Phase shifts from coral-
dominated to macroalgae-dominated reefs are problematic 
because of negative processes: Macroalgae often outcompete 
corals for space, reduce recruitment opportunities, and alter 
reef dynamics by providing suboptimal habitat for associ-
ated species, including the loss of structural complexity 
necessary to support large grazing fish populations (Hughes 
et al. 2007; Mumby and Steneck 2008). Once established, 
degraded states can hinder efforts to restore coral domi-
nance, even when initial stressors are mitigated (Mumby 
2009; Steneck et al. 2019). These unexpected dynamics are 
often explained by hysteresis, a phenomenon in which the 
return to coral-dominated states requires significantly more 
effort than might be expected because of negative feedback 
processes (Scheffer et al. 2001; Mumby et al. 2013).

In an era of rapid global environmental change, coral reef 
paradigms require evolving scientific approaches, refine-
ment, and recognition of a more nuanced understanding to 
capture the dynamics of contemporary coral reefs (Williams 
et al. 2019). For example, in the Western Atlantic, evidence 
shows that benthic trajectories of Florida reefs are poorly 
represented by the prevailing resilience model, with coral 
cover typically < 5% but high grazing intensity and only 
modest macroalgal cover (Ruzicka et al. 2013; NCRMP 
2018; Shantz et al. 2020). Consequently, on contemporary 
Florida reefs, and possibly other locations, additional path-
ways that explain reef trajectories may be missing from our 
conceptual model of reef change. Here, we propose that 
additional negative feedback processes promote the pro-
liferation and stability of long-sediment-laden algal turfs 
(henceforth, LSATs; Goatley et al. 2016) and help explain 
compromised resilience on Florida’s coral reefs (Fig. 1). 
Mounting evidence suggests that LSAT dominance may 
represent a widespread novel ecosystem state for Western 
Atlantic reefs (Duran et al. 2024). Interestingly, in addi-
tion to terrestrial inputs from increasing coastal popula-
tions (Rogers and Ramos-Scharrón 2022), a portion of the 
sediment available to accumulate in LSATs is of biogenic 
origin, created from the bioerosion of calcium carbonate 
reef framework by parrotfish protected to increase grazing 
and promote resilience (Bruggeman et al. 1996; Molina-
Hernández et al. 2022; 2024). Consequently, the ecological 
context of Florida’s reefs provides an interesting case study 
on the challenges of establishing well-meaning conservation 
initiatives in isolation while failing to address other stressors 
that erode resilience, including climate change, disease, and 
decreased water quality.

Disturbances typify Florida reefs and alter 
ecological contexts

Coral communities in Florida have declined for at least 
50 years as a consequence of disease outbreaks, thermal 
stress events, and chronic local stressors like sedimentation 
and pollution (Jackson et al. 2014). Regional disease events 
starting in the 1970 s marked a turning point on Florida’s 
reef, driving catastrophic losses of Acroporids and massive 
corals (Dustan 1977, Porter and Meir 1992, Richardson and 
Voss 2005; Lirman et al. 2014), as well as the near extirpa-
tion of herbivorous sea urchins (Lessios 2016). These catas-
trophes were followed by a series of new disease outbreaks, 
cold-water mortality events (Porter et al. 1982; Roberts et al. 
1982; Lirman et al. 2011), and six major coral bleaching 
events (Manzello 2015). By 2014, mean coral cover across 
Florida reefs was ~ 6.7% (NOAA National Coral Reef Moni-
toring Program 2018) when a novel disease, stony coral tis-
sue loss disease (SCTLD), emerged to cause mass mortality 
of numerous species and decimate remaining coral popula-
tions (Precht et al. 2016; Muller et al. 2020). The onset of 
SCTLD coincided with recurrent bleaching events (2014 and 
2015) and a new reality for Florida’s reef in which tempera-
tures in the Florida Keys have exceeded the traditional 4 °C 
heating week bleaching threshold every year since (NOAA 
Coral Reef Watch 2018). These annual thermal stress events 
have driven further declines of Florida’s corals, punctuated 
by the 2023 marine heat wave, which shattered previous 
records for heat stress on Florida’s reefs. This marine heat 
wave caused catastrophic losses of the already severely 
depleted populations of the key reef-building species Acro-
pora palmata and A. cervicornis, two of the few species 
not impacted by SCTLD, resulting in a significant setback 
to years of coral restoration efforts (Williams et al. 2024; 
Manzello et al. 2025). Coinciding with the loss of live coral 
cover on Florida’s reefs, there has been a near complete shut-
down of recruitment of the remaining reef-building species 
(i.e., Orbicella and Montastraea). Despite the potential for 
high larval connectivity within the Florida Reef Tract (Frys 
et al. 2020) and potential larval supply from reefs in Cuba 
and the Yucatan Peninsula in Mexico (Holstein et al. 2014), 
a three-year recruitment study across the Florida Reef Tract 
(2015 to 2018) found no Orbicella or Montastraea recruits 
and a single Acropora recruit (Harper et al. 2023), indicating 
that one or more processes operating on Florida’s reefs are 
contributing to reduced recruitment.

Contemporary Florida reefs: fundamental shifts 
in benthic communities and ecological processes

One of the most striking shifts in benthic composition on 
Florida’s reefs is the proliferation of LSATs. LSATs develop 
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Fig. 1   a A coral depauperate LSAT-dominated reef in Florida, b close-up photograph of intact LSAT, and c the same area with the sediments 
removed from the turf algae near the ruler



	 Coral Reefs

when there is an increase in the accumulation and reten-
tion of sediments within the short, productive algal turfs 
that are commonly targeted by herbivores (Goatley et al. 
2016; Speare et al. 2019; Duran et al. 2024). Data from 
the National Oceanic and Atmospheric Administration’s 
National Coral Reef Monitoring Program (NOAA NCRMP) 
show that sediment-laden algal turfs now cover > 30% of the 
benthos across Florida’s reefs (NCRMP 2018), and other 
data show up to 60% cover of LSATs at some reefs (Speare 
et al. 2019; Duran et al. 2024). Changes in south Florida’s 
benthic community composition mirror global patterns sug-
gesting that low-lying algal turfs are increasing in abundance 
and poised to dominate future reef systems (Tebbett et al. 
2023). The increasing abundance of LSATs coincides with 
declines in reef accretion, and the vast majority of reefs in 
southeast Florida are now in a state of net erosion, with some 
locations losing as much as ~ 8.5 kg of calcium carbonate 
m−2 year−1 (Toth et al. 2018; Morris et al. 2022).

Declines in reef accretion on Florida’s reefs will likely 
further weaken positive feedback processes that promote 
recovery and expose a nuanced challenge for Florida’s 
reefs–grazing by parrotfishes. Thirty years of legal pro-
tection have allowed south Florida reefs to house some of 
the largest and most abundant parrotfish populations in the 
Western Atlantic (Shantz et al. 2020; Zuercher et al. 2023). 
Grazing and removal of algae (‘realized function’ sensu 
Bellwood et al. 2019) are key ecosystem functions important 
for controlling macroalgal growth. However, intense graz-
ing by parrotfishes can also negatively affect coral recruit 
survival via incidental mortality (Edmunds 2023), serving 
as a potential mechanism limiting coral recovery. Addi-
tionally, without reef accretion grazing by parrotfishes can 
increase net bioerosion and the loss of structural complex-
ity (Molina-Hernádez and Álvarez-Filip 2024). The loss of 
complexity promotes the establishment of low-lying algal 
turfs that when containing high sediment loads can impair 
coral growth, reduce recruitment, and thus hinder reef recov-
ery (Speare et al. 2019). Due to the lack of vertical relief and 
an increasing supply of sediments from terrestrial (Fabricius 
2005; Erftemeijer et al. 2012) and biological (Bruggeman 
et al. 1994; Perry et al. 2020) sources, algal turfs eventually 
become saturated with sediment and are avoided by par-
rotfish, which in turn are hypothesized to redirect grazing 
to increasingly scarce rugose areas and further accelerate 
reef flattening (Tebbett et al. 2020a, b). Collectively, coral 
mortality, reef flattening, and intense grazing appear to 
have created a series of negative feedback processes that 
reinforce a flat, sediment-laden benthos that impedes the 
recovery of already diminished coral populations. Below, 
we outline this destructive cycle and provide support for the 
mechanisms that drive these feedbacks. Here we focus on the 
ecological context of Florida reefs; however, our conceptual 
framework, which extends the existing resilience paradigm 

in the Western Atlantic, will likely apply to other reef sys-
tems in the Caribbean with similar ecological attributes. 
Although sediment-related processes on Indo-Pacific reefs 
are important (Tebbett and Bellwood 2019; 2021), resilience 
processes are markedly different (Roff & Mumby 2012) and 
therefore the application to these reefs is unclear.

Processes on contemporary coral reefs give rise 
to negative feedbacks

Coral mortality redistributes grazing pressure 
and promotes bioerosion

When corals die, their skeletons are often rapidly colonized 
by algal turfs (Diaz-Pulido and McCook 2002; Leggat et al. 
2019) and endolithic communities (Tribollet et al. 2006). 
Turf communities are often highly productive and palat-
able to herbivores (Carpenter 1985; Aedy and Goertemiller 
1987; reviewed in Tebbett and Bellwood 2021) while the 
endolithic communities that develop in the upper layer of 
the dead coral skeleton can be rich in protein, lipids, and 
limiting nutrients (Clements et al. 2017). Parrotfishes that 
target epilithic algal turfs and endolithic communities are 
broadly classified as scrapers and excavators (Bellwood and 
Choat 1990; Clements et al. 2017; Adam et al. 2018), feed-
ing behaviors that remove calcium carbonate material and 
contribute to bioerosion (Fyrdl and Stearn 1978; Brugge-
men et al. 1994; Molina-Hernández et al. 2022). Five of 
the nine most common parrotfish species in Florida (Spari-
soma viride, Scarus guacamia, Sc. coelestinus, Sc. vetula, 
and Sc. taeniopterus) feed primarily through scraping and 
excavating the benthos (Adam et al. 2018). Estimated bio-
erosion rates for Sc. vetula and Sc. viride, the parrotfish spe-
cies with the highest potential to contribute to bioerosion, 
range from ~ 85 to 250 kg ind−1 year−1, respectively, for indi-
viduals 41–50 cm in total length (Molina-Hernández and 
Álvarez-Filip 2024). Similarly, recent work in the Mexican 
Caribbean revealed that the loss of structural complexity 
from recently dead corals was positively associated with 
the presence of parrotfish grazing scars (Molina-Hernández 
et al. 2022). Thus, the robust parrotfish populations present 
on Florida’s reefs have the potential to remove a substantial 
amount of calcium carbonate and complex structure from 
the reef (Morris et al. 2022).

Sediment retention decreases resource quality 
and availability, further concentrating grazing intensity 
on existing structure

As the calcium carbonate structure of coral skeletons is 
removed, reefs may lose vertical complexity (Alvarez-Filip 
et al. 2009; Bozec et al. 2015; Molina-Hernández et al. 
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2022). Steeper slopes, such as the near-vertical angles on the 
sides of dead coral colonies, retain less sediment, whereas 
sediment retention increases with decreasing vertical com-
plexity (Tebbett and Bellwood 2019). Furthermore, these 
flatter surfaces facilitate the development of turf commu-
nities that easily trap sediments (Duran et al. 2018). Ulti-
mately, these losses in complexity help transform more 
heterogeneous benthic communities comprising areas with 
short productive algal turfs and LSATs toward a flat, homog-
enous, LSAT-dominated reef state.

In turn, sediment retention within algal turf communi-
ties on increasingly flat reefs can likely impact grazing 
via numerous mechanisms. Increased sediment loads can 
reduce primary productivity (Clausing et al. 2014; Teb-
bett and Bellwood 2020), with one study from the Great 
Barrier Reef finding that sediment addition can decrease 
the potential yield of algal turf biomass by 2000% (Teb-
bett et  al. 2018). Beyond severely reducing resource 

availability, sediment retention within algal turfs and the 
formation of LSATs decreases resource quality (Tebbett 
et al. 2020a, b) and may suppress the recruitment and 
growth of macroalgae predicted to increase under classic 
resilience paradigms (Umar et al. 1998). Foraging theory 
dictates that diminished resource quality requires parrot-
fish to graze more to acquire the same level of nutrition, 
effectively increasing parrotfish grazing pressure without 
a corresponding increase in the biomass or abundance of 
the population (MacArthur and Pianka 1966). Lastly, sedi-
ment loading in algal turfs reduces resource accessibility 
(i.e., burial by sediments), redistributing and potentially 
concentrating grazing pressure to other areas of the reef 
(Clausing et al. 2014; Tebbett et al. 2020a, b). Ultimately, 
sediment retention serves to reduce rates of herbivory and 
promotes the formation of LSATs (Fig. 2; green arrows) 
(Bellwood and Fulton 2008; Goatley and Bellwood 2012; 
Clausing et al. 2014).
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Fig. 2   Conceptual diagram illustrating top-down pathways of coral 
reef benthic community trajectories under different ecological con-
ditions. Following a coral mortality event, substrate is liberated and 
available for colonization by benthic organisms (white boxes, gray 
arrow). Blue arrows and boxes represent a simplified traditional resil-
ience pathway in which sufficient herbivory prevents macroalgal col-
onization and facilitates coral recruitment and recovery. Red arrows 
and boxes depict recovery failure whereby insufficient herbivory 
allows a transition to macroalgal dominance and inhibition of coral 
recovery. Here, we propose a third, distinct recovery failure path-
way operating on reefs in Florida: Despite high parrotfish biomass, 

coral populations remain extremely low due to persistent disturbances 
and disease. Under this pathway, high grazing intensity and limited 
coral recovery initiates a series of reinforcing feedbacks underpinned 
by bioerosion and reef flattening (purple), sediment generation and 
retention (yellow), diminished resources for herbivores (green), pro-
moting the formation of long-sediment-laden algal turfs (LSATs; 
pink). Each set of colored arrows represents a discrete feedback 
mechanism hypothesized to reinforce LSAT dominance and suppress 
coral recovery. Collectively, these feedbacks define a novel ecosystem 
state that is not captured by traditional reef resilience paradigms
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Moreover, a reduction in herbivory on areas where LSATs 
develop would intensify grazing pressure and spatially con-
centrate them to a smaller area of the reef where LSATs 
are not present (i.e., areas with more structural complexity), 
creating an accelerating negative feedback (Williams et al. 
2001; Vergés et al. 2011). In turn, the removal of structurally 
complex reef framework and the loss of vertical relief reduce 
the total surface area available for grazing and eliminate 
high-relief areas that support more productive and accessible 
algal communities (Tebbett and Bellwood 2019). Simulta-
neously, grazing by scraping and excavating parrotfishes 
can both rework existing sediments and generate new sedi-
ments via the ingestion of reef framework (Bruggeman et al. 
1994). For example, applying recently developed sediment 
budgets to parrotfish surveys conducted in the upper Florida 
Keys by Shantz and Ladd (2024) suggests parrotfish may 

have generated between 250 and 1250 g of sediment per 
m−2 year−1 for at least the past decade (Perry et al. 2023; 
Fig. 3). Much of these biogenic sediments can be deposited 
back onto the reef (Bruggeman et al. 1994; Tebbett et al. 
2017; Perry et al. 2020; Molina-Hernández et al. 2022), 
where they may be retained in algal turfs and further rein-
force the sediment-driven feedback (Fig. 2; yellow arrows).

A novel ecosystem state: LSATs proliferate, accelerate 
coral decline, and inhibit recovery

Sediments can directly impact corals at all life history stages 
(Rogers 1990; Fabricius 2005; Risk 2014). Sediments can 
reduce coral growth rates and cause the partial or com-
plete mortality of colonies through various mechanisms 
(reviewed in Fabricius 2005; Erftemeijer et al. 2012; Tuttle 

Fig. 3   Mean estimated sediment production (g m−2  year−1) by par-
rotfishes at eight reef sites in the Florida Keys, USA. Error bars 
are ± SD. Estimates were generated using the sediment budget tool 

from Perry et al. (2023) and data from parrotfish surveys conducted 
in the Upper Florida Keys and reported in Shantz and Ladd (2024)
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and Donahue 2022). Additionally, sediments can serve as a 
reservoir and vector for coral disease (Studivan et al. 2022). 
Beyond impacting coral populations, sediments trapped in 
algal turfs can inhibit coral recruitment (Birrell et al. 2005; 
Wakwella et al. 2020), a fundamental process for reef recov-
ery. On reefs in the Florida Keys, multiple studies have found 
that juvenile coral abundance is negatively related to LSAT 
cover and that sediment-laden algal turfs can drastically 
reduce the settlement of major framework-building species 
in the Caribbean like Acropora palmata and Orbicella faveo-
lata (Speare et al. 2019; Duran et al. 2024). Indeed, Speare 
et al. (2019) found that sediments in algal turfs reduced the 
settlement of O. faveolata larvae by 99% compared to turf 
algae alone. Additionally, the one study that has assessed 
the impacts of sedimentation on coral recruits in the Carib-
bean found that just 60 mg cm−2 of sedimentation reduced 
the survival probability of 5-month-old Porites astreoides to 
0%, providing a substantial barrier to the recovery of coral 
populations (Founrey and Figueiredo 2017). In addition to 
directly reducing settlement, the establishment of LSATs can 
further reduce the potential for coral recruitment by decreas-
ing the abundance of crustose coralline algae, an impor-
tant group of benthic taxa that can promote coral recruit-
ment (Duran et al. 2018). Cumulatively, increased sediment 
retention and abundance of LSATs are likely to drive further 
declines in coral populations and inhibit their recovery via 
additional coral mortality and diminished coral recruitment, 
further strengthening the negative feedback processes that 
help to lock Florida’s reefs in a degraded state of continued 
decline (Fig. 2; pink arrows). However, this dominance by 
LSATs and the consequences for ecosystem functions differ 
from the traditional degraded state of high macroalgal cover.

The challenges of protecting parrotfishes 
on contemporary coral reefs

If protecting parrotfishes increases the bioerosion of valu-
able natural capital (three-dimensional reef structure) while 
simultaneously generating sediment that contributes to the 
cover of LSAT, the question arises of whether the ban on 
parrotfish fishing should be reconsidered. In isolation, there 
is general agreement that protecting parrotfish is a beneficial 
management action: There is evidence that parrotfish popu-
lations can increase when fishing pressure is removed, which 
increases grazing intensity, decreases macroalgal cover, and 
increases coral recruitment and cover in the absence of dis-
turbances or other stressors that limit recovery (Mumby et al. 
2006, Mumby et al. 2007b, Mumby and Harborne 2010; but 
see Bruno et al. 2019). Furthermore, experiments in Florida 
have shown that exclusion of parrotfishes quickly leads to 
high coral mortality and reefs being overgrown with mac-
roalgae (Shantz et al. 2020) while research in areas where 

coral recruitment remains high has shown parrotfish are 
critical components of coral recovery following disturbances 
(Adam et al. 2014; Donovan et al. 2023). Thus, in places 
like Florida the problem is not necessarily too many par-
rotfish, but likely the decoupling of parrotfish grazing and 
natural coral recovery processes. If we remain optimistic 
about the future of reefs in the region and believe that over-
arching threats such as climate change and water quality 
will be addressed, then an intact parrotfish population will 
be needed to allow coral to recover.

In this light, removing protections from parrotfishes 
makes little sense. Ultimately, protecting parrotfishes is one 
of the most successful coral reef public awareness programs 
in the region. The increased knowledge of reef resilience, 
incorporating recognition of the importance of parrotfishes 
in the absence of a significant recovery of Diadema (Mumby 
2006), has been clearly messaged to coastal communities. 
In addition to Florida, fishing bans have been established in 
over half the countries polled in a regional review, includ-
ing Barbuda, Belize, Bermuda, and Honduras (Harms-Tuohy 
2021). There has been no systematic effort to quantify the 
benefits of this policy across locations, but regional analyses 
are promising (Shantz et al. 2020). Indeed, large-scale analy-
ses are challenging because of the difficulties of identifying 
complex trophic cascades (Mumby et al. 2022), especially 
across broad biophysical gradients (e.g., gradients of nutri-
ent enrichment and sediment load; Suchley et al. 2016). 
However, the policy is supported by theory and localized 
case studies (Mumby et al. 2006; Suchley and Alvarez-Filip 
2017; Steneck et al. 2018; Shantz et al. 2020). Changing an 
effective policy sends potentially damaging messages to the 
public, generates confusion, and may weaken trust between 
coral reef managers and local resource users.

Rather than protecting parrotfishes being a policy that 
should be modified, it represents an interesting case study 
of how well-meaning conservation initiatives can have unin-
tended consequences if instigated in isolation. A holistic 
approach to conserving reefs requires all global and local 
stressors including, climate change, water quality, disease, 
and overfishing of all species to be addressed (Hughes et al. 
2003). In contrast, protecting parrotfishes alone maintains 
or increases bioerosion. Yet, coral recovery is limited by 
factors such as bleaching events, disease, sediment load, 
low coral larval supply, and high recruitment mortality 
(Hughes et al. 2003; Bellwood et al. 2004; Manzello et al. 
2015; Edmunds 2023; Duran et al. 2024). Thus, while pro-
tecting parrotfishes can lead to the unintended consequence 
of reducing three-dimensional structure on reefs where cor-
als fail to recover, this represents a failure of our efforts 
to address other stressors rather than an inherent problem 
with protecting parrotfishes. There is a growing literature 
on the unintended consequences of conservation, which can 
be categorized as flow effects (enhancing or dampening a 
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preexisting linkage), deletion effects (removal of a preexist-
ing linkage), or addition effects (adding new elements to a 
system; Larrosa et al. 2016). For example, the flow effect of 
protecting parrotfishes and enhancing bioerosion of three-
dimensional reef structure on Florida’s reefs is analogous 
to the protection of green turtles (Chelonia mydas) in the 
absence of natural shark predation pressure, which has led 
to overgrazing of seagrass that affects fish populations and 
carbon sequestration (reviewed by Jones et al. 2022). These 
unexpected ecological dynamics underscore the urgent need 
for fundamental research to quantify and better understand 
the ecological links and feedbacks that promote and stabilize 
LSAT-dominated ecosystem states on coral reefs (Fig. 4).

Between a rock and a hard place

While we support the protection of parrotfish in Florida 
and elsewhere, we must also be realistic and recognize 
that solving all the problems currently facing reefs appears 
intractable as we enter the Anthropocene (Hughes et al. 
2017). Pushing to solve these problems remains critical, 
and begs the question whether there are other approaches 

to minimize the negative effects of parrotfish bioerosion. 
One effort that is well underway in Florida and elsewhere 
is coral restoration (reviewed by Boström-Einarsson et al. 
2020). When successful, outplanting corals can shift car-
bonate budgets from negative to positive by allowing reef 
accretion to outpace bioerosion (Lange et al. 2024). Increas-
ing coral cover also reduces the area available for LSAT 
growth and potentially generates microhabitats suitable 
for natural coral settlement. However, the success of coral 
restoration is inevitably limited while the stressors causing 
coral mortality remain (Hughes et al. 2023). A potentially 
useful complementary approach to coral restoration may be 
structural restoration of the complex habitat that is being 
lost (Yanovski & Abelson 2019). Indeed, a suite of studies 
has established strong links between structural complexity 
and coral recruitment across different spatial scales (mm to 
m; Edmunds et al. 2014; Carlson et al. 2024). Moreover, 
corals demonstrate increased success when elevated from 
the seafloor (Lenihan et al. 2011) and are not in contact with 
sediments (Clements et al. 2024), suggesting that incorporat-
ing structural restoration may be particularly important for 
locations like Florida where LSATs dominate. Beyond resto-
ration, we encourage efforts to rebuild predator populations 

FORMATION & STABILITY

IMPACTS TO ECOSYSTEM FUNCTIONS REVERSAL & RESTORATION

PREVALENCE & DISTRIBUTION
Knowledge Gap: Understanding mechanisms that underpin LSAT 

formation and stability

Knowledge Gap: Impacts of LSAT on ecosystem functions and ecological 
processes

Knowledge Gap: Identify thresholds and tipping points of LSAT prevalence 
across spatiotemporal, biological, and abiotic gradients

Knowledge Gap: Strategies to break feedbacks that promote LSAT 
establishment and reinforce LSAT dominance

Research Priorities:
Drivers of sediment accumulation and retention:
● Substrate slope and surface characteristics
● Turf characteristics (composition, height, and density)
● Sediment source/grain size, water flow, resuspension rates, turbation rates

Successional dynamics of LSATs:
● Changes in turf composition as LSAT develops and stabilizes

Sedimentary processes and their relative contribution to LSAT:
● Sediment source: terrestrial vs. reef sediment
● Sediment origin: reworked vs. newly generated sediment
● Role of parrotfish in turf-sediment dynamics

Research Priorities:
Spatial and seasonal patterns of LSAT: 
● Reef zones and habitat type
● Structural relief, distance from sediment sources
● Seasonal changes in LSAT composition and abundance 

Biological drivers:
● Existing benthic community composition (e.g., coral vs. macroalgal vs. turf-dominated)
● Herbivore abundance, biomass, and composition

Abiotic drivers:
● Depth, wave energy, nutrients
● Sediment size and sediment characteristics

Research Priorities:
Direct effects:
● Growth and survival of corals and other benthic organisms 
● Interactions with substrates that promote coral settlement (e.g., crustose coralline algae)
● Primary productivity, nutrient cycling and storage, energy transport higher trophic levels
● Fish behavior and distribution

Indirect effects:
● Abiotic conditions (e.g., hypoxia or anoxia, accumulation of contaminants)
● Microbial dynamics (e.g., potential to serve as a reservoir for disease agents, 

retain/promote bloom-forming organisms, alter nutrient cycling and primary productivity)

Research Priorities:
Herbivore restocking:
● Ability of diverse herbivore assemblages (e.g., urchins, crabs) to reduce turf cover 

without reinforcing sediment dynamics
Structural enhancement:
● Reduce sediment retention, increase coral recruitment, combat effects of bioerosion

Bioturbators and detritivore enhancement:
● Prevent/reduce formation and stability of LSATs; make turf algae more accessible to 

herbivores

LONG SEDIMENT-LADEN ALGAL TURFS:
KNOWLEDGE GAPS & RESEARCH PRIORITIES

Fig. 4   Knowledge gaps and research priorities that should be addressed to better understand the mechanisms underpinning the formation, stabi-
lization, prevalence, and impacts of LSAT-dominated states on coral reefs
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while protecting parrotfishes. Abundant predators, such as 
large groupers, can reduce the abundance of smaller par-
rotfish through consumptive effects (Mumby et al. 2006). 
Due to few long-term datasets, it is very difficult to com-
pare current parrotfish biomasses and behaviors to historical 
norms, but it is reasonable to assume that historically top-
down controls were significantly greater. Finally, we encour-
age further research investigating the functional differences 
among parrotfishes (e.g., Adam et al. 2018) as this translates 
to a better understanding of how ecological processes vary in 
space (Randazzo-Eisemann et al. 2024), but also potentially 
through time as benthic characteristics change.

Conclusions

Florida’s coral reefs exemplify the complex, compounding 
challenges confronting coral reef ecosystems in the Anthro-
pocene. Here, we propose that LSATs form a series of self-
reinforcing negative feedback processes that suppress coral 
recruitment, accelerate the loss of structural complexity by 
redistributing grazing pressure, and contribute to the persis-
tence of degraded reef states that do not have high macroal-
gal cover. Notably, these feedbacks can emerge even under 
conditions typically associated with resilience—such as 
high herbivore biomass and low macroalgal cover—expos-
ing critical gaps in prevailing reef resilience paradigms for 
the Western Atlantic (Mumby & Steneck 2008; Hughes et al. 
2010).

Furthermore, large areas of reef covered in LSAT, rather 
than macroalgae, may represent a poorly recognized ecosys-
tem state for reefs in the region, analogous to concerns that 
cyanobacterial mats may dominate some reefs (de Bakker 
et al 2017). In contrast to macroalgal dominance where sce-
narios, such as the recovery of Diadema, could significantly 
reduce macroalgae and kick-start natural recovery processes, 
it is not clear what biological process could change LSATs 
back to high productivity turf areas. While our model is 
grounded in Florida’s ecological and disturbance history, 
the underlying drivers—chronic coral mortality, reef flat-
tening, sediment retention, and bioerosive grazing—are 
increasingly prevalent throughout the Caribbean and beyond. 
Similar benthic transitions have been documented across 
multiple reef systems (Tebbett et al. 2023), suggesting that 
LSAT dominance may represent a more widespread ecosys-
tem state on degraded reefs, particularly where herbivory 
remains high but recovery potential is constrained by over-
lapping stressors.

The ecological consequences of LSAT dominance are sig-
nificant. These reefs exhibit reduced structural complexity and 
are unlikely to sustain the biodiversity, fishery productivity, or 
shoreline protection typically associated with coral-dominated 
systems (Alvarez-Filip et al. 2009; Graham & Nash 2013). 

While LSATs may support turf-associated species and pro-
vide minimal sediment stabilization, these limited functions 
are unlikely to compensate for the loss of foundational reef 
ecosystem services. Furthermore, managing LSAT-dominated 
reefs requires embracing the inherent complexity of conserva-
tion in an era of layered local and global stressors. Rather than 
reversing successful policies such as parrotfish protection, a 
more integrative management strategy is needed—one that 
simultaneously addresses sedimentation, water quality, cli-
mate change, reef restoration, and grazer functional diversity 
(Burkepile and Hay 2008). As reef degradation intensifies, 
LSAT-dominated states may become increasingly common, 
necessitating a shift in focus from recovery alone to also pre-
venting the entrenchment of these low-functioning states.

To predict and manage the emergence of LSAT dominance, 
a targeted research agenda is urgently needed to tease apart the 
feedbacks and ecological dynamics highlighted in this review. 
To build this knowledge base, we suggest four main themes 
of LSAT-focused research: (1) formation and stability, (2) 
prevalence and persistence, (3) impacts to ecosystem func-
tions, and (4) reversal and restoration (Fig. 4). Ultimately, the 
rise of LSATs challenges us to refine reef resilience theory and 
reframe management goals—not only around enabling coral 
recovery, but also around disrupting feedbacks that stabilize 
degraded states and limit the ecological and functional recov-
ery of coral reef ecosystems.
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