Coral Reefs
https://doi.org/10.1007/s00338-025-02796-6

o)

Check for
updates

PERSPECTIVE

The rise of long-sediment-laden algal turfs: an additional negative
feedback process limiting reef resilience

- Andrew A. Shantz>
4® - Alain Duran®

Mark C. Ladd'
Andrew G. Bauman

Received: 21 July 2025 / Accepted: 19 November 2025

- Alastair R. Harborne®

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025

Abstract In an era of increasing disturbances, understand-
ing the capacity for coral reefs to recover and the drivers
that underpin resilience is critical for predicting the health
of future coral reefs. Traditional resilience paradigms for
Western Atlantic reefs suggest that high herbivore biomass
and low macroalgal cover are tenets of resilient systems.
Yet, it is clear that some locations, such as Florida’s reefs,
and potentially other locations, are not well explained by
this paradigm. Here, we suggest that the proliferation and
increased dominance of long-sediment-laden algal turfs
(LSATs) create an additional negative feedback process that
helps explain the compromised resilience of Florida’s reefs
and further extends the existing Western Atlantic model.
Collectively, coral mortality, reef flattening, and intense
grazing appear to have created a series of negative feedback
processes that reinforce a flat, sediment-laden benthos that
impedes the recovery of already diminished coral popula-
tions. Importantly, feedbacks associated with LSATs could
be strengthened in the presence of high herbivore biomass,
thereby undermining foundational expectations of resil-
ience based on grazing pressure alone. Here, we outline
this destructive cycle and provide support for the mecha-
nisms that drive these feedbacks. Although we focus on the
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ecological context of Florida’s reefs, our expansion of the
conceptual framework will likely apply to other reef systems
in the Caribbean with similar ecological attributes. Mount-
ing evidence suggests that LSAT dominance represents a
novel ecosystem state for Western Atlantic reefs.
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Introduction

As global coral populations continue to decline, understand-
ing their capacity to recover and the drivers that underpin
resilience is critical for predicting the health of future coral
reefs (Bellwood et al. 2004; Putnam et al. 2017). To this
end, decades of coral reef research have been synthesized to
inform an understanding of reef resilience for the Western
Atlantic (e.g., Mumby et al. 2007a). Under this paradigm,
processes that facilitate coral success underpin a series of
positive feedbacks that support the persistence of structur-
ally complex reefs (Mumby and Steneck 2008). Top-down
control by herbivores (e.g., parrotfishes and urchins) is a
particularly critical process for preventing, and potentially
reversing, shifts from coral to macroalgal dominance follow-
ing large-scale disturbances (Bellwood et al. 2004; Hughes
et al. 2007; Burkepile and Hay 2009; Kubicek and Reuter
2016). Recruitment-driven population recovery in turn
hinges on larval supply, suitable recruitment substrate, and
the post-settlement survival of corals (Ritson-Williams et al.
2016; Gouzeau et al. 2019; Edmunds 2023; Edmunds et al.
2024). Without top-down control, macroalgae can rapidly
colonize open spaces and prevent the settlement, survivor-
ship, and growth of new corals, thereby limiting the recovery
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of coral populations following disturbances (Hughes et al.
2007; Adam et al. 2015).

When corals die and fail to recover, the expected trajec-
tory of change in the Western Atlantic follows a transition
from coral- to macroalgal-dominated reef systems (Littler &
Littler 1985; Hughes 1994; Scheffer et al. 2001; Mumby &
Steneck 2008; Schmitt et al. 2019). Phase shifts from coral-
dominated to macroalgae-dominated reefs are problematic
because of negative processes: Macroalgae often outcompete
corals for space, reduce recruitment opportunities, and alter
reef dynamics by providing suboptimal habitat for associ-
ated species, including the loss of structural complexity
necessary to support large grazing fish populations (Hughes
et al. 2007; Mumby and Steneck 2008). Once established,
degraded states can hinder efforts to restore coral domi-
nance, even when initial stressors are mitigated (Mumby
2009; Steneck et al. 2019). These unexpected dynamics are
often explained by hysteresis, a phenomenon in which the
return to coral-dominated states requires significantly more
effort than might be expected because of negative feedback
processes (Scheffer et al. 2001; Mumby et al. 2013).

In an era of rapid global environmental change, coral reef
paradigms require evolving scientific approaches, refine-
ment, and recognition of a more nuanced understanding to
capture the dynamics of contemporary coral reefs (Williams
et al. 2019). For example, in the Western Atlantic, evidence
shows that benthic trajectories of Florida reefs are poorly
represented by the prevailing resilience model, with coral
cover typically < 5% but high grazing intensity and only
modest macroalgal cover (Ruzicka et al. 2013; NCRMP
2018; Shantz et al. 2020). Consequently, on contemporary
Florida reefs, and possibly other locations, additional path-
ways that explain reef trajectories may be missing from our
conceptual model of reef change. Here, we propose that
additional negative feedback processes promote the pro-
liferation and stability of long-sediment-laden algal turfs
(henceforth, LSATSs; Goatley et al. 2016) and help explain
compromised resilience on Florida’s coral reefs (Fig. 1).
Mounting evidence suggests that LSAT dominance may
represent a widespread novel ecosystem state for Western
Atlantic reefs (Duran et al. 2024). Interestingly, in addi-
tion to terrestrial inputs from increasing coastal popula-
tions (Rogers and Ramos-Scharrén 2022), a portion of the
sediment available to accumulate in LSATS is of biogenic
origin, created from the bioerosion of calcium carbonate
reef framework by parrotfish protected to increase grazing
and promote resilience (Bruggeman et al. 1996; Molina-
Hernandez et al. 2022; 2024). Consequently, the ecological
context of Florida’s reefs provides an interesting case study
on the challenges of establishing well-meaning conservation
initiatives in isolation while failing to address other stressors
that erode resilience, including climate change, disease, and
decreased water quality.
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Disturbances typify Florida reefs and alter
ecological contexts

Coral communities in Florida have declined for at least
50 years as a consequence of disease outbreaks, thermal
stress events, and chronic local stressors like sedimentation
and pollution (Jackson et al. 2014). Regional disease events
starting in the 1970 s marked a turning point on Florida’s
reef, driving catastrophic losses of Acroporids and massive
corals (Dustan 1977, Porter and Meir 1992, Richardson and
Voss 2005; Lirman et al. 2014), as well as the near extirpa-
tion of herbivorous sea urchins (Lessios 2016). These catas-
trophes were followed by a series of new disease outbreaks,
cold-water mortality events (Porter et al. 1982; Roberts et al.
1982; Lirman et al. 2011), and six major coral bleaching
events (Manzello 2015). By 2014, mean coral cover across
Florida reefs was ~6.7% (NOAA National Coral Reef Moni-
toring Program 2018) when a novel disease, stony coral tis-
sue loss disease (SCTLD), emerged to cause mass mortality
of numerous species and decimate remaining coral popula-
tions (Precht et al. 2016; Muller et al. 2020). The onset of
SCTLD coincided with recurrent bleaching events (2014 and
2015) and a new reality for Florida’s reef in which tempera-
tures in the Florida Keys have exceeded the traditional 4 °C
heating week bleaching threshold every year since (NOAA
Coral Reef Watch 2018). These annual thermal stress events
have driven further declines of Florida’s corals, punctuated
by the 2023 marine heat wave, which shattered previous
records for heat stress on Florida’s reefs. This marine heat
wave caused catastrophic losses of the already severely
depleted populations of the key reef-building species Acro-
pora palmata and A. cervicornis, two of the few species
not impacted by SCTLD, resulting in a significant setback
to years of coral restoration efforts (Williams et al. 2024;
Manzello et al. 2025). Coinciding with the loss of live coral
cover on Florida’s reefs, there has been a near complete shut-
down of recruitment of the remaining reef-building species
(i.e., Orbicella and Montastraea). Despite the potential for
high larval connectivity within the Florida Reef Tract (Frys
et al. 2020) and potential larval supply from reefs in Cuba
and the Yucatan Peninsula in Mexico (Holstein et al. 2014),
a three-year recruitment study across the Florida Reef Tract
(2015 to 2018) found no Orbicella or Montastraea recruits
and a single Acropora recruit (Harper et al. 2023), indicating
that one or more processes operating on Florida’s reefs are
contributing to reduced recruitment.

Contemporary Florida reefs: fundamental shifts
in benthic communities and ecological processes

One of the most striking shifts in benthic composition on
Florida’s reefs is the proliferation of LSATs. LSATs develop
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Fig. 1 a A coral depauperate LSAT-dominated reef in Florida, b close-up photograph of intact LSAT, and ¢ the same area with the sediments
removed from the turf algae near the ruler
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when there is an increase in the accumulation and reten-
tion of sediments within the short, productive algal turfs
that are commonly targeted by herbivores (Goatley et al.
2016; Speare et al. 2019; Duran et al. 2024). Data from
the National Oceanic and Atmospheric Administration’s
National Coral Reef Monitoring Program (NOAA NCRMP)
show that sediment-laden algal turfs now cover>30% of the
benthos across Florida’s reefs (NCRMP 2018), and other
data show up to 60% cover of LSATs at some reefs (Speare
et al. 2019; Duran et al. 2024). Changes in south Florida’s
benthic community composition mirror global patterns sug-
gesting that low-lying algal turfs are increasing in abundance
and poised to dominate future reef systems (Tebbett et al.
2023). The increasing abundance of LSATs coincides with
declines in reef accretion, and the vast majority of reefs in
southeast Florida are now in a state of net erosion, with some
locations losing as much as~ 8.5 kg of calcium carbonate
m~2 year~! (Toth et al. 2018; Morris et al. 2022).

Declines in reef accretion on Florida’s reefs will likely
further weaken positive feedback processes that promote
recovery and expose a nuanced challenge for Florida’s
reefs—grazing by parrotfishes. Thirty years of legal pro-
tection have allowed south Florida reefs to house some of
the largest and most abundant parrotfish populations in the
Western Atlantic (Shantz et al. 2020; Zuercher et al. 2023).
Grazing and removal of algae (‘realized function’ sensu
Bellwood et al. 2019) are key ecosystem functions important
for controlling macroalgal growth. However, intense graz-
ing by parrotfishes can also negatively affect coral recruit
survival via incidental mortality (Edmunds 2023), serving
as a potential mechanism limiting coral recovery. Addi-
tionally, without reef accretion grazing by parrotfishes can
increase net bioerosion and the loss of structural complex-
ity (Molina-Hernadez and Alvarez-Filip 2024). The loss of
complexity promotes the establishment of low-lying algal
turfs that when containing high sediment loads can impair
coral growth, reduce recruitment, and thus hinder reef recov-
ery (Speare et al. 2019). Due to the lack of vertical relief and
an increasing supply of sediments from terrestrial (Fabricius
2005; Erftemeijer et al. 2012) and biological (Bruggeman
et al. 1994; Perry et al. 2020) sources, algal turfs eventually
become saturated with sediment and are avoided by par-
rotfish, which in turn are hypothesized to redirect grazing
to increasingly scarce rugose areas and further accelerate
reef flattening (Tebbett et al. 2020a, b). Collectively, coral
mortality, reef flattening, and intense grazing appear to
have created a series of negative feedback processes that
reinforce a flat, sediment-laden benthos that impedes the
recovery of already diminished coral populations. Below,
we outline this destructive cycle and provide support for the
mechanisms that drive these feedbacks. Here we focus on the
ecological context of Florida reefs; however, our conceptual
framework, which extends the existing resilience paradigm
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in the Western Atlantic, will likely apply to other reef sys-
tems in the Caribbean with similar ecological attributes.
Although sediment-related processes on Indo-Pacific reefs
are important (Tebbett and Bellwood 2019; 2021), resilience
processes are markedly different (Roff & Mumby 2012) and
therefore the application to these reefs is unclear.

Processes on contemporary coral reefs give rise
to negative feedbacks

Coral mortality redistributes grazing pressure
and promotes bioerosion

When corals die, their skeletons are often rapidly colonized
by algal turfs (Diaz-Pulido and McCook 2002; Leggat et al.
2019) and endolithic communities (Tribollet et al. 2006).
Turf communities are often highly productive and palat-
able to herbivores (Carpenter 1985; Aedy and Goertemiller
1987; reviewed in Tebbett and Bellwood 2021) while the
endolithic communities that develop in the upper layer of
the dead coral skeleton can be rich in protein, lipids, and
limiting nutrients (Clements et al. 2017). Parrotfishes that
target epilithic algal turfs and endolithic communities are
broadly classified as scrapers and excavators (Bellwood and
Choat 1990; Clements et al. 2017; Adam et al. 2018), feed-
ing behaviors that remove calcium carbonate material and
contribute to bioerosion (Fyrdl and Stearn 1978; Brugge-
men et al. 1994; Molina-Hernandez et al. 2022). Five of
the nine most common parrotfish species in Florida (Spari-
soma viride, Scarus guacamia, Sc. coelestinus, Sc. vetula,
and Sc. taeniopterus) feed primarily through scraping and
excavating the benthos (Adam et al. 2018). Estimated bio-
erosion rates for Sc. vetula and Sc. viride, the parrotfish spe-
cies with the highest potential to contribute to bioerosion,
range from ~ 85 to 250 kg ind~! year™!, respectively, for indi-
viduals 41-50 cm in total length (Molina-Herndndez and
Alvarez—Filip 2024). Similarly, recent work in the Mexican
Caribbean revealed that the loss of structural complexity
from recently dead corals was positively associated with
the presence of parrotfish grazing scars (Molina-Hernandez
et al. 2022). Thus, the robust parrotfish populations present
on Florida’s reefs have the potential to remove a substantial
amount of calcium carbonate and complex structure from
the reef (Morris et al. 2022).

Sediment retention decreases resource quality
and availability, further concentrating grazing intensity
on existing structure

As the calcium carbonate structure of coral skeletons is
removed, reefs may lose vertical complexity (Alvarez-Filip
et al. 2009; Bozec et al. 2015; Molina-Hernandez et al.
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2022). Steeper slopes, such as the near-vertical angles on the
sides of dead coral colonies, retain less sediment, whereas
sediment retention increases with decreasing vertical com-
plexity (Tebbett and Bellwood 2019). Furthermore, these
flatter surfaces facilitate the development of turf commu-
nities that easily trap sediments (Duran et al. 2018). Ulti-
mately, these losses in complexity help transform more
heterogeneous benthic communities comprising areas with
short productive algal turfs and LSATSs toward a flat, homog-
enous, LSAT-dominated reef state.

In turn, sediment retention within algal turf communi-
ties on increasingly flat reefs can likely impact grazing
via numerous mechanisms. Increased sediment loads can
reduce primary productivity (Clausing et al. 2014; Teb-
bett and Bellwood 2020), with one study from the Great
Barrier Reef finding that sediment addition can decrease
the potential yield of algal turf biomass by 2000% (Teb-
bett et al. 2018). Beyond severely reducing resource
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Fig. 2 Conceptual diagram illustrating top-down pathways of coral
reef benthic community trajectories under different ecological con-
ditions. Following a coral mortality event, substrate is liberated and
available for colonization by benthic organisms (white boxes, gray
arrow). Blue arrows and boxes represent a simplified traditional resil-
ience pathway in which sufficient herbivory prevents macroalgal col-
onization and facilitates coral recruitment and recovery. Red arrows
and boxes depict recovery failure whereby insufficient herbivory
allows a transition to macroalgal dominance and inhibition of coral
recovery. Here, we propose a third, distinct recovery failure path-
way operating on reefs in Florida: Despite high parrotfish biomass,
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coral populations remain extremely low due to persistent disturbances
and disease. Under this pathway, high grazing intensity and limited
coral recovery initiates a series of reinforcing feedbacks underpinned
by bioerosion and reef flattening (purple), sediment generation and
retention (yellow), diminished resources for herbivores (green), pro-
moting the formation of long-sediment-laden algal turfs (LSATS;
pink). Each set of colored arrows represents a discrete feedback
mechanism hypothesized to reinforce LSAT dominance and suppress
coral recovery. Collectively, these feedbacks define a novel ecosystem
state that is not captured by traditional reef resilience paradigms
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Moreover, a reduction in herbivory on areas where LSATS
develop would intensify grazing pressure and spatially con-
centrate them to a smaller area of the reef where LSATs
are not present (i.e., areas with more structural complexity),
creating an accelerating negative feedback (Williams et al.
2001; Vergés et al. 2011). In turn, the removal of structurally
complex reef framework and the loss of vertical relief reduce
the total surface area available for grazing and eliminate
high-relief areas that support more productive and accessible
algal communities (Tebbett and Bellwood 2019). Simulta-
neously, grazing by scraping and excavating parrotfishes
can both rework existing sediments and generate new sedi-
ments via the ingestion of reef framework (Bruggeman et al.
1994). For example, applying recently developed sediment
budgets to parrotfish surveys conducted in the upper Florida
Keys by Shantz and Ladd (2024) suggests parrotfish may

have generated between 250 and 1250 g of sediment per
m~2 year™! for at least the past decade (Perry et al. 2023;
Fig. 3). Much of these biogenic sediments can be deposited
back onto the reef (Bruggeman et al. 1994; Tebbett et al.
2017; Perry et al. 2020; Molina-Hernandez et al. 2022),
where they may be retained in algal turfs and further rein-
force the sediment-driven feedback (Fig. 2; yellow arrows).

A novel ecosystem state: LSATs proliferate, accelerate
coral decline, and inhibit recovery

Sediments can directly impact corals at all life history stages
(Rogers 1990; Fabricius 2005; Risk 2014). Sediments can
reduce coral growth rates and cause the partial or com-
plete mortality of colonies through various mechanisms
(reviewed in Fabricius 2005; Erftemeijer et al. 2012; Tuttle
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Fig. 3 Mean estimated sediment production (g m~2 year™') by par-
rotfishes at eight reef sites in the Florida Keys, USA. Error bars
are+SD. Estimates were generated using the sediment budget tool
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in the Upper Florida Keys and reported in Shantz and Ladd (2024)
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and Donahue 2022). Additionally, sediments can serve as a
reservoir and vector for coral disease (Studivan et al. 2022).
Beyond impacting coral populations, sediments trapped in
algal turfs can inhibit coral recruitment (Birrell et al. 2005;
Wakwella et al. 2020), a fundamental process for reef recov-
ery. On reefs in the Florida Keys, multiple studies have found
that juvenile coral abundance is negatively related to LSAT
cover and that sediment-laden algal turfs can drastically
reduce the settlement of major framework-building species
in the Caribbean like Acropora palmata and Orbicella faveo-
lata (Speare et al. 2019; Duran et al. 2024). Indeed, Speare
et al. (2019) found that sediments in algal turfs reduced the
settlement of O. faveolata larvae by 99% compared to turf
algae alone. Additionally, the one study that has assessed
the impacts of sedimentation on coral recruits in the Carib-
bean found that just 60 mg cm~2 of sedimentation reduced
the survival probability of 5-month-old Porites astreoides to
0%, providing a substantial barrier to the recovery of coral
populations (Founrey and Figueiredo 2017). In addition to
directly reducing settlement, the establishment of LSATSs can
further reduce the potential for coral recruitment by decreas-
ing the abundance of crustose coralline algae, an impor-
tant group of benthic taxa that can promote coral recruit-
ment (Duran et al. 2018). Cumulatively, increased sediment
retention and abundance of LSATs are likely to drive further
declines in coral populations and inhibit their recovery via
additional coral mortality and diminished coral recruitment,
further strengthening the negative feedback processes that
help to lock Florida’s reefs in a degraded state of continued
decline (Fig. 2; pink arrows). However, this dominance by
LSATs and the consequences for ecosystem functions differ
from the traditional degraded state of high macroalgal cover.

The challenges of protecting parrotfishes
on contemporary coral reefs

If protecting parrotfishes increases the bioerosion of valu-
able natural capital (three-dimensional reef structure) while
simultaneously generating sediment that contributes to the
cover of LSAT, the question arises of whether the ban on
parrotfish fishing should be reconsidered. In isolation, there
is general agreement that protecting parrotfish is a beneficial
management action: There is evidence that parrotfish popu-
lations can increase when fishing pressure is removed, which
increases grazing intensity, decreases macroalgal cover, and
increases coral recruitment and cover in the absence of dis-
turbances or other stressors that limit recovery (Mumby et al.
2006, Mumby et al. 2007b, Mumby and Harborne 2010; but
see Bruno et al. 2019). Furthermore, experiments in Florida
have shown that exclusion of parrotfishes quickly leads to
high coral mortality and reefs being overgrown with mac-
roalgae (Shantz et al. 2020) while research in areas where

coral recruitment remains high has shown parrotfish are
critical components of coral recovery following disturbances
(Adam et al. 2014; Donovan et al. 2023). Thus, in places
like Florida the problem is not necessarily too many par-
rotfish, but likely the decoupling of parrotfish grazing and
natural coral recovery processes. If we remain optimistic
about the future of reefs in the region and believe that over-
arching threats such as climate change and water quality
will be addressed, then an intact parrotfish population will
be needed to allow coral to recover.

In this light, removing protections from parrotfishes
makes little sense. Ultimately, protecting parrotfishes is one
of the most successful coral reef public awareness programs
in the region. The increased knowledge of reef resilience,
incorporating recognition of the importance of parrotfishes
in the absence of a significant recovery of Diadema (Mumby
2006), has been clearly messaged to coastal communities.
In addition to Florida, fishing bans have been established in
over half the countries polled in a regional review, includ-
ing Barbuda, Belize, Bermuda, and Honduras (Harms-Tuohy
2021). There has been no systematic effort to quantify the
benefits of this policy across locations, but regional analyses
are promising (Shantz et al. 2020). Indeed, large-scale analy-
ses are challenging because of the difficulties of identifying
complex trophic cascades (Mumby et al. 2022), especially
across broad biophysical gradients (e.g., gradients of nutri-
ent enrichment and sediment load; Suchley et al. 2016).
However, the policy is supported by theory and localized
case studies (Mumby et al. 2006; Suchley and Alvarez-Filip
2017; Steneck et al. 2018; Shantz et al. 2020). Changing an
effective policy sends potentially damaging messages to the
public, generates confusion, and may weaken trust between
coral reef managers and local resource users.

Rather than protecting parrotfishes being a policy that
should be modified, it represents an interesting case study
of how well-meaning conservation initiatives can have unin-
tended consequences if instigated in isolation. A holistic
approach to conserving reefs requires all global and local
stressors including, climate change, water quality, disease,
and overfishing of all species to be addressed (Hughes et al.
2003). In contrast, protecting parrotfishes alone maintains
or increases bioerosion. Yet, coral recovery is limited by
factors such as bleaching events, disease, sediment load,
low coral larval supply, and high recruitment mortality
(Hughes et al. 2003; Bellwood et al. 2004; Manzello et al.
2015; Edmunds 2023; Duran et al. 2024). Thus, while pro-
tecting parrotfishes can lead to the unintended consequence
of reducing three-dimensional structure on reefs where cor-
als fail to recover, this represents a failure of our efforts
to address other stressors rather than an inherent problem
with protecting parrotfishes. There is a growing literature
on the unintended consequences of conservation, which can
be categorized as flow effects (enhancing or dampening a
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preexisting linkage), deletion effects (removal of a preexist-
ing linkage), or addition effects (adding new elements to a
system; Larrosa et al. 2016). For example, the flow effect of
protecting parrotfishes and enhancing bioerosion of three-
dimensional reef structure on Florida’s reefs is analogous
to the protection of green turtles (Chelonia mydas) in the
absence of natural shark predation pressure, which has led
to overgrazing of seagrass that affects fish populations and
carbon sequestration (reviewed by Jones et al. 2022). These
unexpected ecological dynamics underscore the urgent need
for fundamental research to quantify and better understand
the ecological links and feedbacks that promote and stabilize
LSAT-dominated ecosystem states on coral reefs (Fig. 4).

Between a rock and a hard place

While we support the protection of parrotfish in Florida
and elsewhere, we must also be realistic and recognize
that solving all the problems currently facing reefs appears
intractable as we enter the Anthropocene (Hughes et al.
2017). Pushing to solve these problems remains critical,
and begs the question whether there are other approaches

to minimize the negative effects of parrotfish bioerosion.
One effort that is well underway in Florida and elsewhere
is coral restoration (reviewed by Bostrom-Einarsson et al.
2020). When successful, outplanting corals can shift car-
bonate budgets from negative to positive by allowing reef
accretion to outpace bioerosion (Lange et al. 2024). Increas-
ing coral cover also reduces the area available for LSAT
growth and potentially generates microhabitats suitable
for natural coral settlement. However, the success of coral
restoration is inevitably limited while the stressors causing
coral mortality remain (Hughes et al. 2023). A potentially
useful complementary approach to coral restoration may be
structural restoration of the complex habitat that is being
lost (Yanovski & Abelson 2019). Indeed, a suite of studies
has established strong links between structural complexity
and coral recruitment across different spatial scales (mm to
m; Edmunds et al. 2014; Carlson et al. 2024). Moreover,
corals demonstrate increased success when elevated from
the seafloor (Lenihan et al. 2011) and are not in contact with
sediments (Clements et al. 2024), suggesting that incorporat-
ing structural restoration may be particularly important for
locations like Florida where LSATs dominate. Beyond resto-
ration, we encourage efforts to rebuild predator populations

LONG SEDIMENT-LADEN ALGAL TURFS:
KNOWLEDGE GAPS & RESEARCH PRIORITIES

FORMATION & STABILITY

PREVALENCE & DISTRIBUTION

Knowledge Gap: Understanding mechanisms that underpin LSAT
formation and stability

Knowledge Gap: Identify thresholds and tipping points of LSAT prevalence

across spatiotemporal, biological, and abiotic gradients

Research Priorities:
Drivers of sediment accumulation and retention:

e Substrate slope and surface characteristics

e Turf characteristics (composition, height, and density)

e Sediment source/grain size, water flow, resuspension rates, turbation rates
Successional dynamics of LSATs:

e Changes in turf composition as LSAT develops and stabilizes
Sedimentary processes and their relative contribution to LSAT:

e Sediment source: terrestrial vs. reef sediment

e Sediment origin: reworked vs. newly generated sediment

e Role of parroffish in turf-sediment dynamics

Research Priorities:
Spatial and seasonal patterns of LSAT:

Biological drivers:

Abiotic drivers:

o Reef zones and habitat type
e Structural relief, distance from sediment sources
e Seasonal changes in LSAT composition and abundance

e Existing benthic community composition (e.g., coral vs. macroalgal vs. turf-dominated)
o Herbivore abundance, biomass, and composition

e Depth, wave energy, nutrients
e Sediment size and sediment characteristics

IMPACTS TO ECOSYSTEM FUNCTIONS

REVERSAL & RESTORATION

Knowledge Gap: Impacts of LSAT on ecosystem functions and ecological
processes

Knowledge Gap: Strategies to break feedbacks that promote LSAT
establishment and reinforce LSAT dominance

Research Priorities:

Direct effects:
e Growth and survival of corals and other benthic organisms
e Interactions with substrates that promote coral settlement (e.g., crustose coralline algae)
e Primary productivity, nutrient cycling and storage, energy transport higher trophic levels
e Fish behavior and distribution

Indirect effects:
e Abiotic conditions (e.g., hypoxia or anoxia, accumulation of contaminants)
e Microbial dynamics (e.g., potential to serve as a reservoir for disease agents,

retain/promote bloom-forming organisms, alter nutrient cycling and primary productivity)

Research Priorities:
Herbivore restocking:

Structural enhancement:

Bioturbators and detritivore enhancement:

e Ability of diverse herbivore assemblages (e.g., urchins, crabs) to reduce turf cover
without reinforcing sediment dynamics

e Reduce sediment retention, increase coral recruitment, combat effects of bioerosion

e Prevent/reduce formation and stability of LSATs; make turf algae more accessible to
herbivores

Fig. 4 Knowledge gaps and research priorities that should be addressed to better understand the mechanisms underpinning the formation, stabi-

lization, prevalence, and impacts of LSAT-dominated states on coral reefs

@ Springer



Coral Reefs

while protecting parrotfishes. Abundant predators, such as
large groupers, can reduce the abundance of smaller par-
rotfish through consumptive effects (Mumby et al. 2006).
Due to few long-term datasets, it is very difficult to com-
pare current parrotfish biomasses and behaviors to historical
norms, but it is reasonable to assume that historically top-
down controls were significantly greater. Finally, we encour-
age further research investigating the functional differences
among parrotfishes (e.g., Adam et al. 2018) as this translates
to a better understanding of how ecological processes vary in
space (Randazzo-Eisemann et al. 2024), but also potentially
through time as benthic characteristics change.

Conclusions

Florida’s coral reefs exemplify the complex, compounding
challenges confronting coral reef ecosystems in the Anthro-
pocene. Here, we propose that LSATs form a series of self-
reinforcing negative feedback processes that suppress coral
recruitment, accelerate the loss of structural complexity by
redistributing grazing pressure, and contribute to the persis-
tence of degraded reef states that do not have high macroal-
gal cover. Notably, these feedbacks can emerge even under
conditions typically associated with resilience—such as
high herbivore biomass and low macroalgal cover—expos-
ing critical gaps in prevailing reef resilience paradigms for
the Western Atlantic (Mumby & Steneck 2008; Hughes et al.
2010).

Furthermore, large areas of reef covered in LSAT, rather
than macroalgae, may represent a poorly recognized ecosys-
tem state for reefs in the region, analogous to concerns that
cyanobacterial mats may dominate some reefs (de Bakker
et al 2017). In contrast to macroalgal dominance where sce-
narios, such as the recovery of Diadema, could significantly
reduce macroalgae and kick-start natural recovery processes,
it is not clear what biological process could change LSATs
back to high productivity turf areas. While our model is
grounded in Florida’s ecological and disturbance history,
the underlying drivers—chronic coral mortality, reef flat-
tening, sediment retention, and bioerosive grazing—are
increasingly prevalent throughout the Caribbean and beyond.
Similar benthic transitions have been documented across
multiple reef systems (Tebbett et al. 2023), suggesting that
LSAT dominance may represent a more widespread ecosys-
tem state on degraded reefs, particularly where herbivory
remains high but recovery potential is constrained by over-
lapping stressors.

The ecological consequences of LSAT dominance are sig-
nificant. These reefs exhibit reduced structural complexity and
are unlikely to sustain the biodiversity, fishery productivity, or
shoreline protection typically associated with coral-dominated
systems (Alvarez-Filip et al. 2009; Graham & Nash 2013).

While LSATs may support turf-associated species and pro-
vide minimal sediment stabilization, these limited functions
are unlikely to compensate for the loss of foundational reef
ecosystem services. Furthermore, managing LSAT-dominated
reefs requires embracing the inherent complexity of conserva-
tion in an era of layered local and global stressors. Rather than
reversing successful policies such as parrotfish protection, a
more integrative management strategy is needed—one that
simultaneously addresses sedimentation, water quality, cli-
mate change, reef restoration, and grazer functional diversity
(Burkepile and Hay 2008). As reef degradation intensifies,
LSAT-dominated states may become increasingly common,
necessitating a shift in focus from recovery alone to also pre-
venting the entrenchment of these low-functioning states.

To predict and manage the emergence of LSAT dominance,
a targeted research agenda is urgently needed to tease apart the
feedbacks and ecological dynamics highlighted in this review.
To build this knowledge base, we suggest four main themes
of LSAT-focused research: (1) formation and stability, (2)
prevalence and persistence, (3) impacts to ecosystem func-
tions, and (4) reversal and restoration (Fig. 4). Ultimately, the
rise of LSATSs challenges us to refine reef resilience theory and
reframe management goals—not only around enabling coral
recovery, but also around disrupting feedbacks that stabilize
degraded states and limit the ecological and functional recov-
ery of coral reef ecosystems.
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