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Executive Summary 
The U.S. Department of Energy, in particular, the National Renewable Energy Laboratory (NREL), and the National 
Oceanic and Atmospheric Administration (NOAA) have recently invested signifcant fnancial and human resources 
to improve measurement capabilities for wind energy applications. One of the newest additions to NREL’s feet of 
atmospheric instruments is the ground-based infrared spectrometer called the Atmospheric Sounder Spectrometer by 
Infrared Spectral Technology (ASSIST-II by LR Tech Inc., referred to in the remainder of the report simply as an AS-
SIST). The raw measurements from an ASSIST carry information about the temperature and moisture profles in the 
atmosphere, which can be estimated through the Tropospheric Remotely Observed Profling via Optimal Estimation 
(TROPoe) algorithm. At the time this report was written, the NREL ASSIST+TROPoe data have already been used in 
several journal publications (Bodini et al. 2024; Moriarty et al. 2024; Abraham et al. 2024; Radünz et al. 2024), with 
many more expected in future decades from the American WAKE experimeNt (AWAKEN, Moriarty et al. 2024), the 
Wind Forecast Improvement Project-3 (WFIP3, NOAA Physical Sciences Laboratory 2024), and future feld experi-
ments. 

Figure A. Photos fr   om diff erent deplo yments of the ASSISTs:     (a) at NREL  ’s Flatir ons Campus, 2022, bef   ore the A  WAKEN 
campaign; (b) at site B f     or A WAKEN in Oklahoma, 2023; (c) on the WFIP3 bar        ge, off the coast of Rhode Island, 2024.        

The proper operation of the ASSIST+TROPoe and its outputs require a deep understanding of the underpinning theo-
retical principles, which touch upon several disciplines such as spectrometry, radiative transfer, and optimal estimation 
theory. The ASSIST+TROPoe system is also different and more complex than other sensors that wind energy and at-
mospheric scientists are generally accustomed to. This report represents a concise overview of the essential theoretical 
and technical background required for an informed and scientifcally sound use of the hardware, software, and data 
associated with thermodynamic profling. 

This report includes four chapters that address the following topics: 

1. Fundamentals of spectrometry, which describes the operation of the ASSIST and is intended to familiarize the 
reader with the concepts required to troubleshoot the instrument and ensure operation within specifcations. 

2. Fundamentals of radiative transfer through a participating medium, where we review the main phenomena af-
fecting the spectral radiance sensed by the ASSIST and serves as the basis for the TROPoe retrievals. 

3. Retrieval of thermodynamic profles, which focus on the optimal estimation of the atmospheric state based on 
spectral observations, complemented by a succinct theoretical guide to TROPoe. 

4. Case studies, which contain some useful examples of how thermodynamic profle data can be read, quality-
controlled, and used. 

For the reader who is unfamiliar with the topic and is merely interested in deploying the ASSIST or using TROPoe 
data, some discussions of theoretical concepts may sound redundant. However, we strongly recommend reading the 
report in its entirety, as all the topics covered have important implications for the resulting data usage. To facilitate 
navigation through the most technical sections, we singled out the main “takeaways” that carry the most relevant 
message. 
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1 Introduction 
Since the advent of the wind energy industry, researchers have understandably spent their greatest efforts in charac-
terizing the wind velocity feld, which is the most bankable quantity and the one driving the wind energy generation. 
This focus on wind velocity has resulted in great advances in wind sensors, from traditional meteorological masts to 
more modern wind lidars and radars, all of which are now profusely used to assess the wind resource. 

However, the Earth’s atmosphere is governed by the laws of mass, momentum, and energy conservation, and the 
velocity vector represents just one of several interdependent quantities. The wind feld is indeed dynamically cou-
pled with other physical variables, primarily temperature and moisture (the thermodynamic profles), but also with 
cloud properties, gas concentrations, and airborne particulate and hydrometeor distributions, which cannot be easily 
disentangled. 

These quantities become even more important as the focus of wind research moves towards more challenging topics 
such as the effect of stability on shear and wakes, wind plant blockage, fow in complex terrain, low-level jets, gravity 
waves, and the impact of wake-generated turbulence on climate. Therefore, improved knowledge of, for instance, 
temperature and moisture profles in the planetary boundary layer could beneft wind research and atmospheric science 
in general through: 

1. Better characterization of local atmospheric stability. 

2. Improved boundary conditions for microscale numerical models. 

3. More comprehensive data assimilation for numerical weather prediction tools. 

4. Accurate estimation of air density for turbine power performance tests. 

5. Better characterization of the impact of wind plants and their wakes on local climate and vegetation. 

6. More comprehensive description of low-level jets, gravity waves, katabatic fows, and other thermally-driven 
atmospheric phenomena. 

Based on the realization that measuring and modeling winds alone are not enough (Veers et al. 2019; Shaw et al. 2022), 
the U.S. Department of Energy has funded initiatives to incorporate instruments capable of measuring thermodynamic 
profles into the suite of sensors used for wind energy applications. 

To meet this objective, the National Renewable Energy Laboratory (NREL) and the National Oceanic and Atmospheric 
Administration (NOAA) have acquired ground-based infrared spectrometers (IRSs) such as the Atmospheric Sounder 
Spectrometer by Infrared Spectral Technology (ASSIST) (Michaud-belleau et al. 2025), which has been deployed at 
the American WAKE experimeNt (AWAKEN) and Wind Forecast Improvement Project-3 (WFIP3) sites. ASSISTs 
and IRSs in general sense the spectra of downwelling infrared radiation at ground level. The spectral radiance carries 
information about the thermodynamic profle above the instrument, mostly in terms of temperature, moisture content, 
and cloud properties. However, estimating the desired thermodynamic quantities and their uncertainty is a complex 
operation that requires in-depth knowledge of the physics of infrared radiation as it travels through the atmosphere. 
Furthermore, unlike other remote sensing devices like lidars and radars, the ASSIST is a passive instrument in the 
sense that it does not send any pulse towards the measuring volume. This makes the reconstruction of a profle—i.e., 
the distribution of the target quantity as a function of the range—less intuitive than it is for lidars, for example. 

The ASSIST raw spectra can be converted into thermodynamic profles by using a retrieval method, which in our case 
is Tropospheric Remotely Observed Profling via Optimal Estimation (TROPoe). TROPoe is an optimal estimation 
(OE) algorithm that iteratively runs a radiative transfer model and adjusts its input (the thermodynamic profles) until 
its output (the spectral radiance) matches the observations (Turner and Löhnert 2014; Turner and Blumberg 2019). For 
us, the observations are mainly downwelling infrared spectral radiances detected by the ASSIST in specifc spectral 
bands. Ancillary observations such as cloud base height and surface meteorological data can also be provided to 
TROPoe to increase its accuracy. The retrieval is done in an OE framework (Rodgers 2000), which implies that (1) the 
fnal solution is the most likely given the current observations and historical climatology and (2) we can produce online 
quantifcation of the uncertainty (or at least part of it). Figure 1 summarizes the process for obtaining thermodynamic 
profles based on radiance observations. 
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Figure 1.   General w orkfow of thermod  ynamic pr ofling using ASSIST+TR  OPoe. 

Already at this point, the complexity of the ASSIST+TROPoe environment becomes evident. It is even more obscure 
to the wind scientist unfamiliar with spectrometry and atmospheric sounding when dealing with the operation of the 
ASSIST and the TROPoe processing or data use. Exotic terms like “black bodies,” “imaginary radiance,” “prior and 
posterior,” “averaging kernel,” etc., become ubiquitous and oftentimes essential. This report is intended to be a user’s 
manual for anyone involved with the deployment of an ASSIST, the use of TROPoe, and/or the analysis of its output. 
After reading through the whole report, the reader will be able to: 

1. Understand the measuring principle and the calibration process of an ASSIST. 

2. Read a calibration report from the ASSIST’s manufacturer. 

3. Understand the main sources of instrumental errors in an ASSIST and how to minimize their impact. 

4. Understand the basics of the radiation transfer physics that TROPoe uses. 

5. Understand the OE principles behind TROPoe. 

6. Read the TROPoe output. 

7. Carry out error analysis for thermodynamic profles. 

This report adds just minor novelties to the existing literature, and its main merit is to distill a large volume of scien-
tifc and technical knowledge from the recent past (published and unpublished) that makes accurate thermodynamic 
profling possible today. 

An important question to address before embarking on this short but dense journey is: Why did we use ASSIST+TROPoe 
as the preferred technology for thermodynamic profling, specifcally for wind energy? First, the use of remote sens-
ing technology enables the detection of thermodynamic profles with far greater temporal resolution and less logistical 
cost than in situ sensors such as radiosondes and instrumented aircraft. Moreover, IRSs have shown superior capabil-
ities with respect to other remote sensing tools when it comes to detecting thermodynamic profles (and in particular 
temperature) near the Earth’s surface where turbines operate. In this regard, several studies compared the accuracy 
of thermodynamic profles retrieved through IRSs such as the ASSIST and other technologies such as microwave ra-
diometers (Blumberg et al. 2015; Turner and Lohnert 2021; Bianco et al. 2024), Raman lidars (Turner and Blumberg 
2019), radio acoustic sounding systems (Bianco et al. 2024), and differential absorption lidars (Turner and Lohnert 
2021). The main pros and cons of each of these profling instruments compared to an IRS are summarized in Table 1. 
Although each instrument has its niche of application, it is evident how the IRS prevails when it comes to simultaneous 
profling of temperature and water vapor, especially in the lowest few hundred meters above the surface of the Earth. 
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Advantages vs. IRS Disadvantages vs. IRS 

Microwave radiometer • Can sense better above clouds • Calibration needs 
• Poorer vertical resolution 
• Smaller information content (see Section 4.1.3) 

Raman lidar • 
• 

More accuracy in water vapor 
Better vertical resolution 

• No temperature 

Differential absorption lidar • 
• 

More accuracy in water vapor 
Better vertical resolution 

• 
• 

No temperature 
Blind zone near surface 

• 
• 

Smaller range 
Calibration needs 

Radio acoustic sounding system • 
• 

More accuracy in virtual temperature 
Better vertical resolution 

• 
• 
• 

No water vapor 
More complex system 
Blind zone near surface 

• 
• 
• 

Smaller range 
Lower sampling rate 
Noise 

• Data loss in high winds 
Table 1. Comparison Between IRS and Other Similar Technologies. 

The choice of an OE method like TROPoe, which is a physical retrieval, rather than a method based on machine 
learning or statistical regression of past data, is advantageous for at least four reasons: 

1. The retrieved profles will provide "closure" with the observed radiance spectra; i.e., the profles are consistent 
with the measurement (this is not guaranteed with a statistical/machine learning method) 

2. It provides the uncertainty of the retrieval. 

3. It benefts from improvements of the embedded radiative transfer model. 

4. It allows identifcation of the physical mechanisms driving the error more easily than a black-box/data-driven 
approach. 

5. Its accuracy is less sensitive to the size and origin of the historical dataset provided than a purely data-driven 
method. 

The disadvantages of TROPoe are its computational costs, the limited vertical resolution (inherent to the physics 
of radiation, see Section 3.1) compared to in-situ measurements, and the fact that the solution could converge to 
nonphysical profles if the setup is inadequate. However, an informed use of ASSIST and TROPoe (which is what we 
hope to facilitate through this report) can guarantee the estimation of high-quality datasets of thermodynamic profles 
with known uncertainties and representativeness, which is a powerful tool for wind and weather researchers to unlock 
new knowledge of the atmosphere and its dynamics. 

Thermodynamic profling through an IRS and a physical retrieval based on optimal estimation has a long track record. 
The bulk of the development and application of this technique occurred as a part of the Atmospheric Radiation Mea-
surement (ARM) Program (Mlawer and Turner 2016). The instrument used in the ARM was the AERI (Atmospheric 
Emitted Radiance Interferometer) (Knuteson et al. 2004a, 2004b), while the retrieval algorithm was called AERIoe, 
which are the ancestors of current ASSISTs and TROPoe, respectively. AERI observations were instrumental in 
enhancing the fdelity of radiative transfer models of the atmosphere and ultimately improving the thermodynamic 
retrieval methods (Turner et al. 2004; Mlawer and Turner 2016). To date, ASSIST+TROPoe systems have been used 
to map spatial gradients of thermodynamic properties (Wagner et al. 2022), characterize precipitation in mountainous 
environments (Boer et al. 2023; Adler et al. 2023), investigate the genesis of tornadoes (Kosiba et al. 2024), charac-
terize low level jets (Radünz et al. 2024), and study interaction of the atmospheric boundary layer with wind power 
plants (Abraham et al. 2024; Moriarty et al. 2024). 
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This report is organized as follows: In Section 2, we discuss the operating principle of the ASSIST and build the 
foundation for understanding the raw data used for thermodynamic profling and their uncertainty; in Section 3, we 
review the physics of infrared radiation as it travels through the atmosphere and how spectral radiance carry thermo-
dynamic information; in Section 4, we look into the theory of OE and then focus on TROPoe’s equations, output, and 
limitations; and in Section 5 we provide basic examples of ASSIST and TROPoe data important for general use. 
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2 Fundamentals of Spectrometry 
This chapter describes the hardware components and data processing inside the ASSIST. We start with the principles 
governing an idealized spectrometer and then progressively include the several limitations of the actual instrument and 
the associated mitigation strategies. 

2.1 The Ideal Interferometer 
Highly accurate observations of the spectra of downwelling infrared radiance are essential for thermodynamic profling 
using TROPoe. Therefore, the core of the ASSIST is an interferometer of the Michelson type, an instrument that uses 
constructive and destructive interference of the radiance to characterize its spectral content. A generic Michelson 
interferometer is shown in Figure 2. The output of a scanning interferometer is the interferogram of the incoming 
radiation, namely, the power of the incoming radiation superposed to time-shifted versions of itself for different lags. 
The interferogram provides a direct measurement of the autocorrelation function of the signal—and ultimately its 
spectrum through a Fourier transform—by leveraging the Wiener-Khinchin theorem (Chatfeld and Xing 2019). To 

Figure 2. Schematic of a generic Michelson interferometer. The Es indicate elec-
tromagnetic waves at different stages and s is the optical path difference. 

show the principle of the Michelson interferometer, let us consider a monochromatic electromagnetic plane wave 
traveling through its aperture and perfectly parallel to its optical axis. In this case, using phasor notation, we have the 
following expression for the associated electric feld: 

jω(ξ −ct)E0 = |E|e , (2.1) 
√ 

where |E| is the amplitude, j ≡ −1, ω is the spatial angular frequency, c is the speed of light, ξ is a location in space 
along the beam, and t is time. We recall that ω is related to the wavenumber, ν̃ , as ω = 2πν̃ , while the temporal 
frequency is f = ν̃ c. 

In general, the radiation power, Prad, is proportional to the mean of the real part of the signal over a cycle of duration 
1/ f , also equal to the square of the amplitude divided by 2, according to: 

Z 1 
f 1

Prad ∝ f Real(E)2dt = |E|2 . (2.2)
0 2 
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In  the  most  idealized  scenario  of  a  50:50  lossless  (i.e.,  energy-conserving)  splitter,  half  of  the  radiation  power  is 
refected  in  one  direction  and  fully  refected  back  by  the  fxed  mirror  as  the  signal E1.  The  other  half  passes  through 
the  splitter  and  is  fully  refected  by  the  moving  mirror  as  a  signal E2.  The  different  travel  path  lengths  induce  a  phase 
shift  between  the  two  waves, φ .  Without  loss  of  generality,  we  pose  the  phase  of E1 to  0.  Then,  both  these  waves  are 
transmitted ( E1) or refected (   E2) by the splitter and fnally superposed at the detector as a signal of the form                

E1 E  j
2 |E| 1 e φ+

E3 = √ + √ = (e jω(ξ −ct)  e j[(ω(ξ −ct)+φ + )]) = E
2 0 , (2.3)

2 2 2 
√ √ 

where  factors 2  appear  due  to  the  50%  reduction  in  the  wave  power  (or 2  reduction  in  amplitude  according  to 
Eq.  2.2)  caused  by  the  second  pass  through  the  splitter.  We  see  how  the  original  wave  is  now  undergoing  complex 
amplitude  modulation,  where  we  immediately  recognize  a  perfect  constructive  interference  for φ = 0  and  a  perfect 
destructive interference for   φ = π . 

To  understand  what  happens  in  the  general  case,  we  need  to  do  some  calculations.  The  phase  delay φ is  proportional 
to  the  additional  travel  time  required  by  light  to  cover  twice  the  displacement  of  the  moving  mirror.  It  is  convenient  to 
defne  the optical path difference,  that  is,  the  difference  in  the  distance  traveled  by E2 and E1 before  recombination, 
as s.  Therefore,  we  have φ = ωs = 2πν̃ s.  Finally,  after  some  manipulations,  we  can  prove  that  the  power  of  the  signal 
measured by the detector is:     

E 2 | |
Prad,3 ∝ (1 + cos(2πν̃ s)). (2.4)

4 
In  words,  Equation  2.4  reads  ”the  variable  part  (i.e.,  without  the  constant  DC  component)  of  the  power  at  the  de-
tector  or  interferogram, I(s),  of  a  monochromatic  wave  is  a  sinusoidal  function  of  the  optical  path  difference, s,  with 
wavenumber ν̃ ”.  From  an  energy  conservation  standpoint,  for  zero  phase  shift, P3 = P0,  i.e.,  all  the  input  power  reaches 
the  detector.  Conversely,  when  the  signals  are  in  perfect  counter-phase  (e.g., s 0 1= ± .5 ν̃ − )  the  detector  receives  no 
power.  Since  we  assumed  a  lossless  interferometer,  where  did  the  input  power  go?  The  answer  is  simple:  The  missing 
power at the detector is refected back to the input and does not contrib             ute to the measurement.    

In the more realistic case of a multi-chromatic radiation with po          wer spectral density or spectral radiance      B(ν̃ ), Z 
∞ 

I(s) = B(ν̃ )cos(2πν̃ s)dν̃ , (2.5)
0 

where  the  proportionality  constant  has  been  dropped  for  simplicity.  We  can  extend  the  integral  to  negative  frequencies 
by  using  the  double-sided  spectral  radiance BDS.  Finally,  through  a  change  of  variable  and  recalling  that BDS is  a  real 
even function, we get a f     amiliar e xpression: Z 1 ∞ 

I(s DS(ω e jωs) = B ) dω, (2.6)
2π −∞ 

which  says  that  the  interferogram  is  the  inverse  Fourier  transform  of  the  spectral  radiance.  Thus,  we  can  obtain  the 
spectral radiance of the radiation by performing the F        ourier transform of the interferogram:     Z 

∞ 
B s

DS(ω = I ω) (s e− j) dω. (2.7) 
−∞ 

This  analysis  was  done  for  an  ideal  interferometer.  However,  a  real  one  is  affected  by  several  limitations  that  are 
discussed in the follo   wing sections.  

2.2  Limitation 1:   Radiometric Calibration  
As  is  common  in  metrology,  the  measured  quantity  does  not  correspond  directly  to  the  quantity  of  interest.  The 
ASSIST  is  no  exception,  and  recording  the  interferogram  requires  two  detectors  that  translate  the  radiation  intensity 
of  the  interferometer  (quantity  of  interest)  into  a  voltage  that  is  the  actual  measurement.  The  long-wave  “channel  A” 
detector  is  an  HgCdTe  sensor  that  senses  wavenumbers  from  525  to  1,825  cm−1.  The  shortwave  “channel  B”  detector 
is  an  InSb  sensor  and  senses  wavenumbers  from  1,720  to  3,300  cm−1.  In  the  following,  we  assume  a  perfectly  linear 
response of both detectors; we call the ra       w signal at the detector     d(s) and its F  ourier transform  D(ν̃ ). 
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The  raw  reading  from  the  detectors  is  converted  online  into  an  estimate  of  the  spectral  radiance  through  the  so-called 
radiometric calibration.  The  radiometric  calibration  uses  the  known  radiative  properties  of  two blackbodies and  the 
linearity  of  the  detector  response  and  the  Fourier  transform  operator  to  build  a  linear  regression  between  the  detector 
output  and  the  spectral  energy  at  each  wavenumber.  One  blackbody  is  kept  at  60◦C  and  is  named  hot  blackbody  (HBB); 
the  other  blackbody  is  not  thermally  controlled  and  is  therefore  named  ambient  blackbody  (ABB).  The  emission  of  an 
ideal blackbody follo  ws Planck’ s la w at thermal equilibrium:    � �−1100 hcν̃ 

B0(ν
·

˜ ,T ) = 2 · 1011hc2
ν̃

3 e k T B − 1 , (2.8) 

where: 

• B0 is  the  blackbody  (single-sided)  spectral  radiance  in mW 
2 (power per unit surface, per unit solid angle, 

     
m sr   cm−1       

per unit wavenumber band), also called radiance units (r.u.), which is the unit used by the ASSIST         

• ν̃ is the w  avenumber in cm  −1 

• h = 6.626070 · 10−34 J s is the Planck constant      

• c = 2 8 .997924 · 10 m s−1 is the speed of light     

• kB = 1.380649 · 10−23 J K−1 is the Boltzmann constant    

• T is the temperature in K.     

The  “real”  blackbodies  installed  on  the  ASSIST  do  not  exactly  follow  Eq.  2.8  because,  due  to  their  emissivity  being 
eν̃ < 1, the y also refect a small fraction of ener       gy from the surroundings structure at a uniform temperature         Tr: 

BBB(ν̃ ) = eν̃ B0(ν̃ )+(1 − eν̃ )B0(ν̃ ,Tr). (2.9) 

The  emissivity  is  generally > 0.99  in  the  normal  direction  sensed  by  the  interferometer,  due  to  the  black  coating  and 
the ca vity ef fect achie ved by the special geometry of the blackbodies.        

Now  that  we  have  an  equation  to  estimate  the  spectra  from  the  HBB  and  ABB  and  we  can  measure  interferograms 
from  HBB,  ABB,  and  the  sky  scene,  we  have  all  the  ingredients  to  formulate  the  radiometric  calibration  workfow, 
which includes these steps:    

1. A  rotating  scene-selection  mirror  defects  the  emission  of  the  HBB  into  the  interferometer.  The  detector  collects 
the  raw  signal dHBB(s) in  volts  and  calculates  and  stores  its  Fourier  transform, DHBB(ν̃ ).  The  temperature  of  the 
blackbody, THBB is also recorded.   

2. The rotating mirror defects the emission of the ABB into the interferometer and stores              DABB(ν̃ ) and TABB. 

3. The  mirror  moves  to  sky  view  and  records  the  downwelling  infrared  radiation  coming  from  the  atmosphere  in 
the form of   Dsky(ν̃ ). 

4. Step 2 is repeated.    

5. Step 1 is repeated.    

6. Step 3 is repeated.    

The  aim  of  the  sequence  HBB-ABB-sky-ABB-HBB-sky  is  to  make  sure  that  each  sky  view  is  bracketed  by  views  of 
both  blackbodies.  The  sky  spectral  radiance  is  fnally  calibrated  using  the  information  from  both  bracketing  views  of 
the blackbodies.  

Based on the scheme sho    wn  in Figure 3    we ha ve: 

ℜ 1 z (ν̃ )−}| {
BDS,HBB(ν̃ ) − BDS,ABB(ν ̃  ) � �

BDS(ν̃ ) = Dsky(ν̃ ) − DABB(ν̃ ) + BDS,ABB(ν̃ ), (2.10)
DHBB(ν̃ ) − DABB(ν̃ ) 
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Figure 3. Schematic of the radiometric calibration. 

where double-sided blackbody spectra are      obtained by simply mirroring Eq.      2.8. 

It  is  noteworthy  that  any  internal  emission  and  phase  lag  due  to  electrical  and  optical  dispersion  cancel  out,  provided 
that  they  are  invariant  between  the  three  different  views.  This  is  ensured  by  a  careful  design  of  the  geometry  of  the 
back  bodies  and  by  keeping  the  internal  surfaces  at  a  uniform  temperature  for  the  duration  of  the  entire  calibration 
cycle (i.e., HBB-ABB-sk  y-ABB-HBB-sky). 

The  inverse  of  the  slope  of  the  linear  regression  is  called responsivity, ℜ(ν̃ ),  which  we  will  assume  to  be  a  real 
quantity  for  now,  and  it  is  of  fundamental  importance  to  evaluate  the  performance  of  the  instrument.  An  insightful 
perspective  is  gained  by  applying  the  linear  error  propagation  in BDS(ν̃ ) as  a  function  of  the  uncertainty  of  all  terms  on 
the  right-hand  side  of  Eq.  2.10.  By  indicating  the  random  error  standard  deviation  with σ and  defning  for  compactness 

sk (ν
∆

D ˜ )
= y −D
 ABB(ν̃ )

D (ν̃ )−D (ν̃ ) , we get the follo    wing equation, where dependence from     ν̃ is omitted for bre   vity: 
HBB ABBs � �

∆2 1  2−∆ 1
σ(BDS) = ∆2σ2(B )+(1 − )2σ2(B 2

DS,HBB ∆ DS,ABB)+ σ (DHBB)+ 2 σ2(D ) σ2(D y).
ℜ ℜ

ABB + 
ℜ

sk2 

(2.11) 
Therefore: 

• The  impact  of  all  errors  on  the  Fourier  transform  of  the  interferogram  (DHBB, DABB, Dsky)  increases  for  decreas-
ing responsi vity. 

• Errors  relative  to  the  ABB  (DABB, BDS,ABB)  always  increase  for  decreasing ∆ for  the  largely  applicable  con-
dition ∆ < 1  (e.g.  cold  sky  temperature  or  high  ABB  temperature),  due  to  the  relatively  large  degree  of  linear 
extrapolation (see Figure 3).    

• Errors  relative  to  the  HBB  (DDS,HBB, BDS,HBB)  are  zero  for ∆ = 0  (or Dsky(ν̃ ) = DABB(ν̃ ),  since  there  is  virtually 
no e xtrapolation) and increase as    |∆| increases. 

Takeaway 1: Higher radiometric calibration errors are to be expected in conditions where the responsivity of 
the instrument is low (e.g., due to dirty or damaged optics), the sky temperature is cold (e.g., most transparent 

bands on a clear dry day), or the ambient temperature is high. 

2.3  Limitation 2:   Finite Optical P  ath Diff erence 
The  maximum  mirror  displacement  of  a  real  interferometer,  and  therefore  its  maximum  optical  path  difference, smax, 
are  limited  by  technological  constraints.  This  results  in  a  distortion  of  the  measured  spectral  radiance  compared  to  the 
real  one.  In  particular,  the  reconstructed  spectral  radiance, BDS, real ,  is  smoothed  by  a  sinc  function  convolution  that 
widens  the  spectral  lines  and  causes  an  actual  reduction  in  spectral  resolution  that  can  be  achieved.  To  show  this,  we 
can model the limited optical path of the interferogram by introducing            a rectangular function into Eq.      2.7: Z 

∞ 
− BDS, real(ω) = I(s)h(s)e jωsdω, (2.12) 

−∞ 
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where h(s) = 1 in the range −smax < x < smax and 0 otherwise. The convolution theorem readily gives (Greenberg 
1998) Z 

∞ 
′ B̂DS(ω) = 

1 
BDS(ω

′ )H(ω − ω ′ )dω . (2.13)
2π −∞ 

According to an established result, the FT of h(s) is a sinc function of the form 

sin(ωsmax)H(ω) = 2 . (2.14)
ω 

We have shown how the spectral radiance derived from an interferogram is equal to the original spectral radiance 
convolved with a sinc function whose width increases as smax decreases. An example of such effect for different 
values of smax is shown in Figure 4. Here, a sample spectral radiance from the ASSIST (black line, top row) taken 
as the baseline is reprocessed with decreasing smax to simulate interferometers with progressively smaller maximum 
optical path differences. The associated smoothed spectra are shown in red. The bottom plots provide the associated 
sinc smoothing function, both for the real ASSIST (black) and for the interferometers with reduced smax (red). 

To have a sense of the severity this “spectral leakage” in the ASSIST (black lines), we notice that the second lobes 
of the sinc function have an integral that is 23% of the central lobe, the third lobes 13%, the fourth lobes 1%, etc. 
An a posteriori correction for this effect is not possible, as it ensues from an irreversible information loss due to 
a fundamental limitation of the interferometer (i.e., it is mathematically impossible to de-convolute a signal). The 
maximum optical path difference of the ASSIST is smax = 1.037 cm, and the associated spectral resolution is generally 
adequate for carrying out thermodynamic retrievals. In fact, spectral lines of interest (see Section 3) measured at 
ground levels are affected by atmospheric broadening, which is generally more severe than the smoothing due to the 
limited optical path difference (see Section 3.1). Furthermore, some radiative models (like the one in TROPoe) include 
a correction that mimics the effect of the fnite optical path of the interferometer. 

Figure 4. Effect of different maximum optical path differences on the spectral radi-
ance. Top row: single-sided spectra; bottom row: sinc smoothing function from Eq. 2.14. 

Takeaway 2: The fnite maximum displacement of the moving mirror results in a smoothing of the spec-
tral radiance that limits the spectral resolution. However, the extent of such smoothing in the ASSIST is small 

enough that it should not signifcantly impact the thermodynamic profles. 
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2.4 Limitation 3: Finite Sampling Rate 
A real interferometer also necessarily has a fnite sampling frequency. To make sure that the interferogram is sampled 
at equally spaced mirror displacements, the detectors of the ASSIST are triggered by a quasi-monochromatic meteo-
rology laser with wavenumber ν̃0 = 15798.05 cm−1 that goes through the same optical path as the measured radiation. 
Since monochromatic radiation produces an interferogram that is purely sinusoidal, the detector samples the radiation 
simultaneously to the occurrence of the rising-edge zero-crossings of the interferogram generated by the laser. This 
process ensures a highly accurate sampling rate. 

The discrete nature of the interferogram also implies that the Fourier transform in Eq. 2.7 can be performed as a 
discrete Fourier transform (DFT). The DFT provides the Fourier transform values for a discrete signal of length N at 
N equally spaced sample points (Oppenheim 1999). In particular, for even N, like in the ASSIST: ( 

νk) = ∑
N/2−1 − j 2 

N 
π kn BDS,k( ̃  n=−N/2 I(sn)e 

k 
∀ k = −N/2, ...,N/2 − 1, (2.15)

ν̃k = N∆s 

ν
−1where ∆s = ˜ is the resolution in optical path difference, or twice the movement of the mirror between two sampling 0 

locations. 

The frst implication is that for an ASSIST with a moving mirror generating optical path differences from −smax to 
1 1+smax and recording a double-sided interferogram at N points, the spectral resolution is equal to ∆ν̃ = N∆s = .2smax 

An ASSIST has an smax = 1.037 cm, resulting in a discrete spectral resolution of ∆ν̃ = 0.482 cm−1. 

A second consequence of the fnite sampling of the interferometer is that the energy contained at wavenumbers larger 
than the Nyquist wavenumber will be mirrored on the resolved part of spectral radiance, creating aliasing. The Nyquist 
wavenumber for the interferometer is (2∆s)−1 ∼ 7,900 cm−1. Plank’s law indicates that the energy content above 
the ASSIST’s Nyquist wavenumber exceeds 1% for a black body temperature of 1,150◦C, which is far beyond the 
maximum temperature detected in the atmosphere. Aliasing could occur if sunlight were to enter either directly or 
indirectly entering the detector. In this instance, the antialiasing flter embedded in the ASSIST (mostly active to 
prevent noise aliasing, see Section 2.7) would still provide protection. 

Takeaway 3: The ASSIST is minimally affected by aliasing when observing atmospheric spectra. 

2.5 Limitation 4: Nonlinearity of Channel A Detector 
The radiometric calibration requires a linear response of each detector to apply the linear extrapolation of the black-
body spectra on the sky view (Figure 3). The InSb channel B detector is inherently linear, so Eq. 2.10 can be applied 
directly at long wavenumbers. However, the HgCdTe channel A detector is nonlinear enough that a direct applica-
tion of the linear radiometric calibration would throw the estimated spectra off specifcation due to a scene-dependent 
responsivity. 

Therefore, the ASSIST applies a nonlinearity correction to the DFT of the interferogram of channel A before the 
radiometric calibration. The correction uses a quadratic expression of the generic response of the detector: 

D( ̃  ν) − a2B2
ν) = a0 + ℜ(ν̃ )BDS( ̃  DS(ν̃ ) → Dlinear(ν̃ ) = D(ν̃ )+ a2DFT(I(s)+VDC), (2.16) 

where VDC is a DC offset present in the detector that is modeled internally by the ASSIST (Knuteson et al. 2004a). 
VDC cancels out in the radiometric calibration since it is constant but must be considered in the nonlinearity correction. 
Operatively, the parameter a2, which is a single scalar, is obtained by installing a source with known spectral radiance 
on the sky window, such as a liquid nitrogen bath. In this way, it is possible to adjust the coeffcient a2 to minimize the 
difference in the responsivity between the HBB and the ABB and the difference in the responsivity between the ABB 
and the known cold source. Constant responsivity when staring at different scenes implies linearity of Dlinear(ν̃ ) with 
respect to BDS(ν̃ ). During feld deployments, the validity of the nonlinearity correction (among other processes) can 
be checked using the so-called third blackbody calibration, where an isothermal auxiliary blackbody is installed on 
the sky aperture, thus producing a known spectral emission to be compared to the ASSIST estimate. 

Takeaway 4: It is important to carry out a third blackbody calibration before and after each deployment to 
ensure that the nonlinearity of channel A is adequately corrected. 

10 

This report is available at no cost from NREL at www.nrel.gov/publications 

https://15798.05


         
                

                  
                

                   
     

                    
                

            
      

                     
                  

       

                    
                

                 
                  

                
                   

             
               

                    
                

     

   
                 
              
               
                   

                  
                

Takeaway 5: Uncertainty in the nonlinearity correction coeffcient a2 has a negligible impact for when the 
observed radiance is close to that of the ABB (e.g., in more opaque channels), but the impact increases as the 

scene temperature decreases (e.g., in atmospheric window channels). 

2.6 Limitation 5: Finite Field of View and Laser Alignment 
The fundamental equation of the interferogram (Eq. 2.6) was obtained under the assumption of a radiation beam 
perfectly parallel to the optical axis of the inlet and the detector. However, a real interferometer will admit energy 
coming from a fnite solid angle to acquire information with an acceptable signal-to-noise ratio. However, this fnite 
feld of view (FFOV) causes changes in (1) the shape of the measured spectral radiance and (2) the effective sampling 
frequency dictated by the metrology laser. 

It is easy to prove that incident radiation at an angle α from the optical axis will recombine at the detector with an 
optical path difference reduced by a factor of cosα (Genest and Tremblay 1999). Integration over a small half-cone 
angle αmax leads to the following expression for the so-called self-apodized interferogram, i.e., the interferogram 
produced by an interferometer with an FFOV: 

∞1 Z sin(ωsα2 /4)maxI(s) = BDS(ω) e jωsdω. (2.17)
2π −∞ ωsα2 /4max 

The half-cone angle of ASSIST is αmax = 23 mrad and is so small that the sinc function is very close to the Dirac delta 
for a wide set of wavenumbers. Additionally, the ASSIST applies an analytical correction based on Eq. 2.17 on the 
spectra, which is generally less than 1 r.u. 

Another effect of the FFOV is the slight shift in the actual sampling frequency of the detector triggered by the metrol-
ogy laser. Specifcally, the actual sampling wavenumber is increased by a factor α2 /4 (in radians), which is about max 
100–200 ppm of the nominal wavenumber for the ASSIST, and it is corrected by internal processing. Additional and 
more problematic shifts in the sampling frequency of the laser occur for any small misalignments of the laser with 
respect to the nominal optical path inside the interferometer. The specifcation of the ASSIST for wavenumber knowl-
edge is better than 0.01 cm−1, so even a small deviation in sampling frequency can result in an unacceptable error 
on ∆s = ν̃ −1 and therefore ν̃ (see Eq. 2.15), with a consequent stretching/contraction of the spectral radiance on the0 
wavenumber axis. This can be detrimental to the retrieval because it shifts important atmospheric absorption lines. 
The current method to correct for this error is based on the calibration of the water vapor absorption lines that are 
always detectable in the spectral radiance. The third blackbody calibration can also help in identifying spectral errors 
due to FFOV and laser misalignments. 

Takeaway 6: Finite feld-of-view effects have an analytical correction that is automatically applied by the AS-
SIST, but wavenumber shifts due to misalignments of the laser need to be checked and corrected after each re-

location. 

2.7 Limitation 6: Noise 
So far, we have considered an instrument without noise in the acquisition chain. However, random noise is introduced 
in the ASSIST from different internal and external sources. An inevitable and fortuitously measurable consequence 
of the random noise in the interferogram is the presence of nonsymmetrical components. These components translate 
in the frequency domain into an imaginary part added to the real spectral radiance obtained in Eq. 2.10, which then 
makes it possible to perform online noise quantifcation (Revercomb et al. 1988). The health of the instrument can be 
checked by monitoring the imaginary radiance and making sure that it does not signifcantly increase over time. 

Takeaway 7: The health status of the ASSIST should be assessed by monitoring the magnitude of the 
imaginary radiance. The imaginary radiance is also useful to estimate the noise level needed by TROPoe. 
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3 Fundamentals of Radiative Transfer Through a Participating 
Medium 
We have reviewed the complex and interesting science that goes beyond the measurement of spectral radiance. How-
ever, in many applications, the spectral information itself is not readily usable, for example, to estimate atmospheric 
stability or validate atmospheric models. Through a thermodynamic retrieval (such as TROPoe), we can extract the 
information of the atmospheric state concealed in the spectral radiance. This chapter provides a quick overview of the 
most important physical mechanisms that govern the relationships between the spectral radiance observed at the ground 
and the thermodynamic state of the gases and water molecules in the atmosphere. The description will be mostly qual-
itative in that the main mathematical result is the law of radiative transfer, which is the backbone of TROPoe. Yet, even 
this brief overview will equip the ASSIST user with a useful skill: Understanding the overall atmospheric conditions 
by just looking at the raw spectra and quickly spotting nonphysical artifacts that require immediate attention. 

3.1 General Concepts 
An electromagnetic wave traveling through a medium undergoes a series of interactions that are strongly coupled with 
the molecular and physical properties of the medium itself. In the treatment of radiative heat transfer through a par-
ticipating medium, it is convenient to describe the radiation as a packet of photons. The photon energy is proportional 
to its wavenumber and equal to hν̃ , where h is Planck’s constant. When a photon interacts with a particle, it can be 
absorbed or scattered. In the frst case, the photon contributes to increase the energy of the medium. In the second 
case, the same photon is defected without (elastic scattering) or with (inelastic scattering) a loss or gain of energy. 
The medium itself also contributes to the radiative fux by emitting photons based on its local thermodynamic state 
through a process that is the mirror version of the absorption. An illustration of these four interaction modes between 
medium and photons (absorption, emission, elastic scattering, and inelastic scattering) is shown in Figure 5 . 

Figure 5. Schematic representation of the type of photon-medium interac-
tions: (a) absorption; (b) emission; (c) elastic scattering; (d) inelastic scattering. 

Scattering can happen in the form of refection, refraction, or diffraction and be subject to different physical mecha-
nisms, mostly based on the size of the particle compared to the wavelength of the incident radiation. The treatment of 
scattering is signifcantly more complex than absorption and emission. Fortunately, it represents a negligible fraction 
of the infrared energy of interest for thermodynamic profling, with some exceptions in the presence of clouds (Turner 
and Löhnert 2014). Therefore, the remainder of the report will focus on absorption and emission only. 
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Absorption  and  emission  in  a  medium  occur  at  specifc  energy  levels  associated  with  state  transitions.  A  photon  can 
be  absorbed  only  if  the  difference  in  two  of  the  energy  states  of  the  medium, ∆E > 0,  is  equal  to  its  energy hν̃ or, 
equivalently,  the  photon  has  a  wavenumber  such  that ν̃ = ∆E/h.  In  reverse,  a  negative  energy  transition  results  in 
the  emission  of  a  photon  with  energy hν̃ = −∆E and  wavenumber ν̃ = −∆E/h.  Therefore,  the  linear  relationship 
between  the  energy  and  the  wavenumber  of  a  photon  implies  that  the  absorptive  and  emissive  properties  of  a  medium 
are  inherently  wavenumber-dependent.  In  other  words,  the  spectral  properties  of  the  radiation  are  correlated  to  the 
energy  state  of  the  medium.  The  retrieval  of  thermodynamic  profles  in  the  atmosphere  from  the  spectral  radiance 
takes adv antage of this fundamental ph    ysical property . 

There  is  a  qualitative  difference  between  the  spectral  absorption  and  emission  of  non-ionized  and  ionized  media.  A 
non-ionized  medium  includes  molecules  and  atoms  that  have  energy  states  associated  with  specifc  rotational  and 
vibrational  modes  and  electronic  states.  In  this  case,  energy  transitions  are  called  bound-bound  and  occur  as  jumps 
between  discrete  energy  levels.  This  means  that  only  photons  with  specifc  energy  levels  (or,  equivalently,  wavenum-
bers)  can  be  absorbed  or  emitted.  This  explains  why  spectrum  of  the  radiation  traveling  through  a  non-ionized  medium 
is characterized by narro   w absorption/emission bands at specifc frequencies.      

In  contrast,  a  medium  that  contains  ions  and  free  electrons  is  characterized  by  a  continuum  absorption/emission  spec-
trum  because  these  types  of  particles  can  have  any  energy  above  a  threshold  called  ionization  energy.  The  contribution 
of  ions  in  the  atmospheric  processes  is  negligible,  and  we  will  therefore  focus  only  on  the  non-ionized  medium  in  the 
following discussion.  

In  reality,  however,  as  a  result  of  so-called line broadening,  even  a  non-ionized  medium  adsorbs/emits  over  a  fnite 
range  of  wavenumbers  around  ideal  spectral  lines  predicted  by  quantum  theory, ∆E/h.  The  shape  of  the  broadened 
spectral  lines  is  referred  to  as lineshape.  For  atmospheric  applications,  broadening  can  occur  mainly  because  of  two 
mechanisms: 

• Doppler  effect  due  to  the  relative  motion  of  the  absorbing/emitting  particle  induced  by  thermal  agitations:  In 
this  case,  the  observed  lineshape  is  Gaussian,  and  its  amplitude  is  proportional  to T 1/2 (where T is  temperature); 
thus, it is more rele    vant at high temperatures where molecules mo      ve more vigorously  . 

• Collision  between  particles  of  the  same  species  (self-broadening)  or  different  species  (foreign  broadening):  The 
observed  lineshape  is  an  approximate  Lorentzian  function  with  slowly  decaying  tails  or  wings  and  amplitude 
proportional to  P T 1 2 / / (where P is pressure), becoming important at high pressures and lo        w temperatures.  

Broadening is important in the context of thermodynamic profling because it eases the spectral resolution requirements 
of the spectrometer and impacts the accuracy of physical radiative transfer models (see Section 4.2.3). 

Takeaway 8: The atmosphere can be treated as an absorptive-emissive, non-ionized medium in the infrared 
region of interest for thermodynamic profling. Absorption/emission occurs around specifc spectral lines that 

are associated with the discrete energy states of the different atmospheric layers. 

3.2 The Law of Radiative Transfer 
Energy conservation along the travel path for radiation in nonscattering media takes the form of the so-called law of 
radiative transfer and plays a crucial role in thermodynamic profling. It basically represents the balance between the 
absorbed and emitted spectral radiance along the path traveled by the radiation. The path is defned by the direction in 
three-dimensional space, α , and the line-of-sight distance from an arbitrary origin, ξ . 

The absorption of energy is described by the following differential equation: 

∂ B(ν̃ ,ξ ,α) 
= −aν̃ (ξ ,α)B(ν̃ ,ξ ,α), (3.1)

∂ξ absorption 

where B(ν̃ ,ξ ,α) is the spectral radiance at wavenumber ν̃ , along-beam location ξ , and in direction α . The absorption 
coeffcient, aν̃ (ξ ,α), represents the fraction of energy absorbed in a unit thickness layer at the specifc wavenumber. 
The derivative includes only radiation attenuation as a result of absorption. 

If each parcel of the medium is in local thermodynamic equilibrium (which largely applies to the atmospheric case 
when the air pressure is signifcantly greater than zero), the emission is only a function of the local thermodynamic 
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state.  Based  on  fundamental  thermodynamic  considerations  (Siegel  1971),  it  can  be  shown  that  the  emission  spectrum 
has  a  fairly  simple  expression:  It  is  equal  to  the  blackbody  radiation  at  the  local  temperature, B0(ν̃ ,T (ξ ,α)),  times 
the  absorption  coeffcient,  and  it  is  conveniently  isotropic.  So,  the  local  increase  in  radiation  due  to  emission  along 
direction α is: �

∂ B(ν̃ ,ξ ,α) �� a ξ α B ν̃  T ξ α  (3.2)
∂ =

 � + ˜ ( , ) 0( , ( , )).
ξ

ν

emission 

These  two  basic  equations  allow  us  to  derive  the  law  of  radiative  transfer  from  the  total  variation  of  energy  due  to 
absorption  and  emission  along  the  travel  path.  The  law  of  radiative  transfer  of  the  electromagnetic  radiation  in  a 
nonscattering participating medium can be recast as:       Z 

κν̃ 
ν

κB(ν̃ ) = B( ˜ κ,κ
,α 

ν̃ α , 0,α)e 
′−κ ν̃ α

( − + B (ν̃ ,T (κ ′ − ), ))e ν̃ ,α ν̃ ,α ′ 
, κ

 
 0 ν̃ ,α d ν̃ ,α , (3.3)

0 

where α is the direction and    κν̃ ,α is a special spatial coordinate called      optical thickness defned as:  Z 
ξ 

κν  ′
˜ ,α = a ′

ν̃ (ξ ,α)dξ . (3.4) 
0 

Equation  3.3  shows  the  spectral  radiation  at  a  given  point  in  space  coming  from  a  specifc  direction  as  the  sum  of  two 
terms: 

• The radiation at the boundary of the domain        B ν̃ ,0  κ( , α) attenuated by e− ν̃ ,α as a consequence of absorption.     

• The  sum  of  the  emission  of  the  medium  along  the  specifc  direction,  which  is  proportional  to  all  the  blackbody 
spectral  energy  encountered  along  the  path, B0(ν̃ ,κν̃ ,α ),  convolved  with  an  exponential  weighting  function 
which represents the loss due to absorption along the path.          

For  illustrative  purposes,  we  can  derive  the  law  of  radiative  transfer  for  an  ideal  medium  with  homogeneous  absorption, 
the optical thickness is simply     κν̃ = aν̃ ξ .  Equation 3.3 then becomes    Z 

ξ 
B ν̃ ξ α  B ν̃ 0 α e −aν̃ ξ  a B ν̃ T ξ ′ α e −aν̃ (ξ ξ ′ ( , , ) = ( , , ) + ( , ( , )) − )dξ

′ 
ν̃ 0 . (3.5) 

0 

To  get  a  sense  of  how  thermodynamic  profling  from  a  ground-based  instrument  works,  we  can  apply  Eq.  3.5  to  an 
observer located at the Earth’s surface and looking up along the zenith direction. In this case, we can neglect the 
radiation coming from outer space, so that the law of radiative transfer reads Z 

∞ 
B(ν̃ ) = aν̃ B0(ν̃ ,T (z))e−aν̃ zdz, (3.6)

0 

where the spatial coordinates have been dropped for simplicity. The spectral radiance at the ground at a specifc 
wavenumber is the integral of the blackbody radiance emitted by the columns of gases overhead multiplied by the 
transmission of the atmosphere from the level of emission to the instrument, which takes an exponential form. This 
vertical product is called the weighting function in the context of atmospheric sounding. Moreover, the stronger the 
absorption, the faster the decay of the weighting function. Equation 3.6 is qualitatively shown in Figure 6 for low and 
high absorption coeffcients. The centroid of the weighting function, located at an altitude of z = a−1, is also indicated 

ν̃ 
in red. 

Clearly, a less absorptive or “transparent” medium weights more contributions from higher layers compared to a more 
absorptive or “opaque” medium, which is mainly affected by emission close to the ground. We can translate this 
conclusion into a useful property for the spectra measured at the ground by an ASSIST. Spectral regions with large aν̃ 
will appear more opaque and allow only radiation close to the surface to reach the instrument. Spectral regions with 
small aν̃ will be more transparent and allow radiation from higher altitudes to reach the instrument. 

In this context, a convenient variable (that is also provided by the ASSIST at specifc wavenumbers) is the brightness 
temperature, or the temperature of a blackbody emitting with a certain energy at the specifc wavenumber, which reads 
(in ◦C): � � ��−1100 · hcν̃ 2 · 1011 · hc2ν̃3 

Tb(ν̃ ,B0(ν̃ )) = log + 1 − 273.15. (3.7)
kB B0(ν̃ ) 
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Figure 6. Qualitative behavior of weighting functions of the law of radiative transfer for a ground-based, zenith-looking observer 
and a homogeneous absorption coeffcient from Eq. 3.6. The area under the function is colored by its cumulative integral. 

In light of this example, a very rudimentary thermodynamic profling method could then assume that the brightness 
temperature derived from the spectral value at a certain wavenumber is a proxy for the temperature at the centroid of 
the emission layer, i.e., z = a−1. Therefore, the temperature profle across different altitudes could be estimated from 

ν̃ 
observations over a set of wavenumbers with large variations of aν̃ , for instance, close to a steep absorption line. A 
real-world spectrum is clearly more complex with contributions from the emission from multiple layers that overlap 
on the same spectral bands, inhomogeneous absorption coeffcients, and boundary effects in very transparent bands. 
This calls for a more sophisticated retrieval method to be used to estimate the atmospheric state, i.e., TROPoe. 

Takeaway 9: The spectral absorption and emission of infrared radiance depend strongly on the thermody-
namic state of the medium (i.e., the atmosphere), which is the basis of TROPoe and thermodynamic profling 

in general. 

3.3 Typical Atmospheric Spectra 
A simple visual inspection of the ASSIST spectra can provide important information on the atmospheric state and 
physics. Figure 7 shows three spectra collected at AWAKEN site B (Letizia 2023) in August 2023 and the associated 
brightness temperature. The ASSIST was collocated with a meteorological station (Goldberg 2023) that provided 
surface temperature (Ts) and relative humidity (RHs) measurements at 2 m above the ground. A laser ceilometer 
(Hamilton 2023) was also installed at site A1 (about 20 km northeast) and measured the cloud base height. The frst 
and second spectra (Figure 7a,b) were collected on 2023-08-24 during clear-sky conditions at nighttime (06:00 UTC, 
01:00 local time) and daytime (15:00 UTC, 10:00 local time), respectively. They are qualitatively similar. We can 
easily identify wavenumbers in the regions 500 < ν̃ < 750 cm−1, 1,250 < ν̃ < 2,000 cm−1, and 2,250 < ν̃ < 2,380 
cm−1 where the radiance closely follows Planck’s law evaluated at surface temperature (black line in the fgure). 
These opaque bands represent the spectral regions where the atmosphere is generally optically very thick or opaque, 
so that the instrument “sees” mostly the warm emission very close to the ground. In fact, the brightness temperature in 
these bands is close to the surface value. Conversely, the regions 700 < ν̃ < 1,250 cm−1, 2,000 < ν̃ < 2,250 cm−1, 
2,380 < ν̃ < 3,000 cm−1 show signifcantly lower energy, meaning that these are more transparent bands if the sky is 
clear. In this region, the ASSIST is “seeing” radiation coming from far above the Earth surface. In this region of the 
atmosphere temperatures are generally lower than the surface values, so the spectral energy is below Planck’s function 
at ambient temperature and the brightness temperature also drops to −40◦C or below. Interestingly, some spectral 
region show brightness temperatures above the ambient blackbody curve. This is due to the presence of very opaque 
gases inside the instrument that can obscure the view of the blackbodies and invalidate the radiometric calibration. 
Finally, the region close to the transition between Channel A and B (not used in TROPoe), shows signifcant spectral 
noise. 

The third spectrum (Figure 7c) was collected during an overcast event on 2023-08-27 17:15 UTC (12:15 local time). 
Here, the spectrum shows a signifcant difference from those recorded during clear-sky conditions, especially in the 
transparent band. The brightness temperature stays close to or even above the surface value. This higher brightness 
temperature is because the clouds block the infrared radiation from the higher altitudes and emit at temperatures closer 
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Figure 7. Three sample spectra (top) and brightness temperatures (Tb, bottom) from the ASSIST installed at 
AWAKEN site B: (a,d) nighttime, clear sky; (b,e) daytime, clear sky; (c,f) daytime, cloudy. The blue and red lines 
indicate data from channel A and channel B, respectively. The black line is the Planck function evaluated at Ts. 

to the surface values. In general, the spectral information from above cannot penetrate dense cloud layers; therefore, 
any physical retrieval above cloud base height is generally affected by large uncertainty (see Section 4.2.4). 

Takeaway 10: Different regions of the spectral radiance carry information about different layers of the atmo-
sphere based on the associated optical thickness. Clouds generally block most of the information above the 

cloud layer, and emit signifcant energy to the surface. 

Zooming into the spectra, it is possible to identify absorption lines from the different gases that absorb and emit at 
specifc wavenumbers based on their molecular structure. The most important species with active absorption/emis-
sion within the spectral band detected by the ASSIST are H2O, CO2, CH4, N2O, and O3. These known spectral 
dependencies are leveraged to carry out the optimal retrieval of the temperature and humidity profles, as described 
next. 
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4 Retrieval of Thermodynamic Profles 
We have discussed so far how the spectral radiance is affected by the thermodynamic state of the atmosphere, in 
the form of temperature and spectral absorption coeffcient, and how it is measured at the ground level. The fnal 
missing piece in understanding how thermodynamic profling works is to describe the way a the retrieval algorithm 
(for us, TROPoe) inverts the forward model represented by the law of radiative transfer to estimate the thermodynamic 
profles. A quick inspection of the law of radiative transfer (Eq. 3.3) reveals the complexity of performing its inversion. 
In fact, when the boundary radiation is neglected, it takes the form of a convolution of blackbody spectra with an 
exponential function of the optical thickness. The inverse of a convolutions, just like all purely integral equations, 
is inherently ill-posed, meaning that it admits several solutions. In other words, the state that we want to estimate 
(temperature, moisture, cloud properties, etc.) has more pieces of information than the observations (spectral radiance 
at the ground). Said differently, there are frequently more than one atmospheric state conditions that could have yielded 
the observed infrared spectrum. This is equivalent to trying to guess the shape of a three-dimensional object by looking 
at its shadow. 

Moreover, the nonlinearity of the blackbody radiation and absorption coeffcient in the thermodynamic state variables 
and the instrumental noise both contribute to make the inversion of Eq. 3.3 even more complicated. 

TROPoe tackles this challenging task from a both a physical and statistical point of view by identifying the solution 
that has the highest likelihood given the set of available observations and based on the physics of the radiation. To do so 
in a numerically stable way, it also uses information from the site climatology, auxiliary instruments, and an estimate 
of the noise level in the observations. In addition to providing a statistically sound solution, TROPoe is capable of 
producing and estimating the uncertainty of the retrieval, which is invaluable for data analysis and assimilation. 

4.1 Fundamentals of Optimal Estimation 
As previously mentioned, the estimation of thermodynamic profles based on observed spectral radiance at the ground 
level requires the solution of an ill-posed inverse problem. A statistically robust approach to solving an inverse problem 
is OE (Rodgers 2000). Formally, given an unknown state vector that we want to estimate, x, a prior probability density 
function (p.d.f.) describing the overall variability of x, and a set of observations, y, affected by measurement noise 
with known p.d.f., OE theory provides a way to estimate the most likely x compatible with both prior statistics and 
current y. This optimal solution is indicated by x̂. A big advantage of the OE is that it also provides the uncertainty of 
x̂ due to measurement noise and missing information in the forward model in the form of the so-called posterior p.d.f. 

OE methods are often based on Bayes’s theorem, which states that the posterior p.d.f. (formalized as the conditional 
p.d.f. of x given y) can be obtained as the product of the p.d.f. of the measurement noise, the prior p.d.f. (based on 
historical data, for example) and a p.d.f. of the observations which act as a normalization factor. In formula: 

posterior noise prior normalization z }| { z }| { z}|{ z }| { 
p(x|y) = p(y|x) p(x) p(y)−1 . (4.1) 

In our case, x contains the thermodynamic properties of the atmosphere at selected heights, y includes the spectral 
radiance and auxiliary observations, p(y|x) contains the forward model for atmospheric absorption and emission, plus 
instrumental noise of the ASSIST, and p(x) represents the climatology. In this framework, the problem of thermody-
namic profling is multidimensional and nonlinear. However, we frst consider the much simpler scalar, linear problem, 
which already provides an insightful look into OE theory. Then, we move to more complex scenarios and fnally to 
the general case. 

4.1.1 Linear, One-Dimensional, Gaussian Problem 

We want to optimally estimate a scalar variable x that is normally distributed with a prior mean xa and a standard 
deviation σa based on an observation y made with an instrument with a linear calibration curve and Gaussian noise ε 
with standard deviation σε . The forward model is simply 

y = kx + ε, (4.2) 
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where the slope   k can be seen as     the sensiti vity of the instrument.     Bayes’ (Eq.   4.1) theorem in this     case reads  

noise prior
posterior z }| { z }| { normalization z }| { − 2 kx) z }| { 1 (y 1 − 2 (x xa)

p(x|y)  
− − 22σ √ e 1 = 2σ2 √ e −

ε

 
 

 
a p(y) , (4.3) 

2πσε 2πσa 

where  the p(y) is  deliberately  left  unexpanded  for  compactness.  The  best  solution  in  an  OE  sense  is  the  x̂ correspond-
ing  to  the  maximum  of p(x|y),  i.e.,  the  most  probable  state  conditional  on  the  observation.  This  can  be  found  by 
maximizing the left-hand side of Eq.       4.3, which is equi   valent to  � �

∂ (y − kx 2 2 ) (x − xa)
+ = 0. (4.4)

∂ x 2σ2 2σ2
ε a 

The solution to this simple optimization problem is customarily recast as           � �−1k2 1 k 
x̂ = xa + + (y − kx ), (4.5)

σ
a2 

 σ2 
a σ2

ε ε 

or, equi valently 
y kσ2  x 2 

x a +ˆ a σε=  . (4.6)
k2σ2 2 

a + σε 

Therefore,  the  optimal  state  estimate  is  a  weighted  mean  of  the  observation  and  the  prior  mean  based  on  noise,  prior 
variability,  and k.  Figure  8  shows  a  graphical  representation  of  the  process.  If kσa ≫ σε (Figure  8a),  i.e.,  the  noise 
is  signifcantly  smaller  than  the  variability  in  the  prior  times  the  sensitivity  of  the  instrument,  most  of  the  information 
comes  from  the  observation,  and  we  approach  the  naive  solution x ∼ y/k.  If kσa ∼ σε (Figure  8b),  the  OE  mean  uses 
the  prior  to  partially  constrain  the  observation;  if kσa < σε (Figure  8c),  the  observation  is  too  noisy  or  the  instrument 
sensitivity  is  too  low,  and  the  solution  is  signifcantly  constrained  by  the  prior.  In  the  worst-case  scenario  of kσa ≪ σε , 
we get the uninformati   ve solution  x = xa.  The three cases qualitati   vely represent the archetypes of ideal, realistic, and        
bad  retrieval,  respectively.  The  purple  OE  mean  line  is  observed  to  lie  at  the  loci  of  the  maxima  of  the  joint  p.d.f. 
p(x,y) (shown as a heatmap), sho    wing that OE represents the most lik      ely state of   x for a gi  ven y. 

Figure 8. Graphical depiction of a scalar linear OE for k = 1: (a) ideal case, where σa = 10, σε = 1; (b) realistic 
case, where σa = 10, σε = 5, (c) bad case, where σa = 5, σε = 10. The heatmap indicates the joint p.d.f. p(x,y). 

Looking again at Equation 4.3 and recalling that the product of two Gaussian functions of x is itself a Gaussian, we 
can readily derive the standard deviation of the posterior p.d.f. by simply equating terms with x2. The result is � �− 1 

k2 21
σ̂ = + . (4.7)

σ 2 σ2
ε a 
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The σ̂ represents the overall uncertainty of x̂, but can be further broken down. Equations 4.5 and 4.2 can be combined 
to obtain the total error of the retrieval, εt , as 

εt εs εnz}|{ z }| { z}|{
x̂ − x = (a − 1)(x − xa)+ gε , (4.8) 

where the so-called gain, g is � �−1k2 1 k 
g = + , (4.9)

σ2 σ2 σ2
ε a ε 

while the averaging kernel (or A kernel) is defned as a = gk. Interestingly, the gain is also the partial derivative of 
∂ x̂the solution with respect to the observation (i.e., g = ), or the inverse of the slope of the purple “optimal” line in 
∂ y

Figure 8. The averaging kernel is also the partial derivative of the solution with respect to the real (unknown) value of 
∂ x̂the state vector (i.e., a = ).
∂ x 

The total error is then the sum of the so-called smoothing error, εs, and the error due to noise, εn (which is not the same 
as ε). A graphical representation of how these errors contribute to the overall uncertainty is given in Figure 9. The 
smoothing error is due to the use of prior information that is needed to mitigate the effect of measurement uncertainty 
and constrain the ill-posed problem to a realistic solution. This results in the solution being attracted to the prior mean 
proportionally to x − xa, meaning that, for a given system, large smoothing errors are expected for conditions that 
signifcantly depart from the prior mean, i.e., extreme events. The word “smoothing” associated with this term will 
become clearer when considering multidimensional retrievals (Section 4.1.3). The error due to noise is instead a direct 
consequence of the measurement error propagated into the retrieval solution. 

Figure 9. Graphical representation of the total error of the retrieval as the sum of smoothing and noise. 

The retrieval uncertainty, σ̂ , includes contributions from smoothing and noise, as it can be easily proven: 

σ
2(εt ) = σ2(εs)+ σ2(εn) = (a − 1)2

σ
2 + g2

σ
2 = σ̂2 . (4.10)a ε 

However, there are other sources of uncertainty that are not included in the OE output. The modeling error occurs as 
the result of the imperfect representation of reality by the forward model (in our simplifed case, Eq. 4.2). Furthermore, 
the instrument could have persistent biases that are not well represented by random noise. Additional errors may arise 
from an imperfect estimation of the prior and/or noise statistics. These effects are much less amenable to general 
treatment and are harder to predict for real applications, as will be extensively discussed in Section 4.2.4. 

Takeaway 11: The solution of the retrieval is the most likely state given the prior and the current observa-
tions. The posterior p.d.f. includes information on the uncertainty of the retrieval due to smoothing and mea-

surement noise. 
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4.1.2 Nonlinear, One-Dimensional, Gaussian Problem 

We  now  add  an  additional  layer  of  complexity  by  considering  a  nonlinear  (but  still  one-dimensional)  forward  problem 
defned by:  

y = F(x)+ ε, (4.11) 

where  again x and ε are  both  Gaussian.  Bayes’  theorem  in  the  form  of  Eq.  4.4  can  still  be  applied,  but  it  looks  slightly 
different from Eq.    4.3: 

2 
1  (y−F(x)) 1 

2(x−x a)− −
p(x|y  2 2 ) = √ e 2σε √ e 2σa p(y)−1 . (4.12)

2π σε 2π σa 

This  form  is  not  amenable  to  a  general  solution  for  the  maximum  x̂ as  its  linear  version.  However,  if  the  nonlinearity 
within  the  most  likely  region  of  the  sample  space  of p(x|y) (that  is,  few σ̂ from  x̂)  is  small,  the  forward  model  could 
be  approximated  as F(x) ∼ F(xl )+ k(xl )(xl − x),  provided  that  the  linearization  point xl lies  within  the  proximity  of 
x̂.  This type of problem is called      moderately nonlinear.  The OE equation is then     � �

∂ (y − F(xl ) − k x (x 2 2 ( l ) l − x)) (x − xa)
+ = 0. (4.13)

∂ x 2σ2 2σ2
ε a 

However,  since  x̂ is  indeed  the  solution  of  the  problem, xl cannot  be  chosen  a  priori  but  can  be  approximated  with 
progressively good accurac  y in an iterati   ve  fashion.  The solution scheme to Eq.      4.13 is then   !−1 

k(n)2 k(n) h i 
(n+1)x = xa + + 

1 
y − F(x(n)) + k(n)(x(n) − xa) , (4.14)

σ 2 σ2 σ2
ε a ε 

where the superscript (n) is the iteration counter. This solution scheme, valid for a moderately nonlinear problem, is 
referred to as the Gauss-Newton method. It is very similar to the one implemented in TROPoe, which in fact assumes 
that the forward radiative transfer model is only moderately nonlinear (Maahn et al. 2020). The iterative solution 
algorithm is responsible for most of its computational cost, as the forward model is performing complex spectral 
radiative transfer calculation. 

So far, we have seen the computational advantages of dealing with a moderately linear problem. Another important 
conclusion can be made in terms of the retrieval uncertainty. In fact, when F(x) is approximated through a linear 
function, Eq. 4.12 is not different from that of a linear problem. We then infer that the posterior p.d.f., p(x|y), is also 
Gaussian with a standard deviation of !− 1 

k̂2 21
σ̂ = + , (4.15)

σ 2 σ2
ε a 

where theˆsymbol in this context indicates the value at convergence. Additionally, the results regarding the smoothing 
error and the error due to noise seen for the linear problem apply. Simply, in this case, the gain and the A kernel will 
correspond to their values at convergence, or, using our nomenclature, ĝ and â, respectively. 

Takeaway 12: Problems having a forward model with small nonlinearity within the most likely region of 
the posterior are called “moderately nonlinear,” and the uncertainty of the solution can be estimated as in a 

strictly linear case. 

To provide an example of how a nonlinear problem is solved, we apply the Gauss-Newton method to invert a forward 
parabolic problem (y = kx + bx2) with different quadratic terms, b. Figure 10 shows the resulting optimal solutions x̂ 
for different values of y and is superimposed on the full two-dimensional p.d.f., p(x, y), obtained using a Monte Carlo 
method with 107 samples. In particular, Figure 10a refers to a linear retrieval, showing that x̂ perfectly tracks the 
maxima of p(x,y) (the heatmap). Figure 10b is what could be called a moderately nonlinear problem, where realistic 
solutions for x̂ are achieved in the whole domain, and the posterior p.d.f., p(x|y), assumed as Gaussian with mean x̂ and 
standard deviation σ̂ (top), is close to the real p.d.f. approximated through Monte Carlo sampling. Figure 10c, which 
corresponds to a higher quadratic term, shows a well-behaved solution in only part of the domain of y and a signifcant 
departure of the posterior from Gaussianity. It is therefore a grossly nonlinear problem for which the Gauss-Newton 
algorithm and the linear uncertainty theory may fail. 
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Figure 10.   Graphical depiction of a scalar nonlinear OE f       or k = 1, σa = 10, σε = 5:  (a) b = 0; (b)  b = 0.01; (c)  b = 0.1. 

4.1.3 Linear, Multidimensional, Gaussian Problem 

The multidimensional linear problem described here is a more realistic approximation of the real TROPoe setup. The 
main difference between the one-dimensional problems seen before and the one presented in this section is that now 
the scalar and linear forward model is replaced by a linear system. From a purely mathematical standpoint, extending 
the scalar OE to multiple dimensions implies that x, xa, y, and ε now represent vectors of the state (e.g., temperature 
profles), prior mean profle, observations (e.g., radiance at different wavenumbers) and noise, respectively. The 
forward model then is 

y = Kx + ε, (4.16) 

where K is an M × N matrix mapping the N states evaluated at specifc heights or grid points into M observations. 
By adopting the multidimensional version of the derivation in Section 4.1.1, it can be proven (Rodgers 2000) that the 
optimal solution in this case is � �−1

KT S−1K + S−1 KT S−1x̂ = xa + ε a ε (y − Kxa), (4.17) 

where Sε is the covariance matrix of the noise and Sa is the prior covariance matrix. Equation 4.17 shares several 
similarities with its one-dimensional counterpart, Eq. 4.5, with scalars replaced by vectors, k by K, and variances by 
covariance matrices. Analogously, the posterior covariance, which is the same as the covariance of the total retrieval 
error, x̂ − x, is � �−1

Ŝ = KT S−1K + S−1 . (4.18)ε a 

The gain is now a matrix that quantifes the sensitivity of the solution to the observation (and the noise): 

∂ x̂ � �−1
KT S−1K + S−1 KT S−1G = = . (4.19)ε a ε

∂ y 

The covariance of the error due to noise is then 

Sn = GSε GT . (4.20) 

xThe averaging kernel, A = GK, is also a matrix equal to the sensitivity of the solution to the true state, ∂ ˆ . The matrix 
∂ x 

A contains a lot of useful information, in particular: 

• It can be used to calculate the smoothing error as 

Ss = (A − In)Sa(A − In)
T , (4.21) 

where IN is the identity matrix of rank N, which implies that A = IN would represent an ideal case with no 
smoothing. 
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• The trace of A is the number of degrees of freedom of the signal (DFS), namely, the number of independent 
pieces of information of the state available in the observations at each grid point; for an ideal retrieval, A = IN , 
so DFS = N, but in general DFS < N. 

• The i-th rows of A are the linear coeffcients indicating how the whole state vector affects the i-th element of the 
solution. In general, the diagonal elements are less than 1, indicating that the solution is partly attracted by the 
prior, as seen in the one-dimensional case. Also, the nondiagonal elements of A are generally not 0, indicating 
some contribution to the solution at i-th level from elements of the state and prior at j ̸= i. Both effects result in 
the smoothing error. 

• The full-width half-maximum of the rows of A provides a metric for the vertical resolution of the solution. 

Takeaway 13: The severity of smoothing is quantifed by the departure of the A kernel matrix from the iden-
tity, and it comes from two effects: (1) the use of prior information at the same level (Aii < 1) and (2) contribu-

tion from different layers (Ai j ̸= 0). 

To illustrate how a multidimensional retrieval works, we use the simplifed framework defned in Section 3.2 for a 
ground-based spectrometer observing downwelling spectral radiance radiation along a vertical line of sight (e.g., an 
ASSIST). By assuming a vertically homogeneous absorption coeffcient, aν̃ , we can use Eq. 3.6 to build the forward 
model. In order to build a linear problem, we select N = 80 grid points equally spaced by ∆z = 1 km to discretize 
the integral. We also focus on M = 8 spectral bands of the spectrometer in a small wavenumber region where large 
variations of aν̃ occur, but we can neglect variations of the blackbody emission as a function of wavenumber, that is, 
B0(ν̃ ,z) ∼ B0(z). To make the problem linear in the temperature space, we will neglect the nonlinearity of the Planck 
function as done by Rodgers (2000), so B0(z) ∝ T (z), with the proportionality constant omitted for simplicity. Our 
linear and discrete forward model for the observed radiance is then 

N 
Bi = ∆z ai ∑ Tje−aiz j + εi ∀ i = 1,2, ...,M, (4.22) 

j=1 

which is the form of Eq. 4.16. Now, x is the vector of Tj, y is the vector of Bi, and the rows of K are the weighting 
−aiz jfunctions, in this case ∆z aie . If we select centroids of the weighting function, a−1, which vary linearly between m 

1 and 20 km, we build a matrix K with rows equal to the sequence of functions shown in Figure 11. We see that 
band j = 1 (purple line) is the most opaque and it is mainly sensing temperatures close to the ground, while the most 
transparent band j = 8 (yellow line) also weighs higher altitudes. These weighting functions resemble qualitatively 
those used by TROPoe with AERI or ASSIST (e.g., Figure 1A in Blumberg et al. 2015). 

Figure 11.   Rows of  K matrix or weighting functions f    or the eight spectral bands     
of the spectr  ometer.  The dots represent the centr    oids, equal to   z = a−1 .j 

The missing ingredients for the retrieval are the prior mean, xa, priori covariance, Sa, and noise covariance, Sε . The 
prior mean is taken as the mean temperature profle from the U.S. Standard Atmosphere benchmark (NOAA 1976), 

22 

This report is available at no cost from NREL at www.nrel.gov/publications 



                    
                

                     
                

                
                

                     
                   

  

               
                

                 
                

                
            

and a synthetic prior covariance is given by Eq. 2.82 in Rodgers 2000. The noise covariance is assumed to be diagonal 
with a constant variance of 0.25 K. Both prior and noise are assumed to follow Gaussian distributions. 

It is now possible to apply the retrieval (viz. Eq. 4.17) to our synthetic problem; this is done in a Monte Carlo 
fashion by generating 10,000 temperature profles with statistics following the prior. Figure 12 shows the three sample 
temperature profles with minimum (a), median (b), and maximum (c) height-averaged error. Three aspects of the OE 
theory become evident: (1) profles cannot retrieve small-scale features due to smoothing; (2) small error is associated 
with cases that fall close to the prior (thanks to the small smoothing error); and (3) the error increases with height, due 
to the reduced information content farther away from the observer, which also causes the solution to rely more on the 
prior higher up. 

Figure 12.   Retrieved pr ofles with (a) minim   um, (b) median, and (c) maxim     um height-a veraged err or. 

Further insight is provided by inspecting the posterior covariance matrix, Ŝ, starting from its diagonal elements that 
represent the uncertainty of the retrieval. Figure 13 shows the overall posterior standard deviation (solid black line), 
its breakdown by smoothing error (dashed black line), and error due to noise (dotted-dashed black line). The constant 
prior standard deviation is also shown in red for comparison. This visualization confrms that the retrieval error 
increases with altitude and is dominated by the smoothing part. The sample prior and posterior standard deviation 
from the 10,000 Monte Carlo draws is also superposed as a sanity check. 

Figure 13.   Standard de viation of prior and posterior    . 
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With further examination of the prior and posterior covariance, we visualize the off-diagonal elements of Ŝ in Figure 14 
from both theory (Figure 14a) and Monte Carlo (Figure 14b, just as a verifcation). As the diagonal value of posterior 
covariance increases with height, so does the depth of the layer in which a signifcant correlation of layer-to-layer 
error occurs. Since the noise was independent of z, this is entirely connected to the larger smoothing that is needed 
at high altitudes to compensate for the smaller information content away from the surface. This is also the algorithm 
acknowledging that the temperature profles are more smoothed out by the weighting functions in the more transparent 
channels. 

Figure 14.   Prior and posterior co   variances fr om (a) OE theor   y and (b) Monte Carlo.     

formation  content  decreases  with  height  is  supported  by  the A kernel  matrix  (Figure  15The fact that the in ). The rows 
of A show how layers closer to the surface have a more peaked shape, meaning that minimum smoothing occurs, and 
most of the information comes from observations at the target height. Moving up, the peak in the rows of A spreads 
out, leading to poorer vertical resolution (Figure 15 b) and lower local DFS (Figure 15c). In this simplifed example, 
the vertical resolution, which is very important when interpreting retrieved data, is approximately equal to the height 
from the ground; a similar behavior is observed in TROPoe for temperature data based on ASSIST spectra. 

On a fnal note, it is quite interesting how this toy problem produced results that are qualitatively similar to those of 
TROPoe (see Section 5.2), despite being signifcantly less complex but arguably more insightful and manageable than 
a full thermodynamic retrieval. 

Takeaway 14: In ground-based retrievals, such as TROPoe for ASSIST, the information content de-
creases with height, resulting in poorer vertical resolution and greater smoothing error at higher altitudes. 

4.2 TROPoe 
4.2.1 General Architecture 

The theoretical concepts and simplifed applications discussed so far have laid the foundation for a description of 
TROPoe. TROPoe is a state-of-the-art retrieval algorithm for thermodynamic profles that applies optimal estimation 
theory to ground-based remote sensing observations. TROPoe evolved from the earlier AERIoe, an optimal retrieval 
method applied to spectral observations from the AERI (Knuteson et al. 2004a), of which the ASSIST is a modern 
version. In particular, TROPoe was designed to be able to work with a range of observations, including passive 
spectral observations from ground-based infrared spectrometers and microwave radiometers, active remote sensing 
observations such as water vapor lidars and radio acoustic sounding systems, and in-situ observations like radiosondes, 
tower observations, and unmanned aerial systems (Turner and Blumberg 2019). TROPoe is available on Docker 
(Turner 2025) and is regularly updated. 
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Figure 15.   Value of all the elements of the (a)        A kernel, (b) ver  tical resolution based on full-    
width half-maxim um of the r   ows of A, and (c) local DFS based on the dia          gonal elements of   
A.  The b lack lines in (a) represent the boundaries used to calculate the ver           tical resolution.  

The goal of TROPoe is to iteratively fnd an optimal estimation of the state vector, x, which is a composite of different 
thermodynamic information, specifcally: 

x = [T1,T2, ...,TN ,r1, r2, ...,rN ,LWP,Reff, others]T , (4.23) 

where Ti, ri are temperature and water vapor mixing ratio values at N vertically stacked grid points (typically 55), LWP 
is the liquid water path, and Reff is the liquid water effective radius. The other outputs are relative to the ice clouds and 
the gas concentrations and are not discussed here. 

The general workfow is described in Figure 16, including defnitions that are important in the TROPoe realm for both 
data producers and users. The main input to TROPoe is typically the downwelling spectral radiance observed at the 
ground level that is used to build the observation vector y. The signal-to-noise ratio of the measured spectra can be 
increased by processing the radiance through a principal component analysis (PCA) flter (Turner et al. 2006). Only 
M out of all spectral bands detected by the ASSIST are selected based on their sensitivity to different quantities of 
interest (i.e., what they measure) in the state vector and the associated optical thickness of the atmosphere (i.e., where 
they measure). Indeed, spectral regions where other trace gases (e.g., methane, nitrous oxide, ozone, etc.) contribute 
markedly to the absorption and hence downwelling radiance should be avoided. The spectral bands of the current 
TROPoe version are reported in Table 2; these were chosen because they are relatively free from the contributions of 
other gases (Smith et al. 1999). 

The accuracy of retrieval is signifcantly increased by also adding auxiliary inputs to the observation vector, such as 
the cloud base height (typically from a ceilometer or a lidar), and surface temperature, pressure, and relative humidity. 
TROPoe can also utilize partial profles of temperature and/or water vapor from active remote sensors to help constrain 
the retrieved profles (Turner and Löhnert 2014; Turner and Lohnert 2021; Djalalova et al. 2022). The need for cloud 
base height ensues from the inherent challenges that the optically thick clouds cause to the retrieval (see Section 4.2.4), 
while surface observations help in mitigating biases and re-centering the prior to the observed climate. 

TROPoe requires a prior (in the form of mean xa and covariance Sa, of the state vector) derived from previous long-
term measured profles of temperature and water vapor mixing ratio, r, to constrain the solution to physically realistic 
profles. Radiosondes are the most common instruments used to build the prior. Prior statistics were compiled on 
a monthly basis for the AWAKEN and WFIP3 experiments to better capture seasonal variability. The confguration 
of the solver is stored in the VIP fle and includes, among others, the data paths, the instrument types, and the time 
resolution. 
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Figure 16.   Flowchart of TR  OPoe. 

Table 2. Spectral Bands Used by TROPoe-0.12 0.11.7 With Default Settings (for 
this version of TROPoe, the length of the observation vector is M = 347) 

Wavenumber Band [cm−1] Main Target in State Vector 

612.0–618.0 T 

624.0–660.0 T 

674.0–713.0 T 

713.0–722.0 T 

538.0–588.0 r 

793.0–804.0 r 

860.1–864.0 LWP, Reff 

872.2–877.5 LWP, Reff 

898.2–905.4 LWP, Reff 

The TROPoe output contains a great deal of information beyond the optimal solution that requires some degree of 
familiarity with the theory summarized in this report to be correctly interpreted. For postprocessing and quality 
control, the full posterior covariance, the A kernel, the vertical resolution, and several convergence metrics are also 
available. A particularly useful output parameter is the root-mean-square error of the algorithm (RMSA) that measures 
the difference between the observation vector and the fnal forward calculation: 

RMSA = 

vuut M � �2 

∑ 
Fj(x̂) − y j 

. (4.24)
y jj=1 

The RMSA provides a nondimensional quantifcation of the agreement between observations and forward model 
applied to the retrieval. Large RMSA indicates imperfect convergence or incomplete/fawed physical description of 
the observed profle. A similar variable in the output fles, RMSR, computes the root-mean-square error of only 
the passive spectral radiance part of the observation vector (i.e., the infrared radiance and/or microwave brightness 
temperatures) using the same formula. 
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4.2.2 The OE Algorithm 

The  inverse  problem  solved  by  TROPoe  belongs  to  the  multidimensional,  moderately  nonlinear  type.  An  OE  of  the 
state  vector  can  then  generally  be  achieved  through  the  Newton-Gauss  method.  In  the  actual  implementation,  the 
solution is calculated iterati   vely by a multidimensional     version of Eq.    4.13  as follo ws: � �−1 h i 

x (n+1) = x + K(n)T S−1K(n)
γ

)S−1 + (n K(n)T S−1 y − F(x(n))  K(n+ )(x(n) a   −ε a ε  xa) . (4.25)

K is the Jacobian matrix of the forw      ard problem resulting from the linearization, or       �
∂ y �K(n) i 

i j = � . (4.26)
∂ x x(n) j 

The  parameter γ(n) is  a  sort  of  relaxation  term  that  improves  the  numerical  stability  and  is  reduced  from  a  large  value 
(e.g., 1000) to (ideally) 1 as the solution approaches con         vergence.  Convergence criteria are   � � � � T

x(n) − x(n+1) S(n) x(n) − x(n+1) < N 
(4.27)n < 10, 

where N is  the  dimension  of  the  state  vector, n is  the  iteration  counter.  The  retrieval  is  considered  converged  when  one 
of the tw  o criteria is met, and     S(n) is the latest update of the posterior co       variance described ne  xt. 

Since  linear  error  analysis  applies  only  in  the  neighborhood  of  the  solution,  it  will  suffce  to  defne  the  uncertainty 
metrics at con  vergence.  The fnal posterior co   variance is  � − − � � − − � � � 

Ŝ = K̂ T S 1K̂ ˆ 
ε γ

T 1+ 1 
ε K̂ −1 

 ˆSa K S  + γ̂2S 1 K̂ T
a S−1

ε K̂ + γ̂S−1 
a , (4.28)

which simplifes to the more compact result obtained in the linear case for             γ̂  = 1 (see Eq.    4.18).  The g ain matrix is   � �
KT 1

Ĝ = ˆ S
−−1K̂  γ̂S−1 K̂T S−1 

ε + a ε , (4.29)

and the smoothing   A kernel is still   
Â = ĜK̂ . (4.30) 

Both Ĝ and Â can  be  used  to  calculate  the  error  due  to  noise  and  the  smoothing  error,  as  seen  in  Equations  4.20  and 
4.21, respecti vely. 

4.2.3 The Forward Model 

The  forward  model  in  TROPoe  maps  the  state  vector  into  a  ground-based  downwelling  spectrum  of  infrared  radiance. 
The  core  of  the  model  is  the  Line-By-Line  Radiative  Transfer  Model  (LBLRTM,  Clough  and  Iacono  1995),  which 
calculates  the  radiation  spectrum  applying  the  law  of  radiative  transfer  (Eq.  3.3)  in  a  discretized  fashion  across  the 
different atmospheric layers.   

One  of  the  most  complex  aspects  of  LBLRTM  is  the  estimation  of  the  local  absorption  coeffcient, aν̃ ,  in  the  form  of 
optical depth,  κν̃ .  The optical depth is a function of the follo        wing local state    variables (Clough et al. 1981):     

hcν̃ 
1  e− − k TB

κν̃ = ν̃ −hcν̃ ∑Wi ∆Ei(T ) f (ν̃  ν̃i), (4.31) 
1 + e− k TB i 

where 

• Wi is the molar concentration of the      i-th interacting species (H   2O, CO 2, N 2, etc.)  

• ∆Ei is the ener  gy associated with the ener    gy transition that absorbs a photon with w       avenumbers ν̃i. 

The  model  parameters  (transition  energies,  line  locations,  and  line  broadening)  are  extracted  from  the  well-established 
HITRAN database (Rothman et al. 2005; Gordon et al. 2017).          
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The key point is that the optical depth (and thus the forward model) is a function of the local temperature, density 
(i.e., pressure), and species concentration. Speaking in terms of OE theory, a targeted choice of the spectral bands to 
include in the forward model, F(x), allows us to relate the observed spectra (the observations, y) to the temperature 
and species concentration profles, including water vapor, and cloud properties (that is, the state x) in different regions 
of the atmosphere. The dependency of y on the temperature is also present through Planck’s function, which regulates 
the emission. 

Another important aspect of Eq. 4.31 concerns the so-called lineshape function, f (ν̃ − ν̃i). The lineshape function 
essentially spreads the otherwise infnitely narrow absorption/emission lines to take into account the Doppler and 
collision broadening (recall Section 3.1). The combination of the Gaussian lineshape of the Doppler broadening with 
the Lorentzian lineshape of the collision broadening results in a Voigt function. Figure 17 shows three illustrative 
lineshapes for the limiting cases of a purely Doppler and purely collision type of broadening, as well as a mixed one. 

Figure 17.   Examples of V  oigt lineshape functions f   or line br  oadening. 
The thin dashed lines mark the region be       yond the cutoff in the LBLR     TM. 

The numerical discretization of these lineshape functions requires the Voigt function to be truncated beyond the ±25 
cm−1 cutoff from the line center. However, contributions to absorption from the tails or “wings” of the lineshape 
are still signifcant in the atmosphere. Moreover, the Voigt model is not a perfect description of the real lineshape 
functions observed in atmospheric applications. Therefore, LBLRTM applies a correction to Eq. 4.31 in the form of 
a “continuum absorption” (just a corrective term, not to be mistaken for the “real” continuum absorption spectrum 
observed for ionized gases). The defnition of this correction term has been the subject of intense research (Clough, 
Iacono, and Moncet 1992; Turner et al. 2004) and its contribution to the solution should not be underestimated. 

In general, LBLRTM in TROPoe is expected to have an algorithmic error of less than 0.5% and is mostly due to line 
parameters (i.e., ∆Ei, ν̃i). Newer versions also include a module that simulates the discussed nonideal effects of a 
Fourier transform spectrometer (like the ASSIST) on the observations, further increasing its accuracy. 

4.2.4 Sources of Uncertainty 

To conclude this chapter, we discuss the different sources of error in TROPoe and possible mitigation strategies. 
TROPoe provides an embedded uncertainty quantifcation, which is one of its main advantages compared to other 
retrievals. However, as hinted earlier, not all errors can be predicted analytically, and we discourage data users from 
blindly using the uncertainty provided by TROPoe as the only metrics for data quality. 

Known Uncertainties 

An important advantage of a physical OE method like TROPoe is the estimation of the uncertainty of the solution 
in the form of the posterior p.d.f., p(x|y). As discussed previously, this comprises the uncertainty caused by the 
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smoothing and noise of the instrument. Regarding the latter, TROPoe assumes that the error in the observed spectral 
radiance is unbiased and Gaussian, and the band-to-band correlation is negligible. This noise behavior in the ASSIST 
is generally confrmed by the third blackbody calibrations, where the 3-σ error between the measured and theoretical 
spectrum of the third blackbody should not exceed 1% of the blackbody radiance at ambient temperature, and the 
band-to-band correlation coeffcients should not exceed 0.35 (Turner and Blumberg 2019). Improved estimates that 
include correlated errors between different bands have also been attempted but remain signifcantly more complex 
(Maahn et al. 2020). Operatively, the standard deviation of the noise, which is suffcient to fully describe the noise 
p.d.f., p(y|x), with the present assumptions is estimated based on the imaginary radiance, as described in Section 2.7. 

On the other hand, the smoothing error can be calculated using Eq. 4.21. Another way to assess the impact of 
smoothing error is to compare TROPoe profles with reference observations such as radiosondes. Provided that the 
reference instruments represent the ground truth (which, in the case of radiosondes measuring water vapor, can be 
questionable (Turner et al. 2004)), the total difference between TROPoe and the reference profles is a good estimate 
of the total error. By applying a TROPoe-like smoothing to the reference and reassessing the difference with the 
TROPoe profles, one can get an estimate of the contribution of the smoothing only to the global error. We provide an 
example of this validation in Section 5.3. Using this method, Turner and Löhnert (2014) observed a slight reduction in 
RMS error of retrieved profles with radiosondes mainly due to the reduced vertical sampling error in the radiosondes. 
In contrast, Blumberg et al. (2017) reported a drastic reduction in mean and total error when applying smoothing 
to the radiosonde profles, indicating the limited spatial resolution of the retrieval as a major error driver. However, 
both authors highlight the presence of residual biases in their retrieval, indicating that other physical effects can 
play a signifcant role in determining the accuracy of the retrievals. These effects, which are described next, must 
be considered carefully since their contribution to the uncertainty may not be fully captured by the posterior p.d.f. 
calculated by TROPoe. 

Instrumental bias 

Bias in the detected spectra can propagate into the retrieval and increase the overall uncertainty but not necessarily be 
captured by the posterior p.d.f. This makes instrumental bias particularly insidious and has spurred important advances 
in the feld of spectroscopy. Any bias in the radiance invalidates the assumption of unbiased noise at the basis of OE 
theory. When working with measured spectra, one should consider not only the error in the magnitude of the radiance, 
but also in the wavenumber. In fact, errors can arise because of an imperfect spectral calibration resulting in absorption 
lines being shifted from their theoretical wavenumbers. In general, instrumental bias in radiance and wavenumber can 
arise in the infrared spectrometer data from any of the mechanisms described in detail in Section 2, which justifes 
the efforts made to mitigate such errors. The high accuracy of spectrometers such as the ASSIST has been achieved 
mainly thanks to online radiometric calibration (Section 2.2). In this regard, a clever way to estimate the residual error 
due to radiometric calibration is to linearly expand Eq. 2.10 and assess the contribution of the uncertainty of blackbody 
emissivities and temperatures. Knuteson et al. (2004b) and Turner et al. (2004) that applied this method to the AERI 
and confrmed that the radiometric error was within specifcations. 

The requirements of ASSIST are a 3-σ uncertainty in the radiance less than 1% of the blackbody radiance at ambient 
temperature and a wavenumber error less than < 0.01 cm−1. These specifcations are tested in every third blackbody 
calibration. Therefore, instrumental biases from ASSIST measurement can generally be neglected compared to other 
sources of uncertainty, provided that the third blackbody calibrations, ideally before and after each deployment, in-
dicate the radiometric and spectral specifcations are met. It is also essential to routinely monitor the health of the 
instrument, following the example reported in Section 5.1. Finally, it is important to ensure that the feld of view of 
the third blackbody during the calibration is the same as that of the sky scene. In fact, even a small obscuration (for 
example, a tree branch) can lead to severe biases (Mlawer and Turner 2016). 

Clouds 

Thermodynamic retrievals from a passive IRS such as the ASSIST face additional challenges in the presence of over-
head clouds compared to clear-sky conditions. First, clouds become rapidly opaque in the infrared regions probed by 
the ASSIST as the LWP increases. At LWP > 60 g m−1, clouds can be considered completely opaque to infrared ra-
diation (Turner et al. 2007). From a physical point of view, this opacity translates into the weighting functions (which, 
as we recall, describes how much information from a certain height at a certain wavenumber reaches the surface) 
dropping practically to 0 above the cloud. From a mathematical point of view, this implies that the ground-based 
spectrometer cannot access any information of the thermodynamic profles above the clouds, and the spectral bands 
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become rapidly saturated with radiation emitted by the cloud base itself, which overshadows information coming from 
the layers below it. 

Figure 18.   Ideal representation of the weighting functions f      or (a) temperature and (b) water v      apor mixing  
ratio f or an infrared spectr   ometer in the presence of a c      loud.  Green lines are weighting functions not in      -
cluding contributions from the clouds, red lines are those with signifcant values within the cloud layer. 

A natural question is: How well does TROPoe perform below the clouds? Temperature profles, which close to the 
surface rely on channels that are relatively opaque even in clear-sky conditions, have been shown to be just as accurate 
as those obtained in clear-sky conditions at heights “suffciently below the cloud” base (Blumberg et al. 2015; Turner 
and Löhnert 2014; Turner and Blumberg 2019). Turner and Blumberg (2019) clarify that “suffciently below the 
cloud” means heights where there is not a signifcant amount of information coming from the cloud base as described 
by the local smoothing, i.e., the rows of the A kernel matrix or the vertical resolution. These opaque channels have 
peaked weighting functions that decay before reaching the cloud layer, which means that at those wavenumbers the 
atmosphere is so optically thick that radiation from clouds cannot be seen from the ground. The same concept applied 
to water vapor, which uses fatter weighting functions than the temperature, implies that the accuracy of the water 
vapor estimate deteriorates faster with height below the clouds, even a few meters above the surface. This concept is 
shown schematically in Figure 18, where the temperature (Figure 18a) has more channels with weighting functions 
that do not include the contribution of the clouds than the water vapor (Figure 18b). In general, a rule of thumb when 
dealing with cloudy scenes is to exclude profles above the frst cloud base height (see Section 5.2). 

A big advantage of TROPoe is the ability to also detect cloud properties, such as LWP and effective droplet radius, 
Reff, which are important in several contexts. A big caveat is that the optical thickness of the cloud, which is the main 
property that can be inferred from the ASSIST, is a function of both LWP and Reff. A blind comparison of several 
sophisticated retrievals that are predecessors of TROPoe showed unacceptably large scattering in the estimates of these 
properties (Turner et al. 2007). However, awareness of cloudy scenes in TROPoe helps limit errors below the cloud 
base that would arise if the clear sky was assumed all the time (Turner and Löhnert 2014). Residual errors below the 
clouds have been attributed to the increase of atmospheric scattering due to clouds, which is not modeled in TROPoe, 
as discussed next. 

Takeaway 15: Thermodynamic profles above the cloud have high uncertainty as a result of the lack of infor-
mation penetrating the optically thick cloud layers. Below the clouds, the temperature profles are generally 

more reliable than water vapor profles. 

Prior 

The prior can be a source of bias if it is not representative of the climatology during the observation period (Maahn 
et al. 2020). The prior could be statistically inaccurate in at least two ways: 

• If the prior statistics are not Gaussian; in this case, a clever transformation in the state vector space could fx the 
issue 

• If the mean, xa and/or covariance, Sa (including off-diagonal terms) are not a good measure of the state vector 
observed during the experiment. 
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In general, the prior should be derived from as many observations as possible and from a climatologically equivalent 
location, preferably on a monthly basis. A prognostic way to check whether the prior used is amenable for TROPoe 
retrievals is a Gaussianity check on the prior dataset. A diagnostic way to check whether the prior is adequate to 
represent the observation is to perform two χ2 tests, the frst applied to the difference between the observation vector 
and the prior transformed into the observation state, y − ya, and the second to the difference between the optimal 
solution and the prior mean, x̂ − xa (see Chapter 12 in Rodgers 2000 for more details). However, the version of 
TROPoe at the time this report is written does not provide all the necessary outputs to carry out these statistical tests. 

Forward Model 

The LBLRTM is the backbone of TROPoe, and any inaccuracies associated with it can have important consequences. 
Most importantly, biases in the LBLRTM are not included in the posterior covariance because the Bayesian OE frame-
work assumes a perfect forward model (Maahn et al. 2020). In theory, incorporating uncertainties of the forward model 
in the posterior is possible, although very complex and computationally heavy, so TROPoe assumes no LBLRTM error 
and offers the possibility of infating the instrumental noise to compensate for this missing error component (Turner 
and Blumberg 2019). 

The relevance of the radiative transfer model explains the extensive efforts to improve and validate the LBLRTM, 
for instance, in the Atmospheric Radiation Measurement (ARM) program, which have led to the maximum error on 
atmospheric spectra to go from ∼ 30 r.u. in 1990 to less than ∼ 5 r.u. in 2010 (Mlawer and Turner 2016). Quantifying 
the error due to the forward model for real applications remains an open research question. Thus, in the remainder of 
this section, we will just describe the main sources of error without attempting to provide a solution. 

A limitation of LBLRTM is that it does not account for atmospheric scattering. Scattering occurs due to collision 
between photons and particles in the atmosphere and has markedly different behaviors based on the wavelength of the 
incident radiation and the size and shape of the scattering object (Siegel 1971). What is relevant to this discussion is 
that scattering results in a contribution to radiation sensed by the ASSIST from all directions. This multi-directionality 
means that effcient use of the law of radiative transfer (Eq. 3.3) along the vertical direction alone is insuffcient. 
Complexity and computational effciency are increased by several orders of magnitude if scattering is included. Fortu-
nately, at the wavenumbers used by TROPoe emission and absorption are the dominant phenomena, so scattering can 
generally be neglected. However, there are instances where the scattering can play a role. Turner and Löhnert (2014) 
showed that during cloudy conditions, scattering can represent up to 12% of the spectral radiance on specifc bands, 
which were indeed removed from the latest TROPoe version. Other special conditions where scattering becomes 
important are dust storms (Mlawer and Turner 2016). 

Another modeling aspect that has received much attention is the parameterization of the continuum absorption/emis-
sion, especially from the water vapor (Turner et al. 2004; Mlawer and Turner 2016). As seen in Section 4.2.3, the 
line absorption/emission model requires a correction to address the inaccuracies of the lineshape functions far from 
the line center. Improvements in the continuum absorption/emission have been pivotal in improving the LBLRTM; 
this was achieved mostly thanks to the AERI observations. Recent research has demonstrated that there needed to 
be an adjustment made to the strength of the water vapor continuum absorption in the infrared window (i.e., between 
8 and 12 µm) (Mlawer et al. 2024); current work demonstrates that this change to the radiative transfer model only 
has an impact when the precipitable water vapor in the column is larger than approximately 3.5 cm (Turner, personal 
communication, 2025). 

In general, to rule out the presence of major biases due to LBLRTM, we recommend comparing TROPoe results 
with other nearby sensors that use different measurement principles, the golden standards being radiosondes and 
meteorological masts. This is especially true for applications requiring highly accurate uncertainty quantifcation of 
thermodynamic profles. However, users should take care not to believe that either radiosondes or in-situ sensors on 
masts are free of systematic errors, and thus any differences between TROPoe retrievals and other observations needs 
to be investigated carefully. 

Numerical Inaccuracy 

It may seem odd to discuss numerical errors in the context of an experimental topic, but we have already seen how 
computationally intensive the estimation of thermodynamic profles in TROPoe is. Most of the CPU time is spent 
during the iterative calculations of the Jacobian of the forward model, the LBLRTM. Computational errors (besides 
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the obvious truncation errors that depend on the machine) can arise, for instance, as a consequence of the discretization 
of the law of radiative transfer in the LBLRTM. In this regard, Clough et al. (2005) report an algorithmic accuracy of 
0.5%, which in any case much lower than the uncertainty on the line parameters. Therefore, the numerical error in 
the forward model itself can generally be ruled out. Another possible source of error is the incomplete convergence 
of TROPoe. Classifying this type of inaccuracy as a “numerical error” in a strict sense may not be fully correct, since 
troublesome convergences are generally associated with physical inconsistencies between the observed noise profle 
and the physics described by the forward model. However, the example in Section 5.2 shows a simple method to fag 
profles that did not converge satisfactorily to a solution. 
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5 Case Studies 
This section includes a collection of hands-on case studies in which we apply the fundamentals of spectroscopy, 
radiation physics, and OE reviewed in the previous sections. The selected examples are generally useful to ASSIST 
and TROPoe users, alongside the list of TROPoe output variables provided in Appendix A. 

5.1 Routine Health Checks for ASSISTs 
Here, we provide step-by-step actionable guidelines to monitor the operation of an ASSIST and to ensure correct 
functioning. The ASSIST is an extremely accurate but delicate spectrometer. In fact, for the radiometric and spectral 
specifcations to be met and the estimated thermodynamic profles to be accurate, all data processing modules and the 
hardware components described in Section 2 need to operate within strict margins of their nominal confguration. 

In addition to the recommendation to perform a third blackbody calibration after and before each deployment, which 
was reiterated several times, there are routine checks that can help identify issues in the data acquisition chain in a 
timely manner. 

Figure 19.   Daily health c  heck summar y f or the NREL ASSISTs deplo    yed at the WFIP3 Rhode Island site on 2024        -
07-14:  (a) temperature fr  om diff erent c hannels, T ; (b) temperature diff   erences acr oss b lack bodies,  ∆T ; (c)  

mean responsivity in c   hannel A,  ℜ; (d) mean ima   ginary radiance , Ima 1g(B), between 985 and 990 cm      − ; (e) rel  -
ative humidity in the interf    erometer, RH. The bar on top indicates the hatc        h status (green=open, red=c   losed). 

Figure 19 is a summary of the automated daily health check for one of the NREL ASSISTs in WFIP3. It includes 
several channels directly available in the “assistsummary” daily fle. The meaning of each quantity is explained 
in Table 3. The user should also check for inconsistencies in the sampling rate that can be indicative of hardware 
problems. Should any of those parameters exhibit behavior different from the expectations, we recommend contacting 
technical support and fagging data accordingly. 

5.2 Example of Daily Thermodynamic Profles 
Let us now take a closer look at the TROPoe output based on one day of infrared spectra collected by one of the NREL 
ASSISTs deployed at the WFIP3 Rhode Island site during the summer of 2024 (Letizia 2024). The selected UTC day 
is 2024-07-14 and is characterized by cloudy nighttime conditions (∼ 00:00-09:00 UTC) and clear skies during the 
daytime (∼ 09:00-24:00 UTC), local time being UTC-4. 
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Table 3. List of Health Parameters for an ASSIST. 

Label Meaning Expected behavior 

hbb_*_temperature Temperature of HBB at 
different points 

Stay within 60 ± 0.1◦C 

abb_*_temperature Temperature of ABB at 
different points 

Be close to ambient temperature 
and within ±0.1◦C from each other 

front_end_temperature Temperature of front end 
of enclosure 

Track ambient temperature, 
with less thermal inertia than ABB 

mean_tb_675_680 Brightness temperature 
in 675–680 cm−1 band 

Track the ambient temperature (e.g.,front end) 

mean_tb_985_990 cm−1 Brightness temperature 
in 985–990 cm−1 band 

• If hatch is closed, be equal to 
Tb in 675–680 cm−1 band 

• If hatch is open, sky is clear, 
be much colder than ambient 

• If hatch is open, sky is cloudy, 
be slightly colder than the ambient 

interferometer_temperature Temperature of the interferometer Be constant 

cooler_block_temperature Temperature of the detector’s cooler Be constant 

lw_responsivity Mean responsivity of channel A Be constant (∼ 105, units not relevant) 

mean_imaginary_rad_985_990 Mean imaginary radiance 
in 985–990 cm−1 band 

Be much smaller than 1 r.u. 
and non autocorrelated 

interferometer_humidity Relative humidity 
of interferometer 

Stay below 10% 

The  retrieval  used  TROPoe-0.12  0.11.7  to  process  “instantaneous”  spectra  from  the  ASSIST  complemented  by  the 
cloud  base  height  from  a  Halo  XR  scanning  lidar  (Bodini  2024)  using  a  CNR-based  cloud  detection  (see  Newsom 
et  al.  (2019))  and  surface  pressure,  temperature,  and  relative  humidity  from  a  collocated  met  mast  (Pekour  2024).  The 
full pipeline is a   vailable at Letizia, Adler, and T     urner  2024. 

It is al  ways recommended to quality control (QC) the retrie       val by rejecting points that meet the follo       wing criteria:  

• Data  above  the  detected  cloud  base  height  and  corresponding  to  LWP  above  a  certain  threshold  (recommended 
value  is  5  g  m−2);  this  excludes  region  beyond  optically  deep  cloud  layers  that  provide  little  to  no  information  to 
the  spectrometer.  An  even  safer  approach  is  to  remove  data  below  cloud  height  half  the  local  vertical  resolution 
(Turner  and Blumber g 2019).  

• Profles  with γ̂  above  a  certain  threshold  (the  strictest  value  is  1),  to  get  rid  of  profles  affected  by  troublesome 
convergence of the Gauss-Ne   wton algorithm.  

• Profles  with  RMSA  greater  that  a  certain  threshold  (recommended  value  is  5),  to  exclude  occurrences  where 
the spectral radiance are poorly described by the LBLR        TM applied to the retrie    ved state.  

The abo ve QC can be con    veniently applied to the TR    OPoe output open through    xarray in Python as follo   ws: 

Data[’cbh’][Data[’lwp’]<min_lwp]=Data[’height’].max()#remove clouds with low lwp 
Data[’temperature_qc’]=Data[’temperature’].where(Data[’gamma’]<=max_gamma)\ 

.where(Data[’rmsa’]<=max_rmsa).where(Data[’height’]<=Data[’cbh’])#QC temperature 
Data[’waterVapor_qc’]= Data[’waterVapor’].where(Data[’gamma’]<=max_gamma)\ 

.where(Data[’rmsa’]<=max_rmsa).where(Data[’height’]<=Data[’cbh’])#QC mix. ratio 

The  quality-controlled  temperature  and  water  vapor  mixing  ratio  are  visualized  in  Figure  20b  and  Figure  20d,  respec-
tively.  The  daytime  heating  of  the  ground  is  well  captured,  as  is  the  negative  temperature  and  humidity  gradient  as  a 
function  of  height  above  0.5  km.  Several  data  points  lying  above  clouds  with  LWP  >  5  g  m−2 are  excluded,  as  are  6 
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Figure 20.   TROPoe retrie val fr om the WFIP3 Rhode Island (rhod) site on 2024-07-14:          (a) median ver  tical resolution of temperature    
profles, where the shaded area marks the inter       quartile rang e; (b) temperature pr   ofles; (c) median ver   tical resolution of water    

vapor mixing ratio; (d) 10-min    ute pr ofles of water v   apor mixing ratio; (e) time series of       γ̂ ; (f) time series of RMSA; (g) time series         
of L WP. The dashed lines in (e     ,f,g) represent the upper (f    or γ̂ , RMSA) or lo   wer (f or L WP) thresholds used in the quality contr      ol. 

full profles that have γ̂  = 3. The RMSA never exceeded the upper limit of 5. The same fgure also shows the me-
dian vertical resolution for temperature (20a) and mixing ratio (20b). The vertical resolution of temperature increases 
roughly linearly with height and at a rate comparable to the height itself, being the probable cause of the lack of a 
sharp capping inversion at the top of the boundary layer. The resolution of the water vapor mixing ratio is instead 
always close to 2.5 km, except for the very frst grid point that comes from the met station. TROPoe developers are 
continuing to work on extracting more information, especially on water vapor, from the infrared spectra which would 
improve the vertical resolution. 

The 1-σ posterior uncertainty maps of the profles are shown in Figure 21 and provide a great deal of essential 
information. The uncertainty generally increases with height and larger uncertainties are located above the thicker 
clouds, as expected. 

Examining the data further, we can visualize the A kernel at convergence for a cloudy and cloud-free profle (Figure 
22). The matrix has been split into (1) the part describing the retrieved temperature as a function of real temperature 
(rows and columns 1–55 or quadrant III); (2) the part describing the retrieved mixing ratio as function of real mixing 
ratio (rows and columns 56–110 or quadrant I); (3) the part describing the retrieved mixing ratio as a function of real 
temperature (rows 56–110 and columns 1–55 or quadrant II); and (4) the part describing the retrieved temperature as 
a function of real mixing ratio (rows 1–55 and columns 56-110 or quadrant IV). 

When clouds hover above ASSIST, the A kernel has larger values for those columns corresponding to temperature and 
mixing ratio below the cloud base as a result of the larger amount of information they contain compared to the blind 
regions above the clouds. There is also a high value at the height corresponding to the cloud base as a result of the 
strong emission from the clouds. The dark red in the frst layer in quadrant I indicates the high weight given to the 
water vapor information from the met station. In addition, recalling how the smoothing error is proportional to the 
departure of Â from the identity matrix, we identify the temperature profles below the clouds as the most trustworthy 
region of the retrieval (bottom-left corner of Figure 22a). Outside of this narrow region, the A kernel is arguably very 
different from IN . Figure 22, which corresponds to clear-sky conditions, tells a completely different story. Here, the 
A kernel for both temperature and mixing ratio resembles IN , with larger values on the diagonal. Many off-diagonal 
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Figure 21.   1-σ uncertainty of TR  OPoe retrie val fr om the WFIP3 Rhode Island site on       
2024-07-14:  (a) uncer tainty of temperature; (b) uncer    tainty of water v   apor mixing ratio.   

elements are still not negligible as a consequence of the smoothing, and there is also information shared between T and 
r, as the nonzero values in quadrants II and IV highlight. The analysis of the A kernel is more advanced and requires a 
deeper knowledge of TROPoe and the physics of radiation but is still insightful and sometimes unavoidable, as shown 
in the next example. 

Figure 22.  A kernel of TR  OPoe retrie val fr om the WFIP3 Rhode Island site on 2024-07-14:         (a) A ker-
nel at 08:20 UTC, when lo     w c louds were present; (b)    A kernel at 17:50 UTC, during c     lear-sky conditions.  

5.3 Comparing With Radiosonde Measurements Using the Averaging Kernel 
As part of AWAKEN, three ASSISTs were deployed near wind plants in northern Oklahoma alongside a suite of 
other instruments, including radiosondes (Moriarty et al. 2024). This campaign provides an opportunity to compare 
ASSIST+TROPoe retrievals with measurements obtained by the radiosonde launched from a nearby site. The com-
parison is done using both the unsmoothed radiosondes at the native resolution and the smoothed radiosonde profles 
as ground truth. We smooth the radiosonde measurements using the averaging kernel, Â, introduced in Section 4.1.3 
as 

xsmooth = xa + Â(x − xa), (5.1) 
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where x is the observation from the radiosonde interpolated to the 55-level-height grid used for ASSIST retrievals and 
xsmooth is the smoothed radiosonde profle. Note that all variables include temperature and water vapor mixing ratio, 
appended together, to account for cross-talk between temperature and humidity. A similar process is conducted by 
Blumberg et al. (2017). 

Example temperature and mixing ratio profles, taken on 2023-08-11 at 02:23 UTC (2023-09-10 21:23 local time), 
are presented in Figure 23. In this example, several features are apparent. In general, the ASSIST retrieval closely 
matches the smoothed radiosonde profle, indicating that the primary difference between the two instruments lies in 
the vertical smoothing. The temperature profles show better agreement than the mixing ratio, as humidity profles 
are generally more diffcult to retrieve from the spectra than temperature. The dependence of vertical resolution on 
height is also apparent. The strong temperature inversion near the surface is captured by both the ASSIST and the 
radiosonde, whereas the temperature inversion measured by the radiosonde 1.5 km above the ground is smoothed over 
in the ASSIST retrieval. 

Figure 23.   (a) T emperature and (b) water v    apor mixing ratio pr   ofles retrie ved at A  WAKEN on 2023-08-11 at 02:23 UTC fr      om 
the ASSIST at site G, along with the unsmoothed and smoothed pr           ofles fr om radiosondes launc  hed fr om the nearb  y site H.   

Now, how can we decide whether the agreement between TROPoe profles and the reference profle satisfactory? In 
other words, what is the error we should expect for the TROPoe retrievals in the best-case scenario? For unsmoothed 
profles, the answer is straightforward: The total error, assuming naively that the radiosondes represent the truth, 
should have a covariance equal to the posterior Ŝ. Any additional error could be due to all the other reasons outlined 
in Section 4.2.4 and/or spatial and temporal heterogeneity between ASSIST and the radiosonde. 

For smoothed profles, the answer is different. In fact, what Eq. 5.1 really intends to do is apply to the reference 
profles the same level of smoothing as TROPoe. In theory, all we are left with is the error due to noise. In fact, as we 
have seen for the linear case, but also applicable to the moderately nonlinear problems, the total error of TROPoe can 
be expressed as a sum of smoothing error and error due to noise: 

x̂ − x = (Â − IN )(x − xa)+ Ĝε. (5.2) 

Equation 5.1 also can also be reformulated as 

xsmooth − x = (Â − IN )(x − xa). (5.3) 

By subtracting the former two equations, we immediately fnd that the error between the retrieval and smoothed profles 
includes only the noise part, that is, x̂ − xsmooth = Ĝε . The comparison with and without smoothing is therefore useful 
mainly to assess the impact of smoothing on the total error. If the residual error is seen to depart signifcantly from the 
estimated error due to noise, either in magnitude or because it is systematic rather than random, then one should look 
for other causes of inaccuracy. 
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Takeaway 16: The error between TROPoe retrievals and unsmoothed radiosonde profles will have a covari-
ance equal to the posterior covariance if no other errors are present. The error between TROPoe retrievals 

and smoothed radiosondes will include only the noise part if no other errors are present. 

5.4 Defnition of Planetary Boundary Layer Height 
The TROPoe algorithm also outputs the planetary boundary layer height (PBLH), derived from the retrieved profles. 
The method used to calculate PBLH is based on the parcel method, which identifes the height at which a parcel of 
air from the surface would be in equilibrium with its environment (Holzworth 1964). Unlike other implementations 
of this method (e.g., Coniglio et al. 2013; Duncan Jr. et al. 2022), TROPoe uses the potential temperature profle (θ ) 
rather than the virtual potential temperature in order to eliminate the additional uncertainty introduced by humidity. 
In the TROPoe implementation, PBLH is defned as the frst height where θ = θsurf + σ(T )+ 0.5K, where θsurf is the 
potential temperature of the lowest level of the retrieval (0 m above ground level). A PBLH foor is set to 300 m, as the 
parcel method is most effective under convective conditions; a surface inversion-based method for stable conditions 
has not yet been implemented. 

A sample day from the ASSIST at site G of the AWAKEN campaign is presented in Figure 24, along with an example 
θ profle showing the method used to calculate PBLH. Between 01:00 and 14:00 UTC (20:00 and 09:00 local time), 
PBLH is set to the minimum allowable value of 300 m. After 14:00 UTC, the increase in the PBLH characteristic of 
daytime convective conditions is observed. The lapse rate above z ∼ 300 m is always positive because TROPoe forces 
the potential temperature profle to increase monotonically with height above a fxed level above the ground. This 
realistic constraint proved useful to improve overall accuracy and enhance convergence (Turner and Blumberg 2019), 
but the user should not be surprised to fnd no occurrences of negative lapse rate far from the surface in the TROPoe 
results. 

Figure 24.   Potential temperature , θ , and PBLH thr   oughout a diurnal c   ycle (2023-08-15) at the A    WAKEN site , inc luding a  
sample θ profle fr om 20:00 UTC (15:00 local time).       The sample pr  ofle illustrates the method used to compute PBLH.        

Takeaway 17: TROPoe profles can be used to accurately assess the local static stability of the boundary layer, 
especially near the surface. The main limitations are the smoothing of capping inversions that occur far from 

the surface, the hard-coded stable lapse rate above a fxed height. 
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6 Conclusions 
This report provides a practical guide to the theoretical framework behind the thermodynamic profling process using 
ASSIST infrared spectrometer data and TROPoe retrievals. To answer the question “How do we measure spectra?” 
we reviewed how the interferometer inside the ASSIST is capable of measuring the spectrum of infrared radiation 
and the signal processing techniques required to mitigate several technological limitations. To address the question 
“Why do we measure spectra?” we discussed the fundamental physics of infrared radiation in the atmosphere and 
how the thermodynamic profles affect the measured spectra. Finally, we tackled the question “How do we estimate 
thermodynamic profles?” by describing the optimal estimation method used by TROPoe to translate the infrared 
spectra into useful profles of temperature, humidity, and other atmospheric quantities. 

This work is part of a larger effort to provide detailed and rigorous documentation of experimental data for wind 
energy applications. We deem that the access to reliable and comprehensible knowledge of experimental techniques is 
a non-negotiable requirement for the proper use of feld data by the research community. Field experimental data have 
often been used as the indisputable ground truth for subsequent theoretical and numerical analysis, without too much 
attention paid to the uncertainties and limitations that quantities measured in the feld inevitably possess. This poses 
a serious risk of experimental errors propagating into physical models and calls for a closer collaboration between the 
feld researchers that collect the data and their peers who use it. This is now truer than ever, as both experimental and 
modeling techniques in the wind energy research space are advancing at an unprecedented pace to investigate subtler 
and more complex physical phenomena. 

To conclude, this document is not intended to replace the great body of literature on this topic, which is referenced 
throughout the report, and that the reader is welcome to refer to for more in-depth information. For the future, we 
hope that this report and the reference herein will be the cornerstone for high-quality analysis of ASSIST+TROPoe 
data from the AWAKEN, WFIP3, and other campaigns. 
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Appendix A. TROPoe Output Variables 
Table A.1. List of TROPoe-0.12 0.11.7 Output Variables and Their Descriptions. 

Variable name Description Unit 
time Time of each retrieval, corresponding to middle of interval UTC 
height Retrieval height above ground level km 
qc_fag Quality control fag, with 0 indicating acceptable quality -
temperature Air temperature ◦C 
waterVapor Water vapor mixing ratio g kg−1 

lwp Liquid water path g m−2 

lReff Liquid water effective radius µm 
iTau Ice cloud optical depth -
iReff Ice effective radius µm 
co2 Parameterized profle of CO2 ppm 
ch4 Parameterized profle of CH4 ppm 
n2o Parameterized profle of N2O ppm 
sigma_temperature 1-σ uncertainty in air temperature ◦C 
sigma_waterVapor 1-σ uncertainty in water vapor mixing ratio g kg−1 

sigma_lwp 1-σ uncertainty in liquid water path g/m2 

sigma_lReff 1-σ uncertainty in liquid water effective radius µm 
sigma_iTau 1-σ uncertainty in ice cloud optical depth -
sigma_iReff 1-σ uncertainty in ice effective radius µm 
sigma_co2 1-σ uncertainty in carbon dioxide concentration ppm 
sigma_ch4 1-σ uncertainty in methane concentration ppm 
sigma_n2o 1-σ uncertainty in nitrous oxide concentration ppm 
converged_fag Algorithm convergence fag, with 0 indicating no convergence -
gamma Underrelaxing factor (see γ̂  in Section 4.2.2) -
n_iter Number of iterations performed -
rmsr Root-mean-square error between observation vector and forward model -

calculation, using only IRS radiance 
rmsa Root-mean-square error between observation vector and forward model -

calculation, using entire vector (see Eq. 4.24) 
rmsp Root-mean-square error between prior and retrieved profles -
chi2 Chi-squared statistic comparing observation vector and forward model -

calculation 
dfs Degrees of freedom (DFS), including total DFS, then DFS for each retrieved -

variable 
sic Shannon information content -
vres_temperature Vertical resolution of temperature profle km 
vres_waterVapor Vertical resolution of water vapor profle km 
cdfs_temperature Vertical profle of cumulative degrees of freedom for temperature -
cdfs_waterVapor Vertical profle of cumulative degrees of freedom for water vapor -
hatchOpen Flag indicating if ASSIST hatch was open (1) or closed (0) -
cbh Cloud base height above ground level km 
cbh_fag Flag indicating source of cloud base height -
pressure Air pressure, estimated from hypsometric equation mb 
theta Potential temperature, derived from temperature and pressure K 
thetae Equivalent potential temperature, derived from temperature, pressure, K 

and water vapor mixing ratio 
rh Relative humidity, derived from temperature and water vapor mixing ratio % 
dewpt Dew point temperature, derived from temperature and water vapor mixing ◦C 

ratio 
pwv Precipitable water vapor, derived from temperature and water vapor mixing cm 

ratio 
pblh Planetary boundary layer height, computed as described in Section 5.4 km 
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sbih Surface-based inversion height km 
sbim Surface-based inversion magnitude ◦C 
sbLCL Lifted condensation level for a surface-based parcel km 
sbCAPE Convective available potential energy for a surface-based parcel J kg−1 

sbCIN Convective inhibition for a surface-based parcel J kg−1 

mlLCL Lifted condensation level for a mixed-layer parcel km 
mlCAPE Convective available potential energy for a mixed-layer parcel J kg−1 

mlCIN Convective inhibition for a mixed-layer parcel J kg−1 

sigma_pwv 1-σ uncertainty in precipitable water vapor cm 
sigma_pblh 1-σ uncertainty in planetary boundary layer height km 
sigma_sbih 1-σ in surface-based inversion height km 
sigma_sbim 1-σ in surface-based inversion magnitude ◦C 
sigma_sbLCL 1-σ in lifted condensation level for a surface-based parcel km 
sigma_sbCAPE 1-σ in convective available potential energy for a surface-based parcel J kg−1 

sigma_sbCIN 1-σ in convective inhibition for a surface-based parcel J kg−1 

sigma_mlLCL 1-σ in lifted condensation level for a mixed-layer parcel km 
sigma_mlCAPE 1-σ in convective available potential energy for a mixed-layer parcel J kg−1 

sigma_mlCIN 1-σ in convective inhibition for a mixed-layer parcel J kg−1 

obs_vector Observation vector (see x in Section 4.1.3) mixed 
obs_vector_uncertainty 1-σ uncertainty in observation vector mixed 
forward_calc Forward model calculation from state vector (i.e., F( ̂x)) Several 
Xop Optimal solution, including all retrieved variables mixed 
Sop Posterior covariance (see Ŝ in Section 4.2.2) mixed 
Akernal Averaging kernel (see Â in Section 4.2.2) mixed 
Xa Mean state of prior (see xa in Section 4.1.3) mixed 
Sa Covariance of prior (see Sa in Section 4.2.2) mixed 
lat Latitude where station is located ◦North 
lon Longitude where station is located ◦East 
alt Height above mean sea level where station is located m 
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