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Executive Summary

The U.S. Department of Energy, in particular, the National Renewable Energy Laboratory (NREL), and the National
Oceanic and Atmospheric Administration (NOAA) have recently invested significant financial and human resources
to improve measurement capabilities for wind energy applications. One of the newest additions to NREL’s fleet of
atmospheric instruments is the ground-based infrared spectrometer called the Atmospheric Sounder Spectrometer by
Infrared Spectral Technology (ASSIST-II by LR Tech Inc., referred to in the remainder of the report simply as an AS-
SIST). The raw measurements from an ASSIST carry information about the temperature and moisture profiles in the
atmosphere, which can be estimated through the Tropospheric Remotely Observed Profiling via Optimal Estimation
(TROPoe) algorithm. At the time this report was written, the NREL ASSIST+TROPoe data have already been used in
several journal publications (Bodini et al. 2024; Moriarty et al. 2024; Abraham et al. 2024; Radiinz et al. 2024), with
many more expected in future decades from the American WAKE experimeNt (AWAKEN, Moriarty et al. 2024), the
Wind Forecast Improvement Project-3 (WFIP3, NOAA Physical Sciences Laboratory 2024), and future field experi-
ments.

( OO 5%
Figure A. Photos from different deployments of the ASSISTs: (a) at NREL's Flatirons Campus, 2022, before the AWAKEN

campaign; (b) at site B for AWAKEN in Oklahoma, 2023; (c) on the WFIP3 barge, off the coast of Rhode Island, 2024.

The proper operation of the ASSIST+TROPoe and its outputs require a deep understanding of the underpinning theo-
retical principles, which touch upon several disciplines such as spectrometry, radiative transfer, and optimal estimation
theory. The ASSIST+TROPoe system is also different and more complex than other sensors that wind energy and at-
mospheric scientists are generally accustomed to. This report represents a concise overview of the essential theoretical
and technical background required for an informed and scientifically sound use of the hardware, software, and data
associated with thermodynamic profiling.

This report includes four chapters that address the following topics:

1. Fundamentals of spectrometry, which describes the operation of the ASSIST and is intended to familiarize the
reader with the concepts required to troubleshoot the instrument and ensure operation within specifications.

2. Fundamentals of radiative transfer through a participating medium, where we review the main phenomena af-
fecting the spectral radiance sensed by the ASSIST and serves as the basis for the TROPoe retrievals.

3. Retrieval of thermodynamic profiles, which focus on the optimal estimation of the atmospheric state based on
spectral observations, complemented by a succinct theoretical guide to TROPoe.

4. Case studies, which contain some useful examples of how thermodynamic profile data can be read, quality-
controlled, and used.

For the reader who is unfamiliar with the topic and is merely interested in deploying the ASSIST or using TROPoe
data, some discussions of theoretical concepts may sound redundant. However, we strongly recommend reading the
report in its entirety, as all the topics covered have important implications for the resulting data usage. To facilitate
navigation through the most technical sections, we singled out the main “takeaways” that carry the most relevant
message.
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1 Introduction

Since the advent of the wind energy industry, researchers have understandably spent their greatest efforts in charac-
terizing the wind velocity field, which is the most bankable quantity and the one driving the wind energy generation.
This focus on wind velocity has resulted in great advances in wind sensors, from traditional meteorological masts to
more modern wind lidars and radars, all of which are now profusely used to assess the wind resource.

However, the Earth’s atmosphere is governed by the laws of mass, momentum, and energy conservation, and the
velocity vector represents just one of several interdependent quantities. The wind field is indeed dynamically cou-
pled with other physical variables, primarily temperature and moisture (the thermodynamic profiles), but also with
cloud properties, gas concentrations, and airborne particulate and hydrometeor distributions, which cannot be easily
disentangled.

These quantities become even more important as the focus of wind research moves towards more challenging topics
such as the effect of stability on shear and wakes, wind plant blockage, flow in complex terrain, low-level jets, gravity
waves, and the impact of wake-generated turbulence on climate. Therefore, improved knowledge of, for instance,
temperature and moisture profiles in the planetary boundary layer could benefit wind research and atmospheric science
in general through:

1. Better characterization of local atmospheric stability.

2. Improved boundary conditions for microscale numerical models.

3. More comprehensive data assimilation for numerical weather prediction tools.

4. Accurate estimation of air density for turbine power performance tests.

5. Better characterization of the impact of wind plants and their wakes on local climate and vegetation.
6

. More comprehensive description of low-level jets, gravity waves, katabatic flows, and other thermally-driven
atmospheric phenomena.

Based on the realization that measuring and modeling winds alone are not enough (Veers et al. 2019; Shaw et al. 2022),
the U.S. Department of Energy has funded initiatives to incorporate instruments capable of measuring thermodynamic
profiles into the suite of sensors used for wind energy applications.

To meet this objective, the National Renewable Energy Laboratory (NREL) and the National Oceanic and Atmospheric
Administration (NOAA) have acquired ground-based infrared spectrometers (IRSs) such as the Atmospheric Sounder
Spectrometer by Infrared Spectral Technology (ASSIST) (Michaud-belleau et al. 2025), which has been deployed at
the American WAKE experimeNt (AWAKEN) and Wind Forecast Improvement Project-3 (WFIP3) sites. ASSISTs
and IRSs in general sense the spectra of downwelling infrared radiation at ground level. The spectral radiance carries
information about the thermodynamic profile above the instrument, mostly in terms of temperature, moisture content,
and cloud properties. However, estimating the desired thermodynamic quantities and their uncertainty is a complex
operation that requires in-depth knowledge of the physics of infrared radiation as it travels through the atmosphere.
Furthermore, unlike other remote sensing devices like lidars and radars, the ASSIST is a passive instrument in the
sense that it does not send any pulse towards the measuring volume. This makes the reconstruction of a profile—i.e.,
the distribution of the target quantity as a function of the range—Iess intuitive than it is for lidars, for example.

The ASSIST raw spectra can be converted into thermodynamic profiles by using a retrieval method, which in our case
is Tropospheric Remotely Observed Profiling via Optimal Estimation (TROPoe). TROPoe is an optimal estimation
(OE) algorithm that iteratively runs a radiative transfer model and adjusts its input (the thermodynamic profiles) until
its output (the spectral radiance) matches the observations (Turner and Lohnert 2014; Turner and Blumberg 2019). For
us, the observations are mainly downwelling infrared spectral radiances detected by the ASSIST in specific spectral
bands. Ancillary observations such as cloud base height and surface meteorological data can also be provided to
TROPoe to increase its accuracy. The retrieval is done in an OE framework (Rodgers 2000), which implies that (1) the
final solution is the most likely given the current observations and historical climatology and (2) we can produce online
quantification of the uncertainty (or at least part of it). Figure 1 summarizes the process for obtaining thermodynamic
profiles based on radiance observations.
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Figure 1. General workflow of thermodynamic profiling using ASSIST+TROPoe.

Already at this point, the complexity of the ASSIST+TROPoe environment becomes evident. It is even more obscure
to the wind scientist unfamiliar with spectrometry and atmospheric sounding when dealing with the operation of the
ASSIST and the TROPoe processing or data use. Exotic terms like “black bodies,” “imaginary radiance,” “prior and
posterior,” “averaging kernel,” etc., become ubiquitous and oftentimes essential. This report is intended to be a user’s
manual for anyone involved with the deployment of an ASSIST, the use of TROPoe, and/or the analysis of its output.
After reading through the whole report, the reader will be able to:

1. Understand the measuring principle and the calibration process of an ASSIST.

2. Read a calibration report from the ASSIST’s manufacturer.

3. Understand the main sources of instrumental errors in an ASSIST and how to minimize their impact.
4. Understand the basics of the radiation transfer physics that TROPoe uses.

5. Understand the OE principles behind TROPoe.

6. Read the TROPoe output.

7. Carry out error analysis for thermodynamic profiles.

This report adds just minor novelties to the existing literature, and its main merit is to distill a large volume of scien-
tific and technical knowledge from the recent past (published and unpublished) that makes accurate thermodynamic
profiling possible today.

An important question to address before embarking on this short but dense journey is: Why did we use ASSIST+TROPoe
as the preferred technology for thermodynamic profiling, specifically for wind energy? First, the use of remote sens-
ing technology enables the detection of thermodynamic profiles with far greater temporal resolution and less logistical
cost than in situ sensors such as radiosondes and instrumented aircraft. Moreover, IRSs have shown superior capabil-
ities with respect to other remote sensing tools when it comes to detecting thermodynamic profiles (and in particular
temperature) near the Earth’s surface where turbines operate. In this regard, several studies compared the accuracy
of thermodynamic profiles retrieved through IRSs such as the ASSIST and other technologies such as microwave ra-
diometers (Blumberg et al. 2015; Turner and Lohnert 2021; Bianco et al. 2024), Raman lidars (Turner and Blumberg
2019), radio acoustic sounding systems (Bianco et al. 2024), and differential absorption lidars (Turner and Lohnert
2021). The main pros and cons of each of these profiling instruments compared to an IRS are summarized in Table 1.
Although each instrument has its niche of application, it is evident how the IRS prevails when it comes to simultaneous
profiling of temperature and water vapor, especially in the lowest few hundred meters above the surface of the Earth.



Advantages vs. IRS Disadvantages vs. IRS

Microwave radiometer ¢ (Can sense better above clouds e (Calibration needs
e Poorer vertical resolution
¢ Smaller information content (see Section 4.1.3)

Raman lidar * More accuracy in water vapor * No temperature
» Better vertical resolution
Differential absorption lidar * More accuracy in water vapor * No temperature
» Better vertical resolution » Blind zone near surface

* Smaller range
e (Calibration needs

Radio acoustic sounding system ¢ More accuracy in virtual temperature ¢ No water vapor
» Better vertical resolution e More complex system
¢ Blind zone near surface
¢ Smaller range
* Lower sampling rate
* Noise
e Data loss in high winds

Table 1. Comparison Between IRS and Other Similar Technologies.

The choice of an OE method like TROPoe, which is a physical retrieval, rather than a method based on machine
learning or statistical regression of past data, is advantageous for at least four reasons:

1. The retrieved profiles will provide "closure" with the observed radiance spectra; i.e., the profiles are consistent
with the measurement (this is not guaranteed with a statistical/machine learning method)

2. It provides the uncertainty of the retrieval.
3. It benefits from improvements of the embedded radiative transfer model.

4. It allows identification of the physical mechanisms driving the error more easily than a black-box/data-driven
approach.

5. Its accuracy is less sensitive to the size and origin of the historical dataset provided than a purely data-driven
method.

The disadvantages of TROPoe are its computational costs, the limited vertical resolution (inherent to the physics
of radiation, see Section 3.1) compared to in-situ measurements, and the fact that the solution could converge to
nonphysical profiles if the setup is inadequate. However, an informed use of ASSIST and TROPoe (which is what we
hope to facilitate through this report) can guarantee the estimation of high-quality datasets of thermodynamic profiles
with known uncertainties and representativeness, which is a powerful tool for wind and weather researchers to unlock
new knowledge of the atmosphere and its dynamics.

Thermodynamic profiling through an IRS and a physical retrieval based on optimal estimation has a long track record.
The bulk of the development and application of this technique occurred as a part of the Atmospheric Radiation Mea-
surement (ARM) Program (Mlawer and Turner 2016). The instrument used in the ARM was the AERI (Atmospheric
Emitted Radiance Interferometer) (Knuteson et al. 2004a, 2004b), while the retrieval algorithm was called AERIoe,
which are the ancestors of current ASSISTs and TROPoe, respectively. AERI observations were instrumental in
enhancing the fidelity of radiative transfer models of the atmosphere and ultimately improving the thermodynamic
retrieval methods (Turner et al. 2004; Mlawer and Turner 2016). To date, ASSIST+TROPoe systems have been used
to map spatial gradients of thermodynamic properties (Wagner et al. 2022), characterize precipitation in mountainous
environments (Boer et al. 2023; Adler et al. 2023), investigate the genesis of tornadoes (Kosiba et al. 2024), charac-
terize low level jets (Radiinz et al. 2024), and study interaction of the atmospheric boundary layer with wind power
plants (Abraham et al. 2024; Moriarty et al. 2024).



This report is organized as follows: In Section 2, we discuss the operating principle of the ASSIST and build the
foundation for understanding the raw data used for thermodynamic profiling and their uncertainty; in Section 3, we
review the physics of infrared radiation as it travels through the atmosphere and how spectral radiance carry thermo-
dynamic information; in Section 4, we look into the theory of OE and then focus on TROPoe’s equations, output, and
limitations; and in Section 5 we provide basic examples of ASSIST and TROPoe data important for general use.



2 Fundamentals of Spectrometry

This chapter describes the hardware components and data processing inside the ASSIST. We start with the principles
governing an idealized spectrometer and then progressively include the several limitations of the actual instrument and
the associated mitigation strategies.

2.1 The Ideal Interferometer

Highly accurate observations of the spectra of downwelling infrared radiance are essential for thermodynamic profiling
using TROPoe. Therefore, the core of the ASSIST is an interferometer of the Michelson type, an instrument that uses
constructive and destructive interference of the radiance to characterize its spectral content. A generic Michelson
interferometer is shown in Figure 2. The output of a scanning interferometer is the interferogram of the incoming
radiation, namely, the power of the incoming radiation superposed to time-shifted versions of itself for different lags.
The interferogram provides a direct measurement of the autocorrelation function of the signal—and ultimately its
spectrum through a Fourier transform—by leveraging the Wiener-Khinchin theorem (Chatfield and Xing 2019). To
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Figure 2. Schematic of a generic Michelson interferometer. The E's indicate elec-
tromagnetic waves at different stages and s is the optical path difference.

show the principle of the Michelson interferometer, let us consider a monochromatic electromagnetic plane wave
traveling through its aperture and perfectly parallel to its optical axis. In this case, using phasor notation, we have the
following expression for the associated electric field:

Eo = |E|e/®G), @2.1)

where |E| is the amplitude, j = +/—1, o is the spatial angular frequency, c is the speed of light, & is a location in space
along the beam, and ¢ is time. We recall that o is related to the wavenumber, V, as @ = 2z, while the temporal
frequency is f = Vc.

In general, the radiation power, P,q, is proportional to the mean of the real part of the signal over a cycle of duration
1/f, also equal to the square of the amplitude divided by 2, according to:

Prad < f /f Real(E)%dt = %\EF. (22)



In the most idealized scenario of a 50:50 lossless (i.e., energy-conserving) splitter, half of the radiation power is
reflected in one direction and fully reflected back by the fixed mirror as the signal E|. The other half passes through
the splitter and is fully reflected by the moving mirror as a signal E>. The different travel path lengths induce a phase
shift between the two waves, ¢. Without loss of generality, we pose the phase of E; to 0. Then, both these waves are
transmitted (E;) or reflected (E,) by the splitter and finally superposed at the detector as a signal of the form

1+4e/?
2 )
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where factors v/2 appear due to the 50% reduction in the wave power (or v/2 reduction in amplitude according to
Eq. 2.2) caused by the second pass through the splitter. We see how the original wave is now undergoing complex
amplitude modulation, where we immediately recognize a perfect constructive interference for ¢ = 0 and a perfect
destructive interference for ¢ = 7.

2.3)

To understand what happens in the general case, we need to do some calculations. The phase delay ¢ is proportional
to the additional travel time required by light to cover twice the displacement of the moving mirror. It is convenient to
define the optical path difference, that is, the difference in the distance traveled by E; and E| before recombination,
as s. Therefore, we have ¢ = ws = 2w Vs. Finally, after some manipulations, we can prove that the power of the signal
measured by the detector is: ,

Prag 3 o< %(1 +cos(2nVs)). (2.4)
In words, Equation 2.4 reads the variable part (i.e., without the constant DC component) of the power at the de-
tector or interferogram, I(s), of a monochromatic wave is a sinusoidal function of the optical path difference, s, with
wavenumber V. From an energy conservation standpoint, for zero phase shift, P; = Py, i.e., all the input power reaches
the detector. Conversely, when the signals are in perfect counter-phase (e.g., s = £0.5 V') the detector receives no
power. Since we assumed a lossless interferometer, where did the input power go? The answer is simple: The missing
power at the detector is reflected back to the input and does not contribute to the measurement.

In the more realistic case of a multi-chromatic radiation with power spectral density or spectral radiance B(V),

I(s) = /( B(¥) cos(2m7s)d, 2.5)

where the proportionality constant has been dropped for simplicity. We can extend the integral to negative frequencies
by using the double-sided spectral radiance Bpg. Finally, through a change of variable and recalling that Bpg is a real
even function, we get a familiar expression:

1 .
I(s) =5 /(: Bps(w)e!*da, (2.6)

which says that the interferogram is the inverse Fourier transform of the spectral radiance. Thus, we can obtain the
spectral radiance of the radiation by performing the Fourier transform of the interferogram:

Bps(w) = /(; I(s)e 7 da. 2.7

This analysis was done for an ideal interferometer. However, a real one is affected by several limitations that are
discussed in the following sections.

2.2 Limitation 1: Radiometric Calibration

As is common in metrology, the measured quantity does not correspond directly to the quantity of interest. The
ASSIST is no exception, and recording the interferogram requires two detectors that translate the radiation intensity
of the interferometer (quantity of interest) into a voltage that is the actual measurement. The long-wave “channel A”
detector is an HgCdTe sensor that senses wavenumbers from 525 to 1,825 cm~!. The shortwave “channel B” detector
is an InSb sensor and senses wavenumbers from 1,720 to 3,300 cm~!. In the following, we assume a perfectly linear
response of both detectors; we call the raw signal at the detector d(s) and its Fourier transform D(¥).



The raw reading from the detectors is converted online into an estimate of the spectral radiance through the so-called
radiometric calibration. The radiometric calibration uses the known radiative properties of two blackbodies and the
linearity of the detector response and the Fourier transform operator to build a linear regression between the detector
output and the spectral energy at each wavenumber. One blackbody is kept at 60°C and is named hot blackbody (HBB);
the other blackbody is not thermally controlled and is therefore named ambient blackbody (ABB). The emission of an
ideal blackbody follows Planck’s law at thermal equilibrium:

100-he¥ -1
Bo(v,T) =2-10"hc*¥? <e kpT 1) , (2.8)

where:

* By is the blackbody (single-sided) spectral radiance in ﬁ\&rl (power per unit surface, per unit solid angle,

per unit wavenumber band), also called radiance units (r.u.), which is the unit used by the ASSIST

o ¥ is the wavenumber in cm™!

h = 6.626070-10734 J s is the Planck constant

* ¢=12.997924-108 m s~ ! is the speed of light

kp = 1.380649-10~23 J K~ is the Boltzmann constant
¢ T is the temperature in K.

The “real” blackbodies installed on the ASSIST do not exactly follow Eq. 2.8 because, due to their emissivity being
ey < 1, they also reflect a small fraction of energy from the surroundings structure at a uniform temperature 7,

BBB(V) Ze\”,Bo(f/)—l—(l —6\7)30(\777}). 2.9)

The emissivity is generally > 0.99 in the normal direction sensed by the interferometer, due to the black coating and
the cavity effect achieved by the special geometry of the blackbodies.

Now that we have an equation to estimate the spectra from the HBB and ABB and we can measure interferograms
from HBB, ABB, and the sky scene, we have all the ingredients to formulate the radiometric calibration workflow,
which includes these steps:

1. A rotating scene-selection mirror deflects the emission of the HBB into the interferometer. The detector collects
the raw signal dypp (s) in volts and calculates and stores its Fourier transform, Dygg (V). The temperature of the
blackbody, Typp is also recorded.

2. The rotating mirror deflects the emission of the ABB into the interferometer and stores Dapg (V) and Tapp.

3. The mirror moves to sky view and records the downwelling infrared radiation coming from the atmosphere in
the form of Dy (V).

4. Step 2 is repeated.
5. Step 1 is repeated.
6. Step 3 is repeated.

The aim of the sequence HBB-ABB-sky-ABB-HBB-sky is to make sure that each sky view is bracketed by views of
both blackbodies. The sky spectral radiance is finally calibrated using the information from both bracketing views of
the blackbodies.

Based on the scheme shown in Figure 3 we have:
R(v)~!

o BﬁS,HBB(\N’) _éDS,ABB(V)
Bos(¥) = \DHBB(V) —QABB(V)

(Dsky (V) — DaBg(V)) + Bps,aBg (V), (2.10)
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Figure 3. Schematic of the radiometric calibration.

where double-sided blackbody spectra are obtained by simply mirroring Eq. 2.8.

It is noteworthy that any internal emission and phase lag due to electrical and optical dispersion cancel out, provided
that they are invariant between the three different views. This is ensured by a careful design of the geometry of the
back bodies and by keeping the internal surfaces at a uniform temperature for the duration of the entire calibration
cycle (i.e., HBB-ABB-sky-ABB-HBB-sky).

The inverse of the slope of the linear regression is called responsivity, R(V), which we will assume to be a real
quantity for now, and it is of fundamental importance to evaluate the performance of the instrument. An insightful
perspective is gained by applying the linear error propagation in Bpg (V) as a function of the uncertainty of all terms on

the right-hand side of Eq. 2.10. By indicating the random error standard deviation with ¢ and defining for compactness
_ Dsky(‘?)_DABB(V)

= Duns(V)—Daps(¥)° V€ get the following equation, where dependence from V is omitted for brevity:

A2 1-A\? 1
o(Bps) = \/‘{262(BDS,HBB) + (1 —A)202%(Bps aBB) + @GZ(DHBB) + (9{) 62(DagB) + @Gz(Dsky)-
2.11)
Therefore:

* The impact of all errors on the Fourier transform of the interferogram (Dugg, DaBB. Dsky) increases for decreas-
ing responsivity.

* Errors relative to the ABB (Dapg, Bps ass) always increase for decreasing A for the largely applicable con-
dition A < 1 (e.g. cold sky temperature or high ABB temperature), due to the relatively large degree of linear
extrapolation (see Figure 3).

* Errors relative to the HBB (Dps 1B, Bps,ueB) are zero for A= 0 (or Dy (V) = Dapg(V), since there is virtually
no extrapolation) and increase as |A| increases.

Takeaway 1: Higher radiometric calibration errors are to be expected in conditions where the responsivity of
the instrument is low (e.g., due to dirty or damaged optics), the sky temperature is cold (e.g., most transparent
bands on a clear dry day), or the ambient temperature is high.

2.3 Limitation 2: Finite Optical Path Difference

The maximum mirror displacement of a real interferometer, and therefore its maximum optical path difference, smax,
are limited by technological constraints. This results in a distortion of the measured spectral radiance compared to the
real one. In particular, the reconstructed spectral radiance, Bps_ real, is sSmoothed by a sinc function convolution that
widens the spectral lines and causes an actual reduction in spectral resolution that can be achieved. To show this, we
can model the limited optical path of the interferogram by introducing a rectangular function into Eq. 2.7:

Bps, real (®) :/( I(s)h(s)e " *do, (2.12)



where h(s) = 1 in the range —smax < X < Smax and O otherwise. The convolution theorem readily gives (Greenberg
1998)

R 1
Bos(@) = 5 / Bos(0)H (o — 0')do. (2.13)
According to an established result, the FT of A4(s) is a sinc function of the form

H(w) = 250 @mar) (2.14)
(O]

We have shown how the spectral radiance derived from an interferogram is equal to the original spectral radiance
convolved with a sinc function whose width increases as syax decreases. An example of such effect for different
values of smax is shown in Figure 4. Here, a sample spectral radiance from the ASSIST (black line, top row) taken
as the baseline is reprocessed with decreasing smax to simulate interferometers with progressively smaller maximum
optical path differences. The associated smoothed spectra are shown in red. The bottom plots provide the associated
sinc smoothing function, both for the real ASSIST (black) and for the interferometers with reduced sy (red).

To have a sense of the severity this “spectral leakage” in the ASSIST (black lines), we notice that the second lobes
of the sinc function have an integral that is 23% of the central lobe, the third lobes 13%, the fourth lobes 1%, etc.
An a posteriori correction for this effect is not possible, as it ensues from an irreversible information loss due to
a fundamental limitation of the interferometer (i.e., it is mathematically impossible to de-convolute a signal). The
maximum optical path difference of the ASSIST is smax = 1.037 cm, and the associated spectral resolution is generally
adequate for carrying out thermodynamic retrievals. In fact, spectral lines of interest (see Section 3) measured at
ground levels are affected by atmospheric broadening, which is generally more severe than the smoothing due to the
limited optical path difference (see Section 3.1). Furthermore, some radiative models (like the one in TROPoe) include
a correction that mimics the effect of the finite optical path of the interferometer.
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Figure 4. Effect of different maximum optical path differences on the spectral radi-
ance. Top row: single-sided spectra; bottom row: sinc smoothing function from Eq. 2.14.

Takeaway 2: The finite maximum displacement of the moving mirror results in a smoothing of the spec-
tral radiance that limits the spectral resolution. However, the extent of such smoothing in the ASSIST is small
enough that it should not significantly impact the thermodynamic profiles.



2.4 Limitation 3: Finite Sampling Rate

A real interferometer also necessarily has a finite sampling frequency. To make sure that the interferogram is sampled
at equally spaced mirror displacements, the detectors of the ASSIST are triggered by a quasi-monochromatic meteo-
rology laser with wavenumber vy = 15798.05 cm™! that goes through the same optical path as the measured radiation.
Since monochromatic radiation produces an interferogram that is purely sinusoidal, the detector samples the radiation
simultaneously to the occurrence of the rising-edge zero-crossings of the interferogram generated by the laser. This
process ensures a highly accurate sampling rate.

The discrete nature of the interferogram also implies that the Fourier transform in Eq. 2.7 can be performed as a
discrete Fourier transform (DFT). The DFT provides the Fourier transform values for a discrete signal of length N at
N equally spaced sample points (Oppenheim 1999). In particular, for even N, like in the ASSIST:

5\ N/2—1 —jzlkn
{iDSvk(:k) Ly lon)e™/ ¥ Vk=-N/2,...N/2~1, (2.15)

— NAs
where As =V !is the resolution in optical path difference, or twice the movement of the mirror between two sampling
locations.

The first implication is that for an ASSIST with a moving mirror generating optical path differences from —spax to

~+smax and recording a double-sided interferogram at N points, the spectral resolution is equal to AV = ﬁ = ﬁ

An ASSIST has an spux = 1.037 cm, resulting in a discrete spectral resolution of AV = (0.482 cm~ L.

A second consequence of the finite sampling of the interferometer is that the energy contained at wavenumbers larger
than the Nyquist wavenumber will be mirrored on the resolved part of spectral radiance, creating aliasing. The Nyquist
wavenumber for the interferometer is (2As)~! ~ 7,900 cm~!. Plank’s law indicates that the energy content above
the ASSIST’s Nyquist wavenumber exceeds 1% for a black body temperature of 1,150°C, which is far beyond the
maximum temperature detected in the atmosphere. Aliasing could occur if sunlight were to enter either directly or
indirectly entering the detector. In this instance, the antialiasing filter embedded in the ASSIST (mostly active to
prevent noise aliasing, see Section 2.7) would still provide protection.

Takeaway 3: The ASSIST is minimally affected by aliasing when observing atmospheric spectra.

2.5 Limitation 4: Nonlinearity of Channel A Detector

The radiometric calibration requires a linear response of each detector to apply the linear extrapolation of the black-
body spectra on the sky view (Figure 3). The InSb channel B detector is inherently linear, so Eq. 2.10 can be applied
directly at long wavenumbers. However, the HgCdTe channel A detector is nonlinear enough that a direct applica-
tion of the linear radiometric calibration would throw the estimated spectra off specification due to a scene-dependent
responsivity.

Therefore, the ASSIST applies a nonlinearity correction to the DFT of the interferogram of channel A before the
radiometric calibration. The correction uses a quadratic expression of the generic response of the detector:

D(V) = ap+R(V)Bps (V) — a2Bpg (V) — Diinear(V) = D(V) + @ DFT(I(s) + Vnc), (2.16)
where Vpc is a DC offset present in the detector that is modeled internally by the ASSIST (Knuteson et al. 2004a).
Vbc cancels out in the radiometric calibration since it is constant but must be considered in the nonlinearity correction.
Operatively, the parameter a,, which is a single scalar, is obtained by installing a source with known spectral radiance
on the sky window, such as a liquid nitrogen bath. In this way, it is possible to adjust the coefficient a, to minimize the
difference in the responsivity between the HBB and the ABB and the difference in the responsivity between the ABB
and the known cold source. Constant responsivity when staring at different scenes implies linearity of Djpear (V) with
respect to Bps(V). During field deployments, the validity of the nonlinearity correction (among other processes) can
be checked using the so-called third blackbody calibration, where an isothermal auxiliary blackbody is installed on
the sky aperture, thus producing a known spectral emission to be compared to the ASSIST estimate.

Takeaway 4: It is important to carry out a third blackbody calibration before and after each deployment to
ensure that the nonlinearity of channel A is adequately corrected.
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Takeaway 5: Uncertainty in the nonlinearity correction coefficient a, has a negligible impact for when the
observed radiance is close to that of the ABB (e.g., in more opaque channels), but the impact increases as the
scene temperature decreases (e.g., in atmospheric window channels).

2.6 Limitation 5: Finite Field of View and Laser Alignment

The fundamental equation of the interferogram (Eq. 2.6) was obtained under the assumption of a radiation beam
perfectly parallel to the optical axis of the inlet and the detector. However, a real interferometer will admit energy
coming from a finite solid angle to acquire information with an acceptable signal-to-noise ratio. However, this finite
field of view (FFOV) causes changes in (1) the shape of the measured spectral radiance and (2) the effective sampling
frequency dictated by the metrology laser.

It is easy to prove that incident radiation at an angle o from the optical axis will recombine at the detector with an
optical path difference reduced by a factor of cos & (Genest and Tremblay 1999). Integration over a small half-cone
angle Oynax leads to the following expression for the so-called self-apodized interferogram, i.e., the interferogram
produced by an interferometer with an FFOV:

sm wsocmax/4) 2i0s
do. 2.17
o /( @17

0502, / 4

The half-cone angle of ASSIST is 0tnax = 23 mrad and is so small that the sinc function is very close to the Dirac delta
for a wide set of wavenumbers. Additionally, the ASSIST applies an analytical correction based on Eq. 2.17 on the
spectra, which is generally less than 1 r.u.

Another effect of the FFOV is the slight shift in the actual sampling frequency of the detector triggered by the metrol-
ogy laser. Specifically, the actual sampling wavenumber is increased by a factor aﬁlax /4 (in radians), which is about
100-200 ppm of the nominal wavenumber for the ASSIST, and it is corrected by internal processing. Additional and
more problematic shifts in the sampling frequency of the laser occur for any small misalignments of the laser with
respect to the nominal optical path inside the interferometer. The specification of the ASSIST for wavenumber knowl-
edge is better than 0.01 cm™', so even a small deviation in sampling frequency can result in an unacceptable error
on As =V, I"and therefore ¥ (see Eq. 2.15), with a consequent stretching/contraction of the spectral radiance on the
wavenumber axis. This can be detrimental to the retrieval because it shifts important atmospheric absorption lines.
The current method to correct for this error is based on the calibration of the water vapor absorption lines that are
always detectable in the spectral radiance. The third blackbody calibration can also help in identifying spectral errors
due to FFOV and laser misalignments.

Takeaway 6: Finite field-of-view effects have an analytical correction that is automatically applied by the AS-
SIST, but wavenumber shifts due to misalignments of the laser need to be checked and corrected after each re-
location.

2.7 Limitation 6: Noise

So far, we have considered an instrument without noise in the acquisition chain. However, random noise is introduced
in the ASSIST from different internal and external sources. An inevitable and fortuitously measurable consequence
of the random noise in the interferogram is the presence of nonsymmetrical components. These components translate
in the frequency domain into an imaginary part added to the real spectral radiance obtained in Eq. 2.10, which then
makes it possible to perform online noise quantification (Revercomb et al. 1988). The health of the instrument can be
checked by monitoring the imaginary radiance and making sure that it does not significantly increase over time.

Takeaway 7: The health status of the ASSIST should be assessed by monitoring the magnitude of the
imaginary radiance. The imaginary radiance is also useful to estimate the noise level needed by TROPoe.



3 Fundamentals of Radiative Transfer Through a Participating
Medium

We have reviewed the complex and interesting science that goes beyond the measurement of spectral radiance. How-
ever, in many applications, the spectral information itself is not readily usable, for example, to estimate atmospheric
stability or validate atmospheric models. Through a thermodynamic retrieval (such as TROPoe), we can extract the
information of the atmospheric state concealed in the spectral radiance. This chapter provides a quick overview of the
most important physical mechanisms that govern the relationships between the spectral radiance observed at the ground
and the thermodynamic state of the gases and water molecules in the atmosphere. The description will be mostly qual-
itative in that the main mathematical result is the law of radiative transfer, which is the backbone of TROPoe. Yet, even
this brief overview will equip the ASSIST user with a useful skill: Understanding the overall atmospheric conditions
by just looking at the raw spectra and quickly spotting nonphysical artifacts that require immediate attention.

3.1 General Concepts

An electromagnetic wave traveling through a medium undergoes a series of interactions that are strongly coupled with
the molecular and physical properties of the medium itself. In the treatment of radiative heat transfer through a par-
ticipating medium, it is convenient to describe the radiation as a packet of photons. The photon energy is proportional
to its wavenumber and equal to AV, where & is Planck’s constant. When a photon interacts with a particle, it can be
absorbed or scattered. In the first case, the photon contributes to increase the energy of the medium. In the second
case, the same photon is deflected without (elastic scattering) or with (inelastic scattering) a loss or gain of energy.
The medium itself also contributes to the radiative flux by emitting photons based on its local thermodynamic state
through a process that is the mirror version of the absorption. An illustration of these four interaction modes between
medium and photons (absorption, emission, elastic scattering, and inelastic scattering) is shown in Figure 5 .
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Figure 5. Schematic representation of the type of photon-medium interac-
tions: (a) absorption; (b) emission; (c) elastic scattering; (d) inelastic scattering.

Scattering can happen in the form of reflection, refraction, or diffraction and be subject to different physical mecha-
nisms, mostly based on the size of the particle compared to the wavelength of the incident radiation. The treatment of
scattering is significantly more complex than absorption and emission. Fortunately, it represents a negligible fraction
of the infrared energy of interest for thermodynamic profiling, with some exceptions in the presence of clouds (Turner
and Lohnert 2014). Therefore, the remainder of the report will focus on absorption and emission only.
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Absorption and emission in a medium occur at specific energy levels associated with state transitions. A photon can
be absorbed only if the difference in two of the energy states of the medium, AE > 0, is equal to its energy iV or,
equivalently, the photon has a wavenumber such that ¥ = AE/h. In reverse, a negative energy transition results in
the emission of a photon with energy h1V = —AE and wavenumber ¥ = —AE /h. Therefore, the linear relationship
between the energy and the wavenumber of a photon implies that the absorptive and emissive properties of a medium
are inherently wavenumber-dependent. In other words, the spectral properties of the radiation are correlated to the
energy state of the medium. The retrieval of thermodynamic profiles in the atmosphere from the spectral radiance
takes advantage of this fundamental physical property.

There is a qualitative difference between the spectral absorption and emission of non-ionized and ionized media. A
non-ionized medium includes molecules and atoms that have energy states associated with specific rotational and
vibrational modes and electronic states. In this case, energy transitions are called bound-bound and occur as jumps
between discrete energy levels. This means that only photons with specific energy levels (or, equivalently, wavenum-
bers) can be absorbed or emitted. This explains why spectrum of the radiation traveling through a non-ionized medium
is characterized by narrow absorption/emission bands at specific frequencies.

In contrast, a medium that contains ions and free electrons is characterized by a continuum absorption/emission spec-
trum because these types of particles can have any energy above a threshold called ionization energy. The contribution
of ions in the atmospheric processes is negligible, and we will therefore focus only on the non-ionized medium in the
following discussion.

In reality, however, as a result of so-called line broadening, even a non-ionized medium adsorbs/emits over a finite
range of wavenumbers around ideal spectral lines predicted by quantum theory, AE /h. The shape of the broadened
spectral lines is referred to as lineshape. For atmospheric applications, broadening can occur mainly because of two
mechanisms:

* Doppler effect due to the relative motion of the absorbing/emitting particle induced by thermal agitations: In
this case, the observed lineshape is Gaussian, and its amplitude is proportional to T'/2 (where T is temperature);
thus, it is more relevant at high temperatures where molecules move more vigorously.

* Collision between particles of the same species (self-broadening) or different species (foreign broadening): The
observed lineshape is an approximate Lorentzian function with slowly decaying tails or wings and amplitude
proportional to P/ T'/2 (where P is pressure), becoming important at high pressures and low temperatures.

Broadening is important in the context of thermodynamic profiling because it eases the spectral resolution requirements
of the spectrometer and impacts the accuracy of physical radiative transfer models (see Section 4.2.3).

Takeaway 8: The atmosphere can be treated as an absorptive-emissive, non-ionized medium in the infrared
region of interest for thermodynamic profiling. Absorption/emission occurs around specific spectral lines that
are associated with the discrete energy states of the different atmospheric layers.

3.2 The Law of Radiative Transfer
Energy conservation along the travel path for radiation in nonscattering media takes the form of the so-called law of
radiative transfer and plays a crucial role in thermodynamic profiling. It basically represents the balance between the
absorbed and emitted spectral radiance along the path traveled by the radiation. The path is defined by the direction in
three-dimensional space, ¢, and the line-of-sight distance from an arbitrary origin, &.
The absorption of energy is described by the following differential equation:
dB(V,E, a -
BEED  _ aEaBma) G
é absorption

where B(V,&, o) is the spectral radiance at wavenumber ¥, along-beam location &, and in direction ¢. The absorption
coefficient, ay (€, @), represents the fraction of energy absorbed in a unit thickness layer at the specific wavenumber.
The derivative includes only radiation attenuation as a result of absorption.

If each parcel of the medium is in local thermodynamic equilibrium (which largely applies to the atmospheric case
when the air pressure is significantly greater than zero), the emission is only a function of the local thermodynamic
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state. Based on fundamental thermodynamic considerations (Siegel 1971), it can be shown that the emission spectrum
has a fairly simple expression: It is equal to the blackbody radiation at the local temperature, By(V,T (£, @)), times
the absorption coefficient, and it is conveniently isotropic. So, the local increase in radiation due to emission along

direction ¢ is: .
9B(V,8,a)

aé emission

These two basic equations allow us to derive the law of radiative transfer from the total variation of energy due to
absorption and emission along the travel path. The law of radiative transfer of the electromagnetic radiation in a
nonscattering participating medium can be recast as:

= +a\7(€,06)Bo(\7,T(§,OC)). (3.2)

B ki.0) = B(Y.0.0)e 5 [ B9, T (g e Vel (33)

where « is the direction and Ky ¢ is a special spatial coordinate called optical thickness defined as:

K = /( av (€' )8’ G

Equation 3.3 shows the spectral radiation at a given point in space coming from a specific direction as the sum of two
terms:

¢ The radiation at the boundary of the domain B(V,0, &) attenuated by e~ V-« as a consequence of absorption.

* The sum of the emission of the medium along the specific direction, which is proportional to all the blackbody
spectral energy encountered along the path, Bo(V,ky ), convolved with an exponential weighting function
which represents the loss due to absorption along the path.

For illustrative purposes, we can derive the law of radiative transfer for an ideal medium with homogeneous absorption,
the optical thickness is simply ky = ay&. Equation 3.3 then becomes

B(V.£,) =B(¥,0,a)e " +ay /( Bo(V, (&' e))e & Elag. (3.5)

To get a sense of how thermodynamic profiling from a ground-based instrument works, we can apply Eq. 3.5 to an
observer located at the Earth’s surface and looking up along the zenith direction. In this case, we can neglect the
radiation coming from outer space, so that the law of radiative transfer reads

B(V) =ay / Bo(¥,T (2))e~ " dz, (3.6)

where the spatial coordinates have been dropped for simplicity. The spectral radiance at the ground at a specific
wavenumber is the integral of the blackbody radiance emitted by the columns of gases overhead multiplied by the
transmission of the atmosphere from the level of emission to the instrument, which takes an exponential form. This
vertical product is called the weighting function in the context of atmospheric sounding. Moreover, the stronger the
absorption, the faster the decay of the weighting function. Equation 3.6 is qualitatively shown in Figure 6 for low and
high absorption coefficients. The centroid of the weighting function, located at an altitude of z = agl, is also indicated
in red.

Clearly, a less absorptive or “transparent” medium weights more contributions from higher layers compared to a more
absorptive or “opaque” medium, which is mainly affected by emission close to the ground. We can translate this
conclusion into a useful property for the spectra measured at the ground by an ASSIST. Spectral regions with large ay
will appear more opaque and allow only radiation close to the surface to reach the instrument. Spectral regions with
small ay will be more transparent and allow radiation from higher altitudes to reach the instrument.

In this context, a convenient variable (that is also provided by the ASSIST at specific wavenumbers) is the brightness
temperature, or the temperature of a blackbody emitting with a certain energy at the specific wavenumber, which reads
(in °C):
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Figure 6. Qualitative behavior of weighting functions of the law of radiative transfer for a ground-based, zenith-looking observer
and a homogeneous absorption coefficient from Eq. 3.6. The area under the function is colored by its cumulative integral.

In light of this example, a very rudimentary thermodynamic profiling method could then assume that the brightness
temperature derived from the spectral value at a certain wavenumber is a proxy for the temperature at the centroid of
the emission layer, i.e., z = a; ! Therefore, the temperature profile across different altitudes could be estimated from
observations over a set of wavenumbers with large variations of ay, for instance, close to a steep absorption line. A
real-world spectrum is clearly more complex with contributions from the emission from multiple layers that overlap
on the same spectral bands, inhomogeneous absorption coefficients, and boundary effects in very transparent bands.
This calls for a more sophisticated retrieval method to be used to estimate the atmospheric state, i.e., TROPoe.

Takeaway 9: The spectral absorption and emission of infrared radiance depend strongly on the thermody-
namic state of the medium (i.e., the atmosphere), which is the basis of TROPoe and thermodynamic profiling
in general.

3.3 Typical Atmospheric Spectra

A simple visual inspection of the ASSIST spectra can provide important information on the atmospheric state and
physics. Figure 7 shows three spectra collected at AWAKEN site B (Letizia 2023) in August 2023 and the associated
brightness temperature. The ASSIST was collocated with a meteorological station (Goldberg 2023) that provided
surface temperature (7;) and relative humidity (RHy) measurements at 2 m above the ground. A laser ceilometer
(Hamilton 2023) was also installed at site Al (about 20 km northeast) and measured the cloud base height. The first
and second spectra (Figure 7a,b) were collected on 2023-08-24 during clear-sky conditions at nighttime (06:00 UTC,
01:00 local time) and daytime (15:00 UTC, 10:00 local time), respectively. They are qualitatively similar. We can
easily identify wavenumbers in the regions 500 < ¥ < 750 cm ™!, 1,250 < ¥ < 2,000 cm ™!, and 2,250 < ¥ < 2,380
cm~! where the radiance closely follows Planck’s law evaluated at surface temperature (black line in the figure).
These opaque bands represent the spectral regions where the atmosphere is generally optically very thick or opaque,
so that the instrument “sees” mostly the warm emission very close to the ground. In fact, the brightness temperature in
these bands is close to the surface value. Conversely, the regions 700 < ¥ < 1,250 cm™!, 2,000 < ¥ < 2,250 cm™!,
2,380 < ¥ < 3,000 cm ™! show significantly lower energy, meaning that these are more transparent bands if the sky is
clear. In this region, the ASSIST is “seeing” radiation coming from far above the Earth surface. In this region of the
atmosphere temperatures are generally lower than the surface values, so the spectral energy is below Planck’s function
at ambient temperature and the brightness temperature also drops to —40°C or below. Interestingly, some spectral
region show brightness temperatures above the ambient blackbody curve. This is due to the presence of very opaque
gases inside the instrument that can obscure the view of the blackbodies and invalidate the radiometric calibration.
Finally, the region close to the transition between Channel A and B (not used in TROPoe), shows significant spectral
noise.

The third spectrum (Figure 7¢) was collected during an overcast event on 2023-08-27 17:15 UTC (12:15 local time).
Here, the spectrum shows a significant difference from those recorded during clear-sky conditions, especially in the
transparent band. The brightness temperature stays close to or even above the surface value. This higher brightness
temperature is because the clouds block the infrared radiation from the higher altitudes and emit at temperatures closer
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Figure 7. Three sample spectra (top) and brightness temperatures (7}, bottom) from the ASSIST installed at
AWAKEN site B: (a,d) nighttime, clear sky; (b,e) daytime, clear sky; (c,f) daytime, cloudy. The blue and red lines
indicate data from channel A and channel B, respectively. The black line is the Planck function evaluated at 7.

to the surface values. In general, the spectral information from above cannot penetrate dense cloud layers; therefore,
any physical retrieval above cloud base height is generally affected by large uncertainty (see Section 4.2.4).

Takeaway 10: Different regions of the spectral radiance carry information about different layers of the atmo-
sphere based on the associated optical thickness. Clouds generally block most of the information above the
cloud layer, and emit significant energy to the surface.

Zooming into the spectra, it is possible to identify absorption lines from the different gases that absorb and emit at
specific wavenumbers based on their molecular structure. The most important species with active absorption/emis-
sion within the spectral band detected by the ASSIST are H,O, CO,, CH4, N>O, and O3. These known spectral
dependencies are leveraged to carry out the optimal retrieval of the temperature and humidity profiles, as described
next.
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4 Retrieval of Thermodynamic Profiles

We have discussed so far how the spectral radiance is affected by the thermodynamic state of the atmosphere, in
the form of temperature and spectral absorption coefficient, and how it is measured at the ground level. The final
missing piece in understanding how thermodynamic profiling works is to describe the way a the retrieval algorithm
(for us, TROPoe) inverts the forward model represented by the law of radiative transfer to estimate the thermodynamic
profiles. A quick inspection of the law of radiative transfer (Eq. 3.3) reveals the complexity of performing its inversion.
In fact, when the boundary radiation is neglected, it takes the form of a convolution of blackbody spectra with an
exponential function of the optical thickness. The inverse of a convolutions, just like all purely integral equations,
is inherently ill-posed, meaning that it admits several solutions. In other words, the state that we want to estimate
(temperature, moisture, cloud properties, etc.) has more pieces of information than the observations (spectral radiance
at the ground). Said differently, there are frequently more than one atmospheric state conditions that could have yielded
the observed infrared spectrum. This is equivalent to trying to guess the shape of a three-dimensional object by looking
at its shadow.

Moreover, the nonlinearity of the blackbody radiation and absorption coefficient in the thermodynamic state variables
and the instrumental noise both contribute to make the inversion of Eq. 3.3 even more complicated.

TROPoe tackles this challenging task from a both a physical and statistical point of view by identifying the solution
that has the highest likelihood given the set of available observations and based on the physics of the radiation. To do so
in a numerically stable way, it also uses information from the site climatology, auxiliary instruments, and an estimate
of the noise level in the observations. In addition to providing a statistically sound solution, TROPoe is capable of
producing and estimating the uncertainty of the retrieval, which is invaluable for data analysis and assimilation.

4.1 Fundamentals of Optimal Estimation

As previously mentioned, the estimation of thermodynamic profiles based on observed spectral radiance at the ground
level requires the solution of an ill-posed inverse problem. A statistically robust approach to solving an inverse problem
is OE (Rodgers 2000). Formally, given an unknown state vector that we want to estimate, x, a prior probability density
function (p.d.f.) describing the overall variability of x, and a set of observations, y, affected by measurement noise
with known p.d.f., OE theory provides a way to estimate the most likely x compatible with both prior statistics and
current y. This optimal solution is indicated by £. A big advantage of the OE is that it also provides the uncertainty of
X due to measurement noise and missing information in the forward model in the form of the so-called posterior p.d.f.

OE methods are often based on Bayes’s theorem, which states that the posterior p.d.f. (formalized as the conditional
p.d.f. of x given y) can be obtained as the product of the p.d.f. of the measurement noise, the prior p.d.f. (based on
historical data, for example) and a p.d.f. of the observations which act as a normalization factor. In formula:

posterior noise prior normalization
—~ =, ~— = N /-J\:
p(XIy)ép(yIX) p(x) p(y) < 4.1)

In our case, x contains the thermodynamic properties of the atmosphere at selected heights, y includes the spectral
radiance and auxiliary observations, p(y|x) contains the forward model for atmospheric absorption and emission, plus
instrumental noise of the ASSIST, and p(x) represents the climatology. In this framework, the problem of thermody-
namic profiling is multidimensional and nonlinear. However, we first consider the much simpler scalar, linear problem,
which already provides an insightful look into OE theory. Then, we move to more complex scenarios and finally to
the general case.

4.1.1 Linear, One-Dimensional, Gaussian Problem

We want to optimally estimate a scalar variable x that is normally distributed with a prior mean x, and a standard
deviation o, based on an observation y made with an instrument with a linear calibration curve and Gaussian noise €
with standard deviation 6. The forward model is simply

y=kx+e, 4.2)
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where the slope k can be seen as the sensitivity of the instrument. Bayes’ (Eq. 4.1) theorem in this case reads

noise prior

posterior o2 ( > normalization
1 y—kx 1 X—Xq
0 fx%nce<zﬁ (ol P 43
€ a

where the p(y) is deliberately left unexpanded for compactness. The best solution in an OE sense is the £ correspond-
ing to the maximum of p(x|y), i.e., the most probable state conditional on the observation. This can be found by
maximizing the left-hand side of Eq. 4.3, which is equivalent to

0 bk feos?)

— 44
ox | 207 202 @4
The solution to this simple optimization problem is customarily recast as
2o ) Tk
f=x+ | 5+= | SO0—kx), 4.5)
‘ <G§ o;) oF ‘
or, equivalently
2 2
Y koy +x, O (4.6)

262+ 62
k*c: + of

Therefore, the optimal state estimate is a weighted mean of the observation and the prior mean based on noise, prior
variability, and k. Figure 8 shows a graphical representation of the process. If ko, > o, (Figure 8a), i.e., the noise
is significantly smaller than the variability in the prior times the sensitivity of the instrument, most of the information
comes from the observation, and we approach the naive solution x ~ y/k. If ko, ~ o (Figure 8b), the OE mean uses
the prior to partially constrain the observation; if ko, < o (Figure 8c), the observation is too noisy or the instrument
sensitivity is too low, and the solution is significantly constrained by the prior. In the worst-case scenario of k6, < O,
we get the uninformative solution x = x,. The three cases qualitatively represent the archetypes of ideal, realistic, and
bad retrieval, respectively. The purple OE mean line is observed to lie at the loci of the maxima of the joint p.d.f.
p(x,y) (shown as a heatmap), showing that OE represents the most likely state of x for a given y.
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Figure 8. Graphical depiction of a scalar linear OE for k = 1: (a) ideal case, where 6, = 10, oz = 1; (b) realistic
case, where 6, = 10, 0z = 5, (c) bad case, where 6, = 5, 6 = 10. The heatmap indicates the joint p.d.f. p(x,y).

Looking again at Equation 4.3 and recalling that the product of two Gaussian functions of x is itself a Gaussian, we
can readily derive the standard deviation of the posterior p.d.f. by simply equating terms with x>. The result is

1
N K 1\ 2
G:<2+2) . (47)
0-8 ca
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The 6 represents the overall uncertainty of £, but can be further broken down. Equations 4.5 and 4.2 can be combined
to obtain the total error of the retrieval, &, as

En

~ = A
f-x ( 2e, (4.8)
where the so-called gain, g is
o1k
g= <+> =. 49)
o? o2 o?

while the averaging kernel (or A kernel) is defined as a = gk. Interestingly, the gain is also the partial derivative of
the solution with respect to the observation (i.e., g = a—f), or the inverse of the slope of the purple “optimal” line in
Figure 8. The averaging kernel is also the partial derivative of the solution with respect to the real (unknown) value of
the state vector (i.e., a = %).

The total error is then the sum of the so-called smoothing error, &, and the error due to noise, €, (which is not the same
as €). A graphical representation of how these errors contribute to the overall uncertainty is given in Figure 9. The
smoothing error is due to the use of prior information that is needed to mitigate the effect of measurement uncertainty
and constrain the ill-posed problem to a realistic solution. This results in the solution being attracted to the prior mean
proportionally to x — x,, meaning that, for a given system, large smoothing errors are expected for conditions that
significantly depart from the prior mean, i.e., extreme events. The word “smoothing” associated with this term will
become clearer when considering multidimensional retrievals (Section 4.1.3). The error due to noise is instead a direct
consequence of the measurement error propagated into the retrieval solution.
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Figure 9. Graphical representation of the total error of the retrieval as the sum of smoothing and noise.

The retrieval uncertainty, &, includes contributions from smoothing and noise, as it can be easily proven:

02(g) = o%(&) +0%(&,) = (a—1)?02 + g°c2 = 6. (4.10)

However, there are other sources of uncertainty that are not included in the OE output. The modeling error occurs as
the result of the imperfect representation of reality by the forward model (in our simplified case, Eq. 4.2). Furthermore,
the instrument could have persistent biases that are not well represented by random noise. Additional errors may arise
from an imperfect estimation of the prior and/or noise statistics. These effects are much less amenable to general
treatment and are harder to predict for real applications, as will be extensively discussed in Section 4.2.4.

Takeaway 11: The solution of the retrieval is the most likely state given the prior and the current observa-
tions. The posterior p.d.f. includes information on the uncertainty of the retrieval due to smoothing and mea-
surement noise.

19



4.1.2 Nonlinear, One-Dimensional, Gaussian Problem
We now add an additional layer of complexity by considering a nonlinear (but still one-dimensional) forward problem
defined by:

y=F(x)+e, 4.11)

where again x and € are both Gaussian. Bayes’ theorem in the form of Eq. 4.4 can still be applied, but it looks slightly
different from Eq. 4.3:

1 _ (AV—F(;»Z 1 -~ (x—xq)?
2 ply)~. (4.12)

xly) = e e
pxly) V2mo, v2ro,
This form is not amenable to a general solution for the maximum £ as its linear version. However, if the nonlinearity
within the most likely region of the sample space of p(x|y) (that is, few & from £) is small, the forward model could
be approximated as F(x) ~ F(x;) + k(x;)(x; — x), provided that the linearization point x; lies within the proximity of
X. This type of problem is called moderately nonlinear. The OE equation is then

0 [0 —Flx) —k(x)(m—x)*  (x—x)*] _
8x[ 202 + 202 }_O'

(4.13)

However, since £ is indeed the solution of the problem, x; cannot be chosen a priori but can be approximated with
progressively good accuracy in an iterative fashion. The solution scheme to Eq. 4.13 is then

mz )‘1 &)

(n+1) _ A AR P (n) (n) ((n) _
X Xq+ o7 T2 [)’ F(x") + k" (x xa)}( (4.14)

2
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where the superscript () is the iteration counter. This solution scheme, valid for a moderately nonlinear problem, is
referred to as the Gauss-Newton method. It is very similar to the one implemented in TROPoe, which in fact assumes
that the forward radiative transfer model is only moderately nonlinear (Maahn et al. 2020). The iterative solution
algorithm is responsible for most of its computational cost, as the forward model is performing complex spectral
radiative transfer calculation.

So far, we have seen the computational advantages of dealing with a moderately linear problem. Another important
conclusion can be made in terms of the retrieval uncertainty. In fact, when F(x) is approximated through a linear
function, Eq. 4.12 is not different from that of a linear problem. We then infer that the posterior p.d.f., p(x|y), is also
Gaussian with a standard deviation of
2o\
6= + ) ; (4.15)

o o

where the"symbol in this context indicates the value at convergence. Additionally, the results regarding the smoothing
error and the error due to noise seen for the linear problem apply. Simply, in this case, the gain and the A kernel will
correspond to their values at convergence, or, using our nomenclature, ¢ and d, respectively.

Takeaway 12: Problems having a forward model with small nonlinearity within the most likely region of
the posterior are called “moderately nonlinear,” and the uncertainty of the solution can be estimated as in a
strictly linear case.

To provide an example of how a nonlinear problem is solved, we apply the Gauss-Newton method to invert a forward
parabolic problem (y = kx + bx*) with different quadratic terms, b. Figure 10 shows the resulting optimal solutions £
for different values of y and is superimposed on the full two-dimensional p.d.f., p(x,y), obtained using a Monte Carlo
method with 107 samples. In particular, Figure 10a refers to a linear retrieval, showing that £ perfectly tracks the
maxima of p(x,y) (the heatmap). Figure 10b is what could be called a moderately nonlinear problem, where realistic
solutions for £ are achieved in the whole domain, and the posterior p.d.f., p(x|y), assumed as Gaussian with mean £ and
standard deviation & (top), is close to the real p.d.f. approximated through Monte Carlo sampling. Figure 10c, which
corresponds to a higher quadratic term, shows a well-behaved solution in only part of the domain of y and a significant
departure of the posterior from Gaussianity. It is therefore a grossly nonlinear problem for which the Gauss-Newton
algorithm and the linear uncertainty theory may fail.
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Figure 10. Graphical depiction of a scalar nonlinear OE for k = 1, 6, = 10, 6 = 5: (a) b = 0; (b) b = 0.01; (c) b = 0.1.

4.1.3 Linear, Multidimensional, Gaussian Problem

The multidimensional linear problem described here is a more realistic approximation of the real TROPoe setup. The
main difference between the one-dimensional problems seen before and the one presented in this section is that now
the scalar and linear forward model is replaced by a linear system. From a purely mathematical standpoint, extending
the scalar OE to multiple dimensions implies that x, x,, y, and € now represent vectors of the state (e.g., temperature
profiles), prior mean profile, observations (e.g., radiance at different wavenumbers) and noise, respectively. The
forward model then is

y=Kx+e, (4.16)

where K is an M x N matrix mapping the N states evaluated at specific heights or grid points into M observations.
By adopting the multidimensional version of the derivation in Section 4.1.1, it can be proven (Rodgers 2000) that the
optimal solution in this case is

~ — —1\—1 _
f=x,+ (K'S;'K+S,")  K'S; N (y—Kx,), 4.17)

where S¢ is the covariance matrix of the noise and S, is the prior covariance matrix. Equation 4.17 shares several
similarities with its one-dimensional counterpart, Eq. 4.5, with scalars replaced by vectors, k by K, and variances by
covariance matrices. Analogously, the posterior covariance, which is the same as the covariance of the total retrieval
error, £ — x, is

S=(K"s;'k+S,) " (4.18)
The gain is now a matrix that quantifies the sensitivity of the solution to the observation (and the noise):

0% _
G— aj = (K"s;'k+5;") KT, (4.19)
y

The covariance of the error due to noise is then

S, = GSeG". (4.20)

The averaging kernel, A = GK, is also a matrix equal to the sensitivity of the solution to the true state, 9% The matrix

dx
A contains a lot of useful information, in particular:

* It can be used to calculate the smoothing error as
Ss = (A=1)Sa(A~1)", 4.21)

where Iy is the identity matrix of rank N, which implies that A = Iy would represent an ideal case with no
smoothing.
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e The trace of A is the number of degrees of freedom of the signal (DFS), namely, the number of independent
pieces of information of the state available in the observations at each grid point; for an ideal retrieval, A = Iy,
so DFS = N, but in general DFS < N.

* The i-th rows of A are the linear coefficients indicating how the whole state vector affects the i-th element of the
solution. In general, the diagonal elements are less than 1, indicating that the solution is partly attracted by the
prior, as seen in the one-dimensional case. Also, the nondiagonal elements of A are generally not 0, indicating
some contribution to the solution at i-th level from elements of the state and prior at j # i. Both effects result in
the smoothing error.

¢ The full-width half-maximum of the rows of A provides a metric for the vertical resolution of the solution.

Takeaway 13: The severity of smoothing is quantified by the departure of the A kernel matrix from the iden-
tity, and it comes from two effects: (1) the use of prior information at the same level (4;; < 1) and (2) contribu-
tion from different layers (4;; # 0).

To illustrate how a multidimensional retrieval works, we use the simplified framework defined in Section 3.2 for a
ground-based spectrometer observing downwelling spectral radiance radiation along a vertical line of sight (e.g., an
ASSIST). By assuming a vertically homogeneous absorption coefficient, ay, we can use Eq. 3.6 to build the forward
model. In order to build a linear problem, we select N = 80 grid points equally spaced by Az = 1 km to discretize
the integral. We also focus on M = 8 spectral bands of the spectrometer in a small wavenumber region where large
variations of ay occur, but we can neglect variations of the blackbody emission as a function of wavenumber, that is,
By(V,7) ~ By(z). To make the problem linear in the temperature space, we will neglect the nonlinearity of the Planck
function as done by Rodgers (2000), so By(z) < T(z), with the proportionality constant omitted for simplicity. Our
linear and discrete forward model for the observed radiance is then

N
Bi=Aza; ) Tje *i+g Vi=1.2,..,M, (4.22)
j=1
which is the form of Eq. 4.16. Now, x is the vector of T}, y is the vector of B;, and the rows of K are the weighting
functions, in this case Az a;e”%i. If we select centroids of the weighting function, a,,!, which vary linearly between
1 and 20 km, we build a matrix K with rows equal to the sequence of functions shown in Figure 11. We see that
band j = 1 (purple line) is the most opaque and it is mainly sensing temperatures close to the ground, while the most
transparent band j = 8 (yellow line) also weighs higher altitudes. These weighting functions resemble qualitatively
those used by TROPoe with AERI or ASSIST (e.g., Figure 1A in Blumberg et al. 2015).
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Figure 11. Rows of K matrix or weighting functions for the eight spectral bands

of the spectrometer. The dots represent the centroids, equal to z = alfl.

The missing ingredients for the retrieval are the prior mean, x,, priori covariance, S,, and noise covariance, S¢. The
prior mean is taken as the mean temperature profile from the U.S. Standard Atmosphere benchmark (NOAA 1976),



and a synthetic prior covariance is given by Eq. 2.82 in Rodgers 2000. The noise covariance is assumed to be diagonal
with a constant variance of 0.25 K. Both prior and noise are assumed to follow Gaussian distributions.

It is now possible to apply the retrieval (viz. Eq. 4.17) to our synthetic problem; this is done in a Monte Carlo
fashion by generating 10,000 temperature profiles with statistics following the prior. Figure 12 shows the three sample
temperature profiles with minimum (a), median (b), and maximum (c) height-averaged error. Three aspects of the OE
theory become evident: (1) profiles cannot retrieve small-scale features due to smoothing; (2) small error is associated
with cases that fall close to the prior (thanks to the small smoothing error); and (3) the error increases with height, due
to the reduced information content farther away from the observer, which also causes the solution to rely more on the

prior higher up.
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Figure 12. Retrieved profiles with (a) minimum, (b) median, and (c) maximum height-averaged error.

Further insight is provided by inspecting the posterior covariance matrix, S, starting from its diagonal elements that
represent the uncertainty of the retrieval. Figure 13 shows the overall posterior standard deviation (solid black line),
its breakdown by smoothing error (dashed black line), and error due to noise (dotted-dashed black line). The constant
prior standard deviation is also shown in red for comparison. This visualization confirms that the retrieval error
increases with altitude and is dominated by the smoothing part. The sample prior and posterior standard deviation
from the 10,000 Monte Carlo draws is also superposed as a sanity check.
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Figure 13. Standard deviation of prior and posterior.
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With further examination of the prior and posterior covariance, we visualize the off-diagonal elements of S in Figure 14
from both theory (Figure 14a) and Monte Carlo (Figure 14b, just as a verification). As the diagonal value of posterior
covariance increases with height, so does the depth of the layer in which a significant correlation of layer-to-layer
error occurs. Since the noise was independent of z, this is entirely connected to the larger smoothing that is needed
at high altitudes to compensate for the smaller information content away from the surface. This is also the algorithm
acknowledging that the temperature profiles are more smoothed out by the weighting functions in the more transparent
channels.
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Figure 14. Prior and posterior covariances from (a) OE theory and (b) Monte Carlo.

The fact that the information content decreases with height is supported by the A kernel matrix (Figure 15). The rows
of A show how layers closer to the surface have a more peaked shape, meaning that minimum smoothing occurs, and
most of the information comes from observations at the target height. Moving up, the peak in the rows of A spreads
out, leading to poorer vertical resolution (Figure 15 b) and lower local DFS (Figure 15c¢). In this simplified example,
the vertical resolution, which is very important when interpreting retrieved data, is approximately equal to the height
from the ground; a similar behavior is observed in TROPoe for temperature data based on ASSIST spectra.

On a final note, it is quite interesting how this toy problem produced results that are qualitatively similar to those of
TROPoe (see Section 5.2), despite being significantly less complex but arguably more insightful and manageable than
a full thermodynamic retrieval.

Takeaway 14: In ground-based retrievals, such as TROPoe for ASSIST, the information content de-
creases with height, resulting in poorer vertical resolution and greater smoothing error at higher altitudes.

4.2 TROPoe

4.2.1 General Architecture

The theoretical concepts and simplified applications discussed so far have laid the foundation for a description of
TROPoe. TROPoe is a state-of-the-art retrieval algorithm for thermodynamic profiles that applies optimal estimation
theory to ground-based remote sensing observations. TROPoe evolved from the earlier AERIoe, an optimal retrieval
method applied to spectral observations from the AERI (Knuteson et al. 2004a), of which the ASSIST is a modern
version. In particular, TROPoe was designed to be able to work with a range of observations, including passive
spectral observations from ground-based infrared spectrometers and microwave radiometers, active remote sensing
observations such as water vapor lidars and radio acoustic sounding systems, and in-situ observations like radiosondes,
tower observations, and unmanned aerial systems (Turner and Blumberg 2019). TROPoe is available on Docker
(Turner 2025) and is regularly updated.
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The goal of TROPoe is to iteratively find an optimal estimation of the state vector, x, which is a composite of different
thermodynamic information, specifically:

X = [T],TQ,...,TN,rl,rz, ...,rN,LWP,Rcff,Others]T, (4.23)

where T;, r; are temperature and water vapor mixing ratio values at N vertically stacked grid points (typically 55), LWP
is the liquid water path, and R is the liquid water effective radius. The other outputs are relative to the ice clouds and
the gas concentrations and are not discussed here.

The general workflow is described in Figure 16, including definitions that are important in the TROPoe realm for both
data producers and users. The main input to TROPoe is typically the downwelling spectral radiance observed at the
ground level that is used to build the observation vector y. The signal-to-noise ratio of the measured spectra can be
increased by processing the radiance through a principal component analysis (PCA) filter (Turner et al. 2006). Only
M out of all spectral bands detected by the ASSIST are selected based on their sensitivity to different quantities of
interest (i.e., what they measure) in the state vector and the associated optical thickness of the atmosphere (i.e., where
they measure). Indeed, spectral regions where other trace gases (e.g., methane, nitrous oxide, ozone, etc.) contribute
markedly to the absorption and hence downwelling radiance should be avoided. The spectral bands of the current
TROPoe version are reported in Table 2; these were chosen because they are relatively free from the contributions of
other gases (Smith et al. 1999).

The accuracy of retrieval is significantly increased by also adding auxiliary inputs to the observation vector, such as
the cloud base height (typically from a ceilometer or a lidar), and surface temperature, pressure, and relative humidity.
TROPoe can also utilize partial profiles of temperature and/or water vapor from active remote sensors to help constrain
the retrieved profiles (Turner and Lohnert 2014; Turner and Lohnert 2021; Djalalova et al. 2022). The need for cloud
base height ensues from the inherent challenges that the optically thick clouds cause to the retrieval (see Section 4.2.4),
while surface observations help in mitigating biases and re-centering the prior to the observed climate.

TROPoe requires a prior (in the form of mean x, and covariance S,, of the state vector) derived from previous long-
term measured profiles of temperature and water vapor mixing ratio, r, to constrain the solution to physically realistic
profiles. Radiosondes are the most common instruments used to build the prior. Prior statistics were compiled on
a monthly basis for the AWAKEN and WFIP3 experiments to better capture seasonal variability. The configuration
of the solver is stored in the VIP file and includes, among others, the data paths, the instrument types, and the time
resolution.
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Figure 16. Flowchart of TROPoe.

Table 2. Spectral Bands Used by TROPoe-0.12 0.11.7 With Default Settings (for
this version of TROPoe, the length of the observation vectoris M = 347)

Wavenumber Band [cm~!] Main Target in State Vector

612.0-618.0 T
624.0-660.0 T
674.0-713.0 T
713.0-722.0 T
538.0-588.0 r
793.0-804.0 r
860.1-864.0 LWP, Regr
872.2-877.5 LWP, Rt
898.2-905.4 LWP, Resr

The TROPoe output contains a great deal of information beyond the optimal solution that requires some degree of
familiarity with the theory summarized in this report to be correctly interpreted. For postprocessing and quality
control, the full posterior covariance, the A kernel, the vertical resolution, and several convergence metrics are also
available. A particularly useful output parameter is the root-mean-square error of the algorithm (RMSA) that measures
the difference between the observation vector and the final forward calculation:

M () v\ 2
RMSA — (Ff(x)yf) . (4.24)
A i

The RMSA provides a nondimensional quantification of the agreement between observations and forward model
applied to the retrieval. Large RMSA indicates imperfect convergence or incomplete/flawed physical description of
the observed profile. A similar variable in the output files, RMSR, computes the root-mean-square error of only
the passive spectral radiance part of the observation vector (i.e., the infrared radiance and/or microwave brightness
temperatures) using the same formula.
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4.2.2 The OE Algorithm

The inverse problem solved by TROPoe belongs to the multidimensional, moderately nonlinear type. An OE of the
state vector can then generally be achieved through the Newton-Gauss method. In the actual implementation, the
solution is calculated iteratively by a multidimensional version of Eq. 4.13 as follows:

XD — ¢y ( TS g 4 V( ) TS— {yfF(x(n)) + K™ (x(") fxa)] ( (4.25)
K is the Jacobian matrix of the forward problem resulting from the linearization, or
() _ 9Yi
K =52 (4.26)

The parameter y(”) is a sort of relaxation term that improves the numerical stability and is reduced from a large value
(e.g., 1000) to (ideally) 1 as the solution approaches convergence. Convergence criteria are

ﬁm _x(n+1)) 5 ({m _x(n+1)> T N 27

10,

where N is the dimension of the state vector, n is the iteration counter. The retrieval is considered converged when one
of the two criteria is met, and S") is the latest update of the posterior covariance described next.

Since linear error analysis applies only in the neighborhood of the solution, it will suffice to define the uncertainty
metrics at convergence. The final posterior covariance is

S=(R'S;'R+%5;") (ZCS;IM PN (RTS R+ 98, ( (4.28)

which simplifies to the more compact result obtained in the linear case for ¥ =1 (see Eq. 4.48). The gain matrix is

G=(R"S;'K+7s,") K's.', (4.29)
and the smoothing A kernel is still
A=GK. (4.30)

Both G and A can be used to calculate the error due to noise and the smoothing error, as seen in Equations 4.20 and
4.21, respectively.

4.2.3 The Forward Model

The forward model in TROPoe maps the state vector into a ground-based downwelling spectrum of infrared radiance.
The core of the model is the Line-By-Line Radiative Transfer Model (LBLRTM, Clough and Iacono 1995), which
calculates the radiation spectrum applying the law of radiative transfer (Eq. 3.3) in a discretized fashion across the
different atmospheric layers.

One of the most complex aspects of LBLRTM is the estimation of the local absorption coefficient, ay, in the form of
optical depth, k. The optical depth is a function of the following local state variables (Clough et al. 1981):

el I
=V jZWz AE{(T)f(V—W), (4.31)
1+e %7 i
where
* W; is the molar concentration of the i-th interacting species (HO, CO,, N», etc.)
» AE; is the energy associated with the energy transition that absorbs a photon with wavenumbers V.

The model parameters (transition energies, line locations, and line broadening) are extracted from the well-established
HITRAN database (Rothman et al. 2005; Gordon et al. 2017).
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The key point is that the optical depth (and thus the forward model) is a function of the local temperature, density
(i.e., pressure), and species concentration. Speaking in terms of OE theory, a targeted choice of the spectral bands to
include in the forward model, F(x), allows us to relate the observed spectra (the observations, y) to the temperature
and species concentration profiles, including water vapor, and cloud properties (that is, the state x) in different regions
of the atmosphere. The dependency of y on the temperature is also present through Planck’s function, which regulates
the emission.

Another important aspect of Eq. 4.31 concerns the so-called lineshape function, f(V — ¥;). The lineshape function
essentially spreads the otherwise infinitely narrow absorption/emission lines to take into account the Doppler and
collision broadening (recall Section 3.1). The combination of the Gaussian lineshape of the Doppler broadening with
the Lorentzian lineshape of the collision broadening results in a Voigt function. Figure 17 shows three illustrative
lineshapes for the limiting cases of a purely Doppler and purely collision type of broadening, as well as a mixed one.

0.04 4 == Pure collision
=== Pure Doppler
— Vbigt
0.03 A
AL 0.021
=
0.01 4
0.00 4 EEE:::::—” -..,_‘_:::::‘:—:-
-40 -20 0 20 10

—1; [em™!]

Figure 17. Examples of Voigt lineshape functions for line broadening.
The thin dashed lines mark the region beyond the cutoff in the LBLRTM.

The numerical discretization of these lineshape functions requires the Voigt function to be truncated beyond the £25
cm™! cutoff from the line center. However, contributions to absorption from the tails or “wings” of the lineshape
are still significant in the atmosphere. Moreover, the Voigt model is not a perfect description of the real lineshape
functions observed in atmospheric applications. Therefore, LBLRTM applies a correction to Eq. 4.31 in the form of
a “continuum absorption” (just a corrective term, not to be mistaken for the “real” continuum absorption spectrum
observed for ionized gases). The definition of this correction term has been the subject of intense research (Clough,
Tacono, and Moncet 1992; Turner et al. 2004) and its contribution to the solution should not be underestimated.

In general, LBLRTM in TROPoe is expected to have an algorithmic error of less than 0.5% and is mostly due to line
parameters (i.e., AE;, V;). Newer versions also include a module that simulates the discussed nonideal effects of a
Fourier transform spectrometer (like the ASSIST) on the observations, further increasing its accuracy.

4.2.4 Sources of Uncertainty

To conclude this chapter, we discuss the different sources of error in TROPoe and possible mitigation strategies.
TROPoe provides an embedded uncertainty quantification, which is one of its main advantages compared to other
retrievals. However, as hinted earlier, not all errors can be predicted analytically, and we discourage data users from
blindly using the uncertainty provided by TROPoe as the only metrics for data quality.

Known Uncertainties
An important advantage of a physical OE method like TROPoe is the estimation of the uncertainty of the solution
in the form of the posterior p.d.f., p(x|y). As discussed previously, this comprises the uncertainty caused by the
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smoothing and noise of the instrument. Regarding the latter, TROPoe assumes that the error in the observed spectral
radiance is unbiased and Gaussian, and the band-to-band correlation is negligible. This noise behavior in the ASSIST
is generally confirmed by the third blackbody calibrations, where the 3-¢ error between the measured and theoretical
spectrum of the third blackbody should not exceed 1% of the blackbody radiance at ambient temperature, and the
band-to-band correlation coefficients should not exceed 0.35 (Turner and Blumberg 2019). Improved estimates that
include correlated errors between different bands have also been attempted but remain significantly more complex
(Maahn et al. 2020). Operatively, the standard deviation of the noise, which is sufficient to fully describe the noise
p.d.f., p(y]x), with the present assumptions is estimated based on the imaginary radiance, as described in Section 2.7.

On the other hand, the smoothing error can be calculated using Eq. 4.21. Another way to assess the impact of
smoothing error is to compare TROPoe profiles with reference observations such as radiosondes. Provided that the
reference instruments represent the ground truth (which, in the case of radiosondes measuring water vapor, can be
questionable (Turner et al. 2004)), the total difference between TROPoe and the reference profiles is a good estimate
of the total error. By applying a TROPoe-like smoothing to the reference and reassessing the difference with the
TROPoe profiles, one can get an estimate of the contribution of the smoothing only to the global error. We provide an
example of this validation in Section 5.3. Using this method, Turner and Lohnert (2014) observed a slight reduction in
RMS error of retrieved profiles with radiosondes mainly due to the reduced vertical sampling error in the radiosondes.
In contrast, Blumberg et al. (2017) reported a drastic reduction in mean and total error when applying smoothing
to the radiosonde profiles, indicating the limited spatial resolution of the retrieval as a major error driver. However,
both authors highlight the presence of residual biases in their retrieval, indicating that other physical effects can
play a significant role in determining the accuracy of the retrievals. These effects, which are described next, must
be considered carefully since their contribution to the uncertainty may not be fully captured by the posterior p.d.f.
calculated by TROPoe.

Instrumental bias

Bias in the detected spectra can propagate into the retrieval and increase the overall uncertainty but not necessarily be
captured by the posterior p.d.f. This makes instrumental bias particularly insidious and has spurred important advances
in the field of spectroscopy. Any bias in the radiance invalidates the assumption of unbiased noise at the basis of OE
theory. When working with measured spectra, one should consider not only the error in the magnitude of the radiance,
but also in the wavenumber. In fact, errors can arise because of an imperfect spectral calibration resulting in absorption
lines being shifted from their theoretical wavenumbers. In general, instrumental bias in radiance and wavenumber can
arise in the infrared spectrometer data from any of the mechanisms described in detail in Section 2, which justifies
the efforts made to mitigate such errors. The high accuracy of spectrometers such as the ASSIST has been achieved
mainly thanks to online radiometric calibration (Section 2.2). In this regard, a clever way to estimate the residual error
due to radiometric calibration is to linearly expand Eq. 2.10 and assess the contribution of the uncertainty of blackbody
emissivities and temperatures. Knuteson et al. (2004b) and Turner et al. (2004) that applied this method to the AERI
and confirmed that the radiometric error was within specifications.

The requirements of ASSIST are a 3-0 uncertainty in the radiance less than 1% of the blackbody radiance at ambient
temperature and a wavenumber error less than < 0.01 cm~!. These specifications are tested in every third blackbody
calibration. Therefore, instrumental biases from ASSIST measurement can generally be neglected compared to other
sources of uncertainty, provided that the third blackbody calibrations, ideally before and after each deployment, in-
dicate the radiometric and spectral specifications are met. It is also essential to routinely monitor the health of the
instrument, following the example reported in Section 5.1. Finally, it is important to ensure that the field of view of
the third blackbody during the calibration is the same as that of the sky scene. In fact, even a small obscuration (for
example, a tree branch) can lead to severe biases (Mlawer and Turner 2016).

Clouds

Thermodynamic retrievals from a passive IRS such as the ASSIST face additional challenges in the presence of over-
head clouds compared to clear-sky conditions. First, clouds become rapidly opaque in the infrared regions probed by
the ASSIST as the LWP increases. At LWP > 60 g m~!, clouds can be considered completely opaque to infrared ra-
diation (Turner et al. 2007). From a physical point of view, this opacity translates into the weighting functions (which,
as we recall, describes how much information from a certain height at a certain wavenumber reaches the surface)
dropping practically to O above the cloud. From a mathematical point of view, this implies that the ground-based
spectrometer cannot access any information of the thermodynamic profiles above the clouds, and the spectral bands
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become rapidly saturated with radiation emitted by the cloud base itself, which overshadows information coming from
the layers below it.

V Weighting v Weighting

function function

Figure 18. Ideal representation of the weighting functions for (a) temperature and (b) water vapor mixing
ratio for an infrared spectrometer in the presence of a cloud. Green lines are weighting functions not in-
cluding contributions from the clouds, red lines are those with significant values within the cloud layer.

A natural question is: How well does TROPoe perform below the clouds? Temperature profiles, which close to the
surface rely on channels that are relatively opaque even in clear-sky conditions, have been shown to be just as accurate
as those obtained in clear-sky conditions at heights “sufficiently below the cloud” base (Blumberg et al. 2015; Turner
and Lohnert 2014; Turner and Blumberg 2019). Turner and Blumberg (2019) clarify that “sufficiently below the
cloud” means heights where there is not a significant amount of information coming from the cloud base as described
by the local smoothing, i.e., the rows of the A kernel matrix or the vertical resolution. These opaque channels have
peaked weighting functions that decay before reaching the cloud layer, which means that at those wavenumbers the
atmosphere is so optically thick that radiation from clouds cannot be seen from the ground. The same concept applied
to water vapor, which uses flatter weighting functions than the temperature, implies that the accuracy of the water
vapor estimate deteriorates faster with height below the clouds, even a few meters above the surface. This concept is
shown schematically in Figure 18, where the temperature (Figure 18a) has more channels with weighting functions
that do not include the contribution of the clouds than the water vapor (Figure 18b). In general, a rule of thumb when
dealing with cloudy scenes is to exclude profiles above the first cloud base height (see Section 5.2).

A big advantage of TROPoe is the ability to also detect cloud properties, such as LWP and effective droplet radius,
Re¢r, which are important in several contexts. A big caveat is that the optical thickness of the cloud, which is the main
property that can be inferred from the ASSIST, is a function of both LWP and R.f. A blind comparison of several
sophisticated retrievals that are predecessors of TROPoe showed unacceptably large scattering in the estimates of these
properties (Turner et al. 2007). However, awareness of cloudy scenes in TROPoe helps limit errors below the cloud
base that would arise if the clear sky was assumed all the time (Turner and Lohnert 2014). Residual errors below the
clouds have been attributed to the increase of atmospheric scattering due to clouds, which is not modeled in TROPoe,
as discussed next.

Takeaway 15: Thermodynamic profiles above the cloud have high uncertainty as a result of the lack of infor-
mation penetrating the optically thick cloud layers. Below the clouds, the temperature profiles are generally
more reliable than water vapor profiles.

Prior
The prior can be a source of bias if it is not representative of the climatology during the observation period (Maahn
et al. 2020). The prior could be statistically inaccurate in at least two ways:

« If the prior statistics are not Gaussian; in this case, a clever transformation in the state vector space could fix the
issue

e If the mean, x, and/or covariance, S, (including off-diagonal terms) are not a good measure of the state vector
observed during the experiment.
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In general, the prior should be derived from as many observations as possible and from a climatologically equivalent
location, preferably on a monthly basis. A prognostic way to check whether the prior used is amenable for TROPoe
retrievals is a Gaussianity check on the prior dataset. A diagnostic way to check whether the prior is adequate to
represent the observation is to perform two x? tests, the first applied to the difference between the observation vector
and the prior transformed into the observation state, y —y,, and the second to the difference between the optimal
solution and the prior mean, £ — x, (see Chapter 12 in Rodgers 2000 for more details). However, the version of
TROPoe at the time this report is written does not provide all the necessary outputs to carry out these statistical tests.

Forward Model

The LBLRTM is the backbone of TROPoe, and any inaccuracies associated with it can have important consequences.
Most importantly, biases in the LBLRTM are not included in the posterior covariance because the Bayesian OE frame-
work assumes a perfect forward model (Maahn et al. 2020). In theory, incorporating uncertainties of the forward model
in the posterior is possible, although very complex and computationally heavy, so TROPoe assumes no LBLRTM error
and offers the possibility of inflating the instrumental noise to compensate for this missing error component (Turner
and Blumberg 2019).

The relevance of the radiative transfer model explains the extensive efforts to improve and validate the LBLRTM,
for instance, in the Atmospheric Radiation Measurement (ARM) program, which have led to the maximum error on
atmospheric spectra to go from ~ 30 r.u. in 1990 to less than ~ 5 r.u. in 2010 (Mlawer and Turner 2016). Quantifying
the error due to the forward model for real applications remains an open research question. Thus, in the remainder of
this section, we will just describe the main sources of error without attempting to provide a solution.

A limitation of LBLRTM is that it does not account for atmospheric scattering. Scattering occurs due to collision
between photons and particles in the atmosphere and has markedly different behaviors based on the wavelength of the
incident radiation and the size and shape of the scattering object (Siegel 1971). What is relevant to this discussion is
that scattering results in a contribution to radiation sensed by the ASSIST from all directions. This multi-directionality
means that efficient use of the law of radiative transfer (Eq. 3.3) along the vertical direction alone is insufficient.
Complexity and computational efficiency are increased by several orders of magnitude if scattering is included. Fortu-
nately, at the wavenumbers used by TROPoe emission and absorption are the dominant phenomena, so scattering can
generally be neglected. However, there are instances where the scattering can play a role. Turner and Lohnert (2014)
showed that during cloudy conditions, scattering can represent up to 12% of the spectral radiance on specific bands,
which were indeed removed from the latest TROPoe version. Other special conditions where scattering becomes
important are dust storms (Mlawer and Turner 2016).

Another modeling aspect that has received much attention is the parameterization of the continuum absorption/emis-
sion, especially from the water vapor (Turner et al. 2004; Mlawer and Turner 2016). As seen in Section 4.2.3, the
line absorption/emission model requires a correction to address the inaccuracies of the lineshape functions far from
the line center. Improvements in the continuum absorption/emission have been pivotal in improving the LBLRTM;
this was achieved mostly thanks to the AERI observations. Recent research has demonstrated that there needed to
be an adjustment made to the strength of the water vapor continuum absorption in the infrared window (i.e., between
8 and 12 um) (Mlawer et al. 2024); current work demonstrates that this change to the radiative transfer model only
has an impact when the precipitable water vapor in the column is larger than approximately 3.5 cm (Turner, personal
communication, 2025).

In general, to rule out the presence of major biases due to LBLRTM, we recommend comparing TROPoe results
with other nearby sensors that use different measurement principles, the golden standards being radiosondes and
meteorological masts. This is especially true for applications requiring highly accurate uncertainty quantification of
thermodynamic profiles. However, users should take care not to believe that either radiosondes or in-situ sensors on
masts are free of systematic errors, and thus any differences between TROPoe retrievals and other observations needs
to be investigated carefully.

Numerical Inaccuracy

It may seem odd to discuss numerical errors in the context of an experimental topic, but we have already seen how
computationally intensive the estimation of thermodynamic profiles in TROPoe is. Most of the CPU time is spent
during the iterative calculations of the Jacobian of the forward model, the LBLRTM. Computational errors (besides
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the obvious truncation errors that depend on the machine) can arise, for instance, as a consequence of the discretization
of the law of radiative transfer in the LBLRTM. In this regard, Clough et al. (2005) report an algorithmic accuracy of
0.5%, which in any case much lower than the uncertainty on the line parameters. Therefore, the numerical error in
the forward model itself can generally be ruled out. Another possible source of error is the incomplete convergence
of TROPoe. Classifying this type of inaccuracy as a “numerical error” in a strict sense may not be fully correct, since
troublesome convergences are generally associated with physical inconsistencies between the observed noise profile
and the physics described by the forward model. However, the example in Section 5.2 shows a simple method to flag
profiles that did not converge satisfactorily to a solution.
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5 Case Studies

This section includes a collection of hands-on case studies in which we apply the fundamentals of spectroscopy,
radiation physics, and OE reviewed in the previous sections. The selected examples are generally useful to ASSIST
and TROPoe users, alongside the list of TROPoe output variables provided in Appendix A.

5.1 Routine Health Checks for ASSISTs

Here, we provide step-by-step actionable guidelines to monitor the operation of an ASSIST and to ensure correct
functioning. The ASSIST is an extremely accurate but delicate spectrometer. In fact, for the radiometric and spectral
specifications to be met and the estimated thermodynamic profiles to be accurate, all data processing modules and the
hardware components described in Section 2 need to operate within strict margins of their nominal configuration.

In addition to the recommendation to perform a third blackbody calibration after and before each deployment, which
was reiterated several times, there are routine checks that can help identify issues in the data acquisition chain in a
timely manner.
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Figure 19. Daily health check summary for the NREL ASSISTs deployed at the WFIP3 Rhode Island site on 2024-
07-14: (a) temperature from different channels, T'; (b) temperature differences across black bodies, AT'; (c)
mean responsivity in channel A, R; (d) mean imaginary radiance, Imag(B), between 985 and 990 cm *1; (e) rel-
ative humidity in the interferometer, RH. The bar on top indicates the hatch status (green=open, red=closed).

Figure 19 is a summary of the automated daily health check for one of the NREL ASSISTs in WFIP3. It includes
several channels directly available in the “assistsummary” daily file. The meaning of each quantity is explained
in Table 3. The user should also check for inconsistencies in the sampling rate that can be indicative of hardware
problems. Should any of those parameters exhibit behavior different from the expectations, we recommend contacting
technical support and flagging data accordingly.

5.2 Example of Daily Thermodynamic Profiles

Let us now take a closer look at the TROPoe output based on one day of infrared spectra collected by one of the NREL
ASSISTs deployed at the WFIP3 Rhode Island site during the summer of 2024 (Letizia 2024). The selected UTC day
is 2024-07-14 and is characterized by cloudy nighttime conditions (~ 00:00-09:00 UTC) and clear skies during the
daytime (~ 09:00-24:00 UTC), local time being UTC-4.
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Table 3. List of Health Parameters for an ASSIST.

Label

Meaning

Expected behavior

hbb_*_temperature
abb_*_temperature
front_end_temperature
mean_tb_675_680

mean_tb_985_990 cm~!

interferometer_temperature
cooler_block_temperature

Iw_responsivity

mean_imaginary_rad_985_990

interferometer_humidity

Temperature of HBB at
different points

Temperature of ABB at
different points

Temperature of front end
of enclosure

Brightness temperature
in 675-680 cm~! band

Brightness temperature
in 985-990 cm~! band

Temperature of the interferometer
Temperature of the detector’s cooler
Mean responsivity of channel A

Mean imaginary radiance
in 985-990 cm~! band

Relative humidity

Stay within 60 £0.1°C

Be close to ambient temperature
and within +0.1°C from each other

Track ambient temperature,
with less thermal inertia than ABB

Track the ambient temperature (e.g.,front end)

 If hatch is closed, be equal to
T, in 675-680 cm™~! band
e If hatch is open, sky is clear,
be much colder than ambient
 If hatch is open, sky is cloudy,
be slightly colder than the ambient

Be constant
Be constant
Be constant (~ 10°, units not relevant)

Be much smaller than 1 r.u.
and non autocorrelated

Stay below 10%

of interferometer

The retrieval used TROPoe-0.12 0.11.7 to process “instantaneous” spectra from the ASSIST complemented by the
cloud base height from a Halo XR scanning lidar (Bodini 2024) using a CNR-based cloud detection (see Newsom
et al. (2019)) and surface pressure, temperature, and relative humidity from a collocated met mast (Pekour 2024). The
full pipeline is available at Letizia, Adler, and Turner 2024.

It is always recommended to quality control (QC) the retrieval by rejecting points that meet the following criteria:

» Data above the detected cloud base height and corresponding to LWP above a certain threshold (recommended
value is 5 g m~2); this excludes region beyond optically deep cloud layers that provide little to no information to
the spectrometer. An even safer approach is to remove data below cloud height half the local vertical resolution
(Turner and Blumberg 2019).

* Profiles with ¥ above a certain threshold (the strictest value is 1), to get rid of profiles affected by troublesome
convergence of the Gauss-Newton algorithm.

* Profiles with RMSA greater that a certain threshold (recommended value is 5), to exclude occurrences where
the spectral radiance are poorly described by the LBLRTM applied to the retrieved state.

The above QC can be conveniently applied to the TROPoe output open through xarray in Python as follows:

Data[’cbh’][Datal’ lwp’ ]<min_lwp]=Data[’height’] .max () #remove clouds with low lwp
Data[’temperature_qgc’ ]=Data[’ temperature’].where (Data[’gamma’ ]<=max_gamma) \

.where (Data[’ rmsa’ ]<=max_rmsa) .where (Data[’height’]<=Data[’cbh’]) #0C temperature
Data[’waterVapor_qgc’]= Datal[’waterVapor’].where (Data[’gamma’]<=max_gamma) \

.where (Data[’ rmsa’ ]<=max_rmsa) .where (Data [’ height’ ]<=Datal[’cbh’])#0C mix. ratio

The quality-controlled temperature and water vapor mixing ratio are visualized in Figure 20b and Figure 20d, respec-
tively. The daytime heating of the ground is well captured, as is the negative temperature and humidity gradient as a
function of height above 0.5 km. Several data points lying above clouds with LWP > 5 g m~2 are excluded, as are 6
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Figure 20. TROPoe retrieval from the WFIP3 Rhode Island (rhod) site on 2024-07-14: (a) median vertical resolution of temperature
profiles, where the shaded area marks the interquartile range; (b) temperature profiles; (c) median vertical resolution of water
vapor mixing ratio; (d) 10-minute profiles of water vapor mixing ratio; (€) time series of J; (f) time series of RMSA; (g) time series
of LWP. The dashed lines in (e,f,g) represent the upper (for ¥, RMSA) or lower (for LWP) thresholds used in the quality control.

full profiles that have ¥ = 3. The RMSA never exceeded the upper limit of 5. The same figure also shows the me-
dian vertical resolution for temperature (20a) and mixing ratio (20b). The vertical resolution of temperature increases
roughly linearly with height and at a rate comparable to the height itself, being the probable cause of the lack of a
sharp capping inversion at the top of the boundary layer. The resolution of the water vapor mixing ratio is instead
always close to 2.5 km, except for the very first grid point that comes from the met station. TROPoe developers are
continuing to work on extracting more information, especially on water vapor, from the infrared spectra which would
improve the vertical resolution.

The 1-0 posterior uncertainty maps of the profiles are shown in Figure 21 and provide a great deal of essential
information. The uncertainty generally increases with height and larger uncertainties are located above the thicker
clouds, as expected.

Examining the data further, we can visualize the A kernel at convergence for a cloudy and cloud-free profile (Figure
22). The matrix has been split into (1) the part describing the retrieved temperature as a function of real temperature
(rows and columns 1-55 or quadrant III); (2) the part describing the retrieved mixing ratio as function of real mixing
ratio (rows and columns 56110 or quadrant I); (3) the part describing the retrieved mixing ratio as a function of real
temperature (rows 56—110 and columns 1-55 or quadrant II); and (4) the part describing the retrieved temperature as
a function of real mixing ratio (rows 1-55 and columns 56-110 or quadrant IV).

When clouds hover above ASSIST, the A kernel has larger values for those columns corresponding to temperature and
mixing ratio below the cloud base as a result of the larger amount of information they contain compared to the blind
regions above the clouds. There is also a high value at the height corresponding to the cloud base as a result of the
strong emission from the clouds. The dark red in the first layer in quadrant I indicates the high weight given to the
water vapor information from the met station. In addition, recalling how the smoothing error is proportional to the
departure of A from the identity matrix, we identify the temperature profiles below the clouds as the most trustworthy
region of the retrieval (bottom-left corner of Figure 22a). Outside of this narrow region, the A kernel is arguably very
different from Iy. Figure 22, which corresponds to clear-sky conditions, tells a completely different story. Here, the
A kernel for both temperature and mixing ratio resembles Iy, with larger values on the diagonal. Many off-diagonal
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Figure 21. 1-0 uncertainty of TROPoe retrieval from the WFIP3 Rhode Island site on
2024-07-14: (a) uncertainty of temperature; (b) uncertainty of water vapor mixing ratio.

elements are still not negligible as a consequence of the smoothing, and there is also information shared between 7" and
r, as the nonzero values in quadrants IT and IV highlight. The analysis of the A kernel is more advanced and requires a
deeper knowledge of TROPoe and the physics of radiation but is still insightful and sometimes unavoidable, as shown
in the next example.
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Figure 22. A kernel of TROPoe retrieval from the WFIP3 Rhode Island site on 2024-07-14: (a) A ker-
nel at 08:20 UTC, when low clouds were present; (b) A kernel at 17:50 UTC, during clear-sky conditions.

5.3 Comparing With Radiosonde Measurements Using the Averaging Kernel
As part of AWAKEN, three ASSISTs were deployed near wind plants in northern Oklahoma alongside a suite of
other instruments, including radiosondes (Moriarty et al. 2024). This campaign provides an opportunity to compare
ASSIST+TROPoe retrievals with measurements obtained by the radiosonde launched from a nearby site. The com-
parison is done using both the unsmoothed radiosondes at the native resolution and the smoothed radiosonde profiles
as ground truth. We smooth the radiosonde measurements using the averaging kernel, A, introduced in Section 4.1.3
as

Xsmooth = Xa +A(x_xa); (5.1
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where x is the observation from the radiosonde interpolated to the 55-level-height grid used for ASSIST retrievals and
Xsmooth 1 the smoothed radiosonde profile. Note that all variables include temperature and water vapor mixing ratio,
appended together, to account for cross-talk between temperature and humidity. A similar process is conducted by
Blumberg et al. (2017).

Example temperature and mixing ratio profiles, taken on 2023-08-11 at 02:23 UTC (2023-09-10 21:23 local time),
are presented in Figure 23. In this example, several features are apparent. In general, the ASSIST retrieval closely
matches the smoothed radiosonde profile, indicating that the primary difference between the two instruments lies in
the vertical smoothing. The temperature profiles show better agreement than the mixing ratio, as humidity profiles
are generally more difficult to retrieve from the spectra than temperature. The dependence of vertical resolution on
height is also apparent. The strong temperature inversion near the surface is captured by both the ASSIST and the
radiosonde, whereas the temperature inversion measured by the radiosonde 1.5 km above the ground is smoothed over
in the ASSIST retrieval.
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Figure 23. (a) Temperature and (b) water vapor mixing ratio profiles retrieved at AWAKEN on 2023-08-11 at 02:23 UTC from
the ASSIST at site G, along with the unsmoothed and smoothed profiles from radiosondes launched from the nearby site H.

Now, how can we decide whether the agreement between TROPoe profiles and the reference profile satisfactory? In
other words, what is the error we should expect for the TROPoe retrievals in the best-case scenario? For unsmoothed
profiles, the answer is straightforward: The total error, assuming naively that the radiosondes represent the truth,
should have a covariance equal to the posterior S. Any additional error could be due to all the other reasons outlined
in Section 4.2.4 and/or spatial and temporal heterogeneity between ASSIST and the radiosonde.

For smoothed profiles, the answer is different. In fact, what Eq. 5.1 really intends to do is apply to the reference
profiles the same level of smoothing as TROPoe. In theory, all we are left with is the error due to noise. In fact, as we
have seen for the linear case, but also applicable to the moderately nonlinear problems, the total error of TROPoe can
be expressed as a sum of smoothing error and error due to noise:

PN

f—x=(A—-1Iy)(x—x,)+Ge. (5.2)
Equation 5.1 also can also be reformulated as
Xsmooth — X = (A — Iy) (x — x,). (5.3)

By subtracting the former two equations, we immediately find that the error between the retrieval and smoothed profiles
includes only the noise part, that is, £ — Xsmeoth = Ge. The comparison with and without smoothing is therefore useful
mainly to assess the impact of smoothing on the total error. If the residual error is seen to depart significantly from the
estimated error due to noise, either in magnitude or because it is systematic rather than random, then one should look
for other causes of inaccuracy.
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Takeaway 16: The error between TROPoe retrievals and unsmoothed radiosonde profiles will have a covari-
ance equal to the posterior covariance if no other errors are present. The error between TROPoe retrievals
and smoothed radiosondes will include only the noise part if no other errors are present.

5.4 Definition of Planetary Boundary Layer Height

The TROPoe algorithm also outputs the planetary boundary layer height (PBLH), derived from the retrieved profiles.
The method used to calculate PBLH is based on the parcel method, which identifies the height at which a parcel of
air from the surface would be in equilibrium with its environment (Holzworth 1964). Unlike other implementations
of this method (e.g., Coniglio et al. 2013; Duncan Jr. et al. 2022), TROPoe uses the potential temperature profile (6)
rather than the virtual potential temperature in order to eliminate the additional uncertainty introduced by humidity.
In the TROPoe implementation, PBLH is defined as the first height where 8 = O,y + 0 (T) + 0.5K, where O, is the
potential temperature of the lowest level of the retrieval (0 m above ground level). A PBLH floor is set to 300 m, as the
parcel method is most effective under convective conditions; a surface inversion-based method for stable conditions
has not yet been implemented.

A sample day from the ASSIST at site G of the AWAKEN campaign is presented in Figure 24, along with an example
0 profile showing the method used to calculate PBLH. Between 01:00 and 14:00 UTC (20:00 and 09:00 local time),
PBLH is set to the minimum allowable value of 300 m. After 14:00 UTC, the increase in the PBLH characteristic of
daytime convective conditions is observed. The lapse rate above z ~ 300 m is always positive because TROPoe forces
the potential temperature profile to increase monotonically with height above a fixed level above the ground. This
realistic constraint proved useful to improve overall accuracy and enhance convergence (Turner and Blumberg 2019),
but the user should not be surprised to find no occurrences of negative lapse rate far from the surface in the TROPoe
results.
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Figure 24. Potential temperature, 6, and PBLH throughout a diurnal cycle (2023-08-15) at the AWAKEN site, including a
sample O profile from 20:00 UTC (15:00 local time). The sample profile illustrates the method used to compute PBLH.

Takeaway 17: TROPoe profiles can be used to accurately assess the local static stability of the boundary layer,
especially near the surface. The main limitations are the smoothing of capping inversions that occur far from
the surface, the hard-coded stable lapse rate above a fixed height.
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6 Conclusions

This report provides a practical guide to the theoretical framework behind the thermodynamic profiling process using
ASSIST infrared spectrometer data and TROPoe retrievals. To answer the question “How do we measure spectra?”’
we reviewed how the interferometer inside the ASSIST is capable of measuring the spectrum of infrared radiation
and the signal processing techniques required to mitigate several technological limitations. To address the question
“Why do we measure spectra?” we discussed the fundamental physics of infrared radiation in the atmosphere and
how the thermodynamic profiles affect the measured spectra. Finally, we tackled the question “How do we estimate
thermodynamic profiles?” by describing the optimal estimation method used by TROPoe to translate the infrared
spectra into useful profiles of temperature, humidity, and other atmospheric quantities.

This work is part of a larger effort to provide detailed and rigorous documentation of experimental data for wind
energy applications. We deem that the access to reliable and comprehensible knowledge of experimental techniques is
a non-negotiable requirement for the proper use of field data by the research community. Field experimental data have
often been used as the indisputable ground truth for subsequent theoretical and numerical analysis, without too much
attention paid to the uncertainties and limitations that quantities measured in the field inevitably possess. This poses
a serious risk of experimental errors propagating into physical models and calls for a closer collaboration between the
field researchers that collect the data and their peers who use it. This is now truer than ever, as both experimental and
modeling techniques in the wind energy research space are advancing at an unprecedented pace to investigate subtler
and more complex physical phenomena.

To conclude, this document is not intended to replace the great body of literature on this topic, which is referenced
throughout the report, and that the reader is welcome to refer to for more in-depth information. For the future, we
hope that this report and the reference herein will be the cornerstone for high-quality analysis of ASSIST+TROPoe
data from the AWAKEN, WFIP3, and other campaigns.
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Appendix A.

TROPoe Output Variables

Table A.1. List of TROPoe-0.12 0.11.7 Output Variables and Their Descriptions.

Variable name Description Unit
time Time of each retrieval, corresponding to middle of interval UTC
height Retrieval height above ground level km
qc_flag Quality control flag, with O indicating acceptable quality -
temperature Air temperature °C
water Vapor Water vapor mixing ratio gkg!
Iwp Liquid water path gm?
IReff Liquid water effective radius um
iTau Ice cloud optical depth -
iReff Ice effective radius um
co2 Parameterized profile of CO, ppm
ch4 Parameterized profile of CHy ppm
n2o Parameterized profile of N,O ppm
sigma_temperature 1-0 uncertainty in air temperature °C
sigma_waterVapor 1-0 uncertainty in water vapor mixing ratio gkg!
sigma_lwp 1-0 uncertainty in liquid water path g/m?
sigma_lReff 1-0 uncertainty in liquid water effective radius um
sigma_iTau 1-0 uncertainty in ice cloud optical depth -
sigma_iReff 1-0 uncertainty in ice effective radius um
sigma_co2 1-0 uncertainty in carbon dioxide concentration ppm
sigma_ch4 1-0 uncertainty in methane concentration ppm
sigma_n20 -0 uncertainty in nitrous oxide concentration ppm
converged_flag Algorithm convergence flag, with 0 indicating no convergence -
gamma Underrelaxing factor (see ¥ in Section 4.2.2) -
n_iter Number of iterations performed -
rmsr Root-mean-square error between observation vector and forward model -
calculation, using only IRS radiance
rmsa Root-mean-square error between observation vector and forward model -
calculation, using entire vector (see Eq. 4.24)
rmsp Root-mean-square error between prior and retrieved profiles -
chi2 Chi-squared statistic comparing observation vector and forward model -
calculation
dfs Degrees of freedom (DFS), including total DFS, then DFS for each retrieved -
variable
sic Shannon information content -
vres_temperature Vertical resolution of temperature profile km
vres_water Vapor Vertical resolution of water vapor profile km
cdfs_temperature Vertical profile of cumulative degrees of freedom for temperature -
cdfs_waterVapor Vertical profile of cumulative degrees of freedom for water vapor -
hatchOpen Flag indicating if ASSIST hatch was open (1) or closed (0) -
cbh Cloud base height above ground level km
cbh_flag Flag indicating source of cloud base height -
pressure Air pressure, estimated from hypsometric equation mb
theta Potential temperature, derived from temperature and pressure K
thetae Equivalent potential temperature, derived from temperature, pressure, K
and water vapor mixing ratio
rh Relative humidity, derived from temperature and water vapor mixing ratio %
dewpt Dew point temperature, derived from temperature and water vapor mixing °C
ratio
pwv Precipitable water vapor, derived from temperature and water vapor mixing  cm
ratio
pblh Planetary boundary layer height, computed as described in Section 5.4 km
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sbih

sbim

sbLCL
sbCAPE

sbCIN

mlLCL
mlICAPE
mICIN
sigma_pwv
sigma_pblh
sigma_sbih
sigma_sbim
sigma_sbL.CL
sigma_sbCAPE
sigma_sbCIN
sigma_mILCL
sigma_mICAPE
sigma_mICIN
obs_vector

obs_vector_uncertainty

forward_calc
Xop

Sop

Akernal

Xa

Sa

lat

lon

alt

Surface-based inversion height

Surface-based inversion magnitude

Lifted condensation level for a surface-based parcel

Convective available potential energy for a surface-based parcel
Convective inhibition for a surface-based parcel

Lifted condensation level for a mixed-layer parcel

Convective available potential energy for a mixed-layer parcel
Convective inhibition for a mixed-layer parcel

1-0 uncertainty in precipitable water vapor

1-0 uncertainty in planetary boundary layer height

1-0 in surface-based inversion height

1-0 in surface-based inversion magnitude

1-0 in lifted condensation level for a surface-based parcel

1-0 in convective available potential energy for a surface-based parcel
1-0 in convective inhibition for a surface-based parcel

1-0 in lifted condensation level for a mixed-layer parcel

1-0 in convective available potential energy for a mixed-layer parcel
1-0 in convective inhibition for a mixed-layer parcel
Observation vector (see x in Section 4.1.3)

1-0 uncertainty in observation vector

Forward model calculation from state vector (i.e., F (%))
Optimal solution, including all retrieved variables

Posterior covariance (see S in Section 4.2.2)

Averaging kernel (see A in Section 4.2.2)

Mean state of prior (see x, in Section 4.1.3)

Covariance of prior (see S, in Section 4.2.2)

Latitude where station is located

Longitude where station is located

Height above mean sea level where station is located

km
°C
km
Jkg!
Jkg!
km
Jkg!
Jkg™!
cm
km
km
°C
km
Jkg!
Jkg!
km
Jkg!
Jkg!
mixed
mixed
Several
mixed
mixed
mixed
mixed
mixed
°North
°East
m
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