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ABSTRACT: A new method for estimating tropical cyclone track uncertainty is presented and tested. This method uses a
neural network to predict a bivariate normal distribution, which serves as an estimate for track uncertainty. We train the
network and make predictions on forecasts from the National Hurricane Center (NHC), which currently uses static error
distributions based on forecasts from the past 5 years for most applications. The neural network–based method produces
uncertainty estimates that are dynamic and probabilistic. Further, the neural network–based method allows for probabilis-
tic statements about tropical cyclone trajectories, including landfall probability, which we highlight. We show that our pre-
dictions are well calibrated using multiple metrics, that our method produces better uncertainty estimates than current
NHC approaches, and that our method achieves similar performance to the Global Ensemble Forecast System. Once
trained, the computational cost of predictions using this method is negligible, making it a strong candidate to improve the
NHC’s operational estimations of tropical cyclone track uncertainty.

SIGNIFICANCE STATEMENT: Tropical cyclones affect millions of people across the planet, and accurate uncer-
tainty estimates for their trajectories are vital for informing risk, evacuations, and mitigation planning. For most appli-
cations, the National Hurricane Center currently quantifies uncertainty using a historical-based estimate that remains
static for the entire season. We propose a method that uses machine learning to dynamically estimate track uncertainty
using inputs that are specific to the storm being forecast. Our method produces a probability distribution, specifically a
bivariate normal, which presents decision-makers and researchers with a more informative assessment of tropical cy-
clone track uncertainty. We demonstrate that our method has many appealing properties, including the ability to pro-
duce landfall probabilities and outperform currently used National Hurricane Center methods.

KEYWORDS: Tropical cyclones; Probability forecasts/models/distribution; Numerical weather prediction/forecasting;
Machine learning; Neural networks

1. Introduction

Tropical cyclones (TCs) expose populations and assets to
risk around the world, with negative effects on population
well-being (Berlemann and Eurich 2021). Forecasting centers
have improved TC track accuracy through better modeling
and techniques (Heming et al. 2019), though TC track uncer-
tainty has not undergone similar improvements (Dunion et al.
2023). Uncertainty quantification is particularly important for
TC forecasting, informing risk assessment and disaster plan-
ning (including mitigation and evacuations) on times scales
from hours to days, as well as policy decisions when aggre-
gated over entire TC seasons. Here, we focus on estimating
TC track uncertainty directly rather than making predictions
of TC tracks with uncertainty as a by-product.

The National Weather Service (NWS) National Hurricane
Center (NHC) has long recognized the need to provide uncer-
tainty information with its deterministic TC forecasts. The
first NHC track uncertainty product was the strike probabili-
ties, which became operational in 1983 (Sheets 1985). The
strike probabilities only considered track uncertainty and
were replaced by wind speed probabilities (WSPs) in 2006,
which take into account the uncertainty in the track, intensity,
and wind structure forecasts (DeMaria et al. 2009). The NHC
also provides the graphical “cone of uncertainty,” which
shows the area enclosed within the 67th percentile of the
NHC’s historical track error distributions (for a given year,
the historical is the previous 5 years). In addition, the NHC’s
storm surge watches and warnings implemented in 2017 are
based on a probabilistic storm surge (P-surge) model (Penny
et al. 2023), which uses an ensemble of statistically generated
track and intensity forecasts to drive a simplified surge model.

Although uncertainty information is included in many NHC
products, the underlying probabilities are determined almost
entirely from historical error distributions and include little in-
formation about the specific forecast situation. For example, the
variability in the wind forcing for the P-surge model (Penny
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et al. 2023) and the track and intensity uncertainty for the WSP
model are based on historical forecast errors from the NHC,
the Central Pacific Hurricane Center (CPHC), or the Joint
Typhoon Warning Center (JTWC) from the past 5 years. A
method to add situational dependence to the track uncer-
tainty was added to the WSP model in 2011 by stratifying the
NHC track errors by the Goerss predicted consensus error
(GPCE; Goerss 2007). GPCE uses linear regression to pre-
dict the track error of a consensus model based on the spread
of the models in the consensus and the TC intensity. How-
ever, the wind structure variability in the WSP model is still
determined from historical error distributions, and the GPCE
input only has a small impact on the track error distributions
(DeMaria et al. 2013).

Another weakness of current operational track forecast un-
certainty estimates is that the error estimates are circular. For
example, the NHC cone of uncertainty uses static radii for
each forecast basin (Atlantic, eastern Pacific, central Pacific)
and forecast time so that for each point along the forecast
track, the error estimate is a circle. The GPCE product esti-
mates the expected error of the consensus forecast and then
scales that to a radius that includes the forecast track ;68%
of the time, similar to that used in the cone. Hansen et al.
(2011) developed a generalized version of GPCE called
GPCE along–across (GPCE-AX) that includes separate re-
gression equations for the along- and across-track errors so
that the uncertainty areas are not circular. However, GPCE-
AX is not used operationally by the NHC or CPHC in any of
their public-facing forecast uncertainty products.

A probabilistic method that has been explored previously is
the use of ensemble forecasts for estimating TC track and
track uncertainty (Dupont et al. 2011; Bonnardot et al. 2019;
Kawabata and Yamaguchi 2020; Zhang and Yu 2017; Dunion
et al. 2023; Wilks et al. 2009). Ensemble systems, such as those
based on the Global Forecast System (GFS) and European
Centre for Medium-Range Weather Forecasts (ECMWF)
global models, support forecasters in understanding possible
track scenarios when making their deterministic track fore-
casts. An example of such an ensemble system is the Global
Ensemble Forecast System (GEFS; Zhou et al. 2017; Guan
et al. 2022), which is based on the GFS. While ensemble sys-
tems provide useful information, the public-facing probabilis-
tic products from operational centers need to be consistent
with their deterministic forecasts. For example, if the NHC
track forecast shows a landfall in Miami, but all or most of the
ensemble members are north of that position, the contradic-
tion between the products could cause considerable confu-
sion. Therefore, corrections to ensemble systems are needed
if they are used for public-facing uncertainty products.

Inclusion of situationally dependent forecast uncertainty in
NWS products remains a high priority. An emerging method
for estimating uncertainty is through the use of machine
learning methods (Haynes et al. 2023; Barnes and Barnes
2021; Foster et al. 2021; Guillaumin and Zanna 2021; Gordon
and Barnes 2022). Recent work by Barnes et al. (2023) used
an artificial neural network to predict the parameters of a

probability distribution as a means of quantifying uncertainty
(Nix and Weigend 1994a,b) for TC intensity forecasting, with
applications to rapid intensification prediction. Here, we ask
whether we can make meaningful predictions of TC track un-
certainty for specific TCs in a well-calibrated probabilistic
framework.

To answer that question, we use a similar framework to
Barnes et al. (2023). We task a neural network with predicting
the parameters of a distribution (in this case, a bivariate nor-
mal distribution) that estimates TC track latitude and longi-
tude uncertainty in kilometers. Specifically, our framework is
designed for use in NHC operations, i.e., we have trained and
tested our method on official NHC forecasts so that the un-
certainty products will maintain consistency with the NHC of-
ficial forecast.

There are many benefits to quantifying uncertainty using
the approach detailed in this work. Like the historical-based
measures of uncertainty, our predictions are data-driven: in
this case, we use a neural network. Unlike the current opera-
tional methods, our bivariate normal predictions are based on
forecast-specific inputs, including environmental variables
and dynamical model outputs, and can vary through the cor-
relation and two variance parameters. The use of a defined
distribution means our method does not require running ex-
pensive ensembles, or calculating statistics from a limited pop-
ulation of ensemble members, but can use output from those
systems as input to the network. Because of the probabilistic
approach and forecast-specific inputs, the predictions re-
turned by this network are a plausible alternative to the his-
torically derived track uncertainty estimates used in NHC and
CPHC operations.

2. Prediction framework

Our goal is to make well-calibrated probabilistic predictions
of TC track uncertainty using forecast-specific inputs. We ac-
complish this task using a neural network that predicts the
five parameters of a bivariate normal distribution, which
serves as our estimated TC track uncertainty. The bivariate
normal distribution was also used for the original strike prob-
ability product. Other choices for the distribution were ex-
plored; however, the bivariate normal was effective and
simplicity won out over other potential choices. The dataset
we use includes forecast-specific inputs and true errors from
NHC and CPHC forecasts covering seasons from 2013
through 2023, a period chosen to balance model availability
and quality with sample size. In the remainder of the discus-
sion, the term NHC is assumed to include the NHC and
CPHC forecasts.

a. Neural network

The full prediction framework is shown schematically in
Fig. 1. A set of forecast-specific, model-based, and environ-
mental variables is first normalized by removing the mean
and dividing by the standard deviation before being passed to
the dense layers of the network. A detailed list and descrip-
tion of these inputs are shown in Table 2. There are two fully
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connected dense layers with five nodes each, both of which
use the rectified linear unit (ReLU) activation function.

The outputs, which are the five parameters of a bivariate
normal distribution in two dimensions (subscripts x and y rep-
resent longitude and latitude), are then each handled sepa-
rately. The standard deviations (sx, sy) are passed through a
softplus layer, which has the form ln(1 1 ea) and shifts the
range to [0, ‘]. The correlation r is passed through a hyper-
bolic tangent layer tanh, which shifts the range to [21, 1].
There is no range restriction on the means (mx, my). Nonzero
mx and my act as corrections to the NHC forecast for TC lati-
tude and longitude. Our priority is to produce meaningful es-
timates for track uncertainty, so in all of our results, we freeze
mx and my to zero. Testing without this restriction showed that
the predicted mx and my are small. This is not surprising since
the track bias of the NHC forecasts is generally much smaller
than the mean track error for large samples. All of the param-
eters are then rescaled to return to their original units imme-
diately prior to output.

The network trains by minimizing the loss defined by the
negative log probability of the NHC forecast error (i.e., the
truth, as shown in the lower-right bracketed list in Fig. 1),
given the predicted bivariate normal distribution. Note that in
Fig. 1, the example bivariate normal shown is the cumulative
distribution function (CDF), rather than the probability den-
sity function (PDF) from which the loss is calculated. The loss
function penalizes narrow predictions when the true forecast er-
ror is large (i.e., the truth lies outside the bulk of the distribu-
tion) and penalizes broad predictions when the true forecast

error is small (i.e., the entire distribution is relatively flat). Early
stopping is used for the training with a patience of 250 epochs.
The batch size is 64 with a learning rate of 0.0001.

The data are separated into the Atlantic and eastern/central
Pacific basins. There are less than 2000 central Pacific samples
in the dataset, which is too small to reasonably train a sepa-
rate network on. We trained networks without including the
central Pacific samples and found only marginal changes to
the eastern Pacific estimates; thus, we combined these basins.
The data are further separated into lead times every 12 h up
to 5 days. A separate network is trained for each basin and
lead time combination. We tested the effectiveness of predict-
ing all lead times using a single network, where lead time was
used as an input feature. Predictions made using this setup
generally evolved more smoothly over lead time but tended
toward more circular predictions (i.e., the correlation parame-
ter r was consistently near zero) and did not noticeably im-
prove or degrade the predictions overall (not shown).

For each network, the data are split into training, valida-
tion, and testing sets. The testing set, which is all samples
from a given year, is split off first. The validation set is 200
randomly selected samples from the remaining data, and the
training set is the rest of the samples. For the results shown in
this work, we use leave-one-year-out method, which iterates
through all potential years for the testing set. Thus, the total
number of trained networks is 220 (two basins, 10 lead times,
11 years). In this way, we make predictions for all forecasts
over the entire dataset without ever using the testing samples
for training.

FIG. 1. Schematic showing the network architecture and format of model predictions. In many of the following
figures, these predictions are used to construct a two-dimensional CDF, defined by the Mahalanobis distance
(Mahalanobis 1936). Each labeled ellipse encloses the integrated probability out to that distance. Larger percen-
tiles enclose more of the probability; thus, confidence that the truth falls within a percentile increases with percentile.
Inputs are described in Table 2.
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While our predictions are flexible and dynamic, the method
of producing those predictions (neural networks) is opaque.
In section S4 in the online supplemental material, we use the
explainable artificial intelligence (XAI) method Shapley addi-
tive explanations (SHAPs; Lundberg and Lee 2017) to ex-
plore feature relevance, i.e., how our network arrived at its
predictions.

b. Dataset

The dataset used for labels (truth) and inputs is listed in
Tables 1 and 2. Each of these variables is recorded for official
forecasts made by the NHC during the 2013–23 seasons, with
potential lead times from 12 to 120 h. The NHC currently
does not make forecasts for 84- and 108-h lead times and did
not make 60-h lead time forecasts until 2019. NHC track
points at these times were obtained by linear interpolation if
an NHC forecast was available before and after each of those
times. The forecast time in all cases is based on synoptic time
(i.e., 0000, 0600, 1200, 1800 h UTC). The dataset includes 186
TCs in the Atlantic and 217 TCs in the eastern/central Pacific
for a total of over 40 000 forecasts. This is an updated version
(now including the 2022 and 2023 seasons) of the raw dataset
used in Barnes et al. (2023) to predict TC intensity.

Labels (i.e., the truth) are derived from the best track verifi-
cation, a poststorm analysis that includes the TC track among

other TC characteristics (Landsea and Franklin 2013). The
labels are the distance, in kilometers, between the best track
latitude and longitude and the relevant forecasted latitude
and longitude, i.e., the error between forecast and true TC
location.

Inputs include both dynamical model forecasts and TC pre-
dictors from statistical models. The TC predictors were in-
cluded because the performance of the dynamical models has
some dependence on these. For example, one of the most
significant predictors of track error in GPCE is the TC
intensity.

The dynamical models were chosen based on their track fore-
cast skill and the availability of a long data record for training.
Based on these criteria, one regional hurricane model and three
global models were included as follows: Hurricane Weather Re-
search and Forecasting Model (HWRF) (Tallapragada 2016),
Met Office (UKMet) global model (Bush et al. 2023), GFS
(Zhou et al. 2019), and ECMWF (Magnusson et al. 2021). Out-
puts from these models are not available until after the NHC
official forecast is issued; thus, an interpolated version (based
on the previous forecast cycle) is used as input. The interpo-
lated models are referred to as “early” models. We use the
early models to be consistent with what is available to NHC
forecasters at advisory time (Cangialosi et al. 2023) and so
the uncertainty estimates can be determined shortly after the
advisories are issued.

The average of the four early track model forecasts is called
the “consensus” and can be calculated as long as at least two
of the four input models are available at a given forecast time.
The neural network inputs from the early models are the devi-
ations from the consensus forecast (from AVDX through
HWDY in Table 2). For missing models, the track forecast is
replaced by the consensus of the available models, so the devi-
ations are zero for that model. The number of models (NCT)
is also included as a predictor because the track errors might

TABLE 1.. Short name and description of the label variables (i.e.,
the truth) used in training our networks.

Label variable Description

OFDX (km) Distance east of the best track position from
the NHC official forecast

OFDY (km) Distance north of the best track position from
the NHC official forecast

TABLE 2. Input variables used in training our networks.

Input variable Description

VMXC [kt; (1 kt ’ 0.51 m s21)] Max wind of the consensus forecast
NCT (No.) Number of models included in the consensus forecast
AVDX (km) Distance east of the early GFS forecast from the consensus forecast
AVDY (km) Distance north of the early GFS forecast from the consensus forecast
EMDX (km) Distance east of the early ECMWF forecast from the consensus forecast
EMDY (km) Distance north of the early ECMWF forecast from the consensus forecast
EGDX (km) Distance east of the early UKMet forecast from the consensus forecast
EGDY (km) Distance north of the early UKMet forecast from the consensus forecast
HWDX (km) Distance east of the early HWRF forecast from the consensus forecast
HWDY (km) Distance north of the early HWRF forecast from the consensus forecast
LONC (8E) Longitude of the consensus forecast
LATC (8N) Latitude of the consensus forecast
SPDX (kt) Average eastward speed from DSHP in the 24 h preceding the forecast
SPDY (kt) As in SPDX, but for the northward speed of the TC
VMAX0 (kt) Max wind at the start of the forecast
DV12 (kt) Intensity change in the 12 h preceding the forecast
SSTN (8C) Average SST in the 24 h preceding the forecast
SHDC (kt) Average 850–200-hPa vertical shear in the 24 h preceding the forecast
DTL (km) Distance to the nearest major landmass at forecast time

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 44

Brought to you by NOAA Library | Unauthenticated | Downloaded 11/14/25 07:29 PM UTC



be larger when some of the skillful models are not available.
Most of the dataset has all four models available (72%), with a
small percentage having fewer than two models (2.5%).

The TC predictors include three basic TC parameters (lati-
tude and longitude of the TC center and the maximum wind).
The latitude and longitude are from the consensus forecast
(LATC and LONC), and the maximum wind (VMXC) is
from a consensus of four skillful early intensity models com-
prised of the GFS, HWRF, and two statistical–dynamical in-
tensity models (Barnes et al. 2023).

Seven additional TC predictors are obtained from the sta-
tistical–dynamical Decay-Statistical Hurricane Intensity Pre-
diction Scheme (D-SHIPS) (DeMaria et al. 2022). These are
comprised of the 0-h maximum wind (VMAX0, sustained
1-min average estimate at synoptic time), the change in maxi-
mum wind over the 12-h period ending at the start of the fore-
cast (DV12), the eastward and northward components of the
TC translational velocity (SPDX, SPDY), the distance of the
TC center from major landmasses (DTL), the sea surface
temperature (SSTN), and the 850–200-hPa wind shear aver-
aged from 0 to 500 km (SHDC). The last six of the above pre-
dictors require a track forecast, which is obtained from an
interpolated (early) version of the NHC official forecast from
the previous cycle in the D-SHIPS model, which is often run
prior to the official TC genesis declaration.

Analyses and figures presented in this work use our esti-
mates of the uncertainty of the NHC official forecast, which
could be used as input for other hazard products such as
NHC’s wind speed probability or P-surge models. However,

predictions can also be made with respect to the consensus
forecast, which would be available before the NHC forecast is
issued due to the use of early model input. The consensus un-
certainty could be used as guidance by NHC forecasters for
their official forecasts and products such as the tropical cy-
clone discussion, which sometimes include qualitative descrip-
tions of forecast confidence.1

c. Model calibration

Many metrics support determining the calibration and va-
lidity of probabilistic models (Gneiting and Raftery 2007),
and here, we showcase two such metrics: the interquartile
range (IQR) versus error and the probability integral trans-
form (PIT; Dawid 1984). Figure 2 shows the IQR versus true
error (the labels used in training) for both the eastern Pacific
and the Atlantic basins.

IQR values are computed as the difference between the
75th and 25th percentiles for each predicted bivariate normal
and are thus a measure of the width of each predicted distri-
bution. In Fig. 2, the IQR is divided in three bins for each
lead time (lead time indicated along the horizontal axis): the
lower, middle, and upper terciles of IQR for the set of predic-
tions for that basin and lead time. The true errors associated
with each of these bins are shown, with the median (solid
line), the 25th–75th percentile (filled), and 10th and 90th per-
centile (whiskers) all indicated. For well-calibrated networks,

FIG. 2. IQR vs error. Boxplots show the distribution of forecast error (filled area spans the
25th–75th percentile, whiskers out to the 10th and 90th percentile) associated with the lower,
middle, and upper terciles of IQR for each lead time. The IQR is a measure of the width of the
predicted bivariate distribution.

1 https://www.nhc.noaa.gov/aboutnhcprod.shtml.

F E RNANDE Z E T A L . 5APRIL 2025

Brought to you by NOAA Library | Unauthenticated | Downloaded 11/14/25 07:29 PM UTC

https://www.nhc.noaa.gov/aboutnhcprod.shtml


we expect the median error and the error range to be larger
for larger IQR. This is evident for each lead time in Fig. 2,
where the distribution shifts to higher error as we move from
the lowest IQR tercile up to the highest IQR tercile. Static er-
ror distribution parameters such as those used in the cone of
uncertainty are not able to capture this variability other than
the basin and lead time dependence.

PIT histograms, shown in Fig. 3, quantify how often the
truth falls into a certain percentile of the predicted bivariate
normal distribution’s CDF. PIT values are shown for every
10% increment, e.g., the leftmost bar for each lead time shows
the fraction of the time the truth falls between the 0th and
10th percentile, the next bar is for the 10th–20th percentile,
and so on. A perfectly calibrated model would be uniform
with a constant value of 0.1, indicated in the figure by a
dashed horizontal line. For the eastern/central Pacific, our
networks are making too many wide and narrow predictions
(the rightmost and leftmost bars for each lead time are larger
than 0.1). The Atlantic shows the same, but slightly stronger,
bias as the eastern Pacific. However, the values for most of
the other bins are not too far from 0.1.

One way of quantifying how well calibrated our predictions
are is to compare the PIT-D statistic, which measures the de-
viation of our PIT histogram from a uniform distribution, to
the expected deviation. The PIT-D statistic is given by

D5
�����������������������
1/B∑k(bk 2 1/B)

√
, while the expected deviation is given

by E[D]5 ������������������������(12 1/B)/(T 3 B)√
, where B is the number of

bins, T is the number of samples, and k indicates the summa-
tion over each bin (Nipen and Stull 2011; Bourdin et al. 2014).

Our predictions range from D 5 0.011 up to D 5 0.037,
while the expected deviation is between E[D] 5 0.005 and
E[D] 5 0.010.

3. Results

Satisfied that our framework produces reasonable and well-
calibrated uncertainty predictions, we turn to the use of these
predictions. In particular, we analyze our predictions for all
forecasts made by the NHC from 2013 through 2023 in the
eastern/central Pacific and Atlantic basins. We do this by us-
ing a leave-one-year-out method: we train our network on all
but 1 year and then predict that left-out year. We iterate
through each left-out year to obtain predictions for every
forecast without the network’s seeing that year in its training.

Figure 4 shows two examples of forecasts with our pre-
dicted bivariate normal CDF overlaid in the red-to-yellow
shading. The top panels show the forecasts made for Hurri-
cane Nicole at 0600 UTC 5 October 2016, and the bottom
panels show the forecasts made for Hurricane Matthew at
0600 UTC 4 October 2016. In both cases, forecasts are shown
out to 5 days. The bivariate normal CDF is centered at the
NHC official forecast location; we do not fit the location pa-
rameters (mx and my) of our bivariate normal, as described in
section 2. We show two concurrent storms in the same basin
to emphasize that our method predicts uncertainties based on
forecast-specific inputs. The larger predicted uncertainties for
Hurricane Nicole reflect that it was difficult to forecast. Hurri-
cane Matthew was easier to forecast with smaller error, also
reflected in our predicted uncertainties.

FIG. 3. PIT histogram for the (top) eastern Pacific and (bottom) Atlantic for all forecast lead
times. This metric describes how often the truth falls into each decile of the predictions (10th,
20th, 30th, etc.). A perfectly calibrated probabilistic model would have a uniform distribution
of 0.1.
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Among the forecasts, there are several examples that high-
light the usefulness of the correlation parameter (i.e., the flex-
ibility of our predicted bivariate normal shape). This is
especially apparent for Nicole, where the forecast was consis-
tently to the northeast of the truth. Our predicted bivariates
point in a northeast–southwest direction, emphasizing that
the uncertainty is larger along that axis.

a. Comparison with NHC cone, GPCE radii, and GEFS

Comparing our probabilistic estimate of track uncertainty
directly to the NHC cone or GPCE radii is difficult; the cone
and GPCE only provide a single radii value at each forecast
time, but our method estimates the full error distribution. How-
ever, one metric that can be used is the continuous ranked
probability score (CRPS) (Gneiting and Raftery 2007). The

FIG. 4. Two examples of our predictions, as described in Fig. 1. The initialization time is fixed, and the forecast every 12 h out to 5 days is
shown, along with the best track reconstruction.
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CRPS collapses to the mean absolute error when both parts
are deterministic (both the prediction and truth CDFs are
step functions), so it can be thought of as an extension
to the mean absolute error that allows for a probabilistic
component.

For our two-dimensional case, we calculate the one-dimensional
CRPS along both the latitude and longitude and multiply these,
only integrating over the quadrant in which the truth falls. For
the NHC cone or GPCE, which are symmetric (circular), no
further adjustments are necessary. To account for the variable
shape of bivariate normal predictions, the prediction CDF used
to calculate the CRPS is the distribution conditioned on the
truth along the other axis; e.g., to calculate the CRPS along the
latitude axis, we condition on the true longitude error. This is
further explained in section S1.

Figure 5 shows the results of the CRPS calculation for our
predictions (red) and the NHC cone (blue). As with mean

absolute error, a lower CRPS value is better. The CRPS is cal-
culated for all forecasts, and the median for these is shown as
a solid line, with the 10th–90th percentiles shaded. According
to the CRPS metric, our predictions are a better estimate of
the true error than the NHC cone for a majority of the fore-
casts. This is unsurprising, as the NHC cone is static through-
out a season and has a fixed circular symmetry.

We calculated the CRPS for the GPCE predictions as well
and found these to be very similar to the NHC cone. Using
the standard deviation of the GEFS member displacements
from the GEFS mean, and the corresponding correlation, we
construct bivariate normal predictions and calculate the
CRPS for GEFS. We find the GEFS CRPS to be very similar
to our bivariate predictions. We reiterate that running an en-
semble such as GEFS has a much higher computational cost
than the method presented here. Both GPCE and GEFS
CRPS are presented in section S2.

FIG. 5. CRPS for the NHC cone and the bivariate predictions as a function of lead time. The median for each is
shown as the solid lines, while the shaded area encloses the 10th–90th percentile of CRPS values. A lower value of
CRPS indicates a better prediction (a CRPS value of zero indicates a perfect prediction, with the entirety of the pre-
diction weight at the truth, e.g., a delta function).

FIG. 6. Fraction of cases where the bivariate predictions (red) and the NHC cone (blue) cap-
ture the truth as a function of lead time. Shown are several percentiles for the bivariate; from
thinnest to thickest, the 50th, 66th, and 90th percentile ellipses, respectively. This emphasizes the
strength of using the distribution for prediction and allows for both probabilistic and tailored de-
terministic predictions (e.g., minimizing misses or minimizing false alarms).
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We can also make a comparison by choosing a specific per-
centile of our distribution and comparing only the associated
ellipse, though this undermines one of the main strengths of
our predictions, to the NHC cone or GPCE. With this inhib-
ited version of our prediction, we can look at the binary ques-
tion of whether each of the predictions captures the truth.

Figure 6 shows the fraction of forecasts where the NHC
cone captured the true TC location (blue) and the fraction
of forecasts where several of our percentile ellipses (red) cap-
tured the truth. We can use any percentile from our predic-
tions, but we show only three: the 50th, 66th, and 90th
percentile ellipse capture fractions. The dashed lines show
perfect calibration; e.g., the 50th percentile of our distribu-
tions captures the truth 50% of the time. The 66th percentile
ellipse in Fig. 6 remains remarkably close to the perfect 66%
dashed line. This supports the results in Fig. 3 but additionally
emphasizes the flexibility of our method. Specifically, our
method allows for a subjective choice of either minimizing

misses (using a higher percentile ellipse or setting a higher
percentile threshold) or minimizing false alarms (using a
lower percentile ellipse or a lower percentile threshold).

b. Landfall events

Using our method, we can make probabilistic statements
about landfall by integrating the portion of our predicted un-
certainty that is over land at each forecast to obtain a proba-
bility of the TC making landfall at that time. Several
examples of this are shown in Fig. 7. The top panel shows
Hurricane Franklin (2023) making landfall over the Domini-
can Republic, the middle panel shows Hurricane Harvey
(2017) making landfall over Texas in the United States, and
the bottom panel shows Hurricane Patricia (2015) making
landfall over Jalisco in Mexico. As expected, the uncertainty
decreases as we approach the forecasted time.

We divide all forecasts into cases where the TC did make
landfall and cases where it did not. Across all forecasts, there

FIG. 7. Three examples of predictions for TCs as they make landfall. For each storm, the nearest synoptic time to landfall, and the corre-
sponding location, is used. The forecasted time is held fixed (panels go from longer to shorter lead time). The landfall location is indicated
by a cross, and the forecast initialization location is indicated by a solid dot (unfilled dots for previous times). Predictions are shaded red-
to-yellow over land and in grayscale over the ocean. The distribution integrated over land gives a probability for the TC to make landfall.
The probability (as a percent chance) is shown in the lower-left corner of each panel.
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were 1889 instances where a TC made landfall in the Atlantic
and 478 instances where a TC made landfall in the eastern/
central Pacific. We checked the calibration metrics (PIT, IQR
vs error) for this subsample of predictions and found that the
predictions remained well calibrated (not shown).

Figure 8 shows the probability of landfall for both cases:
when there was landfall P(landfall | landfall) and when land-
fall did not occur P(landfall | nolandfall). While the probabil-
ity of landfall for cases when it did not occur is very low for
both basins, the probability of landfall for cases when there
was landfall looks fairly different. In the Atlantic, our pre-
dicted landfall probability is high for all lead times, with the
median remaining above the 0.5 line throughout. The east-
ern/central Pacific probabilities decay strongly with lead
time, likely due to the very small sample size available for
training, a result of fewer landmasses in the path of eastern/
central Pacific TCs. For example, at 120 h, there are only 19
forecasts where a TC made landfall in the eastern/central
Pacific.

We repeat the preceding analyses for early forecasts (cap-
ture fraction, CRPS, landfall probability) and find similar
performance in all cases. These are shown in section S3. We
apply the preceding analysis (CRPS) to Atlantic landfall
cases to compare our bivariate predictions to the NHC
cone. We find a large improvement over the NHC cone,
with the mean NHC cone CRPS approximately twice as
large (worse) than our bivariate predictions. This is shown
in section S6.

4. Conclusions

We have developed and tested a method of estimating trop-
ical cyclone track uncertainty. Using forecast-specific inputs
and the true forecast error as the label, we train a neural
network to predict the parameters of a bivariate normal

distribution. The distribution serves as our estimate of the TC
track uncertainty for that forecast. The network is trained on
a dataset from the NHC and CPHC, which includes 11 years
(2013–23) of forecasts, 10 lead times (12–120 h), and the
Atlantic and combined eastern and central Pacific basins.
The loss used in training the network is the negative log
probability of the truth (the difference between the forecast
location and the best track reconstruction), given the pre-
dicted distribution.

We have shown that predictions using our method are
well calibrated using the probability integral transform
(PIT) metric. We have also compared the interquartile
range (IQR) of our predictions to the true forecast errors.
According to the continuous ranked probability score
(CRPS), our method produces better uncertainty estimates
than the NHC cone and the GPCE track uncertainty esti-
mates and is comparable to predictions from the Global En-
semble Forecast System (GEFS). The probabilistic nature
of our predictions allows for a subjective, expert-based deci-
sion on whether to emphasize minimizing false alarms or
minimizing misses. We have also shown that a probabilistic
approach can be used to robustly estimate the probability of
landfall events.

The move toward a probabilistic estimate of track uncer-
tainty is already a priority for forecasting centers (Dunion
et al. 2023; Conroy et al. 2023). Currently, the NHC (and
many other operational forecast centers) estimates TC track
forecast errors using historical errors of their operational fore-
casts from the previous 5 years. These are static (the same for
the entire season, circularly symmetric) and deterministic (a
single-valued uncertainty estimate). Our method produces
uncertainty estimates that are dynamic (forecast-specific, vari-
able shapes) and probabilistic.

Once trained, the computational cost of predictions using
our method is negligible, potentially making it more appealing

FIG. 8. Probability of landfall. The panels show the probability of landfall (bivariate integrated over land, see Fig. 7)
for TCs in the (left) eastern/central Pacific and (right) Atlantic as a function of lead time. The solid lines show the me-
dian probability for cases when the TC did make landfall, prob(landfall | landfall), and the dotted lines show the me-
dian probability for cases when the TC did not make landfall, prob(landfall | not landfall). The shaded areas indicate
the 25th–75th percentile of the distribution of landfall probabilities.
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than costly ensemble methods that may or may not have enough
members for the distribution to converge. The method is flexible
so that new models can be included, provided an adequate train-
ing sample is available. For example, the HWRF model used in
this study is being replaced in NHC forecasts by the Hurricane
Analysis and Forecast System (HAFS) model (Hazelton et al.
2021), which will require a different set of track models to be
used as input. In addition, parameters from ensemble forecast
systems such as ensemble spread can be added as input to the
neural network. Thus, our method is a strong candidate to im-
prove operational track uncertainty estimates.
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