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ABSTRACT: Ensembles of convection-allowing model (CAM) forecasts are increasingly being used in operational nu-
merical weather forecasting. Several approaches have been devised to find consensus among ensemble forecast fields, in-
cluding the arithmetic ensemble mean and, more recently, the patchwise localized probability-matched (LPM) mean.
However, differences in spatial distribution and intensity of precipitation features among ensemble members make it diffi-
cult to construct an ensemble mean product that characterizes the consensus while preserving precipitation structures fore-
casted by the individual ensemble members. To overcome this problem, this study aims to develop and test a method for
improving ensemble consensus precipitation forecasts by directly considering the spatial offsets among ensemble members.
This study uses a multiscale spatial alignment technique to align the precipitation features of each ensemble member to a
common location, and the spatial aligned mean (SAM) is obtained by averaging the realigned members. It is shown that
implementing SAM and subsequently applying the LPM technique to the average of all aligned members (SAM–LPM)
can significantly improve the warm season precipitation forecast scores using common metrics such as equitable threat
score (ETS). Also, improvement in the structure of features of heavy rainfall is shown from summer 2023 flash-flooding
cases. Thus, SAM and SAM–LPM can be excellent candidate methods for calculating an ensemble consensus and provid-
ing ensemble consensus guidance to forecasters.

SIGNIFICANCE STATEMENT: High-impact rainfall events, such as flash floods, result in many billion-dollar loss
events in the United States each year. This study seeks to improve the prediction of such events when using guidance
from convection-allowing model (CAM) ensemble forecasts, such as the U.S. operational High-Resolution Ensemble
Forecast (HREF) and the nascent Rapid Refresh Forecast System (RRFS). The proposed method, the spatial aligned
mean (SAM), directly addresses the common issue of disparity in the predicted location of convective systems among
ensemble members that confounds traditional ensemble consensus methods. In this study, it is found that SAM im-
proves ensemble consensus guidance for high-impact rainfall events in both the HREF and the Center for Analysis and
Prediction of Storms (CAPS) Finite-Volume Cubed-Sphere (FV3)-limited area model (LAM) CAM ensemble forecast
system, a proxy for the future RRFS.

KEYWORDS: Ensembles; Forecast verification/skill; Mesoscale forecasting; Numerical weather prediction/forecasting;
Operational forecasting; Postprocessing

1. Introduction

Due to initial condition uncertainties and limited predict-
ability inherent in an individual high-resolution numerical
weather prediction (NWP) model forecast, ensembles of con-
vection-allowing model (CAM) forecasts are increasingly be-
ing used in operational numerical weather forecasting. Such
CAM ensembles include the U.S. High-Resolution Ensemble
Forecast (HREF; Roberts et al. 2019) and the nascent Rapid
Refresh Forecast System (RRFS; Alexander and Carley
2023). It is common to have errors in convection initiation
location and timing and in storm motion in NWP models

(e.g., Clark et al. 2012) which lead to variations in the predicted
locations of storms among CAM ensemble member forecasts.
Several approaches, such as consensus average methods and
clustering (e.g., fuzzy clustering; Zheng et al. 2017), have been
devised to utilize a large set of ensemble outputs and present an
ensemble consensus to the forecaster or end user.

The ensemble mean, a simple point-wise arithmetic average of
ensemble members, is commonly used in operational ensembles.
However, due to the difference in spatial distribution and inten-
sity of precipitation features in each ensemble member, the arith-
metic ensemble mean of precipitation forecasts tends to reduce
the magnitude of forecast maxima while expanding the areal cov-
erage of light precipitation (Ebert 2001; Surcel et al. 2014). This
tendency thus masks the most impactful precipitation values and
alters the ensemble probability density function (PDF), while the
smoothing introduced by the ensemble mean can artificially in-
flate certain validation metrics (e.g., Snook et al. 2019).

The probability-matched (PM; Ebert 2001) ensemble mean,
pointwise localized PM (LPM) mean (Clark 2017), and patchwise
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LPMmean (Snook et al. 2020) methods have been introduced
to overcome these problems. The PM and LPM means use a
PDF from all of the ensemble members to preserve the en-
semble forecast’s maxima. PM and LPM methods redistribute
the values of each grid point of the ensemble mean to have
the same distribution to entire members’ PDF, with the local
methods considering the PDF in local subdomains rather than
over the entire forecast domain. While these methods can
preserve the maximum values, they are not directly address-
ing the spatial differences among the members; thus, unnatu-
ral structures can be created.

Since it is known that position displacement accounts for a
significant portion of the error variance in NWP (Jankov et al.
2021), this study aims to find a way to improve ensemble con-
sensus precipitation by directly considering the spatial offsets
among ensemble members. Similar approaches have been
tried in the fields of data assimilation and postprocessing un-
der different names, such as phase-error correction (Brewster
2003a,b), field coalescence (Ravela 2012), feature alignment
technique (Stratman et al. 2018; Stratman and Potvin 2022),
and feature-oriented mean (Feng et al. 2020), so this study
adapts one of those methods to find consensus among the

precipitation forecasts in operational and experimental real-
time CAM ensemble forecasts.

Specifically, this study adapts algorithms of the phase-correcting
data assimilation method (Brewster 2003a,b), which can apply to
multiple scales of discontinuous fields, to align the fields of each
ensemble member to a common location. Offsets are found for
each ensemble member with respect to other members or with re-
spect to the original PM mean. The fields of each member are
shifted by its aligning offset vectors, moving the precipitation to a
common location, and the spatial aligned mean (SAM) is ob-
tained by averaging the realigned members.

In this work, the SAM method is described in section 2, and
the SAM is applied to the operational HREF and a real-time
experimental CAM ensemble used for the Hydrometeorology
Testbed Flash Flood and Intense Rainfall (HMT-FFaIR) ex-
periment, described in section 3. Sections 4 and 5 present the
verification of the experiments, while summary and conclu-
sions are drawn in section 6.

2. Methods

The algorithm used in SAM consists of three parts: 1) The
shift vector field that aligns each member’s precipitation field

FIG. 1. Flowchart for obtaining SAM [(left) method A and (right) method B].
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is found, 2) each member is thus repositioned, and 3) finally,
ensemble consensus is found from the realigned members.

The method used for finding the shift vector field is based
on the alignment algorithm in the phase-correcting data assimi-
lation method (Brewster 2003a) because it has demonstrated
success in adjusting storm-scale fields across multiple scales in
the data assimilation context and (Brewster 2003b) is simple
to apply and can easily be parallelized. Applied in the context
of aligning ensemble members, the algorithm aims to mini-
mize a squared difference sum of the output from a pair of
forecasts by translating the targeted variables incrementally

in the model x and y directions. Since spatial offsets can vary
across the model domain, the algorithm proceeds by dividing
the domain into overlapping patches. The patch size is flexible
and can be set while considering the horizontal scale of errors to
account for spatial offsets in, say, synoptic-, mesoalpha-, and
mesobeta-scale features.

For each test patch, shift vectors are determined by finding the
offset of grid points in the x/y directions, which minimizes the
root-mean-square (RMS) differences in fields from two forecasts,
either two individual ensemble members or one member and a
mean, including a penalty for a large offset distance:

FIG. 2. The 6-h rainfall (mm) of CAPS FV3-LAM ensemble result for 2023 midsouth U.S. flood event (84-h forecast valid at 1200 UTC
3 Aug 2023).

FIG. 3. The 6-h rainfall (mm) of phase-shifted member-to-mean aligned fields of CAPS FV3-LAM ensemble result with shift vectors for
2023 midsouth U.S. flood event (84-h forecast valid at 1200 UTC 3 Aug 2023).
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J(dx) 5 s(|dx|l21)
m

∑
m

i51
[Fa(xi 1 dx) 2 Fb(xi)]2, (1)

where Fa and Fb are the pair forecasts, x is a grid point in the
patch with a total m number of grid points, and dx is the hori-
zontal displacement vector.

The multiplier on the right-hand side s is a penalty function
for the large displacement, using the inverse of the second-
order autoregressive (SOAR) function (Thiebaux et al. 1990):

s(|dx|l21) 5 exp(|dx|l21)
(1 1 |dx|l21) , (2)

where l is a length scale parameter, which is a function of patch
size in the x and y directionsLx andLy and the scale parameter a.

l 5 a
������������
L2

x 1 L2
y

√
, (3)

where a . 0, and smaller a penalizes more for larger spatial
displacements. This method can also be applied to multiple
variables with weighted sums depending on the expected
error of each variable. Here, we evaluate Eq. (1) using the
forecasted precipitation fields only.

The entire domain’s shift vector field is obtained by averag-
ing all the overlapping test patches’ shift vectors dx. An

FIG. 4. The 6-h rainfall (mm) of ensemble mean, member-to-mean aligned SAM, LPM, and member-to-mean aligned SAM–LPM fields for
CAPS FV3-LAM ensemble and observation (stage IV) for 2023 midsouth U.S. flood event (84-h forecast valid at 1200 UTC 3 Aug 2023).

TABLE 1. Details of the membership of the CAPS CAM ensemble used in the 2023 FFaIR experiment.

Experiment Microphysics PBL Surface LSM IC/LBC (like system) AI member

GFS IC for baseline configuration
M0B0L0_PG Thompson MYNN MYNN NOAH GFS/GFS AI-1
M1B0L0_PG NSSL MYNN MYNN NOAH GFS/GFS (WoF) AI-2
M0B0L2_PG Thompson MYNN MYNN RUC GFS/GFS (RRFSm1) AI-3
M1B2L2_PG NSSL TKE-EDMF GFS RUC GFS/GFS (RRFSmphys8)
M0B2L1_PG Thompson TKE-EDMF GFS NOAHMP GFS/GFS (GFSv16) AI-4

Physics 1 IC perturbation ensemble
M0B0L2_PI Thompson MYNN MYNN RUC GEFS_m1
M0B1L0_PI Thompson Shin-Hong GFS NOAH GEFS_m2
M0B2L1_PI Thompson TKE-EDMF GFS NOAHMP GEFS_m3
M0B0L0_PI Thompson MYNN MYNN NOAH GEFS_m4
M0B2L2_PI Thompson TKE-EDMF GFS RUC GEFS_m5
M1B0L2_PI NSSL MYNN MYNN RUC GEFS_m6
M1B1L0_PI NSSL Shin-Hong GFS NOAH GEFS_m7
M1B2L1_PI NSSL TKE-EDMF GFS NOAHMP GEFS_m8
M1B0L0_PI NSSL MYNN MYNN NOAH GEFS_m9
M1B2L2_PI NSSL TKE-EDMF GFS RUC GEFS_m10
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iterative approach using a cascade of test patch sizes can be
applied so that, first, large-scale and then small-scale position
differences can be resolved.

This phase-correcting technique can be applied in either of
two ways: 1) aligning all ensemble member-to-member pairs,
hereafter called member-to-member alignment, n3 (n2 1) pairs
with a total of n members and 2) aligning ensemble member-
to-ensemble-mean pairs, hereafter called member-to-mean
alignment, n pairs with a total of n members. Both methods
are illustrated in Fig. 1 and described herein.

a. Member-to-member alignment (with a total of n members)

For each member, shift vectors are determined for all the
other members in pairs, and the vectors are then averaged to
find the offset to bring the fields to a central location. The jth
member’s shift vector field Dj is an averaged sum of obtained
shift vector fields with all the other pairs:

Dj 5
1
n
∑
n

i51
Dj,i, (4)

where Dj,i is the shift vector field of ith and jth member pairs.
The total number of computations for calculating all the pairs
is O(n2), which could become expensive for large n, although
all pairings can be handled independently; thus, the process is
naturally parallel.

b. Member-to-mean alignment (with a total of n members)

Shift vectors can be determined by comparing each member’s
field with an ensemble mean field. However, since RMS dif-
ferences between the two fields are affected by not only the
spatial offset but also the intensity differences, it is pre-
ferred to use the PM mean field instead of the arithmetic
mean field as the arithmetic mean will commonly dilute field
maxima. This method thus brings the spatial position of fea-
tures in all the members close to the PM mean. The number
of pairs to align is the same as the number of ensemble
members, so the number of computations is O(n), potentially
offering significant computation time savings for large n, and
is also naturally parallel after the computation of the PM
mean.

FIG. 5. Performance diagram for SAM and SAM–LPM (both using member-to-mean alignment)
at the 25 mm (6 h)21 rainfall threshold at the 24–30-h forecast lead time for HREF over the
2023 FFaIR period (gray dots are individual members).
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Once the shift vectors of each member are calculated for
each patch and locally averaged, each member forecast is re-
positioned by using those vectors and linear interpolation
since averaged vectors are generally noninteger grid offsets.
After moving the field using the shift vectors, the forecast val-
ues of each member are reassigned using the PDF of that
original forecast field to restore maxima. This is necessary be-
cause moving the grid involves interpolation, which has some
smoothing effect, generally resulting in a reduction in maxima
in the field. Either PM or LPMmethods can be utilized for re-
scaling the distribution of each member forecast at that point.
After the PDF restoration process, the spatial aligned mean is
obtained by a simple average of the realigned and rescaled
members.

To illustrate this, we present an example of member-to-
mean alignment applied to CAM ensemble models. Figure 2
is the 6-h precipitation accumulation with 84-h lead time from
the individual members of a real-time experimental CAM
ensemble [Center for Analysis and Prediction of Storms (CAPS)
Finite-Volume Cubed-Sphere (FV3)-limited area model (LAM)

ensemble, detailed in section 5] for the 2023 midsouth U.S.
flood event, while Fig. 3 shows the result after the phase-shift
algorithm has been applied using the shift vectors. Figure 4
shows the forecast consensus precipitation field from SAM
(middle top) and from SAM with the patchwise LPM tech-
nique applied (SAM–LPM; middle bottom). Figures 2–4 are
plotted based on the results from the experiment described in
section 3.

Due to the difference in the location of storms in every
member, the arithmetic ensemble mean (top left in Fig. 4)
field has spread the precipitation area widely, and LPM (bot-
tom left in Fig. 4) shows scattered precipitation features. On
the other hand, SAM and SAM–LPM results have a more co-
hesive structure of the mesoscale convective complex path,
which more closely matches the corresponding observed rain-
fall from stage IV analysis (rightmost panel in Fig. 4).

3. Experimental design
In this experiment, the SAM technique is applied to the 6-h

accumulated precipitation output from two high-resolution

FIG. 6. Performance diagram for SAM and SAM–LPM (both using member-to-mean align-
ment) at the 25 mm (6 h)21 rainfall threshold at the 24–30-h forecast lead time of CAPS
FV3-LAM ensemble over the 2023 FFaIR period (gray dots are individual members).
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(;3 km) CAM ensembles: 1) the operational HREF, which
has 10 members including the 12-h time-lagged members, and
2) a 15-member ensemble using the FV3-LAM (Black et al.
2021) designed by the CAPS. The FV3 serves as the dynamic
core for the current version of the Unified Forecast System
Medium-Range Weather Application or GFSv16 (Lin 2004;
Yang et al. 2021). A convection-allowing ensemble configured
using FV3-LAM members (i.e., RRFSv1) is in the latter
stages of development and is scheduled to replace HREFv3 in
2025 as part of NOAA’s Unified Forecast System vision; here,
the CAPS CAM ensemble serves as a surrogate RRFS since
RRFS is not yet operationally available. The membership of
the CAPS CAM ensemble is described in Table 1, consisting
of members with variations in physics options, including mi-
crophysics, planetary boundary layer physics, and land surface
physics as well as initial and lateral boundary perturbations.
For the period examined here, the CAPS CAM ensemble was
run with initial conditions provided by the operational GFS
and initial and lateral boundary condition perturbations from
the operational GEFS.

In addition to the SAM results, the SAM with the patch-
wise LPM technique subsequently applied (SAM–LPM) is ex-
amined to see if that combination can better preserve forecast
maxima. The proposed SAM and SAM–LPM techniques are
applied for lead times of 6–84 h (up to 36 h for HREF, which
is the maximum available ensemble forecast extent due to
shorter forecasts and use of time-lag members) of 0000 UTC
runs over the contiguous United States (CONUS). Verification is
performed against NOAA stage IV 4-km resolution precipitation
data (Nelson et al. 2016). Testing is done for 29 days spanning
10 weeks (5–10 June, 12–13 June, 26–30 June, 10–14 July,
17–18 July, 31 July–4 August, and 7–10 August) in the summer
of 2023 corresponding to the period of the HMT FFaIR experi-
ment (Trojniak et al. 2024).

In this experiment, two cascading test patch sizes are used
in the alignment algorithm. For the first pass, the patch size is
600 km (aiming to address synoptic scale offsets), and 225 km
(for mesoalpha scale offsets) is used for the patch size in the
second pass. Results of both SAM and SAM–LPM are evalu-
ated after each of the iterations.

Pointwise verification and spatial feature verification are
performed with several precipitation thresholds using stan-
dard algorithms within the Model Evaluation Tools (MET)
program (Brown et al. 2021). The Method for Object-Based
Diagnostic Evaluation (MODE; Davis et al. 2009) is used for
spatial verification. For MODE verification, a 20-km convolu-
tion radius is used, and the weights used for MODE interest,
a normalized weighted mean of MODE metrics ranging from
0 to 1, are as follows: centroid distance (distance between two
object centroids, 20%), boundary distance (minimum distance
between the boundaries of two objects, 40%), angle differ-
ence (difference between the axis angles of two objects,
10%), area ratio (the forecast object area divided by the ob-
servation object area, 10%), and intersection area ratio (ratio of
intersection area to the lesser of the forecast and observation ob-
ject areas, 20%).

4. Verification results

The verification is performed with several 6-h precipitation
thresholds (1, 5, 10, 15, 20, and 25 mm) in order to evaluate
performance for various rainfall values ranging from minimal
to intense rainfall. The verification results discussed in this
section are at the 25 mm (6 h)21 threshold to focus on the
warm season’s high-threshold rainfall events.

In section 4a, the overall tendency for SAM and SAM–

LPM, in terms of common forecast skill metrics such as prob-
ability of detection (POD), success ratio, critical success index

FIG. 7. ETS results of HREF at the 25 mm (6 h)21 rainfall threshold with 95% confidence
interval using bootstrapping (10 000 samples) in variation with forecast lead time (from 0–6 to
30–36 h) over the 2023 FFaIR.
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(CSI), and frequency bias, is shown with the performance dia-
gram. Section 4b shows the verification and significance test
results in variation with forecast lead time in terms of equita-
ble threat score (ETS; Wilks 1995) metrics. Member-to-mean
alignment using the original ensemble PM mean showed bet-
ter results than member-to-member alignment, which is not

shown. Therefore, the verification results described in this sec-
tion are obtained from member-to-mean alignment.

a. Overall tendency

Figures 5 and 6 show performance diagrams (Roebber
2009) at the 25 mm (6 h)21 rainfall threshold and 24-to-30-h

FIG. 8. ETS results of CAPS FV3-LAM ensemble at the 25 mm (6 h)21 rainfall threshold with 95% confidence interval using bootstrapping
(10 000 samples) in variation with forecast lead time (from 24–30 to 78–84 h) over the 2023 FFaIR.

FIG. 9. (left) LPM, (center) SAM–LPM, and (right) stage IV observed (top) 6-h rainfall (mm) and (bottom)MODE objects [$20 mm (6 h)21]
for CAPS FV3-LAM ensemble 60-h forecast valid at 1200 UTC 16 Jul 2023.
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forecast lead time over the 2023 FFaIR period for the HREF
and CAPS FV3-LAM ensemble, respectively. Member-to-
mean alignment is used for the results in these figures, but the
overall tendencies in the results for the member-to-member
method, not shown, are similar. The results of the arithmetic
ensemble mean, SAM, standard LPM, SAM–LPM, and all in-
dividual members are plotted in this diagram. For SAM and
SAM–LPM, both 1-pass, aligned for synoptic scale, and itera-
tive 2-pass, aligned for both synoptic and mesoscale, results
are included.

The use of SAM or SAM–LPM increases the POD (the
y axis in the figure) compared to the arithmetic mean and
standard LPM methods. The score is further improved in the
2-pass method, aligned for both synoptic and mesoscale offsets.

The success ratio, the x axis in the figure, for SAM de-
creases compared to the arithmetic mean, but in light of its
improved POD, the net result has a better CSI (curved lines
in the figure). However, the success ratio for SAM–LPM in-
creases compared to the standard LPM, and this result, along
with increased POD, leads to improved CSI.

Frequency bias, dotted lines in the figure, is higher for
SAM (and close to unity, ideal) than that of the arithmetic
mean, which significantly underforecasts rainfall at this thresh-
old. The frequency bias for SAM–LPM is similar to the stan-
dard LPM because both of them use the same PDF.

It is notable that SAM–LPM (2 pass) improves POD, CSI,
and success ratio compared to all individual members and fre-
quency bias is improved relative to a majority of the mem-
bers. Overall tendencies shown in the figures are the same in
other forecast lead times, not shown, while the scores

naturally drop with increased lead time. The overall scores for
HREF are higher than those for the CAPS FV3-LAM ensem-
ble for this experiment; it is beyond the scope of this paper to
delve into the causes of that, but mature, better-tuned mem-
ber models and diversity in the dynamic cores of the member-
ship are likely contributors to that result.

The results are not included here, but 10, 15, and 20 mm
over 6-h threshold results show the same trends, while lower
thresholds, 1 and 5 mm over 6 h, show that SAM has lower POD
and higher success ratio results compared to those for ensemble
mean. As mentioned in the introduction, these results stem from
the ensemble mean broadening the areal coverage of light precip-
itation due to the spatial offsets among members.

b. Evaluation results in variation with forecast lead time
and significance tests

Figures 7 and 8 show the variation of ETS with forecast
lead time at the 25 mm (6 h)21 rainfall threshold over the
2023 FFaIR period, for both the operational HREF and CAPS
FV3-LAM ensembles, respectively. Member-to-mean alignment
toward the original ensemble PM mean is used for the results in
these figures. SAM and SAM–LPM show improvement in ETS
for both ensembles compared to arithmetic ensemble mean and
standard LPM for all forecast lead times. Also, the results show
that the iterative 2-pass method, aligned for both synoptic and
mesoscale, improves ETS more than the 1-pass method, aligned
only for synoptic scale.

Beyond the 48-h forecast lead time, the score of the arith-
metic mean drops (Fig. 8). This occurs because the spatial off-
sets among members grow in part due to variations in outflow

FIG. 10. (left) LPM, (center) SAM–LPM, and (right) stage IV observed (top) 6-h rainfall (mm) and (bottom)MODE objects [$20 mm (6 h)21]
for the 2023 NewHampshire flood event for CAPS FV3-LAM ensemble 66-h forecast valid at 1800 UTC 16 Jul 2023.
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from storms on day 1, adding uncertainty to storm initiation
details in the afternoon and evening of day 2. SAM and
SAM–LPM results beyond 48 h show that the spatial align-
ment technique can improve the ETS score and recover some
of the lost skills.

Some SAM results have better ETS scores than SAM–

LPM, especially at the beginning of the forecasts. As shown in
section 4a, SAM–LPM has better POD and frequency biases
but a lower success ratio than SAM, which leads to higher
ETS for some of the SAM results.

For the significance tests (Hamill 1999), 95% confidence in-
tervals obtained from bootstrapping with 10 000 samples are
plotted in the figures. It is notable that the 2-pass results of
SAM and SAM–LPM improve ETS scores significantly com-
pared to the arithmetic ensemble mean for all forecast times.

Also, some of the SAM–LPM (2-pass) results show significant
improvement in ETS scores compared to LPM, even though
these results have relatively large variances considering the
small sample size (29 cases) and relatively rare high-threshold
rainfall events.

5. Spatial verification

One goal of aligning ensemble members prior to averaging
is to try to preserve the structure of the precipitation features
observed in the individual members in the consensus prod-
ucts. Preserving the structure of precipitation features can
better inform forecasters about the nature of the precipitation
in the model. To determine if SAM improves the spatial fea-
tures of the ensemble consensus, spatial verification using
MODE, a part of the MET toolkit, is performed on notable
flooding cases during the 2023 FFaIR experiment. Three of
the most impactful cases covered by the 2023 FFaIR forecasts
are examined in order to compare MODE verification metrics of
the standard LPM mean to the SAM–LPM with two iterations
of member-to-mean alignment applied to the CAPS FV3-LAM
ensemble using the original ensemble PMmean field.

a. Flooding in New Hampshire of 16 July 2023

The first case is a flooding event in New Hampshire on
16 July 2023, which caused considerable damage in and around
Manchester including sinkholes, flooded basements, and road
closures (see, e.g., New Hampshire Public Radio 2023). Figure 9
shows an ensemble consensus for the CAPS FV3-LAM ensemble

FIG. 11. (left) SAM, (center) SAM–LPM, and (right) stage IV observed (top) 6-h rainfall (mm) and (bottom)MODE objects [$20 mm (6 h)21]
for the 2023 western Kentucky flood event from the CAPS FV3-LAM ensemble 60-h forecast valid at 1200 UTC 19 Jul 2023.

TABLE 2. The scores for selected MODE metrics [$20 mm
(6 h)21; red object pairs in Figs. 9 and 10] and ETS metrics for
LPM and SAM–LPM in the New Hampshire Flood event for the
CAPS FV3-LAM ensemble 60- and 66-h forecast valid at 1200 and
1800 UTC 16 Jul 2023.

60-h lead time 66-h lead time

LPM SAM–LPM LPM SAM–LPM

MODE interest 0.8952 0.9828 0.9060 0.9464
Angle difference (8) 12.80 16.45 24.05 16.20
Area ratio 0.14 0.68 0.47 0.81
Intersection area (km2) 210 705 237 405
ETS 0.084 0.124 0.068 0.086
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6-h rainfall at 60-h lead time using standard LPM and SAM–

LPM compared to observed stage IV precipitation valid at
1200 UTC 16 July 2023, 6 h before the flooding event, and
Fig. 10 shows the same utilizing consensus method at 66-h
lead time valid at 1800 UTC 16 July 2023.

Considering the precipitation features greater than 20 mm
(6 h)21, the SAM–LPM has a precipitation feature which is
closer in shape to the observed event, although the location of
the feature still has an offset to the west. This similarity of
shape is measured quantitatively by MODE (Table 2), the
axis angle, area ratio, and intersection area compared to the
feature from the observed precipitation. These results, com-
bined with two other metrics (centroid distance and boundary
distance, not shown), lead to a better interest score, a normal-
ized weighted mean of MODE metrics ranging from 0 to 1, in
MODE score and ETS score for SAM–LPM.

b. Western Kentucky flood of 19 July 2023

The next case is a historic flash-flooding event on 19 July
2023 across western Kentucky and southern Illinois. A total
of 150–300 mm (6–12 in.) of rain was recorded for the 24-h
ending at 1500 UTC 19 July, with most falling between 0200
and 1500 UTC during this event. The Kentucky Mesonet site
near Mayfield recorded 11.28 in., breaking the state 24-h rain-
fall record. Several roads, many homes, and businesses were
inundated, and numerous people were rescued in flood water
(NOAA/NWS Paducah, KY 2023a). Figures 11 and 12 show
6-h rainfall from ensemble forecast, 60 and 66 h, respectively,
using standard LPM and SAM–LPM compared to stage IV
precipitation observations, valid at 1200 and 1800 UTC 19 July

2023. The standard LPM consensus method exhibits a mottled
appearance in the main rainfall feature centered in western
Kentucky due to position differences among storm cells within
the individual members, whereas the SAM–LPM consensus
shows a larger, more cohesive, precipitation area similar to
the observation.

The improvement in 6-h rainfall forecast structure for SAM–

LPM versus LPM is measured by MODE using the 20-mm
precipitation threshold (Table 3). The interest score for this
event is higher for SAM–LPM, due especially to an area ratio
closer to unity and a larger intersection area. ETS scores are
also improved for SAM–LPM.

c. Midsouth U.S. floods on 2–4 August 2023

The last case examined is significant flooding across north-
western Tennessee, southwestern Kentucky, and southeastern

FIG. 12. (left) SAM, (center) SAM–LPM, and (right) stage IV observed (top) 6-h rainfall (mm) and (bottom)MODE objects [$20 mm (6 h)21]
for the 2023 western Kentucky flood event from the CAPS FV3-LAM ensemble 66-h forecast valid at 1800 UTC 19 Jul 2023.

TABLE 3. Selected MODE metrics [$20 mm (6 h)21; red
object pairs in Figs. 11 and 12] and ETS metrics of LPM and
SAM–LPM for the 2023 western Kentucky Flood event for the
CAPS FV3-LAM ensemble 60- and 66-h forecasts valid at 1200
and 1800 UTC 19 Jul 2023, respectively.

60-h lead time 66-h lead time

LPM SAM–LPM LPM SAM–LPM

MODE interest 0.9580 0.9813 0.8986 0.9654
Angle difference (8) 7.43 6.38 32.42 24.34
Area ratio 0.63 1.19 0.19 0.66
Intersection area (km2) 473 780 390 906
ETS 0.086 0.155 0.093 0.158
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Missouri on 2–4 August 2023. A rare flash flood emergency
was issued during this event with numerous road closures,
several evacuations of homes, and a few water rescues
(NOAA/NWS Paducah, KY 2023b). Figure 13 shows LPM
and SAM–LPM consensus 6-h rainfall forecast at 84 h and
stage IV rainfall observations valid at 1200 UTC 3 August
2023. The standard LPM shows the possibility of storms
between Missouri and Tennessee, but the long forecast lead
time resulted in considerable spatial offsets among members,
resulting in this spotty pattern to the forecast rainfall in the
area. SAM–LPM, however, shows a large contiguous rainfall
feature closely resembling the observations, with a small off-
set to the east. None of the members predicted precipitation
in central Kentucky at this long lead time, so the SAM–LPM
result could not recover the missed event in that area.

Using the 20-mm threshold, the 6-h SAM–LPM forecast
consensus has a better matching precipitation feature with an
angle and aspect close to those of the observed event, and the
MODE scores (Table 4) of SAM–LPM are improved over
LPM in several categories, leading to a much better overall
MODE interest score and ETS scores.

To assess differences in spatial verification beyond these
significant cases, the MODE interest scores for all cases in the
2023 FFaIR period were aggregated by averaging MODE in-
terest scores among 20 mm (6 h)21 threshold objects for each
6-h time period between 30 and 84 h. MODE interest is ob-
tained from pairs of objects in the observation and forecast
fields. An object from the observation field can pair with mul-
tiple objects in the forecast field, so in cases where there are
multiple matches to a given observed object, the highest

scoring match is utilized in the aggregation. If there is no
match for a given observed object, an interest score of zero is
used in the average. Figure 14 shows such aggregated MODE
interest scores from the CAPS FV3-LAM ensemble consen-
sus products at the 20 mm 6 h21 rainfall threshold. Both the
member-to-mean aligned SAM and corresponding SAM–

LPM improve the average MODE interest metric compared
to the arithmetic mean and standard LPM methods.

6. Summary and conclusions

The spatial aligned mean (SAM) is applied to operational
HREF and experimental real-time (CAPS FV3-LAM) CAM
ensemble forecasts for 29 days spanning 10 weeks of the summer
of 2023. From the pointwise verification of 6-h precipitation fore-
casts in both ensembles, the SAM ensemble consensus technique
outperforms the simple ensemble mean at all lead times, and the
spatial aligned LPM (SAM–LPM) shows improved results than

FIG. 13. (left) LPM, (center) SAM–LPM, and (right) stage IV observed (top) 6-h rainfall (mm) and (bottom)MODE objects [$20 mm (6 h)21]
for 2023 midsouth U.S. flood event from CAPS FV3-LAM ensemble 84-h forecast valid at 1200 UTC 3Aug 2023.

TABLE 4. Selected MODE metrics [$20 mm (6 h)21; red
object pairs in Fig. 13] and ETS metrics of LPM and SAM–LPM
for the 2023 midsouth U.S. flood event for the CAPS FV3-LAM
ensemble 84-h forecast valid at 1200 UTC 3 Aug 2023.

LPM (84 h) SAM–LPM (84 h)

MODE interest 0.6434 0.8176
Angle difference (8) 13.03 0.79
Area ratio 0.14 1.17
Intersection area (km2) 0 105
ETS 0.012 0.042

WEATHER AND FORECAS T ING VOLUME 391556

Brought to you by NOAA Library | Unauthenticated | Downloaded 11/14/25 07:24 PM UTC



the standard LPMmethod. The results show that the spatial align-
ment technique improves the ensemble consensus significantly in
common metrics such as ETS in high-threshold rainfall events. In
particular, SAM–LPM improves both POD and the success ratio
of high-threshold rainfall events compared to the standard LPM,
which is an ideal improvement.

Also, from the spatial verification, the SAM–LPM shows
improvement in the structure of the mean fields, as demon-
strated in MODE spatial characteristics compared to verifying
precipitation fields, while preserving the ensemble forecast
maxima. Thus, SAM–LPM seems to be the best performing
method for calculating an ensemble consensus for these fields.
The flood cases in section 5 show that SAM–LPM is worth-
while to add value to the ensemble forecast in terms of im-
proving precipitation features, even though the increase in
the ETS metrics is modest.

Although the conclusions drawn for the individual consen-
sus methods are the same, overall scores for HREF are better
than for the CAPS FV3-LAM ensemble as configured for this
experiment, showing some improvement is needed in FV3-
LAM to meet the current operational standard. There are
ongoing tuning and improved initialization schemes being
designed to upgrade FV3-LAM before operational implemen-
tation as the RRFS, and a second dynamic core is envisioned
for operational version 2 of the RRFS.

As a consensus method applied to each time step of ensemble
forecasts, the spatial aligned mean has some limitations: SAM
may cause discontinuities between output intervals and does not
represent forecast uncertainty directly.

Though the spatial alignment technique is applied only to
the precipitation field in this study, this technique can be ex-
tended to other variables as well. The spatial aligned mean of
other fields can be provided as ensemble consensus products,
which may also help forecasters optimally utilize a large set of
ensemble forecasts. Also, it may prove useful to extend the

alignment search algorithm to include the time dimension,
something for future study.
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