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ABSTRACT: Prior studies by the authors have documented the verification statistics of disturbance-based tropical cy-
clone (TC) genesis forecasts over the North Atlantic (AL) and eastern North Pacific (EP) basins, which led to the develop-
ment of real-time probabilistic TC genesis guidance based on multiple logistic regression [the TC Logistic Guidance for
Genesis (TCLOGG)]. This study provides a substantial update to that prior work by analyzing a more recent period
(2017–22) with one additional model [Navy Global Environmental Model (NAVGEM)], expanding the forecast period
temporally to 7 days, and expanding the study domain spatially to include all basins [except the central North Pacific (CP)
basin, where the sample size of TC genesis events was too small to generate meaningful statistics]. TC genesis forecasts
from five global models are verified against the NHC’s and JTWC’s best tracks. Verification statistics exhibit nontrivial in-
terannual and model-to-model variability rendering it unfeasible to attempt to define repeatable performance rankings
among the models. Nevertheless, results indicate that the ECMWF model exhibits the largest mean success ratio (SR)
overall, while the UKMO and GFS models exhibit the greatest probability of detection (POD). All models exhibit a clear
trade-off between SR and POD, yielding mean critical success index values, 0.35 for any individual model and basin. The
ECMWF and UKMO models exhibit the greatest critical success index (CSI) values globally. This study provides addi-
tional evidence that some best track TC genesis events can be detected at least 1 week in advance, but maximum lead times
are inconsistent. The resulting dataset of verified forecasts will serve as an updated training dataset for enhanced and up-
dated TCLOGG products.

KEYWORDS: Tropical cyclones; Forecast verification/skill; Numerical weather prediction/forecasting;
Model evaluation/performance

1. Introduction

Accurately predicting tropical cyclone (TC) genesis remains
a priority for the research, operational forecasting, and nu-
merical model development communities (e.g., Yang 2018;
Dunion et al. 2023; Hon et al. 2023; Rajasree et al. 2023).
Output from numerical models and forecast guidance prod-
ucts that rely on postprocessed numerical model output are
often primary sources of TC genesis guidance for operational
forecasters. Prior studies have analyzed TC genesis forecast
verification statistics at various lead times (e.g., Briegel and
Frank 1997; Chan and Kwok 1999; Cheung and Elsberry
2002; Elsberry et al. 2009, 2010, 2011; Tsai et al. 2011). Im-
provements over time in numerical models’ ability to analyze
and predict TC-like structures in the forecast fields have been
well documented. While models struggled to predict TC gen-
esis on the order of a few days during the 1990s and 2000s
(e.g., Beven 1999; Pasch et al. 2006, 2008; Schumacher et al.
2009), there was increased ability to predict TC genesis out to
a week or more during the 2010s (e.g., Halperin et al. 2013;
Komaromi andMajumdar 2015; Halperin et al. 2016; Chen et al.
2019a) due to increased computational capabilities which sup-
ported improved model resolution, more sophisticated physics
parameterizations, and advancements in data assimilation. While
previous studies noted interannual variability with respect to TC

genesis forecast skill, it was unclear whether such variability
existed due to differences in model configuration, large-scale
flow patterns, or genesis pathways (e.g., McTaggart-Cowan
et al. 2008, 2013; Russell et al. 2017; Whitaker and Maloney
2018; Núñez Ocasio et al. 2020, 2021; Zhan et al. 2022) from
which TC genesis events occurred, or a combination of such
factors.

Recent studies have helped quantify these impacts (e.g.,
Wang et al. 2018; Chen et al. 2019a; Teng et al. 2020; Halperin
et al. 2020; Li et al. 2020; Liang et al. 2021, 2022; Lin et al.
2023). Halperin et al. (2020) compared a homogeneous set of
(re)forecasts from three operational configurations of the
GFS model (2013–14, 2015 [v12.0.0], and 2016 [v.13.0.2]) and
found TC genesis performance over the North Atlantic (AL) and
eastern North Pacific (EP) basins generally degraded between
2013–14 and 2015, then improved in 2016 in terms of critical suc-
cess index (CSI). Chen et al. (2019a) compared a homogeneous
set of forecast initializations between the then-operational spectral
GFS and two versions of the GFS using the finite-volume cubed-
sphere (FV3) dynamical core. They found that the FV3-based
GFS configurations produced greater TC genesis success ratios
over most basins and longer TC genesis forecast lead times over
all basins compared to the spectral GFS.

Additionally, following the classification of TC genesis events
by pathway, recent studies have linked greater TC genesis predict-
ably in model forecasts to nonbaroclinic, low-level baroclinic, and
(monsoon) trough TC genesis pathways (Elsberry et al. 2014;
Wang et al. 2018; Lin et al. 2023), the monsoon shear line (Liang
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et al. 2021), strong convectively enhanced periods of the MJO
(Jiang et al. 2018), and the ability of models to predict MJO–TC
interactions (Lee et al. 2018).

Additional studies investigated model biases that led to false
alarm forecasts. For example, the GFS has a documented bias
of producing false alarm forecasts over the eastern main devel-
opment region (MDR) in the AL basin. Brammer et al. (2018)
found that the GEFS overintensified an African easterly wave
due to short-term precipitation errors, which led to increased
vorticity and vertical alignment of the circulation. There was
also evidence of strong convective feedbacks in some versions
of the GFS based on composites of false alarm forecasts over
the AL basin (Halperin et al. 2020).

The dataset of TC genesis forecasts previously verified by
the authors (Halperin et al. 2013, 2016; hereafter H13 and
H16, respectively) was used as the training dataset for the
development of the TC Logistic Guidance for Genesis
(TCLOGG; Halperin et al. 2017). The real-time distur-
bance-specific probabilistic TC genesis guidance from
TCLOGG was initially implemented for the AL and EP ba-
sins to provide guidance for the NHC’s Tropical Weather
Outlook (TWO). The present study provides an update to
H16 by examining TC genesis verification statistics during
the period 2017–22, including the Navy Global Environ-
mental Model (NAVGEM; Hogan et al. 2014) in the analysis,
and expanding the analysis spatially to include the JTWC’s
area of responsibility and temporally to include TC genesis
forecast events out to 7 days. The central North Pacific (CP)
basin is excluded from this study due to the small sample size
of TC genesis events during the study period (N 5 2). The
forecasts verified here serve as the training dataset for an en-
hanced and expanded TCLOGG product suite that provides
real-time guidance globally.

As in numerous prior studies on forecast techniques im-
provement, the scope of the current study is focused on the
background, method, statistics, and performance summary of
the approach, since the statistical results and rigor are essen-
tial for demonstrating that contribution. Therefore, we do not
focus on in-depth physical interpretation and theoretical im-
plications of the results herein, although such interpretation
will be the goal of a future study.

2. Data and methods

a. Data

A local archive of operational global model output was main-
tained during the study period for the following models: the

Global Deterministic Prediction System from Environment
and Climate Change Canada (CMC), the Integrated Fore-
casting System from the ECMWF (ECM), GFS, NAVGEM,
and the global model from the UKMO (UKM). Table 1
provides the output grid spacing for each model. While the
data were interpolated to 0.58 or 18 grids for most models,
the UKM data were available at the native model resolu-
tion. Genesis was defined as the first instance of a tropical
depression (TD) or tropical storm (TS) in the Automated
TC Forecast (ATCF; Sampson and Schrader 2000) system b
decks (i.e., best tracks; Landsea and Franklin 2013) from
the NHC (AL and EP basins) and the JTWC [western
North Pacific (WP), north Indian Ocean (IO), and Southern
Hemisphere (SH) basins]. The period of study is 2017–22
in the ATCF b decks. For the SH basin, the ATCF year
runs from 1 July through 30 June. For example, the verifica-
tion statistics for the SH during the 2022 season include
model forecasts initialized from 1 July 2021 through 30 June
2022. Storms in the best tracks that never attained TC status
were excluded from the study. Information regarding model
upgrades during the study period are available in the liter-
ature (Lin 2004; Harris and Lin 2013; Chen et al. 2019b;
McTaggart-Cowan et al. 2019; Heming and Titley 2023)
and/or from modeling centers (NOAA 2024; ECMWF 2024;
Environment and Climate Change Canada 2024; HYCOM
2024).

TABLE 1. The output grid spacing for each model used in this
study.

Model Dx Dy

CMC 18 18
ECM 0.58 0.58
GFS 0.58 0.58
NAV 0.58 0.58
UKM 0.1406258 0.093758

TABLE 2. The threshold values for each component of the TC
tracker for each model and basin.

Basin Model

850-hPa z

maximum
(31025 s21)

250–850-hPa
DZ

maximum (m)

925-hPa wind
speed

maximum
(m s21)

AL CMC 16.8 9446.4 18.5
AL ECM 27.9 9470.5 17.1
AL GFS 21.2 9462.6 17.7
AL NAV 14.3 9487.4 17.3
AL UKM 31.2 9458.1 18.7
EP CMC 16.4 9506.4 17.3
EP ECM 27.2 9498.0 16.8
EP GFS 23.1 9499.6 16.5
EP NAV 15.2 9501.8 16.2
EP UKM 27.4 9501.6 16.5
IO CMC 19.4 9527.1 18.3
IO ECM 31.4 9518.6 18.0
IO GFS 23.2 9522.3 16.6
IO NAV 13.3 9525.8 16.9
IO UKM 32.1 9540.0 18.9
SH CMC 20.2 9538.4 19.4
SH ECM 30.9 9531.9 19.4
SH GFS 26.8 9532.6 19.0
SH NAV 14.1 9538.3 17.8
SH UKM 33.3 9540.0 20.1
WP CMC 20.1 9551.0 19.6
WP ECM 30.0 9541.2 19.6
WP GFS 24.8 9540.0 18.6
WP NAV 14.0 9545.5 17.8
WP UKM 28.8 9542.0 18.6
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b. Methods

The definition of TC genesis in the model forecast output is
the same as in H13 and H16:

1) a relative minimum in mean sea level pressure (MSLP),
2) a relative maximum in 850-hPa relative vorticity that

exceeds the model-specific threshold value (explained
below) within 28 latitude and longitude of the MSLP
minimum (hereafter, “latitude and longitude” will be
omitted when referring to distance in degrees),

3) a relative maximum in 250–850-hPa thickness that ex-
ceeds the model-specific threshold value within 28 of the
MSLP minimum,

4) the 925-hPa wind speed must exceed the model-specific
wind threshold at any point within 58 of the MSLP mini-
mum, and

5) criteria 1–4 must be met for at least 24 consecutive fore-
cast hours.

The genesis time occurs at the beginning of the period
where criterion 5 is analyzed. The threshold values for maxi-
mum 850-hPa relative vorticity, 250–850-hPa thickness, and
925-hPa wind speed used in H13 and H16 were initially calcu-
lated from model analyses during the period 2008–10. These
threshold values have been updated/calculated for all basins
using model analyses during the period 2015–20. Table 2
shows the threshold values for each model and basin, which
are held constant for the entire period of this study. Intuitively,
the higher (native) resolution models typically exhibit larger
threshold values for 850-hPa relative vorticity.

FIG. 1. Performance diagram showing annual average values of the
following verificationmetrics for TC genesis forecasts over theAL basin
for the 0–168-h period: SR (x axis), POD (y axis), BIAS (dashed lines),
and CSI (gray solid lines). For a perfect forecast, all metrics would equal
unity. Eachmodel is represented by a different shape. Each year is color
coded with cool (warm) colors representing early (late) years in the
dataset. The gray markers indicate 2017–22 mean values.

FIG. 2. Mean values of (a) SR, (b) POD, and (c) CSI as a func-
tion of hour for the AL basin during the period 2017–22 for fore-
casts verified during the 0–168-h period.
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The TC tracking algorithm was run on every available model
cycle from the CMC, ECM, GFS, and NAV (UKM) during the
study period out to 192 h (168 h). Since the TC tracking algo-
rithm’s genesis definition requires that criteria 1–4 above are met

for at least 24 consecutive hours in the forecast cycle, it can iden-
tify TC genesis events out to 168 h (except 144 h for the UKM)
in the forecast cycle. Each model forecast TC genesis event is
classified as a hit or false alarm using the “OPS”1 scoring method

FIG. 3. The maximum lead time for detection of each best track TC in the AL basin. Best track TCs are ordered on the x axis chronolog-
ically by their ATCF ID number. Vertical dashed gray lines separate ATCF years. The maximum possible lead time is 168 h for all mod-
els, except 144 h for the UKM. A maximum lead time of 0 h indicates that the model entirely failed to predict genesis for a given best track
TC. The corresponding table provides the median of the maximum lead time values for each model (rows and columns), and the values in
each cell represent the p value of a Mann–Whitney U test/Wilcoxon rank-sum test comparing the median values between models. Cells
shaded in cyan represent statistically significant differences between models with 95% confidence.
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in theModel Evaluation Tools (MET) TC-Gen tool (Jensen et al.
2023). The definitions for hit and false alarm events are identical
to those in H16. However, the spatial threshold to match a model
genesis forecast to an ATCF system is 500 km in this study in-
stead of 58 in H16. Contingency table counts are calculated for
each model and for each basin, with a focus on hit, false alarm,
and miss events. A miss occurs when genesis is not forecast in a
model for a best track TC when the model initialization time is
within 168 h (except 144 h for the UKM) of best track TC gene-
sis. Correct null events are not considered given the rare occur-
rence of TC genesis and to avoid false inflation of aggregate
metrics that use it.

Bulk verification statistics, including probability of detec-
tion (POD), success ratio (SR), frequency bias (BIAS), and
CSI, were calculated and displayed using performance dia-
grams (Roebber 2009) to visually compare model perfor-
mance. These statistics are analyzed for TC genesis events
occurring within 7 days of the model initialization time to
match the current operational TWO maximum forecast pe-
riod at NHC and CPHC. From Roebber (2009),

POD 5
hits

hits 1 misses
, (1)

SR 5
hits

hits 1 false alarms
, (2)

Bias 5
POD
SR

, (3)

CSI 5
1

1
SR

1
1

POD
2 1

: (4)

The number of hits and misses is counted with respect to the
forecast lead time (i.e., the difference between the model ini-
tialization time and the best track genesis time) for the calcu-
lation of POD. In contrast, the number of hits and false
alarms is counted with respect to the forecast hour within the
model cycle (i.e., the difference between the model

initialization time and the model forecast genesis valid time)
for the calculation of SR. For all calculations, the tracker runs
out to 168 h (except 144 h for the UKM), but events are sub-
set by different temporal ranges, such as when analyzing the
SR, POD, and CSI as a function of hour in 24-h periods. This
is in contrast to H13 and H16 where the number of hits was
counted only with respect to the forecast hour because only
SR was analyzed as a function of time in the model cycle in
those studies. The maximum lead time for each best track TC
(e.g., Chen et al. 2019a; Halperin et al. 2020) was compared,
and geographic plots of hit, false alarm, and miss events were
constructed in an attempt to subjectively identify any spatial
biases within the models.

The results of this study are sensitive to the TC tracker
used. The H13 tracker was developed based on tracker attrib-
utes from Cheung and Elsberry (2002) and recommendations
fromWalsh et al. (2007). It shares some similarities with oper-
ational and other heavily used cyclone trackers (e.g., Marchok
2002; Hart 2003; Biswas et al. 2018; Magnusson et al. 2021).
While there are varying degrees of complexity, all trackers
use some combination of MSLP and/or relative vorticity to
identify the location of the cyclone. Additional criteria are
included to identify warm-core systems (based on tempera-
ture and/or thickness or vortex alignment) and confirm that
the cyclone has obtained some minimum level of intensity
or organization (e.g., MSLP gradients and/or wind speed
thresholds).

There is a known limitation with the H13 tracker’s ability
to detect TC genesis occurring poleward of 258, often due to
the thickness threshold not being met perhaps due to the
background environment being less barotropic or the forming
cyclone being closer to subtropical or the fact that TCs form-
ing poleward of 258 simply do not have much time to spin up
in the model due to a documented life cycle lag (Schenkel and
Hart 2012). A tracker with a latitude-dependent thickness
threshold was tested (not shown) but that led to a large false
alarm ratio where too many nontropical cyclones were being
detected at high latitudes. Even after considering this limita-
tion, some of the best track TCs that were not detected at
all occurred at latitudes equatorward of 258, suggesting that
other factors are influencing a model’s inability to detect a
given best track TC. Given the H13 tracker’s use in previous
studies and for generating the real-time TCLOGG guidance

FIG. 4. Counts of TC genesis events in each 18 latitude/longitude grid box from the ATCF b decks during the
2017–22 study period. Purple polygons represent basin boundaries used in this study. CP basin TC genesis events are
excluded.

1 MET contains two scoring methods. The OPS method best
aligns with the logic used to verify TWO forecasts from the NHC.
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for over a decade, we opt to continue using it for the current
study.

3. Results

a. AL basin

Performance diagrams for TC genesis forecasts over the
AL basin reveal substantial interannual variability among a
given model during the study period (Fig. 1). The relative per-
formance among all five models was similar during 2020 and
2021, unlike in other years. The impact of model configuration
changes is apparent in some cases. For example, a major
update to the atmospheric physics parameterizations in the
CMC in 2019 (McTaggart-Cowan et al. 2019) is evident when
comparing the annual verification scores between the periods
2017–18 and 2019–22. The POD decreased and SR increased
markedly in the latter period. Heming and Titley (2023)
found that an update to the UKM in May 2022 that included
ocean coupling and physics changes resulted in weaker TCs

overall, which is consistent with the notably smaller POD
from the UKM compared to the other four models during
that year. The ECM exhibits the greatest mean SR value
(0.59) but a midrange mean POD value (0.22). In contrast,
the CMC exhibits the smallest mean SR value (0.43) but the
largest POD value (0.26). These characteristics yield identical
mean CSI values (0.19) among those two models, with all
models between 0.15 (NAV) and 0.2 (UKM).

SR, POD, and CSI values generally decrease as a function
of hour for all models (Fig. 2). For most forecast hour bins,
the ECM (CMC) exhibits the greatest (smallest) SR values. The
GFS, NAV, and UKM (ECM) exhibit mean SR values . 0.5
through forecast hour 96 (120). There is a fair amount of spread
in SR values by model in the beginning of the forecast cycle
(;0.25 for the first 2 days of the forecast cycle), with a conver-
gence to SR values in the 0.22–0.29 range for forecast hours
126–144 and 0.12–0.23 range for forecast hours 150–168. Some
of this convergence to small SR values after forecast hour 120
can be attributed to the definition of a hit event in this
study: TC genesis has to occur in the ATCF b decks within

FIG. 5. Counts of TC genesis forecasts in each 18 latitude/longitude grid box from the CMC that were classified as (a) hits, (b) false alarms,
and (c) misses during the 0–168-h verification period.
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168 h of the model initialization time. Therefore, if a TC
genesis event occurs in the model fields at forecast hour 168,
but best track genesis occurs at forecast hour 174 or later,
then the forecast is necessarily classified as a false alarm.
Nevertheless, the decrease in SR values as a function of
forecast hour is expected as model error grows over time
(e.g., Lorenz 1982; Dalcher and Kalnay 1987; Royer et al.
1994).

Even at lead times within 24 h, all models exhibit POD
values , 0.5. The NAV exhibits the smallest POD at most
lead time bins. The other four models are tightly clustered
for lead times # 48 h, but the CMC has the largest POD at
lead times $ 72 h. POD values for all models are #0.1 for
lead times of 150–168 h. Note that the sample size for each
bin is the number of best track TCs in the study period
(118 for the AL) multiplied by the number of model cycles per
day less the number of model cycles where data were missing
or incomplete since a hit or miss event will be counted for
each lead time where model data are available.

The CSI values exhibit the least amount of spread among
models for a given time bin. The CMC, ECM, and UKM all

exhibit the greatest CSI value for at least one time bin. CSI val-
ues decrease from the 0.21–0.4 range at 6–24 h to the 0.03–0.07
range at 150–168 h.

Despite the observed small SR, POD, and CSI values after
forecast hour 120 for all models, the models can at times suc-
cessfully predict genesis for a given best track TC at least
1 week in advance (Fig. 3). This result is encouraging, but
overall, there is large variability in the maximum lead time
for detection among models and best track TCs. In fact,
Fig. 3 illustrates that many AL best track TCs are not de-
tected at all (i.e., markers plotted at y 5 0). This is likely
partially attributed to the characteristics of the TC tracker
used, which includes a 250–850-hPa thickness threshold
value that must be exceeded for the cyclone to be consid-
ered tropical. However, this may also be due to the models
struggling to predict TC genesis from tropical transition
pathways (e.g., McTaggart-Cowan et al. 2013). Indeed, this re-
sult is consistent with Wang et al. (2018), as they found that
the POD of TC genesis from tropical transition pathways was
smaller than nonbaroclinic and low-level baroclinic path-
ways over the AL basin using GEFS forecasts. Other

FIG. 6. As in Fig. 5, but for the ECM.
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possible explanations include the models not correctly simu-
lating the phasing of African easterly waves (AEWs) and
mesoscale convective systems or the strength of the West
African monsoon, which have been shown to be important
predictors of TC genesis from AEWs in the AL basin
(Núñez Ocasio et al. 2020, 2021, 2024; Núñez Ocasio and Rios-
Berrios 2023).

Overall, the CMC (UKM) exhibited the greatest (small-
est) median of the maximum lead time at 63 h (30 h).
When intercomparing all five models, the CMC and GFS
exhibited significantly longer medians of maximum lead
time than the UKM with 95% confidence, according to a
Mann–Whitney U test/Wilcoxon rank-sum test (e.g., Wilks
2011). Results in other basins that refer to the statistical
significance of differences in the medians of maximum lead
time will be conducted using the same test and confidence
level.

The locations of the best track genesis events and the spa-
tial extent of each basin are provided in Fig. 4. While it is in-
teresting to view the forecasts geographically, the relatively
small sample size makes it difficult to confidently assess

potential spatial biases. For example, the CMC has hit and
false alarm events distributed throughout the AL basin, partic-
ularly over the MDR and Caribbean Sea (Fig. 5). There is a
cluster of false alarm events just offshore of the southeastern
United States, but this is a result of multiple false alarm fore-
casts over time for potential tropical cyclone 10 in 2017 (i.e., a
single nondeveloping disturbance) rather than an indication of
a model bias. The greatest number of miss events occurs over
the Gulf of Mexico and poleward of 308N, with fewer miss
events across the MDR and Caribbean Sea. The ECM, which
has a smaller POD overall, tends to successfully predict TC
genesis over the MDR, Caribbean Sea, and the Gulf of Mexico
(Fig. 6). The model also produced false alarm cases over the
MDR, but there is a dearth of false alarm forecasts over the
Caribbean Sea and Gulf of Mexico, suggesting that a fore-
caster may have increased confidence in development pre-
dicted in those regions. Relatively few forecasts (hits or false
alarms) occurred poleward of 208N over the Atlantic Ocean,
which is where the most miss events are identified, although
there are TC genesis events that go undetected throughout the
basin. The GFS produces numerous TC genesis forecasts over

FIG. 7. As in Fig. 5, but for the GFS.
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the MDR and western Caribbean Sea (Fig. 7). While most of
the regions where genesis is predicted contain a mix of hit and
false alarm events, the events in the southwestern Caribbean
Sea near the coast of Central America from Nicaragua to Pan-
ama are mostly false alarms. These false alarms often occur
during the early and late portions of the hurricane season (not
shown) and appear to be associated with the Central Ameri-
can gyre (Papin et al. 2017). The NAV exhibits a pattern simi-
lar to the GFS but with fewer overall forecast events (Fig. 8).
Most forecast events over the Gulf of Mexico are hits. The dis-
tribution of UKM forecast genesis events (Fig. 9) is similar to
that of the ECM, with false alarm events mostly over the
MDR. Forecast genesis events occurring over the western Ca-
ribbean Sea and Gulf of Mexico tend to develop into best
track TCs. Miss events occur throughout the basin.

b. EP basin

The forecast verification statistics are better overall in the
EP basin compared to the AL basin (Fig. 10). The mean POD
values over the EP basin are greater than those over the AL
basin for all models. In addition, the mean SR values over the

EP basin are greater (less) than those over the AL basin for
the CMC, ECM, and GFS (UKM). The resulting mean CSI
values are between 0.2 (NAV) and 0.31 (ECM). All models
except the GFS exhibited their highest SR values in 2022. De-
spite several different GFS configurations during the study
period, including a new dynamical core in 2019 (Lin 2004;
Harris and Lin 2013; Chen et al. 2019b), there is relatively lit-
tle interannual variability in GFS SR values in the EP basin.
Instead, the GFS interannual variability is largely in terms of
POD. The CMC model configuration change in 2019 is also
evident in the EP basin verification statistics, with recent years
exhibiting larger SR values and smaller POD values. Overall,
there is a fair amount of spread in the verification metrics
among the five models for any given year.

As in the AL basin, SR, POD, and CSI decrease as a func-
tion of hour (Fig. 11), with SR values . 0.5 for the GFS and
UKM through forecast hour 96. The ECM and NAV models
exhibit SR values . 0.5 for longer in the forecast cycle than
over the AL basin, through forecast hour 144 and 120, respec-
tively. The observed convergence to small SR values among
all models over the AL basin is not found over the EP basin.

FIG. 8. As in Fig. 5, but for the NAV.
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In fact, the ECM and NAV models exhibit SR values 0.18–
0.25 larger at days 6 and 7 over the EP compared to the AL
basin.

The POD is larger over the EP than the AL. Even so,
POD values . 0.5 occur only for the CMC, ECM, and GFS
for lead times out to 48 h. The GFS (NAV) exhibits the larg-
est (smallest) POD at most lead-time bins. The ECM and
GFS CSI values are .0.5 out to 24 h, with the ECM main-
taining the greatest value relative to all models for all but
the 126–144-h bin. The NAV CSI values are the smallest
among the models, largely due to its small POD over the EP
basin.

Similar to the results from the AL basin, the models were
able to detect the formation of some best track TCs up to
1 week in advance, but there was a large degree of variabil-
ity among models and TCs (Fig. 12). Consistent with the
overall larger POD over the EP compared to the AL basin,
all five models exhibited greater medians of maximum lead
time. Similar to the AL basin, the CMC and GFS (UKM)
exhibited the largest (smallest) median of maximum lead
time over the EP basin. The CMC and GFS exhibited

significantly longer medians of maximum lead time than the
NAV and UKM, while the ECM also exhibited a signifi-
cantly longer median of maximum lead time than the UKM.

All of the models produce numerous hit events in the area
between 108 and 208N and between 958 and 1208W (Figs. 5–9).
However, the CMC, GFS, and UKM exhibit a relative maxi-
mum of false alarm events east of ;958W, just south of the
Gulf of Tehuantepec and west of the Gulf of Papagayo. We
speculate that these models may overpredict the surface rela-
tive vorticity generation associated with gap wind events in
this region (Zehnder 1991; Zehnder and Gall 1991; Mozer
and Zehnder 1996; Zehnder et al. 1999; Molinari et al. 2000;
Holbach and Bourassa 2014), leading to erroneous predic-
tions of TC genesis. It is also possible that the models are not
correctly simulating the local generation of easterly waves
(e.g., Rydbeck et al. 2017; Whitaker and Maloney 2020) or
the relationships between MJO and Caribbean low-level jet
phase/index and large-scale conditions (un)favorable for the
development and intensification of easterly waves into TCs in
this region (e.g., Molinari and Vollaro 2000; Serra et al. 2010;
Whitaker and Maloney 2018).

FIG. 9. As in Fig. 5, but for the UKM.
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c. IO basin

The forecast verification metrics over the IO basin are
mixed, with some of the greatest mean POD values but the
smallest mean SR values of any basin (Fig. 13). Mean POD
ranges from 0.39 (GFS and UKM) to 0.43 (ECM), while
mean SR ranges from 0.28 (NAV) to 0.36 (ECM). With the
larger POD, the models exhibit larger CSI values over the IO
than over the AL basin. The relative ranking of the CMC
(second for all metrics) is better over the IO than over the
AL and EP basins. Despite the considerable interannual vari-
ation and model-to-model differences, the mean scores are
tightly clustered for all models with SR, POD, and CSI values
only exhibiting a range of 0.08, 0.04, and 0.04, respectively.
Sample sizes across the IO basin are considerably smaller
than in the other basins, so results for the IO basin should be
interpreted cautiously.

The SR values peak for all models in the forecast hour
30–48 period, perhaps indicating that there are issues with
model initialization in this basin (Fig. 14). SR values are ,0.5
for all models and time periods except the CMC and GFS at
forecast hours 30–48. The SR values decrease to between 0.1
and 0.2 at forecast hours 150–168. The POD evolution over
time is quite consistent among the models, with no single
model performing best or worst at all lead times. While the
POD values start notably higher over the IO basin (.0.6)
compared to the AL and EP basins, the POD drops off to ,0.2
for the longest lead times, which is consistent with the EP basin.
The largest variance in CSI scores among the models occurs
in the 6–24-h time bin with CSI peaking in the 30–48-h bin,
following the evolution of the SR values.

The relatively large POD values over the IO basin result in
relatively high medians of the maximum lead time for each
best track TC, with some TCs detected 1 week in advance

FIG. 10. As in Fig. 1, but for the EP basin.

FIG. 11. As in Fig. 2, but for the EP basin.
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(Fig. 15). The UKM stands out with the relatively smallest
median of maximum lead time (63 h), which is significantly
different than the medians of the maximum lead time for the
ECM, GFS, and NAV.

All of the models exhibit a relative maximum in false alarm
forecasts just offshore of Bangladesh, centered near 208N,
908E (Figs. 5–9). The spatial distribution of these false alarm
events is in good agreement with the climatology of monsoon
low pressure and monsoon depression genesis from Hurley

and Boos (2015, their Fig. 2), suggesting that some of these
events may have verified as monsoon lows that did not in-
tensify into TCs. The ECM, NAV, and UKM even produce
TC genesis forecasts over northern India. Given the poten-
tial for the TC tracker criteria used here to be met over
small landmasses (e.g., islands), we chose not to include a
land/ocean mask in this study. The models generally exhibit
fewer miss events over the Bay of Bengal compared to the
Arabian Sea.

FIG. 12. As in Fig. 3, but for the EP basin.
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d. SH basin

Probability of detection values over the SH basin were on
average comparable to the IO basin, with values $ 0.4 for
most models (Fig. 16). With some exceptions, POD values
peaked during 2018–20 for all models. SR values were larger
over the SH than the IO and in the 0.32–0.52 range (except
for the CMC), which yields CSI values in the 0.19–0.29 range.
The ECM (CMC) exhibits the largest (smallest) SR and CSI
values. The relative ranking of the UKM is higher over the
SH compared to the AL, EP, and IO basins.

Similar to the IO basin, the SR values peak at forecast
hours 30–48 over the SH basin, except for the CMC which is
nearly steady between forecast hours 6 and 48 (Fig. 17). The
GFS and NAV SR values are quite similar throughout the pe-
riod. The ECM exhibits SR values. 0.5 during forecast hours
30–120. Its SR value of 0.55 at forecast hours 102–120 is 0.22
larger than the next best model at that time (UKM). The
POD values show a nearly constant rate of decline from
values. 0.7 (except the NAV) at the 6–24-h lead times to the
0.08–0.15 range at the 150–168-h lead times. Similar to the IO
basin, POD values remained $0.45 for all models at lead
times out to 72 h. The CSI values peak at the 30–48-h time
bin, following the SR evolution. The ECM exhibits the great-
est CSI values for most time bins, mainly a result of its large
SR scores compared to the other models.

Consistent with large POD values, all models exhibit rela-
tively long medians of maximum lead time over the SH basin,
with the CMC, GFS, and NAV all near 5 days and the
ECM and UKM near 4 days (Fig. 18). More best track TCs
went completely undetected during 2021–22 compared to
prior years. In particular, the UKM missed several best
track TCs. The CMC, GFS, and NAV exhibit significantly
longer medians of maximum lead time than the ECM and
UKM.

FIG. 13. As in Fig. 1, but for the IO basin.

FIG. 14. As in Fig. 2, but for the IO basin.
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The CMC, GFS, and NAV produce a relative maximum of
false alarms over the Gulf of Carpentaria, with the GFS also
producing numerous false alarms over the Joseph Bonaparte
Gulf (Figs. 5, 7, and 8). Another comparison with Hurley
and Boos (2015, their Fig. 5) suggests that some of these
false alarm events may be monsoon lows or depressions
that do not intensify into TCs. Elsewhere, the CMC (GFS)
overpredicts genesis over the southern Indian Ocean
(South Pacific Ocean). The ECM and UKM, which have

the largest mean SR values over the SH basin, do not
have any discernible areas of persistent erroneous TC gen-
esis, except for a few events that occurred over Australia
(Figs. 6 and 9).

e. WP basin

TC genesis forecasts for the WP basin exhibit mean CSI
values in the 0.21–0.27 range (Fig. 19). The same general com-
parison observed in other basins remains true for the SR, with

FIG. 15. As in Fig. 3, but for the IO basin.
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the ECM (CMC) exhibiting the largest (smallest) mean val-
ues. Mean SR values are most comparable to the AL basin.
Meanwhile, the GFS (ECM) exhibits the greatest (smallest)
POD, with values most similar to the EP basin. Similar to the
SH basin, POD appears to have decreased since 2021 but only
for the CMC, ECM, and UKMmodels.

The expected pattern of SR generally decreasing with
forecast hour is observed in the WP basin (Fig. 20). The
models tend to fall into two groups, with a very similar evo-
lution for each member in a group: the ECM and UKM SR
values peak at forecast hour 30–48, with generally larger SR
values overall, and the CMC, GFS, and NAV with generally
smaller SR values. The CMC, GFS, and NAV (ECM and
UKM) models exhibit SR values $ 0.5 through forecast
hour 72 (120). As in other basins, the ECM generally ex-
hibits the greatest SR values throughout the forecast period.
There are no distinct groups in terms of POD and CSI val-
ues. The GFS exhibits the greatest POD at all lead times
except 150–168 h, while the ECM exhibits the smallest
POD at all lead times after 48 h. POD values . 0.45 occur
out to lead times of 48 h, which is 24 h less than in the IO
and SH basins. The CSI values are tightly clustered and de-
crease from .0.4 at the 6–24-h time bin to ,0.1 at the 150–
168-h time bin.

As in the other basins, some best track TCs were predicted
up to 1 week in advance (Fig. 21). The medians of maximum
lead time are between those of the AL (shortest lead times)
and SH (largest lead times) basins. Consistent with its rela-
tively larger POD values over the WP basin, the GFS exhib-
its the greatest median of maximum lead time, and that
value (108 h) is significantly longer than those of the CMC,
ECM, and UKM. The CMC and NAV also exhibit signifi-
cantly longer medians of maximum lead time than the ECM
and UKM.

FIG. 16. As in Fig. 1, but for the SH basin.

FIG. 17. As in Fig. 2, but for the SH basin.

H A L P ER I N AND HART 1139JULY 2025

Brought to you by NOAA Library | Unauthenticated | Downloaded 11/14/25 06:29 PM UTC



All models are generally most cyclogenetic over the South
China Sea and Philippine Sea (Figs. 5–9), coincident with the
climatological relative maximum in monsoon depression
events (Hurley and Boos 2015). The ECM and UKM pro-
duce relatively few false alarm forecasts over these regions,
which is unsurprising given their relatively larger SR values
compared to the other models. In contrast, the GFS produces
numerous false alarms over these regions, while the relative
maximum of false alarms occurs over the Philippine Sea for the
CMC and NAV.

4. Summary and conclusions

This study provided an update and expansion of the training
dataset used to produce the Tropical Cyclone Logistic Guid-
ance for Genesis (TCLOGG) disturbance-specific, probabilistic
forecasts. Real-time guidance from TCLOGG was initially
available in 2014 for the AL and EP basins. The guidance was
expanded to the CP basin in 2017 and globally in 2023.

In this study, tropical cyclone (TC) genesis events were de-
tected in model forecast fields from the CMC, ECM, GFS,

FIG. 18. As in Fig. 3, but for the SH basin.
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NAV, and UKM global models and verified against observa-
tions from the NHC and JTWC during the period 2017–22.
The TC tracker used here is the same as that used in H13 and
H16, which has some similarities to operational TC and other
heavily used trackers (e.g., Marchok 2002; Hart 2003; Biswas
et al. 2018; Magnusson et al. 2021). Therefore, results found
here are tracker dependent. The verification period of 7 days
in this study was chosen to align with the NHC’s and CPHC’s
maximum forecast period in the operational TWO product.
Contingency table statistics were computed for each model,
year, and basin.

Results show large interannual variability within a single
model and model-to-model variability for a given year and ba-
sin. The model rankings are often dependent on year and
basin, making a clear “winner” impossible to determine. Nev-
ertheless, a few themes did emerge from this study: 1) the
ECM exhibited the largest 2017–22 mean success ratio (SR)
value globally and in each individual basin (Fig. 22); 2) a large
SR value often comes at the expense of a smaller probability
of detection (POD); 3) the SR–POD trade-off yields mean
critical success index (CSI) values no higher than 0.35 for any
individual model and basin and less than 0.3 when averaged
globally for each model during 2017–22; 4) SR, POD, and CSI
values unsurprisingly generally decrease as hour increases,
but the rate of change as a function of hour can be quite dif-
ferent among the models for a given basin; and 5) while the
models can detect some best track TCs 1 week in advance,
there are also numerous best track TCs whose genesis
goes completely undetected by the models, which may be
due to the characteristics of the TC tracker used in this
study and/or the (in)ability of the models to predict TC
genesis from certain genesis pathways. Overall, while
many of the verification statistics indicated that global
models continue to be a useful source of TC genesis

FIG. 20. As in Fig. 2, but for the WP basin.

FIG. 19. As in Fig. 1, but for the WP basin.
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guidance, this study affirms the conclusion of Lin et al.
(2023) that there remains room for additional improve-
ments. Verifying TC genesis forecasts globally by genesis
pathway may help provide insight regarding where such
improvements are most needed. The forecasts verified
here were used as the updated training dataset for post-
processed guidance from TCLOGG. Future studies will

describe the enhancements and extensions of the
TCLOGG product suite since 2017.
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