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ABSTRACT

Satellite nitrogen dioxide (NO3) datasets are increasingly used to evaluate nitrogen oxides (NOx) emissions inventories. Such studies often use a chemical transport
model or a complex statistical framework involving an assumed NO; lifetime, which can complicate the comparison. Here, we apply a novel method to compare
inventory-based NOx emissions directly to Tropospheric Monitoring Instrument (TROPOMI) NO; data without a chemical transport model by only using mea-
surements during stagnant wind days. We oversample the satellite data over multiple years filtering to include data when near-surface wind speeds are <3.2 m/s, and
then use this filtered dataset to evaluate the spatial representativeness of the 1 x 1 km? inventory-based Neighborhood Emission Mapping Operation (NEMO). In nine
out of ten US cities evaluated, spatial r’-values between NEMO NOx emissions and TROPOMI NO, exceeded 0.73. This suggests that the 108 spatial surrogates used
by NEMO to spatially disaggregate NOx emissions from the U.S. county-level (5-200 km length scale) to the neighborhood level (~1 km length scale) are generally
appropriate. However, areas with dense intermodal facilities, such as railyards and warehouses, appear to underestimate NOx emissions. Additionally, we find some
evidence that NOx emissions in wealthy communities appear to be overestimated by the standard surrogates used to disaggregate the inventory. This work provides a
basis for the direct use of satellite data for evaluating the spatial patterns of urban NOx emissions inventories.

1. Introduction

Nitrogen dioxide (NOy) is an air pollutant that adversely affects the
human respiratory system (Health Effects Institute, 2022; Khreis et al.,
2017) and leads to premature mortality (Burnett et al., 2004; He et al.,
2020). NO; is also an important precursor for ozone and fine particu-
lates, which also have serious health impacts. In urban areas, the ma-
jority of ambient NO; originates from NOx emissions (=NO+NO3; most
NOx is emitted as NO which rapidly cycles to NO3) during high-
temperature fossil fuel combustion (Crippa et al., 2021). In many cir-
cumstances, end-of-pipe controls such as automotive catalytic con-
verters (Koltsakis and Stamatelos, 1997) and selective catalytic
reduction (Busca et al., 1998) can reduce the amount of NOx emitted
from engines and boilers by 70-99% but these technologies do not
recover 100% of the NOx generation during combustion. Because of this,
NO5 accumulates in cities and most urban areas have NOy concentra-
tions that exceed the World Health Organization guideline of 5.3 ppb for
an annual average (Anenberg et al., 2022).

To cost-effectively control NOs, it is important to precisely know
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where NO, originates in cities. Mapping NOx emissions typically re-
quires selecting emissions rates or factors for each source and distrib-
uting the sources using spatial surrogates; both steps introduce
considerable uncertainty into the estimates. While the types of activities
that emit NOx are known well (e.g., vehicles, fossil-fuel-fired power
plants, etc.), not all vehicles or power plants have identical NOx emis-
sions and the magnitude of NOx emissions from any source can vary
dramatically by geographic region (Crippa et al., 2018; Janssens-
Maenhout et al., 2015; McDuffie et al., 2020). Typically, NOx emissions
for an area are estimated by summing up the amount of fuel burned in
that area and using sector-specific emissions factors or rates (McDuffie
et al., 2020); for example, there are different emissions for vehicles
versus industrial boilers, given the same mass of fuel burned. In some
countries, such as India (Guttikunda et al., 2019; Saw et al., 2021), ac-
curate data on fossil fuel consumption and sector emission rates are
difficult to acquire. In other countries, fossil fuel consumption and sector
emission rates can be accurate for national (~1000 km) or regional
(~100 km) spatial scales, but additional information is needed to esti-
mate NOx emissions rates at neighborhood (~1 km) scales. Spatial
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surrogates are used to distribute county-level totals into sub-county
levels, such as 12 km or 4 km grids (Eyth et al., 2006). For example,
one spatial surrogate is the location of a highway; NOx emissions for
roadways are typically allocated based on average miles traveled by a
vehicle and the total number and type of vehicles on that type of road.
For a regional or sub-regional scale, this assumption is often satisfactory,
but much more detailed information is needed when trying to downscale
a county-level inventory to individual roadways. Therefore, some of the
assumptions used to spatially allocate NOx emissions on a relatively
coarse grid (~12 km) break down when trying to estimate NOx emis-
sions at the neighborhood spatial scale (~1 km). An independent way to
map NOx emissions — to discern when the original assumptions used to
develop urban area NOx emissions are valid — would be helpful to better
understand the uncertainty in the originally calculated NOx emissions.
Remote sensing of air pollutants in urban areas can sometimes fill this
role (Beirle et al., 2011, 2019; Finch et al., 2022; Goldberg et al., 2019a;
Goldberg et al., 2019b; F. Liu et al., 2017; Montgomery et al., 2023; Pope
et al., 2022; Xue et al., 2022).

NO; can be observed by remote sensing instruments due to its unique
spectroscopic features within the 405-465 nm wavelength region
(Vandaele et al.,, 1998). The Tropospheric Monitoring Instrument
(TROPOMI) (Veefkind et al., 2012), launched in October 2017 aboard
the Sentinel 5 Precursor satellite, has been measuring column amounts
of NO3 pollution at 5.5 x 3.5 km? spatial resolution (van Geffen, 2016).
Because of this higher spatial resolution over predecessor instruments,
such as GOME-2 (40 x 40 km? at nadir) (Richter et al., 201 1), and OMI
(24 x 13 km? at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily
satellite pixel measurements within a typical city (~1000 km?) during
clear skies; prior instruments only have 1-3 daily measurements within
the borders of each city. This increased measurement capacity within a
city allows us to discern spatial variability undetectable by previous
instruments. Further, the data from the satellite instruments can be
downscaled using a process called oversampling (de Foy et al., 2009;
Sun et al., 2018), which re-grids the irregular satellite pixels to a stan-
dard and higher spatial resolution. The spatial resolution is thus effec-
tively increased at the expense of the temporal resolution.

The goal of this project is to understand whether oversampled sat-
ellite data can directly inform estimated spatial heterogeneities of NOx
emissions on a neighborhood scale, without relying on a chemical
transport model (Canty et al., 2015; East et al., 2022; Li et al., 2021) or
complex statistical inversion technique that involves assuming an un-
certain NOs, lifetime to derive NOx emissions (Beirle et al., 2011, 2019,
2023; Chen et al., 2023; Goldberg et al., 2019b; F. Liu et al., 2022;
Verstraeten et al., 2018). We oversample the satellite data over multiple
years and filter to use data on stagnant wind days only — when the
vertical overhead column should best capture the local emission influ-
ence — and then use this satellite average to evaluate the spatial repre-
sentativeness of the 1 x 1 km? inventory-based Neighborhood Emission
Mapping Operation (NEMO). This work is driven by recent advance-
ments of both satellite instruments (oversampled pixels at 0.01° x 0.01°
resolution with improved signal-to-noise) and inventories (1-km spatial
resolution inventories across the U.S). As a bridge, we compare NEMO
for selected cities to the Emissions Database for Global Atmospheric
Research (EDGAR) inventory often used for global analyses, and NEMO
to the satellite annual average with varying wind filters, in order to
determine the additional utility of both having a high spatial resolution
inventory and filtering the satellite data based on wind speed. The
ability to directly compare satellite data to inventories without the need
for complex modeling would enable air quality planners to evaluate and
improve the NOx inventories they use to support air pollution policy
decisions.
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2. Methods
2.1. TROPOMI

TROPOMI was launched by the European Space Agency (ESA) for the
European Union’s Copernicus S5P satellite mission on October 13, 2017.
Data from the instrument became available on April 30, 2018, after an
approximately 6-month calibration period. The satellite follows a sun-
synchronous, low-earth (825 km) orbit with an equator overpass time
of approximately 13:30 local solar time. TROPOMI measures total col-
umn amounts of several trace gases in the Ultraviolet-Visible-Near
Infrared (UV-VIS-NIR) (e.g., NO; and HCHO) and Shortwave Infrared
(SWIR) (e.g., CO) spectral regions (Veefkind et al., 2012). At nadir, pixel
sizes are 3.5 x 7 km? (modified to 3.5 x 5.5 km? on August 6,2019) with
the edges having slightly larger pixels sizes (~14 km wide) across a
2600 km swath, equating to 450 rows (van Geffen et al., 2020). The
instrument observes the swath approximately once every second and
orbits the Earth in about 100 min, resulting in daily global coverage.

NOs slant column densities are derived from radiance measurements
in the 405-465 nm spectral window of the UV-VIS-NIR spectrometer
(van Geffen et al, 2021). Satellite instruments observe NO; by
comparing observed spectra with a reference spectrum to derive the
amount of NO; in the atmosphere between the instrument and the sur-
face; this technique is called differential optical absorption spectroscopy
(DOAS) (Platt, 1994). Tropospheric vertical column density data, which
represent the vertically integrated number of NO2 molecules per unit
area between the surface and the tropopause, are then calculated by
subtracting the stratospheric portion and then converting the tropo-
spheric slant column to a vertical column using an air mass factor (AMF)
(Boersma et al., 2011). The AMF is a unitless quantity used to convert
the slant column into a vertical column and is a function of the satellite
viewing angles, solar angles, the effective cloud radiance fraction and
pressure, the vertical profile shape of NO; provided by a chemical
transport model simulation, and the surface reflectivity (Lorente et al.,
2017; Palmer et al., 2001). The operational AMF calculation does not
explicitly account for aerosol absorption effects, which are accounted for
in the effective cloud radiance fraction (Eskes et al., 2023).

For our analysis we use the TROPOMI NOy v2.4 algorithm: re-
processed (May 1, 2018 — July 25, 2022) and offline (July 26, 2022 —
April 30, 2023). Updates from v1.3 to v2.3.1 involved modifications to
the cloud retrieval scheme (decrease in cloud pressure), surface albedo
(to avoid negative cloud fractions), and quality flags (better screening of
snow). The net result of the change in tropospheric vertical column NO9
from v1.3 to v2.3.1 has been reported to be a + 13% increase for cloud-
free scenes that varies spatially and is higher in polluted areas (van
Geffen et al., 2021). The update from v2.3.1 to v2.4 makes use of a
0.125° x 0.125° Directional Lambertian Equivalent Reflectivity (DLER)
climatology derived from TROPOMI observations which replaces an old
0.5° x 0.5° Lambertian Equivalent Reflectivity (LER) dataset used in
v2.3.1 (Eskes et al., 2023). The TROPOMI NO; v.2.4 product has a
documented median low bias of —34.8% in moderately polluted loca-
tions (3-14 x 10° molec/cm?) when compared to a MAX-DOAS
network (Lambert et al., 2023). Prior work has demonstrated a strong
correlation between TROPOMI NO, column measurements and NOo
surface concentrations in urban areas (Demetillo et al., 2020; Dressel
et al., 2022; Goldberg et al., 2021a).

For the domain-wide comparisons, we screened TROPOMI pixels for
quality assurance flag values >0.75 for the period between May 2018 —
April 2023, and excluding a “COVID” period which we defined as March
10, 2020 until March 9, 2021. This allowed for 4 full years of over-
sampled NO, data using a consistent algorithm. Single pixel TROPOMI
NO, uncertainties are assumed to be between 30 and 60% (Liu et al.,
2021). Oversampled NO, measurements over long timeframes (100s of
measurements) are assumed to have a much smaller amount of uncer-
tainty. Boersma et al. (2018) suggest that oversampled values have 39%
of a single-pixel uncertainty due to potential errors in the surface albedo,
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clouds, a priori NO, profile, and aerosols, resulting in an uncertainty
range of 12-23%. The value 39% calculated by Boersma et al. (2018)
was for OMI, and it is reasonable to think this value would be lower for
TROPOMI given recent instrument and algorithm advancements.

For comparison with the annual NOx emissions inventory, we grid-
ded TROPOMI data to a 0.01° x 0.01° resolution, to create a custom
“Level-3” data product (Goldberg et al., 2021a). This “Level 3” satellite
product was then averaged to the zip code level (1-50 km spatial scales
depending on region) for comparison with the NOx emissions inventory.

2.2. ERAS re-analysis

We use the ERAS re-analysis (Hersbach et al., 2020) of 100-m wind
speed and direction between 16 and 21 UTC, which approximates the
overpass time of TROPOMI over the continental United States. The 100-
m vertical level is a standard output of the ERA-5 re-analysis. The 100-m
wind speeds have a strong linear correlation with other options to filter
wind speeds, such as 10-m and 0-500 m average (Sun et al., 2021). After
averaging the wind estimates from these six hours together, we match
the TROPOMI NO, satellite data to the ERA5 wind data, and filter to
only use satellite data when the 100-m wind speed is <3.2 m-s~!. The
ERADS re-analysis data products are reported at a 0.25° x 0.25° spatial
resolution and the wind speed is interpolated, using bilinear interpola-
tion, to the 0.01° x 0.01° oversampled TROPOMI NO;, grid.

2.3. NEMO U.S. inventory-based NOx emissions

The Neighborhood Emission Mapping Operation (NEMO)is a 1-km
anthropogenic emission dataset in the United States (Ma and Tong,
2022). This inventory uses the spatial surrogates recommended by the
U.S. EPA (Eyth et al., 2006) — 108 spatial surrogates in total — to
downscale the emissions from the county-level to a 1-km grid. Emissions
are the 2017 annual total from the U.S. EPA National Emissions In-
ventory (NEI). The 2020 NEI incorporates emission changes due to the
COVID lockdowns and is not representative of the 2018-2023 timeframe
used in this analysis. Any projection of NOx emissions from 2017 to a
future year, would rely on some type of assumption and would add
additional uncertainty, and is therefore also not appropriate for this
analysis. For comparison with the gridded satellite data, the NEMO
inventory-based NOx emissions was averaged to the zip code level
(~1-100 km? spatial scales depending on region) so that both are at the
same spatial scale. Within urban areas, NEMO’s high-resolution aspect is
largely preserved since many zip codes are <10 km?.

2.4. EDGAR NOx inventory-based emissions

For comparison to NEMO, we use EDGAR version 6.1 inventory for
NOx (Joint Research Centre, 2022). This global inventory provides
annual NOx emissions at 0.1° x 0.1° spatial resolution from all
anthropogenic activities, excluding large scale biomass burning. For the
energy related sectors, the activity data are primarily based on statistics
from the International Energy Agency. Globally, anthropogenic NOx

New York City
‘

New York City
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emissions have been relatively constant since 2012 (McDuffie et al.,
2020) and in urban areas, they are dropping at a slow rate of 0-4% per
year (Goldberg et al., 2021b). For more information on how the EDGAR
inventory is compiled, see (Crippa et al., 2018) with updates for version
6.1 noted here: https://edgar.jrc.ec.europa.eu/index.php/dataset_ap61.
Fig. 1 compares the EDGAR inventory to the NEMO inventory in the
New York City metropolitan area. The EDGAR inventory at 0.1° x 0.1° is
similar to the spatial resolution of a regional chemical transport model
simulation at 12 x 12 km?, and the inventory at 0.5° x 0.5° is similar to
the spatial resolution of a global chemical transport model simulation.

2.5. Urban area boundaries

For our ten U.S. focus cities, we define cities using metropolitan
statistical areas (MSAs) established by the Office of Management and
Budget and used by the U.S. Census Bureau (https://www.whitehouse.
gov/wp-content/uploads/2020/03/Bulletin-20-01.pdf). The ten focus
cities were selected based on a combination of MSA population size (all
are within the top 20 in the U-S) and geographic diversity (e.g., Denver
selected over Philadelphia). All zip codes that are located within
counties belonging to a particular MSA are used in our analysis. MSAs
encompass not only the densely populated urban centers but also
outlying suburban areas. For example, the Washington DC MSA includes
not only the District of Columbia but also counties in Virginia, Maryland,
and West Virginia. When comparing TROPOMI NO, to NEMO NOx
emissions for the U.S. portion of our study, we transform these datasets
from their native ~1 km? resolution to zip code averages by averaging
all grid cell centroids contained within a given zip code. If zip codes are
too small to contain coincident grid cells, we inverse distance weight
using the surrounding grid cells following Kerr et al. (2021).

3. Results

3.1. Comparison between TROPOMI NO, and the gridded emissions
inventories

To compare TROPOMI and NEMO, three additional processing steps
are needed to allow a direct comparison. The first step involves filtering
satellite data to only include days with low wind speeds. Observed
column NO; on days with low wind speeds correlate strongly with urban
NOy emissions (Lorente et al., 2019). We select satellite data only on
days with 100-m wind speeds <3.2 m-s~! (and effectively cloud-free
using a quality assurance value of 0.75 or greater). Stagnant airmasses
are defined as airmasses with 10-m wind speeds <3.2 m/s (https://
www.arl.noaa.gov/documents/reports/atlas.pdf). Here we use the
100-m wind speed in lieu of the 10-m wind speed, which likely has a
minimal effect for this analysis. During the May 2018 - April 2023
period, 11-51% of the days per urban area (min: 11% in Chicago, max:
51% in Phoenix) (Fig. 2) have satellite measurements collocated in time
with slow wind speeds, down from approximately 46-82% of all days (i.
e., we do not apply a wind speed filter).

We apply this filter because NO3 plume outflow from upwind sources

2017 EDGAR NO| New York City

1000
I
-100

|10
1
0

Fig. 1. Annual 2017 NOy emissions inventories: (a) NEMO (1 x 1 km?), (b) EDGAR (0.1° x 0.1°), and (c) EDGAR aggregated-up (0.5° x 0.5°).
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Fig. 2. Percentage of valid TROPOMI measurements using two different filters: (a) filtering for days with the QA value exceeding 0.75 and (b) filtering for days with

the ga value exceeding 0.75 and 100-m wind speeds below 3.2 m/s.

on windy days (> 3.2 m/s) can create offsets between surface NOx
emissions and observed NO5 column abundances by the satellite. In
Fig. 3, we demonstrate how this filtering affects oversampled NO3 col-
umns in the Chicago metropolitan area. On days with 100-m wind
speeds <3.2 m/s, the NO3 pollution generally accumulates over land and
within the boundaries of Cook County (>5 million residents). On days
with 100-m wind speeds >3.2 m/s the NO3 pollution spreads well out
into Lake Michigan, and the NO, plume originating from the urban area
is more homogenous. The differences in the urban NO, spatial

heterogeneities between high- and low-wind speed days — while mostly
driven by dispersion - could also be partially driven by differences in
localized NO; lifetimes within the city. For polluted conditions (NOy
columns > ~ 5 x 10'° molec/cm?), there is a direct relationship be-
tween NO; lifetime and NO, concentrations, (Laughner and Cohen,
2019). Therefore as NO, concentrations increase on stagnant wind days
a secondary effect of a longer NO, lifetime could cause additional
accumulation.

In Fig. 3, we also show how a full-year and summer-only (June, July,

16
TROPOMI NO,| f Chicago TROPOMI NO,
Max: 7.6 x 10° Max: 11.7 x 10° <3.2 /s winds
Mean: 3.1 x 10” Mean: 3.4 x 10” .
1
2
10*molec/cm’ i 1
16
TROPOMI NO,| f Chicago TROPOMI NO,
Max: 6.7 x 10® >3.2 m/s winds Max: 9.1 x 10° <3.2 m/s winds
Mea Mean: 2.6 x 10* Summer only 8
4
2

10" molec/cm’

10" molec/cm 1

Fig. 3. The oversampled May 2018 — April 2023 average of TROPOMI NO; excluding a “COVID” period of March 10, 2020 — March 9, 2021 for various wind and
seasonal conditions: (a) all winds and all seasons, (b) stagnant winds <3.2 m/s and all seasons, (c) windy >3.2 m/s and all seasons, and (d) stagnant winds <3.2 m/s
and summer (June, July, August).
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August) NO, oversampled average differ (panel b vs panel d). During
summer, the NO;, lifetime is shorter due to its faster photolytic dissoci-
ation. As a result, we see that NO, values are smaller during the summer
months when compared to a full year average. Also, NOy photochem-
istry within the urban area is relatively similar amongst an average of
cloud-free summer-only data compared to a dataset mixing summer and
winter measurements. For these reasons, measurements during the
summer time could be preferable when intercomparing with the NOx
emissions inventory.

However, there are some downsides to using summer-only data.
First, lake/sea/ocean/mountain breezes tend to be stronger on summer
days with weak synoptic winds, so filtering for low wind speeds might
have a biasing effect that is difficult to control for. Fig. 3 suggests this
bias is not large in the Chicago area as the NO3 plume is not displaced
very far inland during the 1:30 PM overpass time; this effect may be
larger when using TEMPO data at later hours in the day (Geddes et al.,
2021; Wang et al., 2023). Second, limiting to summer-only data reduces
the available data in our ten urban areas by about 55-74% as seen in
Fig. 4. Using 55-74% fewer measurements in the analysis yields larger
uncertainties, since random measurement noise may not be able to be
sufficiently averaged out. Third, as denoted in a comparison between the
full year and summer-only averages (panel b vs panel d), there is not a
drastic difference in the NOy spatial gradients when averaging over
these two different timeframes. For these reasons, our analysis focuses
on year-round data.

Finally, we average both the satellite NO2 and NOx inventory-based
datasets to the zip code level to account for population, for NOx plume
conversion to NO,, and for better TROPOMI sensitivity in urban areas at
very fine spatial scales (Goldberg et al., 2022). Although zip codes have
varying populations, aggregating to zip code will roughly normalize for
population. Zip codes have smaller spatial scales within the center of
cities and larger spatial scales in the suburban and peri-urban areas.
Since NOx emissions can have significant spatial variation within cities
and because the NOy background differs from city-to-city, we convert
the NO, and NOx datasets into units of “percentile rank within the city’s
metropolitan ~ statistical area” for a more representative
intercomparison.

3.2. Urban US Intercomparison: NEMO vs. TROPOMI
We conduct a comparison at the urban scale for ten US cities. In
Figs. 5 & 6, we show the inventory-based NOx versus satellite NOy

intercomparison for all ten cities: Chicago, New York City, Washington

Atlanta

Houston

Chicago Dallas
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DC, Atlanta, Los Angeles (Fig. 5), and Phoenix, Houston, Dallas, Denver,
San Francisco (Fig. 6). In the left hand panels, annual inventory-based
NOx emissions rates are shown and in the right hand panels the satel-
lite column NO3 from TROPOMI during stagnant wind (<3.2 m/s at 100-
m) days between May 2018 and April 2023, exclusive of a “COVID”
March 10, 2020 — March 9, 2021 period are shown. Qualitatively there is
spatial agreement between the inventory and satellite column NO,
measurements for all ten cities; the areas with the largest satellite-
observed NO, generally correspond to areas with the largest NOx
emissions.

We then investigate the differences quantitatively. In Figs. 7 & 8,
scatterplots in the left hand column compare the relative zip code per-
centiles within the MSA between the satellite NO, (x-axis) and
inventory-based NOx emissions (y-axis) for Chicago, New York City, DC,
Atlanta, and Los Angeles. For 9 of the 10 cities (excluding Los Angeles),
the r2-value between the NEMO NOx emissions inventory and TROPOMI
NO; exceeds 0.73. Despite the strong spatial correlation, there are some
neighborhoods within each urban area with disagreements, as shown by
the red and blue dots, which correspond to potential inventory over-
estimates and underestimates respectively. In the middle columns of
Figs. 7 & 8, we show the relative difference in percentiles between in-
ventory NOx and satellite NO, amongst all zip codes. In the right col-
umns of Figs. 7 & 8, there is the same plot with only the outliers
highlighted. Note the different color scales between the middle and right
column maps.

For Chicago, we find some notable differences in the inventory-based
NOx versus satellite NO5 intercomparison. First, we observe that some of
the point sources in the 2017 inventory are no longer operating in the
2018-2023 timeframe. This led to the largest discrepancies (inventory
NOx > satellite NO) in two zip codes: 53158 (the location of the former
Pleasant Prairie Power Plant, which retired in 2018) and 60087 (the
location of the Waukegan Generating Station which has been phasing
out and closed in June 2022). Next, we observe discrepancies, potential
NOx inventory overestimates, in wealthy neighborhoods on the north
side of Chicago. We find a particularly strong NOx overestimate in a zip
code within Chicago (60640) that includes Lakeshore Drive highway
that prohibits large diesel vehicles. Wealthier residents are more likely
to own newer vehicles with better catalytic converters (Federal Highway
Administration, 2018; Miller et al., 2002), own newer homes (U.S.
Census Bureau, 2022) or have the ability to install home heating energy
efficiency measures (Xu and Chen, 2019), own electrified machinery/
vehicles (Lee et al., 2019), and have the political capital to minimize
emitters, such as diesel trucks, within their neighborhood (Solari, 2012).

Denver

Phoenix

Fig. 4. Seasonal weighting of the “4-year-average” of TROPOMI NO, measurements by urban area. Pie charts show the fraction of TROPOMI measurements in each

season after filtering using the QA value and low wind speed.
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Fig. 5. (Left column) The NEMO NOx emissions inventory for 2017 (Gg/yr NO2) compared to (Right column) the oversampled May 2018 — April 2023 average of
TROPOMI NO,, during stagnant wind conditions (< 3.2 m/s at 100-m) excluding a “COVID” period of March 10, 2020 — March 9, 2021. The five cities shown are:
(Row 1) Chicago, (Row 2) New York City, (Row 3) Washington DC, (Row 4) Atlanta, (Row 5) Los Angeles. Domains are approximately 200-300 km across.
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Fig. 7. Scatterplots in the left hand column compare the relative zip code percentiles within the MSA between the satellite NO, (x-axis) and inventory-based NOx
emissions (y-axis) for (Row 1) Chicago, (Row 2) New York City, (Row 3) Washington, DC, (Row 4) Atlanta, and (Row 5) Los Angeles. Linear fit is an ordinary least
squares regression. The red dots in the scatterplots represent zip codes within the MSA in which the NOx inventory percentile is a top 5% outlier, i.e., the NOx
inventory percentile is substantially larger than the satellite NO, percentile suggesting either a NOx inventory overestimate at the zip code or that TROPOMI is unable
to fully quantify the NO, at that location. Conversely, the blue dots in the scatterplots represent zip codes within the MSA in which the NOx inventory percentile is a
bottom 5% outlier, i.e., the NOx inventory percentile is substantially smaller than the satellite NO, percentile suggesting either a missing source in the NOx inventory
or an influence of an upwind NO, plume at that location. Note the different color scales between the middle and right column maps. (For interpretation of the
Eeferences to color in this figure legend, the reader is referred to the web version of this article.)

<

Therefore, the NOx emissions in these neighborhoods may be lower in
actuality than estimated in the gridded inventory-based NOx emissions.
The spatial surrogates used to downscale emissions from the county-
level to the zip code level may not be fully accurate with respect to
the spatial distribution of vehicle type and age within the county, nor do
they account for the spatial distribution of residential home heating
efficiency measures. We suggest that these could be two factors to
include when downscaling NOx emissions from the county-level in
urban areas. Conversely, the zip codes shaded the most-blue within the
MSA (60480, 60458, and 60459), suggest a NOx inventory-based un-
derestimate west and southwest of the city. This area of the MSA is home
to the largest ground package sorting facility in the world (Stagl, 2023),
large intermodal railyards, a quarry, and other large industrial activities.
The spatial surrogates used to downscale emissions from the county-
level to a finer spatial scale may not fully account for idling vehicles
and off-road equipment, such as forklifts and other heavy machinery
operating at these facilities.

For all other cities — except for Los Angeles — we see similar themes
emerge, albeit less pronounced, perhaps because these cities are less
segregated by income. In the New York City MSA, there are red shades in
Manhattan which suggests a NOx inventory overestimate, while blue
shades in Staten Island suggest a NOx inventory underestimate implying
a small spatial misallocation of NOx emissions within the city. We
theorize that the spatial downscaling might not fully account for a
heavier reliance on public transportation by those living in Manhattan
relative to Staten Island residents. There is also a potential NOx emis-
sions overestimate in the wealthier suburbs of all cities investigated:
New York City (NW of the city), Washington DC (W of the city), Atlanta
(N of the city), Phoenix (NE of the city), Houston (SW of the city), Dallas
(NE of the city), Denver (SE of the city), and San Francisco Bay area
(near Silicon Valley). Fig. 9 shows the median household income in
these ten cities. Zip codes with dense warehouses, such as in central New
Jersey and south of the Atlanta-Hartsfield airport, appear to have a NOx
inventory underestimate. In some instances, especially in New York
City, we see some disagreements along uninhabited coastline which is
most likely related to NO5 plume outflow, but could also be related to a
spatial misallocation of boat/ship emissions or difficulties of the NOy
retrieval adjacent to coastlines due to complex surface reflectivities and
boundary layer dynamics (Riess et al., 2023; Sullivan et al., 2023).

Los Angeles is an outlier. We find that the NOx versus NO inter-
comparison yields an r?> = 0.45, which is substantially lower than any
other US city, including the San Francisco Bay Area = 0.73), which
has somewhat similar climatology, or Denver = 0.79), which has
similar topography. We attribute the poor correlation to the complex
terrain that traps the pollution locally for days/weeks. It is possible that
the Los Angeles intercomparison would benefit from a high-resolution
meteorological model, instead of the ERA5 0.25° x 0.25° re-analysis.
However, we hypothesize that the persistent stagnation and accumula-
tion of NOy over time within the South Coast basin may make the
methodology outlined herein unfeasible. We suggest that this method
should not be applied to any city that is in a “bowl-shaped” valley, such
as Los Angeles, where there are complex interacting mountain and sea
breezes and where pollution consistently accumulates for multiple days.
Therefore, we do not attempt to make any conclusion from the
inventory-based NOx versus satellite NOg intercomparison for Los
Angeles.

We then conduct three sensitivity analyses using different filters of

the TROPOMI NO; data: 1) restricting to summer-only and stagnant
wind which effectively reduces the dataset size by a factor of four, 2)
restricting to windy days (>3.2 m/s), and 3) restricting to days with
unidirectionally SW wind. Correlation in the baseline scenario and the
three sensitivity analyses can be seen in Table 1. The correlation be-
tween NEMO and TROPOMI generally decreases with each subsequent
sensitivity analysis: r* decrease of 0.02 for summer-only, r? decrease of
0.06 for windy-only days, and r? decrease of 0.13 for unidirectional wind
days. This suggests that a full year average using stagnant wind condi-
tions is the most appropriate way to compare the datasets. In some cities
(Chicago, New York City, Phoenix, and Denver), the correlation is above
0.70 regardless of which TROPOMI average is being used, while in other
cities (DC, Atlanta, Houston, and Dallas), the correlation drops signifi-
cantly when including windy days. The strong correlation in some cities
during windy and unidirectional wind speed days was unexpected and is
counterintuitive because days with stronger winds should disperse the
NO; away from sources quickly. Delving into this deeper, we discover
that there are large sources of NOy 10-50 km WSW of both Chicago
(near intermodal facilities, warehouses, and industrial operations) and
New York City (Newark port / warehouses) effectively moving the NO,
from the NOx emissions on the SW side to directly over the city, giving
the appearance that the largest NOx is originating over the city center
when in fact it is an accumulation of upwind and local NOx emissions.
This can be best seen in the spatial plots showing SW winds — the
climatologically dominant wind direction in these two cities. On days
with SW winds, there are meaningful NO; enhancements upwind of the
urban cores of Chicago and New York City (Fig. 10). Since population
density is a large driver of the inventory downscaling — from the county-
level to 1-km - it is possible that the prevailing wind direction is falsely
giving an appearance of better agreement between the inventory and
satellite data.

4. Discussion

This analysis demonstrates that TROPOMI NO; when oversampled
during stagnant wind days over multiple years can be an effective sur-
rogate to estimate the spatial heterogeneities of NOx emissions within an
urban area. In nine of the ten US cities analyzed here, r?-values between
the NEMO NOx inventory and TROPOMI NO, apportioned by percentile
exceeded 0.73. This finding suggests that the 108 spatial surrogates used
to spatially disaggregate NOx emissions from the U.S. county-level (~25
km length scale) to the neighborhood level (~1 km length scale) are
generally appropriate, especially for modeling applications with a 12 km
spatial resolution or coarser. However, this analysis also suggests some
areas for improvement in the inventories. We find that areas that have a
large density of warehouse operations appear to underestimate NOx
emissions. This may be partially due to the proliferation of large ware-
house construction since 2017, the year for which the NEI was devel-
oped. Nonetheless, this analysis suggests that characterizing the sources
and magnitudes of NOx emissions near warehouses should be a priority
for future research, as consumers and retailers continue to push for
same-day home delivery of goods. Conversely, we find some evidence
that NOx emissions in wealthy communities may be overestimated using
standard surrogates to disaggregate the inventory. Wealthier residents
are more likely to own newer vehicles with better catalytic converters,
own newer homes or have the ability to install home heating energy
efficiency measures, own electrified tools/vehicles, and have the



D.L. Goldberg et al.

Phoenix, AZ (Top 5% Outlier)

100
< 80
8
@
S 60
c
[}
o
T 40
a
x
Qo
< 20
@ Outliers (High NOx; Low NO3)
0 : A Outliers (Low NO; High NO2)
0 20 40 60 80 100
NO, Percentile [%]
Houston, TX (Top 5% Outlier)
100
< 80
8
Q2
s60
c
[
5
a
x
Qo
2 2
@ Outiers (High NOx; Low NO2)
0 st A Outliers (Low NOy; High NO2)
0 20 40 60 80 100
NO; Percentile [%]
Dallas, TX (Top 5% Outlier)
100
< 80
8
@
S 60
=
7]
[v]
o
v 40
a
x
)
< 2
@ Outliers (High NOx; Low NO2)
0 A Outliers (Low NO; High NO)
20 40 60 80 100
NO; Percentile [%]
Denver, CO (Top 5% Outlier)
100
< 80
s
Q2
S 60
c
[
5
a
x
Q
2 2
@ Outiers (High NOx; Low NO2)
0 A Outliers (Low NOx; High NO;)
0 20 40 60 80 100
NO; Percentile [%]
San Jose, CA (Top 5% Outlier)
100
< 80
g
2
S 60
c
]
[v]
]
o 40
x
Q
< 20
) @ Outliers (High NOx; Low NO2)
° o A Outliers (Low NO: High NO2)

0 20 40 60 80 100
NO; Percentile [%]

Remote Sensing of Environment 300 (2024) 113917

)

5 N @ high inventory NOx percentile; low TROPOMI NO, percentile

|
o
o

o€

REcRREsY e—
8 k] g 8

]
low inventory NOx percentile, high TROPOMI NO; percentile
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Fig. 9. Median household income by zip code in 2019 for the ten focus cities from the American Community Survey as processed by Manson et al. (2022).

Table 1

Correlation of NEMO vs. TROPOMI using the “baseline” TROPOMI NO, filter
and three different “sensitivity” filtering criteria. Correlation in the “All Days &
Stagnant” column are the same correlations shown in Figs. 7 & 8.

Correlation: NEMO vs. TROPOMI

All Days & Summer & All Days &  All Days &
Stagnant Wind Stagnant Wind Windy Unidirectional
Chicago 0.80 0.78 0.79 0.79
NYC 0.81 0.81 0.77 0.72
DC 0.76 0.76 0.65 0.65
Atlanta 0.74 0.71 0.62 0.57
LA 0.45 0.30 0.32 0.28
Phoenix 0.78 0.85 0.77 0.77
Houston 0.78 0.76 0.73 0.41
Dallas 0.75 0.75 0.71 0.52
Denver 0.79 0.82 0.83 0.74
San Jose 0.73 0.62 0.58 0.63
Average difference —0.02 —-0.06 —-0.13

political capital to minimize emitters, such as diesel trucks, within their
neighborhood.

In many gridded emissions inventories, population-related data are
used as surrogates to downscale emissions. While this approach is
appropriate in some cases when other information, such as ownership of
fossil-fuel-based machinery is not known, our results suggest that
including a median household income spatial surrogate for the on-road,
non-road, and residential heating sectors may further improve the
spatial allocation of these emissions. This is an important finding for two
reasons. First, this suggests that the standard assumptions to downscale
NOx emissions may not be fully appropriate for some applications, such
as evaluating pollution disparities between advantaged and disadvan-
taged communities. Second, this finding suggests that more work needs
to be done to develop emission reduction strategies that target lower
socioeconomic neighborhoods rather than applying citywide standards
that may disproportionately benefit neighborhoods that already have
relatively low emissions. Pinpointing NOx emissions may be less useful
for ozone simulations since ozone is a more homogenous pollutant, but it
is possible that modifying the spatial distribution of urban NOx emis-
sions could affect ozone formation sensitivity within different sections of
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the metropolitan area.

From a remote sensing perspective, this work demonstrates that
satellite data can be useful in evaluating a NOx emissions inventory
without the use of a chemical transport model or complex statistical
manipulation under certain conditions. Such comparisons should use a
long-term average of satellite data because there would be too much
missing data, random noise, and unaccounted meteorological effects if
only one day or one month were used. If possible, we find that it’s more
appropriate to isolate days with slow wind speeds and average them
together, rather than averaging all days without accounting for winds.
This is because winds disperse NOx, leading to spatial offsets between
where the NOx was emitted and where the satellite will observe it. We
find that restricting the satellite dataset to a summer-only is unnec-
essary, since there are similar NO; spatial distributions with and without
this restriction, even though the NO, magnitude is smaller during
summer. In addition, the climatological/prevailing wind direction, such
as climatological southwesterly winds in New York City and Chicago,
can give the appearance of a false agreement.

While we use the operational TROPOMI NO;, version 2.4 algorithm,
we note that using NO, vertical shape profiles from a high-resolution
chemical transport model to re-process the satellite air mass factor for
the urban measurements would have been ideal and may yield slightly
different correlation in the urban areas. Re-processing the air mass
factor using a high spatial resolution simulation generally increases NO;
for urban/polluted measurements while rural/unpolluted measure-
ments remain similar (Douros et al., 2023; Goldberg et al., 2017;
Goldberg et al., 2019c¢; Judd et al., 2020), and therefore has the net
effect of increasing the range of the NO, magnitudes in an metropolitan
area but has little effect on the percentiles within a metropolitan area.

This work demonstrates how satellite data can be helpful for poli-
cymakers in characterizing the spatial distribution of NOx emissions
without a chemical transport model. The improved spatial resolution
and reduced noise of TROPOMI enables a new way to evaluate NOx
emission inventories in urban areas at scales previously not possible.
Future instruments, such as TEMPO and Sentinel 4, with similar pixel
sizes, but more numerous observations (hourly measurements instead of
a single daily measurement), may allow this comparison to be done on
shorter timeframes.
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