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A B S T R A C T   

Satellite nitrogen dioxide (NO2) datasets are increasingly used to evaluate nitrogen oxides (NOx) emissions inventories. Such studies often use a chemical transport 
model or a complex statistical framework involving an assumed NO2 lifetime, which can complicate the comparison. Here, we apply a novel method to compare 
inventory-based NOx emissions directly to Tropospheric Monitoring Instrument (TROPOMI) NO2 data without a chemical transport model by only using mea
surements during stagnant wind days. We oversample the satellite data over multiple years filtering to include data when near-surface wind speeds are <3.2 m/s, and 
then use this filtered dataset to evaluate the spatial representativeness of the 1 × 1 km2 inventory-based Neighborhood Emission Mapping Operation (NEMO). In nine 
out of ten US cities evaluated, spatial r2-values between NEMO NOx emissions and TROPOMI NO2 exceeded 0.73. This suggests that the 108 spatial surrogates used 
by NEMO to spatially disaggregate NOx emissions from the U.S. county-level (5–200 km length scale) to the neighborhood level (~1 km length scale) are generally 
appropriate. However, areas with dense intermodal facilities, such as railyards and warehouses, appear to underestimate NOx emissions. Additionally, we find some 
evidence that NOx emissions in wealthy communities appear to be overestimated by the standard surrogates used to disaggregate the inventory. This work provides a 
basis for the direct use of satellite data for evaluating the spatial patterns of urban NOx emissions inventories.   

1. Introduction 

Nitrogen dioxide (NO2) is an air pollutant that adversely affects the 
human respiratory system (Health Effects Institute, 2022; Khreis et al., 
2017) and leads to premature mortality (Burnett et al., 2004; He et al., 
2020). NO2 is also an important precursor for ozone and fine particu
lates, which also have serious health impacts. In urban areas, the ma
jority of ambient NO2 originates from NOx emissions (=NO+NO2; most 
NOx is emitted as NO which rapidly cycles to NO2) during high- 
temperature fossil fuel combustion (Crippa et al., 2021). In many cir
cumstances, end-of-pipe controls such as automotive catalytic con
verters (Koltsakis and Stamatelos, 1997) and selective catalytic 
reduction (Busca et al., 1998) can reduce the amount of NOx emitted 
from engines and boilers by 70–99% but these technologies do not 
recover 100% of the NOx generation during combustion. Because of this, 
NO2 accumulates in cities and most urban areas have NO2 concentra
tions that exceed the World Health Organization guideline of 5.3 ppb for 
an annual average (Anenberg et al., 2022). 

To cost-effectively control NO2, it is important to precisely know 

where NO2 originates in cities. Mapping NOx emissions typically re
quires selecting emissions rates or factors for each source and distrib
uting the sources using spatial surrogates; both steps introduce 
considerable uncertainty into the estimates. While the types of activities 
that emit NOx are known well (e.g., vehicles, fossil-fuel-fired power 
plants, etc.), not all vehicles or power plants have identical NOx emis
sions and the magnitude of NOx emissions from any source can vary 
dramatically by geographic region (Crippa et al., 2018; Janssens- 
Maenhout et al., 2015; McDuffie et al., 2020). Typically, NOx emissions 
for an area are estimated by summing up the amount of fuel burned in 
that area and using sector-specific emissions factors or rates (McDuffie 
et al., 2020); for example, there are different emissions for vehicles 
versus industrial boilers, given the same mass of fuel burned. In some 
countries, such as India (Guttikunda et al., 2019; Saw et al., 2021), ac
curate data on fossil fuel consumption and sector emission rates are 
difficult to acquire. In other countries, fossil fuel consumption and sector 
emission rates can be accurate for national (~1000 km) or regional 
(~100 km) spatial scales, but additional information is needed to esti
mate NOx emissions rates at neighborhood (~1 km) scales. Spatial 
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surrogates are used to distribute county-level totals into sub-county 
levels, such as 12 km or 4 km grids (Eyth et al., 2006). For example, 
one spatial surrogate is the location of a highway; NOx emissions for 
roadways are typically allocated based on average miles traveled by a 
vehicle and the total number and type of vehicles on that type of road. 
For a regional or sub-regional scale, this assumption is often satisfactory, 
but much more detailed information is needed when trying to downscale 
a county-level inventory to individual roadways. Therefore, some of the 
assumptions used to spatially allocate NOx emissions on a relatively 
coarse grid (~12 km) break down when trying to estimate NOx emis
sions at the neighborhood spatial scale (~1 km). An independent way to 
map NOx emissions – to discern when the original assumptions used to 
develop urban area NOx emissions are valid – would be helpful to better 
understand the uncertainty in the originally calculated NOx emissions. 
Remote sensing of air pollutants in urban areas can sometimes fill this 
role (Beirle et al., 2011, 2019; Finch et al., 2022; Goldberg et al., 2019a; 
Goldberg et al., 2019b; F. Liu et al., 2017; Montgomery et al., 2023; Pope 
et al., 2022; Xue et al., 2022). 

NO2 can be observed by remote sensing instruments due to its unique 
spectroscopic features within the 405–465 nm wavelength region 
(Vandaele et al., 1998). The Tropospheric Monitoring Instrument 
(TROPOMI) (Veefkind et al., 2012), launched in October 2017 aboard 
the Sentinel 5 Precursor satellite, has been measuring column amounts 
of NO2 pollution at 5.5 × 3.5 km2 spatial resolution (van Geffen, 2016). 
Because of this higher spatial resolution over predecessor instruments, 
such as GOME-2 (40 × 40 km2 at nadir) (Richter et al., 2011), and OMI 
(24 × 13 km2 at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily 
satellite pixel measurements within a typical city (~1000 km2) during 
clear skies; prior instruments only have 1–3 daily measurements within 
the borders of each city. This increased measurement capacity within a 
city allows us to discern spatial variability undetectable by previous 
instruments. Further, the data from the satellite instruments can be 
downscaled using a process called oversampling (de Foy et al., 2009; 
Sun et al., 2018), which re-grids the irregular satellite pixels to a stan
dard and higher spatial resolution. The spatial resolution is thus effec
tively increased at the expense of the temporal resolution. 

The goal of this project is to understand whether oversampled sat
ellite data can directly inform estimated spatial heterogeneities of NOx 
emissions on a neighborhood scale, without relying on a chemical 
transport model (Canty et al., 2015; East et al., 2022; Li et al., 2021) or 
complex statistical inversion technique that involves assuming an un
certain NO2 lifetime to derive NOX emissions (Beirle et al., 2011, 2019, 
2023; Chen et al., 2023; Goldberg et al., 2019b; F. Liu et al., 2022; 
Verstraeten et al., 2018). We oversample the satellite data over multiple 
years and filter to use data on stagnant wind days only – when the 
vertical overhead column should best capture the local emission influ
ence – and then use this satellite average to evaluate the spatial repre
sentativeness of the 1 × 1 km2 inventory-based Neighborhood Emission 
Mapping Operation (NEMO). This work is driven by recent advance
ments of both satellite instruments (oversampled pixels at 0.01◦ × 0.01◦

resolution with improved signal-to-noise) and inventories (1-km spatial 
resolution inventories across the U.S). As a bridge, we compare NEMO 
for selected cities to the Emissions Database for Global Atmospheric 
Research (EDGAR) inventory often used for global analyses, and NEMO 
to the satellite annual average with varying wind filters, in order to 
determine the additional utility of both having a high spatial resolution 
inventory and filtering the satellite data based on wind speed. The 
ability to directly compare satellite data to inventories without the need 
for complex modeling would enable air quality planners to evaluate and 
improve the NOx inventories they use to support air pollution policy 
decisions. 

2. Methods 

2.1. TROPOMI 

TROPOMI was launched by the European Space Agency (ESA) for the 
European Union’s Copernicus S5P satellite mission on October 13, 2017. 
Data from the instrument became available on April 30, 2018, after an 
approximately 6-month calibration period. The satellite follows a sun- 
synchronous, low-earth (825 km) orbit with an equator overpass time 
of approximately 13:30 local solar time. TROPOMI measures total col
umn amounts of several trace gases in the Ultraviolet-Visible-Near 
Infrared (UV-VIS-NIR) (e.g., NO2 and HCHO) and Shortwave Infrared 
(SWIR) (e.g., CO) spectral regions (Veefkind et al., 2012). At nadir, pixel 
sizes are 3.5 × 7 km2 (modified to 3.5 × 5.5 km2 on August 6, 2019) with 
the edges having slightly larger pixels sizes (~14 km wide) across a 
2600 km swath, equating to 450 rows (van Geffen et al., 2020). The 
instrument observes the swath approximately once every second and 
orbits the Earth in about 100 min, resulting in daily global coverage. 

NO2 slant column densities are derived from radiance measurements 
in the 405–465 nm spectral window of the UV-VIS-NIR spectrometer 
(van Geffen et al., 2021). Satellite instruments observe NO2 by 
comparing observed spectra with a reference spectrum to derive the 
amount of NO2 in the atmosphere between the instrument and the sur
face; this technique is called differential optical absorption spectroscopy 
(DOAS) (Platt, 1994). Tropospheric vertical column density data, which 
represent the vertically integrated number of NO2 molecules per unit 
area between the surface and the tropopause, are then calculated by 
subtracting the stratospheric portion and then converting the tropo
spheric slant column to a vertical column using an air mass factor (AMF) 
(Boersma et al., 2011). The AMF is a unitless quantity used to convert 
the slant column into a vertical column and is a function of the satellite 
viewing angles, solar angles, the effective cloud radiance fraction and 
pressure, the vertical profile shape of NO2 provided by a chemical 
transport model simulation, and the surface reflectivity (Lorente et al., 
2017; Palmer et al., 2001). The operational AMF calculation does not 
explicitly account for aerosol absorption effects, which are accounted for 
in the effective cloud radiance fraction (Eskes et al., 2023). 

For our analysis we use the TROPOMI NO2 v2.4 algorithm: re- 
processed (May 1, 2018 – July 25, 2022) and offline (July 26, 2022 – 
April 30, 2023). Updates from v1.3 to v2.3.1 involved modifications to 
the cloud retrieval scheme (decrease in cloud pressure), surface albedo 
(to avoid negative cloud fractions), and quality flags (better screening of 
snow). The net result of the change in tropospheric vertical column NO2 
from v1.3 to v2.3.1 has been reported to be a + 13% increase for cloud- 
free scenes that varies spatially and is higher in polluted areas (van 
Geffen et al., 2021). The update from v2.3.1 to v2.4 makes use of a 
0.125◦ × 0.125◦ Directional Lambertian Equivalent Reflectivity (DLER) 
climatology derived from TROPOMI observations which replaces an old 
0.5◦ × 0.5◦ Lambertian Equivalent Reflectivity (LER) dataset used in 
v2.3.1 (Eskes et al., 2023). The TROPOMI NO2 v.2.4 product has a 
documented median low bias of − 34.8% in moderately polluted loca
tions (3–14 × 1015 molec/cm2) when compared to a MAX-DOAS 
network (Lambert et al., 2023). Prior work has demonstrated a strong 
correlation between TROPOMI NO2 column measurements and NO2 
surface concentrations in urban areas (Demetillo et al., 2020; Dressel 
et al., 2022; Goldberg et al., 2021a). 

For the domain-wide comparisons, we screened TROPOMI pixels for 
quality assurance flag values >0.75 for the period between May 2018 – 
April 2023, and excluding a “COVID” period which we defined as March 
10, 2020 until March 9, 2021. This allowed for 4 full years of over
sampled NO2 data using a consistent algorithm. Single pixel TROPOMI 
NO2 uncertainties are assumed to be between 30 and 60% (Liu et al., 
2021). Oversampled NO2 measurements over long timeframes (100s of 
measurements) are assumed to have a much smaller amount of uncer
tainty. Boersma et al. (2018) suggest that oversampled values have 39% 
of a single-pixel uncertainty due to potential errors in the surface albedo, 
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clouds, a priori NO2 profile, and aerosols, resulting in an uncertainty 
range of 12–23%. The value 39% calculated by Boersma et al. (2018) 
was for OMI, and it is reasonable to think this value would be lower for 
TROPOMI given recent instrument and algorithm advancements. 

For comparison with the annual NOx emissions inventory, we grid
ded TROPOMI data to a 0.01◦ × 0.01◦ resolution, to create a custom 
“Level-3” data product (Goldberg et al., 2021a). This “Level 3” satellite 
product was then averaged to the zip code level (1–50 km spatial scales 
depending on region) for comparison with the NOx emissions inventory. 

2.2. ERA5 re-analysis 

We use the ERA5 re-analysis (Hersbach et al., 2020) of 100-m wind 
speed and direction between 16 and 21 UTC, which approximates the 
overpass time of TROPOMI over the continental United States. The 100- 
m vertical level is a standard output of the ERA-5 re-analysis. The 100-m 
wind speeds have a strong linear correlation with other options to filter 
wind speeds, such as 10-m and 0–500 m average (Sun et al., 2021). After 
averaging the wind estimates from these six hours together, we match 
the TROPOMI NO2 satellite data to the ERA5 wind data, and filter to 
only use satellite data when the 100-m wind speed is <3.2 m-s− 1. The 
ERA5 re-analysis data products are reported at a 0.25◦ × 0.25◦ spatial 
resolution and the wind speed is interpolated, using bilinear interpola
tion, to the 0.01◦ × 0.01◦ oversampled TROPOMI NO2 grid. 

2.3. NEMO U.S. inventory-based NOx emissions 

The Neighborhood Emission Mapping Operation (NEMO)is a 1-km 
anthropogenic emission dataset in the United States (Ma and Tong, 
2022). This inventory uses the spatial surrogates recommended by the 
U.S. EPA (Eyth et al., 2006) – 108 spatial surrogates in total – to 
downscale the emissions from the county-level to a 1-km grid. Emissions 
are the 2017 annual total from the U.S. EPA National Emissions In
ventory (NEI). The 2020 NEI incorporates emission changes due to the 
COVID lockdowns and is not representative of the 2018–2023 timeframe 
used in this analysis. Any projection of NOx emissions from 2017 to a 
future year, would rely on some type of assumption and would add 
additional uncertainty, and is therefore also not appropriate for this 
analysis. For comparison with the gridded satellite data, the NEMO 
inventory-based NOx emissions was averaged to the zip code level 
(~1–100 km2 spatial scales depending on region) so that both are at the 
same spatial scale. Within urban areas, NEMO’s high-resolution aspect is 
largely preserved since many zip codes are <10 km2. 

2.4. EDGAR NOx inventory-based emissions 

For comparison to NEMO, we use EDGAR version 6.1 inventory for 
NOx (Joint Research Centre, 2022). This global inventory provides 
annual NOx emissions at 0.1◦ × 0.1◦ spatial resolution from all 
anthropogenic activities, excluding large scale biomass burning. For the 
energy related sectors, the activity data are primarily based on statistics 
from the International Energy Agency. Globally, anthropogenic NOx 

emissions have been relatively constant since 2012 (McDuffie et al., 
2020) and in urban areas, they are dropping at a slow rate of 0–4% per 
year (Goldberg et al., 2021b). For more information on how the EDGAR 
inventory is compiled, see (Crippa et al., 2018) with updates for version 
6.1 noted here: https://edgar.jrc.ec.europa.eu/index.php/dataset_ap61. 
Fig. 1 compares the EDGAR inventory to the NEMO inventory in the 
New York City metropolitan area. The EDGAR inventory at 0.1◦ × 0.1◦ is 
similar to the spatial resolution of a regional chemical transport model 
simulation at 12 × 12 km2, and the inventory at 0.5◦ × 0.5◦ is similar to 
the spatial resolution of a global chemical transport model simulation. 

2.5. Urban area boundaries 

For our ten U.S. focus cities, we define cities using metropolitan 
statistical areas (MSAs) established by the Office of Management and 
Budget and used by the U.S. Census Bureau (https://www.whitehouse. 
gov/wp-content/uploads/2020/03/Bulletin-20-01.pdf). The ten focus 
cities were selected based on a combination of MSA population size (all 
are within the top 20 in the U⋅S) and geographic diversity (e.g., Denver 
selected over Philadelphia). All zip codes that are located within 
counties belonging to a particular MSA are used in our analysis. MSAs 
encompass not only the densely populated urban centers but also 
outlying suburban areas. For example, the Washington DC MSA includes 
not only the District of Columbia but also counties in Virginia, Maryland, 
and West Virginia. When comparing TROPOMI NO2 to NEMO NOx 
emissions for the U.S. portion of our study, we transform these datasets 
from their native ~1 km2 resolution to zip code averages by averaging 
all grid cell centroids contained within a given zip code. If zip codes are 
too small to contain coincident grid cells, we inverse distance weight 
using the surrounding grid cells following Kerr et al. (2021). 

3. Results 

3.1. Comparison between TROPOMI NO2 and the gridded emissions 
inventories 

To compare TROPOMI and NEMO, three additional processing steps 
are needed to allow a direct comparison. The first step involves filtering 
satellite data to only include days with low wind speeds. Observed 
column NO2 on days with low wind speeds correlate strongly with urban 
NOX emissions (Lorente et al., 2019). We select satellite data only on 
days with 100-m wind speeds <3.2 m-s− 1 (and effectively cloud-free 
using a quality assurance value of 0.75 or greater). Stagnant airmasses 
are defined as airmasses with 10-m wind speeds <3.2 m/s (https:// 
www.arl.noaa.gov/documents/reports/atlas.pdf). Here we use the 
100-m wind speed in lieu of the 10-m wind speed, which likely has a 
minimal effect for this analysis. During the May 2018 – April 2023 
period, 11–51% of the days per urban area (min: 11% in Chicago, max: 
51% in Phoenix) (Fig. 2) have satellite measurements collocated in time 
with slow wind speeds, down from approximately 46–82% of all days (i. 
e., we do not apply a wind speed filter). 

We apply this filter because NO2 plume outflow from upwind sources 

a) b) c)

Fig. 1. Annual 2017 NOX emissions inventories: (a) NEMO (1 × 1 km2), (b) EDGAR (0.1◦ × 0.1◦), and (c) EDGAR aggregated-up (0.5◦ × 0.5◦).  
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on windy days (> 3.2 m/s) can create offsets between surface NOx 
emissions and observed NO2 column abundances by the satellite. In 
Fig. 3, we demonstrate how this filtering affects oversampled NO2 col
umns in the Chicago metropolitan area. On days with 100-m wind 
speeds <3.2 m/s, the NO2 pollution generally accumulates over land and 
within the boundaries of Cook County (>5 million residents). On days 
with 100-m wind speeds >3.2 m/s the NO2 pollution spreads well out 
into Lake Michigan, and the NO2 plume originating from the urban area 
is more homogenous. The differences in the urban NO2 spatial 

heterogeneities between high- and low-wind speed days – while mostly 
driven by dispersion – could also be partially driven by differences in 
localized NO2 lifetimes within the city. For polluted conditions (NO2 
columns > ~ 5 × 1015 molec/cm2), there is a direct relationship be
tween NO2 lifetime and NO2 concentrations, (Laughner and Cohen, 
2019). Therefore as NO2 concentrations increase on stagnant wind days 
a secondary effect of a longer NO2 lifetime could cause additional 
accumulation. 

In Fig. 3, we also show how a full-year and summer-only (June, July, 

a) b)

Fig. 2. Percentage of valid TROPOMI measurements using two different filters: (a) filtering for days with the QA value exceeding 0.75 and (b) filtering for days with 
the qa value exceeding 0.75 and 100-m wind speeds below 3.2 m/s. 

a) b)

c) d)

Fig. 3. The oversampled May 2018 – April 2023 average of TROPOMI NO2 excluding a “COVID” period of March 10, 2020 – March 9, 2021 for various wind and 
seasonal conditions: (a) all winds and all seasons, (b) stagnant winds <3.2 m/s and all seasons, (c) windy >3.2 m/s and all seasons, and (d) stagnant winds <3.2 m/s 
and summer (June, July, August). 
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August) NO2 oversampled average differ (panel b vs panel d). During 
summer, the NO2 lifetime is shorter due to its faster photolytic dissoci
ation. As a result, we see that NO2 values are smaller during the summer 
months when compared to a full year average. Also, NO2 photochem
istry within the urban area is relatively similar amongst an average of 
cloud-free summer-only data compared to a dataset mixing summer and 
winter measurements. For these reasons, measurements during the 
summer time could be preferable when intercomparing with the NOX 
emissions inventory. 

However, there are some downsides to using summer-only data. 
First, lake/sea/ocean/mountain breezes tend to be stronger on summer 
days with weak synoptic winds, so filtering for low wind speeds might 
have a biasing effect that is difficult to control for. Fig. 3 suggests this 
bias is not large in the Chicago area as the NO2 plume is not displaced 
very far inland during the 1:30 PM overpass time; this effect may be 
larger when using TEMPO data at later hours in the day (Geddes et al., 
2021; Wang et al., 2023). Second, limiting to summer-only data reduces 
the available data in our ten urban areas by about 55–74% as seen in 
Fig. 4. Using 55–74% fewer measurements in the analysis yields larger 
uncertainties, since random measurement noise may not be able to be 
sufficiently averaged out. Third, as denoted in a comparison between the 
full year and summer-only averages (panel b vs panel d), there is not a 
drastic difference in the NO2 spatial gradients when averaging over 
these two different timeframes. For these reasons, our analysis focuses 
on year-round data. 

Finally, we average both the satellite NO2 and NOx inventory-based 
datasets to the zip code level to account for population, for NOx plume 
conversion to NO2, and for better TROPOMI sensitivity in urban areas at 
very fine spatial scales (Goldberg et al., 2022). Although zip codes have 
varying populations, aggregating to zip code will roughly normalize for 
population. Zip codes have smaller spatial scales within the center of 
cities and larger spatial scales in the suburban and peri-urban areas. 
Since NOx emissions can have significant spatial variation within cities 
and because the NO2 background differs from city-to-city, we convert 
the NO2 and NOx datasets into units of “percentile rank within the city’s 
metropolitan statistical area” for a more representative 
intercomparison. 

3.2. Urban US Intercomparison: NEMO vs. TROPOMI 

We conduct a comparison at the urban scale for ten US cities. In 
Figs. 5 & 6, we show the inventory-based NOx versus satellite NO2 
intercomparison for all ten cities: Chicago, New York City, Washington 

DC, Atlanta, Los Angeles (Fig. 5), and Phoenix, Houston, Dallas, Denver, 
San Francisco (Fig. 6). In the left hand panels, annual inventory-based 
NOx emissions rates are shown and in the right hand panels the satel
lite column NO2 from TROPOMI during stagnant wind (<3.2 m/s at 100- 
m) days between May 2018 and April 2023, exclusive of a “COVID” 
March 10, 2020 – March 9, 2021 period are shown. Qualitatively there is 
spatial agreement between the inventory and satellite column NO2 
measurements for all ten cities; the areas with the largest satellite- 
observed NO2 generally correspond to areas with the largest NOx 
emissions. 

We then investigate the differences quantitatively. In Figs. 7 & 8, 
scatterplots in the left hand column compare the relative zip code per
centiles within the MSA between the satellite NO2 (x-axis) and 
inventory-based NOx emissions (y-axis) for Chicago, New York City, DC, 
Atlanta, and Los Angeles. For 9 of the 10 cities (excluding Los Angeles), 
the r2-value between the NEMO NOx emissions inventory and TROPOMI 
NO2 exceeds 0.73. Despite the strong spatial correlation, there are some 
neighborhoods within each urban area with disagreements, as shown by 
the red and blue dots, which correspond to potential inventory over
estimates and underestimates respectively. In the middle columns of 
Figs. 7 & 8, we show the relative difference in percentiles between in
ventory NOx and satellite NO2 amongst all zip codes. In the right col
umns of Figs. 7 & 8, there is the same plot with only the outliers 
highlighted. Note the different color scales between the middle and right 
column maps. 

For Chicago, we find some notable differences in the inventory-based 
NOx versus satellite NO2 intercomparison. First, we observe that some of 
the point sources in the 2017 inventory are no longer operating in the 
2018–2023 timeframe. This led to the largest discrepancies (inventory 
NOx > satellite NO2) in two zip codes: 53158 (the location of the former 
Pleasant Prairie Power Plant, which retired in 2018) and 60087 (the 
location of the Waukegan Generating Station which has been phasing 
out and closed in June 2022). Next, we observe discrepancies, potential 
NOx inventory overestimates, in wealthy neighborhoods on the north 
side of Chicago. We find a particularly strong NOx overestimate in a zip 
code within Chicago (60640) that includes Lakeshore Drive highway 
that prohibits large diesel vehicles. Wealthier residents are more likely 
to own newer vehicles with better catalytic converters (Federal Highway 
Administration, 2018; Miller et al., 2002), own newer homes (U.S. 
Census Bureau, 2022) or have the ability to install home heating energy 
efficiency measures (Xu and Chen, 2019), own electrified machinery/ 
vehicles (Lee et al., 2019), and have the political capital to minimize 
emitters, such as diesel trucks, within their neighborhood (Solari, 2012). 

Fig. 4. Seasonal weighting of the “4-year-average” of TROPOMI NO2 measurements by urban area. Pie charts show the fraction of TROPOMI measurements in each 
season after filtering using the QA value and low wind speed. 
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a)

c)

e)

g)

i )

b)

d)

h)

h)

j)

Fig. 5. (Left column) The NEMO NOx emissions inventory for 2017 (Gg/yr NO2) compared to (Right column) the oversampled May 2018 – April 2023 average of 
TROPOMI NO2 during stagnant wind conditions (< 3.2 m/s at 100-m) excluding a “COVID” period of March 10, 2020 – March 9, 2021. The five cities shown are: 
(Row 1) Chicago, (Row 2) New York City, (Row 3) Washington DC, (Row 4) Atlanta, (Row 5) Los Angeles. Domains are approximately 200–300 km across. 
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Fig. 6. Same as Fig. 5 but now showing: (Row 1) Phoenix, (Row 2) Houston, (Row 3) Dallas, (Row 4) Denver, and (Row 5) San Francisco Bay Area.  
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Therefore, the NOx emissions in these neighborhoods may be lower in 
actuality than estimated in the gridded inventory-based NOx emissions. 
The spatial surrogates used to downscale emissions from the county- 
level to the zip code level may not be fully accurate with respect to 
the spatial distribution of vehicle type and age within the county, nor do 
they account for the spatial distribution of residential home heating 
efficiency measures. We suggest that these could be two factors to 
include when downscaling NOx emissions from the county-level in 
urban areas. Conversely, the zip codes shaded the most-blue within the 
MSA (60480, 60458, and 60459), suggest a NOx inventory-based un
derestimate west and southwest of the city. This area of the MSA is home 
to the largest ground package sorting facility in the world (Stagl, 2023), 
large intermodal railyards, a quarry, and other large industrial activities. 
The spatial surrogates used to downscale emissions from the county- 
level to a finer spatial scale may not fully account for idling vehicles 
and off-road equipment, such as forklifts and other heavy machinery 
operating at these facilities. 

For all other cities – except for Los Angeles – we see similar themes 
emerge, albeit less pronounced, perhaps because these cities are less 
segregated by income. In the New York City MSA, there are red shades in 
Manhattan which suggests a NOx inventory overestimate, while blue 
shades in Staten Island suggest a NOx inventory underestimate implying 
a small spatial misallocation of NOx emissions within the city. We 
theorize that the spatial downscaling might not fully account for a 
heavier reliance on public transportation by those living in Manhattan 
relative to Staten Island residents. There is also a potential NOx emis
sions overestimate in the wealthier suburbs of all cities investigated: 
New York City (NW of the city), Washington DC (W of the city), Atlanta 
(N of the city), Phoenix (NE of the city), Houston (SW of the city), Dallas 
(NE of the city), Denver (SE of the city), and San Francisco Bay area 
(near Silicon Valley). Fig. 9 shows the median household income in 
these ten cities. Zip codes with dense warehouses, such as in central New 
Jersey and south of the Atlanta-Hartsfield airport, appear to have a NOx 
inventory underestimate. In some instances, especially in New York 
City, we see some disagreements along uninhabited coastline which is 
most likely related to NO2 plume outflow, but could also be related to a 
spatial misallocation of boat/ship emissions or difficulties of the NO2 
retrieval adjacent to coastlines due to complex surface reflectivities and 
boundary layer dynamics (Riess et al., 2023; Sullivan et al., 2023). 

Los Angeles is an outlier. We find that the NOx versus NO2 inter
comparison yields an r2 = 0.45, which is substantially lower than any 
other US city, including the San Francisco Bay Area (r2 = 0.73), which 
has somewhat similar climatology, or Denver (r2 = 0.79), which has 
similar topography. We attribute the poor correlation to the complex 
terrain that traps the pollution locally for days/weeks. It is possible that 
the Los Angeles intercomparison would benefit from a high-resolution 
meteorological model, instead of the ERA5 0.25◦ × 0.25◦ re-analysis. 
However, we hypothesize that the persistent stagnation and accumula
tion of NO2 over time within the South Coast basin may make the 
methodology outlined herein unfeasible. We suggest that this method 
should not be applied to any city that is in a “bowl-shaped” valley, such 
as Los Angeles, where there are complex interacting mountain and sea 
breezes and where pollution consistently accumulates for multiple days. 
Therefore, we do not attempt to make any conclusion from the 
inventory-based NOx versus satellite NO2 intercomparison for Los 
Angeles. 

We then conduct three sensitivity analyses using different filters of 

the TROPOMI NO2 data: 1) restricting to summer-only and stagnant 
wind which effectively reduces the dataset size by a factor of four, 2) 
restricting to windy days (>3.2 m/s), and 3) restricting to days with 
unidirectionally SW wind. Correlation in the baseline scenario and the 
three sensitivity analyses can be seen in Table 1. The correlation be
tween NEMO and TROPOMI generally decreases with each subsequent 
sensitivity analysis: r2 decrease of 0.02 for summer-only, r2 decrease of 
0.06 for windy-only days, and r2 decrease of 0.13 for unidirectional wind 
days. This suggests that a full year average using stagnant wind condi
tions is the most appropriate way to compare the datasets. In some cities 
(Chicago, New York City, Phoenix, and Denver), the correlation is above 
0.70 regardless of which TROPOMI average is being used, while in other 
cities (DC, Atlanta, Houston, and Dallas), the correlation drops signifi
cantly when including windy days. The strong correlation in some cities 
during windy and unidirectional wind speed days was unexpected and is 
counterintuitive because days with stronger winds should disperse the 
NO2 away from sources quickly. Delving into this deeper, we discover 
that there are large sources of NO2 10–50 km WSW of both Chicago 
(near intermodal facilities, warehouses, and industrial operations) and 
New York City (Newark port / warehouses) effectively moving the NO2 
from the NOx emissions on the SW side to directly over the city, giving 
the appearance that the largest NOx is originating over the city center 
when in fact it is an accumulation of upwind and local NOX emissions. 
This can be best seen in the spatial plots showing SW winds – the 
climatologically dominant wind direction in these two cities. On days 
with SW winds, there are meaningful NO2 enhancements upwind of the 
urban cores of Chicago and New York City (Fig. 10). Since population 
density is a large driver of the inventory downscaling – from the county- 
level to 1-km – it is possible that the prevailing wind direction is falsely 
giving an appearance of better agreement between the inventory and 
satellite data. 

4. Discussion 

This analysis demonstrates that TROPOMI NO2 when oversampled 
during stagnant wind days over multiple years can be an effective sur
rogate to estimate the spatial heterogeneities of NOx emissions within an 
urban area. In nine of the ten US cities analyzed here, r2-values between 
the NEMO NOx inventory and TROPOMI NO2 apportioned by percentile 
exceeded 0.73. This finding suggests that the 108 spatial surrogates used 
to spatially disaggregate NOx emissions from the U.S. county-level (~25 
km length scale) to the neighborhood level (~1 km length scale) are 
generally appropriate, especially for modeling applications with a 12 km 
spatial resolution or coarser. However, this analysis also suggests some 
areas for improvement in the inventories. We find that areas that have a 
large density of warehouse operations appear to underestimate NOx 
emissions. This may be partially due to the proliferation of large ware
house construction since 2017, the year for which the NEI was devel
oped. Nonetheless, this analysis suggests that characterizing the sources 
and magnitudes of NOx emissions near warehouses should be a priority 
for future research, as consumers and retailers continue to push for 
same-day home delivery of goods. Conversely, we find some evidence 
that NOx emissions in wealthy communities may be overestimated using 
standard surrogates to disaggregate the inventory. Wealthier residents 
are more likely to own newer vehicles with better catalytic converters, 
own newer homes or have the ability to install home heating energy 
efficiency measures, own electrified tools/vehicles, and have the 

Fig. 7. Scatterplots in the left hand column compare the relative zip code percentiles within the MSA between the satellite NO2 (x-axis) and inventory-based NOx 
emissions (y-axis) for (Row 1) Chicago, (Row 2) New York City, (Row 3) Washington, DC, (Row 4) Atlanta, and (Row 5) Los Angeles. Linear fit is an ordinary least 
squares regression. The red dots in the scatterplots represent zip codes within the MSA in which the NOx inventory percentile is a top 5% outlier, i.e., the NOx 
inventory percentile is substantially larger than the satellite NO2 percentile suggesting either a NOx inventory overestimate at the zip code or that TROPOMI is unable 
to fully quantify the NO2 at that location. Conversely, the blue dots in the scatterplots represent zip codes within the MSA in which the NOx inventory percentile is a 
bottom 5% outlier, i.e., the NOx inventory percentile is substantially smaller than the satellite NO2 percentile suggesting either a missing source in the NOx inventory 
or an influence of an upwind NO2 plume at that location. Note the different color scales between the middle and right column maps. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Same as Fig. 7 but now showing: (Row 1) Phoenix, (Row 2) Houston, (Row 3) Dallas, (Row 4) Denver, and (Row 5) San Francisco Bay Area.  
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political capital to minimize emitters, such as diesel trucks, within their 
neighborhood. 

In many gridded emissions inventories, population-related data are 
used as surrogates to downscale emissions. While this approach is 
appropriate in some cases when other information, such as ownership of 
fossil-fuel-based machinery is not known, our results suggest that 
including a median household income spatial surrogate for the on-road, 
non-road, and residential heating sectors may further improve the 
spatial allocation of these emissions. This is an important finding for two 
reasons. First, this suggests that the standard assumptions to downscale 
NOx emissions may not be fully appropriate for some applications, such 
as evaluating pollution disparities between advantaged and disadvan
taged communities. Second, this finding suggests that more work needs 
to be done to develop emission reduction strategies that target lower 
socioeconomic neighborhoods rather than applying citywide standards 
that may disproportionately benefit neighborhoods that already have 
relatively low emissions. Pinpointing NOx emissions may be less useful 
for ozone simulations since ozone is a more homogenous pollutant, but it 
is possible that modifying the spatial distribution of urban NOx emis
sions could affect ozone formation sensitivity within different sections of 

the metropolitan area. 
From a remote sensing perspective, this work demonstrates that 

satellite data can be useful in evaluating a NOx emissions inventory 
without the use of a chemical transport model or complex statistical 
manipulation under certain conditions. Such comparisons should use a 
long-term average of satellite data because there would be too much 
missing data, random noise, and unaccounted meteorological effects if 
only one day or one month were used. If possible, we find that it’s more 
appropriate to isolate days with slow wind speeds and average them 
together, rather than averaging all days without accounting for winds. 
This is because winds disperse NOx, leading to spatial offsets between 
where the NOx was emitted and where the satellite will observe it. We 
find that restricting the satellite dataset to a summer-only is unnec
essary, since there are similar NO2 spatial distributions with and without 
this restriction, even though the NO2 magnitude is smaller during 
summer. In addition, the climatological/prevailing wind direction, such 
as climatological southwesterly winds in New York City and Chicago, 
can give the appearance of a false agreement. 

While we use the operational TROPOMI NO2 version 2.4 algorithm, 
we note that using NO2 vertical shape profiles from a high-resolution 
chemical transport model to re-process the satellite air mass factor for 
the urban measurements would have been ideal and may yield slightly 
different correlation in the urban areas. Re-processing the air mass 
factor using a high spatial resolution simulation generally increases NO2 
for urban/polluted measurements while rural/unpolluted measure
ments remain similar (Douros et al., 2023; Goldberg et al., 2017; 
Goldberg et al., 2019c; Judd et al., 2020), and therefore has the net 
effect of increasing the range of the NO2 magnitudes in an metropolitan 
area but has little effect on the percentiles within a metropolitan area. 

This work demonstrates how satellite data can be helpful for poli
cymakers in characterizing the spatial distribution of NOx emissions 
without a chemical transport model. The improved spatial resolution 
and reduced noise of TROPOMI enables a new way to evaluate NOx 
emission inventories in urban areas at scales previously not possible. 
Future instruments, such as TEMPO and Sentinel 4, with similar pixel 
sizes, but more numerous observations (hourly measurements instead of 
a single daily measurement), may allow this comparison to be done on 
shorter timeframes. 

Fig. 9. Median household income by zip code in 2019 for the ten focus cities from the American Community Survey as processed by Manson et al. (2022).  

Table 1 
Correlation of NEMO vs. TROPOMI using the “baseline” TROPOMI NO2 filter 
and three different “sensitivity” filtering criteria. Correlation in the “All Days & 
Stagnant” column are the same correlations shown in Figs. 7 & 8.   

Correlation: NEMO vs. TROPOMI  

All Days & 
Stagnant Wind 

Summer & 
Stagnant Wind 

All Days & 
Windy 

All Days & 
Unidirectional 

Chicago 0.80 0.78 0.79 0.79 
NYC 0.81 0.81 0.77 0.72 
DC 0.76 0.76 0.65 0.65 
Atlanta 0.74 0.71 0.62 0.57 
LA 0.45 0.30 0.32 0.28 
Phoenix 0.78 0.85 0.77 0.77 
Houston 0.78 0.76 0.73 0.41 
Dallas 0.75 0.75 0.71 0.52 
Denver 0.79 0.82 0.83 0.74 
San Jose 0.73 0.62 0.58 0.63 
Average difference − 0.02 − 0.06 − 0.13  
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Enhancements upwind of the city

Fig. 10. Top panel shows the 2019 climatological wind direction and speed in m-s− 1. Bottom panels show TROPOMI NO2 when filtering to show southwest (SW) 
winds only in the Chicago and New York City metropolitan areas. 
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