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1. Data Overview and Accessibility 
This methods report accompanies this assessment’s data archival package and summarizes all project methods 
and datasets. Table 1 provides a quick reference for this assessment’s archived data, available through Harvard 
Dataverse (https://doi.org/10.7910/DVN/SICI8E) and https://www.data.gov. Any non-derived datasets 
referenced throughout this report are publicly available and are not included in the table below. 
 

Table 1. Derived indices, indicators, and datasets by thematic category. 

Thematic Category Indices, Indicators, and Datasets Data Type 

Study area NCCOS Maine risk assessment study area Polygon 

 Study area territories Polygon 

Population Population density index 30-m raster 

Structural Structural index  Point 

 Structural density index 30-m raster 

Hazard Storm surge hazard index  30-m raster 

 Stormwater flood hazard index 30-m raster 

 Flow accumulation indicator 30-m raster 

 Rainfall intensity indicator 30-m raster 

 Geology (hydrologic soil group) indicator 30-m raster 

 Land use/land cover indicator – stormwater 30-m raster 

 Slope indicator 30-m raster 

 Elevation indicator – stormwater 30-m raster 

 Drainage network indicator 30-m raster 

 Winter Ice storm hazard index 30-m raster 

 Winter precipitation indicator 30-m raster 

 Elevation indicator – ice storm 30-m raster 

 Land use/land cover indicator – ice storm 30-m raster 

 Wildfire hazard index 30-m raster 

Structural hazard risk Compounded hazard structural risk index Point 

 Storm surge hazard structural risk index Point 

 Stormwater flood hazard structural risk index Point 

 Wildfire hazard structural risk index Point 

 Winter ice storm hazard structural risk index Point 

 Compounded hazard structural risk index – excluding storm surge Point 
Road-stream crossings Soil erodibility index 30-m raster 

 Hydrologic soil group indicator 30-m raster 

 Wind erodibility group indicator 30-m raster 

 Drainage class indicator 30-m raster 

 Stormwater/erodibility index 30-m raster 

 Modeled roads Polyline 

https://doi.org/10.7910/DVN/SICI8E
https://www.data.gov/
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Thematic Category Indices, Indicators, and Datasets Data Type 

 Comprehensive road-stream crossings Point 

 Road-stream crossing risk index Point 

 Road-stream crossing density 30-m raster 

 Road-stream crossing risk index – stormwater flooding only Point 

 Road-stream crossing risk index – soil erodibility only Point 

Community isolation Routable road network File geodatabase 
network dataset 

 Routable roads Polyline 

 Routable road junctions Point 

 Road segment isolation index Polyline 

 Compounded hazard road isolation risk index Polyline 

 Stormwater flooding road isolation risk index Polyline 

 Winter ice storm road isolation risk index Polyline 

 Wildfire road isolation risk index Polyline 

 Road-stream crossings road isolation risk index Polyline 

 Overall service area isolation risk index Polyline 

 Health-based service area isolation risk index Polyline 

 Order/safety-based service area isolation risk index Polyline 

 Services-based service area isolation risk index Polyline 
Co-occurrence  Population density index by group class 30-m raster 

 Storm surge hazard index by group class 30-m raster 

 Stormwater flood hazard index by group class 30-m raster 

 Winter ice storm hazard index by group class 30-m raster 

 Wildfire hazard index by group class 30-m raster 

 Soil erodibility index by group class 30-m raster 
 
 

 
Road damage in Washington County, Maine. Credits: (left) Reilee Gunsher (CSS/NOAA NCCOS);  

(right) Chloe Fleming (CSS/NOAA NCCOS). 
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2. Project Background  

United States coastal counties are exposed to a variety of environmental hazards, such as coastal and inland 
flooding, erosion, wildfire, and coastal storms. The National Centers for Coastal Ocean Science (NCCOS) 
conducts place-based integrated community risk assessments to help coastal counties understand their unique 
risks (Fleming et al., 2017; Fleming et al., 2024; Fleming et al., 2020). In 2024, NCCOS scientists began their 
seventh community risk assessment for Maine’s Washington County and Greater East Grand Region. Figure 1 
shows the Study Area Territories (polygons) within Maine’s Aroostook, Penobscot, and Washington Counties 
(Pettit and State of Maine, 2021b), described in Table 2. The team selected these territories and clipped the 
3-nautical-mile buffer from the coastal areas using the Maine State boundary shapefile (Pettit and State of 
Maine, 2021a). All 90 territory boundaries were then dissolved to create the NCCOS Maine Risk Assessment 
Study Area boundary (polygon), projected in NAD 1983 UTM Zone 19N (Figure 1). 
 

Table 2. Study area territories. 

Territories 
County 

Washington Aroostook Penobscot 

Towns 41 4 0 

Townships 35 3 1 

Plantations 2 2 0 

Native American Reservations 2 0 0 

Total Territories 80 9 1 
 
 
To inform the project scoping process following project kickoff in June 2024, the research team held an in-
person workshop in August and virtual follow-up consultations in September with a variety of project partners 
(Table 3). Participants were invited to provide input based on expertise, organization, interest, and availability 
within Washington County and the wider planning region. After additional data availability and feasibility checks, 
the project team began analysis to assess the following: population density, critical infrastructure, coastal storm 
surge from a Category 2 hurricane, precipitation-based stormwater flood potential, winter ice storm hazard, 
wildfire hazard, road-stream crossing erosion risk, community isolation risk, and co-occurrence mapping. 

 

 
Turkeys in Washington County, Maine. Credit: Reilee Gunsher (CSS/NOAA NCCOS).
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Figure 1. Study area: Washington County and Greater East Grand Region. Study area geographic extent – northern 
boundary: 46.8230274, southern Boundary: 43.3423063, western boundary: −70.4638597, eastern boundary: −64.8663419. 
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Table 3. Project partners that contributed to the scoping of the risk assessment. 

 Participating Organizations Number of 
Participants 

 Sunrise County Economic Council 3 

 Maine Coast Heritage Trust 1 

 Maine Sea Grant at the University of Maine 1 

In-person 
workshop Greater East Grand Economic Council 1 

 NOAA Office for Coastal Management 1 

 Maine Aquaculture Innovation Center* 1 

 Wells National Estuarine Research Reserve* 1 

 Washington County Emergency Management Agency 1 

 Downeast Salmon Federation 2 

Follow-up 
consultation Downeast Region Land Use Planning Commission 2 

 Sipayik Resilience Committee 1 

 Sunrise County Economic Council 1 

 Total 16 

*Observation only 
 
 

 
Workshop mapping exercise. Credit: Reilee Gunsher (CSS/NOAA NCCOS).
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3. Methods 
Following portfolio standards (NOAA National Centers for Coastal Ocean Science, 2025), this report uses the 
following definitions of hazard and risk: 
 

Hazard: An event or condition that may cause injury, illness, or death to people or damage to assets 
(U.S. Climate Resilience Toolkit, n.d.). 
 
Risk: The potential for negative consequences from adverse weather-related events or other natural 
hazards where something of value is at stake (adapted from U.S. Climate Resilience Toolkit (n.d.)). 
 

Each assessment component was quantified using indicators and indices derived from the most recent, publicly 
available data. All spatial data processing was conducted in ArcGIS Pro version 3.4.0 and clipped using either a 
study-area vector boundary or a 30×30-m raster mask. 
 
Data inputs were available at 30-m resolution or finer, with the exception of population density (100 m) and 
precipitation (800 m). To evaluate tradeoffs in spatial precision and applicability, two test indicators 
(precipitation and land use/land cover) were analyzed at both original and rescaled resolutions. Resampling 
precipitation resolution from 800 m to 30 m reduced blocky, stair-step artifacts while preserving spatial trends 
and overall pixel values. Conversely, aggregating 30-m land use/land cover data to 1-km generated artificial 
mean values that obscured genuine spatial heterogeneity. Based on these results and partner requirements, all 
inputs were retained at a 30-m resolution to ensure spatial congruence and facilitate coherent relative analyses. 
It is noted that resampling does not enhance the intrinsic spatial detail of the original precipitation and 
population density data, and it is explicitly stated that the stormwater flooding and winter ice storm hazard 
indices integrate precipitation data derived at a coarser resolution, alongside 30-m inputs. 
 
Raster outputs were snapped or resampled to a 30×30-m-resolution raster using bilinear interpolation, unless 
otherwise specified. Vector outputs were presented as points or lines. Indicators were normalized through 
minimum-maximum (min-max) normalization from 0–1, following ArcGIS best practices (ESRI, 2023). Where 
appropriate, indicators were combined into composite indices using weighted approaches described in the 
subsequent sections. Resulting values were then categorized into statistical quantile breaks to communicate 
relative scores across each index (i.e., low, medium, high). Please view the full archival package for the 
corresponding data dictionary for this report. 
 

3.1 Population Density 
The research team utilized population density data between 2000–2020 from WorldPop (2022). This data source 
produces gridded population data using a Random Forest-based dasymetric redistribution approach that 
combines census-based population counts with ancillary geospatial data, such as land cover and infrastructure, 
to model where people are likely to be located within each grid cell (Stevens et al., 2015; WorldPop, 2022). The 
Random Forest algorithm is used to identify relationships between population density and these spatial 
covariates, enabling redistribution of population counts at a finer spatial resolution and highlighting general 
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trends in population distribution rather than exact locations where individuals live or work. The resulting 
population density surfaces should be interpreted as modeled approximations for spatial analysis and relative 
comparison (WorldPop, 2022). WorldPop population density data were available at a 100×100-m spatial 
resolution. The data were clipped and resampled using nearest neighbor resampling because this approach 
preserves discrete values, avoids introducing unrealistic fractional counts, and maintains the integrity of 
population boundaries. The data were then rescaled from 0–1 through min-max normalization, resulting in a 
population density index in 30×30-m resolution. Because this indicator uses coarser 100-m resolution data, it 
should only be used to assess broad geographic trends. 
 

3.2 Critical Infrastructure 
The research team developed a structural index that examines the distribution of critical infrastructure 
throughout the study area. Project workshops (see Section 2) determined the most important critical 
infrastructure to include, building upon infrastructure already included in Washington County’s planning maps’ 
public services layer (Sunrise County Economic Council, n.d.). Selected structural indicators are summarized in 
Table 4. 

Table 4. Structural indicators. 

Indicator Source 

Ambulance services (Johnson and Sunrise County Economic Council, 2025) 

County emergency management agencies (Bistrais and State of Maine, 2022) 

Fire stations (Bistrais and State of Maine, 2022) 

Emergency medical service (EMS) stations (Bistrais and State of Maine, 2022) 

Hospitals (Bistrais and State of Maine, 2022) 

Law enforcement facilities (Pettit and State of Maine, 2025) 

Assisted living and nursing homes (Bistrais and State of Maine, 2021d) 

Government offices (Bistrais and State of Maine, 2022) 

Childcare providers (Johnson and Sunrise County Economic Council, 2025) 

Early childhood education facilities (University of Maine Machias, 2021) 

Schools (Bistrais and State of Maine, 2022) 

Colleges and universities (Bistrais and State of Maine, 2022) 

Libraries (Bistrais and State of Maine, 2021b) 

Post offices (ESRI Business Analyst Data Axle, 2024d) 

Correctional facilities (Bistrais and State of Maine, 2021a) 

Grocery stores (ESRI Business Analyst Data Axle, 2024b) 

Hardware stores (ESRI Business Analyst Data Axle, 2024a) 

Gas stations (ESRI Business Analyst Data Axle, 2024c) 

Laundries (ESRI Business Analyst Data Axle, 2024e) 
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Indicator Source 

Hazardous materials sites (from the Environmental 
Protection Agency’s Facility Registry Service)1 (U.S. Environmental Protection Agency, 2024) 

Dams (ESRI ArcGIS REST Services Directory, 2025) 

Power lines (University of Maine Machias, 2020) 

Cemeteries (Bistrais and State of Maine, 2021c) 

Roads (Bistrais and State of Maine, 2022) 

Recovery treatment health providers (ESRI Business Analyst Data Axle, 2024g) 

Psychiatry and psychopharmacology providers (ESRI Business Analyst Data Axle, 2024f) 

Farmers markets (Maine Federation of Farmers Markets, 2025) 

Cultural and historical sites (through the National 
Registry of Historic Places) (ESRI ArcGIS REST Services Directory, 2024) 

Public health offices (Bistrais and State of Maine, 2022) 

 
 
To approximate nonpoint infrastructure coverage, polyline layers were clipped and converted to point layers by 
generating points every 30 m along each line (Generate Points Along Lines tool). (For more spatially explicit 
analyses regarding road infrastructure, see Sections 3.8 and 3.9.) The resulting new points layers were merged 
with all other clipped points layers to produce a structural index (points). The Kernel Density tool was then used 
to develop a heat map of critical infrastructure density, resulting in a structural density index map in 30×30-m 
resolution.  
 

3.3 Storm Surge Hazard 
Following destructive January 2024 storms that brought record flooding and high winds to coastal Maine 
(National Weather Service, 2024; Santom, 2025), partners prioritized Category 2 hurricane storm surge modeling 
to plan for extreme conditions. To estimate coastal flooding hazard, the research team incorporated Category 2 
storm surge data from the State of Maine Geological Survey (2019) geoportal.2 Data were available as 
categorical vector shapefiles and were clipped and rasterized at a 30×30-m resolution (Feature to Raster tool). 
Rasterized data were visualized into equal inundation depth bins of 3 ft to preserve the original vector values, 
resulting in a storm surge hazard index in 30×30-m resolution. Raster cells beyond the extent of the original 
vector shapefiles were assigned null values. 
 

 
1 See the EPA Facility Registry Service for a list a included sites. U.S. Environmental Protection Agency. (2024). FRS_Interests 
(FeatureServer) (https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/FRS_INTERESTS/FeatureServer). 
2 These data originated from the Sea Lake and Overland Surges from Hurricanes (SLOSH) Scenarios developed by the NOAA 
National Hurricane Center. (n.d.). National Storm Surge Risk Maps – Version 3. Retrieved 19 September 2025 from 
https://www.nhc.noaa.gov/nationalsurge/#:~:text=The%20process%20to%20create%20storm,a%20seamless%20raster%20of%20
inundation 

https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/FRS_INTERESTS/FeatureServer
https://www.nhc.noaa.gov/nationalsurge/#:%7E:text=The%20process%20to%20create%20storm,a%20seamless%20raster%20of%20inundation
https://www.nhc.noaa.gov/nationalsurge/#:%7E:text=The%20process%20to%20create%20storm,a%20seamless%20raster%20of%20inundation
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3.4 Stormwater Flood Hazard 
To examine precipitation-based stormwater flooding in both coastal and inland areas, the research team applied 
the FIGUSED methodology by Kazakis et al. (2015) to develop a stormwater flood hazard index. The FIGUSED 
methodology integrates seven critical indicators to assess flood hazard potential related to precipitation:  
 

• Flow accumulation (F)—a measure used to delineate a drainage area (Jenson and Domingue, 1988);  

• Rainfall intensity (I)—a measure of the amount of precipitation within a given amount of time and at 
peak values that can approximate runoff rates (Conkle et al., 2006);  

• Geology through hydrologic soil groups (G)—categorizations of soils that influence their permeability 
and runoff potential (U.S. Department of Agriculture Natural Resources Conservation Service, 2019b);  

• Land use (U)—land use/land cover types that determine their likelihood of being flood prone or 
commonly associated with wetlands (Kazakis et al., 2015); 

• Slope (S)—a measure that influences water drainage potential (Kazakis et al., 2015); flatter slopes and 
low elevations are more likely to experience flooding due to slower drainage and higher water tables; 

• Elevation (E)—a measure that relates to water table height (Kazakis et al., 2015); and  

• Proximity to drainage networks (D)—a measure thought to influence likelihood of flooding through 
adjacency (Kazakis et al., 2015).  

 
Flow accumulation (F) was developed from a 30×30-m digital elevation model (DEM) derived from U.S. 
Geological Survey 3D Elevation Program tiles (U.S. Geological Survey, 2023b, 2023c, 2023d, 2024a, 2024b). The 
research team clipped the data to the study area and filled sinks (imperfections) in the data (Fill Function). These 
sinks are errors in elevation data where water wrongly appears to collect, and filling sinks to correct these 
imperfections allows for realistic water flow analysis (Sharma and Tiwari, 2019). The team then calculated the 
flow direction and flow accumulation. Polylines were created from the raster, and the raster was rescaled from 
0–1 using min-max normalization to produce a flow accumulation indicator in 30×30-m resolution.  
 
Rainfall intensity (I) was developed from 800×800-m resolution 30-year precipitation normals data from the 
PRISM Climate Group at Oregon State University (2022a). Data were clipped, resampled to 30×30-m resolution 
using bilinear interpolation, and rescaled from 0–1 using min-max normalization to produce a rainfall intensity 
indicator in 30×30-m resolution. Because this indicator uses coarser 800-m resolution data, it should be used 
only as an input for the stormwater flood hazard index or to assess broad geographic trends. 
 
Hydrologic soil group polygons (G) were downloaded from the U.S. Department of Agriculture Soil Survey 
Geographic Database (U.S. Department of Agriculture Natural Resources Conservation Service, 2019b) and 
clipped to the study area. Per USDA soil definitions (U.S. Department of Agriculture Natural Resources 
Conservation Service, 2019b), the research team assigned a value of 0 to polygon areas with soil hydrologic 
groups A and B, as these are considered well drained, and assigned a value of 1 to polygon areas with soil 
hydrologic groups C and D, as these soils have lower permeability and increased runoff potential. A value of 1 
was also assigned to polygon areas with soil hydrologic groups A/D, B/D, and C/D, as dual groupings generally 
represent wet soils based on the presence and depth of the water table. Polygons were then rasterized to 
30×30-m resolution (Feature to Raster tool) and rescaled from 0–1 using min-max normalization, producing a 
geology (hydrologic soil group) indicator in 30×30-m resolution.  
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Land use (U) was developed from 30×30-m resolution data from the U.S. Geological Survey Earth Resources 
Observation and Science Center (2024). The data were clipped to the study area and reclassified based on their 
flooding potential as suggested in Kazakis et al. (2015) (Table 5), producing a land use/land cover indicator – 
stormwater in 30×30-m resolution.  
 
Table 5. Land use/land cover type reclassification 
crosswalk for stormwater flooding potential. 

Land Use/ 
Land Cover Value 

Reclassified Value 
for Stormwater 

Flooding Potential 

11 (Open Water) 1 

21 (Developed, Open space) 0.5 

22 (Developed, Low Intensity) 0.5 

23 (Developed, Medium 
Intensity) 0.5 

24 (Developed, High Intensity) 1 

31 (Barren Land, 
Rock/Sand/Clay) 0.8 

41 (Deciduous) 0.2 

42 (Evergreen Forest) 0.2 

43 (Mixed Forest) 0.2 

52 (Shrub/Scrub) 0.2 

72 (Sedge/Herbaceous) 0.4 

81 (Pasture/Hay) 0.6 

82 (Cultivated Crops) 0.6 

90 (Woody Wetlands) 1 

95 (Emergent Herbaceous 
Wetlands) 1 

 

Slope (S) and elevation (E) indicators were both 
developed from the same clipped 30×30-m DEM 
described above (U.S. Geological Survey, 2023b, 
2023c, 2023d, 2024a, 2024b). Percent slope and 
elevation values were respectively rescaled from 
0–1 using min-max normalization and inverted so 
that steeper slope and higher elevation decreased 
flooding potential. This resulted in a slope 
indicator and an elevation indicator– 
stormwater, both in 30×30-m resolution.  
 
Lastly, distance from the drainage network (D) was 
calculated from the U.S. Geological Survey’s 
National Map (2021) rivers and streams data 
(polylines) (Line Density tool). The research team 
rescaled the distance from rivers and streams from 
0–1 using min-max normalization, with closer 
distances more proximal to potential water 
overflows. This produces a drainage network 
indicator in 30×30-m resolution. 
 
These 7 indicators were equally weighted in an 
additive index from 0-7 to produce a final 
stormwater flood hazard index in 30×30-m 
resolution. Please note that this index incorporates 
coarser 800-m resolution precipitation data. 
 
 
 

3.5 Winter Ice Storm Hazard 
To approximate ice storm hazard, the research team developed an index methodology based on the scientific 
literature (Cortinas Jr. et al., 2004; Degelia et al., 2016; Isaacs et al., 2014; McCray et al., 2019). The developed 
index integrated three climatic and environmental indicators to identify areas where ice accumulation is more 
likely to occur and cause more damage during winter months: 
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• Precipitation intensity – increased precipitation raises the likelihood of more severe ice accumulation 
(McCray et al., 2019) when coupled with below-freezing temperatures;  

• Elevation – higher elevation increases the likelihood of freezing conditions (DeGaetano et al., 2002); and 

• Vegetation cover – forested areas increase the likelihood of ice accumulation impacts from downed 
trees and disrupted power lines, with the potential for greater damage (Irland, 2000); 

 
Since temperatures between −8°C and 0°C increase the likelihood of ice formation (Cortinas Jr. et al., 2004), 
incorporation of air temperature during winter months was also considered. Monthly 30-year temperature 
normals for December, January, and February, however, were all at or below freezing (within the range 
mentioned above) (PRISM Climate Group at Oregon State University, 2022b, 2022d, 2022f), and colder 
subfreezing temperatures are not shown to be more likely to result in freezing rain than warmer subfreezing 
temperatures (Cortinas Jr. et al., 2004). As a result, temperature was excluded, and the final index captures a 
proxy for the relative likelihood of ice storm hazard during freezing conditions. Additionally, the research team 
was unable to access spatially explicit vertical temperature data that also contribute to the likelihood of freezing 
rain (National Weather Service, n.d.).  
 
Average monthly precipitation data were sourced from the PRISM Climate Group at Oregon State University 
(2022c, 2022e, 2022g) for the months of December, January, and February in 800×800-m resolution. Data were 
limited to winter months to capture seasonality of ice storm frequency on the east coast (DeGaetano et al., 
2002). Average monthly precipitation data in millimeters per hour were clipped, resampled to 30×30-m 
resolution using bilinear interpolation, and rescaled from 0–1 using min-max normalization to produce a winter 
precipitation indicator in 30×30-m resolution. Because this indicator uses coarser 800-m resolution data, it 
should be used only as an input for the winter ice storm hazard index or to assess broad geographic trends. 
 
The research team used a clipped 30×30-m DEM from the U.S. Geological Survey (2023b, 2023c, 2023d, 2024a, 
2024b) to measure elevation and land use/land cover data from the U.S. Geological Survey Earth Resources 
Observation and Science Center (2024) to assess land cover types. Elevation was rescaled from 0–1 using min-
max normalization, with higher elevations ranked as more susceptible to icing (DeGaetano et al., 2002). This 
resulted in an elevation indicator – ice storm in 30×30-m resolution. Table 6 shows the reclassification of 
30×30-m land use/land cover values to estimate ice storm hazard susceptibility based on the Winter Storm 
Severity Index (Weather Prediction Center, n.d.). The ice accumulation component of this index addresses 
impacts resulting from ice accretion on flat and elevated surfaces, which can include disruptions to surface 
transportation, pedestrian injuries, and damage to property and vegetation (Weather Prediction Center, 2025). 
Tree type and density were considered as well. Higher values were assigned to deciduous trees due to their 
increased surface area of lateral branches and broad crowns, which are more prone to breakage (Hauer et al., 
2006). Evergreen forests typically have smaller crowns and are more resilient to ice accumulation, and were 
assigned slightly lower values as a result. Reclassified values were rescaled from 0–1 using min-max 
normalization, resulting land use/land cover indicator – ice storm in 30×30-m resolution.  
 
Ultimately, these three indicators were equally weighted in an additive index to produce a final winter ice storm 
hazard index from 0–3 in 30×30-m resolution. This index does not directly assess the potential for ice storms 
beyond the months of December to February, and it incorporates coarser 800-m resolution data.  
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Table 6. Land use/land cover types reclassification crosswalk for ice storm hazard potential. 

Land Use/Land Cover Value 
Reclassified Value for Ice  
Accumulation Impact via  

Winter Storm Severity Index 

11 (Open Water) 0 

21 (Developed, Open space) 0 

22 (Developed, Low Intensity) 0.5 

23 (Developed, Medium Intensity) 0.6 

24 (Developed, High Intensity) 0.7 

31 (Barren Land, Rock/Sand/Clay) 0 

41 (Deciduous) 1 

42 (Evergreen Forest) 0.8 

43 (Mixed Forest) 0.9 

52 (Shrub/Scrub) 0 

72 (Sedge/Herbaceous) 0 

81 (Pasture/Hay) 0 

82 (Cultivated Crops) 0 

90 (Woody Wetlands) 0 

95 (Emergent Herbaceous Wetlands) 0 

 
 

3.6 Wildfire Hazard 
The research team utilized a 30×30-m burn probability dataset developed by the USDA Forest Service Rocky 
Mountain Research Station and Pyrologix LLC (Scott et al., 2024). This dataset uses fire simulation modeling to 
model over 20,000 fire seasons across 136 distinct U.S. wildfire activity regions. Scott et al. (2024) calibrated the 
simulations using fire occurrence data from 2006–2020 to highlight the annual likelihood of a wildfire occurring 
at a specific location, and then assigned non-zero values to burnable pixels and a value of zero to non-burnable 
pixels. The NCCOS team clipped these data to the study area and rescaled them from 0–1 using min-max 
normalization, resulting in a wildfire hazard index in 30×30-m resolution. 
 

3.7 Structural Risk by Hazard 
Using the structural index (see Section 3.2) and the final storm surge, stormwater flood, wildfire, and ice storm 
hazard raster indices (see Sections 3.3–3.6), the team created structural risk indices for each hazard by 
extracting raster values from each hazard index at each point location within the structural index. Because the 
final storm surge values were categorical, reclassified values from 1–4 for each storm surge raster pixel category 
(with null values converted to 0) were applied to structural index points. The resulting risk values were rescaled 
from 0–1 using min-max normalization, where higher values equal higher structural risk due to the respective 
hazard. This resulted in four new indices: storm surge hazard structural risk (points), stormwater flood hazard 
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structural risk (points), wildfire hazard structural risk (points), and winter ice storm hazard structural risk 
(points). These indices were further combined into equally additive compounded risk indices of compounded 
hazard structural risk (points) from 0–4, and compounded hazard structural risk – excluding storm surge 
(points) from 0–3.  
 

3.8 Road-Stream Crossing Risk 
The research team developed a road-stream crossing risk index based on Panda et al.’s (2022) streambank 
erosion vulnerability assessment model. Panda et al.’s (2022) comprehensive geospatial-hydrology model uses a 
Delphi-based weighted-probability scale to integrate four critical indicators to assess streambank erosion 
vulnerability: precipitation, soil, elevation, and land use/land cover data. NCCOS’s model followed a modified 
approach to accommodate existing assessment components and data limitations. Both models incorporate 
measures of precipitation, drainage, elevation, slope, land use/land cover, and soil properties. Differences 
between the two models are shown in Table 7. For example, because K-factor data (measurements of soil 
susceptibility to erosion by rainfall and surface runoff) used in the Panda et al. (2022) model were not available 
for the entirety of the team’s study area, the team substituted other data to inform a soil erodibility index. This 
index and the team’s stormwater flood hazard index were combined to inform risk scores for every road-stream 
crossing point. This approach intentionally double-weighted hydrologic soil groups as they are included within 
both indices, contributing about 33% to the soil erodibility index and about 14% to the stormwater flood hazard 
index. In each index, these soil groups serve different roles: In the soil erodibility index, they act as a proxy for 
water erodibility (due to a lack of K-factor data for the study area), while in the flood hazard index, they reflect 
infiltration depth and permeability. 
 

 
Roques Bluff culvert. Credit: Reilee Gunsher (CSS/NOAA NCCOS).
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Table 7. Data inputs for Panda et al.’s (2022) streambank erosion model and the research team’s road-stream 
crossings model. 

Model Data Inputs 
Streambank Erosion Vulnerability Soil properties K-factor 
Assessment Model (Panda et al., 2022)  Hydrologic soil group 

  Soil texture 

  Slope length 

  Drainage 
 Land use/land cover   
 Annual average precipitation  
 Digital elevation model 

Road-Stream Crossing Risk Potential  Soil erodibility index Hydrologic soil group 
Model  Wind erodibility group 
  Drainage class 
 Stormwater flood  Flow accumulation 
 hazard index Rainfall intensity 
  Hydrologic soil group 
  Land use/land cover 
  Slope 
  Elevation 
  Distance from drainage network 

 
 
3.8.1 Soil Erodibility Index 
To examine soil erodibility, the research team incorporated hydrologic soil group (2019b), wind erodibility group 
(2019c), and drainage class (2019a) soil data from the U.S. Department of Agriculture National Resources 
Conservation Service Soil Survey Geographic Database. Hydrologic soil group and drainage class communicate 
different aspects of soil susceptibility to water-based erosion factors, and wind erodibility group reflects a soil’s 
susceptibility to erosion caused by wind, based on texture and other physical characteristics (National Resources 
Conservation Service Soil Survey Staff, 2023). Each dataset was converted from polygons to a raster (Feature to 
Raster tool), and each resulting raster was reclassified from 1–7 following the reclassification crosswalks shown 
in Table 8, Table 9, and Table 10 to preserve the categorical values of the source data. This resulted in a 
hydrologic soil group indicator, a drainage class indicator, and a wind erodibility group indicator, all in 30×30-
m resolution. These indicators were then assigned equal weights and summed to produce a soil erodibility 
index in 30×30-m resolution from 1–7. 

 

 
Blueberry barren. Credit: Reilee Gunsher (CSS/NOAA NCCOS).
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Table 8. Hydrologic soil group rating reclassification crosswalk for soil erodibility potential. 

Hydrological Soil  
Group Rating Soil Type Reclassified 

Value 

A High infiltration rate and high permeability (e.g., deep, well-drained 
sands) 1 

A/D Type A when drained; type D when undrained 2 

B Moderate infiltration rate and moderate permeability (e.g., 
moderately deep, moderately well-drained soils) 3 

B/D Type B when drained; type D when undrained 4 

C Slow infiltration rate and low permeability (e.g., sandy clay loams) 5 

C/D Type C when drained; type D when undrained 6 

D Very slow infiltration rate and very low permeability (e.g., clay soils) 7 

 
Table 9. Drainage class reclassification crosswalk for soil 
erodibility potential. 

Drainage Class Description Reclassified 
Value 

Excessively drained 1 

Somewhat excessively drained 2 

Well drained 3 

Moderately well drained 4 

Somewhat poorly drained 5 

Poorly drained 6 

Very poorly drained 7 

 

 
Table 10. Wind erodibility group reclassification 
crosswalk for soil erodibility potential. 

Wind Erodibility 
Group Reclassified Value 

1 1 

2 2 

3 3 

5 4 

6 5 

7 6 

8 7 

3.8.2 Comprehensive Road-Stream Crossings and Risk 
The research team developed a comprehensive dataset of the study area’s road-stream crossings. First, the 
team added a 3-nautical-mile buffer to the study area to avoid excluding road-stream crossings that extended 
across littoral and riverine boundaries. Next, the State of Maine’s emergency 911 roads feature class (Bistrais 
and State of Maine, 2025) was clipped to the revised study area. Though the most comprehensive publicly 
available dataset for the region, this public road network is locally known to omit roads used for private and 
industry use. To help identify additional road-stream crossings, the team considered areas that have the 
potential for these additional roads by reclassifying land cover values within the U.S. Geological Survey’s (2024) 
land use/land cover dataset as shown in Table 11. The team applied the Raster to Polyline tool to convert the 
reclassified raster values to gridded polyline areas that approximate where additional roads may exist. To 
remove any roads already captured within existing data, the team applied a buffer of 100 m to the emergency 
911 roads dataset, and then removed any duplicated roads, resulting in a modeled roads dataset (polylines).  
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Using the stream network dataset from the U.S. Geological Survey (2023a), the research team then identified all 
potential crossings at road and stream intersections within the stream network, emergency 911 roads, and 
modeled roads datasets. Newly identified road-stream crossing points were then merged with clipped existing 
point-data crossings from the Maine Stream Habitat Viewer (Gallagher and State of Maine, 2022) and two 
culvert datasets from the Maine Department of Transportation (Spears and State of Maine, 2021a, 2021b), 
resulting in a comprehensive road-stream crossings dataset (points). This dataset uses a deliberately inclusive 
approach to identify potential road-stream crossings, prioritizing completeness over precision to minimize 
omission errors. Because each pre-merged dataset includes spatially explicit points, some clusters may reflect 
duplicate records of the same crossing, while others may represent multiple nearby culverts. For visualization, 
the Kernel Density tool was used to develop a heat map of road-stream crossings, resulting in a road-stream 
crossing density map in 30×30-m resolution. 
 

Table 11. Land use/land cover type reclassification crosswalk for road identification. 

Land Use/Land Cover Value Reclassified Value for  
Road Identification 

11 (Open Water) NoData 

21 (Developed, Open space) 1 

22 (Developed, Low Intensity) 1 

23 (Developed, Medium Intensity) 1 

24 (Developed, High Intensity) NoData 

31 (Barren Land, Rock/Sand/Clay) 1 

41 (Deciduous) NoData 

42 (Evergreen Forest) NoData 

43 (Mixed Forest) NoData 

52 (Shrub/Scrub) NoData 

72 (Sedge/Herbaceous) NoData 

81 (Pasture/Hay) NoData 

82 (Cultivated Crops) NoData 

90 (Woody Wetlands) NoData 

95 (Emergent Herbaceous Wetlands) NoData 
 
 
Figure 2 displays the final weighting decisions and index development methodology for the final risk index. The 
stormwater flood hazard index from Section 3.4 and the final soil erodibility index from Section 3.7.1 were 
equally weighted to create a stormwater/erodibility index in 30×30-m resolution. The team then created the 
final road-stream crossing risk index (points), by extracting raster values from the combined stormwater 
flooding and soil erodibility index at each point location within the comprehensive road-stream crossings 
dataset. Every road-stream crossing has a resulting risk value from 1–7, where higher values equal higher risk 
due to stormwater flooding and soil erosion potential. For added benefit, individual crossing risk indices were 
also developed using the same approach on the stormwater flood hazard and soil erodibility indices to produce 
a road-stream crossing risk index – stormwater flooding only (points) and road-stream crossing risk index – 
soil erodibility only (points).  
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Figure 2. Conceptual framework for road-steam crossings risk index weighting and integration. 
 
 

3.9 Community Isolation Risk 
The research team assessed three types of community isolation risks by analyzing street network data, 
connectivity, hazards, and critical infrastructure to develop indices of road isolation, hazard road isolation risk, 
and service area isolation risk (Figure 3).  
 

 

Figure 3. Community isolation risk analysis conceptual diagram. 
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First, the team calculated a routable road network (file geodatabase network dataset) by identifying routable 
roads (polyline) and routable road junctions (point) through the Network Analyst extension, applied to Maine 
Emergency 911 roads (Bistrais and State of Maine, 2025).3 This routable road network dataset incorporated 
accurate connectivity, directionality attributes, speed limits, distance, and network topology, and excluded any 
disconnected network roads (i.e., islands without connecting roadways or connected by ferry). To avoid forcing 
routes to stay entirely within the study area—potentially resulting in long or unrealistic detours—a 50-km buffer 
was added beyond the study area. This allowed the routing algorithm to find the most efficient path, even if it 
temporarily exited the study area and re-entered at a closer or more logical point. Routes through Canada were 
excluded to ensure consistent accessibility for all network users, as border crossings are not always reliably 
available.  
 
Next, network vulnerability was assessed by performing a topological connectivity assessment. The junctions 
previously created at all nodes within the routable road network were used to calculate the number of proximal 
connections at each node through spatial joins. Following prior studies that analyzed road network fragility and 
accessibility impacts at the community scale (Sugiura and Kurauchi, 2023) and to ensure meaningful assessment 
of local connectivity, the total number of connecting nodes per road segment was calculated. Each road 
segment was given a connectivity score, calculated by summing the number of other road segments connected 
at each end (node) of the segment (Redzuan et al., 2022). This score provides a straightforward measure of how 
well each segment is connected within the local road network. Segments within the resulting road segment 
isolation index (polyline) with low connectivity scores are more susceptible to isolation under hazard conditions, 
as fewer connections make rerouting more difficult if a segment is closed.  
 
To incorporate hazard exposure (Arango et al., 2023; Mossoux et al., 2019), the stormwater flood hazard index 
(Section 3.4), winter ice storm hazard index (Section 3.5), wildfire hazard index (Section 3.6), and combined 
flooding and erodibility index (Section 3.7.3) were then individually intersected with the road segment isolation 
index.4 Since road-stream crossings were assigned risk values based on the combined flooding and erodibility 
index (Section 3.7.3), this index was similarly used in the present analysis to estimate road isolation risk from 
adverse impacts to road-stream crossings. For each hazard, exposure values were assigned to each road 
segment using the mean of bilinearly interpolated raster cell values from the hazard layer. Segments 
intersecting high-severity hazard zones received higher exposure scores, while those intersecting low-severity 
hazard zones received lower scores. Scores were then rescaled from 0–1 using min-max normalization. For each 
road segment, its resulting exposure score was then added to its road segment isolation index score, resulting in 
indices of stormwater flooding road isolation risk, winter ice storm road isolation risk, wildfire road isolation 
risk, and road-stream crossings road isolation risk, all from 0–2 (polyline). A final composite index was created 
by summing the scores for all four hazard road isolation risk indices, resulting in a compounded hazard road 
isolation risk index, ranging from 0–4 (polyline).5 While it is unlikely that a single road segment would be 

 
3 The modeled roads dataset from Section 3.7.2 was not incorporated because its gridded polyline area coverage was not 
compatible with ESRI’s network analysis framework. 
4 Because spatial overlap between the storm surge hazard index and the routable road network were limited, the storm surge 
hazard index (Section 3.3) was omitted from community isolation risk analyses. Please see Sections 3.7 (Structural Risk by Hazard) 
and 3.10 (Co-occurrence through Bivariate Choropleth Mapping) for integration of storm surge hazard. 
5 Note that the stormwater flood hazard is included in both the stormwater flooding road isolation risk index and the combined 
flooding and erodibility road isolation risk index. This places a stronger focus on stormwater flooding impacts, per partner 
recommendation. 
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simultaneously impacted by all included hazards, this index provides a holistic overview of which road segments 
are generally more vulnerable throughout the year. It also accounts for the increased risk of cumulative impacts 
arising when a road segment affected by one hazard is subsequently exposed to additional hazards prior to the 
completion of restoration efforts. 
 
Lastly, select critical infrastructure (Table 12) from the structural index (Section 3.2) was mapped to investigate 
service area isolation. The analysis assessed proximity and access under hazard conditions to identify facilities at 
risk of isolation—particularly those relying on a few vulnerable road segments (Balasubramani et al., 2016). This 
is not an emergency response plan, but a general assessment of road network isolation and service area 
accessibility. The service area analysis was conducted for each critical infrastructure category using the Service 
Area tool within the Network Analyst extension. Travel distances (i.e., road network distances rather than 
straight-line distances) were calculated from each critical infrastructure facility. Distances were measured 
outward along the road network in 10-km increments, and each road segment was assigned to a distance band 
(e.g., 0–10 km, 10–20 km) based on its travel distance to the nearest facility within each category. These 
distance bands were used to identify road segments that are more or less isolated from critical infrastructure, 
resulting in polyline indices of health-based service area isolation risk, order/safety-based service area 
isolation risk, and services-based service area isolation risk. Segments located farther from facilities have 
higher likelihood of isolation under hazard conditions. The three resulting indices were then combined into an 
overall service area isolation risk index (polyline). 
 

Table 12. Select critical infrastructure by category to inform service area isolation. 

Category Critical Infrastructure Type 

Health Hospitals 

 Assisted living and nursing homes 

 Recovery treatment health providers 

 Psychiatry providers 

 Public health offices 

Order and safety County emergency management agencies 

 Fire stations 

 EMS stations 

 Law enforcement 

 Correctional facilities 

 Ambulances 

Services Gas stations 

 Grocery stores 
 
 

3.10 Co-occurrence through Bivariate Choropleth Mapping 
Finally, the research team developed a series of bivariate choropleth maps to explore additional spatial 
relationships. Bivariate choropleth mapping is a relationship mapping technique that illustrates two variables 
simultaneously through different sets of symbols or colors. These maps allow viewers to assess how two 
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variables change in relation to each other within a study area (ESRI, 2022). For example, a bivariate choropleth 
map of stormwater flood hazard and storm surge hazard would highlight areas of hazard co-occurrence. 
Summarized in Table 13, the research team selected the following assessment components: population density 
(Section 3.1), storm surge hazard (Section 3.3), stormwater flood hazard (Section 3.4), winter ice storm hazard 
(Section 3.5), wildfire hazard Section 3.6), and soil erodibility (Section 3.7.1). For components that were not 
already normalized from 0–1, the research team rescaled those indices using min-max normalization. All 
selected components were then reclassified through grouping by quantile into three classes, resulting in six 
reclassified indices (30×30-m resolution): population density index by group class, storm surge hazard index by 
group class, stormwater flood hazard index by group class, winter ice storm hazard index by group class, 
wildfire hazard index by group class, and soil erodibility index by group class. For final bivariate creation, the 
team combined each reclassified index pair and symbolized using the associated raster index values (binned 
from 1–3) and legend descriptions (Table 14). 
 

Table 13. Index pairs used for bivariate choropleth 
creation. 

Component 1 Component 2 

Population density Storm surge hazard 
 Stormwater flood hazard 
 Winter ice storm hazard 
 Wildfire hazard 
 Soil erodibility 
Storm surge Stormwater flood hazard 
 Soil erodibility 

 
 

Table 14. Bivariate choropleth values crosswalk. 

Component 
1 Value 

Component 
2 Value 

Legend 
Description 

1 1 Low 
1 2 Low/Medium 
1 3 Low/High 
2 1 Medium/Low 
2 2 Medium 
2 3 Medium/High 
3 1 High/Low 
3 2 High/Medium 
3 3 High 

 

 
Workshop mapping exercise. Credit: Reilee Gunsher (CSS/NOAA NCCOS).
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