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ABSTRACT  

Chesapeake Bay has experienced nutrient related water quality impairment for decades due to 

discharge of nutrients (nitrogen, phosphorus) from human related activities in the watershed. 



Water quality monitoring indicates a need for additional nutrient management. Oyster 

aquaculture has become a focus as an additional management strategy because oysters remove 

nutrients as they feed. Models can estimate oyster harvest and related nutrient removal, helping 

to develop comprehensive management plans that include oyster aquaculture. Water quality 

measures for at least one year are required as model inputs. Field sampling and laboratory 

analyses are time and resource intensive. There is interest in finding less costly methods of data 

collection, or in using data already being collected for other purposes as model inputs.  

 

Satellite data products, and water quality data collected by Maryland Department of Natural 

Resources (MD DNR) were compared with in situ data collected at two oyster farms in MD 

Chesapeake Bay (Chester River and North Tangier Sound) for the same timeframe. Statistically 

there are no differences between on-farm and MD DNR data, nor differences between on-farm 

and satellite Chlorophyll a (Chl) data at either site, but variability is high and satellite Chl means 

are lower. Model estimated oyster harvest using on-farm and MD DNR data as model inputs, and 

using satellite Chl data as inputs, are not significantly different at either site but satellite modeled 

harvest results are lower at both sites. Mean Average Percent Error (MAPE) analysis shows all 

model results are Reasonably accurate despite differences in Chl sources and variability among 

sites. Modeled oyster harvest based on a sensitivity test of +10% satellite Chl substituted for on-

farm Chl showed minimal change (<5%) and no change of MAPE rating. Results suggest that 

MD DNR data and satellite Chl can be substituted for on-farm measurements. This strategy 

maximizes efficiency of resource use and adds value to existing monitoring and satellite data 

programs while providing needed information for resource managers and the shellfish industry.  

 



INTRODUCTION AND BACKGROUND 

Eutrophication, or nutrient pollution, is a continuing problem in many waterbodies within the 

United States (US) and globally. Nutrient discharges (i.e., nitrogen (N), phosphorus (P)) to 

coastal waters have increased to levels far above natural levels due to human activities (US 

CWA 1972). High nutrient loads cause disruption to proper functioning of a waterbody’s 

ecological system and can disrupt the economic and social health of the surrounding population 

if, for example, fisheries lose production, or coastal tourism declines (NRC 2000, Cloern 2001, 

Bricker et al. 2003, 2014). Eutrophication challenges in coastal waters led to national and 

regional legislation, such as the US Clean Water Act (US CWA 1972), the Chesapeake Bay 

Action Plan (2008), Executive Order 13508 for Chesapeake Bay Protection and Restoration 

(2009), and the Chesapeake Bay Watershed Agreement (2014) that were designed to protect 

healthy waters and remediate degraded coastal water quality. 

 

The Chesapeake Bay and its tributaries were among the US estuaries that showed more severe 

nutrient related impacts in two national assessments (Bricker et al. 2003, 2008). The Chester 

River and North Tangier Sound, two Maryland (MD) Chesapeake Bay tributaries and the 

locations of the study sites, have historically had Chl concentrations above, and dissolved 

oxygen (DO) concentrations below, median values reported among US estuaries (Table 1, 

Bricker et al. 2007). A Total Maximum Daily Load (TMDL) analysis identifies the maximum 

amount of a pollutant (e.g. nutrients) a waterway can receive and still be able to meet water 

quality standards. It is a regulatory tool that assists in development of plans to restore pollutant 

impaired waters to acceptable quality. A nutrient TMDL was established in the Chester River in 

2006 because of observed nutrient impairment (US EPA 2008, MDE 1998). Because of 



continuing nutrient-related degradation, the US Environmental Protection Agency (EPA) 

established the Chesapeake Bay-wide TMDL for nutrients in 2010 that continues today (US EPA 

2010). Continuing nutrient-related water quality issues suggest that additional nutrient 

management is needed.  

 

TABLE 1 NEAR HERE 

 

FIGURE 1 NEAR HERE 

 

Bioextractive nutrient removal by oysters, clams, mussels and other bivalve shellfish aquaculture 

has gained momentum during the last 20 years as research has shown potential nutrient removal 

capabilities in addition to the provision of seafood (e.g. Lindahl et al. 2005, Cornwell et al. 2016, 

2023, Bricker et al. 2018, 2020, Rose et al. 2014, Reitsma et al 2017, Holbach et al. 2020). 

Bivalve shellfish aquaculture is a promising strategy for nutrient management, that can be used 

in combination with traditional land-based interventions. Models have been used to estimate 

nutrient removal associated with bivalve shellfish aquaculture harvest because simulations can 

provide results in less time than the typical 1 to 3 year production cycle (e.g. Ferreira et al. 2007, 

2009, Filgueira et al 2014, Rose et al. 2015, Parker and Bricker 2020). However, data input 

records for at least a year are needed to run model simulations and can be labor and resource 

intensive to collect for a single study at a farm site. There are other data sources that might be 

used that are being collected for other purposes that could save time and resources.  

 



The objective of this study was to evaluate whether state monitoring data and satellite Chl data 

might be substituted for on-farm Chl and other needed water quality data model input 

measurements. This study was conducted in two parts; 1) to test if data already being collected 

by other agencies were representative of on-farm measurements and thus could be used as model 

inputs, and 2) whether model results using those data were comparable to results using project-

specific data measured on oyster farms.  

 

STUDY SITES – CHESTER RIVER & NORTH TANGIER SOUND, MARYLAND 

CHESAPEAKE BAY 

Eight Maryland Chesapeake Bay oyster farm sites that were sampled in Parker and Bricker 

(2020) were evaluated for possible inclusion in this study. Two farms, one in Chester River and 

one located at the boundary of Honga River and Tangier Sound, were selected because these 

were the only farm sites where a 3x3 pixel grid box of satellite data around the study site did not 

contain land interference (Figure 1). The oyster growers, both using bottom cage operations and 

both cultivating triploid Eastern oyster (Crassostrea virginica), provided detailed information 

about cultivation practices used during the typical cultivation cycle (Parker and Bricker 2020).  

 

The Chester River has a total area of 196 km2 (Bricker et al. 2007). The oyster farm used for this 

study is located in mid-Chester River, which is mostly brackish, with a long-term average 

salinity of 12 (Bricker et al. 2007) and an average 9 from 2016 to 2018 (Parker and Bricker 

2020; Figure 1, Tables 1, 2). Salinity is within the range of tolerable salinities for C. virginica 

(5–40, with an optimum of 15–25; Shumway 1996), though the Chester River is known to 

experience low salinities (<4) at times of heavy rainfall. The average tidal height is 0.48 m. 



Residence time is 27 days, greater than the median value for US estuaries (~5 days, Bricker et al. 

2007). High residence times (> 10 days) suggest susceptibility to eutrophication; slower water 

replacement has been associated with higher level nutrient-related degradation (Bricker et al. 

2014).  

 

The North Tangier Sound has an area of 1057 km2 which includes a large sound with smaller 

tributary bays and tidal rivers including the Nanticoke, Wicomico, Manokin, Big Annemessex 

and Pocomoke Rivers (Figure 1). The oyster farm is located at the southern end of Honga River 

where it meets Tangier Sound. The long-term average salinity of the Sound is 13 (Bricker et al. 

2007) and average salinity from 2016 to 2018 was also 13 (Parker and Bricker 2020). The 

average tidal height for Tangier/Pocomoke Sound is 0.67 m, and residence time is 12 days 

(Bricker et al. 2007), greater than the median for US estuaries (~5 days) but less than the Chester 

River.  

 

Dissolved oxygen and Chl are used as indicators of nutrient enrichment and eutrophication 

impacts (Bricker et al. 2003).  Surface Chl concentrations, representing algal biomass, above 20 

µg/L are indicative of nutrient enrichment (Bricker et al. 2003) causing declines in submerged 

aquatic vegetation (US EPA 2000, Stevenson et al. 1993) and community shifts in phytoplankton 

from a diverse mixture to monoculture (Twilley et al. 1985). Highest annual (90th percentile) Chl 

concentrations in both the Chester River and Tangier Sound systems are higher than the median 

of 90th percentile Chl concentrations of US estuaries (Table 1) indicating nutrient related 

impacts.  

 



Dissolved oxygen concentrations less than 5 mg/L are considered stressful to water column 

dwelling organisms such as American shad, white perch and other fish; bottom-dwelling 

organisms such as crabs and oysters are less sensitive, requiring only 3 mg/L to thrive (US EPA 

2003). Concentrations between 2 and 5 mg DO/L are considered ‘Biologically Stressful’ and 

mobile organisms flee areas where these concentrations are observed (Bricker et al. 2003).  

Lowest annual (10th percentile) DO concentrations are lower than the median of 10th percentile 

values of US estuaries and lower than thresholds indicative of impairment (Bricker et al. 2003) in 

Chester River, but not in North Tangier Sound.  

 

Successive Eco Health Report Cards (UMD 2015-2020) showed that Chester River and North 

Tangier Sound, had failing grades for overall water quality health and for Chl concentrations, 

and best or better grades for DO conditions. Maryland DNR assessments for the same regions 

(MD DNR 2015, 2015a) show failure to meet N standards at both sites, and failure to meet 

summer DO standards in Chester River. 

 

METHODS AND MATERIALS 

The dataset from a one-time study of two Chesapeake Bay oyster farms (Parker and Bricker, 

2020) was compared to two alternate data sources, satellite Chl data products from the 

Copernicus Sentinel – 3 Ocean and Land Color Instrument (OLCI) using an algorithm for 

optically complex waters (Gilerson et al. 2010) and data from the long-term MD DNR 

monitoring program (MD DNR 2016-2018). The on-farm dataset was considered the ‘true’ 

dataset. Satellite and MD DNR data were selected to match the 2016 to 2018 timeframe of the 

on-farm data set. Model outputs from simulations using the on-farm datasets from Parker and 



Bricker (2020) deemed the ‘true’ model output, were compared to model results using the 

alternate datasets as inputs.  

 

On-farm In situ Monitoring Data 

The on-farm dataset includes temperature, salinity, Chl, DO, total suspended solids (TSS) and 

total volatile solids (TVS), the minimum data inputs needed to run the Farm Aquaculture 

Resource Model (FARM; Ferreira et al. 2007), the model used in this study. In situ samples were 

collected monthly at the Chester River (N = 23) and North Tangier Sound (N = 24) oyster farm 

locations in a two-year study from May 2016 to August 2018, with exceptions due to boat 

operation and ice condition issues (missing data at Chester River for September 2016, January, 

March, April, September 2017; missing data for North Tangier Sound for September 2016, 

September, December 2017, January 2018). Samples were analyzed at the University of 

Maryland (UMD) Chesapeake Biological Laboratory (CBL) Nutrient Analytical Services 

Laboratory (NASL) with a typical overall percent error of <5% (J. Frank, personal 

communication, UMD CBL NASL, September 19, 2024, UMD CBL NASL 2019a, b, c, d, 

Parker and Bricker 2020). Surface data are used to represent farm conditions, despite the use of 

bottom oyster cages, because the sites are shallow (<2.5 m) with well-mixed water columns with 

no expected nor observed difference between surface and bottom water quality due to tidal and 

wind mixing. 

 

Satellite Data   

Satellite products cannot provide all needed model input parameters. Only Chl, TSS and sea 

surface temperature (SST) are available from satellites in this area. For the purpose of this study 



the focus was Chl, so only Chl satellite data products were used.  Daily Ocean and Land Color 

Instrument (OLCI) images with a native spatial resolution of 0.3 km from Copernicus Sentinel-3 

satellites of the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) were used. The OLCI sensor operates on two separate spacecraft: Sentinel-3A 

(launched February 2016) and Sentinel-3B (launched April 2018) that pass over the Chesapeake 

Region twice per day, i.e. one instrument each on two Sentinel-3 satellites. Daily imagery from 

both Sentinel-3A and Sentinel-3B from May 2016 through August 2018, the timeframe to match 

the timeframe of sampling on the farm, were used in this study. The map in Figure 1 gives an 

example of features that are visible in imagery from the 300 m spatial resolution of the OLCI 

sensor. 

 

The satellite images were processed with a Chl algorithm that uses the red-edge band, referred to 

as Red Edge 2010 (RE10 Chl, Gilerson et al. 2010), by NOAA National Centers for Coastal 

Ocean Science (including invalid pixel flags), as outlined by Wolny et al. (2020) for Chesapeake 

Bay, and validated in Wynne et al. (2022). Specifically, the RE10 algorithm uses the relative 

amount of red and near-infrared light fluoresced by phytoplankton and was calibrated with 

Chesapeake Bay in situ Chl data (Gilerson et al. 2010, Wynne et al. 2022), reducing the high Chl 

bias in coastal regions of NASA standard Chl algorithms which compare the relative absorption 

of blue to green light. This algorithm was selected based on a comparison of the efficacy of five 

satellite-based Chl algorithms in Chesapeake Bay where it performed best for Chesapeake Bay, 

with a 36% Median Absolute Error (Wynne et al. 2022), and improved spatial resolution to 300 

m, compared to other operational Chl products. Higher spatial resolution is critical when 

applying to on-farm models, given their location in narrow tributaries and close to land. 

https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus


Phytoplankton biomass (estimated from Chl concentrations), is the primary food source for 

oysters and was the focus of satellite data estimates.  

 

The satellite overpasses were gridded on a 0.3 km Universal Transverse Mercator (UTM) grid 

daily and Chl data were extracted for a 3x3 box (9 grid cells) around the two oyster farm 

locations in the Chester River and North Tangier Sound (Figure 1). The Chester River farm site 

is very close to the coastline, so the number of values in the 3x3 box (9 pixels) was quite low due 

to effects of coastal turbidity, tides, and shallowness (N = 66). The North Tangier Sound farm 

site contained more values (N = 255) in the 3x3 box. Cloud cover reduces the number of values 

for both sites as well. The median Chl value was used, for comparison to the on-farm dataset, as 

long as at least 5 of the 9 measurements of the 3x3 grid-cell box were present.  

 

Maryland Department of Natural Resources Long-term In situ Monitoring Data 

Monthly measures from MD DNR Chesapeake Bay long-term monitoring program for salinity, 

temperature, Chl, DO, TSS, and TVS (MD DNR 1984 – present) were compared to on-farm in 

situ water quality measurements. The MD DNR data for the period May 2016 to August 2018 

were selected to match the on-farm sampling timeframe, having been sampled in the same month 

and, on average, sampled within 3 days of the on-farm samples. Data were acquired for two of 

the MD DNR long-term sample stations that were closest to the oyster farm locations (Figure 1, 

Table 2).  The station closest to the Chester River farm is MD DNR station ET4.2 (N = 28) in the 

Lower Chester River. The station closest to the North Tangier Sound oyster farm site was station 

EE3.1 (N = 27) in North Tangier Sound. In both cases, the sampling stations were ~8 km from 

the farm site and only surface data were used for the analysis. Sampling, analytical, and quality 



control / quality assurance protocols are described in MD DNR Quality Assurance Project Plans 

(MD DNR 2020, 2023). MD DNR monitoring program samples are analyzed at the UMD CBL 

NASL and overall error is typically <5% (J. Frank, personal communication, September 19, 

2024, UMD CBL NASL). 

 

TABLE 2 NEAR HERE 

 

Since the MD DNR long-term monitoring stations (ET4.2, EE3.1) are at deeper water sites, it 

was important to be certain that those data were representative of water characteristics at the 

shallower farm sites. To confirm this, MD DNR long-term monitoring data were compared to 

MD DNR shallow water monitoring data at the locations closest to the on-farm locations 

(Appendix I). The shallow water monitoring program collects data at a station for three-year 

periods; the shallow water monitoring at the closest shallow water stations differed from the on-

farm study period (2016-2018), so data from the shallow water monitoring program were 

compared to data from the long-term monitoring stations for the matching periods: 2008-2010 

for North Tangier Sound and for 2004–2006 for the Chester River. The results of the 

comparative analysis indicated there was no significant difference between the long-term 

monitoring station surface sample data and shallow water monitoring station data during the 

overlapping period at either location, suggesting that the long-term station data could adequately 

represent the shallow water areas. Thus, data from the two long-term monitoring stations (ET4.2, 

EE3.1) were used with confidence to represent the shallow water areas of the oyster farms. 

 

Statistical Methods 



On-farm, MD DNR, and satellite Chl data were analyzed for mean differences in concentrations 

among sites (Chester and North Tangier), among years (2016-2018), and among months (Jan. - 

Dec.). Monthly MD DNR and satellite mean Chl concentrations were used to evaluate the 

representativeness of monthly on-farm mean Chl concentrations. Levene tests of Chl data found 

that variances among groups were not homogeneous, therefore Kruskal-Wallis tests were used to 

determine mean differences in Chl concentrations among data types, sites, and years. 

Subsequently, multiple comparison tests were performed using the Wilcoxon rank sum exact 

test. Base R statistical packages (https://cran.r-project.org/) were used for analysis. The Levene 

Test, Kruskal.test and pairwise Wilcox.test functions were used for Chl data analysis. Probability 

values (p-values) less than 0.05 indicated violations of the null hypothesis. 

 

On-farm and MD DNR mean water quality parameters (Chl, DO, TSS, TVS, temperature, 

salinity) were compared for differences among sites. Levene test for water quality data found 

that variances among groups were homogeneous. Linear models were used to calculate the mean 

estimates for water quality parameters and determine significant differences in mean 

concentrations among sites (Gotelli 2004). The mean estimates were calculated using the linear 

model (lm) function. The 95% confidence intervals were calculated using the predict function. 

Significant differences among sites for water quality data mean estimates were determined based 

on the overlap among sites. Overlapping 95% confidence intervals indicate no significant 

difference and non-overlapping 95% confidence intervals indicate a significant difference.  

 

A Mean Absolute Percentage Error (MAPE) analysis was used to compare relative accuracy of 

oyster model simulations when MD DNR and satellite Chl data were substituted for the on-farm 

https://cran.r-project.org/


data (Moreno et al. 2013). Mean Absolute Percentage Error is the average difference between the 

predicted value and the observed value. In this study, since the observed harvest data were 

unavailable, comparison was made of average differences among Chl data sources by using each 

data source as input for running the oyster production model. The modeled harvest results from 

the on-farm input dataset are considered the observed and the estimated harvest using the MD 

DNR dataset and the satellite Chl substituted for the on-farm Chl are considered the predicted 

values. The MAPE function from the MLmetrics R software package was used to calculate the 

MAPE. The equations for calculating each MAPE are: 

On-Farm vs. DNR = mean(abs(sum((On-Farm-DNR)/On-Farm))) * 100 

On-Farm vs. Satellite = mean(abs(sum((On-Farm-Satellite)/On-Farm))) * 100 

Interpretation of the MAPE results is based on Lewis (1982), where: 

MAPE <10% - Highly accurate 

MAPE 10-20% - Good accuracy 

MAPE 20-50% - Reasonable Accuracy 

MAPE >50% - Inaccurate 

 

Farm Aquaculture Resource Management (FARM) model  

Data were applied to the Farm Aquaculture Resource Management (FARM, Ferreira et al. 2007) 

model to evaluate differences in model output using the three different datasets.  The model 

combines physical and biogeochemical models, bivalve growth models, and water quality 

screening models to determine shellfish production (harvest) and for eutrophication assessment 

at the farm scale (Ferreira et al. 2007). Water properties are transported both horizontally and 

vertically in the model, but the vertical component only applies to suspended culture; the oyster 



farm sites in this study use bottom cage culture. The model is driven by peak (i.e., mid-tide) 

current speeds measured in situ for both spring and neap tides, which are interpolated to generate 

the full semi-diurnal cycle for both height and velocity, and the change of amplitude through the 

lunar cycle. Velocities are not residuals, and the tidal height and velocity are calculated explicitly 

for each model timestep (Ferreira et al. 2007). A sensitivity analysis of model outputs from 

various inputs from different locations showed the model to be robust and a useful tool for 

analysis of farm production, profit maximization, and potential nutrient removal (Ferreira et al. 

2007). The model has been validated for oysters and several other species with results showing 

good agreement with reported shellfish harvest (Ferreira et al. 2009).    

 

The Chesapeake Bay calibration of the model (Cubillo et al. 2018), used in Parker and Bricker 

(2020), was used in this study. The model has also been calibrated and used successfully in Long 

Island Sound and Great Bay Piscataqua (Dvarskas et al. 2020, Bricker et al. 2018, 2020) where 

modeled harvest results were in agreement with reported harvest, in several European 

waterbodies (Ferreira et al. 2009), in China (Ferreira et al. 2008), and in Chile (Silva et al. 2011).  

 

Environmental data required for simulations are temperature, salinity, Chl, TSS, and TVS. The 

model can accommodate samples that are taken on different dates. Interviews with oyster 

growers provided additional model inputs needed including information about farm operations 

such as size of farm, oyster seeding density, size of oyster seed and harvestable oysters, and 

typical mortality over the cultivation cycle (Cubillo et al. 2018, Parker and Bricker 2020). 

Current speeds were taken from the NOAA buoy closest to each study site (Parker and Bricker 

2020). Eight model simulations for each data set at each farm location were made using different 



mortalities (20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) to represent the range of potential 

modeled harvest given the range of mortalities reported by MD oyster growers (20%–90%). The 

output of interest was the modeled estimates of oyster harvest amount (hereafter ‘modeled 

harvest’) because this is what is used to determine the potential nutrient credits an oyster grower 

can receive within the Chesapeake Bay Nutrient Credit Trading Program (MD NTP n.d., MDE 

n.d., Cornwell et al. 2016, Wheeler 2020, MD CG 2023). 

 

Comparison was made of the modeled oyster harvest output from simulations using the on-farm 

and MD DNR datasets as inputs at the two farm study sites. In the simulation to compare results 

using on-farm and satellite Chl, only the Chl data were substituted with satellite Chl while all 

other variables remained the same. Additional modeling was done with these satellite data to test 

the model sensitivity to the use of satellite Chl. For both sites, sensitivity simulations were made 

for all mortalities using satellite Chl both increased and decreased by 10%.  

 

Modeled estimates can be validated by comparison to reported harvest as was done in a 

validation study (Ferreira et al. 200). In this study, because of industry privacy considerations 

harvest data were not available for individual farms. A single harvest number provided by the 

grower for 2016 oyster harvest at the Chester River farm was 13.6 m tons (at 70% mortality due 

to low salinity excursions CBF 2019; Parker and Bricker 2020). Annual variability for 2016-

2018 for combined harvest from all MD cage grown oysters was 12%, which provides additional 

insight (UME n.d.).  

 

 



RESULTS 

Comparative analysis of on-farm, MD DNR and satellite datasets 

 Statistical comparison of the three datasets for Chl was made by a Kruskal-Wallis test, results 

are shown in Figure 2a. The on-farm Chl data are not significantly different from satellite and 

MD DNR Chl concentrations at either site, but results are variable. The satellite Chl means at 

both sites are lower, particularly at the North Tangier site.  

 

Figure 2b shows that there is no significant difference in Chl concentrations among the three 

years at either site for any dataset. There are also no significant differences between the on-farm 

and satellite data among the different years, nor between on-farm and MD DNR data among the 

three years of data.  

 

The combined years of data were also evaluated to see if there were differences in monthly data 

at the two study sites (Figure 2c).  There were no statistically significant differences in data 

between the on-farm and satellite data, nor between the on-farm and MD DNR data at either 

location. The maximum and minimum concentrations at the on-farm locations are reflected in 

maximum and minimum concentrations in both MD DNR data and satellite datasets. For 

example, the Chester River Chl data shows highest concentrations in month 8 that are also 

observed in the MD DNR and satellite datasets at month 8, but the relative difference in 

concentration is greater in on-farm and DNR datasets than the relative difference in the satellite 

dataset. The North Tangier site also shows consistency in data among the three sources, 

particularly in the minimum concentrations which all datasets show at month five, though 

satellite Chl concentrations were lower overall. 



 

FIGURE 2 NEAR HERE 

 

The comparisons of on-farm and MD DNR measures of additional water quality parameters 

(salinity, temperature, DO, TSS, TVS) are shown in Figure 3a-e. These results show that data 

from MD DNR and on-farm measurements are not significantly different for any parameter at 

either site, but the data are variable. Salinity, temperature, and DO show the greatest 

concurrence. Total suspended solids and TVS concentrations are higher in the on-farm datasets 

at both sites, though statistically there is no significant difference for either parameter at either 

site. 

 

FIGURE 3 NEAR HERE 

 

FARM Model Results  

Results of the FARM model application to all three datasets are shown in Table 3. The modeled 

harvest results using the MD DNR data are higher than results using on-farm data at the Chester 

River, and the results using the satellite Chl are lower at both sites. The overlap of 95% 

confidence intervals of model results from the three different datasets indicates no significant 

differences between FARM modeled harvest based on the on-farm and MD DNR datasets at  

 

TABLE 3 NEAR HERE 

 



either location, nor between results using the on-farm and satellite Chl data at either location 

(Table 3).  Variability, however, is high with average standard deviations of 17% (MD DNR 

dataset), 24% (on-farm dataset), 32% (satellite Chl dataset) among the Chester River model 

results, and 37% (on-farm and MD DNR datasets) and 50% (satellite Chl dataset) among the 

North Tangier Sound model results. Satellite Chl showed lower modeled harvest at both sites, 

lower than both on-farm and MD DNR results. At both sites, there is an increasing difference in 

model estimated harvest as modeled oyster mortality increases, reaching 50% lower harvest at 

90% mortality at the North Tangier site.   

 

Results of the sensitivity test showed that 10% increases and 10% decreases in satellite Chl 

model inputs, with all other variables the same, led to increases and decreases in model estimated 

harvest at both sites. Modeled harvest results at the Chester River site were an average of 17.0 

and 15.7 metric tons for the increased and decreased satellite Chl, respectively. At the North 

Tangier site model estimated harvest results were 28.3 and 18.7 metric tons for increased and 

decreased satellite Chl, respectively.  The variability in harvest results on average (32% at 

Chester River, 47% at North Tangier) was similar to variability of results using the original 

satellite Chl dataset (32% at Chester River, 50% at North Tangier).  

 

Mean Average Percent Error analysis results 

The MAPE analysis indicates that all sources of Chl data input at both sites provide Reasonable 

accuracy (MAPE < 30%; Figure 4). More accurate results were achieved when MD DNR data 

were substituted for on-farm data, where North Tangier (1.9%, Highly accurate) was more 

accurate than Chester River (12%, Good accuracy). Substituting satellite for on-farm Chl data at 



both sites resulted in less accurate results; the MAPE at Chester was 13% (Good accuracy) and at 

North Tangier was 29% (Reasonable accuracy). The combined MAPE results at each site show 

that overall accuracy, combined results for on-farm vs MD DNR and on-farm vs satellite, was 

greater at the Chester River site (25%, Reasonable accuracy) than at the North Tangier Sound 

site (30.9%, Reasonable accuracy).  

 

The MAPE for the satellite sensitivity results using +10% satellite Chl show a change of 1% 

(greater) accuracy at the Chester River site and 4% (lesser) accuracy at the North Tangier site. 

Neither change results in a change in the overall MAPE outcome, results indicate Good relative 

accuracy for Chester River and Reasonable relative accuracy at the North Tangier site. 

 

FIGURE 4 NEAR HERE 

 

DISCUSSION  

Negative impacts of nutrient discharges to Chesapeake Bay waters continues to be a challenge. A 

large body of work suggests that oyster aquaculture can partially address the need for additional 

nutrient management (e.g., Cornwell et al. 2016, 2023 and citations within, Town of Mashpee 

Sewer Commission 2015, Reitsma et al. 2017, Rose et al. 2015, Lindahl et al. 2005, Parker and 

Bricker 2020, Bricker et al. 2018, 2020).  Oyster aquaculture has shown similar N removal rates 

and implementation costs as some traditional approved nutrient Best Management Practices 

(BMPs; Rose et al. 2014). In 2016 the Chesapeake Bay Program approved harvested aquaculture 

oyster tissue as an additional nutrient Best Management Practice (BMP, Cornwell et al. 2016, 

2023) to help achieve water quality goals. 



 

While the amount of nutrients removed by oyster aquaculture can be estimated by the number of 

oysters that are harvested and the per oyster nutrient content (Cornwell et al. 2016), this can also 

be achieved by model-determined mass balance of assimilated and excreted phytoplankton and 

detrital material that is filtered (eaten) by the oyster farm population (Ferreira et al. 2007). Model 

scenarios can also be used to estimate expected changes in farm harvest due to changes in 

aquaculture practices or changes in environmental conditions, without the cost and time to install 

actual farms (Parker and Bricker 2020, Bricker et al. 2018, 2020). This can be helpful in the 

development and success of comprehensive nutrient management plans that include installations 

of oyster farms (e.g. Lindahl et al. 2005, Cornwell et al. 2016 and citations within, Reitsma et al. 

2017). Model simulations require water quality parameters as inputs, which can be costly to 

obtain at the temporal scales needed.  This study aimed to determine whether other sources of 

data being collected for other purposes, by MD DNR and by satellite, could substitute for project 

specific data as model inputs. 

 

On-farm, MD DNR, and Satellite data comparisons at the farm study sites 

The MD DNR monitoring dataset included Chl and all other parameters needed for the FARM 

model simulations. There were no significant differences between the on-farm and MD DNR 

datasets for any parameter (Fig. 3a-e) and the MD DNR data were deemed suitable as substitutes 

for on-farm data. Comparative results show that, while variable, the on-farm, MD DNR and 

satellite Chl datasets are consistent in annual patterns of maximum and minimum values and lend 

confidence that alternate data sources can be used as substitutes for on-farm Chl, though satellite 

Chl is lower at both sites (Figure 2).  



 

The satellite Chl means are lower for several possible reasons including spatial and temporal 

differences in sampling compared to in situ sampling. Spatial differences occur because satellite 

Chl data represent an average of data within a 3x3 grid (or 900 m2 area) around the site location; 

subpixel variability within that area of water is expected when compared to a single water 

sample. Temporal differences occur because there is only one monthly in situ sample taken while 

an assessment of the Chl concentration using satellite data may be more indicative of the sub-

daily variability (including tidal fluctuations) and daily changes (including changes in 

phytoplankton biomass), which is more indicative of what the oyster bed is experiencing. Errors 

in satellite Chl using the RE10 algorithm were identified to be 36% Mean Absolute Error, which 

is typical of satellite derived chlorophyll (Wynne et al. 2022). This variability is not captured 

with one time per month sampling. While it introduces more variability in the dataset, it provides 

more frequent sampling than monthly sampling can provide.  

 

Previous studies have found correspondence between satellite and in situ monitoring for 

parameters (e.g., Chl, TSS, SST) when algorithms are calibrated with local in situ data (Werdell 

et al. 2009, Keith 2014, Gohin et al. 2020 - MODIS/AQUA, VIIRS/NPP and OLCI-A/Sentinel-

3, Palmer et al. 2020 and Giardino et al. 2010 - MERIS). As an example, satellite Chl data 

derived from MERIS images and in situ data for the Neuse and Tar–Pamlico River estuaries and 

adjoining Pamlico Sound showed a 1:1 correspondence after calibration (Keith 2014). The Keith 

(2014) study showed that satellite data were also better able than in situ monitoring data to 

capture the spatial extent and timing of higher Chl concentrations that are used to inform nutrient 

management.  



 

Locally calibrated algorithms, however, may not necessarily produce data that are reflective of 

every location in the region nor of all time periods of interest. These algorithms rely on in situ 

data to fit them, and the distribution of these data may be different from the distribution of the 

on-farm or MD DNR data used in this analysis. Other studies have similarly shown mixed 

success, and estuarine waters with high organic matter content can make it difficult for Chl to be 

accurately retrieved from satellite measurements (e.g., Gohin et al. 2020, Boudaghpour et al. 

2020). The satellite data in this study are reflective of the range of in situ Chl concentrations and 

are representative of monthly patterns. By comparing monthly in situ sampling with monthly 

means of daily Chl, it is difficult to say whether the monthly sampling overestimates the overall 

Chl for a month or if the satellite Chl algorithm truly underestimates the monthly Chl 

concentration an oyster bed experiences.  All that can definitively be said is that monthly 

averaged daily satellite data were lower than a single monthly on-farm sample, particularly at the 

North Tangier site (Figs. 2a-c).  

 

This study used a 300 m satellite Chl product as a replacement for monthly in situ Chl 

monitoring. It is difficult to assess whether the errors in the satellite imagery are responsible for 

decreased modeled harvest numbers, or if the frequency of in situ monitoring causes an 

overestimate of the results; future efforts could address this. Higher resolution spatial data are 

available from newer satellites (e.g., Sentinel-2, Landsat-8) and might better capture water mass 

conditions closer to the farm, as has been demonstrated successfully for aquaculture site 

selection by Snyder et al. (2017). However, the tradeoff with these satellite missions is lower 

temporal frequency (approximately a 5-day repeat). Commercial satellites, as provided by 



PlanetScope SuperDove satellites, could provide daily 3 m pixel imagery, however, it is not 

currently available for operational environmental use. The higher spatial resolution OLCI Chl 

data products in this study did show greater concurrence with in situ observations than a 

preliminary comparison made with lower resolution data from MODIS at the 1 km scale, but 

may benefit from the even higher resolution data.  

 

While this study indicates that satellite Chl may not be as suitable as the MD DNR data as model 

inputs to estimate aquaculture harvest, other relevant studies have used satellite data specifically 

for issues related to aquaculture.  In one case, satellite data that replicated in situ data for model 

inputs were used to inform spatial planning and improved risk management of harmful algal 

blooms for successful aquaculture siting and operation (Snyder et al., 2017, Palmer et al. 2020, 

Smith and Bernard, 2020). Another study used satellite temperature data to understand the rate of 

larval development of mussels to help advise farmers about the ideal time for collecting seed for 

aquaculture (Filgueira et al. 2015). A promising study used satellite-derived Chl and TSS 

concentrations at the scale of an oyster farm, coupled with eco-physiological models, to estimate 

oyster clearance and Chl consumption rates (Gernez et al. 2017). In each of these studies, it was 

anticipated that satellite data might be used in place of the time and resource-intensive one-time 

study sampling schemes as model inputs, though additional parameters are needed to complete 

the suite of needed model inputs. It is noteworthy that the satellite Chl data alone could 

potentially be used to determine locations where food availability would support successful 

oyster growth, as shown in Bricker et al. (2016) and Filgueira et al. (2014), thus supporting 

successful siting and potential industry expansion, though the concurrence of satellite and on-

farm Chl data in this study is not as strong as that noted in previous studies. Continuing 

improvements in satellite capabilities are expected to improve the concurrence with in situ data. 



 

Model results using the alternate datasets  

Model simulations using satellite Chl substituted for on-farm Chl were conducted despite the 

seeming underestimate of on-farm Chl so that a full comparison could be made of model results 

using both alternate datasets. The lower model estimated harvest at both sites is the result of the 

lower Chl values of the satellite dataset because all other input variables were the same (Table 

3). The average variability among the range of modeled harvest results using different mortalities 

is highest for the satellite Chl dataset, 32% at the Chester River site and 50% at the North 

Tangier site. The reason for the increase in magnitude of the underestimation of harvest with 

increasing mortality of the satellite Chl results in Chester River is unknown. It is likely a 

function of the model operations because this pattern is also observed in Chester River MD DNR 

results. A possible explanation is that as mortality increases the impact of the difference in Chl 

concentration between the datasets is enhanced which may be why the differences are more 

apparent in the Chester River site where satellite Chl concentrations (and modeled harvest) are 

lower, and MD DNR Chl concentrations (and modeled harvest) are higher, than the on-farm 

modeled harvest values. 

 

Sensitivity was tested at the time of the FARM model development which found the model to be 

a robust tool suitable for this type of modeling (Ferreira et al. 2007). A sensitivity test was done 

in this study to evaluate the potential magnitude of bias in model results from the use of the 

satellite Chl data that underestimated on-farm Chl data. A full sensitivity test of all variables 

would be more revealing and future efforts could address this. The sensitivity test results for 

+10% satellite Chl concentrations show the model is working properly, increasing and 



decreasing harvest results with increases and decreases in Chl model inputs, respectively. The 

variability in sensitivity analysis results agrees well with variability of results using the original 

satellite Chl dataset (32% at Chester River, 50% at North Tangier) with an average of 32% 

among results at the Chester River site and 47% at the North Tangier site. 

  

MAPE analysis  

Variability among model results using on-farm and MD DNR data was higher at North Tangier 

(37% for both on-farm and MD DNR results) than Chester River (24% for on-farm, 17% for MD 

DNR results). A MAPE analysis was conducted to evaluate the relative accuracy of model 

results using the alternate datasets compared to results using on-farm data. Accuracy for all 

results for all datasets are at least Reasonably accurate (<30% error; Figure 4). The satellite Chl 

model results show 13% error at Chester River, deemed Good relative accuracy, compared to 

12% error of the MD DNR dataset results (Lewis 1982). There is a greater difference in accuracy 

at the North Tangier site with the accuracy of the satellite data set results showing Reasonable 

accuracy (29% error) and MD DNR results High accuracy (1.9% error).  The MAPE analysis of 

the sensitivity test results shows that error decreased at the Chester River site by 1% and 

increased at the North Tangier site by 4% with changes in Chl model inputs, but this did not 

change the accuracy at either site. The greater difference at the North Tangier site is likely a 

location effect, potentially related to error in the satellite data from more clouds or reflectance at 

that site than at Chester River or from the greater amount of data points at that site. The small 

changes in the MAPE results confirm the robustness of the model to the use of different data 

sources and suggest that satellite Chl data can be used as a substitute for on-farm Chl, 



recognizing that there may be greater error in remotely sensed data than in situ data and that 

there may also be location differences.  

 

Model results and reported oyster harvest 

The MAPE analysis suggests that the alternate datasets can be used to provide Reasonably 

accurate predictions of on-farm model results, however, the question about validity and 

representativeness of actual oyster harvest remains. Comparison of model results to reported 

harvest is the best way to validate models as has been shown for the FARM model in several 

European estuaries (Ferreira et al. 2007, 2009). Due to privacy issues surrounding the MD 

aquaculture industry, there was only one harvest value available for the Chester River farm 

(2016 harvest of 13.6 metric tons at 70% mortality; Parker and Bricker 2020) but annual 

variability was not known. Variability among all MD cage grown harvests for 2016 – 2018 was 

12% (UME n.d.), which could be used to inform potential annual variability at the Chester 

River site. The uncertainty about how the overall MD variability relates to the Chester River 

farm prevents a robust comparison and true validation of results. Speculatively, a comparison of 

the range of harvest amounts using that variability shows overlap with on-farm, satellite Chl, 

and MD DNR modeled harvest results for mortalities from 70 – 90%. The variability within the 

datasets, the uncertainty of harvest and of variability of harvest makes it difficult to know how 

well model results represent oyster harvest. Additional harvest numbers would benefit these 

results.  

 

Substitutability of alternate data sources  



Results of the MAPE analysis for MD DNR stations showing High (1.9%, North Tangier Sound) 

and Good (12%, Chester River) accuracy suggest that the MD DNR datasets can be substituted 

for on-farm in situ sampling data (Figure 4). This analysis suggests that satellite Chl data can 

also be substituted for on-farm Chl but with lower relative accuracy, particularly in North 

Tangier (13% in Chester River, 29% in North Tangier). While satellite Chl can be used, it is 

important to recognize the greater error in satellite data due to sampling spatial coverage, 

frequency, and location as discussed, though here the MAPE shows error less than Mean 

Absolute Error of 36% that is typical of satellite data (Wynne et al. 2022). The substitution of 

on-farm data with alternate data sources will save time and resources while providing similar 

results. The use of MD DNR data adds value to that dataset and highlights the value of the MD 

DNR monitoring program to researchers and by extension to the expanding aquaculture industry 

and the agencies that manage lease permits.  

 

Potential costs reduction using alternate datasets 

The costs for a project specific study for sample collection and analysis estimated here at ~$7700 

/ sampling station-1 year-1 from costs associated with labor, travel, supplies, and lab analysis, 

could be reduced or eliminated by using existing datasets such as those from the MD DNR long-

term monitoring program (MD DNR 1984 – present). Fortunately, the MD DNR makes available 

their data from a network of 83 Chesapeake Bay and tidal tributary monitoring stations, sampled 

since 1984 in support of Maryland’s bi-annual assessment of state waters that is required under 

the Clean Water Act. To benefit from use of an alternate dataset, the comparability must be true 

between the target study site and the alternate data site; some verification sampling, as done in 

this study, would be needed to confirm the assumption. The potential use of MD DNR data as a 



substitute for on-farm data with no significant difference to model results highlights the value of 

the existing long-term MD DNR monitoring program to researchers. 

 

CONCLUSIONS 

Nutrient related water quality impairments are a continuing challenge to Chesapeake Bay coastal 

waters. Oyster aquaculture bioextraction has been suggested as a nutrient management strategy. 

Modeling can help resource managers to develop comprehensive nutrient management plans that 

include oyster farms (e.g. (e.g. Town of Mashpee Sewer Commission 2015; Cornwell et al. 

2016), but acquisition of data required to run models is costly. Maryland DNR and satellite data 

sources were tested to see if they could substitute for on-farm data as model inputs thereby 

reducing costs of time and resources.  

 

Comparisons of Chl and other parameters used as model inputs showed that although variable, 

there was no significant difference in concentrations between on-farm and MD DNR, nor 

between on-farm and satellite Chl at either of the farm study sites; satellite Chl was lower at both 

sites. Modeled oyster harvest showed the same; there was no significant difference between on-

farm and MD DNR modeled harvest, nor between on-farm and satellite Chl modeled harvest at 

either site though satellite results were lower at both sites. A sensitivity test of the satellite Chl 

data (+10%) showed increased and decreased harvest results with the increased and decreased 

Chl concentrations confirming the robustness of the model. Additional reported harvest numbers 

would put these results into clearer perspective. 

 



These results suggest that both MD DNR and satellite Chl data can be substituted for on-farm 

project specific data. The higher variability and seeming underestimate of Chl concentrations and 

modeled oyster harvest results using the satellite Chl dataset indicate that they may be considered 

less suitable for this modeling purpose than MD DNR data, however, MAPE analysis showed 

that all model results were of at least Reasonable relative accuracy. Accuracy of model results 

using MD DNR data were Good in Chester River and High in North Tangier, and model results 

using satellite Chl data were Good and Reasonable in Chester River and North Tangier Sound, 

respectively. Model sensitivity results using +10% satellite Chl showed minimal change in 

associated error (i.e. 1% decrease error at Chester, 4% increase error at North Tangier), showing 

the model is robust to deviations using different data sources. Optimistically, future advances in 

marine optics and satellite engineering may show better and more useful results in these 

Chesapeake Bay tributaries as have been observed in other places described in previous work 

such as in North Carolina, and European and Mediterranean coastal areas (Keith 2014, Gohin et 

al. 2020).  

 

This study benefited from access to data from MD DNR’s long-term monitoring program and 

from satellite Chl data products, showing substitutability of those data that are already being 

collected for other purposes that could save funds, time, and resources. The use of these data for 

oyster modeling represents a potential value added to the monitoring programs and highlights the 

value of these programs to researchers, resource managers, and to the aquaculture community.  

 

This analytical approach is transferrable to other locations where oyster aquaculture is supported, 

there is an existing state or local monitoring program, and the water quality at the farm and 



monitoring program sites is not significantly different. To be fully operational a calibrated model 

would also be required, as would an initial comparison of alternate data sources.  

 

Looking more broadly, this study is an example of the potential value of long-term monitoring 

data for a variety of situations, for example, where needed data were lost or were never collected. 

Although the MD DNR data are regional in scale, and the (potentially global) satellite data were 

processed using regional algorithms, the access to environmental data collected on different 

spatial and temporal scales by different methods that were designed to address different science 

questions was useful for this study. This is consistent with and illustrative of the objectives of 

‘The Framework for Integrated Monitoring and Related Research’ (Bricker and Ruggiero 1998, 

Murdoch et al. 2014) that sought to make data collected by various science disciplines, by 

various methods and scales, accessible so that the data could be used synergistically to help solve 

multi-disciplinary multi-scale environmental questions. While this study was small in scale, it 

illustrates the value of existing data collection programs and the integrated use of seemingly 

unrelated data sources to address pressing environmental issues. 
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APPENDIX 1: Comparison of shallow water station to long-term station water quality data 

for the Chester River and Honga River. 

 

Renee Karrh, Maryland Department of Natural Resources (DNR) 

 

Summary:  

This project tested the available shallow water data (SWM) for the Chester and Honga rivers 

compared to the long-term (LTRM) DNR stations in Chester River and Upper Tangier Sound, 

respectively, for the 3-year periods of the shallow water monitoring in those rivers. The objective 

was to test if there was a significant difference between the two DNR sample program datasets. 

Surface layer sample data were used in the comparisons. 

 

DNR Shallow water monitoring in the Honga (2008-2010) and Chester rivers (2004-2006) was 

not completed during the time period of the NOAA study (2018-2020). Long-term DNR stations 

in Chester River (ET4.2) and Upper Tangier Sound (EE3.1) were the closest available to the 

NOAA on-farm locations; these LTRM stations were available for the same time period as the 

NOAA data collected on-farm.   

 

Because of the differences in time periods, only the DNR sampling at LTRM stations could be 

used to compare directly to the NOAA collected data. DNR LTRM data may be useful for oyster 



harvest modeling by NOAA if the data collected from DNR LTRM was not significantly 

different from the data collected at SWM stations closest to the NOAA on-farm locations.  

 

No significant difference was found between the DNR LTRM and SWM stations closest to the 

NOAA on-farm stations for the earlier time periods. This provides confidence that using the 

DNR LTRM data for the time period that matches the NOAA sampling represents the conditions 

in shallow waters near the on-farm locations for the time period of the NOAA study.  

 

Methods: 

Data from the closest SWM station location to the NOAA on-farm location and the LTRM 

station were tested in pairs (shallow water monitoring station compared to the long-term station). 

For Chester River, station ET4.2 was sampled in both DNR programs for the years of shallow 

water monitoring (2004-2006); the data for this station was treated as separate for the SWM 

program (ET4.2s) and the LTRM program (ET4.2). The Honga River SWM station data were 

compared to the Upper Tangier Sound LTRM station (EE3.1) because there is no LTRM station 

in the Honga River.  Stations were compared using a one-way non-parametric Kruskal-Wallis 

test, followed by a Tukey test of each pair. Kruskal Wallis and Tukey results for all testing pairs 

are summarized in Tables 1 and 2. Figures 3 and 4 provide boxplots for the Chester and Honga 

stations, respectively. 

 



 

Figure 1.  Subset of shallow water calibration stations in the Chester River. Green circles show 
the continuous monitoring locations. Red squares show water quality mapping calibration 
stations. Inset table shows the station name corresponding to the number on the map. Station 
XHG1579 (map #31) was the closest to the NOAA on-farm location. 
 
 

 

  

Figure 2.  Shallow water calibration stations in the Honga River.  Green circles show the 
continuous monitoring locations: 1. XCG9168, 2. XCG5495. Red squares show water 
quality mapping calibration stations: 3. XCH6533, 4. XCH7507. Station XCH6533 (map 
#3) was the closest to the NOAA on-farm location. 



Table 1. Results of the pairwise comparison of the DNR shallow-water monitoring (SWM) 
station (XHG1579) and the DNR long-term monitoring (LTRM) station (ET4.2) for the Chester 
River. Also shown is the comparison between the SWM sampling (ET4.2s) and LTRM sampling 
(ET4.2) at the long-term station. Significance was determined at p < 0.05. Parameters are 
dissolved oxygen (do), salinity, water temperature (wtemp), Secchi depth (secchi), chlorophyll a 
(chla), total suspended solids (tss) and volatile suspended solids (vss). Note that volatile 
suspended solids samples are not collected at the Chester River LTRM station but were collected 
during the SWM sampling at the same station.   
 
 

2004-2006             
    ET4.2s (SWM)  ET4.2  (LTRM) 
Station Parameter KW p value p value KW p value p value 

statistic KW Tukey statistic KW Tukey 
do 0.0838 0.7722 0.7669 2.0217 0.1551 0.1655 
salinity 0.0014 0.9699 0.8976 0.1331 0.7152 0.5977 
wtemp 0.0040 0.9498 0.9502 0.3496 0.5544 0.5108 

XHG1579 
secchi 4.9955 0.0254 0.0675 1.9394 0.1637 0.1577 (SWM) 
chla 2.8425 0.0918 0.0399 0.4280 0.5130 0.1588 
tss 3.6305 0.0567 0.0939 0.6688 0.4135 0.3133 
vss 0.1439 0.7044 0.6416       
do 1.3112 0.2522 0.2772       
salinity 0.3351 0.5627 0.5228       
wtemp 0.1241 0.7246 0.5486       

ET4.2 
secchi 0.0838 0.7723 0.8655       (LTRM) 
chla 1.1705 0.2793 0.6008       
tss 0.7871 0.3750 0.2268       
vss             

 
 
 
  



Table 2. Results of the pairwise comparison of the DNR shallow-water monitoring (SWM) 
station (XCH533) in the Honga River and the DNR long-term monitoring (LTRM) station 
(EE3.1) in the North Tangier Sound. Significance was determined at p < 0.05. Parameters are 
dissolved oxygen (do), salinity, water temperature (wtemp), Secchi depth (secchi), chlorophyll a 
(chla), total suspended solids (tss) and volatile suspended solids (vss). 
 

2008-2010       
    EE3.1 (LTRM) 
          
 station Parameter KW 

statistic 
p value 
KW 

p value 
Tukey 

do 0.2054 0.6504 0.5393 

XCH6533 
(SWM) 

salinity 
wtemp 
secchi 
chla 

0.1521 
0.3646 
0.0007 
1.8293 

0.6965 
0.5460 
0.9791 
0.1762 

0.7338 
0.5546 
0.8914 
0.3796 

tss 0.0839 0.7721 0.9007 
vss 0.4563 0.4993 0.2953 

  



 
 

                

           
 
Figure 3. Box plots of each parameter for the Chester River SWM station (XHG1579) and 
LTRM station (ET4.2). Data is also shown for the SWM sampling at the long-term station 
(ET4.2s). Data is from April-October for 2004-2006. Volatile suspended solid samples are not 
collected at the LTRM station but were collected during the SWM sampling at the sample 
location.   
  



 

                

                
 
Figure 4. Box plots of each parameter for the Honga River SWM station (XCH6533) and Upper 
Tangier Sound LTRM station (EE3.1). Data is from April-October for 2008-2010.   



Results: 

Chester River station XHG1579 is not significantly different from long term data for ET4.2 for 

any parameter for the years measured 2004-2006 April-October (shallow water monitoring is 

only done in those months). However, there is some slight indication that there are differences 

with the shallow water data at ET4.2s for chlorophyll a (chla) and Secchi (but only one of the 

tests indicated a difference and not a very strong significance (p value not less than 0.01). The 

comparison between ET4.2s and ET4.2 did not indicate significant differences.  This is an 

indication of the variability in sampling on different days even at the same station (usually about 

a week apart between the programs), the variability in those parameters in general. Some dates 

also had two field replicates collected in both programs, so that could be an additional source of 

difference.  

 

Honga River station XCH6533 was not significantly different from EE3.1 (Upper Tangier 

Sound) for any of the parameters tested for the years 2008-2010. 

 

Conclusion:  

The two long-term stations are a good surrogate for water quality in the areas of the NOAA on- 

farm stations based on the years for which there was shallow water data collected.  With only the 

long-term stations currently being monitored, this is the best available data without having a 

separate monitoring program and the associated costs. 

 

Additional information on the DNR SWM and LTRM monitoring programs and access to all 

data is available at Eyesonthebay.dnr.maryland.gov. 

https://eyesonthebay.dnr.maryland.gov/


Tables and Figures for Bricker et al. 
 

Table 1: Data for US estuaries included in the National Estuarine Eutrophication Assessment 
(Bricker et al. 2007) showing the range and median values and the number of estuaries evaluated 
for Chlorophyll, Dissolved Oxygen, Salinity, and Residence time for the early 2000s. The 
median values for Chl are the median of 90th percentile or highest observed values, and the 
median for DO is the median of 10th percentile or lowest values, that are observed over an annual 
cycle. 
 

Parameter   
National*  Study Sites  

  
Range Median Number Chester Tangier / 

estuaries River Pocomoke 
Sound 

Chlorophyll a      
concentration (µg/L)  1 - 60 7.37 70 23.4 23.0 
90th percentile of 
monthly measures  

Dissolved oxygen      

(mg/L)   0 – 9.5 5.43 69 0.511 5.1 
10th percentile of 
monthly measures 
Average Salinity  4 - 29 21 138 12 13 

Residence time (days) 1 - 3841 5 112 27 12 
*from: Bricker et al. 2007, data represent conditions in the early 2000s 
 

 
 
 
 
 
 
 
 
 
 
 
 



Table 2:  Months and values of maximum and minimum concentrations of water quality 
variables in Lower Chester River and North Tangier Sound. (From the MD DNR monitoring 
program, climatological maximum and minimum are long-term mean values from 1985 to 2019) 
 

 Upper Eastern Shore/Lower Chester Lower Eastern Shore - North Tangier 
River (MD DNR station ET4.2) Sound (MD DNR station EE3.1) 

  

 Month of Month of Month of Month of 
climatological climatological climatological climatological 
maximum (value) minimum maximum (value) minimum 

(value) (value) 

Bottom February (9.97) July (1.80) February (11.8) August (5.06) 
Dissolved 
Oxygen (mg/L) 

Surface Water July (29.4) January July (29.1) February (3.32) 
Temperature (oC) (2.62) 

Secchi depth (m) November (1.47) July (0.89) November (1.28) February (0.74) 

Surface Salinity  October (11.8) May (7.22) November (16.3) April (13.0) 

Surface February (13.0) March (8.12) March (15.0) May (4.78) 
Chlorophyll 
(µg/L) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: FARM model harvest results using on-farm, MD DNR, and Satellite Chl* and on-farm 
data at each farm site. The mean, standard deviation, standard error, and upper and lower 
confidence limits of the sample mean (CL) are shown (Upper 95% confidence limit (CL) = 
sample mean + (2.37)(SE), Lower 95% CL = sample mean – (2.37)(SE)). 
 

CHESTER   NO. TANGIER 

  
on-farm 

data 
MD DNR 

data 
Satellite 

Chl   
on-farm 

data 
MD DNR 

data 
Satellite 

Chl 

mortality Harvest (metric tons/cycle)  
  
  
  
  
  
  
  

  

Harvest (metric tons/cycle) 

20 24.1 24.7 23.4 52.1 51.9 44.4 
30 22.9 23.9 21.8 47.8 47.6 39.7 
40 21.6 23.0 20.1 43.6 43.2 34.4 
50 20.3 21.9 18.2 39.2 38.3 29.3 
60 18.6 20.6 16.2 34.1 33.4 24.2 
70 16.7 19.2 14.2+ 28.3 27.8 17.9 
80 14.3 17.3 11.4 22.5 21.8 13.5 
90 11.0 14.4 8.0 14.6 14.0 7.0 
              

Mean 18.7 20.6 16.7 35.3 34.8 26.3 
Standard 
Deviation 4.5 3.5 5.3 12.9 13.0 13.1 
Standard Error 1.6 1.2 1.9 4.6 4.6 4.6 
Upper 95% CL 22.4 23.6 21.1 46.1 45.7 37.2 
Lower 95% CL 14.9 17.7 12.2 24.5 23.8 15.4 
*Satellite Chl data were substituted 
simulation were the on-farm data. 
+The only reported oyster harvest is 
70% mortality. 
 

for on-farm Chl but all other variables used for the 

from the Chester River farm for 2016: 13.6 metric tons at 

 
 
 
 
 
 
 
 
 
 
 
 



Figure captions 
 
Figure 1: Study site locations – Chester River and North Tangier Sound oyster farms in MD 
Chesapeake Bay within the Mid-Atlantic Region of the United States. The distance between farm 
location and nearest MD DNR monitoring program sampling location is ~8 km for both. The 
Ocean Land Color Instrument (OLCI) chlorophyll data product imagery is shown in the right 
hand panel illustrating the features that are visible from the 300m spatial resolution of the OLCI 
sensor. 
 
Figure 2: Comparison of satellite, MD DNR and on-farm datasets for Chl for all data (a), for 
separate years of data (b), and for combined years of data by month (c). Boxes represent median, 
75th and 25th quantiles of all data, where the black dots indicate outliers. Note that on-farm data 
are missing for some months: at Chester River for September 2016, January, March, April, 
September 2017; missing data for North Tangier Sound for September 2016, September, 
December 2017, January 2018. Kruskal-Wallis tests were used to determine mean differences in 
Chl concentrations among data types, sites, and years. Subsequently, multiple comparison tests 
were performed using the Wilcoxon rank sum exact test. 
 
Figure 3(a – e): Comparative analysis of MD DNR and on-farm data sets for: a) temperature, b) 
salinity, c) dissolved oxygen, d) total suspended solids (TSS), e) total volatile solids (TVS) for 
Chester River and North Tangier Sound study sites. Boxes represent the median, 25th and 75th 
quantiles of all data, large dots represent the mean and upper and lower 95% confidence interval 
of the indicated dataset. Levene test for water quality data found that variances among groups 
were homogeneous. Linear models were used to calculate the mean estimates for water quality 
parameters and determine significant differences in mean concentrations among sites. 
Overlapping 95% confidence intervals indicate no significant difference and non-overlapping 
95% confidence intervals indicate a significant difference. 
 
Figure 4: Results of Mean Average Percentage Error (MAPE) analysis of model results where 
percentage error <10 indicates Highly accurate forecasting, 10 – 20 indicates Good forecasting, 
20-50 indicates Reasonable forecasting and >50 indicates Inaccurate forecasting (Moreno et al. 
2013). The values in the middle of the boxes are the MAPE values for each comparison at each 
site; the overall prediction accuracy (combined results for on-farm vs MD DNR and on-farm vs 
satellite) is greater at Chester (25% - Reasonable) than No. Tangier Sound (30.9% - Reasonable 
accuracy). Results of the sensitivity analysis to changes in satellite Chl (+ 10%) show +1% 
accuracy at Chester River and -4% accuracy at North Tangier. 
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