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ABSTRACT: Whitecaps generated by wave breaking and air entrainment can be classified as active (stage A) or residual
(stage B). Measurement of each stage individually is essential for accurate parameterization of air-sea interaction pro-
cesses, but conventional methods used for separation in visible images are subjective. In this study, this problem is solved
using a pipeline for active whitecap fraction measurement. In this pipeline, a new horizon detection method is developed
to stabilize and rectify images, and a deep learning model based on U-Net is trained and validated to identify and extract
active whitecaps. The model demonstrates robust prediction accuracy even when images are contaminated by sun glint.
The model is applied to 48 h of video footage collected during a cruise in Gulf of Mexico. It is determined that, as a func-
tion of wind speed, the active whitecap fraction has significant variability and disparity compared to previous research. This
finding indicates that secondary factors should be considered for accurate whitecap parameterization. This is explored us-
ing a random forest, which indicates that sea surface temperature, swell, and wave age are important to the active whitecap
fraction. The precise impact of sea surface temperature is further explored using analyses of variance (ANOVA), which
suggest it has a positive correlation with the active whitecap fraction.
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1. Introduction

Whitecaps are generated during wave breaking when air is
entrained into the surface ocean. Whitecaps can be observed
when wind speeds are as low as 3 m s~ !, and it is estimated
that whitecaps can cover up to 4% of the global ocean surface
at any time (Blanchard 1983, 1963). Whitecap lifetime can be
divided into two stages: the active stage (stage A) and the re-
sidual stage (stage B) (Monahan and Woolf 1989). At stage
A, waves break under the continued influence of the wind.
Large amounts of bubbles are generated at the wave crests
and penetrate the water column by spilling and plunging. At
stage B, bubbles rise to the surface and form patches of foam
that linger behind the breaking crests. Whitecaps are often
quantified by whitecap fraction W, which is the areal coverage
of whitecaps on the sea surface. The total whitecap fraction
is the sum of the active and residual whitecap fractions (i.e.,
W = W, + Wg, where W, and Wp are the active and residual
whitecap fractions, respectively).

Whitecaps have a significant influence on physical and
chemical processes at the air—sea interface. During stage A,
wave breaking accounts for an important portion of wave en-
ergy dissipation. Hence, measurements of whitecaps, whitecap
fraction, and breaking crest length are used to quantify energy
dissipation (e.g., Gemmrich et al. 2008; Carini et al. 2015;
Callaghan 2018). Also during stage A, wind tears breaking
wave crests to generate spume droplets (e.g., Veron et al.
2012) which enhance air-sea gas transfer and heat flux
(Andreas and Monahan 2000) and also influence tropical
storm intensity (Andreas and Emanuel 2001). During stage B,
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the bubbles rise to the water surface and generate film and jet
droplets through bubble bursting, which transform into sea
salt aerosols (Deike 2022). Stage B whitecaps are especially
important for ocean albedo because of their long lifetime
(Frouin et al. 2001). Potter et al. (2015) showed that whereas
active whitecaps have a lifetime range of 0.4-5 s, residual
whitecaps can last tens of seconds. As such, stage B whitecaps
have been found to contribute 1.5-40 times more to W than
stage A (Callaghan et al. 2013). Whitecaps are also used to
calculate air-sea transfer velocity (Asher et al. 2002), and
they impact ocean acoustics, ocean mixing, surface roughness
(Padmanabhan et al. 2006), as well as surface albedo (Koepke
1984). It is also essential to account for whitecaps in optical
ocean color retrieval (Gordon and Wang 1994). Hence, robust
understanding and accurate parameterization of whitecaps
are critical for modeling these and many other processes at
the air-sea interface that are associated with stage A or stage
B whitecaps but not necessarily both.

Whitecap fraction has been measured extensively using vis-
ible images or videos collected from ships, offshore platforms,
and aircraft (e.g., Monahan 1971; Wu 1988; Stramska and
Petelski 2003; Mironov and Dulov 2008; Schwendeman and
Thomson 2015b; Brumer et al. 2017; Yang and Potter 2021).
Increased scattering of sunlight by whitecaps makes them
brighter than the ambient water; therefore, whitecaps can be
identified using image thresholding. Automatic thresholding
determination algorithms have improved in recent years (e.g.,
Callaghan and White 2009; Bakhoday-Paskyabi et al. 2016).
These algorithms increase image processing efficiency and
mitigate uncertainty caused by manual threshold determina-
tion. However, extracting whitecaps from single images is still
hindered by the critical problem of sun glint and uneven illu-
mination (Callaghan and White 2009). Double-value thresh-
olding methods are used to distinguish active whitecaps from
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residual ones because active whitecaps tend to be brighter
than residual foam (e.g., Hanson and Phillips 1999; Asher
et al. 2002). However, separately identifying active and resid-
ual whitecaps is a great challenge due to the continuous and
subtle change in brightness from stage A to stage B. Further-
more, the brightness change varies in space and time, render-
ing a single threshold inadequate.

Spaceborne remote sensing of the ocean surface brightness
temperature 7 is used to measure whitecap fraction W(7s)
on a global scale (e.g., Anguelova and Webster 2006). Separa-
tion between active and residual whitecaps based on T has
also been explored (Potter et al. 2015; Salisbury et al. 2013).
However, more data and analysis are required to identify
stage A and B whitecaps from satellite-based 7 measure-
ments (Potter et al. 2015). Uncertainties in modeling vertically
stratified foam according to 7'z sensitivity must be solved to
provide a theoretical basis for whitecap discrimination using
Ts (Anguelova and Gaiser 2011). Moreover, satellite-based
Ty observations cannot identify individual wave breaking as
the grid resolution is typically on the order of 10 km.

Infrared (IR) imagery provides dichotomic signals of active
and residual whitecaps, which also have significant contrast
against background water at IR wavelengths. Active and re-
sidual whitecaps are brighter (warmer) and darker (cooler),
respectively, than background water (Marmorino and Smith
2005; Potter et al. 2015; Yang and Potter 2021). The clear di-
chotomic whitecap signals in IR imagery provide objective
identification of different lifetime stages of whitecaps. The re-
sults from IR observations can be used to build more accurate
parameterization of processes related to active and residual
whitecaps. However, IR cameras with sufficient resolution
and frame rate to capture the life stage transition are expen-
sive and delicate, making the IR imagery method impractical
for long-term and remote observations.

With the explosion of computer performance, machine
learning, particularly deep learning, has gained popularity in
many academic and industrial domains. The definition of ma-
chine learning is vague, but broadly speaking, algorithms that
enable a computer to use data to “learn” and improve its per-
formance on specific tasks can be called machine learning al-
gorithms. Deep learning is a subset of machine learning that
is often used to address computer vision problems, such as im-
age recognition, object detection, object tracking, semantic
segmentation, and image restoration (Voulodimos et al. 2018).
Semantic segmentation involves dividing images into objects
with semantic labels at the pixel level (Minaee et al. 2021).
This technique can be applied to extract whitecaps from digital
images. Wang et al. (2020) first developed a semantic segmen-
tation model similar to a fully convolutional network (FCN) to
extract whitecap fraction. Eadi Stringari et al. (2021) applied
five mainstream deep neural networks to identify active white-
caps using ellipses and shared a labeled semantic segmentation
dataset for active whitecaps with the scientific community.
Séez et al. (2021) trained and evaluated a deep learning model
based on U-Net to identify coastal wave breaking. The rise of
deep learning applications in whitecaps imagery data process-
ing offers a promising method to enhance proficiency and
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FIG. 1. Route of the cruise. Red dots denote the stations, and the
orange diamond denotes the closest station with available simulta-
neous data.

achieve reliable performance. A key focus of this research is
the development of accurate methods for separating W, from
Wg, which is essential for gaining a deeper understanding of
the processes related to active and residual whitecaps.

Here, a pipeline based on deep learning for active whitecap
extraction from images and W, estimation is presented. This
is a plug-and-play open-source model which includes a novel
and robust horizon detection method to stabilize and rectify
images collected by cameras at sea. The model is applied to
video footage collected during a Gulf of Mexico cruise. Ran-
dom forest (RF) regression is used to parameterize W, based
on environmental variables and to evaluate the importance of
these variables in impacting W,4. Compared to a classical
power-law parameterization using wind speed alone, the RF
regression produces a more accurate model for predicting
W 4. The layout of this paper is as follows: section 2 describes
the data collection and processing, section 3 presents the pre-
liminary analysis results, and section 4 summarizes the find-
ings of this study.

2. Data and methods
a. Instrumentation and data resources

Data used in this paper come from the fieldwork described
in Yang and Potter (2021) and will be briefly introduced here.
The cruise, onboard the Research Vessel (R/V) Pelican, de-
parted the Louisiana Universities Marine Consortium (LUM-
CON), Chauvin, Louisiana, on 4 March 2020, and returned on 8
March 2020. During the cruise, the ship stayed at five stations to
collect data each day and transited between stations at night
(Fig. 1). The wind speed measured onboard during the cruise
was 4-18 m s™'. The closest significant wave height measure-
ments, made at station LOPL1, were 0.4-1.9 m according to the
National Data Buoy Center (NDBC). Mean meteorological
and oceanographic (met ocean) data collected onboard in-
cluded air temperature (TA), sea surface temperature (SST),
sea surface salinity (SSS), and wind speed Uj,. These were proc-
essed and quality controlled by Lyu et al. (2021). Three GoPro
Hero 8 Black digital video cameras were used to collect a total
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of 60 h of video data. The field of view (FOV) of the lens in lin-
ear mode is 55.2° vertical FOV, 85.8° horizontal FOV, and the
focal length is 19 mm. The linear mode FOV of GoPro
camera corrects the lens distortion by using a transformation to
map the distorted pixel locations back into a rectilinear projec-
tion and cropping the image to remove the edges most im-
pacted by fisheye effect. The sampling rate was 60 Hz with
1920 X 1080 pixel resolution. One of the three cameras was
mounted on the port side at a height of 4 m above the mean wa-
ter level (MWL) and pointed toward the ocean surface with the
horizon inside the frame at a tilt angle of 74°. The other two
cameras were mounted on the port and starboard sides at a
height of 7.6 m above the MWL with tilt angles of 73°. The data
collected in deep water by these two cameras, which yielded
about 48 h of video each, were processed for this study. The ac-
tive whitecap fraction is determined by the average of 1-Hz im-
ages over 20 min (i.e., 1200 images) to decrease the uncertainty
according to Callaghan and White (2009).

The fifth major global reanalysis produced by ECMWF
(ERAS) provides simulated 1-hourly wave data on a global
grid with 0.5° latitude-longitude grid cells across the globe.
Based on previous studies (Sugihara et al. 2007; Callaghan
et al. 2008; Brumer et al. 2017; Jia and Zhao 2019; Malila et al.
2022; Zhou et al. 2022), three variables are used to investigate
their influence on active whitecap fraction: wave age (WG),
significant height of total swell Hy.p, and mean square slope
of waves (MSQS). The Hgye and MSQS are from ERAS sim-
ulation directly. WG is calculated using g7/(27 X u,), where g
is the acceleration due to gravity, T is the mean wave period,
and u, is the friction velocity. Mean wave period and friction
velocity are also from ERAS data. These three wave parame-
ters were interpolated linearly to a 20-min resolution to align

b. Image rectification

Measurement of whitecap fraction requires extraction of
whitecaps from background water in digital images. To
achieve this, the images must first be adjusted for the spatial
pose of the camera (i.e., its position and orientation) due to
the wave field which together mean each pixel accounts for a
different, dynamic ocean surface area. Rectification is the pro-
jection of the digital image into Earth coordinates. Stabiliza-
tion is removing the camera motion so that the pose of the
camera is fixed for all images. There are two methods to mea-
sure the pose of the camera: one is using external equipment,
such as an inertial motion unit, to determine the pose continu-
ously, and the other is estimating the camera orientation
based on images. For this project, we use the latter approach,
building upon and improving a method by Schwendeman and
Thomson (2015b). In their paper, a perspective transform
equation is used for stabilization and rectification based on
the angle of the horizon in each image and the pose of the
camera when the ship is stable at port. As the only variable in-
ferred from each image, an accurate estimate of the angle of
the horizon determines the performance of this method. For
this, Schwendeman and Thomson (2015b) used the Canny al-
gorithm which detects connected edges in the image by
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determining the local maxima of brightness intensity. Ideally,
for an image taken above the open sea, this will be the hori-
zon because it marks the transition from the darker ocean sur-
face and the brighter sky. Next, they used a Hough transform
to extract straight lines in the images. Commonly, the horizon
is the longest line in the image. However, a complicating fac-
tor for the performance of this method is poor illumination
which can result in misidentification of the horizon or a hori-
zon line that fails to stretch across the image. For example, in
Fig. 2a, the brightness difference between the sky and ocean
is small, and the ocean is very noisy (i.e., whitecaps and glint).
For this image and many others like it, the Canny algorithm is
unable to identify the horizon meaning stabilization and recti-
fication cannot be completed. The Canny transform is typi-
cally unreliable when the sky is overcast and at high wind
speed because there is more noise from the ocean surface.

Here, a new method to detect the horizon is presented
which is more robust than that from Schwendeman and
Thomson (2015b). The steps of the method are summarized
below with details that follow.

1) A combination of binary and Otsu thresholding filters is
applied to images to distinguish between the sky and
ocean (Fig. 2b).

2) A dilation function is used twice, with different iterations,
to eliminate noise in the image so that the black part
denotes the sky, and the white part denotes the ocean
(Fig. 2¢).

3) Subtraction between the results of the dilation function
yields the “horizon line” (Fig. 2d).

4) Because of the dilation process, the “horizon line” should
be moved back several pixels depending on the number
of dilation iterations so the resulting line is aligned with
the horizon.

A line fitting function is used to yield the analytical formula
of the straight line of the horizon (Fig. 2e). A Hough trans-
form can also be used in place of the line fitting function for
the same purpose.

Otsu thresholding identifies the maximum interclass variance
as the best threshold to separate foreground and background
under the assumption that they have different brightness inten-
sity distributions. In this scenario, the sky and the ocean can be
taken as background and foreground, respectively. An advan-
tage of Otsu thresholding is that the threshold does not need to
be determined subjectively. As shown in Fig. 2b, the pixels with
intensity greater than the threshold are assigned black, and
those with smaller intensity are assigned white. Some pixels in
the sky and the ocean share the same brightness intensity, so it
is impossible to identify them as the boundary using a single
threshold. These pixels cause the noise in the image. The strat-
egy here is to extract the pixels exactly at the boundary between
the sky and the ocean and then take the line fitting result of
these points as the approximation of the horizon. The dilation
function, which is a convolution operation between the image
and a kernel (a 3 X 3 square matrix is used in this project), is
used to remove the noise. The bright regions will grow as more
iterations of dilation are applied. In this project, the dilation
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FIG. 2. Process of horizon detection. (a) Cropped original image, (b) image filtered by thresholding,
(c) image processed by the dilation function, (d) subtraction between the results of the dilation func-
tion, and (e) detected horizon.
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view of the ROI.

function is applied to images twice while the numbers of itera-
tions are set to 49 and 50. In both cases, the black pixels in the
ocean area will be turned white (Fig. 2c). These two cases have
one pixel difference at the boundary of the sky and ocean. Sub-
traction between these two cases results in a line with one pixel
width. The resulting line should be moved down 50 pixels to
cancel out the dilation to denote the actual horizon. The analyt-
ical expression of the horizon is determined by a least squares
line fit.

The images can be stabilized using the angle of the detected
horizon and the height of the camera above the mean water
level, as shown in Figs. 3a—c. Furthermore, these parameters
can also determine the simultaneous location and orientation
of the camera (Schwendeman and Thomson 2015b), called ex-
trinsic parameters. The intrinsic parameters of the camera can
be calculated using the MATLAB built-in camera calibration
toolbox. With the intrinsic and extrinsic parameters of the
camera, the perspective transform equations can project the
region of interest (ROI) in the image into the Earth coordi-
nates (Fig. 3d). The perspective transform equations used in
this paper are from Schwendeman and Thomson (2015a). The
resulting images can then be used to calculate the whitecap
fraction. The region of interest is chosen near the camera to
avoid uncertainty caused by horizon detection according to
Schwendeman and Thomson (2015b). Additionally, the pixels
near the horizon represent much larger areas, which can re-
sult in greater uncertainty in whitecap fraction estimates. The
bottom of the ROI is set away from the ship to avoid the in-
fluence of ship wakes while maintaining acceptable sea sur-
face areas for analysis. Based on these considerations, the

upper boundary of the ROI is set to one-quarter the distance
from the horizon to the bottom of the image, and the lower
boundary is set to one-tenth of the distance from the bottom
of the image to the horizon, corresponding to approximately
9.36 m from the ship under steady conditions.

c¢. Active whitecap fraction estimation

Semantic segmentation is used to separate objects with se-
mantic labels at the pixel level. Compared with traditional im-
age segmentation methods, semantic segmentation based on
deep learning has made remarkable improvements in accu-
racy (Minaee et al. 2021). In this study, the pixels representing
active whitecaps need to be identified and extracted from
each image. The first step to build a deep learning model is to
choose a network backbone. Here, U-Net (Ronneberger et al.
2015), which was designed for biomedical image segmentation
and won the International Symposium on Biomedical Imag-
ing (ISBI) cell tracking challenge 2015, is used. U-Net, which
combines a FCN and an encoder—-decoder model, exhibits
phenomenal performance even with a very small training data
size. FCN uses deconvolution as up sampling to cast object
recognition on each pixel and combines information of shal-
low and deep layers during up sampling to produce accurate
segmentation (Long et al. 2015). An encoder-decoder model
uses convolutional layers (encoder) to extract feature vectors
and deconvolutional layers (decoder) to map feature vectors
on segmentation masks (Minaee et al. 2021). The architecture
of raw U-Net backbone has been modified to explore its po-
tential (Siddique et al. 2020). For active whitecap extraction,
the raw U-Net backbone, along with two variants whose
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encoder parts were replaced by VGG16 (Simonyan and
Zisserman 2014) and residual neural network (ResNet50)
(He et al. 2016), was trained (Fig. 4).

With a suitable model backbone, the second step is to
choose a loss function to facilitate convergence of the deep
learning model and evaluate the model performance using
evaluation metrics. Active whitecaps extraction from digital
images is a pixel-level binary classification problem with an
extremely imbalanced dataset because the number of active
whitecap pixels is much lower than that of the background. A
confusion matrix (Table 1) is used to solve the active whitecap
classification problem.

According to previous research (e.g., Anguelova and Webster
2006; Brumer et al. 2017), no more than 10% of the ocean surface
is covered with whitecaps at low and moderate wind speeds, with
active whitecaps just a fraction of this. Therefore, it is improper
to use accuracy defined by (TP + TN)/(TP + FP+FN + TN) be-
cause the model can achieve a score over 90% even if it assigns
all pixels as negative (i.e., no whitecaps). Therefore, precision,
defined by TP/(TP + FP), and recall, defined by TP/(TP + FN),
are more important than accuracy. In this study, F1 score, de-
fined by the harmonic mean of precision and recall, is used to

TABLE 1. Confusion matrix.

Prediction
Positive Negative
Truth  Positive TP (true positive) FN (false negative)
Negative  FP (false positive) TN (true negative)

evaluate the performance of the model. The F1 score reaches 1
when the model makes perfect predictions and 0 when the
model does nothing but make mistakes. A combination of binary
cross entropy and Tversky loss is selected to be the loss function.
Binary cross entropy is defined as

N

Lyex(09) = = Zlvlogy) + (1 = ylogll = 3)1. (1)

Here, y is the label, which is either 0 or 1; y is the predic-
tion, which is a probability value; and N is the number of in-
stances in a batch (Jadon 2020). Entropy, which was
introduced by Shannon (1948), is used to evaluate the infor-
mation content or uncertainty of a random variable. The idea
of entropy is that the information content of an event is de-
cided by the probability of the event. The information content
is more abundant with smaller probability of occurrence.
However, the probability distribution of a random variable is
usually unknown in practice, so the entropy calculated for a
random variable is cross entropy. The difference between
cross entropy and entropy, which is proved to be nonnegative,
is defined as Kullback-Leibler divergence, which comes to
zero when the distribution of data equals the distribution of
the population. Therefore, the minimum of cross entropy is a
good strategy for the classifier. This idea is essentially the
same as the maximum likelihood estimation.

Tversky loss is defined as

_ eps + pp
eps +pp + (L —p)p + (1 — Bp(1 — p)’
(2)

TL(p.p) =1
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Here, p is the probability (or ratio) of (FP + TP), which
means the probability that the prediction is 1 (or positive sub-
jectively); p is the probability of (FN + TP), which means the
probability that the label is 1 (or positive objectively); B is
used to tune the weight of TN and FP; and eps is a number
added to avoid zero division (Jadon 2020). Tversky loss can
be turned into Dice loss when B = 1/2 (B is set to 1/2 in this
project); therefore, it can be taken as a generalization of
Dice loss, which is essentially 1 minus F1 score. The idea
of Dice loss is to evaluate the ratio between the intersection
of positive prediction and ground truth and the summation of
positive prediction and ground truth. The lower the Dice loss,
the better the prediction. Dice loss reaches zero and Dice
score reaches one when the predicted segmentation equals
the ground truth, or both are empty sets. In this study, the
loss function used is simply the summation of binary cross en-
tropy and Dice loss. This combination has good performance
for data with imbalanced classes (Yeung et al. 2022). Through
the above procedure, the classification problem is turned into
the convex optimization problem, where the objective is to
minimize the loss function. The strategy is to update the pa-
rameters in the direction of the gradient descent of the convex
optimization to approach the loss function minimum. This
process can be described as

6 a9 (w)
Bicg ow

) 3)

where w is the parameters of the model, 0 is the learning rate,
B is the batch size, and [ is the loss function. Gradient descent
is to make the variable decrease with a fixed step size in the
direction of the gradient of this function. Different gradient
descent methods have been widely used, such as stochastic
gradient descent (SGD), minibatch gradient descent, SGD
with momentum, adaptive gradient descent (AdaGrad), root-
mean-square propagation (RMS-Prop), AdaDelta, adaptive
moment estimation (Adam), and Rectified Adam (RAdam).
Here, RAdam is implemented in the training processes be-
cause it improves training stability and efficiency. The learn-
ing rate will be scaled by 0.2 when the metrics for the model
stop decreasing for two epochs, and it will wait for two more
epochs before resuming the gradient descent process. This
happens automatically (Fig. 5b).

The training and validation dataset used in this project is
from Eadi Stringari et al. (2021). There are 1553 samples in
the training dataset and 366 samples in the validation dataset.
Some examples of data and mask pairs are shown in Fig. Sa.
The active whitecaps in the image are labeled as 1, and the
rest of the pixels are labeled as 0. A confusion matrix normal-
ized by each true label, as shown in Fig. Sc, was plotted for
the validation dataset.

During the training iterations (or epochs), the training and
validation loss along with model metrics are calculated for
each backbone to assess model performances, as shown in
Fig. 6. All three models are good at identifying pixels for ac-
tive whitecaps and reach their best metrics around 40 epochs.
The validation loss reaches a plateau with increasing epochs.
However, ResNet50 exhibits a lower loss value of ~0.02 when
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compared to VGG16 and raw U-Net, in addition to having a
higher F1 score. These three models have similar performance
in precision (Fig. 6b), but ResNet50 does better in recall
(Fig. 6¢). This indicates that ResNet50 has better control in
TN, which is not obvious in the confusion matrix due to the
large number of negative samples. The F1 scores of VGG16
and raw U-Net reach around 0.78 and that of ResNet50 can
be pushed to around 0.81, meaning these models are very
good at active whitecap extraction. For comparison, a conven-
tional thresholding method developed by Kleiss and Melville
(2011) was built and evaluated using the same dataset, result-
ing in an F1 score of approximately 0.28.

The best trained model based on ResNet50 was applied to
GoPro images collected during the Gulf of Mexico cruise.
Several examples of results are shown in Fig. 7. The entire
active whitecaps extraction pipeline completes rectification
and W, estimation automatically. The model performs well,
as evidenced by the F1 score of 0.81, the loss of 0.25, the preci-
sion of 0.86, and the recall of 0.8, even though the processed
data and the training data were collected with different instru-
ments and under different conditions.

To verify the model’s sun-glint removal capability, the
whitecap images were manually inspected, and those with sun
glint were removed. Then, datasets with and without contami-
nated images were fed into the model to determine W ,4. Each
resulting W, is an average of 1-Hz images over a 20-min ob-
servation (i.e., 1200 frames). For glint-free runs, the number
of frames was reduced slightly. The results in Fig. 8 show that
the model is very good at identifying sun glint and eliminating
it from estimates of W,. The ability of the model to remove
the disturbance of sun glint is unprecedented compared to tra-
ditional methods. The code for training and implementation is
available at GitHub (https:/github.com/yangxin1022/active_
whitecap_DL.git).

d. RF regression

Random forest (RF) regression is a machine learning al-
gorithm that combines multiple decision tree models to im-
prove the robustness of regression. It can effectively handle
large datasets with many input features and complex inter-
actions between them. RF regression offers a feature impor-
tance metric that can be used to rank the relevance of input
variables for predicting the target variable. The feature im-
portance is calculated by measuring the increase in mean
squared error when a feature variable is permuted across
the observations (permutation test). The idea is that if a fea-
ture is useful for prediction, then the inclusion of that fea-
ture in the RF model should lead to a significant reduction
in mean squared error. As such, when we introduce random
permutations to that specific feature and input this modified
feature, along with the remaining features, into the trained
machine learning (ML) model, we anticipate a consequent
increase in the mean squared error. In this study, we use RF
regression to predict W, using multiple environmental fac-
tors and permutation feature importance to evaluate the in-
fluence of these factors.
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pixels denote active whitecaps. (b) Scheduled learning rate change during training. (c) Normalized confusion matrix
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corresponding true label.

3. Results and discussion
a. W, versus wind speed

Wind speed Uy is typically considered the main driver of
whitecap formation, and empirical expressions of whitecap
fraction are often formulated as a function of U, (Anguelova
and Webster 2006; Brumer et al. 2017), though great variabil-
ity remains. Figure 9 presents simultaneous wind speed and
W4 collected on each day during the cruise. The average of
W4 collected from both the port and starboard sides is used
to determine each point. On 4 March (Fig. 9a), the wind speed
ranges from 3.9 to 5.1 m s, and W, is low, around 0.02%-—
0.05%. On 5 March (Fig. 9b), the wind speed increased
abruptly to around 18 m s~ 1, and W, exhibits a strong corre-
lation with wind speed and reaches a maximum value of
0.17%. On 6 March (Fig. 9c), the wind speed stays between

13.6 and 16 m s~ !, while W,, shows large fluctuations, ranging
from 0.08% to 0.42%. After 1000 UTC, wind speed begins to
decrease, which is followed by a decrease in W, with a lag of
about 1 h. On 7 March (Fig. 9d), the wind speed keeps decreas-
ing, while W, oscillates between 0.05% and 0.15%. The ob-
served variability in W, at specific wind speeds suggests that
secondary factors may also contribute to active whitecap area.

Following the mainstream approach, W, as a function of
U, is parameterized. The threshold-power-law (e.g., Schwen-
deman and Thomson 2015a) fit is applied to the data. The
polynomial regression is solved using the Levenberg-Mar-
quardt algorithm by minimizing the sum of squares of the
standard residuals. The formula is

W, =3.64 X107 X (U, + 1.59)'", 4 < U, <18ms .
4)
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This equation is derived from observational data with Uy
ranging from 4 to 18 m s'. The results for all 20-min-averaged
W4 measurement, as well as previous parameterization results,
are shown in Fig. 10. The coefficient of determination R? =
0.44. This parameterization exhibits larger W, values than pre-
viously reported at lower wind speed (Uying < 10 m s™') and
smaller values at higher wind speed (U > 13 m s™%). Hence,
our result shows W, has less wind speed dependence than pre-
vious studies except Salisbury et al. (2013) who used data col-
lected by satellite-based microwave remote sensing data and
found a similar pattern, though at a higher magnitude.

The traditional cube law for total whitecap fraction param-
eterization is also applied to build the relationship between
W4 and Upp. The cube law shows good approximation at
higher wind speed (Uyo > 13 m s~ '), but underestimates W,
at lower wind speed (U;p < 10 m s™!). The coefficient of de-
termination is 0.14. The result is

W, =411 X107 X Uj),4 < U,; <18ms". ®)

The poor performance of the cube-law fit indicates that the
relationship between active whitecaps and wind speed is very
different from that between total whitecaps and wind speed.
Great deviation between the data and parameterizations from
previous research indicates that W, is impacted by local

environmental factors and that W, cannot be predicted by
wind speed alone.

There is no agreement about the relationship between
energy dissipation rate and either W or W,4. Many previous
studies show a linear relationship between W and energy dis-
sipation rate (Hwang and Sletten 2008; Scanlon et al. 2016),
while some others suggest that W4 presents a more significant
linear relationship with energy dissipation rate (Anguelova
and Hwang 2016; Kraan et al. 1996; Scanlon et al. 2016). The
exponent of 1.3 in Eq. (4) suggests that W4 increases more
rapidly as wind speed increases. Based on the assumption that
W4 has a linear relationship with energy dissipation rate, the
exponent in W4(Ujo) formula indicates that wave energy dissipa-
tion can be intensified by increasing wind speed, and a mature
wave field may have different relationships with a growing sea.
However, the parameterizations of W dependent on wind speed
from previous literature usually have an exponent around 3, as
shown in Eq. (5) (Anguelova and Webster 2006; Brumer et al.
2017). It indicates that W can be more sensitive to the change of
wind speed, and the linear relationship between energy dissipa-
tion rate and W or W4 cannot coexist. More comprehensive data
are required to achieve a deeper understanding.

Almost every campaign for whitecap imagery data collec-
tion developed and applied its own data processing techni-
ques. The development of these methods involves a degree of
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FIG. 7. Examples of images (without rectification) processed by the ResNet50 variant model. (left) The original im-
ages. (right) Masks with white pixels denoting active whitecaps.

subjectivity, and the results have not been validated or evalu-
ated quantitatively. While the thresholding-based methods
varied in some details, they shared a common data processing
philosophy, potentially leading to similar uncertainties across
studies. The deep learning method proposed in our study is
designed to be objective and entirely data driven. We have
made both the code and model open access, encouraging fine-
tuning and optimization.

10° P

-
o
AN

W, (%) without contaminated images

=

o
I\
N

1072 101 100
W4 (%) including contaminated images

FI1G. 8. Comparison between 20-min-averaged W, with and with-
out images contaminated by glint.

b. Analysis of multiple factors using RF regression

Results from the prior section support the idea that wind
speed alone is not enough to parameterize active whitecap
fraction. This means that other environmental factors need to
be considered. Many studies have demonstrated the influence
of sea state on whitecap fraction. Brumer et al. (2017) shows
that incorporating wave variables can decrease the variability
of wind-speed-only parameterizations. Jia and Zhao (2019)
state that swell can depress whitecap fraction. Malila et al.
(2022) report that wave group passage can enhance active
whitecap fraction by fivefold. Zhou et al. (2022) use deep neu-
ral networks to construct a multivariate whitecap fraction pa-
rameterization and indicate that significant wave height is a
secondary factor. In this study, SST, TA, WG, Hgyen, and
MSQS were included in the analysis along with U.

Here, we use RF regression to predict W, using Hgyen,
SST, TA, WG, MSQS, and Uy, and also use feature impor-
tance analysis to assess the extent to which these factors drive
the change of W, in the regression process. Cross validation
is used to train and evaluate the model to mitigate the risk of
overfitting or underfitting. A grid search over a range of val-
ues coupled with cross validation was conducted to find the
optimal set of hyperparameters based on the best metrics
(minimal residual mean squared error) obtained.

The random forest regression result of W, is compared to
the measured W, as shown in Fig. 11a. The mean coefficient
of determination from cross validation is 0.70, which is im-
proved by 0.26 compared to the curve fitting in section 3a.
Note that this improvement is also a conservative estimate as
testing data were used to judge the model performance, while
in the curve fitting, all data are utilized. The RF regression



JuLy 2025

YANG ET AL. 837

20.2
a 5.1
(@) o.os o
~ 20.1
~ 4.7% ~
g 0.04 "é’ 9 13 BZ
< S = =
S E} 2004 2
0.03 < 433 3237
19.9
0.02 . 3.9 32.0
14:45 15:00 15:15 15:30 15:45 16:00 16:15
Time (hour-minute)
(b) 23.2 36.3
0.17 17.0
- 22.8 ~ 3622
~ | =)
Soa13 155 2 3 2
< < [ =
= S 2 2
0.09 140D 22.4 36.1%
0.05 12.5
22.0 36.0
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time (hour-minute)
(C) 0.30 16.5 36.5
24.6
0.23 1554 ~ 5
g a ¢ Z
N Z 24.4%; E
0.15 145 5 “z @
0.08 13.5 2.2 36.4
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time (hour-minute)
(d) 0.21 12,5 23.6 36.5
11.0
_ 016 - 23.0 5 3645
g 95 2 < g
< £
N B ; 2
0.10 80 2247 1363%
. fe . 6.5
0.05 218 36.2

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time (hour-minute)

o Wy — U TA — SST — SSS

FIG. 9. Twenty-minute-averaged met-ocean data and W, during the Gulf of Mexico cruise.
(a) Data from 4 Mar, (b) data from 5 Mar, (c) data from 6 Mar, and (d) data from 7 Mar. Note,
the x axis in each subplot covers a different length of time.

provides an accurate and robust parameterization of W,. It  using the ERAS dataset, following the method from Sugihara
shows that Hyepr, SST, and WG are as important in predicting et al. (2007). Swell was categorized as 1) following swell,
W, as Uy, while TA and MSQS have limited influence when the swell direction is within +45° of the wind direction;
(Fig. 11b). The swell conditions during the cruise were analyzed  2) opposing swell, when the swell direction is within +45° of

®  Gulf of Mexico data
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FIG. 10. Active whitecap fraction W 4 as a function of U,,. The dots show the 20-min-averaged
W4 computed from the Gulf of Mexico data. The lines are parameterizations based on the data
in this study and from previous whitecap research.
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the opposite wind direction; and 3) cross swell, for all other
cases. The results revealed a diverse pattern of swell condi-
tions throughout the cruise period. Data collected on
5 March were characterized by opposing swell conditions, while
measurements taken around 1600 UTC 4 March and 7 March
exhibited cross swell conditions. The remaining data were pre-
dominantly obtained under the following swell conditions.

c. Secondary influence of SST

The RF regression provides a qualitative evaluation of the
importance of certain environmental factors in W,4. Given
that the wave data are derived from numerical models at rela-
tively coarse spatial resolution and have undergone temporal
interpolation, they are more appropriate for bulk assessments
than for quantitative analysis. As such, further investigation
neglects wave variables and instead focuses on met-ocean pa-
rameters which were recorded in situ and at high resolution.
To investigate the relationship between SST and W, it is nec-
essary to remove the strong influence of wind speed, which is
done by dividing the dataset into three scales (scale 1-3):
6ms '<Up=10ms ,10ms ' < Upg=14ms ', and
14 m s~! < Uy This ensures that the influence of Uy is rela-
tively small on each scale. The data with Uy less than 6 m g1
are excluded due to their limited sample size (i.e., only six
points). The dataset is then separated into two groups by the
median SST within the wind speed scale. A Student’s ¢ test
was conducted on Uy for each group, resulting in no statisti-
cal difference between them (i.e., p values are 0.45, 0.14, and
0.23, respectively). One-way analysis of variance (ANOVA)
is then performed to determine the influence of SST on W,
for each wind speed scale. In scale 2, there are 16 samples,
and there is no statistical difference between the averages of
the groups, as shown in Fig. 12b(1). In scales 1 and 3, there
are 13 and 32 samples, and the p values are 0.03 and 0.0035,
respectively. This means, at a very high level of confidence,
SST impacts W4 within these wind speed bins. The results in
Fig. 12a(1) and 12¢(1) agree with the analysis in section 3b.

However, it remains unclear why the influence of SST is insig-
nificant in scale 2. It is possible that the sample size in moder-
ate and low Ujy is too small to observe a statistically
significant impact of SST (i.e., not enough statistical power to
detect existing differences among the groups).

Next, the data are divided into groups according to the
scales of Ujy and SST, and a two-way ANOVA is applied. To
ensure the sample size of each factor is as similar as possible,
U, is divided into three scales: Ujg =< 10m s~ ', 10 m s~ <
Up=14m s and Ujp>14m s~!, while SST is divided into
two scales: SST = 23°C and SST > 23°C. For this ANOVA
(figure not shown), the p values for Uy, and SST group are
0.0007 and 0.03, respectively, while that for the interaction be-
tween the two factors is 0.80. This means U;q and SST both
have significant influence on W, respectively (as previously
established), while the effect of SST is not dependent on Ujq
(or vice versa). Importantly, this means that the relationship
between SST and W, is not a spurious correlation. Hence,
these results are consistent with Callaghan et al. (2014), who
found that air entrainment increased with warmer water in a
laboratory experiment leading to increased active wave
breaking area. A positive correlation between SST and W was
also found by Monahan and O’Muircheartaigh (1986) and by
Albert et al. (2016), who suggested SST should be included in
W parameterization. Hooker et al. (2020) analyzed 17 white-
cap datasets and found the positive relationship between SST
and the exponent of power-law fitting of Wy(U). Further-
more, Liu and Yang (2022) showed that parameterization
with positive SST dependence fitted observational data better
than that with negative SST dependence. They also proposed
a parameterization incorporating both U,y and SST, which
yielded a more accurate fit for W.

4. Summary

The evolution of whitecaps formed by wave breaking can
be divided into stage A (active) and stage B (residual)
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according to their prominently different characteristics. Ac-
tive whitecaps accompany air entrainment into the water
during wave breaking, while residual whitecaps are patches
of bubbles lingering on the water surface. Many air-sea in-
teraction processes are related to active and residual white-
caps but not necessarily both. Therefore, it is crucial to
measure active and residual whitecap fractions separately.
While whitecaps have been measured extensively, few stud-
ies have focused on individual stages. This is largely because
the extraction of whitecap stages from visible imagery is
challenging because the transition from active to residual
stages is subtle. Furthermore, features of active whitecaps
are either difficult to capture or impractical to extract using
automatic programming.

This study presents a pipeline to quantify the active white-
cap fraction through the analysis of visible imagery. Data
were collected during the same Gulf of Mexico cruise used
in Yang and Potter (2021). The algorithm introduced by
Schwendeman and Thomson (2015b) was used to stabilize
and rectify images from shipboard cameras, while a new hori-
zon detection method was developed to enhance the robust-
ness. The new method incorporates a thresholding filter,
dilation iteration, and linear regression to achieve great per-
formance even in challenging conditions such as poor illumi-
nation and contamination from sun glint. A U-Net-based
deep learning model is trained and validated using a dataset
from Eadi Stringari et al. (2021) to extract the pixels of active

whitecaps from visible images automatically. The model has a
high level of accuracy with an F1 score on the validation
data of 0.81. Until now, dealing with sun glint and sky reflec-
tion contamination has been a great challenge when extract-
ing whitecap fraction from visible images. However, this
deep learning model has phenomenal performance when
identifying active whitecaps in contaminated images. The
code for the entire data processing pipeline and the trained
model can be accessed on GitHub and is made freely avail-
able to the community.

This study used the aforementioned whitecap deep learning
model to determine W, from 48-h video captured using Go-
Pro cameras. The wind speed-dependent relationship of ac-
tive whitecap fraction is investigated. The power law is used
to parameterize W4 as a function of Ujy. The best fit was
found to be W, = 3.64 X 107° X (Uyo + 1.59)'°. For any
given wind speed, there is significant scatter in W, which in-
dicates that secondary factors need to be considered. The ran-
dom forest regression was employed to parameterize W,
resulting in R? = 0.07 on unseen observations, which showed
a better fit to the data compared to the power-law parameteri-
zation (R? = 0.44) using wind speed alone. Additionally, the
feature importance analysis revealed that Hgyen, WG, and
SST are crucial components in the parameterization process.
One-way and two-way ANOVA are applied to W4 to investi-
gate the secondary influences of SST. The results indicate that
SST has a significant impact on W,4. To ensure a more
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comprehensive and robust investigation, additional in situ
data are needed in future studies.
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