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Diet composition of juvenile green turtles in the Southwestern Atlantic Ocean:

long-term insights from a beach stranding program
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Abstract
Long-term diet studies provide information on the temporal variation in diet
composition, habitat use and foraging ecology of species. Assessment of dead-stranded

sea turtles by stranding programs allows systematic diet sampling over a broad temporal
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scale, which can help elucidate potential ecological and environmental changes. Off the
Southwestern Atlantic Ocean, the Parana coast, Brazil, is an important foraging ground
for juvenile green turtles (Chelonia mydas). To determine seasonal and interannual diet
variability, 351 dead-stranded individuals had their dietary contents analyzed to the
major taxa level from 2008-2020. We identified 13 major prey groups that made up
green turtles’ diets. A subset of turtles had diet identified to the lowest taxonomic level
possible. Interannual differences were found, with the Chlorophyte Ulva lactuca highly
important in 2008, 2011-2018; Bivalvia and Gastropoda in 2016 and 2017. During La
Nifia events (2011, 2012, 2013, 2014, 2017, 2018, 2020), Chlorophyta, Mollusca,
Crustacea and Hydrozoa were the most frequently encountered diet items; during El
Nifio events (2015, 2016, 2019) Ochrophyta was the most consumed taxon. Seasonal
differences were found, such that Echinodermata and Teleostei were important in
autumn and winter; Hydrozoa and Gastropoda in all seasons. Our results underscore
individual dietary plasticity, including inter-seasonal and annual differences, which
likely reflects their ability to respond to changing prey availabilities and environmental
characteristics driven by natural and perhaps anthropogenic influences. Understanding
potential links between diet, habitat use, and the effects of a shifting diet and foraging

grounds are key information for monitoring impacts and guiding conservation actions.

Keywords: Chelonia mydas; feeding ecology; behavioral plasticity; spatial-temporal

scale; macroalgae; Mollusca; conservation.

1. INTRODUCTION

Long-term diet studies are key for evaluating temporal changes in food intake

and habitat use patterns of consumers, which help identify areas of biological
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importance and give insight into what foraging areas most need protection (Fuentes et
al. 2006, Marcovaldi & Santos 2011, Vélez-Rubio et al. 2018a). Indeed, foraging
ecology studies have been identified among the most important themes in sea turtle
conservation (Hamann et al. 2010, Wildermann et al. 2018), especially in the context of
ongoing climate change and cumulative anthropogenic effects (Hawkes et al. 2009,
Fuentes et al. 2020).

When studying green turtle foraging ecology, knowledge about the extrinsic
influences such as prey availability, sea surface temperature, cumulative rainfall rates,
and habitat quality is fundamental to interpret behaviors, diet intake, and health of local
green turtles (Wildermann et al. 2018). Also, understanding the influences of decadal-
scale climate shifts on habitats is essential to assess long-term ecological changes
(Hawkes et al. 2009, Esteban et al. 2020). For example, in southern South America, El
Nifio (which increases rainfall and temperature) and La Nifia (which decreases rainfall
and temperature) events influence climate variability, rainfall patterns and intensity, and
sea surface temperatures (Grimm et al. 2000). Therefore, these and other climatic events
may drive biological and ecological changes (e.g. habitat dynamics, prey availability,
predator-prey interaction), leading to diet variation among turtles in these areas (Saba et
al. 2007, Quinones et al. 2010, Esteban et al. 2020).

The cryptic nature of sea turtles and the logistic difficulties of capturing live
turtles in the wild are challenges for studying their diet intake and overall foraging
ecology across large spatial and temporal scales (Reich et al. 2007, Vander Zanden et al.
2014, Wildermann et al. 2018). In many areas worldwide, sea turtles are exposed to
significant cumulative human threats, resulting in stranding of live and/or dead turtles
along shores (Monteiro et al. 2016, Cantor et al. 2020). In such areas, ongoing

systematic and long-term sea turtle stranding monitoring programs present an
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opportunity to encounter and study these individuals for health and ecological
assessments, such as analysis of digestive tract contents to gain insights about diet
composition for the local population (Hart et al. 2006).

Based on stranding records, southern and southeastern Brazil have a large
number of juvenile green turtles (Chelonia mydas) that dead-strand each year,
particularly in Parana (25° S) and the central area of Santa Catarina states (26° S)
(Cantor et al. 2020). Green turtles in this area are part of the Southwestern Atlantic
Ocean (SWAO) Regional Management Unit (Wallace et al. 2010) and include
individuals originating from at least 12 rookeries throughout the SWAO (Savada et al.
2021), that can be resident in the area (Guebert et al. 2011, Marcovaldi & Santos 2011,
Gama et al. 2016; 2021, Coelho et al. 2018, Fuentes et al. 2020). This region is a
biodiversity hotspot (UNESCO 2021) and hosts one of the most impressive
mangrove/estuarine systems globally (https://www.ramsar.org/news/brazil-designates-
three-ramsar-sites), with nearly 1,000 km of interior coastline that provides a diversity
of habitats and prey types for green turtles (Lana et al. 2001, Gama et al. 2016; 2021,
Santos & Lana 2017). However, more than 1,000 juveniles are found dead-stranded
each year in Parana (Cantor et al. 2020), with mortality attributed to a variety of local
threats, such as habitat degradation, debris ingestion, chemical pollutants, fisheries
bycatch, and emergent diseases (Domiciano et al. 2019, Fuentes et al. 2020, Nunes et al.
2021, Sulato et al. 2022).

Since 2004, several studies have been ongoing in this area focusing on green
turtles, including beach monitoring and stranding response programs (Guebert-Bartholo
etal. 2011, Cantor et al. 2020, Gama et al. 2021, Sulato et al. 2022). Previous studies
on green turtle diet in the SWAO show a high diversity of consumed prey items,

including seagrasses, macroalgae, mangrove leaves and seeds, and animal matter
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(Bugoni et al. 2003, Guebert-Bartholo et al. 2011, Marcovaldi & Santos 2011, Nagaoka
et al. 2012, Awabdi et al. 2013, Reisser et al. 2013, Gonzalez-Carman et al. 2014,
Santos et al. 2015, Gama et al. 2016, 2021, Vélez-Rubio et al. 2016). However, despite
this substantial information on green turtle diet, little information is available regarding
the ability of green turtles to shift their diet intake in response to environmental change.
Here, we build upon previous green turtle diet studies in the region to — for the
first time — explore long-term variation and trends related to seasonal, annual, and
intermittent environmental (El Nifio/La Nifia) cycles. The present study examined gut
contents of dead-stranded green turtles encountered in this area between 2008—2020. In
addition to describing temporal patterns in green turtle diet, our efforts underscore the
value that beach stranding recovery programs provide for understanding the ecology of

and ongoing threats to encountered animals.

2. MATERIALS AND METHODS

2.1. Study site

The Parané coast, southern Brazil (25°20°S to 25°35°S / 48°17°W to 48°42°W),
is a migratory corridor for multiple sea turtle species that are present in the SWAO
(Wallace et al. 2010, Marcovaldi & Santos 2011, Cantor et al. 2020). Parana has ~90
km of sandy beaches, and several bays and estuaries, such as the Paranagud Estuarine
Complex (PEC), a 612 km? semi-enclosed inlet, that comprises ~1000 km of estuarine
interior coastline (Lana et al. 2001) (Fig. 1). The area is in the subtropical climatic zone
and hosts a diversity of marine habitats such as seagrass (Halodule wrightii) meadows,
mangrove-lined (including Avicennia schaueriana) estuaries, and rocky subtidal
habitats dominated by marine macroalgae (Angulo 1992, Sordo et al. 2011, Pellizzari et

al. 2014, Bumbeer et al. 2016, Pellizzari et al. 2020). Macroalgal diversity along the
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Parand coast and islands is considered low (~130 taxa) compared to other tropical areas
in Brazil (Pellizzari et al. 2014). Nevertheless, several species of green macroalgae
(Chlorophyta), red macroalgae (Rhodophyta), and brown macroalgae (Ochrophyta)
occur in high biomass (Pellizzari et al. 2007, 2014, 2021, Pellizzari & Reis 2011).
Parana coast is influenced by the Brazilian Current, which brings warm waters
to the south during the austral summer (wet season), and the Falklands Current, which
introduces cold waters during the winter (dry season) (Piola et al. 2000, Matano et al.
2010). The PEC is composed by three different hyaline zones: estuarine, estuarine
outlets and open-ocean coasts (Angulo & Araujo 1996), that result in a salinity gradient
and hence, differences in local habitats (Krelling & Turra 2019). The average sea
surface temperature (SST) values ranged from 21.60°C to 26.71°C; whereas the

monthly average rainfall values ranged from 120.66mm to 276.63mm.

2.2. Dead-stranded turtle collection

Dead-stranded green turtles were collected along the Parané coast (Fig. 1) during
systematic beach surveys from 2008 to 2020; however, only fresh-dead juveniles or
animals in early-decomposition stages (Codes 2 and 3, respectively; according to the
decomposition stages ranking adapted from Geracy & Lounsbury 2005) with intact
digestive tracts were considered for this study. Between 2015-2020 the samples were
obtained as part of the PMP-BS (Santos Basin Beach Monitoring Project or Projeto de
Monitoramento de Praia da Bacia de Santos). All the specimens had their curved
carapace length (CCL; to 0.1 cm precision, measured with a flexible tape from the
nuchal scute notch to the posterior-most edge of the carapace) recorded and biological
samples collected for further analysis. The digestive tracts were removed and stored

frozen at —15°C until analysis. The sampling year, locality, date, season, and body size
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were recorded for each recovered green turtle. Also, some specimens obtained from

PMP-BS (n = 238) had their body condition score calculated (e.g. Limpus et al. 2012).

2.3. Diet analysis

To determine diet composition, all recovered items were washed, separated, and

identified. The invertebrates, except cephalopod beaks, and debris were washed and

dried at 60°C; vegetal matter items were preserved in 70% ethyl alcohol; and

cephalopod beaks were preserved in 70% ethyl alcohol and 5% glycerin.

Three different diet analyses were conducted:

1.

ii.

iil.

LT (Low Taxonomic, all prey species): to achieve low taxonomic
resolution identification, 351 green turtles had their digestive tract
contents identified to the phylum or class level with stereoscopic and
optical equipment;

HTM (High Taxonomic, Macroalgae only): a total of 148 turtles
recorded from 2008-2014, and 2017-2018 had their macroalgae contents
identified to finer taxonomic level (e.g. genus, species) based on the
morphology of reproductive and vegetative structures, according to
Cordeiro-Marino (1978), Nunes et al. (1999), Moura (2000), Barata
(2004), Nunes (2005), Coto (2007), Crispino (2007), Pereira-Filho et al.
(2011; 2012), and Pellizzari et al. (2014). Taxonomical updates followed
Guiry & Guiry (2019);

HTA (High Taxonomic, Animal prey only): a total of 142 green turtles
recorded from 2015 to 2020 had their animal matter (invertebrate and

vertebrate) contents identified to the genus or species level according to
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Ruppert & Barnes (1996), Wiggers (2003), Pimpao (2004), Xavier &
Cherel (2009), Absher (2015), followed by specialists’ support.

The global algae database AlgaeBase (Guiry & Guiry, 2023) and the World
Register of Marine Species website WoRMS (2023) were also used to validate all the
species found. The digestive tracts of all green turtles were also analyzed to quantify the
presence of marine debris. All types of debris, including hard and sheet-like plastic,
threadlike, nylon, straws, balloons, and fishery debris were visually identified and

counted, following the classification of Nunes et al. (2021).

2.4. Statistical analysis

To quantify the digestive tract contents recovered during both efforts, the
frequency of occurrence (%FO) (Silveira et al. 2020) was calculated for each food
category as a percentage between the number of stomachs in which the food category

occurred (Sfr) and the total number of stomachs with food assessed (Sf) [Eq.1]:

wro = (1.
/()F0—<5f> 100

Specific to the macroalgae, which is the prey item whose weight has been
measured, the gravimetric frequency (% W) was calculated representing a percentage
between the weight of the food category f'consumed by a given specimen i (Wy;) and
the total weight of all food categories consumed by this specimen (¥, Wy;). It was

weighted by the total number of analyzed stomachs with food (5f) [Eq. 2] [Eq. 2]:
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This index was used in addition to %FO because all the macroalgae species were
weighed and %Weight is considered a more accurate index when compared to the
%FO only (Silveira et al. 2020).

To test for interannual variation (from 2008 to 2020) in diet composition and the
potential influence of climatic events on diet, extreme climatic events were used as a
proxy (weak, moderate, or strong El Nifio (EN) /La Nifia (LN)). The climatic data were
obtained from http://enos.cptec.inpe.br/; 08/2021. To test intra-annual differences and
seasonal cycles in diet composition (‘season of the year’), austral seasons were
considered, with January, February, and March corresponding to the summer (late wet);
April, May, and June, to the autumn (early dry); July, August, and September, to the
winter (late dry); and October, November, and December, to the spring (early wet). This
seasonal variation was based on previous studies conducted in the same area (Gama et
al. 2016; Possatto et al. 2016).

For %FO data, a two-way PERMANOVA (year + climatic event, Euclidian
distance, 9999 permutations) (Anderson 2001, Anderson & Willis 2003) was performed
on logit-transformed data (Warton & Hui 2011). For %W, a two-way PERMANOVA
(year + season, Euclidian distance, 9,999 permutations) was used with Hellinger and
log-transformed data (log x + 1) (Legendre & Legendre 2012, Borcard et al. 2018). The
p-value considered was 0.05. Principal Component Analysis (PCA) (Legendre &
Legendre 2012, Borcard et al. 2018) highlights differences in a multivariate dataset,
hence, it was performed to visually interpret PERMANOVA results. All analyses were

performed using R 4.0 software (R Core Team 2019).

3. RESULTS
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3.1. General demographic results

The dead-stranded green turtles analyzed for low taxonomic resolution, ranged
in size from 23.2 cm to 68.0 cm CCL (38.77+7.16 cm; n = 351). Turtles analyzed for
high taxonomic resolution of macroalgae ranged in size from 28.2 cm to 62.0 cm CCL
(38.83+6.53 cm; n = 148), with the largest sample sizes in 2017 (n = 32) and 2018
(n=21). Finally, turtles for which diet was analyzed for high taxonomic resolution of
invertebrates ranged in CCL from 23.2 cm to 68.0 cm (38.39+7.85 cm; n = 142). All
turtles were in the early decomposition stages, and according to the body condition
score established by Limpus et al (2012), which was calculated for 238 turtles, 158
presented a good to great score (score 3); 55 a poor one (score 2); and 25 a very poor
score (score 1).

3.2.Diet composition

Considering the entire diet content database (LT), a total of 13 different major
taxa was encountered in digestive tracts of green turtles (Fig. 2): Magnoliophyta
(including mangrove and seagrass), Rhodophyta (red macroalgae), Mollusca,
Chlorophyta (green macroalgae), Ochrophyta (brown macroalgae), Bryozoa, Hydrozoa,
Echinodermata, Annelida, Cyanobacteria, Arthropoda (including Crustacea and
Insecta), and Chordata (Teleostei). More than half (69.23%; n = 243) of sampled green
turtles had some sort of plastic or other anthropogenic-derived debris recovered from
their digestive tracts (Fig. 2). Among the diet items encountered, the phylum
Magnoliophyta was the most frequent (%6FO = 60.11), followed by Rhodophyta
(%FO =41.31), and Mollusca (%FO = 41.02) (Fig. 2).

Regarding HTM analysis, a total of three major taxa was identified, including 49

different taxa of macroalgae. The most frequent macroalgae was Ulva spp.
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(%FO = 45.94), followed by Sargassum cymosum (%FO = 40.54), and Gracilaria
domingensis (%FO = 20.27) (Table 1).

When considering the HTA analysis, a total of 98 taxa was found. The most
frequent major group was Bivalvia (%FO = 43.66), followed by Teleostei

(%FO = 10.56) (Table 2).

3.3.Interannual variation of diet

Consumption of food categories by green turtles was significantly different
among years for both the low taxonomic diet analysis (F-value;> = 2.197,
p-value < 0.0001) (Table 3) and high taxonomic diet analyses, macroalgae
(F-values = 3.2422; p-value < 0.001) (Table 4) and animal (F-values = 2.7995;
p-value = 0.003) (Table 5).

For the LT identified in low taxonomic resolution, the first four axes of PCA
explained 82.74% of data variance (d.v.). Axis 1 (47.07% d.v.) highlighted annual trends
in the diet of all the sampled green turtles from 2008 to 2020 concerning the
consumption of the categories Magnoliophyta (axis score, a.s. = -0.73), Rhodophyta
(a.s. =-0.61), Chlorophyta (a.s. = -0.55), Mollusca (a.s. = -0.53), Ochrophyta
(a.s. = -0.45) and debris (a.s. = 1.61) (Fig. 3). In 2008, 2013, 2015, 2016 and 2018,
Magnoliophyta was the most recurrent consumed category, with %FO varying from
61.54% to 87.50%, followed by debris (%6FO varying from 25.00% to 58.82%) and
Rhodophyta (%FO varying from 7.69% to 62.50%) (Fig. 4). In the remaining years,
debris was the most recurrent consumed category, with %FO varying from 58.82% to
91.67%, followed by Magnoliophyta (%FO varying from 37.14% to 69.57%) and

Rhodophyta (%FO varying from 11.43% to 54.17%) (Fig. 4).
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In respect of the HTM sampling, the first four axes of PCA explained 97.10% of
d.v.. Axes 1 (61.55% d.v.) and 2 (16.92% d.v.) highlighted the consumption of
U. lactuca, G. domingensis and, S. cymosum by green turtles sampled from 2008-2014,
2017, and 2018 (Fig. 5). The multivariate subspaces of the years 2008 and 2011-2014
were elongated in both axes 1 and 2 due to the importance of U. lactuca
(a.s.4xis1 = -3.05; a.s.4xis2 = 0.12), Gracilaria. domingensis (a.s.xis1 = -0.17,
a.s.4xis2 = -1.48) and S. cymosum (a.s. xis1 = 0.18; a.s.4xis2 = 0.59). During these years,
%W of U. lactuca varied from 0.60% to 82.36% (vs. 0.01% to 2.43% in the remaining
years), of G. domingensis from <0.01% to 31.24% (vs. absent to 47.46), and of
S. cymosum from 0.02 to 23.59% (vs. <0.01 to 43.05) (Fig. 6). The multivariate
subspaces representing the years 2009-2010 were elongated in axis 2 (Fig. 5) due to not
only the high importance of G. domingensis (%W 47.46% and 16.93%, respectively),

S. cymosum (%W 43.05% and 10.35%, respectively) and U. lactuca (%W 2.43% and
0.41%, respectively), but also to the consumption of Pyropia sp. (a.s. = 0.12; absent and
12.26%, respectively) and of Rhizoclonium sp (a.s. = 0.004; 22.66% and 63.00%,
respectively) (Fig. 6). Both Pyropia sp. and Rhizoclonium sp were absent in 2008 and
2011-2014. Axis 3 (13.95% d.v.) confirmed the importance of S. cymosum (a.s. = -1.34)
and G. domingensis (a.s. = -0.55) in the diet of green turtles in all years (Fig. 5). Axis 4
(4.67% d.v.) highlighted the importance of Pyropia sp. (a.s. = -0.82) in the diet of green
turtles in 2010, 2017 (%W 48.76%) and 2018 (38.98%) (Figs. 5 and 6).

Considering the HTA analysis, the first four axes of PCA explained 79.69% of
the d.v.. Axis 1 (38.22% d.v.) highlights general trends in the diet of green turtles:
Bivalvia, Gastropoda and Hydrozoa were the most recurrent consumed food categories,
besides the presence of debris in all years (Fig. 7). Despite this generality, Bivalvia

(a.s. =-0.98) and Gastropoda (a.s. = -0.89) were mainly consumed in 2015-2018
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(Fig. 7). In this period, %FO of Gastropoda varied from 34.48% to 80.00% (vs. 28.57%
to 32.26% in the remaining years), and of Bivalvia from 47.37% to 69.57% (vs. 20.00%
to 38.71%) (Fig. 8). Conversely, Hydrozoa (a.s. = 0.95) and debris (a.s. = 0.63) were
mainly exploited between 2017-2020, with %FO varying from 21.05% to 38.71%

(Fig. 7). Debris was greatly ingested between 2017-2020 (a.s. = 0.63), and from 88.57%
to 93.55%, respectively (Figs. 7 and Fig. 8). In the remaining years, the recurrence of
Hydrozoa varied from 13.04% to 40.00%, and of debris from 40.00% to 56.52%

(Fig. 8). Axis two (22.85% d.v.) confirmed the importance of Bivalvia in the diet of
green turtles during 2016-2018, and revealed that Crustacea was recurrently exploited
(a.s. =-0.31)in 2016 (%FO 13.04% vs. absent to 2.86% in the remaining years) and
that Echinodermata (a.s. = 1.17) was an important food resource in 2015 and 2019-2020
(%F O varying from 19.35% to 40.00% vs. 3.45% to 15.79% in the remaining years)
(Figs. 7 and 8). Axis 3 (10.80% d.v.) and 4 (7.81% d.v.) confirmed the food trends
revealed in Axes 1 and 2, confirming the importance of Gastropoda (a.s. = 0.33) in
green turtle diet from 2016 to 2020, and revealing the exclusive consumption of Insecta
(a.s. =0.33) in 2017 and 2019-2020 (%FO varying from 2.86% to 6.45%) (Figs. 7 and
8). Axis 4 revealed the exclusive consumption of Perciformes (a.s. =—0.48) in 2016
(%F0 8.70%), 2019 (6.45%) and 2020 (5.71%), and of Clupeiformes (a.s. = 0.22) in

2015 (20.00%), 2019 (6.45%) and 2020 (5.71%) (Figs. 7 and 8).

3.4. Influence of El Nifio /La Nifia on diet composition

Considering the influence of El Nifio/La Nifia on low taxonomic diet analysis
(whole sample; n = 351; 2008-2020), 106 turtles were encountered during EN events
(years of 2015, 2016, 2019), and 245 turtles during LN events (years of 2011, 2012,

2013, 2014, 2017, 2018, 2020). A significant difference was found in diet composition
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among climatic events considering all the sampling years (2008-2020) (PERMOVA,
F-values = 1.6350, p-value = < 0.0479) (Table 3).

The positive portion of Axis 1 was related to the exclusive consumption of
debris (%6FO = 100%) in 2008 during moderate La Nifia event (a.s. = 1.61) (Fig. 3).
Axis 2 (19.09% d.v.) highlighted seasonal trends in food consumption, revealing the
exploitation of Hydrozoa (a.s. = -0.61), Crustacea (a.s. = -0.46), Chlorophyta
(a.s. =-0.44) and Mollusca (a.s. = -0.28) mainly during weak and strong LN episodes
(Fig. 3). In these periods, %F O of Hydrozoa in green turtle diet varied from 17.50% to
18.18% (vs. 6.25% to 13.87% in remaining periods), of Crustacea from 5.00% to
18.18% (vs. 4.88% to 12.14%), of Chlorophyta from 22.50% to 36.36% (vs. 14.63% to
35.84%), and of Mollusca from 47.50% to 54.55% (vs. 21.88 to 47.40%) (Fig. 4). Axis
2 also highlighted the consumption of Ochrophyta (a.s. = 0.75), Bryozoa (a.s. = 0.44),
and Rhodophyta (a.s. = 0.39) not only in moderate LN periods but also during moderate
and strong EN episodes (Fig. 3). During these periods, %6F'O of Ochrophyta varied from
27.75% to 43.90% (vs. 12.12% to 12.50% in the remaining periods), of Bryozoa from
7.32% to 25.00% (vs. absent to 12.12%), and of Rhodophyta from 25.00% to 49.13%
(vs. 30.00% to 48.48%) (Fig. 4). Axes 3 (9.50% d.v.) and 4 (0.07% d.v.) revealed food
categories complementary to those highlighted in Axis 1, however, without clear
seasonal trends (Fig. 3). Axis 3 was negatively related to the consumption of
Cyanobacteria (a.s. =-0.58), Echinodermata (a.s. = -0.31), and Crustacea (a.s. =-0.29)
during periods of moderate EN and weak to moderate LN (Fig. 3). During these
periods, %FO of Cyanobacteria varied from 2.50 to 12.50% (vs. absent to 12.12% in the
remaining periods), of Echinodermata from 1.56% to 13.29% (vs. absent to 2.44%), and
of Crustacea from 5.00% to 12.14% (vs. 4.88% to 18.18%) (Fig. 4). The negative

portion of Axis 4 confirmed the consumption of Crustacea (a.s. = -0.36), Echinodermata
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(a.s. =-0.34), and Bryozoa (a.s. = -0.26) during periods of moderate to strong EN
(%FO0 4.88%, 2.44% and 7.32%, respectively) and weak LN (%FO 5.00%, 7.50% and
absent, respectively) to strong LN (%FO 18.18%, absent and 12.12%, respectively)
(Fig. 4). And positive portion of Axis 4 confirmed the exploitation of Hydrozoa

(a.s. =0.29), Cyanobacteria (a.s. = 0.31), and Rhodophyta (a.s. = 0.36) during episodes
of weak LN (%FO 17.50%, 2.50% and 30.00%, respectively) to moderate LN

(%FO0 13.87%, 5.78% and 49.13%, respectively) and moderate EN (%FO 6.25%,
12.50% and 25.00%, respectively) to strong EN (%FO 2.44%, absent and 39.02%,

respectively) (Figs. 3 and 4).

3.5. Seasonal diet variation

Although no significant seasonal difference was found by HTM regarding
macroalgae consumption, only six species of macroalgae were encountered during
summer (late wet) and spring (early wet), whereas in autumn (early dry) and winter (late
dry) 49 taxa were found. The filamentous Cyanobacteria Lyngbya majuscula Harvey ex
Gomont was found in digestive tracts of 17 turtles, only in winter (%W 79.77%) and
autumn (20.23%). The green macroalga U. lactuca was found in green turtle digestive
tracts throughout the year, with highest levels in spring (%W 65.72%) and Autumn
(16.96%) seasons (Fig. 6).

Concerning seasonal variation in food consumption by HTA, there was
significant difference (PERMOVA, F3-value = 1.9586; p-value = 0.0292) (Table 5).
According to axis 1, Bivalvia (a.s. =-0.98) and Gastropoda (a.s. = -0.89) were mainly
consumed in autumn and spring (Fig. 7). For these categories, %FO varied from
39.02% to 67.57% (vs. 30.00% to 34.09% in the remaining seasons), and from 39.02%

to 45.95% (vs. 20.00% to 36.36%), respectively (Fig. 8). On the other hand, Hydrozoa
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(a.s. = 0.95) were mainly ingested in summer (%FO 40.00%) and winter (31.71%),
whereas debris (a.s. = 0.63) were mainly ingested in winter (88.64%) and summer
(85.00%) (Fig. 7 and 8). Axis 2 (22.85% d.v.) confirmed the high consumption of
Bivalvia (a.s. = —0.65) from autumn to spring, also revealing that Echinodermata

(a.s. = 1.17) was an important food resource in all seasons (%FO varying from 15.00%
to 22.73%) (Fig. 7 and 8). Axis 3 confirmed the importance of Gastropoda (a.s. = 0.33)
in the diet of green turtles in autumn and revealed the exclusive consumption of Insecta
(a.s. = 0.33) during the autumn (%FO 5.41%) and winter (4.55%) (Fig. 7 and 8). Axis 4
confirmed the importance of Hydrozoa (a.s. = 0.42) and Gastropoda (a.s. = 0.36) in the
diet of green turtles in spring, and revealed the consumption of Perciformes

(a.s. = -0.48) mainly in the autumn and winter, with %FO varying from 10.81% to

2.27%, respectively (vs. 2.44% and 5.00% in the remain seasons) (Fig. 7 and 8).

4. DISCUSSION

.. Green turtles found stranded along the Parana coast are part of a mixed stock
composed of individuals from more than 12 rookeries, which travel across different
areas of the SWAO (Gonzalez-Carman et al. 2012; Naro Maciel et al. 2014; Savada et
al. 2021). The present study provides one of the largest datasets on green turtle diet in
the SWAO and underscores the substantial temporal in SWAO green turtle diet
variability. Although prey densities were not measured in Parana, it is likely that the
observed temporal shifts in green turtle diet are likely responses to changing prey
availabilities driven by large-scale environmental variability observed during the 13
years of this study (2008-2020). We observed that green turtles presented a more
diverse diet than in the previous studies (Guebert-Bartholo et al. 2011; Gama et al.

2016) with higher consumption of invertebrates and fish, which is similar to findings
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from Vélez-Rubio et al. (2016), Piovano et al. (2020), Quifiones et al. (2022), whose
results showed high occurrences of invertebrate foods, including Cnidaria. Indeed, in
our previous study (Gama et al. 2021), we verified that live green turtles intentionally
captured in Parand presented invertebrates as one of the most important prey items in
their diet. These findings advance our knowledge of the population ecology of juveniles
and opens the opportunity to in the future evaluate ecological theories, such as
understanding how density-dependence and competition can affect green turtle foraging
decisions.

The juveniles herein analyzed presented a mixed diet consisting almost
exclusively of benthic prey, which is common among green turtles that forage in
estuarine and bay areas, as found by Santos et al. (2015), and reviewed by Esteban et al.
(2020). The omnivorous feeding habit of green turtles has been verified in several diet
studies (Seminoff et al. 2006, Arthur et al. 2008, Cardona et al. 2009, Lemons et al.
2011, Santos et al. 2015, Holloway-Adkins & Hanisak 2017, Gillis et al. 2020, Howell
& Shaver 2021), but the wide range of forage items identified at the species level is
unique in our study, and includes more than 90% taxa that have not been reported for
the area before. Although Gama et al. (2016) identified a few prey items in our study
region, our study benefited from further identification of macroalgae and invertebrate
groups, as a result of including taxonomists for each group to identify prey.

The invertebrates represented basically by Mollusca and the vertebrates
represented by Teleostei were largely consumed by juveniles throughout our sampling
analysis, and it may be related to their availability along the Parané coast, as shown by
Bumbeer et al. (2016) and Cattani et al. (2022), and to the individualized foraging
preferences among green turtles that aggregate in the area. Further, Mollusca

consumption may be related to the fact that in estuarine areas they may coexist with
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macroalgae in the benthic habitat, as verified by Santos et al. (2015); this finding
contrasts other studies in the SWAO that found only sporadic occurrence of mollusks in
green turtle diets (Morais et al. 2012, Vélez-Rubio et al. 2015). Live green turtles along
the Parana coast foraged mostly on invertebrates, highlighting the unique dietary
tendencies for the species in this estuarine complex (Gama et al. 2021). Nevertheless,
we did not identify any gelatinous zooplankton in green turtle digestive tracts, as has
been reported in other green turtle diet studies (Burkholder et al. 2011, Santos et al.
2015, Vélez-Rubio et al. 2016, Gama et al. 2021, Stubbs et al. 2022). This is likely due
to this prey type’s rapid digestion (Gonzélez-Carman et al. 2014, Hays et al. 2018),
which suggests gelatinous prey may be underrepresented in our study.

With respect to anthropogenic influences on green turtle diet, our study indicates
marine debris consumption across all years, with the greatestoccurrence from 2017 to
2020, especially in 2018; these are mostly La Nina years (CPTEC 2016) that presented
low temperature and low rainfall rates (appendices Fig. 1). However, the occurrence of
debris was high and similar when comparing the winter (FO% = 88.64), which is the
low rain season, and the summer (FO% = 85.00), which is the high rain season. Because
of that it is important to mention that other oceanographic, physical, and geographic
factors may be responsible for higher debris concentrations in the estuarine area of PEC
(Krelling & Turra 2019) and they should be measured in future studies to better address
debris availability and ingestion by fauna in this area. For instance, extensive dredging
was conducted along the PEC in 2018, which moved sediments and sheltered materials
from the sea bottom (Soares et al. 2022). This process might re-mobilize debris, making
them more available to be ingested by the marine fauna.

Moreover, debris consumption by green turtles may occur during their

recruitment to the coast (Vélez-Rubio et al. 2018b) and reflect its high availability in the
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foraging area (Schuyler et al. 2014). Debris ingestion is considered a major threat to
green turtle conservation status and health condition, as it can cause digestive tract
obstruction and tissue injury, leading to starvation and death (Di Beneditto & Awabdi
2014, Domiciano et al. 2019). We thus recommend further evaluation of the relationship
between diet and the presence of debris to clarify the severity of this problem and
inform management plans that promote habitat quality and the conservation of green

turtles in the SWAO.

4.1.Seasonal variability

Macroalgae consumption varied among seasons, which is perhaps related to
temporal fluctuations in relative availability for different taxa in the area (Pellizzari et
al. 2014). In autumn and winter, macroalgae dietary diversity among green turtles was
higher than in spring and summer, with diet samples from the latter season only
revealing six species of macroalgae being consumed. This is consistent with findings by
Pellizzari et al. (2014) that reported higher species richness and higher biomass along
the Parana coast in winter versus summer. Lower macroalgae species richness in diet
samples may be related to higher water turbidity from sedimentation introduced via
coastal runoff in summer, which decreases the photic zone in coastal waters, thus
reducing rates of photosynthesis and inhibiting macroalgae growth (Junior et al. 1991,
Bezerra & Marinho-Soriano 2010).

With respect to animal matter consumption, the highest consumption of
invertebrate prey and fishes occurred during the autumn and winter, which is probably
related to the fact that the energy intake obtained from this food source may be
advantageous compared to vegetal prey, which improves the turtle’s metabolism during

these seasons (Bjorndal 1980, Brand-Gardner et al. 1999). It is important to consider
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that both the dietary transit times and the turtle metabolism are slower in lower
temperatures, as shown by Gonzalez-Paredes et al. (2021), which may have influenced
the higher occurrence of undigested invertebrates found in this study. Despite that,
invertebrates such as Mollusca and Hydrozoa were consumed in every season, and this
pattern may be related to the prey species’ presence throughout the year in some islands
along the Parand coast (Bumbeer et al. 2016), making them available for consumption
in all seasons. Furthermore, it is important to consider that the absorption of nutrients
from these prey items is higher when compared to the plant matter prey, as both the
intake passage time and the digestion are faster (Amorocho & Reina 2008). However, as
shown by Quifiones et al. (2022), it is possible that some of the juveniles herein
analyzed do not present the gut specialization to digest vegetal matter items, consuming
more animal origin prey items afterwards. Also, as verified by Meylan et al. (2020),
turtles may adapt to changes in prey availability, which impacts foraging effort and
areas, and perhaps survival. It is worth mentioning that some of the turtles foraging in
this area may be both recent recruits that were previously foraging in higher latitudes, as
shown by Gama et al. (2021).

Even though fishes and cephalopods were found ingested by green turtles and are a
good energy source, we did not evaluate foraging strategies, and some items might be
caught dead or moribund. Some fishes predated by turtles are cited as a bycatch of
trawlers fisheries (Cattani et al., 2011), which occurs in the Parana state and adjacent
coastal areas throughout the year. Moreover, floating dead squids may be consumed by
green turtles because of their scavenging foraging behavior as shown by Morais et al.
(2012) and Vélez-Rubio et al. (2015). However, this information is speculative, and
future studies focusing on prey-predator strategies can be conducted to clarify this

ecological point.
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4.2.Annual diet variability

Clear annual trends were observed, considering the dietary shift from Bivalvia
and Gastropoda in the first years to Hydrozoa in the last couple years of our analysis,
despite the constant consumption of Mollusca over the years. In terms of macroalgae
consumption, the continuous consumption of Rhodophyta and Chlorophyta reinforces
them as key dietary items for green turtles in the SWAO (Reisser et al. 2013, Santos et
al. 2015, Vélez-Rubio et al. 2016).

Green turtle dietary shifts observed during this study (2008 to 2020) are likely
related to the climatic variation resulting from the onset of El Nifio events, probably to
the high rainfall rates that are expected for this event. Rainfall dynamics have been
known to flush some floating algae species, such as the S. cymosum from estuary sites
to nearby open coasts (Witherington et al. 2012). In particular, higher consumption of
Ochrophyta (especially S. cymosum) in our study may be resulting from these changes
during EN events in 2015, 2016, and 2019. As found elsewhere (Hawkes et al. 2009,
Esteban et al. 2020), climate events may lead to changes in sea surface temperature, in
both diet and food resource availability, driving changes in habitat use, behavior, and
exposure to threats. Indeed, climate change affects marine herbivores mostly because of
their vulnerability to temperature changes, but may also disrupt trophic chains in the

marine ecosystem, as observed by Hu et al. (2022).

S. CONCLUSIONS
Our results highlight the importance of the estuarine and bay areas of Parana
state as habitats for juvenile green turtle foraging and development. This is reinforced
not only by the diversity of food items consumed across years, seasons, and climate

events, but also by green turtles’ capacity to be resilient to these changes with
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individualized and adaptive foraging selection. Nevertheless, it is important to use
caution when evaluating those changes, as they may represent a higher exposure to
impacted foraging grounds and conservation risks. Although most of our study group is
composed of individuals in a good body condition, we cannot say their diet reflects the
items consumed only by healthy individuals that use Parané coast due to the fact that no
necropsy analyses were included to look at overall health prior to death. Additionally,
the only diet data of live green turtles in Parand are based on stable isotopic analysis
(Gama et al. 2021) and this is similar to our findings, which showed invertebrates and
green algae as the most consumed and important prey items. Despite the punctual
information available (Gonzalez Carman et al. 2014; Fuentes et al. 2020), species
resilience may be enhanced by the fact that many turtles remain in this foraging area
and use different habitats within the Paran4, including islands, rocky shores, meadows,
and mangroves. Thus, delimitating diet changes across the years and how the species
responds to climate variability helps decipher the species foraging intake throughout
time and individual variability in terms of habitat use and exposition to threats. This
helps delimitate food resources changes and track the impacts over both the foraging
habitat and the species itself. Hence, this study contains data that may help to delimitate
areas to be protected and managed in the SWAOQ, besides to inform and prioritize
further conservation actions based on the distribution of foraging resources used by the

species.
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Tables

Table 1: Frequency of occurrence (%£F0) and weight (%) of High taxonomic
macroalgae (HTM) species registered in digestive tract (DT) contents of juvenile green
turtles Chelonia mydas (n = 148) collected dead-stranded along the Parana coast from

2008-2014 and 2017-2018. n.d.= the value did not reach the minimum accuracy scale.

Taxa Author N of %FO %W
DT

CHLOROPHYTA

Caulerpa sp. 2 1.351 n.d.

Chaetomorpha aerea (Dillwyn) 5 3.378 0.008

Kiitzing


https://www.marinespecies.org

Chaetomorpha antennina (Bory) 2 1.351 n.d.
Kiitzing
Chaetomorpha sp. 1 0.675 n.d.
Cladophora catenata Kutzing 1 0.675 n.d.
Cladophora vagabunda %{Linlf(laeuS) 7 4.729 0.036
o¢
Cladophora sp. 6 4.054 0.016
Cladophoropsis membranacea (Hofman 1 0.675 n.d.
Bang ex C.
Agardh)
Rhizoclonium sp. 6 4.054 0.010
Ulva cf. chaetomorphoides (Borgesen) 1 0.675 n.d.
H.S.Hayden,
Blomster,
Maggs,
P.C.Silva,
Stanhope
andWaaland
Ulva fasciata Delile 1 0.675 n.d.
Ulva flexuosa Walfen 1 0.675 n.d.
Ulva lactuca Linnacus 68 45.94 58.920
Willeella brachyclados (Montagne) 1 0.675 n.d.
M.J.Wynne
Total 68 45.940
OCHROPHYTA
Chnoospora minima (Hering) 4 2.702 n.d.
Papenfuss
Dictyota sp. 7 4.729 0.011
Padina sp. 8 5.405 0.050
Sargassum cymosum C. Agardh 60 40.540 2.400
Total 60 40.540
RHODOPHYTA
Aglaothamnion uruguayense (W.R.Taylor) 1 0.675 n.d.
N.E.Aponte,
D.L.Ballantin
€
andJ.N.Norris
Aglaothamnion sp. 1 0.675 n.d.
Amphiroa beauvoisii J.V.Lamourou ] 0.675 n.d.
X
Asparagopsis taxiformis (Delile) 2 1.351 n.d.
Trevisan
Bostrychia binderi Harvey 2 1.351 n.d.
Bostrychia radicans (Montagne) 1 0.675 n.d.
Montagne
Bostrychia sp. 4 2.702 0.001
Bostrychia tenella (J.V.Lamouro 2 1.351 n.d.
ux) J.Agardh
Caloglossa sp. 1 0.675 n.d.
Ceramium sp. 3 2.027 0.015
Chondracanthus sp. 1 0.675 n.d.
Chondracantus teedei (Mertensex 3 2.027 0.005
Roth) Kiitzing
Chondria sp. 1 0.675 n.d.
Dipterosiphonia sp. 1 0.675 n.d.
Gelidium pusillum (Stackhouse) 5 3.378 0.023
Le Jolis
Gelidium sp. 5 3.378 0.014
Gracilaria domingensis (Kiitz) Sond. 30 20.270 5.090
Ex Dickie
Heterosiphonia crispella (C.Agardh) 1 0.675 n.d.
M.J.Wynne
Heterosiphonia sp. 3 2.027 0.041
Hypnea pseudomusciformis Nauer, 8 5.405 0.020
Cassano
andM.C.Olive
ira
Hypnea sp. 8 5.405 0.015
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40

) (C.Agardh) 4 2.094 0.007

Hypnea spinella Kiitzing

Neosiphonia sp. 1 0.675 n.d.

Plocamiums p. 1 0.675 n.d.

Polysiphonia howei Hollenbergin 1 0.675 n.d.
W.R. Taylor

Polysiphonia sp. 1 0.675 n.d.

Pterocladiella sp. 2 1.351 n.d.

Pterosiphonia parasitica (Hudson) 3 2.027 0.001
Falkenberg

Pterosiphonia pennata (C.Agardh) 6 4.054 0.015
Sauvageau

Pterosiphonia sp. 1 0.675 n.d.

Pyropia sp. 17 11.486 0.490

Total 49 33.100

951

952  Table 2: Frequency of occurrence (%6FO) of the taxonomic groups of invertebrates

953  registered in digestive tract (DT) contents of juvenile green turtles (n = 142) collected
954  dead-stranded along the Parana coast from 2015 to 2020 by the High taxonomic animal
955  (HTA). The most frequent species are in bold.

956
Taxon Number of digestive tracts  Frequency of occurrence
(%FO)

Phylum Mollusca 96 67.60
Gastropoda 50 35.21
Acteocina lepta 1 0.70
Acteocina sp. 1 0.70
Family Architectonicidae 1 0.70
Family Atlantidae 3 2.11
Bittiolum varium 1 0.70
Family Calyptraeidae 2 1.40
Cavolinia sp. 7 4.92
Cavolinia tridentata 1 0.70
Family Cavolinidae 1 0.70
Family Cerithiidae 1 0.70
Cerithium cf. algicola 1 0.70
Family Collumbelidae 9 6.33
Costoanachis sertularium 2 1.40
Costoanachis sp. 4 2.81
Diacria sp. 2 1.40
Diacria trispinosa 2 1.40
Diodora sp. 1 0.70
Family Epitoniidae 1 0.70
Epitonium angulatum 1 0.70
Epitonium sp. 1 0.70
Eulithidium affine 1 0.70
Heleobia australis 1 0.70
Family Hipponicidae 1 0.70
Melanella hypsela 1 0.70
Mitrella cf. Moleculina 1 0.70
Family Nassaridae 2 1.40
Family Neritidae 1 0.70
Neritina virginea/Vitta virginea 3 2.11
Olivella sp. 2 1.40
Family Olividae 2 1.40
Parvanachis sp. 1 0.70
Family Tateidae 1 0.70
Turbonilla sp. 2 1.40
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Family Turritelidae 1 0.70
Bivalvia 62 43.66
Anadara ovalis 2 1.40
Anadara sp. 3 2.11
Family Arcidae 1 0.70
Brachidontes sp. 1 0.70
Carditamera sp. 1 0.70
Corbula sp. 5 2.92
Family Corbulidae 1 0.70
Crassatella riograndensis 1 0.70
Crassostrea sp. 1 0.70
Ctena cf.pectinella 1 0.70
Ctena sp. 1 0.70
Family Donacidae 1 0.70
Family Mactridae 1 0.70
Family Mytilidae 5 2.92
Noetia bisulcate 2 1.40
Nucula sp. 4 2.81
Family Ostreidae 5 2.92
Family Pectinidae 3 2.11
Perna perna 1 0.70
Semele nuculoides 3 2.11
Strigilla sp. 3 2.11
Cephalopoda 11 7.74
Doryteuthis pleii 1 0.70
Decapodiformes 2 1.40
Octopodiformes 2 1.40
Family Spirulidae 1 0.70
Scaphopoda 2 1.40
Phylum Bryozoa 5 2.92
Phylum Hydrozoa 5 2.92
Plumularioidea 1 0.70
Crustacea 5 2.92
Family Balanidae 1 0.70
Balanomorpha 1 0.70
Family Barleeiidae 1 0.70
Cirripedia 4 2.81
Decapoda 1 0.70
Paguroidea 1 0.70
Pleocyemata 1 0.70
PhylumEchinodermata 4 2.81
Echinoidea 1 0.70
Insecta 4 2.81
Pycnogonida 1 0.70
Pterygota 1 0.70
Coleoptera 2 1.40
Coccinellidae 1 0.70
Polychaeta 4 2.81
PhylumChordata 20 14.08
Teleostei 15 10.56
Family Engraulidae 1 0.70
Harengula clupeola 1 0.70
Lycengraulis grossidens 1 0.70
Pellona harroweri 1 0.70
Ctenosciaena gracilicirrhus 2 1.40
Isopisthus parvipinnis 2 1.40
Micropogonias furnieri 2 1.40
Paralonchurus brasiliensis 2 1.40
Family Sciaenidae 2 1.40
Stellifer brasiliensis 1 0.70
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Table 3. Results from two-factor PERMANOVA (year + climatic event) for the low-

taxonomic resolution diet of all Parana green turtles herein analyzed (n = 351). Df =

degrees of freedom; SS = sum of squares; R? = pseudo-R?. Values in bold indicate

significant differences (o = 0.05).

Sources

Df SS

RZ

F-value p-value

Years

Climatic events

Residual
Total

12 4734 0.0719

0.0133

335 6014.4 0.9146

350 6575.8

1.0000

2.1973 0.0001
1.6350 0.0479

Table 4. Results from two-factor PERMANOVA (year + season) regarding HTM (high

taxonomic macroalgae species) identification and consumption by Parana green turtles

(n = 148) from 2008 to 2014, 2017 — 2018. Df = degrees of freedom; SS = sum of

squares; R? = pseudo-R2. Values in bold indicate significant differences (o = 0.05).

Sources Df SS R? F-value p-value
Year 8 36.4 0.1583 3.2422 0.0003

Season 2.6 0.0113 0.6190 0.7486

Residual 136 191.3 0.8303

Total 147 230.4 1

Table 5. Results from two-factor PERMANOVA (year + season) regarding HTA (high

taxonomic animal) identification and consumption by Parana green turtles (n = 142)

from 2015 to 2020. Df = degrees of freedom; SS = sum of squares; R? = pseudo-R?.

Values in bold indicate significant differences (o = 0.05).

Sources Df SS R? F-value p-value
Year 241.7 0.092 2.799 0.0003
Season 3 101.4 0.038 1.959 0.0292
Year:Season 10 170.8 0.065 0.989 0.4803
Residual 123 2124.1 0.805

Total 141 2638.1 1

Figures
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Figure 1. Map of the Parana coast of Brazil, including the Paranagud Estuarine
Complex (PEC) and Guaratuba Bay, in south Brazil, where the beach surveys were
performed, and dead-stranded green turtles were recovered. The lines colored in black
represent the regular monitored area, whereas the ones in white represent the areas

where monitoring occurred sporadically.
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987 (LT) found in the digestive tracts of juvenile green turtles (n = 351) found dead-
988  stranded in Parana coast, south Brazil, from 2008 to 2020.
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991  Figure 5: Principal Component Analysis (PCA) showing high taxonomic macroalgae
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998  Fig. 6: Bar-plots representing the frequency of occurrence (%6F'O) of high taxonomic

999  macroalgae (HTM) found in the digestive tracts of juvenile green turtles (n = 148)
1000  found dead-stranded in Parana coast, south Brazil, from 2008 to 2014; 2017 and 2018.
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1004  Figure 7: Principal Component Analysis (PCA) showing high taxonomic animal (HTA)
1005  consumption tendencies of green turtles Chelonia mydas (n = 142) in Parana coast,

1006  south Brazil. Interannual diet tendencies (2015 to 2020) along axes 1 and 2 (A and C),
1007 and 3 and 4 (B and D). Diet tendencies by seasons along axes 1 and 2 (A and E) and 3
1008 and 4 (B and F).
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Fig. 8: Bar-plots representing the frequency of occurrence (%6FO) of high taxonomic
animal (HTA) found in the digestive tracts of juvenile green turtles (n = 142) found
dead-stranded in Parana coast, south Brazil, from 2015 to 2020.
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