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Abstract  

Long-term diet studies provide information on the temporal variation in diet  

composition, habitat use and foraging ecology of species. Assessment of dead-stranded 

sea turtles by stranding programs allows systematic diet sampling over a broad temporal  

2 

3 

4 

6 

7 

8 

9 

11 

12 

13 

14 

16 

17 

18 

19 

21 

22 

23 

24 

26 

27 

28 

29 

31 

mailto:lucianagama.lec@gmail.com


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

40

45

50

55

2 

32 scale, which can help elucidate potential ecological and environmental changes.  Off the  

Southwestern Atlantic Ocean, the Paraná coast, Brazil, is an important foraging ground 

for juvenile green turtles (Chelonia mydas). To determine seasonal and interannual diet  

variability, 351 dead-stranded individuals had their dietary contents analyzed to the  

major taxa level from 2008-2020.  We identified 13 major prey groups that made up 

green turtles’ diets.  A subset of turtles had diet identified to the lowest taxonomic level  

possible. Interannual differences  were found, with the Chlorophyte  Ulva lactuca highly 

important in 2008, 2011–2018; Bivalvia and Gastropoda in 2016 and 2017.  During La   

Niña events (201 1, 2012, 2013, 2014, 2017, 2018, 2020), Chlorophyta, Mollusca, 

Crustacea and Hydrozoa were the most frequently encountered diet items; during El  

Niño events (2015, 2016, 2019) Ochrophyta  was  the most consumed taxon. Seasonal  

differences were found, such that Echinodermata and Teleostei were important in 

autumn and winter; Hydrozoa and Gastropoda in all seasons. Our results underscore  

individual dietary plasticity, including inter-seasonal and annual differences, which 

likely reflects their ability to respond to changing prey availabilities and environmental  

characteristics driven by natural and perhaps anthropogenic influences. Understanding 

potential links between diet, habitat use, and the effects of a shifting diet and foraging 

grounds are key information for monitoring impacts and guiding conservation actions.  

 

Keywords: Chelonia mydas; feeding ecology; behavioral plasticity; spatial-temporal  

scale; macroalgae; Mollusca; conservation.  

 

1.  INTRODUCTION  

Long-term diet studies are key for evaluating temporal changes in food intake  

and habitat use patterns of consumers, which help identify areas of biological  
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importance and give insight into what foraging areas most need protection (Fuentes et 

al. 2006, Marcovaldi & Santos 2011, Vélez-Rubio et al. 2018a). Indeed, foraging 

ecology studies have been identified among the most important themes in sea turtle 

conservation (Hamann et al. 2010, Wildermann et al. 2018), especially in the context of 

ongoing climate change and cumulative anthropogenic effects (Hawkes et al. 2009, 

Fuentes et al. 2020). 

When studying green turtle foraging ecology, knowledge about the extrinsic 

influences such as prey availability, sea surface temperature, cumulative rainfall rates, 

and habitat quality is fundamental to interpret behaviors, diet intake, and health of local 

green turtles (Wildermann et al. 2018). Also, understanding the influences of decadal-

scale climate shifts on habitats is essential to assess long-term ecological changes 

(Hawkes et al. 2009, Esteban et al. 2020). For example, in southern South America, El 

Niño (which increases rainfall and temperature) and La Niña (which decreases rainfall 

and temperature) events influence climate variability, rainfall patterns and intensity, and  

sea surface temperatures (Grimm et al. 2000). Therefore, these and other climatic events 

may drive biological and ecological changes (e.g. habitat dynamics, prey availability, 

predator-prey interaction), leading to diet variation among turtles in these areas (Saba et 

al. 2007, Quiñones et al. 2010, Esteban et al. 2020). 

The cryptic nature of sea turtles and the logistic difficulties of capturing live 

turtles in the wild are challenges for studying their diet intake and overall foraging 

ecology across large spatial and temporal scales (Reich et al. 2007, Vander Zanden et al. 

2014, Wildermann et al. 2018). In many areas worldwide, sea turtles are exposed to 

significant cumulative human threats, resulting in stranding of live and/or dead turtles 

along shores (Monteiro et al. 2016, Cantor et al. 2020). In such areas, ongoing 

systematic and long-term sea turtle stranding monitoring programs present an 
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opportunity to encounter and study these individuals for health and ecological 

assessments, such as analysis of digestive tract contents to gain insights about diet 

composition for the local population (Hart et al. 2006). 

Based on stranding records, southern and southeastern Brazil have a large 

number of juvenile green turtles (Chelonia mydas) that dead-strand each year, 

particularly in Paraná (25° S) and the central area of Santa Catarina states (26° S) 

(Cantor et al. 2020). Green turtles in this area are part of the Southwestern Atlantic 

Ocean (SWAO) Regional Management Unit (Wallace et al. 2010) and include 

individuals originating from at least 12 rookeries throughout the SWAO (Savada et al. 

2021), that can be resident in the area (Guebert et al. 2011, Marcovaldi & Santos 2011, 

Gama et al. 2016; 2021, Coelho et al. 2018, Fuentes et al. 2020). This region is a 

biodiversity hotspot (UNESCO 2021) and hosts one of the most impressive 

mangrove/estuarine systems globally (https://www.ramsar.org/news/brazil-designates-

three-ramsar-sites), with nearly 1,000 km of interior coastline that provides a diversity 

of habitats and prey types for green turtles (Lana et al. 2001, Gama et al. 2016; 2021, 

Santos & Lana 2017). However, more than 1,000 juveniles are found dead-stranded 

each year in Paraná (Cantor et al. 2020), with mortality attributed to a variety of local 

threats, such as habitat degradation, debris ingestion, chemical pollutants, fisheries 

bycatch, and emergent diseases (Domiciano et al. 2019, Fuentes et al. 2020, Nunes et al. 

2021, Sulato et al. 2022). 

Since 2004, several studies have been ongoing in this area focusing on green 

turtles, including beach monitoring and stranding response programs (Guebert-Bartholo 

et al. 2011, Cantor et al. 2020, Gama et al. 2021, Sulato et al. 2022).  Previous studies 

on green turtle diet in the SWAO show a high diversity of consumed prey items, 

including seagrasses, macroalgae, mangrove leaves and seeds, and animal matter 

https://www.ramsar.org/news/brazil-designates
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(Bugoni et al. 2003, Guebert-Bartholo et al. 2011, Marcovaldi & Santos 2011, Nagaoka 

et al. 2012, Awabdi et al. 2013, Reisser et al. 2013, Gonzalez-Carman et al. 2014, 

Santos et al. 2015, Gama et al. 2016, 2021, Vélez-Rubio et al. 2016). However, despite 

this substantial information on green turtle diet, little information is available regarding 

the ability of green turtles to shift their diet intake in response to environmental change. 

Here, we build upon previous green turtle diet studies in the region to — for the 

first time — explore long-term variation and trends related to seasonal, annual, and 

intermittent environmental (El Niño/La Niña) cycles. The present study examined gut 

contents of dead-stranded green turtles encountered in this area between 2008–2020. In 

addition to describing temporal patterns in green turtle diet, our efforts underscore the 

value that beach stranding recovery programs provide for understanding the ecology of 

and ongoing threats to encountered animals. 

2. MATERIALS AND METHODS 

2.1. Study site 

The Paraná coast, southern Brazil (25°20’S to 25°35’S / 48°17’W to 48°42’W), 

is a migratory corridor for multiple sea turtle species that are present in the SWAO 

(Wallace et al. 2010, Marcovaldi & Santos 2011, Cantor et al. 2020). Paraná has ~90 

km of sandy beaches, and several bays and estuaries, such as the Paranaguá Estuarine 

Complex (PEC), a 612 km2 semi-enclosed inlet, that comprises ~1000 km of estuarine 

interior coastline (Lana et al. 2001) (Fig. 1). The area is in the subtropical climatic zone 

and hosts a diversity of marine habitats such as seagrass (Halodule wrightii) meadows, 

mangrove-lined (including Avicennia schaueriana) estuaries, and rocky subtidal 

habitats dominated by marine macroalgae (Angulo 1992, Sordo et al. 2011, Pellizzari et 

al. 2014, Bumbeer et al. 2016, Pellizzari et al. 2020). Macroalgal diversity along the 
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Paraná coast and islands is considered low (~130 taxa) compared to other tropical areas 

in Brazil (Pellizzari et al. 2014). Nevertheless, several species of green macroalgae 

(Chlorophyta), red macroalgae (Rhodophyta), and brown macroalgae (Ochrophyta) 

occur in high biomass (Pellizzari et al. 2007, 2014, 2021, Pellizzari & Reis 2011). 

Paraná coast is influenced by the Brazilian Current, which brings warm waters 

to the south during the austral summer (wet season), and the Falklands Current, which 

introduces cold waters during the winter (dry season) (Piola et al. 2000, Matano et al. 

2010). The PEC is composed by three different hyaline zones: estuarine, estuarine 

outlets and open-ocean coasts (Angulo & Araujo 1996), that result in a salinity gradient 

and hence, differences in local habitats (Krelling & Turra 2019). The average sea 

surface temperature (SST) values ranged from 21.60°C to 26.71°C; whereas the 

monthly average rainfall values ranged from 120.66mm to 276.63mm. 

2.2. Dead-stranded turtle collection 

Dead-stranded green turtles were collected along the Paraná coast (Fig. 1) during 

systematic beach surveys from 2008 to 2020; however, only fresh-dead juveniles or 

animals in early-decomposition stages (Codes 2 and 3, respectively; according to the 

decomposition stages ranking adapted from Geracy & Lounsbury 2005) with intact 

digestive tracts were considered for this study. Between 2015–2020 the samples were 

obtained as part of the PMP-BS (Santos Basin Beach Monitoring Project or Projeto de 

Monitoramento de Praia da Bacia de Santos). All the specimens had their curved 

carapace length (CCL; to 0.1 cm precision, measured with a flexible tape from the 

nuchal scute notch to the posterior-most edge of the carapace) recorded and biological 

samples collected for further analysis. The digestive tracts were removed and stored 

frozen at –15°C until analysis. The sampling year, locality, date, season, and body size 
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were recorded for each recovered green turtle. Also, some specimens obtained from 

PMP-BS (n = 238) had their body condition score calculated (e.g. Limpus et al. 2012). 

2.3. Diet analysis 

To determine diet composition, all recovered items were washed, separated, and 

identified. The invertebrates, except cephalopod beaks, and debris were washed and 

dried at 60°C; vegetal matter items were preserved in 70% ethyl alcohol; and 

cephalopod beaks were preserved in 70% ethyl alcohol and 5% glycerin. 

Three different diet analyses were conducted: 

i.  LT (Low Taxonomic, all prey species): to achieve low taxonomic  

resolution identification, 351 green turtles had their digestive tract  

contents identified to the phylum or class level with stereoscopic and  

optical equipment;  

ii.  HTM (High Taxonomic, Macroalgae only): a total of 148 turtles     

recorded from 2008-2014, and 2017-2018 had their macroalgae contents  

identified to finer taxonomic level (e.g. genus, species) based on the  

morphology of reproductive and vegetative structures, according to  

Cordeiro-Marino (1978), Nunes et al. (1999), Moura (2000), Barata  

(2004), Nunes (2005), Coto (2007), Crispino (2007), Pereira-Filho et al. 

(2011; 2012), and Pellizzari et al. (2014). Taxonomical updates followed 

Guiry & Guiry (2019);   

iii.  HTA (High Taxonomic, Animal prey only): a total of 142 green turtles    

recorded from 2015 to 2020 had their animal matter (invertebrate and 

vertebrate) contents  identified to the genus or species level according to   
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181 Ruppert & Barnes (1996), Wiggers (2003), Pimpão (2004), Xavier &     

Cherel (2009), Absher (2015), followed by specialists’ support.   

The global algae database AlgaeBase (Guiry & Guiry, 2023) and the World  

Register of Marine Species website WoRMS (2023) were also used to validate all the   

species found. The digestive tracts of all green turtles were also analyzed to quantify the    

presence of marine debris. All types of debris, including hard and sheet-like plastic, 

threadlike, nylon, straws, balloons, and fishery debris were visually identified and 

counted, following the classification of Nunes et al. (2021).   

 

2.4. Statistical analysis    

To quantify the digestive tract contents recovered during both efforts, the  

frequency of occurrence (%FO) (Silveira et al. 2020) was calculated for each food 

category as a percentage between the number of stomachs in which the food category f  

occurred (��!)  and the total number of stomachs with food assessed  (��)  [Eq.1]:  

 

��
%�� = % !

 ( ∙ 100 
�� 

 

Specific to the macroalgae, which is the prey item whose weight has been 

measured, the gravimetric frequency (%W) was calculated representing a percentage  

between the weight of the food category f  consumed by a given specimen i  (�!")   and 

the total weight of all food categories consumed by this specimen (∑ �!"). It was  

weighted by the total number of analyzed stomachs with food (��)  [Eq. 2] [Eq. 2]:  

 

%! 
1 �

%� = ∙-. !"
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This index was used in addition to %FO because all the macroalgae species were 

weighed and %����ℎ� is considered a more accurate index when compared to the 

%FO only (Silveira et al. 2020). 

To test for interannual variation (from 2008 to 2020) in diet composition and the 

potential influence of climatic events on diet, extreme climatic events were used as a 

proxy (weak, moderate, or strong El Niño (EN) /La Niña (LN)). The climatic data were 

obtained from http://enos.cptec.inpe.br/; 08/2021. To test intra-annual differences and 

seasonal cycles in diet composition (‘season of the year’), austral seasons were 

considered, with January, February, and March corresponding to the summer (late wet); 

April, May, and June, to the autumn (early dry); July, August, and September, to the 

winter (late dry); and October, November, and December, to the spring (early wet). This 

seasonal variation was based on previous studies conducted in the same area (Gama et 

al. 2016; Possatto et al. 2016). 

For %FO data, a two-way PERMANOVA (year + climatic event, Euclidian 

distance, 9999 permutations) (Anderson 2001, Anderson & Willis 2003) was performed 

on logit-transformed data (Warton & Hui 2011). For %W, a two-way PERMANOVA 

(year + season, Euclidian distance, 9,999 permutations) was used with Hellinger and 

log-transformed data (log x + 1) (Legendre & Legendre 2012, Borcard et al. 2018). The 

p-value considered was 0.05. Principal Component Analysis (PCA) (Legendre & 

Legendre 2012, Borcard et al. 2018) highlights differences in a multivariate dataset, 

hence, it was performed to visually interpret PERMANOVA results. All analyses were 

performed using R 4.0 software (R Core Team 2019). 

3. RESULTS 

http://enos.cptec.inpe.br
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3.1.  General demographic results   

The dead-stranded green turtles analyzed for low taxonomic resolution, ranged 

in size from 23.2 cm to 68.0 cm CCL (38.77±7.16 cm; n     = 351). Turtles analyzed for  

high taxonomic resolution of macroalgae ranged in size from 28.2 cm to 62.0 cm CCL      

(38.83±6.53  cm;  n  = 148), with the largest sample sizes in 2017 (n = 32) and 2018    

(n = 21). Finally, turtles for which diet was analyzed for high taxonomic resolution of   

invertebrates ranged in CCL from 23.2 cm to 68.0 cm (38.39±7.85 cm; n     = 142). All   

turtles were in the early decomposition stages, and according to the body condition 

score established by Limpus et al (2012), which was calculated for 238 turtles, 158 

presented a good to great score (score 3); 55 a poor one (score 2); and 25 a very poor 

score (score 1).  

3.2.Diet composition  

Considering the entire diet content database (LT), a total of 13 different major   

taxa was encountered in digestive tracts of green turtles (Fig.  2): Magnoliophyta  

(including mangrove and seagrass), Rhodophyta (red macroalgae), Mollusca, 

Chlorophyta (green macroalgae), Ochrophyta (brown macroalgae), Bryozoa, Hydrozoa,  

Echinodermata, Annelida, Cyanobacteria, Arthropoda (including Crustacea and 

Insecta), and Chordata (Teleostei). More than half (69.23%; n  = 243) of sampled green  

turtles had some sort of plastic or other anthropogenic-derived debris recovered from  

their digestive tracts (Fig. 2). Among the diet items encountered, the phylum   

Magnoliophyta was the most frequent (%FO  = 60.11), followed by Rhodophyta   

(%FO  = 41.31), and Mollusca ( %FO  = 41.02) (Fig. 2).    

Regarding HTM analysis, a total of three major taxa was identified, including 49 

different taxa of macroalgae. The most frequent macroalgae was  Ulva spp. 
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(%FO = 45.94), followed by Sargassum cymosum (%FO = 40.54), and Gracilaria 

domingensis (%FO = 20.27) (Table 1). 

When considering the HTA analysis, a total of 98 taxa was found. The most 

frequent major group was Bivalvia (%FO = 43.66), followed by Teleostei 

(%FO = 10.56) (Table 2). 

3.3.Interannual variation of diet  

Consumption of food categories by green turtles was significantly different 

among years for both the low taxonomic diet analysis (F-value12 = 2.197, 

p-value < 0.0001) (Table 3) and high taxonomic diet analyses, macroalgae 

(F-value8 = 3.2422; p-value < 0.001) (Table 4) and animal (F-value5 = 2.7995; 

p-value = 0.003) (Table 5). 

For the LT identified in low taxonomic resolution, the first four axes of PCA 

explained 82.74% of data variance (d.v.). Axis 1 (47.07% d.v.) highlighted annual trends 

in the diet of all the sampled green turtles from 2008 to 2020 concerning the 

consumption of the categories Magnoliophyta (axis score, a.s. = -0.73), Rhodophyta 

(a.s. = -0.61), Chlorophyta (a.s. = -0.55), Mollusca (a.s. = -0.53), Ochrophyta 

(a.s. = -0.45) and debris (a.s. = 1.61) (Fig. 3). In 2008, 2013, 2015, 2016 and 2018, 

Magnoliophyta was the most recurrent consumed category, with %FO varying from 

61.54% to 87.50%, followed by debris (%FO varying from 25.00% to 58.82%) and 

Rhodophyta (%FO varying from 7.69% to 62.50%) (Fig. 4). In the remaining years, 

debris was the most recurrent consumed category, with %FO varying from 58.82% to 

91.67%, followed by Magnoliophyta (%FO varying from 37.14% to 69.57%) and 

Rhodophyta (%FO varying from 11.43% to 54.17%) (Fig. 4). 
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In respect of the HTM sampling, the first four axes of PCA explained 97.10% of 

d.v.. Axes 1 (61.55% d.v.) and 2 (16.92% d.v.) highlighted the consumption of 

U. lactuca, G. domingensis and, S. cymosum by green turtles sampled from 2008–2014, 

2017, and 2018 (Fig. 5). The multivariate subspaces of the years 2008 and 2011–2014 

were elongated in both axes 1 and 2 due to the importance of U. lactuca 

(a.s.Axis1 = -3.05; a.s.Axis2 = 0.12), Gracilaria. domingensis (a.s.Axis1 = -0.17; 

a.s.Axis2 = -1.48) and S. cymosum (a.s.Axis1 = 0.18; a.s.Axis2 = 0.59). During these years, 

%W of U. lactuca varied from 0.60% to 82.36% (vs. 0.01% to 2.43% in the remaining 

years), of G. domingensis from <0.01% to 31.24% (vs. absent to 47.46), and of 

S. cymosum from 0.02 to 23.59% (vs. <0.01 to 43.05) (Fig. 6). The multivariate 

subspaces representing the years 2009-2010 were elongated in axis 2 (Fig. 5) due to not 

only the high importance of G. domingensis (%W 47.46% and 16.93%, respectively), 

S. cymosum (%W 43.05% and 10.35%, respectively) and U. lactuca (%W 2.43% and 

0.41%, respectively), but also to the consumption of Pyropia sp. (a.s. = 0.12; absent and 

12.26%, respectively) and of Rhizoclonium sp (a.s. = 0.004; 22.66% and 63.00%, 

respectively) (Fig. 6). Both Pyropia sp. and Rhizoclonium sp were absent in 2008 and 

2011-2014. Axis 3 (13.95% d.v.) confirmed the importance of S. cymosum (a.s. = -1.34) 

and G. domingensis (a.s. = -0.55) in the diet of green turtles in all years (Fig. 5). Axis 4 

(4.67% d.v.) highlighted the importance of Pyropia sp. (a.s. = -0.82) in the diet of green 

turtles in 2010, 2017 (%W 48.76%) and 2018 (38.98%) (Figs. 5 and 6). 

Considering the HTA analysis, the first four axes of PCA explained 79.69% of 

the d.v.. Axis 1 (38.22% d.v.) highlights general trends in the diet of green turtles: 

Bivalvia, Gastropoda and Hydrozoa were the most recurrent consumed food categories, 

besides the presence of debris in all years (Fig. 7). Despite this generality, Bivalvia 

(a.s. = -0.98) and Gastropoda (a.s. = -0.89) were mainly consumed in 2015-2018 
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(Fig. 7). In this period, %FO of Gastropoda varied from 34.48% to 80.00% (vs. 28.57% 

to 32.26% in the remaining years), and of Bivalvia from 47.37% to 69.57% (vs. 20.00% 

to 38.71%) (Fig. 8). Conversely, Hydrozoa (a.s. = 0.95) and debris (a.s. = 0.63) were 

mainly exploited between 2017–2020, with %FO varying from 21.05% to 38.71% 

(Fig. 7). Debris was greatly ingested between 2017-2020 (a.s. = 0.63), and from 88.57% 

to 93.55%, respectively (Figs. 7 and Fig. 8). In the remaining years, the recurrence of 

Hydrozoa varied from 13.04% to 40.00%, and of debris from 40.00% to 56.52% 

(Fig. 8). Axis two (22.85% d.v.) confirmed the importance of Bivalvia in the diet of 

green turtles during 2016-2018, and revealed that Crustacea was recurrently exploited 

(a.s. = -0.31) in 2016 (%FO 13.04% vs. absent to 2.86% in the remaining years) and 

that Echinodermata (a.s. = 1.17) was an important food resource in 2015 and 2019-2020 

(%FO varying from 19.35% to 40.00% vs. 3.45% to 15.79% in the remaining years) 

(Figs. 7 and 8). Axis 3 (10.80% d.v.) and 4 (7.81% d.v.) confirmed the food trends 

revealed in Axes 1 and 2, confirming the importance of Gastropoda (a.s. = 0.33) in 

green turtle diet from 2016 to 2020, and revealing the exclusive consumption of Insecta 

(a.s. = 0.33) in 2017 and 2019-2020 (%FO varying from 2.86% to 6.45%) (Figs. 7 and 

8). Axis 4 revealed the exclusive consumption of Perciformes (a.s. = –0.48) in 2016 

(%FO 8.70%), 2019 (6.45%) and 2020 (5.71%), and of Clupeiformes (a.s. = 0.22) in 

2015 (20.00%), 2019 (6.45%) and 2020 (5.71%) (Figs. 7 and 8). 

3.4. Influence of El Niño /La Niña on diet composition 

Considering the influence of El Niño/La Niña on low taxonomic diet analysis 

(whole sample; n = 351; 2008–2020), 106 turtles were encountered during EN events 

(years of 2015, 2016, 2019), and 245 turtles during LN events (years of 2011, 2012, 

2013, 2014, 2017, 2018, 2020). A significant difference was found in diet composition 
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among climatic events considering all the sampling years (2008–2020) (PERMOVA, 

F-value3 = 1.6350; p-value = < 0.0479) (Table 3). 

The positive portion of Axis 1 was related to the exclusive consumption of 

debris (%FO = 100%) in 2008 during moderate La Niña event (a.s. = 1.61) (Fig. 3). 

Axis 2 (19.09% d.v.) highlighted seasonal trends in food consumption, revealing the 

exploitation of Hydrozoa (a.s. = -0.61), Crustacea (a.s. = -0.46), Chlorophyta 

(a.s. = -0.44) and Mollusca (a.s. = -0.28) mainly during weak and strong LN episodes 

(Fig. 3). In these periods, %FO of Hydrozoa in green turtle diet varied from 17.50% to 

18.18% (vs. 6.25% to 13.87% in remaining periods), of Crustacea from 5.00% to 

18.18% (vs. 4.88% to 12.14%), of Chlorophyta from 22.50% to 36.36% (vs. 14.63% to 

35.84%), and of Mollusca from 47.50% to 54.55% (vs. 21.88 to 47.40%) (Fig. 4). Axis 

2 also highlighted the consumption of Ochrophyta (a.s. = 0.75), Bryozoa (a.s. = 0.44), 

and Rhodophyta (a.s. = 0.39) not only in moderate LN periods but also during moderate 

and strong EN episodes (Fig. 3). During these periods, %FO of Ochrophyta varied from 

27.75% to 43.90% (vs. 12.12% to 12.50% in the remaining periods), of Bryozoa from 

7.32% to 25.00% (vs. absent to 12.12%), and of Rhodophyta from 25.00% to 49.13% 

(vs. 30.00% to 48.48%) (Fig. 4). Axes 3 (9.50% d.v.) and 4 (0.07% d.v.) revealed food 

categories complementary to those highlighted in Axis 1, however, without clear 

seasonal trends (Fig. 3). Axis 3 was negatively related to the consumption of 

Cyanobacteria (a.s. = -0.58), Echinodermata (a.s. = -0.31), and Crustacea (a.s. = -0.29) 

during periods of moderate EN and weak to moderate LN (Fig. 3). During these 

periods, %FO of Cyanobacteria varied from 2.50 to 12.50% (vs. absent to 12.12% in the 

remaining periods), of Echinodermata from 1.56% to 13.29% (vs. absent to 2.44%), and 

of Crustacea from 5.00% to 12.14% (vs. 4.88% to 18.18%) (Fig. 4). The negative 

portion of Axis 4 confirmed the consumption of Crustacea (a.s. = -0.36), Echinodermata 



 
 

      

     

    

   

        

      

     

    

    

  

    

 

 

        

   

    

     

    

      

    

        

       

      

   

      

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

15 

(a.s. = -0.34), and Bryozoa (a.s. = -0.26) during periods of moderate to strong EN 

(%FO 4.88%, 2.44% and 7.32%, respectively) and weak LN (%FO 5.00%, 7.50% and 

absent, respectively) to strong LN (%FO 18.18%, absent and 12.12%, respectively) 

(Fig. 4). And positive portion of Axis 4 confirmed the exploitation of Hydrozoa 

(a.s. = 0.29), Cyanobacteria (a.s. = 0.31), and Rhodophyta (a.s. = 0.36) during episodes 

of weak LN (%FO 17.50%, 2.50% and 30.00%, respectively) to moderate LN 

(%FO 13.87%, 5.78% and 49.13%, respectively) and moderate EN (%FO 6.25%, 

12.50% and 25.00%, respectively) to strong EN (%FO 2.44%, absent and 39.02%, 

respectively) (Figs. 3 and 4). 

3.5. Seasonal diet variation 

Although no significant seasonal difference was found by HTM regarding 

macroalgae consumption, only six species of macroalgae were encountered during 

summer (late wet) and spring (early wet), whereas in autumn (early dry) and winter (late 

dry) 49 taxa were found. The filamentous Cyanobacteria Lyngbya majuscula Harvey ex 

Gomont was found in digestive tracts of 17 turtles, only in winter (%W 79.77%) and 

autumn (20.23%). The green macroalga U. lactuca was found in green turtle digestive 

tracts throughout the year, with highest levels in spring (%W 65.72%) and Autumn 

(16.96%) seasons (Fig. 6). 

Concerning seasonal variation in food consumption by HTA, there was 

significant difference (PERMOVA, F3-value = 1.9586; p-value = 0.0292) (Table 5). 

According to axis 1, Bivalvia (a.s. = -0.98) and Gastropoda (a.s. = -0.89) were mainly 

consumed in autumn and spring (Fig. 7). For these categories, %FO varied from 

39.02% to 67.57% (vs. 30.00% to 34.09% in the remaining seasons), and from 39.02% 

to 45.95% (vs. 20.00% to 36.36%), respectively (Fig. 8). On the other hand, Hydrozoa 
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(a.s. = 0.95) were mainly ingested in summer (%FO 40.00%) and winter (31.71%), 

whereas debris (a.s. = 0.63) were mainly ingested in winter (88.64%) and summer 

(85.00%) (Fig. 7 and 8). Axis 2 (22.85% d.v.) confirmed the high consumption of 

Bivalvia (a.s. = –0.65) from autumn to spring, also revealing that Echinodermata 

(a.s. = 1.17) was an important food resource in all seasons (%FO varying from 15.00% 

to 22.73%) (Fig. 7 and 8). Axis 3 confirmed the importance of Gastropoda (a.s. = 0.33) 

in the diet of green turtles in autumn and revealed the exclusive consumption of Insecta 

(a.s. = 0.33) during the autumn (%FO 5.41%) and winter (4.55%) (Fig. 7 and 8). Axis 4 

confirmed the importance of Hydrozoa (a.s. = 0.42) and Gastropoda (a.s. = 0.36) in the 

diet of green turtles in spring, and revealed the consumption of Perciformes 

(a.s. = -0.48) mainly in the autumn and winter, with %FO varying from 10.81% to 

2.27%, respectively (vs. 2.44% and 5.00% in the remain seasons) (Fig. 7 and 8). 

4. DISCUSSION 

.. Green turtles found stranded along the Paraná coast are part of a mixed stock 

composed of individuals from more than 12 rookeries, which travel across different 

areas of the SWAO (Gonzalez-Carman et al. 2012; Naro Maciel et al. 2014; Savada et 

al. 2021). The present study provides one of the largest datasets on green turtle diet in 

the SWAO and underscores the substantial temporal in SWAO green turtle diet 

variability. Although prey densities were not measured in Paraná, it is likely that the 

observed temporal shifts in green turtle diet are likely responses to changing prey 

availabilities driven by large-scale environmental variability observed during the 13 

years of this study (2008–2020). We observed that green turtles presented a more 

diverse diet than in the previous studies (Guebert-Bartholo et al. 2011; Gama et al. 

2016) with higher consumption of invertebrates and fish, which is similar to findings 
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from Vélez-Rubio et al. (2016), Piovano et al. (2020), Quiñones et al. (2022), whose 

results showed high occurrences of invertebrate foods, including Cnidaria. Indeed, in 

our previous study (Gama et al. 2021), we verified that live green turtles intentionally 

captured in Paraná presented invertebrates as one of the most important prey items in 

their diet. These findings advance our knowledge of the population ecology of juveniles 

and opens the opportunity to in the future evaluate  ecological theories, such as 

understanding how density-dependence and competition can affect green turtle foraging 

decisions. 

The juveniles herein analyzed presented a mixed diet consisting almost 

exclusively of benthic prey, which is common among green turtles that forage in 

estuarine and bay areas, as found by Santos et al. (2015), and reviewed by Esteban et al. 

(2020). The omnivorous feeding habit of green turtles has been verified in several diet 

studies (Seminoff et al. 2006, Arthur et al. 2008, Cardona et al. 2009, Lemons et al. 

2011, Santos et al. 2015, Holloway-Adkins & Hanisak 2017, Gillis et al. 2020, Howell 

& Shaver 2021), but the wide range of forage items identified at the species level is 

unique in our study, and includes more than 90% taxa that have not been reported for 

the area before. Although Gama et al. (2016) identified a few prey items in our study 

region, our study benefited from further identification of macroalgae and invertebrate 

groups, as a result of including taxonomists for each group to identify prey. 

The invertebrates represented basically by Mollusca and the vertebrates 

represented by Teleostei were largely consumed by juveniles throughout our sampling 

analysis, and it may be related to their availability along the Paraná coast, as shown by 

Bumbeer et al. (2016) and Cattani et al. (2022), and to the individualized foraging 

preferences among green turtles that aggregate in the area. Further, Mollusca 

consumption may be related to the fact that in estuarine areas they may coexist with 
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macroalgae in the benthic habitat, as verified by Santos et al. (2015); this finding 

contrasts other studies in the SWAO that found only sporadic occurrence of mollusks in 

green turtle diets (Morais et al. 2012, Vélez-Rubio et al. 2015). Live green turtles along 

the Paraná coast foraged mostly on invertebrates, highlighting the unique dietary 

tendencies for the species in this estuarine complex (Gama et al. 2021). Nevertheless, 

we did not identify any gelatinous zooplankton in green turtle digestive tracts, as has 

been reported in other green turtle diet studies (Burkholder et al. 2011, Santos et al. 

2015, Vélez-Rubio et al. 2016, Gama et al. 2021, Stubbs et al. 2022). This is likely due 

to this prey type’s rapid digestion (González-Carman et al. 2014, Hays et al. 2018), 

which suggests gelatinous prey may be underrepresented in our study. 

With respect to anthropogenic influences on green turtle diet, our study indicates 

marine debris consumption across all years, with the greatestoccurrence from 2017 to 

2020, especially in 2018; these are mostly La Niña years (CPTEC 2016) that presented 

low temperature and low rainfall rates (appendices Fig. 1). However, the occurrence of 

debris was high and similar when comparing the winter (FO% = 88.64), which is the 

low rain season, and the summer (FO% = 85.00), which is the high rain season. Because 

of that it is important to mention that other oceanographic, physical, and geographic 

factors may be responsible for higher debris concentrations in the estuarine area of PEC 

(Krelling & Turra 2019) and they should be measured in future studies to better address 

debris availability and ingestion by fauna in this area. For instance, extensive dredging 

was conducted along the PEC in 2018, which moved sediments and sheltered materials 

from the sea bottom (Soares et al. 2022). This process might re-mobilize debris, making 

them more available to be ingested by the marine fauna. 

Moreover, debris consumption by green turtles may occur during their 

recruitment to the coast (Vélez-Rubio et al. 2018b) and reflect its high availability in the 
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foraging area (Schuyler et al. 2014). Debris ingestion is considered a major threat to 

green turtle conservation status and health condition, as it can cause digestive tract 

obstruction and tissue injury, leading to starvation and death (Di Beneditto & Awabdi 

2014, Domiciano et al. 2019). We thus recommend further evaluation of the relationship 

between diet and the presence of debris to clarify the severity of this problem and 

inform management plans that promote habitat quality and the conservation of green 

turtles in the SWAO. 

4.1.Seasonal variability 

Macroalgae consumption varied among seasons, which is perhaps related to 

temporal fluctuations in relative availability for different taxa in the area (Pellizzari et 

al. 2014). In autumn and winter, macroalgae dietary diversity among green turtles was 

higher than in spring and summer, with diet samples from the latter season only 

revealing six species of macroalgae being consumed. This is consistent with findings by 

Pellizzari et al. (2014) that reported higher species richness and higher biomass along 

the Paraná coast in winter versus summer. Lower macroalgae species richness in diet 

samples may be related to higher water turbidity from sedimentation introduced via 

coastal runoff in summer, which decreases the photic zone in coastal waters, thus 

reducing rates of photosynthesis and inhibiting macroalgae growth (Júnior et al. 1991, 

Bezerra & Marinho-Soriano 2010). 

With respect to animal matter consumption, the highest consumption of 

invertebrate prey and fishes occurred during the autumn and winter, which is probably 

related to the fact that the energy intake obtained from this food source may be 

advantageous compared to vegetal prey, which improves the turtle’s metabolism during 

these seasons (Bjorndal 1980, Brand-Gardner et al. 1999). It is important to consider 
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that both the dietary transit times and the turtle metabolism are slower in lower 

temperatures, as shown by González-Paredes et al. (2021), which may have influenced 

the higher occurrence of undigested invertebrates found in this study. Despite that, 

invertebrates such as Mollusca and Hydrozoa were consumed in every season, and this 

pattern may be related to the prey species’ presence throughout the year in some islands 

along the Paraná coast (Bumbeer et al. 2016), making them available for consumption 

in all seasons. Furthermore, it is important to consider that the absorption of nutrients 

from these prey items is higher when compared to the plant matter prey, as both the 

intake passage time and the digestion are faster (Amorocho & Reina 2008). However, as 

shown by Quiñones et al. (2022), it is possible that some of the juveniles herein 

analyzed do not present the gut specialization to digest vegetal matter items, consuming 

more animal origin prey items afterwards. Also, as verified by Meylan et al. (2020), 

turtles may adapt to changes in prey availability, which impacts foraging effort and 

areas, and perhaps survival. It is worth mentioning that some of the turtles foraging in 

this area may be both recent recruits that were previously foraging in higher latitudes, as 

shown by Gama et al. (2021). 

Even though fishes and cephalopods were found ingested by green turtles and are a 

good energy source, we did not evaluate foraging strategies, and some items might be 

caught dead or moribund. Some fishes predated by turtles are cited as a bycatch of 

trawlers fisheries (Cattani et al., 2011), which occurs in the Paraná state and adjacent 

coastal areas throughout the year. Moreover, floating dead squids may be consumed by 

green turtles because of their scavenging foraging behavior as shown by Morais et al. 

(2012) and Vélez-Rubio et al. (2015). However, this information is speculative, and 

future studies focusing on prey-predator strategies can be conducted to clarify this 

ecological point. 
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4.2.Annual diet variability 

Clear annual trends were observed, considering the dietary shift from Bivalvia 

and Gastropoda in the first years to Hydrozoa in the last couple years of our analysis, 

despite the constant consumption of Mollusca over the years. In terms of macroalgae 

consumption, the continuous consumption of Rhodophyta and Chlorophyta reinforces 

them as key dietary items for green turtles in the SWAO (Reisser et al. 2013, Santos et 

al. 2015, Vélez-Rubio et al. 2016). 

Green turtle dietary shifts observed during this study (2008 to 2020) are likely 

related to the climatic variation resulting from the onset of El Niño events, probably to 

the high rainfall rates that are expected for this event. Rainfall dynamics have been 

known to flush some floating algae species, such as the S. cymosum from estuary sites 

to nearby open coasts (Witherington et al. 2012). In particular, higher consumption of 

Ochrophyta (especially S. cymosum) in our study may be resulting from these changes 

during EN events in 2015, 2016, and 2019. As found elsewhere (Hawkes et al. 2009, 

Esteban et al. 2020), climate events may lead to changes in sea surface temperature, in 

both diet and food resource availability, driving changes in habitat use, behavior, and 

exposure to threats. Indeed, climate change affects marine herbivores mostly because of 

their vulnerability to temperature changes, but may also disrupt trophic chains in the 

marine ecosystem, as observed by Hu et al. (2022). 

5. CONCLUSIONS 

Our results highlight the importance of the estuarine and bay areas of Paraná 

state as habitats for juvenile green turtle foraging and development. This is reinforced 

not only by the diversity of food items consumed across years, seasons, and climate 

events, but also by green turtles’ capacity to be resilient to these changes with 
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528 individualized and adaptive foraging selection. Nevertheless, it is important to use  

caution when evaluating those changes, as they may represent a higher exposure to 

impacted foraging grounds and conservation risks. Although most of our study group is  

composed of individuals in a good body condition, we cannot say their diet reflects the  

items consumed only by healthy individuals that use Paraná coast due to the fact that no 

necropsy analyses were included to look at overall health prior to death. Additionally, 

the only diet data of live green turtles in Paraná are based on stable isotopic analysis  

(Gama et al. 2021) and this is similar to our findings, which showed invertebrates and 

green algae as the most consumed and important prey items.  Despite the punctual  

information available (Gonzalez Carman et al. 2014 ; Fuentes et al. 2020), species  

resilience may be enhanced by the fact that many turtles remain in this foraging area  

and use different habitats within the Paraná, including islands, rocky shores, meadows, 

and mangroves. Thus, delimitating diet changes across the years and how the species  

responds to climate variability helps decipher the species foraging intake throughout  

time and individual variability in terms of habitat use and exposition to threats. This  

helps delimitate food resources changes and track the impacts over both the foraging 

habitat and the species itself. Hence, this study contains data that may help to delimitate  

areas to be protected and managed in the SWAO, besides to inform and prioritize  

further conservation actions based on the distribution of foraging resources used by the  

species.  
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Tables  

Table 1 : Frequency of occurrence (%FO) and weight ( %W) of High taxonomic  

macroalgae (HTM) species registered in digestive tract (DT) contents of  juvenile green 

turtles  Chelonia mydas  (n = 148) collected dead-stranded along the Paraná coast from   

2008–2014 and 2017–2018. n.d.= the value did not reach the minimum accuracy scale.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxa   Author  N of  %FO  %W 
 DT 

 CHLOROPHYTA     

  Caulerpa sp.   2  1.351  n.d. 
 Chaetomorpha aerea  (Dillwyn) 

 Kützing 
 5  3.378  0.008 
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Chaetomorpha antennina (Bory) 
Kützing 

2 1.351 n.d. 

Chaetomorpha sp. 1 0.675 n.d. 
Cladophora catenata 
Cladophora vagabunda 

Kutzing 
(Linnaeus) 
Hoek 

1 
7 

0.675 
4.729 

n.d. 
0.036 

Cladophora sp. 
Cladophoropsis membranacea (Hofman 

Bang ex C. 

6 
1 

4.054 
0.675 

0.016 
n.d. 

Agardh) 
Rhizoclonium sp. 
Ulva cf. chaetomorphoides (Børgesen) 

H.S.Hayden, 

6 
1 

4.054 
0.675 

0.010 
n.d. 

Blomster, 
Maggs, 
P.C.Silva, 
Stanhope 
andWaaland 

Ulva fasciata Delile 1 0.675 n.d. 
Ulva flexuosa Wulfen 1 0.675 n.d. 
Ulva lactuca Linnaeus 68 45.94 58.920 
Willeella brachyclados (Montagne) 

M.J.Wynne 
1 0.675 n.d. 

Total 68 45.940 
OCHROPHYTA 

Chnoospora minima (Hering) 
Papenfuss 

4 2.702 n.d. 

Dictyota sp. 7 4.729 0.011 
Padina sp. 8 5.405 0.050 
Sargassum cymosum C. Agardh 60 40.540 2.400 
Total 60 40.540 
RHODOPHYTA 
Aglaothamnion uruguayense (W.R.Taylor) 

N.E.Aponte, 
1 0.675 n.d. 

D.L.Ballantin 
e 
andJ.N.Norris 

Aglaothamnion sp. 
Amphiroa beauvoisii J.V.Lamourou 

x 

1 
1 

0.675 
0.675 

n.d. 
n.d. 

Asparagopsis taxiformis (Delile) 
Trevisan 

2 1.351 n.d. 

Bostrychia binderi Harvey 2 1.351 n.d. 
Bostrychia radicans (Montagne) 

Montagne 
1 0.675 n.d. 

Bostrychia sp. 4 2.702 0.001 
Bostrychia tenella (J.V.Lamouro 

ux) J.Agardh 
2 1.351 n.d. 

Caloglossa sp. 1 0.675 n.d. 
Ceramium sp. 
Chondracanthus sp. 

3 
1 

2.027 
0.675 

0.015 
n.d. 

Chondracantus teedei (Mertensex 3 2.027 0.005 
Roth) Kützing 

Chondria sp. 
Dipterosiphonia sp. 

1 
1 

0.675 
0.675 

n.d. 
n.d. 

Gelidium pusillum (Stackhouse) 
Le Jolis 

5 3.378 0.023 

Gelidium sp. 5 3.378 0.014 
Gracilaria domingensis (Kütz) Sond. 

Ex Dickie 
30 20.270 5.090 

Heterosiphonia crispella (C.Agardh) 
M.J.Wynne 

1 0.675 n.d. 

Heterosiphonia sp. 3 2.027 0.041 
Hypnea pseudomusciformis Nauer, 

Cassano 
8 5.405 0.020 

andM.C.Olive 
ira 

Hypnea sp. 8 5.405 0.015 
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Hypnea spinella 
Neosiphonia sp. 

(C.Agardh) 
Kützing 

4 

1 

2.094 

0.675 

0.007 

n.d. 
Plocamiums p. 
Polysiphonia howei Hollenberg in 

W.R. Taylor 

1 
1 

0.675 
0.675 

n.d. 
n.d. 

Polysiphonia sp. 
Pterocladiella sp. 

1 
2 

0.675 
1.351 

n.d. 
n.d. 

Pterosiphonia parasítica (Hudson) 
Falkenberg 

3 2.027 0.001 

Pterosiphonia pennata (C.Agardh) 
Sauvageau 

6 4.054 0.015 

Pterosiphonia sp. 1 0.675 n.d. 
Pyropia sp. 17 11.486 0.490 
Total 49 33.100 

951 

952 Table 2: Frequency of occurrence (%FO) of the taxonomic groups of invertebrates 

953 registered in digestive tract (DT) contents of juvenile green turtles (n = 142) collected 

954 dead-stranded along the Paraná coast from 2015 to 2020 by the High taxonomic animal 

955 (HTA). The most frequent species are in bold. 

956 
Taxon Number of digestive tracts Frequency of occurrence 

(%FO) 
Phylum Mollusca 96 67.60 
Gastropoda 50 35.21 
Acteocina lepta 1 0.70 
Acteocina sp. 1 0.70 
Family Architectonicidae 1 0.70 
Family Atlantidae 3 2.11 
Bittiolum varium 1 0.70 
Family Calyptraeidae 
Cavolinia sp. 

2 
7 

1.40 
4.92 

Cavolinia tridentata 1 0.70 
Family Cavolinidae 1 0.70 
Family Cerithiidae 1 0.70 
Cerithium cf. algicola 1 0.70 
Family Collumbelidae 9 6.33 
Costoanachis sertularium 2 1.40 
Costoanachis sp. 
Diacria sp. 

4 
2 

2.81 
1.40 

Diacria trispinosa 2 1.40 
Diodora sp. 1 0.70 
Family Epitoniidae 1 0.70 
Epitonium angulatum 1 0.70 
Epitonium sp. 1 0.70 
Eulithidium affine 1 0.70 
Heleobia australis 1 0.70 
Family Hipponicidae 1 0.70 
Melanella hypsela 1 0.70 
Mitrella cf. Moleculina 1 0.70 
Family Nassaridae 2 1.40 
Family Neritidae 1 0.70 
Neritina virginea/Vitta virginea 3 2.11 
Olivella sp. 2 1.40 
Family Olividae 2 1.40 
Parvanachis sp. 1 0.70 
Family Tateidae 1 0.70 
Turbonilla sp. 2 1.40 
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Family Turritelidae 1 0.70 
Bivalvia 62 43.66 
Anadara ovalis 2 1.40 
Anadara sp. 3 2.11 
Family Arcidae 1 0.70 
Brachidontes sp. 1 0.70 
Carditamera sp. 1 0.70 
Corbula sp. 5 2.92 
Family Corbulidae 1 0.70 
Crassatella riograndensis 1 0.70 
Crassostrea sp. 1 0.70 
Ctena cf.pectinella 1 0.70 
Ctena sp. 1 0.70 
Family Donacidae 1 0.70 
Family Mactridae 1 0.70 
Family Mytilidae 5 2.92 
Noetia bisulcate 2 1.40 
Nucula sp. 
Family Ostreidae 

4 
5 

2.81 
2.92 

Family Pectinidae 3 2.11 
Perna perna 1 0.70 
Semele nuculoides 3 2.11 
Strigilla sp. 3 2.11 
Cephalopoda 11 7.74 
Doryteuthis pleii 1 0.70 
Decapodiformes 2 1.40 
Octopodiformes 2 1.40 
Family Spirulidae 1 0.70 
Scaphopoda 2 1.40 
Phylum Bryozoa 
Phylum Hydrozoa 

5 
5 

2.92 
2.92 

Plumularioidea 1 0.70 
Crustacea 5 2.92 
Family Balanidae 1 0.70 
Balanomorpha 1 0.70 
Family Barleeiidae 1 0.70 
Cirripedia 4 2.81 
Decapoda 1 0.70 
Paguroidea 1 0.70 
Pleocyemata 1 0.70 
PhylumEchinodermata 4 2.81 
Echinoidea 1 0.70 
Insecta 4 2.81 
Pycnogonida 1 0.70 
Pterygota 1 0.70 
Coleoptera 2 1.40 
Coccinellidae 1 0.70 
Polychaeta 
PhylumChordata 

4 
20 

2.81 
14.08 

Teleostei 15 10.56 
Family Engraulidae 1 0.70 
Harengula clupeola 1 0.70 
Lycengraulis grossidens 1 0.70 
Pellona harroweri 1 0.70 
Ctenosciaena gracilicirrhus 2 1.40 
Isopisthus parvipinnis 2 1.40 
Micropogonias furnieri 2 1.40 
Paralonchurus brasiliensis 2 1.40 
Family Sciaenidae 2 1.40 
Stellifer brasiliensis 1 0.70 



 
 

  Stellifer rastrifer  2  1.40 
  Stellifer sp.  1  0.70 
  Raneya brasiliensis   1  0.70 

  

 

 

 

 

 Sources  Df  SS R²   F-value  p-value 
 Years  12   473.4 0.0719  2.1973  0.0001 

  Climatic events  3   88.1 0.0133  1.6350  0.0479 
  

Residual     335 6014.4 0.9146 
 Total    350 6575.8 1.0000 

  

 

 

 

 

 Sources  Df  SS R²   F-value  p-value 
 Year  8  36.4  0.1583  3.2422  0.0003 

 Season  3  2.6  0.0113  0.6190  0.7486 

Residual   136  191.3  0.8303   
  

 Total  147  230.4  1 

  

 

 

 

 

 Sources  Df  SS R²   F-value  p-value 
 Year  5  241.7  0.092  2.799  0.0003 

 Season  3  101.4  0.038  1.959  0.0292 

 Year:Season  10  170.8  0.065  0.989  0.4803 
  

Residual   123  2124.1  0.805 
 Total  141  2638.1  1 
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957 

958 Table 3 . Results from two-factor PERMANOVA (year + climatic event) for the low -

taxonomic resolution diet of all Paraná green turtles herein analyzed (n = 351). Df =  

degrees of freedom; SS = sum of squares; R² = pseudo-R². Values in bold indicate  

significant differences (α = 0.05).   

959 

960 

961 

962 

963 Table 4 . Results from two-factor PERMANOVA (year + season) regarding HTM (high 

taxonomic macroalgae species) identification and consumption by  Paraná green turtles  

(n = 148) from 2008 to 2014, 2017 – 2018. Df = degrees of freedom; SS = sum of  

squares; R² = pseudo-R². Values in bold indicate significant differences (α = 0.05).   

964 

965 

966 

967 

968 Table 5 . Results from two-factor PERMANOVA (year + season) regarding HTA (high 

taxonomic animal) identification and consumption by  Paraná green turtles (n = 142)  

from 2015 to 2020. Df = degrees of freedom; SS = sum of squares; R² = pseudo-R². 

Values in bold indicate significant differences (α = 0.05).   
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970 

971 

972 
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Figure 1. Map of the Paraná coast of Brazil, including the Paranaguá Estuarine 

Complex (PEC) and Guaratuba Bay, in south Brazil, where the beach surveys were 

performed, and dead-stranded green turtles were recovered. The lines colored in black 

represent the regular monitored area, whereas the ones in white represent the areas 

where monitoring occurred sporadically. 

974 

975 Figure 2: Frequency of occurrence (%FO) of all the prey items and debris found in the 
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976 digestive tracts of stranded juvenile green turtles Chelonia mydas (n = 351) in Paraná 

977 coast for all the study period (2008 to 2020). 

978 

979 
980 Figure 3: Principal Component Analysis (PCA) showing diet tendencies of green 
981 turtles Chelonia mydas (n = 351) in Paraná coast, south Brazil. Interannual diet 
982 tendencies (2008 to 2020) along axes 1 and 2 (A and C), and 3 and 4 (B and D). Diet 
983 tendencies by climatic events (EN = El Niño, LN = La Niña) along axes 1 and 2 (A and 
984 E) and 3 and 4 (B and F). 
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985 
986 Fig. 4: Bar-plots representing the frequency of occurrence (%FO) of the entire database 
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987 (LT) found in the digestive tracts of juvenile green turtles (n = 351) found dead-
988 stranded in Paraná coast, south Brazil, from 2008 to 2020. 

989 

990 

991 Figure 5: Principal Component Analysis (PCA) showing high taxonomic macroalgae 
992 (HTM) consumption tendencies of green turtles Chelonia mydas (n = 148) in Paraná 
993 coast, south Brazil. Interannual diet tendencies (2008 to 2014, 2017 and 2018) along 
994 axes 1 and 2 (A and C), and 3 and 4 (B and D). Diet tendencies by seasons along axes 1 
995 and 2 (A and E) and 3 and 4 (B and F). 
996 
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998 Fig. 6: Bar-plots representing the frequency of occurrence (%FO) of high taxonomic 
999 macroalgae (HTM) found in the digestive tracts of juvenile green turtles (n = 148) 

1000 found dead-stranded in Paraná coast, south Brazil, from 2008 to 2014; 2017 and 2018. 
1001 
1002 

1003 
1004 Figure 7: Principal Component Analysis (PCA) showing high taxonomic animal (HTA) 
1005 consumption tendencies of green turtles Chelonia mydas (n = 142) in Paraná coast, 
1006 south Brazil. Interannual diet tendencies (2015 to 2020) along axes 1 and 2 (A and C), 
1007 and 3 and 4 (B and D). Diet tendencies by seasons along axes 1 and 2 (A and E) and 3 
1008 and 4 (B and F). 
1009 
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50 

1011 
1012 
1013 
1014 

Fig. 8: Bar-plots representing the frequency of occurrence (%FO) of high taxonomic  
animal (HTA) found in the digestive tracts of juvenile green turtles (n  = 142) found  
dead-stranded in Paraná coast, south Brazil, from 2015 to 2020.  
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