NOAA Technical Memorandum NWS ER-84

A SEASONAL ANALYSIS OF THE PERFORMANCE OF THE PROBABILITY OF PRECIPITATION TYPE GUIDANCE SYSTEM

GEORGE J. MAGLARAS

National Weather Service Forecast Office Albany, New York

BARRY S. GOLDSMITH

National Weather Service Headquarters Office of Meteorology Silver Spring, Maryland

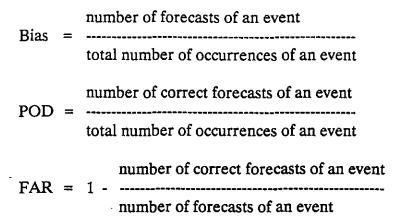
> Scientific Services Division Eastern Region Headquarters Bohemia, New York September, 1990

United States
Department of Commerce
Robert A. Mosbacher
Secretary

National Oceanic and Atmospheric Administration John A. Knauss Under Secretary National Weather Service Elbert W. Friday, Jr. Assistant Administrator

TABLE OF CONTENTS

		Page
1.	Introduction	1
2.	Results for the Nation	5
3.	Regional Results	9
	3.1 Eastern Region	9
	3.2 Southern Region	13
	3.3 Central Region	17
	3.4 Western Region	21
4.	Discussion	25
5.	5. Summary and Conclusions	
6.	Acknowledgments	26
7.	References	27


1. INTRODUCTION

The current probability of precipitation type (PoPT) system (Bocchieri and Maglaras, 1983) has been providing probability and categorical guidance for freezing precipitation (ZR), frozen precipitation (SNOW), and liquid precipitation (RAIN) to forecasters since 1982. It was developed by the Techniques Development Laboratory (TDL) by using the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972) as applied to output from the Limited-Area Fine-Mesh (LFM-II) model (Newell and Deaven, 1981). Past AFOS-era Verification (AEV) statistics (Dagostaro, 1985) for any given cool season (October-March) have indicated that the PoPT system provides useful guidance and performs very well, overall, especially for the SNOW category.

Maglaras (1986) stated that the equations used to produce the forecasts are biased towards winter time situations and can produce erroneous categorical forecasts of SNOW during the fall and spring. Although a single set of equations is valid for the entire period from September-May, most of the SNOW cases used for equation development occurred in winter (roughly December-March). Thus, the values of the predictor coefficients in the equations reflect the upper level to surface thermal relationships that occur during the winter. For example, given the same 850-mb temperature and cloud cover at a particular station on January 1 and April 1, the surface temperature on April 1 will be higher due to the higher sun elevation, longer day, warmer ground, etc., as long as intense convection is not present.

In order to confirm the statements in Maglaras (1986), verification data from approximately 200 conterminous United States stations for five cool seasons (1983-84 thru 1987-88) were examined. The stations used for this study are shown in Tables 1 and 2. The cool season stratification for this study was expanded to include the second half of September and all of April and May. In order to quantify the performance of the MOS PoPT system during the various times of the year, the data were stratified into three seasons: FALL (September 16-November 30), WINTER (December 1-March 15), and SPRING (March 16-May 31). The data were also grouped by the National Weather Service administrative regions of Eastern, Southern, Central and Western. Of course, the meteorological periods for FALL, WINTER and SPRING vary across the country, and are dependent upon station elevation, but these stratifications are representative of the nation on average.

As expected, the data revealed seasonal differences in the performance of the PoPT system, while interesting regional differences in the performance of ZR and SNOW forecasts also were noted. These differences will be discussed in the following sections, and some insights will be given as to what may have caused some of the variations. Verification data for projections of 18, 30, and 42 hours from both 0000 and 1200 UTC, and for all three seasons, are shown in Tables 3-5 for the entire nation. Tables 6-8, 9-11, 12-14, and 15-17 show verification data for stations in the Eastern, Southern, Central, and Western Regions, respectively. The data are presented in contingency table form with scores for bias, probability of detection (POD), and false alarm ratio (FAR) as defined by the following equations:

The primary objective of operational forecasters is to predict the occurrence of significant weather events such as snow and freezing rain. As a result, the POD will be the principal measure of accuracy used in this study. Also, since SNOW and ZR forecasts are the focus of this paper, not all of the scores for RAIN are included, and the RAIN category is not discussed.

Eastern Region		Burlington	VT
Hartford	CT	Charleston	WV WV
	CT CT	Huntington Bookley	WV
Bridgeport Washington	DC	Beckley Elkins	WV
Washington	DE	Likins	** *
Covington/Cincinnati	KŸ		
Boston	MA	Southern Region	
Baltimore	MD	Douthern Region	•
Portland	ME	Birmingham	AL
Bangor	ME	Huntsville	AL
Caribou	ME	Mobile	AL
Raleigh-Durham	NC	Montgomery	ΑĹ
Asheville	NC	Little Rock	AR
Greensoro	NC	Fort Smith	AR
Wilmington	NC	Tallahassee	FL
Charlotte	NC	Atlanta	GA
Cape Hatteras	NC	Macon	GA
Concord	NH	Augusta	GA
Atlantic City	NJ	Savannah	GA
Newark	NJ	Athens	GA
Albany	NY	New Orleans	LA
Binghamton	NY	Lake Charles	LA
Маѕѕепа	NY	Shreveport	LA
Buffalo	NY	Baton Rouge	LA
Rochester	NY	Jackson	MS
Syracuse	NY	Meridian	MS
New York-Laguardia	NY	Albuquerque	NM
New York-Kennedy	NY	Tucumcari	NM
Cleveland	OH OH	Farmington	NM
Columbus	OH	Truth or Consequences	NM OK
Youngstown Akron Canton	OH	Oklahoma City Tulsa	OK
Dayton	OH	Memphis	TN
Toledo	OH	Bristol	TN
Philadelphia Philadelphia	PA	Chattanooga	TN
Allentown	PA	Knoxville	ŤN
Harrisburg	PA	Nashville	TN
Scranton	PA	Dallas-Ft. Worth	TX
Williamsport	PA	Waco	TX
Atlantic City	PA	Abilene	TX
Pittsburgh	PA	Wichita Falls	TX
Bradford	PA	Lufkin	TX
Erie	PA	Lubbock	TX
Columbia	SC	Midland	TX
Greenville	SC	San Angelo	TX
Charleston	ŞC	El Paso	TX
Lynchburg	VA	Amarillo	TX
Norfolk	VA	San Antonio	TX
Richmond	VA	Houston	TX
Roanoke	VA VA	Austin	TX
Washington-Dulles	VA VA		
Wallops Island	VA		

Table 1. Station Used for the verification of the PoPT system from the Eastern and Southern Regions.

Central Region		Sioux Falls	SD
		Aberdeen	SD
Denver	CO	Huron	SD
Grand Junction	CO	Pierre	SD
Colorado Springs	CO	Rapid City	SD
Pueblo	CO	Madison	WI
Des Moines	IA	Green Bay	WI
Mason City	IA	La Crosse	WI
Sioux City	IA	Eau Claire	WI
Dubuque	IA	Milwaukee	WI
	IA		WY
Waterloo	IA	Lander Back Springs	
Peoria	IL	Rock Springs	WY
Moline	ΪL	Sheridan	WY
Springfield	ĪL	Casper	WY
Rockford	IL	Cheyenne	WY
Chicago-Ohare	IL		
Indianapolis	IN		
Fort Wayne	IN	Western Region	
South Bend	IN	H191	
Evansville	IN	Tuscon	AZ
Topeka	KS	Red Bluff	CA
Wichita	KS	Arcata	CA
Concordia	KS	Daggett	CA
Dodge City	KS	Boise	ID
Goodland	KS	Pocatello	ID
	KS		MT
Russell	VO	Great Falls	MT
Louisville	KY	Billings	MT
Lexington	KY	Helena	MT
Detroit	MI	Kalispell	MT
Flint	MI	Missoula	MT
Lansing	MI	Glasgow	MT
Muskegon	MI	Havre	MT
Sault Ste Marie	MI	Tonopah	NV
Traverse City	MI	Ely	NV
Houghton Lake	MI	Las Vegas	NV
Alpena	MI	Elko	NV
Grand Rapids	MI	Winnemuca	NV
Minneapolis	MN	Lovelock	NV
Duluth	MN	Portland	OR
International Falls	MN	Burns	OR
	MN		
Rochester		Pendleton	OR
St. Louis	MO	Eugene	OR
Columbia	MO	Medford	OR
Kansas City	MO	Redmond	OR
Springfield	MO	Salem_	OR
Bismarck	ND	North Bend	OR
Fargo	ND	Astoria	OR
Minot	ND	Salt Lake City	UT
Williston	ND	Bryce Canyon	UT
Omaha	NE	Cedar City	UT
Grand Island	NE	Seattle-Tacoma	WA
North Platte	NE	Spokane	WA
Scottsbluff	NE	Olympia	WA
Sectional	112	Yakima	WA
		Quillayute	WA

Table 2. Same as Table 1, except for the Central and Western Regions.

2. RESULTS FOR THE NATION

As Table 3 shows, there was no overforecasting of SNOW during FALL, with bias scores for the nation at or below 1.01. For WINTER, (Table 4) the bias was nearly perfect with values between 1.00-1.03. However, overforecasting did occur in SPRING. Table 5 indicates that bias scores were between 1.05-1.27, and the greatest amount of overforecasting occurred for the 1200 UTC cycle.

SNOW POD and FAR scores for WINTER were excellent. The POD was between 0.91-0.95, while the FAR was 0.10 or less. For FALL and SPRING, these scores were inferior by about 0.10. However, the FAR for SPRING was much worse (generally 0.10-0.20 higher than for FALL and WINTER). Most likely this was due to the overforecasting of SNOW.

The results for the ZR forecasts varied from season to season. The scores revealed considerable underforecasting for FALL (bias scores between 0.41-0.80), overforecasting during WINTER (most scores much higher than 1.00), and extreme underforecasting during SPRING (0.05-0.27).

The WINTER POD scores for ZR were between 0.24-0.35, while the FAR was 0.68-0.77. For FALL, these scores were worse, but slight accuracy for forecasting ZR was still noted. However, for SPRING, the PoPT system exhibited little accuracy for forecasting ZR. The POD scores for SPRING were 0.06 or less. However, the FAR was only slightly worse than during WINTER.

FALL SEASON

0000 UTC	1200 UTC
18-HR PROJECTION FORECAST	FORECAST
ZR SN RA TOT , ZR	SN RA TOT
O ZR 29 46 75 150 O ZR 47	61 97 205
B SN 17 1293 161 1471 B SN 65 S RA 16 147 5914 6077 S RA 18 TOT 62 1486 6150 7698 TOT 130	1173 149 1387
S RA 15 147 5914 507/ S RA 18	108 5815 5941
101 62 1486 6150 7698 101 130	1342 6061 /533
BIAS 0.41 1.01 1.01 BIAS 0.63	0.97 1.02
POD 0.19 0.88 POD 0.23	0.85
BIAS 0.41 1.01 1.01 BIAS 0.63 POD 0.19 0.88 POD 0.23 FAR 0.53 0.13 FAR 0.64	0.13
30-HR PROJECTION	
FORECAST	FORECAST
FORECAST ZR SN RA TOT ZR	SN RA TOT
O ZR 41 65 104 210 O ZR 29	52 76 157
B SN 68 1127 189 1384 B SN 50	1312 215 1577
S RA 27 148 5798 5973 S RA 35	163 5880 6078
O ZR 41 65 104 210 O ZR 29 B SN 68 1127 189 1384 B SN 50 S RA 27 148 5798 5973 S RA 35 TOT 136 1340 6091 7567 TOT 114	1527 6171 7812
DOD 0 20 0 21 DOD 0 19	0.97 1.02
BIAS 0.65 0.97 1.02 BIAS 0.73 POD 0.20 0.81 POD 0.18 FAR 0.70 0.16 FAR 0.75	0.14
1AK 0.70 0.10	0.14
42-HR PROJECTION	
	FORECAST
	SN RA TOT
O ZR 26 54 81 161 O ZR 36	E4 121 221
	1122 272 1485
	114 5830 5993
	1290 6233 7699
101 101 170	1270 0273 7073
	0.87 1.04
	0.76
FAR 0.76 0.15 FAR 0.80	0.13
· =	not calculated

Table 3. MOS PoPT verification contingency tables for the entire nation based on the five FALL (September 16 - November 30) seasons from 1983-1987. Data are included for the 18-, 30-, and 42-hr projections from the 0000 and 1200 UTC cycles, respectively.

WINTER SEASON

	0000 UTC			1200 UTC
		18-HR	PROJECTION	
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
O ZR 151	288 184	623	O ZR 265	279 210 754
	8457 288		B SN 317	8016 234 8567
S RA 126	396 5339	5861	S RA 238	365 5180 5783
				8660 5624 15104
DT10 0 77	1 00 0 00		DT10 1 00	1 01 0 07
	1.02 0.99		DIIID I.UJ	
	0.95		POD 0.35	
FAR 0.68	0.07		FAR 0.68	0.07
		30-HR	PROJECTION	
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
	289 230			271 161 614
	8018 293			8311 284 8884
	408 5140			562 4915 5789
TOT 833	8715 5663	15211	TOT 783	9144 5360 15287
D710 4 00	1 01 0 07		20 2716 4 00	
	1.01 0.97		DIAD I.ZU	
POD 0.32			POD 0.30	
FAR 0.71	0.08		FAR 0.77	0.09
		42-HR	PROJECTION	
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
O ZR 181	281 161	623	O ZR 262	285 205 752
B SN 281	8313 331	8925		7812 335 8566
	615 4918		S RA 416	495 4821 5732
	9209 5410		TOT 1097	8592 5361 15050
BIAS 1.20			BIAS 1.46	1.00 0.94
POD 0.29		115111	POD 0.35	0.91
FAR 0.76	0.10	-	FAR 0.76	0.09
			= r	not calculated

Table 4. Same as Table 3 except for the five WINTER (December 1 - March 15) seasons from 1983-84 through 1987-88.

SPRING SEASON

	0000 UTC			1200	UTC	
		18-HR	PROJECTION			
	FORECAST	20 1111		FORE	TA CIT	
		тот				mom.
ZR	SN RA	TOT	ZR	SN	RA	TOT
O ZR 3	55 90	140	O ZR 6	56	40	102
O ZR 3	067 105	140				
B SN 2	867 125	994	B SN 4			
	122 4944		S RA 9			
TOT 8	1044 5159	6211	TOT 19	1040	4998	6057
DT10 0 05	1 05 1 00		DT10 0 10		0 00	
	1.05 1.02		BIAS 0.19	1.1/	0.99	
	0.87		POD 0.06	0.88		
FAR 0.63	0.17		FAR 0.68	0.25		
		30-HR	PROJECTION			
	FORECAST			FORE	CAST	
ZR		TOT	ZR		RA	TOT
ZK	SN KA	101	2K	SIA	NA.	101
O ZR 4	50 46	100	O ZR 7	74	64	145
	750 144			831	87	924
S RA 19	177 4913	5109	S RA 11	271	4735	5017
				1176	4006	6006
TOT 27	977 5103	9101	101 24	11/6	4880	6086
BIAS 0.27	1.09 1.00		BIAS 0.17	1.27	0.97	
	0.84		POD 0.05			
	0.23		FAR 0.71			
FAR 0.85	0.23		FAR 0.71	0.29		
		42-HR	PROJECTION			
	FORECAST			FORE	CAST	
ZR	SN RA	TOT	ZR	SN	RA	TOT
0 70 4	61 06	151	0 70 3	F 2	40	06
	61 86					
		922				
	196 4861				4817	
TOT 14	1058 5067	6139	TOT 26	992	4976	5994
	1.15 1.00		BIAS 0.27			
	0.87		POD 0.03			
FAR 0.71	0.24		FAR 0.88	0.29		
			= 1	ot c	laula	50 +
			= 1	100 00	ricula	Leu

Table 5. Same as Table 3 except for the five SPRING (March 16 - May 31) seasons from 1984-1988.

3. REGIONAL RESULTS

In general, the regional results were similar to those of the nation. However, there were some interesting differences among the regions, which will be discussed in the following sub-sections.

3.1 EASTERN REGION

Tables 6-8 show results from the Eastern Region. The WINTER scores for SNOW and ZR generally followed the national trends with no substantial departures from the national averages. For SPRING, the overforecasting of SNOW was greater than for the other regions. Bias scores ranged from 1.14-1.46. This resulted in POD scores that were almost as good as the WINTER scores (0.86 or higher), but with relatively poor FAR values (0.21-0.39).

In addition to the lack of accuracy associated with forecasting ZR in SPRING, the PoPT system displayed little accuracy for forecasting ZR in FALL. POD scores for FALL were between 0.03-0.15, and the corresponding FAR values were 0.44-0.82.

EASTERN REGION FALL SEASON

	0000 UTC				1200	UTC	
		18-HR	PROJECTION				
	FORECAST				FORE	CAST	
ZR	SN RA	TOT		ZR	SN	RA	TOT
O ZR 5	12 28	45	O ZR	8	13	. 33	54
	200 55		O ZR B SN	4	175	31	210
			S RA	4	34	2118	2156
			TOT				
BIAC O 20	0.98 1.02		BIAS 0.	20	1 06	1 01	
	0.78		POD 0.	15	0 83	1.01	
	0.21		FAR 0.				
IM 0.44	0.21		TAK U.	30	0.21		
			PROJECTION		DODE	23.00	
70	FORECAST	тот		70	FORE		тот
ZK	SN RA	101		ZR	SN	RA	101
O ZR 6	15 33	54	O ZR	2	22	27	51
B SN 5	162 35	202	B SN S RA TOT	6	207	58	271
S RA 1	49 2107	2157	S RA	3	58	2071	2132
TOT 12	226 2175	2413	TOT	11	287	2156	2454
BIAS 0.22	1.12 1.01		BIAS 0. POD 0.	22	1.06	1.01	
POD 0.11	0.80		POD 0.	04	0.76		
FAR 0.50	0.28		FAR 0.				
		42-HR	PROJECTION				
	FORECACE				FORE	CAST	
ZR	SN RA	TOT		ZR		RA	TOT
O ZR 3	24 26	53	O 7P	2	12	11	5.0
B SN 5	193 69	267	O ZR B SN S RA	2	171	46	225
S RA 3	67 2070	2140	S RA	1	38	2140	2179
	284 2165						2462
101 11	201 2103	2400	101		221	2230	2402
	1.06 1.01		BIAS 0.				
	0.72		POD 0.				
FAR 0.73	0.32		FAR 0.	82	0.23		
				= r	not ca	alcula	ated

Table 6. Same as Table 3 except for the Eastern Region for the FALL season.

EASTERN REGION WINTER SEASON

	0000 UTC			1200 UTC	
		18-HR	PROJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA TO	T
O ZR 60	116 77	253	O ZR 68	98 82 24	8
B SN 45	2918 96	3059	B SN 93	2870 79 304	2
S RA 53	185 1944	2182	S RA 103	135 1719 195	7
TOT 158	3219 2117	5494	TOT 264	3103 1880 524	.7
BIAS 0.62	1.05 0.97		BIAS 1.06 POD 0.27 FAR 0.74	1.02 0.96	
POD 0.24	0.95		POD 0.27	0.94	
FAR 0.62	0.09		FAR 0.74	0.08	
		30-MD	PROJECTION		
	FORECAST			FORECAST	
2B	SN RA			SN RA TO	ነጥ
O ZR 73	101 79	253	O ZR 75	106 66 24	7
B SN 91	2883 88	3062	B SN 87	2918 67 307	72
S RA 102	159 1731	1992	S RA 131	282 1737 215	50
TOT 266	3143 1898	5307	TOT 293	3306 1870 546	9
BIAS 1.05	1.03 0.95		BIAS 1.19 POD 0.30	1.08 0.87	
POD 0.29	0.94		POD 0.30	0.95	
FAR 0.73	0.08		FAR 0.74	0.12	
		42-HR	PROJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA TO	T
O ZR 74	115 64	253	O ZR 80 B SN 154 S RA 148	98 70 24	18
B SN 73	2938 79	3090	B SN 154	2808 104 306	6
S RA 97	312 1761	2170	S RA 148	187 1616 195	51
TOT 244	3365 1904	5513	TOT 382	3093 1790 526	55
BIAS 0.96	1.09 0.88		BIAS 1.54	1.01 0.92	
POD 0.29	0.95		POD 0.32	0.92	
	0.13		FAR 0.79	0.09	
			= 1	not calculated	1

Table 7. Same as Table 3 except for the Eastern Region for the WINTER season.

EASTERN REGION SPRING SEASON

	0000 UTC			1200 UTC
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
	27 31	58		17 19 37
B SN 0			B SN 1	232 25 258
	41 1858	1899	S RA 1	83 1843 1927 332 1887 2222
TOT 0	328 1916	2244	TOT 3	332 1887 2222
BIAS 0.00	1.14 1.01			
POD 0.00			POD 0.03	
FAR 1.00	0.21		FAR 0.67	0.30
	FORECAST	30-HR	PROJECTION	FORECACE
		TOT		FORECAST SN RA TOT
ZK	SN KA	101	ZK	SN KA 101
				37 20 58
B SN 2				250 16 268
	77 1861			104 1772 1878
TOT 6	318 1912	2236	TOT 5	391 1808 2204
BIAS 0.16	1.23 0.99		BIAS 0.09	1.46 0.96
	0.86		POD 0.02	0.93
FAR 0.83	0.30		FAR 0.80	0.36
		42-HR	PROJECTION	
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
O ZR 2	30 31	63	O ZR 1	22 12 35
B SN 0	247 21	268		206 27 237
S RA 4	69 1841	1914	S RA 1	112 1818 1931
TOT 6	346 1893	2245	TOT 6	340 1857 2203
BIAS 0.10	1.29 0.99		BIAS 0.17	1.43 0.96
POD 0.03	0.92		POD 0.03	0.87
FAR 0.67	0.29		FAR 0.83	0.39
			= n	ot calculated

Table 8. Same as Table 3 except for the Eastern Region for the SPRING season.

3.2 SOUTHERN REGION

As Tables 9-11 reveal, the WINTER ZR forecasts were best in the Southern Region when compared to other regions. This occurred even though the Southern Region had only one-third the number of cases of ZR compared to the Central Region, which had the highest number of cases. The POD scores ranged from 0.39-0.51, while the FAR was from 0.57-0.76. Part of the reason for this success was that ZR was considerably overpredicted. With the exception of the 18-hr projection from 0000 UTC, the bias scores were much greater than 1.00. For FALL and SPRING, there were not enough cases of ZR to draw any conclusions.

WINTER SNOW forecasts were relatively poor for the Southern Region. SNOW was somewhat underforecast, with bias scores between 0.80-0.99. The POD scores were between 0.63-0.80; the FAR were 0.19-0.24. The small number of snow events in the Southern Region likely contributed greatly to the low scores. No conclusions can be drawn from FALL SNOW data since very few events (about 10 SNOW events per projection) were observed. In SPRING, the SNOW scores were only slightly worse than WINTER, but only about 20 SNOW events occurred per projection.

SOUTHERN REGION FALL SEASON

0000 UT	тс		1200 UTC	
	18-HR PROJ	ECTION		
FORECAS ZR SN	ST RA TOT	ZR	FORECAST SN RA	TOT
	RA 101	41	SN KA	101
O ZR O O		O ZR O	0 3	3
	4 10 977 981	B SN 0 S RA 0	5 4 0 949	9
TOT 0 10		TOT 0	5 956	
BIAS 0.00 1.00 1. POD 0.00 0.60 FAR 1.00 0.40		BIAS 0.00 POD 0.00 FAR 1.00	0.56	
	30-HR PROJ	IECTTON		
FORECAS		DOTION	FORECAST	
ZR SN	RA TOT	ZR		TOT
O ZR 0 0		O ZR O	0 1	1
B SN 0 5 S RA 1 0 9	4 9 955 956	B SN 0	7 4 7 984	
TOT 1 5 9	955 956 962 968	S RA 2 TOT 2	7 984 14 989	993 1005
				1000
BIAS 0.33 0.56 1 POD 0.00 0.56	.01	POD 0.00	1.27 1.00	
FAR 1.00 0.00		FAR 1.00	0.50	
	42-HR PROJ	ECTION		
FORECAS ZR SN	ST RA TOT	ZR	FORECAST SN RA	тот
ZIK DI	KA 101	ZR	SN KA	101
O ZR 0 1		O ZR 1	0 2	3
B SN 1 4 S RA 4 3 9		B SN 0 S RA 3	5 4 2 959	_
TOT 5 8 10			7 965	
BIAS 2.50 0.73 1	.00	BIAS 1.33	0.78 1.00	
POD 0.00 0.36		POD 0.33	0.56	
FAR 1.00 0.50 -		FAR 0.75	0.29	
		= r	ot calcula	ted

Table 9. Same as Table 3 except for the Southern Region for the FALL season.

SOUTHERN REGION WINTER SEASON

	0000 UTC		0000	1200 UTC
		18-HR	PROJECTION	
	FORECAST		DEROI -	FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
O ZR 33	27 19	79	O ZR 56	19 35 110
B SN 29	278 42	349	B SN 44	239 24 307
S RA 15	40 1438	1493		37 1527 1606
TOT 77	345 1499	1921	TOT 142	295 1586 2023
BIAS 0.97	0.99 1.00		BIAS 1.29 (POD 0.51 (0.96 0.99
			POD 0.51 (0.78
FAR 0.57	0.19		FAR 0.61 (0.19
		30-HR	PROJECTION	
	FORECAST	910		FORECAST
ZR	SN RA	TOT		SN RA TOT
O ZR 47	17 46			27 20 79
B SN 64	216 29	309	B SN 51	256 42 349
S RA 47	40 1509	1596	S RA 52	51 1381 1484
TOT 158	273 1584	2015	TOT 135	334 1443 1912
			BIAS 1.71 (
			POD 0.41 (
FAR 0.70	0.21		FAR 0.76 (0.23
		42-HR	PROJECTION	
	FORECAST			FORECAST
ZR		TOT		SN RA TOT
	25 23			15 48 110
B SN 50	236 63	349		194 50 310
S RA 28	50 1405	1483	S RA 68	39 1482 1589
TOT 109	311 1491	1911		248 1580 2009
			BIAS 1.65 (
POD 0.39	0.68		POD 0.43 (
FAR 0.72	0.24		FAR 0.74 (0.22
			= no	ot calculated

Table 10. Same as Table 3 except for the Southern Region for the WINTER season.

SOUTHERN REGION SPRING SEASON

	0000 UTC			1200 UTC	
			PROJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA TO	r
O ZR O	0 5	5	O ZR O B SN O	1 0	1.
B SN 0	14 6	20	B SN 0	16 7 23	3
S RA 0	4 657	661	S RA 1	4 567 57	2
TOT 0	18 668	686	S RA 1 TOT 1	21 574 59	6
BIAS 0.00	0.90 1.01		BIAS 1.00 POD 0.00 FAR 1.00	0.91 1.00	
POD 0.00	0.70		POD 0.00	0.70	
FAR 1.00	0.22		FAR 1.00	0.24	
			PROJECTION	Toppos on	
	FORECAST	mom.		FORECAST	_
ZR	SN RA	TOT	ZR	SN RA TO	I.
O ZR O	1 0	1	O ZR O B SN O	0 5	5
B SN O	16 7	23	B SN 0	17 3 20	0
S RA 0	3 578	581	S RA 0	13 633 640	6
TOT 0	20 585	605	TOT 0	30 641 67	1.
BIAS 0.00	0.87 1.01		BIAS 0.00 POD 0.00 FAR 1.00	1.50 0.99	
POD 0.00	0.70		POD 0.00	0.85	
FAR 1.00	0.20		FAR 1.00	0.43	
		42-HR	PROJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA TO	r
O ZR O	0 6	6	O ZR 0	0 1 :	1
B SN 0	12 8	20	B SN 0	16 6 23	2
S RA 0	3 646	649	S RA 1	3 567 57	1
TOT 0	15 660	675	O ZR 0 B SN 0 S RA 1 TOT 1	19 574 59	4
BIAS 0.00	0.75 1.02		BIAS 1.00 POD 0.00 FAR 1.00	0.86 1.01	
POD 0.00	0.60		POD 0.00	0.73	
FAR 1.00	0.20		FAR 1.00	0.16	
					

Table 11. Same as Table 3 except for the Southern Region for the SPRING season.

---- = not calculated

3.3 CENTRAL REGION

Tables 12-14 show the results from the Central Region. In general, the PoPT system exhibited the best scores in the Central Region for all seasons. For WINTER, the SNOW forecasts were excellent since virtually no bias existed, the POD values approached 1.00, and the FAR values approached zero. The large number of SNOW and ZR cases undoubtedly contributed to the high scores. In fact, for the Central Region, SNOW accounted for about 80% of the precipitation cases during WINTER.

SNOW forecasts for FALL and SPRING were about equal to each other in accuracy, and only slightly worse than for WINTER. In fact, the SNOW forecasts for FALL and SPRING in the Central Region were as good as, or better than WINTER forecasts of SNOW in the Western Region, and much better than the SNOW forecasts in the Southern Region. For SPRING, SNOW was overforecast (i.e., the bias scores were between 1.02-1.19), but not as much as for the Eastern Region.

The Central Region ZR forecasts for WINTER were almost as accurate as the Southern Region ZR forecasts. Also, similar to the Southern Region, ZR was greatly overforecast (bias values generally much greater than 1.00), and this was one reason for the relatively good POD scores. It is interesting to note that there was little, if any, reduction in the accuracy of the ZR forecasts during FALL, which was accomplished without the overforecasting that occurred during WINTER. It should be noted here that the accurate Central Region ZR scores for FALL were the primary reason the national ZR scores for FALL were respectable.

CENTRAL REGION FALL SEASON

0000	UTC		1200 UTC	
	18-HR	PROJECTION		
FORE	CAST		FORECAST	
	RA TOT	ZR		
O ZR 24 28	33 85	O ZR 39	40 48 127	
			742 78 879	
S RA 13 73			56 1907 1977	
TOT 51 868	2018 2937	TOT 112	838 2033 2983	
BIAS 0.60 1.02				
POD 0.28 0.91		POD 0.31		
FAR 0.53 0.12		FAR 0.65	0.11	
	30-HR	PROJECTION		
FORE	CAST		FORECAST	
ZR SN	RA TOT	ZR	SN RA TOT	
		O ZR 27		
		B SN 43		
S RA 23 78			69 1875 1974	
TOT 116 843	2054 3013	TOT 100	876 2010 2986	
BIAS 0.88 0.95	1.03	BIAS 1.15	0.95 1.02	
POD 0.26 0.81		POD 0.31	0.85	
FAR 0.71 0.15		FAR 0.73	0.11	
	42-HR	PROJECTION		
FORE			FORECAST	
ZR SN	RA TOT	ZR		
	41 88		38 68 139	
	117 926		723 149 952	
	1899 2001	S RA 45	58 1879 1982	
TOT 85 873	2057 3015	TOT 158	819 2096 3073	
BIAS 0.97 0.94		BIAS 1.14		
POD 0.26 0.84		POD 0.24		
FAR 0.73 0.11		FAR 0.79	0.12	
= not calculated				

Table 12. Same as Table 3 except for the Central Region for the FALL season.

CENTRAL REGION WINTER SEASON

0	000 UTC			1200 UTC
		10-HD	PROJECTION	
F	ODECACO			FORECAST
7.R	SN RN	ጥርጥ		SN RA TOT
	511 141	101	210	DN 101
O ZR 43	115 52	210	O ZR 127	138 50 315 4178 62 4363 136 772 990
B SN 64 4	293 78	4435	B SN 123	4178 62 4363
S RA 58	120 813	991	S RA 82	136 772 990
TOT 165 4	528 943	5636	TOT 332	4452 884 5668
DT16 6 70 4	22 2 25		DT3.0 4 AC	
BIAS 0.79 1	.02 0.95		BIAS 1.05 POD 0.40 FAR 0.62	1.02 0.89
POD 0.20 O	0.9/		POD 0.40	0.96
FAR 0.74 0	.05		FAR 0.62	0.06
		30-HR	PROJECTION	
	ORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
0 7D 111	142 66	220	0 70 62	108 37 207
B SN 139 4	178 85	4402	B SN 98	4192 R1 4371
S PA 100	145 753	998	S RA 120	166 687 973
TOT 350 4	466 904	5720	TOT 280	4192 81 4371 166 687 973 4466 805 5551
BIAS 1.09 1	.01 0.91		BIAS 1.35	1.02 0.83
POD 0.35 O	.95		POD 0.30	0.96
FAR 0.68 0	.06		BIAS 1.35 POD 0.30 FAR 0.78	0.06
		42_WD	PROJECTION	
म	ORECAST			FORECAST
ZR -	SN RA	тот	ZR	
	211		2	J., 141 101
				142 46 314
B SN 106 4	193 96	4395	B SN 177	4081 86 4344
S RA 151	167 660	978	S RA 180	188 611 979 4411 743 5637
TOT 317 4	468 797	5582	TOT 483	4411 743 5637
RTAS 1 52 1	.02 0 81		BTAC 1 54	1 02 0 76
POD 0.29 0	1.95		POD 0 40	0.94
FAR 0.23 0	0.06		BIAS 1.54 POD 0.40 FAR 0.74	0.07
IMC 0.01 0			11111 01/4	···

Table 13. Same as Table 3 except for the Central Region for the WINTER season.

---- = not calculated

CENTRAL REGION SPRING SEASON

0000	UTC		1200 UTC
	18-HI	R PROJECTION	
FOR	ECAST		FORECAST
	N RA TOT	ZR	
O ZR 3 23			31 14 50
	1 63 516		436 53 492
	2 1587 1642		88 1661 1756
TOT 8 526	5 1690 2224	TOT 15	555 1728 2298
BIAS 0.12 1.02		BIAS 0.30	
POD 0.05 0.87		POD 0.10	
FAR 0.63 0.14	1	FAR 0.67	0.21
	30-H	R PROJECTION	
FORI	ECAST	. IROULULION	FORECAST
ZR Si		ZR	
	5 22 50	O ZR 6	
		B SN 4	
		S RA 9	
TOT 21 534	4 1763 2318	TOT 19	566 1574 2159
BIAS 0.42 1.07	7 1.00	BIAS 0.30	1.19 0.97
POD 0.06 0.85	5	POD 0.10	0.90
FAR 0.86 0.20		FAR 0.68	
	42-H	R PROJECTION	
	ECAST		FORECAST
ZR SI	N RA TOT	ZR	SN RA TOT
O ZR 2 25			25 19 46
	67 474		395 61 461
	3 1540 1628	S RA 11	
TOT 8 514	4 1643 2165	TOT 18	526 1722 2266
BIAS 0.13 1.08		BIAS 0.39	
POD 0.03 0.86			0.86
FAR 0.75 0.2	l	FAR 0.89	0.25
		= no	ot calculated

Table 14. Same as Table 3 except for the Central Region for the SPRING season.

3.4 WESTERN REGION

In contrast to the Central Region, Tables 15-17 show that the Western Region scores were quite poor. For WINTER, the SNOW forecasts were better than the Southern Region, but worse than the Eastern and Central Regions. Also, the ZR forecasts were worse than for any other region. In particular, the ZR POD scores ranged from 0.11-0.20, and the FAR values were between 0.76-0.83. However, despite the lack of accuracy, little bias existed in the ZR forecasts.

Although this appears to paint a gloomy picture, the SNOW forecasts were still quite good: bias values were between .95-.99, POD ranged from 0.85-0.88, and FAR fell within 0.08-0.13. Interestingly, the SNOW scores for FALL were similar to the WINTER scores. Bias values for FALL ranged from 0.81-1.00, the POD fell within 0.75-0.90, and the FAR values were between 0.08-0.11. For SPRING, the SNOW scores were worse, especially the FAR. Bias scores for SPRING varied considerably between cycles, and from projection to projection, so the overforecasting of SNOW does not appear to be a systematic problem. ZR forecasts had little accuracy during FALL and SPRING.

WESTERN REGION FALL SEASON

000	0 UTC		1200 UTC
	18-HR ECAST N RA TOT	PROJECTION ZR	FORECAST SN RA TOT
S RA 2 2	6 13 19 0 36 356 9 949 980 5 998 1355	S RA 0	8 13 21 251 36 289 18 841 859 277 890 1169
BIAS 0.11 1.0 POD 0.00 0.9 FAR 1.00 0.1	0 1.02 0 0	BIAS 0.10 POD 0.00 FAR 1.00	0.87
	30-HR	PROJECTION	
	ECAST		FORECAST
ZR S	N RA TOT	ZR	SN RA TOT
O ZR 1	5 15 21	O ZR O	6 12 18
B SN 4 24	0 45 289	B SN 1	315 54 370
S RA 2 2	1 840 863	S RA 0	29 950 979
TOT 7 26	6 900 1173	TOT 1	350 1016 1367
BIAS 0.33 0.9	2 1.04	BIAS 0.06	0.95 1.04
POD 0.05 0.8		POD 0.00	0.85
FAR 0.86 0.1		FAR 1.00	0.10
FOR	42-HR ECAST	PROJECTION	FORECAST
	N RA TOT	ZR	
	5 13 18		4 17 21
	8 52 373		223 73 299
S RA 3 3			16 852 868
TOT 6 35	6 1010 1372	TOT 3	243 942 1188
BIAS 0.33 0.9		BIAS 0.14	
POD 0.00 0.8			0.75
FAR 1.00 0.1	1	FAR 1.00	0.08
		= r	not calculated

Table 15. Same as Table 3 except for the Western Region for the FALL season.

WESTERN REGION WINTER SEASON

	0000 UTC			1200 UTC
		18-HR	PROJECTION	
	FORECAST			FORECAST
ZR	SN RA	TOT	ZR	SN RA TOT
O ZR 15	30 36	81	O ZR 14	24 43 81
B SN 62	968 72	1102	B SN 57	729 69 855
S RA 0	51 1144	1195	S RA 11	57 1162 1230
TOT 77	1049 1252	2378	TOT 82	810 1274 2166
BIAS 0.95	0.95 1.05		BIAS 1.01 POD 0.17	0.95 1.04
POD 0.19	0.88		POD 0.17	0.85
FAR 0.81	0.08		FAR 0.83	0.10
		30-HR	PROJECTION	
	FORECAST			FORECAST
7.R	SN RA			SN RA TOT
				5N 1M 101
	28 39			30 38 81
			B SN 53	
S RA 19	64 1147	1230	S RA 9	63 1110 1182
TOT 59	833 1277	2169	TOT 75	1038 1242 2355
BIAS 0.73	0.97 1.04		BIAS 0.93 POD 0.16	0.95 1.05
POD 0.17	0.86		POD 0.16	0.87
FAR 0.76	0.11		FAR 0.83	0.09
		40 1770		
		42"HK	PROJECTION	
g D	FORECAST	mom	6.2	FORECAST
ZK	SN RA	TOT	ZR	SN RA TOT
O ZR 16	33 33	82	0 ZR 9	30 41 80
B SN 52	946 93	1091	B SN 22	729 95 846
S RA 11	86 1092	1189		81 1112 1213
	1065 1218	2362	TOT 51	840 1248 2139
BIAS 0.96	0.98 1.02		BIAS 0.64	0.99 1.03
	0.87		POD 0.11	0.86
FAR 0.80	0.11			0.13
			=)	not calculated

Table 16. Same as Table 3 except for the Western Region for the WINTER season.

WESTERN REGION SPRING SEASON

	0000 UTC			1200 UTC	
		18-HR PR	OJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA	TOT
	5 14		O ZR O		14
	142 29			101 16	
S RA 0	25 842	867	S RA 0	24 786	810
TOT 0	172 885	1057	TOT 0	132 809	941
	1.01 1.02		BIAS 0.00		
POD 0.00	0.83		POD 0.00	0.86	
FAR 1.00	0.17		FAR 1.00	0.23	
			O TROUTON		
	EODEGA CE		ROJECTION	HODEON CE	
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA	TOT
O ZR O	5 7		O ZR O	8 11	19
B SN 0	87 29	116	B SN 0	136 26	162
S RA 0	13 807	820	S RA 0	45 826	871
TOT 0	105 843	948	TOT 0	189 863	1052
BIAS 0.00	0.91 1.03		BIAS 0.00	1.17 0.99	
	0.75		POD 0.00		
	0.17		FAR 1.00		
1111 2100			1111 2.00	0.20	
		42-HR PR	ROJECTION		
	FORECAST			FORECAST	
ZR	SN RA	TOT	ZR	SN RA	TOT
O ZR O	6 13	19	O ZR O	6 8	14
	136 24	160	B SN 0	86 25	111
S RA 0				15 790	
			TOT 1		
BIAS 0.00	1.14 1.00		BIAS 0.07	0.96 1.02	
POD 0.00	0.85		POD 0.00	0.77	
FAR 1.00	0.26		FAR 1.00	0.20	
			= r	not calcula	ted

Table 17. Same as Table 3 except for the Western Region for the SPRING season.

4. DISCUSSION

One conclusion from this study is that the PoPT system had little accuracy in regard to forecasting ZR during SPRING. Also, except for the Central Region, there is little accuracy for forecasting ZR during FALL.

As expected, there appeared to be a tendency to overforecast SNOW during SPRING, especially in the Eastern and Central Regions, but not during the FALL. Perhaps the upper-level to surface thermal relationships during SPRING are sufficiently different from WINTER to produce overforecasting for the PoPT system, but not during the FALL? For example, in SPRING, the thermal relationships differ from WINTER as a result of higher sun elevation, greater length of day, and warmer ground. For FALL, it would appear that the sun elevation and day length could be similar enough to WINTER conditions so as not to play a significant role in changing the thermal relationships, and ground temperature alone does not appear to change the thermal relationships enough to produce a large bias in PoPT SNOW forecasts. However, the lack of accuracy at forecasting ZR during FALL and SPRING could indicate that seasonal differences influence the ZR forecasts in FALL and SPRING.

Surprisingly, the PoPT system was most accurate at forecasting ZR for the Southern Region during WINTER. As stated earlier, part of this superior performance was due to overforecasting. Another, and possibly more important, reason may be that the synoptic situation which produces persistent, widespread areas of ZR occurs throughout the Southern Region (Goldsmith, 1990). Cold air intrusions into the deep South are usually shallow domes of Polar or Arctic air with only a gentle slope to the frontal surface aloft. When these shallow cold air masses are overrun by middle and upper level moisture, often the result is widespread areas of ZR that sometimes last for days. Further north, across portions of the Central and Eastern Regions, the cold air is usually deeper with a greater slope to the the frontal surface aloft. Thus, SNOW is the major precipitation type in these areas. Here, ZR is usually a transition precipitation type along the boundary between RAIN and SNOW, and this boundary is usually being advected. As a result, in northern areas, the PoPT system may correctly forecast the occurrence of ZR during an entire event, but the short duration of the ZR makes verifying the specific time of the ZR forecast very difficult. As stated in previous sections, the Central Region was the only region where ZR forecasts did reasonably well during FALL. This may be because the synoptic pattern discussed before occurs during FALL throughout the Central Region and then shifts to the Southern Region by WINTER.

Of course, the regional and seasonal variations in accuracy for the PoPT SNOW forecasts are closely related to the number of cases of SNOW. The more cases of SNOW there were, the more accurate the PoPT system was. The most likely reason for this was that a large number of SNOW cases in the verification sample implied there were also a substantial number of cases in the data sample used to develop the equations. With any statistical forecast system, the number of cases in the developmental sample plays an important role in the accuracy of the forecasts. As a result, the PoPT system was the most ac-

curate at forecasting SNOW for the Central Region, followed by the Eastern, Western and Southern Regions. This relationship was true for all seasons, except for the FALL where the Western Region SNOW forecasts were better than for any other region.

5. SUMMARY AND CONCLUSIONS

Based on an analysis of 5 years of verification data stratified into the seasons of FALL, WINTER, and SPRING, and also stratified by the National Weather Service administrative regions of Eastern, Southern, Central and Western, several performance characteristics of the MOS PoPT forecast system were identified. These characteristics display both seasonal and regional variations.

The seasonal stratification revealed that there was a tendency to overforecast SNOW during the SPRING, but not during the FALL, Also, the PoPT system had little overall accuracy for forecasting ZR during the FALL and SPRING.

Regionally, the PoPT system performed the best for areas where SNOW and ZR occurred most frequently; thus, verification scores overall were best in the Central Region, followed by the Eastern, Western, and Southern Regions. However, there were some exceptions. ZR forecasts for the WINTER were best for the Southern Region, and SNOW forecasts for the FALL were best for the Western Region.

One final comment should be made here. The regional stratification of the verification data was based on administrative boundaries rather than on climatic zones. Many of the conclusions on the performance of the MOS PoPT system for a particular region may also apply to parts of another region as well. For example, stations in North and South Carolina are probably more similar to stations in the Southern Region than to stations in the northern half of the Eastern Region. Another example would be that, in terms of the relative frequency of snow, many stations in the Western Region along and east of the Cascade and Sierra Nevada mountain ranges are probably similar to stations in the Central Region.

6. ACKNOWLEDGMENTS

We would like to thank all the members of TDL who collect, archive, and quality control the vast quantity of MOS data and hourly surface observations. Without their dedicated work, this paper could not have been written.

7. REFERENCES

- Bocchieri, J. R., and G. J. Maglaras, 1983: An improved operational system for forecasting precipitation type. <u>Mon. Wea. Rev.</u>, 111, 405-419.
- Dagostaro, V. J., 1985: The national AFOS era verification processing system. <u>TDL Office</u> Note 85-9, National Weather Service, U.S. Department of Commerce, 47 pp.
- Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203-1211.
- Goldsmith, B. S., 1990: Verification of precipitation type and snow amount forecasts during the AFOS-era. NOAA Technical Memorandum NWS FCST-33, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 36 pp.
- Maglaras, G. J., 1986: How to use MOS guidance effectively PART I. <u>Eastern Region Technical Attachment 86-19(B)</u>, National Weather Service, U.S. Department of Commerce, 5 pp.
- Newell, J. E., and D. G. Deaven, 1981: The LFM-II Model-1980. NOAA Tech. Memorandum NWS NMC-66, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 20 pp.