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Executive Summary 

 

Select National Weather Service (NWS) forecast offices were given access to Probabilistic Hazard 

Information (PHI) forecast plumes, derived from machine learning algorithms, for evaluation 

during real-time severe weather events. Science and Operations Officers (SOOs), along with other 

operational meteorologists, provided feedback to the development team through Slack, online 

surveys, and Google Meets. Most feedback fell into two categories: 1) system performance during 

real-time events and any associated errors, and 2) the use of the data in operational decision making 

and communications with partners. Feedback regarding performance was weighted highly by the 

development team and was immediately addressed for overall improvements. The primary issue 

for system performance was regarding storm motion accuracy for new and developing convection. 

This was addressed through the addition of new calculation methods and a transition from the 13-

km Rapid Refresh (RAP) to the 3-km High-Resolution Rapid Refresh (HRRR).  

 

NWS forecasters provided examples on how PHI plumes supported operations and Impact-based 

Decision Support Services (IDSS). Probability trends were used to quantify evolving risks for 

partners, both visually and in text-based communication. PHI plumes provided additional 

confidence in warning decisions for tornadoes and severe weather. The plumes also assisted with 

warning polygon creation, both in regards to how large of a region to cover relative to the storm 

or line of storms, and the area covered by the downstream warning. Forecasters also reported that 

PHI plumes helped them determine whether to extend warnings or allow them to expire. 

 

Automated PHI plumes demonstrated overall skill in supporting warning and situational 

awareness. Severe PHI performed best at moderate to high probabilities (30–70%), while tornado 

PHI performed best at higher probabilities (≥50%). Both products exhibited some over forecasting, 

which forecasters found useful for anticipating storm evolution and supporting decision making. 

Case studies of Hurricane Beryl (July 2024) and the North Dakota supercell outbreak (June 2025) 

showed that PHI plumes generally aligned well with NWS warnings and tornado reports, providing 

early and consistent guidance for storm motion, warning issuance, and downstream 

communication. 

 

Looking ahead, goals include training field meteorologists on quality control procedures and 

probability calibration to build PHI expertise. Development is underway to provide access to an 

expanded archive of events and on-demand verification for specific time periods and regions. 

Additionally, initial testing is exploring PHI as a warning recommender within NWS software, 

integrating high-resolution numerical guidance from Warn-on-Forecast, and evaluating methods 

to visualize and communicate the watch-to-warning gap to partners. 
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1. Introduction 

Experiments in the NOAA Hazardous Weather Testbed (HWT) have shown that storm-based 

Probabilistic Hazard Information (PHI) can support forecasters in making more effective short-

term forecasts and warning decisions (e.g., Karstens et al. 2015, 2018; Calhoun et al. 2024). PHI 

integrates data from multiple platforms and algorithms to generate storm-based probabilities of 

individual hazards along with projected storm tracks (Fig. 1). Forecasters have used PHI to assess 

storm trends, improve situational awareness and confidence during operations, and guide severe 

thunderstorm and tornado warning decisions. In addition, PHI shows promise for increasing both 

consistency and accuracy of NWS warnings.  

 

HWT experiments have also demonstrated that PHI can help forecasters produce more reliable 

probabilistic forecasts with less false alarm area than human-generated forecasts (Karstens et al. 

2015). Forecasters also reported greater confidence in their warning decisions when supported by 

PHI guidance. At the same time, the probability threshold used for severe thunderstorm warning 

decisions has varied considerably depending on environmental factors, storm modes, and location 

(50-95%; Karstens et al. 2018). Feedback from emergency managers and other end-users of PHI 

data have highlighted a parallel need: while they preferred access to the additional lead time that 

PHI guidance provided, they still relied on deterministic warnings for specific protective actions, 

such as activating tornado sirens (Karstens et al. 2018).  

 

The 2014–2017 HWT PHI experiments used both initial and early development versions of the 

ProbSevere algorithm as a first guess of severe guidance (Cintineo et al. 2014, 2018). Other 

algorithms were tested to estimate tornado likelihood, but these did not directly generate outlines 

of hazard locations (also referred to as hazard objects) or probabilities like ProbSevere did for 

severe PHI. These algorithms required deeper forecaster interpretation and therefore saw limited 

use (Karstens et al. 2018). Beginning in 2021, however, the Tornado Probability Algorithm 

(TORP; Sandmæl et al. 2023) offered a direct first guess of tornado likelihood and location for 

individual storms. Because the algorithms for severe hazards and tornadoes each generated their 

own threat locations and probabilities, forecasters could compare initial probability values and 

make more informed decisions about PHI communication for Impact-Based Decision Support 

Services (IDSS) and warning issuance. In practice during more recent HWT experiments (2021-

2024), forecasters created PHI plumes for IDSS needs at lower thresholds, typically between 20–

50% for severe storms and 10–40% for tornadoes. As expected, warnings were issued at higher 

probability thresholds, though some overlap existed: tornado warnings were typically issued at 

25–60%, while severe thunderstorm warnings used thresholds of 40–75% (Berry et al. 2024; 

Calhoun et al. 2024). The consistently lower thresholds for tornadoes, for both warnings issuance 

and in communication, likely reflects a lower risk tolerance (or higher risk aversion) for missed 

tornado events, given their potential impact. 
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The communication of probabilistic risk has the advantage of quantifying the uncertainty of an 

event. End-users of weather information commonly understand that forecasts and weather 

warnings in particular come with some degree of uncertainty (Joslyn and Savelli 2010; Joslyn and 

LeClerc 2012; Kox et al. 2015). Additionally, while those making forecasts may often prefer to 

convey uncertainty using words (e.g. ‘likely’), users prefer numeric probabilities when making 

consequential decisions (Dhami and Mandel 2022) and probability information generally improves 

decision quality (Ripberger et al. 2022). One initial concern of early prototypes of PHI was the 

calibration of probabilities; PHI was initially fully human-derived and different forecasters often 

chose different probabilities for the same storm (Kuhlman et al. 2010). However, the development 

and incorporation of machine learning algorithms now provides an initial first guess for 

probabilities for the forecaster and spread between forecasters for the same case is much lower 

than during initial experiments without guidance.  

 

The goal of creating automated PHI is to provide meaningful quantification of hazard probabilities 

and help with more consistent communication as well as warning decisions. Additionally, storm-

based PHI is intended to help fill gaps between the watch and warnings as well as provide 

information for storms that may not meet full warning criteria.  

 

 
Figure 1: Automated severe PHI plume (yellow contours, every 20%) and NWS severe thunderstorm 

warnings (red polygons) for an isolated storm near Beatrice, Nebraska overlaid on 0.5° reflectivity from 

KUEX on 11 Aug 2023 in GibsonRidge software. 
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2. Data and Methods 

The creation of fully-automated PHI depends on multiple underlying algorithms as well as multiple 

quality control methods. Machine learning algorithms provide the basis for individual storm hazard 

probabilities, but these are not sufficient enough on their own to provide the consistent tracking 

and motion of real storms (e.g., Karstens et al. 2018). The combination of the methods described 

herein ideally provides consistent storm-scale guidance on severe and tornadic potential that is 

reliable across multiple storm environments. As this guidance is used by a growing number of 

forecasters across a wide range of cases, we receive feedback on examples where improvement is 

needed. This feedback loop is critical to improve overall performance across a wide range of storm 

environments and modes. 

Underlying Machine Learning Algorithms 

Severe PHI plumes use probabilities from ProbSevere version 3 (PSv3; Cintineo et al. 2024). This 

machine learning model uses a combination of data from multiple sources to provide holistic 

probabilistic guidance using a data fusion approach. Environmental information is sourced from 

the High-Resolution Rapid Refresh (HRRR; Dowel et al. 2022). The Multi-Radar Multi-Sensor 

(MRMS; Smith et al. 2016) system provides the radar-derived information, such as merged 

composite reflectivity, the Maximum Expected Size of Hail (MESH), and merged Azimuthal 

Shear (AzShear; Mahalik et al. 2017). Additionally, geostationary satellite data provides details 

on the satellite growth rate and intense convection probability (Cintineo et al. 2020). Lightning 

data and trends are included from both the Geostationary Lightning Mapper (Rudlosky and Virts 

2021) and Earth Networks Total Lightning Data (Zhu et al. 2022). The PSv3 model uses gradient 

boosted decision trees which uses sequentially trained decision trees to make a probabilistic 

prediction of each severe hazard (hail, thunderstorm wind, and tornado) as well as a merged 

probability of any severe occurring over the next hour. The automated severe PHI uses this merged 

probability as the initial probability for any severe PHI plume. 

 

Tornado probabilities are derived from the Tornado Probability Algorithm (TORP) developed by 

Sandmæl et al. (2023). Unlike ProbSevere which uses MRMS and a combination of other data 

sources, TORP is calculated using the 0.5° tilt from WSR-88D radar data and near-storm 

environmental information sampled from the Rapid Refresh model (RAP; Benjamin et al. 2016). 

TORP finds potential areas of rotation by first identifying locations with AzShear greater than 

0.006 s-1 and then sampling additional radar variables (including radial velocity, velocity spectrum 

width, horizontal and differential reflectivity, specific differential phase, correlation coefficient 

and the respective gradients of each) within 2.5 km of the AzShear detection. A random forest 

model is then used to calculate the probability of a tornado using both the radar and environmental 

properties. 
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Hazard Identification and Shape 

Output from the underlying machine algorithms is used to create hazard objects (or objects). These 

objects are polygons that outline the geographic area of potential severe storms or tornadoes. 

However, several additional post-processing steps are required to generate an automated PHI 

plume with the necessary stability for consistent communication. This is primarily due to the nature 

of hazard identification and tracking which often result in irregular shapes (particularly when 

tracked on reflectivity) and erratic behaviors. This was a recurring theme from forecaster feedback 

in HWT experiments and needed to be addressed. 

 

For severe PHI, the PSv3 detection based on MRMS composite reflectivity serves as the initial 

object. As mentioned, the use of reflectivity for hazard identification and tracking often results in 

irregular shapes. Thus, in order to apply uniformity and stability, a confidence interval is calculated 

surrounding the base object to fit an ellipse to it. This ensures that the ellipse remains aligned with 

PSv3 while adopting a more consistent shape. The elliptical shape minimizes significant variations 

in shape and size, which in turn affects PHI plume geographic coverage. However, inconsistencies 

across time steps can still impact the plume. For example, a notable issue with ProbSevere is track 

breakages, especially how it handles continuity along linear convective systems, such as when it 

segments one object into multiple along a line, then merges them again.  

 

Unlike severe PHI, the initial object from tornado PHI is derived from a point location associated 

with the peak AzShear value as detected by TORP. This is expanded to a 7.5 km radius to define 

a coverage area relative to the peak probability within the plume. This radius value was chosen 

through validation of both HWT forecaster-created tornado PHI plumes and practically perfect 

representations of PHI plumes from historical tornado paths by Gesell (2020). This expansion to 

7.5 km more accurately represented the risk area compared to smaller radii values due to a number 

of factors including: 1) addressing variations of the radar-location placement of the mesocyclone 

versus tornado damage paths, 2) resolving common tornado deviant-motion possibilities such as 

the occlusion process, and 3) adequately communicating the appropriate risk to those close to the 

tornado hazard.  

 

To reduce variability between time steps in terms of both object position and shape, smoothing is 

applied to the objects (ellipses for severe PHI and point locations for tornado PHI) due to 

inconsistencies in identification and tracking. This smoothing utilizes a moving average of 

previous time steps, which results in a spatial lag of the resultant ellipse or point location from the 

base object. To counteract this lag, a future projection interpolates the storm's position a specified 

number of minutes forward, based on the Quality Controlled (QC'd) storm motion (discussed 

later). 
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Storm Tracking and Motion 

Originally storm motion calculations relied on attributes from the underlying machine learning 

algorithms, but forecaster feedback from HWT experiments indicated that more accurate and 

consistent storm motions were needed (Karstens et al. 2018). To fully automate the system, without 

requiring forecasters to correct errors in real-time, improved quality control (QC) was necessary 

to address common issues such as poor initial motion estimates, offsets due to storm mergers, and 

other deviant motions. Refining storm motion QC has therefore been a central focus over the 

course of this project. The current QC approach is described below, with the rationale and timing 

of improvements discussed in the Results section.  

 

For the initial time steps of a severe object, an initial storm motion is determined through either 

using adjacent or overlapping severe objects (primary) or a blend of data from the HRRR 

(secondary). Using motion from adjacent or overlapping severe objects is helpful to avoid having 

new objects reset to HRRR motion when there is a more established motion estimate available 

from existing, longer-lived objects. When using HRRR data for an initial estimate, the Supercell 

Composite Parameter (SCP; Thompson et al. 2004) is approximated to rudimentarily distinguish 

between storm environments, which then dictates the field to be used. If the SCP is less than two, 

0-6 km mean motion is used; otherwise, if the SCP is two or greater, Bunkers Right (Bunkers et 

al. 2000) is used. We note that the use of SCP is a recent update and is still being refined to handle 

a range of storm environments. Possible changes might include integrating other fields in addition 

to SCP. 

 

Over subsequent time steps, the QC process gradually shifts from relying solely on this initial 

estimate (from either adjacent or overlapping severe objects or HRRR data) to using a centroid 

tracking approach. A weighted average is applied during this transition period to prevent large or 

erratic changes in storm motion. This phased approach facilitates a smooth transition between the 

storm motions while allowing sufficient time for centroid tracking to stabilize and become more 

dependable. The number of time steps for this transition varies by hazard type; severe objects 

require a larger number of time steps due to their longer average durations compared to tornado 

objects. This is also the justification for only using adjacent or overlapping severe objects, rather 

than tornado objects or both. 

 

Additional QC steps are performed to prevent abrupt changes in storm motion from one time step 

to the next, especially once transition occurs to centroid tracking. Storm motion is transformed 

into its zonal and meridional components and each undergoes both smoothing using a moving 

average over the entirety of its lifetime and through a three-stage filtering process. The first filter 

eliminates any data points that significantly deviate from previous data points. The second is a 

Savitzky-Golay filter which is applied to smooth data while maintaining trend information and 
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improving the signal-to-noise ratio. Finally, a Kalman filter is applied which minimizes variations 

between consecutive time steps. These additional QC steps are necessary due to the nature of 

centroid tracking and inherent limitations of the underlying algorithms. For example, if there are 

track breakages within ProbSevere, the centroid would drastically shift, falsely indicating 

movement of the storm in that direction. As a final control, if the storm motion exceeds 38.6 m s-1, 

it is capped at this value as an upper limit. This threshold was found to be an upper bound storm 

speed (above the 99.9th percentile) within both the severe and tornado PHI datasets. 

Domain Selection and Filtering Methods  

This demonstration utilizes a dynamic, data-driven domain to determine where PHI plumes are 

generated. The original design relied solely on a floater domain, repositioned daily to align with 

the highest categorical outlook in the SPC Day 1 Convective Outlook. This approach ensured that 

PHI products were focused on the most likely convective areas while mitigating computational 

constraints. However, feedback from participating offices highlighted the need for consistent and 

reliable data feeds within their regions, particularly when convective activity occurred outside the 

floater domain. To address this, default domains were established and tailored to partner regions. 

This was done first for Southern Region to cover participating offices and later expanded to Eastern 

and Central Regions (Fig. 2) with plans to extend to Western Region as offices join the 

demonstration. Within these default domains, severe PHI plumes are continuously generated to 

support operations. The domains for tornado PHI plumes remain repositioned each day (at 

approximately 0610 and 1640 UTC) according to the SPC outlook. Tornado PHI plumes are 

limited to detections from 10 WSR-88D radars within and surrounding the maximum risk area, 

consistent with processing constraints. When necessary, a floater domain is appended to ensure 

that any portion of the tornado domain lying outside the default severe domain is included. 

Automated PHI plumes are generated within the active domain every even minute. This yields a 

consistent update rate for a dataset that is derived from various underlying machine learning 

algorithms, each with their own update frequencies. To generate PHI, the first step is to search 

through all of the identified hazard objects to determine which objects are valid for each even 

minute mark of interest. 

 

A variable probability threshold is used for preparing PSv3 objects for PHI, which in turn affects 

automated severe PHI plume production. This threshold depends on server demands and is applied 

to ensure critical data are consistently being distributed, even during extreme cases of wide 

coverage or other machine limitations. The default PSv3 probability used to process severe objects 

is 5%. As demand on the computing system increases, this value can be increased to prevent long 

delays in processing of the real-time data. In very extreme cases, this may increase to above 30%, 

but thresholds of this magnitude are quite rare. 
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Figure 2: Example of PHI domains for both severe (yellow) and tornado (red, limited to 10 individual 

radars) on 29 July 2025. 

 

For tornado PHI, the underlying machine learning algorithm is single-radar based. Each radar has 

varying refresh cycles depending on the selected Volume Coverage Pattern (VCP), which leads to 

different update times for TORP objects. To mitigate discontinuities caused by these asynchronous 

updates, all TORP objects from the preceding eight minutes are selected and grouped by 

identification number. From this selection, only initial TORP detections and the latest detections 

from each group are retained, ensuring greater temporal consistency in plume generation. These 

objects are then processed through a series of QC filters designed to reduce false alarms. Some of 

these filters are described in more detail by Sandmæl et al. (2023), while others have been 

developed during the course of this demonstration in response to forecaster feedback to address 

common artifacts such as detections near wind farms. The filters are briefly described below in 

order of their application. 

 

First, a range filter is applied to remove tornado objects with probability values of 60% or below 

at distances farther than 160 km from the radar. Second, a near-radar filter is applied that aims to 

remove tornado objects from possible ground clutter detections within 30 km of the radar. To 

further reduce possible ground clutter or wind farm detections, an additional filter was recently 

incorporated, where objects are removed if TORP flagged them as matching with known wind-

farm locations and historical ground clutter locations. This is followed by a more aggressive 
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reflectivity filter than the initial 20-dBZ mask used 

when TORP makes detections; this filter includes 

the requirement that the reflectivity value of the 

object center is at least 30 dBZ for several of its first 

few detections while a tracked object has a short 

duration. Next, a base 30% probability is required 

for the QC feed of tornado PHI, based on 

verification of TORP algorithm performance in 

order to reduce false alarms due to additional radar 

artifacts. However, if a tornado object has reached 

this threshold in the past, it will continue to the next 

filter to help with continuity so that storm trends 

can be assessed. Finally, an overlap filter is applied 

to account for objects identified from different 

radars for the same circulation. In cases where there 

is 20% overlap or more between the 7.5 km radius 

objects, the object with the higher probability and 

longer duration is kept.  

 

Creation of Automated PHI Plumes 

PHI plumes are generated every even minute by 

using a combination of the underlying machine 

learning algorithms’ probability prediction, QC 

hazard position and shape, and QC storm motion 

estimates. For a given time step, each object found 

from the hazard object selection process (outlined 

in the Domain Selection and Filter Method section) 

is spatially interpolated to the even minute mark 

and then interpolated into the future at one-minute 

intervals using its respective properties for storm 

motion until the duration of the object is met (60 

min for severe; 30 min for tornado). A direction and 

speed uncertainty are applied to the object shape 

every minute, increasing the size of the object at 

each time step (Fig. 3a). The probability at each 

minute is extracted from the hazard trend line. For 

severe, this hazard trend line is created using a 

Figure 3: Steps illustrating PHI plume creation. (a) 

Example of object projection using speed and 

direction uncertainty. (b) Example of interpolation 

of TORP probabilities for tornado PHI at a single 
time step; Gaussian interpolation is used spatially 

and linear interpolation is used temporally (inset). 

(c) Example of a completed severe PHI plume using 
trend line (inset). Initial probability is from PSv3 

then a Gaussian interpolation is used in both time 
and space from center to edge of identified hazard 

object. 
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Gaussian filter to go from the PSv3 probability at the current time to 0% at 60 min (Fig. 3c, inset). 

For tornado PHI, the probability decreases linearly from the TORP probability to 0% at 30 min 

(Fig 3b, inset).  

 

To create spatial grids of probabilities for the object, the initial peak probability is set at the hazard 

object centroid at the first even minute mark. The spatial probabilities are calculated and gridded 

using a Gaussian filter to decrease the probability to 0% to the outer edge of the object. This 

process is repeated for the one-minute interpolated objects where the extracted probabilities are 

set to the hazard object centroid (Fig. 3b). These initial and one-minute grids are merged into a 

single grid where the maximum probability value is kept in the case of overlapping values. The 

resultant grid is then contoured, creating the PHI plume viewed by forecasters (Fig. 3c).  

 

PHI within GibsonRidge Software  

In addition to the Advanced Weather Interactive Processing System (AWIPS), NWS forecasters 

commonly use GibsonRidge 2 (GR2) Analyst software to interrogate WSR-88D radar data during 

warning operations (e.g., Boettcher et al. 2022). The PHI plumes are converted to placefiles (text 

files formatted specifically for GR2) that update every two minutes once loaded into the software. 

Several placefile feeds were created in order to provide a variety of visualization options. 

Forecasters can display PHI in dynamic loops or static snapshots, with options to customize plumes 

with or without shading as well as with merged or unmerged probability contours. A depiction of 

visualization options in GR2 using shaded and contoured tornado PHI and merged contours for 

severe PHI from a tornadic event over central Tennessee on 9 Dec 2023 is shown in Fig. 4. 

 

NWS Training and Feedback 

NWS forecasters participating in the demonstration were asked to provide feedback on the use and 

applicability of the PHI plumes within operations. Initial participants included only Science 

Operations Officers (SOOs) at limited NWS forecast offices in the NWS Southern Region; this 

was later expanded to include forecasters at offices throughout Southern, Eastern and Central 

Regions. All participants were given a ‘quick guide’ as reference to the key background 

information on PHI creation, quality control processes, and limitations of the data as well as details 

on how to load the data into the GR2 software. Additionally, multiple virtual seminars were given 

to forecasters throughout the demonstration period by the development team. These seminars 

provided detailed background on the creation of the probabilities and expanded on the information 

available within the quick guide. One of these seminars was provided through the Warning 

Decision Training Division Research to Operations and Operations to Research Webinar Series 
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(ROOTs); this webinar was recorded for future access by new participants (NWS Learning Office 

2025). 

 

In order to facilitate a wide array of feedback, feedback could be provided within a shared NWS-

NSSL Slack channel, directly via email, or within online surveys and semi-regular meetings 

between the development team and local offices. This multi-platform feedback was later 

deidentified and tabulated for content analysis by the development team. Emergent categorization 

of the data was completed to determine the coding themes (e.g., Krippendorff 2023) of the 

feedback we received from forecasters (i.e., ‘performance’, ‘feature requests’, ‘external decisions 

and communication’, and ‘training/understanding’). These themes will be discussed in the Results 

below. 

 

 

 
Figure 4: A screen capture of PHI plumes in GR2 from 9 December 2023 at 2237 UTC in central 

Tennessee. Severe and tornado PHI are shown as yellow contours and red shaded contours, respectively, 

with contours every 20% probability. Overlaid are NWS severe thunderstorm (yellow polygons) and 

tornado (magenta polygons) warnings on KOHX 0.5° reflectivity. 
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3. Results 

Content Analysis and Findings 

Roughly 60% of forecaster feedback addressed the performance of PHI plumes during specific 

weather events. Early in the project, performance issues were the primary theme and consisted of 

greater than 70% of the feedback, but the proportion of comments on this topic has declined as 

iterative development addressed many of the initial challenges. The feedback provides a clear 

picture of how forecasters perceived both the strengths and the limitations of severe and tornado 

PHI. These themes differed somewhat between severe and tornado PHI, reflecting differences in 

storm characteristics and algorithm behavior. 

 

 

For severe PHI, positive feedback most often highlighted:  

 

● Probability (~40% of positive severe comments) – Forecasters noted realistic and 

meaningful probability trends that provided confidence in decision making. 

“Another good performance…producing golf ball- to baseball-size hail…PHI 

fields were focused on the storms that verified.” 

 

● Coverage and identification (~30%) – Many comments pointed to good representation of 

threat areas and effective identification of objects. 

“PHI was good reinforcement of the highest risk along a broken line of storms” 

 

● Motion (~20%) – When motion was handled well, forecasters valued the reliability of 

storm tracks and used them to guide warning polygons. 

“We relied on the PHI plume to anticipate broader storm motion and drew a 

polygon that worked out really well.” 

 

● Overall strong performance (~5%) – Forecasters highlighted examples where the product 

as a whole performed well. 

“PHI Severe did a good job with storms in the Texas Hill Country yesterday 

evening…hail reports were well represented within the contours.” 
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Negative feedback for severe PHI related to: 

 

● Motion (~75% of negative severe comments) – The vast majority of complaints cited 

unreliable or unrealistic storm motion, especially early in the storm lifetime and with 

weaker or complex storms. 

"Watching storms in KS this morning saw this behavior with plumes directed 180 

degrees from the mean storm motion. It seemed to reoccur with new cells being 

identified on the tail end of the convection then losing them and reidentifying cells 

again."  

 

● Coverage (~10%) – Some forecasters described difficulty maintaining full coverage of 

linear systems or merging and splitting storms. 

“The convective mode morphed from supercellular to multicell to linear, and 

during this time, we [had] warnings on two cells… The PHI severe plume 

"bullseye" was directly between the two warnings. The northern cell was more of a 

wind threat; the southern was a hail threat.” 

 

● Probability (~10%) – A few comments suggested possible low biases in bowing segments 

or mesoscale convective systems in relation to severe wind. 

“Severe PHI [was] struggling with the MCS…it looks like it’s got a bit of a low 

bias.” 

 

● Other (~5%) – criticisms occasionally mentioned consistency and stability issues. 

 

 

Forecasters cited several strengths of the tornado PHI: 

 

● Probability (~40% of positive tornado comments) – Many described probability trends as 

meaningful and helpful in assessing evolving threats. 

“There have been a couple really good jumps in probabilities across Glades, 

Okeechobee, Martin, and St. Lucie counties corresponding with confirmed 

tornadoes.” 

 

● Identification (~30%) – Forecasters noted accurate placement of objects relative to radar 

rotation. 

“Tornado PHI seems to do a great job with the initial spin-up and intensification, 

and then identifies an apparent shift to a new mesocyclone on the western flank of 

the storm.” 
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● Continuity and Coverage (~20%) – Some mentioned smooth temporal behavior when 

detections were maintained and sufficient storm coverage in individual cases. 

“PHI Tor continued to perform well…the plumes seemed to have good continuity 

and contours did not disappear and reappear as in earlier events.” 

 

● Other (~10%) – Some comments noted additional strengths such as identifying the storm 

motion or handling complex or unique events correctly. 

“It held on to a rather persistent and stubborn bookend vortex that aided our 

warning decisions.” 

 

 

Limitations of the tornado PHI were more varied and consisted of: 

 

● Continuity and Coverage (~35% of negative tornado comments) – Many forecasters 

described dropped or shifting detections and gaps in linear or complex systems that 

undermined trust. 

“Tornado PHI struggling a bit this morning with our line of storms. A few times it 

had contours of 40 and 20 percent but disappeared, then re-appeared roughly in 

the same area.” 

 

● Storm motion (~30%) – Unrealistic or inconsistent motion estimates were a common 

frustration. 

“The plumes’ orientation were consistently more north than the actual circulation 

motion and polygons.” 

 

● Probability (~20%) – Concerns often centered on spurious detections, fluctuating values, 

or an apparent high bias. 

“I prefer it being a little hot…but not too hot where you discard it as being 

overdone.” 

 

● Identification (~15%) – Some pointed to false detections or missed signals. 

“False positives due to radar sampling issues in the terrain in NW Arkansas…but 

they were easy to resolve.” 
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In response to this feedback for both severe and tornado PHI, developers made coordinated 

improvements to both severe and tornado PHI storm motion attributes. Storm motion estimates 

initially relied on RAP guidance, which often misplaced storms across boundaries due to its coarser 

grid spacing (13 km). These were replaced with HRRR data with a finer grid spacing of 3 km. The 

switch to using HRRR data provided improvement over the RAP, but issues were still noted for 

different storm modes and left splits. To help address these issues, a SCP threshold was recently 

introduced to help distinguish between environments as described in the Data and Methods section 

above. Additionally, a grid of current severe storm motions derived from current longer-lived 

storms, which tend to be more stable and well defined, was created. This allowed newly identified 

objects, particularly tornado objects (shorter-lived) and those formed through splits or mergers, to 

inherit more realistic storm motion. 

 

Development has also addressed continuity and false detection challenges for tornado PHI. False 

detections were commonly attributed to side-lobe contamination (e.g., Boettcher and Bentley 

2022) or ground clutter from features such as wind farms. Side-lobe contamination is a known 

limitation of the TORP algorithm (Sandmæl et al. 2023), producing detections with artificially 

high probabilities and poor spatial accuracy and these remain difficult to fully address. Early 

versions of the QC filters removed all TORP detections beyond 160 km from radar, but feedback 

prompted an allowance for plume creation outside this range if other QC filters are not flagging 

the detections and object probability >60%. Similarly, all detections below 30% probability were 

initially discarded, but if an object had a history of exceeding that threshold, it was retained at all 

time steps to preserve continuity. Additional refinements targeted clutter from wind farms and 

persistent noise; a grid of long-term averages of reflectivity was created to filter out these spurious 

detections from the GR2 feed. 

 

Although limitations were a major focus of feedback, forecasters also highlighted strong 

performance cases, especially after QC improvements, illustrating the value of iterative 

development and refinement. Two events specifically mentioned by forecasters are examined in 

greater detail in the Case Study Performance and Analysis section below. 

 

The next most common area of feedback concerned how forecasters applied PHI guidance in their 

decision making and in communications with partners for IDSS. It was found that PHI information 

was used both to guide warning operations and to support downstream messaging. Several 

forecasters (nearly 10%) described instances where PHI directly supported challenging warning 

decisions. For example, one noted that PHI “helped immensely with a cell merger…that made 

ascertaining storm motion and polygon drawing difficult, so we relied on the PHI plume to 

anticipate storm motion and drew a polygon that worked out really well.” Another forecaster 

reported that PHI probabilities from TORP influenced escalation from a severe thunderstorm 

warning to a tornado warning: “we were evaluating whether to continue a SVR warning…[TORP] 
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started showing a signal…This caught our eye and we evaluated the circulation more…and saw 

the tightening and strengthening meso. This prompted us to issue a TOR.” 

 

Feedback also emphasized PHI’s role in partner communications. PHI plumes were used to 

provide more confident “downstream” information to emergency managers and other partners who 

were not yet within an active warning. One forecaster explained: “We’re pretty active in our 

NWSChat room…and partners outside of the warning are always asking if the warning will be 

‘extended’ downstream into their county/town. The PHI plumes allowed us to give them a data-

driven answer instead of relying 90% on forecaster intuition.” 

 

Finally, some forecasters described using PHI plumes to enhance messaging graphics, even in 

cases where a warning was not yet issued. As one participant noted: “Using the PHI plumes on a 

non-severe storm to help message potential risk. The values seemed reasonable, so we used them 

to create a quick meso-update graphic.” Together, these examples demonstrate that beyond 

algorithm performance, PHI influenced both operational decision making and external 

communications, providing forecasters with additional confidence and data-driven justification in 

both warning and IDSS contexts. 

 

Additional discussion included questions on how the domains were chosen, potential biases in the 

data, probability calculations, available training material, and the need for archive playback 

capability. Of these, archive playback was one of the most frequent requests, raised both during 

training seminars and within follow-up emails to the team. Forecasters emphasized that limited 

time during active warning operations prevented a thorough exploration of PHI, and that greater 

exposure to past cases would help build calibration and trust. In response, an archive system is 

currently under development with an initial rollout planned for testing. This system is described in 

more detail in the Recommendations and Ongoing Development section below.  

 

Performance Metrics of Automated Severe and Tornado PHI 

 

Evaluating performance metrics offer insights into the quality of PHI plumes, helping to determine 

if underlying algorithms are well-calibrated or require retraining, and informs best practices for 

operational forecasters. Performance is evaluated using methods similar to those described in 

Cintineo et al. (2024) and Sandmæl et al. (2023). The evaluation is performed for all dates between 

1 June 2023 to present. Reports were filtered based on severe criteria. For severe PHI, this 

consisted of hail (≥1”), thunderstorm wind (≥58 mph), and tornado reports. For tornado PHI, only 

tornado reports were used. Official metrics are calculated using NCEI Storm Data (NOAA 1950a). 

However, due to a publication latency of up to 90 days for certified reports in the Storm Data 
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database, any verification performed within the 90-day period (i.e., after 1 May 2025) utilizes SPC 

Storm Reports (NOAA 1950b) and is considered preliminary. Storm reports, despite known issues 

with reporting (e.g., Trapp et al. 2006, Allen and Tippett 2015, and Potvin et al. 2016), are used 

but limitations should be acknowledged. Future research could investigate using MRMS as a proxy 

for reports as was done in Wendt and Jirak (2021). 

 

Periods during which the system experienced slowdowns, errors, or downtimes were excluded to 

ensure a more accurate assessment of performance under optimal conditions. Slowdowns were 

recognized when processing time or probability thresholds were exceeded (e.g., probability 

threshold not equal to 5% for severe PHI processing, or processing time exceeding 60 seconds for 

tornado PHI). Errors were indicated by "error," "exception," or "fail" in the processing logs. 

Downtimes were identified when subsequent processing times surpassed 10 min. The evaluation 

includes only areas defined by the active domain(s) for that period (see example domain on 25 

July 2025 in Fig. 2). 

 

Verification was performed using a time window technique which converts continuous forecasts 

to binary forecasts (refer to Cintineo et al. 2024 for a more in-depth discussion). This method 

closely aligns with NWS warning and verification practices but is adapted for a probabilistic 

framework which assesses each threshold bin individually. Each storm report was associated with 

the nearest PHI plume within a given spatial buffer. For severe PHI, a 5 km buffer was applied for 

hail, thunderstorm wind, and tornado reports occurring within a 60-min window. Note this window 

differs from Cintineo et al. (2022; ProbSevere version 2) and Cintineo et al. (2024; PSv3) both of 

which used 45-min for ProbHail and ProbWind and 30-min for ProbTor. For tornado PHI, a 10+ 

km buffer was applied to tornado reports occurring within a 30-min window except that each report 

was interpolated from start to end every minute and 25 m was added to the buffer for each minute 

after the report’s start. For example, if a tornado report occurred between 1800 and 1810 UTC, the 

buffer would increase from 10 km to 10.125 km from start to end. These supplemental data points 

more accurately represent the real-time performance of the underlying model (Sandmæl et al. 

2023). However, our dataset consisted only of interpolated report points whereas Sandmæl et al. 

(2023) integrated multiple datasets, including storm-report objects and manually-identified 

objects. 

 

Fig. 5 summarizes the overall performance for the binary classification of the plumes for each 

probability bin. For severe PHI, the highest Critical Success Index (CSI) is observed for 

probabilities between 30 and 60%. There is an under forecast for probabilities below 20% and an 

increasing over forecast at higher probabilities. In contrast, tornado PHI shows the highest CSI for 

probabilities 50% and above, with an over forecast across all probability bins. Over forecasting is 

likely inflated in comparison to Sandmæl et al. (2023) due to two factors: interpolating TORP to 

PHI resolution, which can exacerbate issues with noise detections, and differences in verification 
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datasets. There is still skill added despite over forecasting for both severe and tornado PHI, 

especially when considering no guidance versus with guidance. In fact, forecaster feedback 

overwhelmingly indicates a preference for over forecasting rather than under forecasting, as it 

provides complete situational awareness and allows forecasters to determine which storms to 

monitor. 

 

 

 
Figure 5: (a) Performance diagram showing success ratio (x-axis) and probability of detection (y-axis) of 

severe (yellow) and tornado (red) PHI probabilities from 1 June 2023 through 30 April 2025. NWS 
severe thunderstorm and tornado warning performance over the same period of time is shown with an 

outlined yellow circle and red triangle, respectively. (b) Reliability diagram showing the PHI forecast 

probability (x-axis) relative to the observed frequency (y-axis) over the same time period as panel (a). 

This includes 2,125,033 (n) 2-min severe PHI predictions for 163,092 different identified storms, and 

282,436 (n) 2-min tornado PHI predictions for 48,960 detected circulations. 

 

Case Study Performance and Analysis  

8 July 2024: Hurricane Beryl Landfall 

  

Hurricane Beryl made landfall as a Category 1 Hurricane on 8 July at 0850 UTC near Matagorda, 

Texas with the eye continuing to move northeastward across Texas near the west Houston metro 

area. Following landfall, Beryl was downgraded to a tropical depression by 0000 UTC on 9 July 

and continued to move northeast across Texas and into Louisiana, becoming an extratropical low 

by 1200 UTC on 9 July (Beven et al. 2025). At least 65 tornadoes were associated with Beryl, the 

majority occurring as Beryl moved across Texas, Louisiana, and Arkansas. Additional tornadoes 

were reported further north into Indiana and New York and Canada. This evaluation will focus on 

the period beginning just before landfall at 0600 UTC on 8 July through 0700 UTC on 9 July 2025 

across Texas, Louisiana, and Arkansas when most of the tornadoes occurred. 
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Figure 6: Evolution of Hurricane Beryl following landfall in Texas on 8 July 2024. PHI plumes (Severe - 

yellow contours; Tornado - red shaded contours) and reflectivity mosaic are shown at (a) 0704, (b) 1206, 

(c) 1558, and (d) 1956 UTC. Inset time series is for tornado probability associated with plume highlighted 

by white arrow, note the longer storm lifetimes in (c) and (d). 

 

For the six hours following landfall, lower probability severe PHI plumes covered much of the 

precipitation area east and northeast of the inner core. Intermittent tornado PHI plumes also 

appeared in response to episodes of rotation in both the rainbands as well as the inner-core region. 

These tornado PHI plumes were typically short-lived (<15 min) and contained lower probabilities 

(<45%) during this period (Fig. 6). After 1500 UTC on 8 July 2025, the context of these plumes 

changed within the rainbands between Houston, TX and Lake Charles, LA. These plumes were 

typically associated with long-track, low-topped supercell storms (often lasting more than 1 hr) 

with higher probabilities than seen earlier in the event. An EF2 tornado reported at 1557 UTC near 

Jasper, LA kicked off a period of multiple tornado reports (Fig. 6c). From 1800 to 2200 UTC, 
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there were more than 7-10 different supercell storms in the right front quadrant of Beryl, many of 

them tornadic during this period (Fig. 6d and 7). 

 

Both the severe and tornado PHI plumes maintained accurate storm motions as the supercells 

moved north then northwest around the hurricane center. NWS warning polygons consistently 

overlapped well with the tornado PHI plumes, with similar coverage areas and estimated storm 

motions (Fig. 7). Due to the nature of the event, severe PHI plumes often covered much of the 

eastern side of the hurricane, though the overall severe probabilities remained low with the vast 

majority of plumes having no higher than 10% likelihood. This results in much lower performance 

metrics for this case than overall severe performance during the evaluation. The highest CSI (0.18-

0.19) were for 20-30% probabilities for NWS Southern Region from 0600 UTC on 8 July to 0659 

UTC on 9 July (Fig. 8a). Probabilities above this had both much lower Probability of Detection 

(POD) while also having decreased Success Ratios (SRs; 1-FAR). These skill scores may have 

been at least partially a result of underreporting of severe reports due to competing hazards and 

overwhelmed systems during a hurricane landfall. This can lead to under-reporting across the 

board, including severe storm impacts (e.g., Trapp et al. 2006). However, it may be that the severe 

PHI is simply not tuned well for identifying hazards adequately for this type of event. Tornado 

PHI plumes demonstrated higher skill scores for the event with the highest CSI for the tornado 

PHI between 0.33-0.35 for 60-70% likelihood. Higher probabilities had lower POD, but unlike the 

severe PHI plumes, they also had an increased SR. Both severe and tornado probabilities suffered 

from an over forecasting bias at most thresholds with consistent higher forecast probabilities than 

observed occurrences (Fig. 8b). 

Figure 7: Screenshot from NWS forecaster of tornado PHI plumes in GR2 (pink and pale red contoured 

plume) with NWS tornado warnings (red and magenta polygons) and flash flood warnings (green 

polygons) over KSHV 0.3° reflectivity (left) and velocity (right) at 1916 UTC 8 July 2024. 
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Figure 8: (a) Performance diagram for severe (yellow) and tornado (red) PHI by probability threshold 

for 0600 UTC 8 July through 0659 UTC 9 July 2024. (b) Reliability diagram of severe (yellow) and 

tornado (red) forecast PHI probabilities (x-axis) relative to observed frequency (y axis) with inset bar 
chart showing the frequency count in each bin for the same period as shown in (a). (c) SPC storm reports 

for 1200 UTC 8 July through 0700 UTC 9 July overlaid on Day 1 SPC Severe Weather Outlook (shaded). 

 

 

 

27-28 June 2025: Tornadic Supercells in North Dakota 

 

This event was characterized by the development of numerous supercell storms and larger storm 

clusters along a weak surface front extending across western and central North Dakota as an upper-

level shortwave trough moved across the area. A tornado watch was issued for the region at 2220 

UTC with the first storms initiating within a broad area of instability shortly before 2330 UTC in 

central and northern North Dakota. The 0000 UTC sounding from Bismarck, ND, indicated CAPE 

exceeding 2000 J kg-1, steep low-level lapse rates, and effective shear greater than 40 kts. 

Additional tornadic supercells subsequently formed and progressed across the region over the 

following five hours, supported by a strengthening low-level jet. By 0330 UTC, mesoscale analysis 

from SPC identified an area over central North Dakota where the effective-layer Significant 

Tornado Parameter (STP) exceeded a value of 5 (values > 3 are typically associated with tornadoes 

of EF3 intensity or greater; Thompson et al. 2012). After the event, it was reported that the PHI 

plumes were particularly helpful for warning decision-making and storm management. However, 
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there were instances later in the event in which side-lobe contamination adversely affected the 

algorithm’s performance. 

 

The first tornadic supercell of the event initiated at 2330 UTC (defined using >30 dBZ reflectivity) 

and intensified rapidly over Mercer and Oliver counties. A severe PHI plume first appeared at 

2336 UTC with a 25% probability, increasing steadily to 92% by 0022 UTC. The initial severe 

thunderstorm warning was issued at 0000 UTC, when the probability had reached 65% (Fig. 9, 

left). Tornado PHI guidance followed at 0022 UTC initially from the KMBX radar with a 50% 

probability; another automated plume from KBIS followed shortly after at 0024 UTC with an 

initial probability of 40%. Tornado probabilities remained between 50–70% over the next 20 min. 

The plume using KBIS data had more fluctuation, likely due to more inconsistency of the rotation 

lower in the storm where the KBIS radar was scanning. The first tornado warning was issued at 

0038 UTC, just after a 70% probability peak within the KBIS tornado PHI plume. The NWS 

tornado warning polygon and tornado PHI plume were closely aligned with the first spotter-

reported tornado at 0041 UTC (Fig. 9, right). Tornado PHI plumes were maintained with the storm 

with probabilities between 25–40% through 0210 UTC, while the NWS maintained tornado 

warnings until 0145 UTC. Another tornado was reported between 0130 and 0138 UTC. 

 

A second tornadic supercell initiated in Oliver County around 0130 UTC, following a similar track 

behind the first. An initial severe PHI plume with probabilities of 20% appeared at 0142 UTC and 

had a southeastward storm motion. A severe thunderstorm warning was issued slightly later at 

0156 UTC, with estimated eastward movement that better matched the storm at this time (Fig. 

10a). By 0224 UTC, the storm developed a mesocyclone, and its motion shifted more 

southeasterly, better aligning with the automated plume. A tornado PHI plume emerged at 0227 

Figure 9: (a) Severe PHI plume (yellow shading/contour), NWS severe thunderstorm warning (yellow 

polygon) and reflectivity from KBIS at 0002 UTC 28 June 2025. (b) Tornado PHI plume (red 
shading/contours), NWS severe thunderstorm (yellow polygon) and tornado (red polygon) warnings and 

velocity from KBIS at 0046 UTC 28 June 2025. Inset trend graphs on each plot show the PHI probability 

trends for (a) severe and (b) tornado; vertical line on each graph represents the current time of the plot. 
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UTC with a peak probability of 41% and remained with the storm through 0301 UTC. After a brief 

lull, a new tornado PHI plume formed at 0316 UTC with 45% probability, rapidly increasing to 

83% by 0318 UTC. A tornado warning was issued at 0325 UTC, coinciding with the first tornado 

report from this storm (Fig. 10b). Multiple tornadoes were reported through 0334 UTC, after which 

both radar velocity and tornado probability quickly dropped below 25% as a new updraft formed 

farther east and cut-off inflow to this region of the storm. A new tornado PHI plume based on 

KBIS appeared at 0332 UTC at this location and quickly increased from 38% to 92% likelihood 

over four min (Fig. 10c). A new tornado warning was issued once again coinciding with a tornado 

Figure 10: Reflectivity is shown in all plots. Plot (a) has the severe probability inset for the more than 

four hours the storm was tracked (0142-0600 UTC).  Plots (b-d) show the tornado probability trends for 
the three different tracked TORP circulations. 
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report at 0344 UTC. The storm continued to cycle with additional plumes developing at 0405 UTC 

with 90% probability and another tornado report at 0412 UTC (Fig. 10d). The final tornado PHI  

plume disappeared at 0430 UTC as the storm merged with the dissipating storm just ahead of it. 

Severe probabilities rapidly dropped from 85% to <10% between 0448 and 0506 UTC as the storm 

merged with larger clusters to the south. 

 

Another isolated supercell storm developed in Emmons County at 0224 UTC, situated south of 

the previous supercells and north of a bowing storm cluster. An automated severe PHI plume 

began at 0228 UTC with a low 7% probability but intensified quickly. The first severe 

thunderstorm warning followed at 0245 UTC, when the severe probability had risen to 62% (Fig. 

11). Tornado PHI guidance based on KBIS began at 0242 UTC with a 30% probability. A 

second plume developed at 0253 UTC due to a new rotational feature farther back in the storm. 

Tornado probabilities quickly increased with this area, reaching 76% by 0301 UTC and 85% by 

0305 UTC. A tornado warning was issued at 0304 UTC, remaining in effect until 0330 UTC. 

Multiple tornadoes were reported beginning at 0314 UTC, well-aligned with both the peak plume 

probabilities and warning polygon (Fig. 10). Later it was reported that the tornado probabilities 

suffered from side-lobe contamination. 

 

While the examples above focused on the tornadic supercell storms, there were a number of 

merging and splitting storms as convection grew upscale overnight with a bowing cluster moving 

southeast across central and southern South Dakota. Based on overall performance of both PSv3 

and TORP for these storm modes and region as well as the implementation of multiple quality 

control methods already in place, the general expectation is that performance metrics for 

automated PHI plumes should be better than the two-year average, but not as good as an event 

with fully isolated storms. 

 

Figure 11: As in Fig. 9 but for new convection to the south in Emmons County at (a) 0248 and (b) 

0320 UTC. The red circles provide the locations of SPC tornado reports valid at the current time.  
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For severe probabilities of <70%, POD remained somewhat steady from 0.8 to 0.85 while the SR 

increased steadily from 0.24 to 0.58 leading to the highest CSI of 0.51 at a probability of 70% 

(Fig. 12a). This CSI is a bit higher than the CSI in this region from PSv3 of 0.35-0.45 (Cintineo 

et al. 2024) or national CSI for the two-year period of automated PHI plumes. Overall reliability 

was similar to what we see in the national metrics and PSv3, with a relatively reliable forecast 

that had a slight under forecast below 30% probability and a slight over forecast that increases at 

probabilities above 50% (Fig. 12b). 

 

For the tornado PHI plumes, the highest CSI in this event was for probabilities between 80-100% 

with CSI between 0.4-0.44 (Fig. 12a). However, while there is only a modest difference in CSI 

between the probability thresholds of 80 and 90%, the trade-off between POD and SR for the 

same CSI is quite apparent. At 80% probability, the POD is 0.85 while the SR is 0.45, but at the 

90% threshold, POD falls to 0.53 while the SR increases to 0.67. Forecasters should keep this in 

mind when thinking about thresholds to use for both situational awareness and warning 

decisions. Due to the nature of both the environment and the strength of the rotation, when 

present, almost every tornado PHI plume during this event had probabilities >30% and every 

plume associated with a tornado report had probabilities >60% (Fig. 12b). 

 

 

 
Figure 12: As in Fig. 8 but for 2200 UTC 27 June 2025 to 0759 UTC 28 June 2025. 
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4. Recommendations for Use and Ongoing Development 

Best Practices for Using PHI in Operations  

Based on feedback and efforts to adequately handle the QC aspects described in Data and Methods, 

fully automated PHI may be used by forecasters in several complementary ways: 1) for calibration, 

by providing a statistical “anchor” for storm-to-storm comparisons during an event; 2) for storm 

triage, by accelerating cognition when multiple areas compete for attention; and 3) for 

communication, by offering a defensible numerical reference for expressing risk prior to warning 

issuance. Similar patterns are seen in other high-stakes fields: for example, clinical decision 

support systems give physicians an initial ranked diagnosis that improves calibration while leaving 

final judgment to the doctor (e.g., Sutton et al. 2020), and cockpit automation provides guidance 

cues that help pilots prioritize attention during complex flight situations (e.g., Causse et al. 2025). 

Though automation has shown improved performance and reduced mental workload in a wide 

range of fields, over-reliance on automation without knowledge of its limitations can lead to 

misuse or over-dependency, making it essential for forecasters to remain aware of its strengths and 

limitations. 

 

Building on previous HWT results, operational forecaster feedback, and performance metrics, 

forecasters may need to consider different thresholds for communicating hazard potential and 

making warning decisions. Thresholds may also need to vary by storm mode and environment. 

The strongest performance is observed for supercell storm environments, such as the 27-29 June 

2025 event described in the second case study. This is where PHI can be used for triage as well as 

understanding storm trends. These are also cases with the highest CSI scores for both severe and 

tornado hazards, demonstrating the feasibility of use of PHI as both a calibration tool and a 

decision aid. Even in more complex convective scenarios, however, PHI can still offer useful initial 

calibration for storm comparison, though forecasters must supplement with deeper storm 

interrogation when signals are less clear.  

 

Understanding storm-by-storm PHI trends can also provide forecasters with situational awareness 

and highlight which storms require deeper interrogation. While parallels exist with other domains 

where automated cues support professionals in synthesizing competing data streams, the primary 

value here lies in enabling forecasters to focus cognitive resources where they matter most, without 

relinquishing expertise to automation. Continued evaluation should also consider how to mitigate 

risks of automation bias, ensuring that forecasters use PHI as a guide rather than a determinant, 

and that flexibility remains to override automated probabilities when local expertise or evolving 

storm structures suggest otherwise. 
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Beyond storm interrogation, PHI has also shown value in communication with external partners. 

For example, forecast offices have used NWSChat to relay PHI-derived trends in storm probability 

to high-end user groups such as emergency managers. These early messages provided valuable 

context and a “heads up” about potential warning issuance, allowing partners to anticipate 

protective action even before official warnings were issued. In this way, PHI supports IDSS by 

offering a transparent, quantitative reference that helps users understand both the timing and 

likelihood of escalating threats. 

 

Computing Resources Necessary for PHI in Operations 

The iterative and developmental nature of the PHI provided thus far has been well-suited to a 

computing framework that is relatively light on resources. Most PHI and TORP processing has 

taken place on a powerful on-premesis server machine with output disseminated via a minimal 

cloud architecture. Resources have been marginally increased and improved over the course of 

development, however some compromises in the quantity of output have been necessary to match 

the resources available. Techniques such as domain limitation or the variable probability threshold 

outlined in the Domain Selection and Filter Method section have been the primary methods of 

preventing overload on research-level computing resources. 

 

Computationally, the goals of PHI in operations would be to expand domain coverage, reduce 

probability cutoff thresholds, and maintain a very robust system availability, in addition to 

enabling continuous improvements in the quality of PHI output. Optimization of PHI processing 

code can assist with each of these goals, however additional computing resources will be required 

to effectively support CONUS-wide operations. Increased server compute power will be required 

for continuous PHI coverage of CONUS, with higher server specifications or greater numbers of 

servers translating directly into increased domain coverage and lower probability thresholds. 

TORP processing currently has an effective limit of 10 radars per server (described in the Domain 

Selection and Filter Method section). As such, increased domain coverage for TORP output will 

require an additional processing server for every 10 radars desired. Increased computing resources 

may also assist with how quickly PHI becomes available following radar scans. 

 

A transition to a cloud-based architecture would also offer some advantages to an operational 

system. Increases in compute power can be easily scaled up in a cloud environment, load balancing 

schemes can be utilized to automatically increase or decrease compute power on demand, and the 

runtime availability of cloud-based systems is very high relative to on-premesis systems. During 

this demonstration, some PHI and TORP processing has already been run in temporary cloud-

based environments. 
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Archive Case Review and On-Demand Verification 

A case-by-case evaluation approach, similar to the case studies previously discussed, can help 

forecasters identify PHI's strengths and weaknesses across various events, especially those 

impacting their own County Warning Areas (CWAs). This can ultimately foster forecaster trust 

and facilitate more in-depth discussions. The Severe Weather Research Map (SWRM) serves as a 

platform for this type of evaluation and is currently undergoing a phased release with NWS 

forecasters.  

 

The SWRM is an experimental, interactive web-based mapping tool that allows forecasters, 

researchers, and developers to readily examine cutting-edge research products (Steeves et al. 2020; 

NOAA 2021). Research products, such as PHI Recommenders (see the Warning Recommender 

within Hazard Services section below), and software capabilities can be rapidly incorporated into 

the web tool, making it an ideal platform to test out novel concepts and ideas related to PHI. Using 

the SWRM, forecasters (as well as researchers and developers) can review past events in detail, as 

the SWRM is set up to streamline the review of both real-time and archived PHI data. In order to 

allow users to efficiently review PHI data, the web tool displays queryable PHI data and provides 

enhanced visualization features, including data animation, display customization, and hazard 

object trend analysis charts. Visualization features of the SWRM are exemplified in Fig. 6 and 

Figs. 9-11; all of the images in these figures were taken from the SWRM. 

 

An on-demand verification tool, accessible via the PHI webpage (phi.nssl.noaa.gov), is currently 

under development. This tool will allow forecasters to assess PHI performance for specific date 

ranges and regions of interest within the evaluation period (1 June 2023 to present) and provide a 

baseline for performance comparison across different events. 

Integrating Predicted Probabilities 

The present implementation of PHI plumes uses the current probability taken from either PSv3 or 

TORP, applies a Gaussian or linear filter, respectively, and reduces that probability to zero at the 

end of the forecast period (either 1 hour for severe PHI or 30 min for tornado PHI). However, 

future iterations of PHI could incorporate probabilistic guidance from the Warn-on-Forecast 

System (e.g., WoFS-PHI; Loken et al. 2025) or other machine learning approaches, such as 

extended forecast TORP probabilities (Fig. 13). By integrating numerical modeling with current 

observations, these methods could maintain the accuracy of instantaneous probabilities while also 

providing improved forecasts of subsequent storm evolution. This approach would allow PHI to 

represent evolving storm trends beyond simply tapering to zero at the end of the forecast period. 

In addition, these methods could extend the forecast horizon beyond the current 30-60 min 

window, giving forecasters earlier indications of storm initiation and evolution and supporting 
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probabilistic IDSS initiatives within the NWS. Overall, this capability would enable forecasters to 

better anticipate changes in storm intensity (increase, decrease, or persistence), enhance the 

consistency and timeliness of warnings, and help communicate critical information to partners 

with greater lead time. 

 

 

 
Figure 13: Tornado PHI plume (red shaded contours) and NWS severe thunderstorm warning (yellow 

polygon) overlaid on 0.5° velocity from KENX at 1706 UTC 13 August 2025. Inset trend graph illustrates 
the probability trends for tornado PHI. The actual probabilities are represented by the bold line, while 

the darker thin lines show predictive probabilities from each current time. A vertical line on the graph 

indicates the current time of the plot. 

 

 

Warning Recommender within Hazard Services Severe 

As options are considered for the operational implementation of PHI, one possible avenue is its 

use as a warning recommender. Hazard Services version 4 (HSv4), developed by the Global 

Systems Laboratory (GSL), is scheduled for nationwide installation in Q3 FY26 and is being tested 

at 14 WFOs. HSv4 may serve as the primary platform for issuing severe thunderstorm and tornado 

warnings. Building on forecaster feedback from this GR2 evaluation and verification statistics 

from the HWT, a "PHI Recommender" could provide as a first guess for severe thunderstorm 

warning areas, enhancing the accuracy, efficiency, and consistency of warning operations. A 

prototype of PHI as a recommender in HSv4 is shown in Fig. 14. This prototype ingests geoJSON 

files generated in the same manner as the GR2 placefiles used in this demonstration. By default, 
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the recommender could display thresholds informed by overall CSI from this PHI evaluation (40-

60%) or allow customization by office using PSv3 performance results (Cintineo et al. 2024), with 

an adjustable slider for individual forecasters. Initial implementation would likely focus on severe 

thunderstorm warnings, with expansion to a tornado recommender at later stages. Importantly, the 

recommender is not intended to replace the forecaster, but rather to increase efficiency by 

providing a baseline for lower-priority storms, enabling forecasters to devote more attention to 

complex or high-impact situations. Establishing such a baseline would also promote greater 

consistency in both warning polygons and issuance practices across forecasters.  

 

 

 

 
Figure 14: A screen capture of a prototype HSv4 illustrates severe PHI plumes (yellow shaded) acting as 

a first guess or recommender for NWS severe thunderstorm warnings (white polygons). Warnings 
originate at the centroid of the PHI object (darker shaded ellipse), which indicates the current hazard 

location, and extend downstream to the outer edges of the PHI plume using the motion extracted from the 

PHI plume for the specified duration (45 min in the example shown here). 
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