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ABSTRACT:

Much of Louisiana’s coastal wetlands have been lost over the last century, leading to federal
and state agencies allocating billions of dollars towards coastal restoration, flood protection,
and marsh creation projects. Traditional post-construction monitoring of marshes involves in-
situ vegetation sampling and aerial imagery from fixed-wing occupied aircraft, but these
methods can be logistically intensive and limited in spatial and temporal resolution. To address
these limitations, we evaluated the use of Unoccupied Aerial Systems (UAS) in post-
construction monitoring of the Lake Hermitage Marsh Creation Project in Plaquemine Parish,
Louisiana as a case study. Specifically, we used UAS-derived habitat classification maps to
compare vegetation cover between created and reference (i.e., natural) marsh sites and
conducted a power analysis to quantify the number of in-situ plots needed to reliably
characterize site-wide vegetation cover. Habitat classification accuracies of UAS-derived maps
ranged from 77.9 — 84.5% with slightly lower accuracies at created relative to reference marsh
sites due to their more heterogenous vegetation cover. UAS-derived maps discriminated
between created and reference marsh sites based on vegetation community similarity, while in-
situ vegetation monitoring plots did not. Furthermore, our case study illustrates the ability of
UAS-based habitat and vegetation classifications to complement, inform, and optimize plot-

based, in-situ vegetation sampling in future post-construction marsh monitoring plans.

KEY WORDS: Coastal monitoring, drones, created wetlands, unoccupied aerial systems, remote

sensing
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1. INTRODUCTION

Louisiana’s coastal wetlands have been disappearing over the last century and will
continue to do so unless significant action is taken (Barras et al. 2003). Approximately 5000 km?
or 25% of coastal wetland has been lost since the 1930s and another 4500 km? are projected to
be lost over the next 50 years (Couvillion et al. 2016). Federal and state agencies have allocated
funds to counteract existing coastal land loss and potentially prevent further losses. For
example, the Coastal Wetlands, Planning, Protection and Restoration Act (CWPPRA) is federal
legislation that supports wetland restoration and funds selected projects (CWPPRA 1990;
LCWCRTF 1993). In addition, the Louisiana Coastal Protection and Restoration Authority (CPRA)
has developed a Coastal Master Plan that allocates $50 billion for restoration and risk reduction
projects (CPRA 2023). This includes sediment diversions, barrier island restoration, hydrologic
restoration, and shoreline protection projects, with the largest funding, $15 billion, directed

towards marsh creation (CPRA 2023).

Marsh creation projects commonly uses dredged sediments taken from commercial
waterways and places them in project areas where marsh habitats have been previously
degraded into open-water systems (CPRA 2023). Post-construction monitoring, including
vegetation surveys, is a common component of marsh creation projects which allows managers
to assess project success (DWHNRDAT 2017). Post-construction vegetation surveys typically
estimate the percent cover of plant taxa in plots along one or multiple transects or distributed

in a semi-random fashion. CWPPRA funded projects in Louisiana use an adaptation of the
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Coastwide Reference Monitoring System’s (CRMS) vegetation sampling methods for post-

construction monitoring (Folse et al. 2023).

For example, the post-construction vegetation monitoring plan for the Lake Hermitage
Marsh Creation Project in Plaguemine Parish, Louisiana includes twenty 2 m x 2 m monitoring
plots across the 322 hectare CWPPRA project area (Richardi 2016). The number of monitoring
plots employed in this project was based on the expectations of the site’s topographic,
hydrologic, and sediment variability (D. Richardi, pers. comm.). Plot locations were then
selected in a semi-random fashion informed by topographic surveys and the monitoring
budget’s constraints that vegetation sampling be completed within a 1-2-day window (Richardi
2016). Vegetation monitoring at the Lake Hermitage Marsh Creation Project is also
complemented by aerial imagery captured from fixed-wing aircraft used for vegetation analysis

(height and composition estimates) and conducting land/water surveys (Folse et al. 2023).

While in situ vegetation sampling is common, it is also time and labor intensive and can
result in vegetation knockdown, soil compression, and ponding resulting from sampling
collections and vehicle access to site interiors (Christie et al. 2016; Minchinton et al. 2019). In
addition, aircraft-based imagery is expensive and electro-optical satellite imagery is often
limited by spatial/temporal resolution and cloud cover obstruction which can hamper their use
in post-construction monitoring plans (Christie et al. 2016; Pettorelli et al. 2018). These
logistical and financial issues can limit the effectiveness of post-construction monitoring plans

that rely on these techniques.
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Unoccupied Aerial Systems (UAS) can potentially overcome many challenges faced by
traditional in-situ sampling methods. These platforms enable the gathering of visible spectrum,
multi-spectral, or hyper-spectral imagery that can be used to produce highly accurate maps for
habitat (wetlands, beaches, sea cliffs) and vegetation (marsh, mangrove, aquatic) monitoring
(Barlow, Gilham, and Ibarra Cofra 2017; Cao et al. 2018; Chabot et al. 2018; Jaud et al. 2019;
DiGiacomo et al., 2022; Dronova, 2015). In addition, UAS imagery can function as a
supplementary tool alongside in -situ vegetation sampling to inform plot selection and expand
site characterization (Anderson and Gaston 2013). For example, researchers have used UAS
imagery to quantify marsh vegetation height and above-ground biomass (DiGiacomo et al.
2022; Doughty and Cavanaugh 2019), derive land/water area metrics and Normalized
Difference Vegetation Indices (NDVI; (C. N. Brooks et al. 2019; Broussard, Suir, and Visser 2018;
Sturdivant et al. 2017; Yang et al. 2019)), and evaluate wetland vegetation quality and
productivity (Broussard, Visser, and Brooks 2020; Harris 2020). Other studies have applied UAS
in coastal erosion, flooding, and storm event assessment both over long timescales and as
quick-response data collection (Appeaning Addo et al. 2018; Duo et al. 2018; R. Morgan et al.
2022; Morgan et al. 2023). These studies highlight the ability of UAS approaches to quantify
habitat characteristics in coastal systems and indicate their potential to inform post-

construction vegetation monitoring.

The goal of this study is to evaluate the use of UAS platforms for post-construction
vegetation monitoring using the Lake Hermitage Marsh Creation Project as a case study. Our

study had three specific objectives. First, we used UAS imagery in conjunction with in-situ
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vegetation data to generate and assess high-resolution habitat and vegetation classification
maps. Second, we used a combination of UAS imagery and in situ vegetation plots to compare
habitat and vegetation cover between created and reference (i.e., natural) marsh sites. Finally,
we used UAS-derived vegetation classification maps to conduct a power analysis that evaluates
current monitoring plans at these sites and guide restoration managers in the selection of the
appropriate number of monitoring plots needed to reliably characterize site-wide vegetation
communities using plot-based sampling. We aim to use the products generated from these
efforts to evaluate the implementation of UAS platforms as a complement to in-situ
methodologies for large-scale/site-wide vegetation monitoring and to inform existing in-situ

methods including transect and plot placement for vegetation monitoring.

2. METHODS

2.1 Study Area

Our study focused on the Lake Hermitage Marsh Creation Project (BA-42) located along
the eastern side of Barataria Bay, in Plaguemine Parish, Louisiana (Fig. 1). This area of Barataria
Bay is characterized by brackish marshes with salinity ranging from 8-15 (Chabreck 1970), with
vegetation typically dominated by grasses such as Spartina alterniflora, Spartina patens, or
Distichlus spicata, rushes such as Juncus roemarianus, reed such as Phragmites australis, and

shrubs, small trees and other woody vegetation such as Iva frutescens (Keppeler et al. 2023).

The Lake Hermitage Marsh Creation Project constructed ~322 hectares of land using

hydraulically dredged Mississippi River sediments (Richardi 2016) with support from the Coastal
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Wetlands Planning, Protection and Restoration Act (CWPPRA) between 2012 and 215 (Fig. 1).
An additional ~42 acres of marsh area was created using excess dredged materials with Natural
Resource Damage Assessment (NRDA) support (DHNMP 2015). We examined two created and
two reference (i.e., natural) marsh sites in and adjacent to the project area for this study. We
sampled created marsh sites within two of the project’s primary fill areas in this study: Marsh
Creation Areas A and B, referred to hereafter as Lake Hermitage A (LHA) and Lake Hermitage B
(LHB; Fig. 1). LHA was constructed from August 2012 to October 2013 and was approximately
8.5 years old at the time of this study, and LHB was constructed between December 2013 to
May 2014 and was approximately 8 years old at the time of this study. Due to logistical
constraints, only the western half of LHA was surveyed in this study (Fig. 1). In addition, we
sampled two reference marshes adjacent to the Lake Hermitage Marsh Creation Project: Lake
Hermitage Control (LHC) and the Coastwide Reference Monitoring System (CRMS) site CRMS-

3680 (Fig. 1).

2.2 Imagery Collection

Imagery used in this study was collected on a single day May 3, 2022, between 10:00. —
17:00 CST, using a Trinity F90+ fixed-wing UAS equipped with a MicaSense RedEdge-MX Dual
camera system (Fig. 2). Conditions during the image collection were sunny with occasional
clouds with mild winds. This fixed-wing UAS is noteworthy for its vertical takeoff and landing
capabilities while being a fixed-wing UAS, its integrated autopilot system, long flight times (90+
minutes), and high wind tolerance during flights (12 m/s). The MicaSense RedEdge-MX Dual

camera system integrates two five-band sensors as well as a Downwelling Light Sensor to
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output 10 reflectance bands: coastal blue at 444 nm, blue at 475 nm, green at 531 and 560 nm,
red at 650 and 668 nm, red edge at 705, 717, and 740 nm, and near-infrared at 842 nm. Facing
downward, the sensor’s maximum field of view was 34.5 degrees. The drone platform includes
an internal GNSS receiver that communicated with the closest available reference station to

produce georeferenced imagery with 8 mm horizontal RMS and 15 mm vertical RMS.

We planned flights using the Quantum Systems QBase 3D mission planning software
(Fig. 2). Flights were conducted at ~122 m altitude, the U.S. Federal Aviation Administration’s
legal high limit for small UAS operations, to output high resolution imagery while maximizing
area coverage. Side and front overlap of the imagery ranged from 70 — 75 percent on each of
the sites and flight speed was variable as the UAS compensates for changes in wind speed.
Flight times over our selected sites ranged from 50 — 90 minutes totaling flight time for this
study at ~5 hours. These parameters allowed for < 8.4 cm pixel resolution in the final maps used

in this study.

2.3 Imagery Processing

Imagery obtained during UAS flights was mosaicked within the Pix4D Mapper software
to create orthomosaics and 3D digital surface models (DSMs) using Structure from Motion
(SfM) algorithms. Orthomosaics are high-resolution, georeferenced photo representations of a
ground area generated from, in this study’s case, 4500 to 15000 images per site (Fig. 2). Digital
Surface Models are digital elevation models that represent the tallest point of surfaces and

objects such as vegetation. The SfM technique to generate surface models provides an
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affordable yet effective alternative to producing elevation data compared to LiDAR (Forsmoo et

al. 2019).

Pix4D evaluated imagery metadata to determine the image coordinate system, altitude,
and location details for each picture. The coordinate system for output orthomosaics was NAD
1983 StatePlane Louisiana South FIPS 1702 (US Feet). Image scale used for processing was one
half. A maximum number of five images were used per manual tie point and orthomosaics were
generated with 10000 keypoints (Fig. 2). Processing was performed on a computer with 128 GB

of RAM, an Intel Xeon CPU E5-1603 v3 @ 2.80GHz, and an NVIDIA GeForce RTX 2080 Ti GPU.

2.4 Object-Based Imagery Analysis (OBIA)

We used an object-based image analysis method to perform vegetation analysis of our
sites using eCognition Developer v 10.3 (Trimble Inc. 2023; Fig. 2). Orthomosaics and Digital
Surface Models (DSMs) output from Pix4D were uploaded into eCognition for each site and
provided 11 layers for use in imagery analysis: two blue, two red, two green, one near-infrared,
three red-edge, and one elevation surface model bands. Using these 11 available layers, we
performed a multi-stage image segmentation to group pixels together into larger distinct image

“objects” (Dronova 2015).

From these created objects, we developed an object classifier to distinguish among
habitat classes at each site (Fig. 2). Habitat classes included water and four terrestrial
vegetation types. Water was chosen as it is both spectrally and functionally distinct from

terrestrial habitat classes (Broussard, Suir, and Visser 2018) and the four terrestrial feature
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classes were selected to best characterize the dominant vegetation at each site. First, a “reeds”
class, reflecting the dominance of Phragmites australis. This species occurs in tall (1-6 m), dense
stands and stabilizes marsh platform due to its extensive root systems (Knight et al. 2018).
Second, a “shrubs/trees” class, reflecting a dominance of woody vegetation that is visually
distinct from the herbaceous species present on these sites. Third, a “grasses” class reflecting a
combination of the three dominant marsh grass species found on these sites - Spartina
alterniflora, Spartina patens, and Distichlus spicata. Some prior studies using aerial imagery
have had success in classifying S. alterniflora separately from S. patens and D. spicata (Harris
2020), as S. alterniflora is functionally distinct (food source, habitat, biogeochemistry) from S.
patens and D. spicata, while others have not (Correll et al. 2019). We chose to group these
three taxa into a single class in this study as a preliminary analysis indicated that on these four
sites senesced patches of S. alterniflora had broadly similar spectral characteristics relative to S.
patens and D. spicata making distinct classification among these grasses beyond the capacity of
this project. Fourth, a “rushes” class reflecting a dominance of Juncus roemarianus which occur

on these sites as tightly packed, spiky, dark green patches.

We adopted a fully supervised method to configure our object classifier, starting by
choosing a set of known objects from each habitat/vegetation category (such as water, reeds,
shrubs/trees, grasses, and rushes) at every site. We used these selected objects to determine
which features (reflectance bands, elevation, brightness, NDVI, etc.) were most effective at
distinguishing our specified habitat/vegetation classes, detailed further in our Supplementary

Methodology. This approach allowed us to tailor the object features for each site, which were
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then applied to classify objects into the five predetermined habitat/vegetation classes at each
location using eCognition, as documented in Supplementary Tables 1-5. Finally, the fully
classified habitat/vegetation maps for each site were exported from eCognition for additional

analysis.

2.5 Classification Accuracy Analysis

We conducted an accuracy assessment based on a comparison of the classified maps
and base imagery at select points within each site using a stratified random approach in ArcGIS
Pro (Congalton 1988). Accuracy assessment points at each site were standardized to three
points per hectare of site area or a minimum of 50 points per site whichever was larger. The
classification of accuracy points was compared to site orthomosaics to create an Error Matrix
that contained the Producer’s, User’s, and Total accuracies of each site. Producer's accuracy
assesses errors of omission made by the classification map (i.e., a measure of false negatives).
An example of an error of omission is when a point on the base imagery is water, but the
classification map misclassified the point as reeds. User’s accuracy assesses errors of
commission made by the classification map (i.e., a measure of false positives). An example of an
error of commission is when the classification map says a point is water, but the base imagery
shows it as reeds. Total accuracy describes how often the accuracy points were correctly
classified across all habitat classes by a classification map. The Kappa coefficient was also
calculated at each site. This is a statistical evaluation of the accuracy of a classification that can

range from -1 to 1, with values near -1 being worse than randomly assigned classifications, O
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218  being no better than randomly assigned classifications, and values near 1 being significantly

219 better.

220 2.6 In Situ Vegetation Sampling

221 The post-construction vegetation monitoring plan for the Lake Hermitage Marsh

222 Creation Project includes 20 sampling plots that was last sampled in 2018 and will be sampled
223 againin 2025 and 2034 (Richardi 2016). This includes 4 plots at LHB and 2 plots in the western
224  portion of LHA surveyed in this study. Given the timing between the last vegetation survey

225  (2018) and this study (2022), and because the monitoring plan does not include plots at the LHC
226 reference marsh site, we conducted independent vegetation sampling at the three Lake

227  Hermitage sites (LHA, LHB, and LHC) on May 12, 2022. Aboveground vegetation (clipped at the
228  sediment surface) was collected from replicate (1 m apart) 0.25m x 0.25m plots at five

229  distances (1, 10, 25, 50, and 100 m) from the marsh edge along a transect at each site. The

230  vegetation was sorted by species, and rinsed free of sediment and epiphytes, and then dried to
231  constant mass at 70°C to determine aerial aboveground biomass (in grams) by species for each

232 quadrat (Hill and Roberts 2017).

233 Vegetation sampling data from one additional reference marsh, CRMS-3680, was
234  retrieved from the Coastal Information Management System (CIMS) database

235 (http://cims.coastal.louisiana.gov). CRMS site sampling occurs between August 1 and

236  September 30 (end of growing season) of each year and is conducted along a 282.8-m transect
237  atten 2 m x 2 m vegetation plots. CRMS-3680 was sampled on July 28, 2022. Specifically, we

238  retrieved data on the percent cover of vegetative species for each plot collected using visual
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estimates. Aboveground biomass (LHA, LHB, LHC) and percent cover (CRMS-3680) data was

then used to identify the dominant vegetation type found in each sampled plot.

2.7 Created vs. Reference Marsh Sites

As a secondary accuracy assessment, we compared the vegetation classes predicted by
UAS-classified maps (such as trees/shrubs, reeds, rushes, or grasses) against the dominant
vegetation types actually observed in the in-situ vegetation plots sampled at each site. This
comparison enabled us to verify whether the dominant vegetation predicted by UAS maps
aligned with what was physically observed in each sample plot. Additionally, this process
provided a measure of how accurately our maps reflected the real-world conditions of both
created and reference sites, in relation to direct, on-the-ground observations. Next, we
assessed the similarity of vegetation communities between created and reference sites by
creating Bray—Curtis resemblance matrices using the vegan package in R (Oksanen et al., 2018).
We created two resemblance matrices: one using classified UAS map data and a second using in
situ plot data. To allow for direct comparisons between methods we used percent vegetation
class data (i.e., reeds, shrubs/trees, grasses, and rushes) to create both UAS and in-situ
resemblance matrices and square-root transformed percentage data prior to analyses. To visualize
similarity among created and reference marshes, we then calculated the centroids for each site
and constructed separate hierarchical clustering dendrograms using ward.D’s algorithm
(Murtagh & Legendre, 2014). These dendrograms were then cut into two clusters based on
calculated similarity to assess the degree to which UAS classified maps and in-situ plot data

identified differences in vegetation communities between created and reference marshes.
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2.8 Power Analysis

We used UAS-derived vegetation classification maps to conduct a power analysis to
evaluate the degree to which the current, plot-based vegetation monitoring efforts at our
sampling sites are representative and identify the required sampling intensity (i.e., number of
monitoring plots) needed to reliably characterize site-wide vegetation. We used a probabilistic
approach to our power analysis, by generating between 1 to 200 random points (i.e. vegetation
plots) within each marsh site’s terrestrial area without replacement, iterated 1000 times per
number of plots at each site. Randomly generated plots were structured to be no closer than 2
meters together to simulate the average size of CRMS vegetation plots (2 m x 2 m). We then
assigned a dominant vegetation class (i.e., reeds, shrubs/trees, grasses, and rushes) to each
randomly generated plot using the UAS-derived vegetation classification maps from each site
and calculated the proportional occurrence of each vegetation class for each iteration. We then
calculated the percentage of iterations that resulted in predicted proportional occurrence of
the four vegetation classes that fell within 10% of the actual site-wide vegetation cover seen in

the UAS-derived vegetation classification maps.

We then used binomial regressions between the number of sample plots (1-200) and
the probability of the resulting predicted proportional occurrence falling within 10% of the
actual site-wide vegetation cover. The resulting statistical relationship allowed us to evaluate
the reliability of current monitoring plans at three of our sites by calculating the probability that
plot-based sampling accurately reflects site-wide vegetation cover given the 2, 4, and 10

vegetation monitoring plots currently in place at sites LHA, LHB, and CRMS-3680 respectively. In
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addition, we also used this relationship to assess the expected degree reliability if plot-based
sampling at LHA and LHB was increased to 10 plots per site similar to CRMS-3680 and other
CRMS monitored sites. Finally, we calculated the minimum number of vegetation plots needed
to reliably characterize site-wide vegetation at each site by determining when the 95%
confidence interval around each binomial regression lines overlapped with 100% (i.e., the
number of plots needed for the predicted proportional occurrence of each vegetation class to

consistently fall within 10% of the actual site-wide values).

3. RESULTS

3.1 Habitat Classifications

Total landscape area for the sites ranged from 5.7 to 83.3 hectares (CRMS-3680 and LHB
respectively; Table 1). The proportion of total landscape area that was land ranged between
69.0 — 77.8% (Table 1). The created sites generally had higher proportions of land area than our
reference sites (Table 1). Classified maps indicated that the terrestrial habitat of the four study
sites were dominated by the grasses class at all four sites (Table 2; Fig. 3; Fig. 4). The
percentage of terrestrial habitat classified (i.e., excluding area classified as water) as grasses
ranged from a low of 74.6% at LHB to a high of 97.6% coverage at CRMS-3680. Rushes
comprised the second most abundant class at three of the sites (LHA, LHC, and CRMS-3680)
with Reeds being the second most abundant at the final site (LHB). Shrubs/trees abundance
ranged from 2.5% at LHA to 7.2% at LHB and were not present on the classification maps of LHC

and CRMS-3680.
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3.2 Classification Accuracy

Producer's Accuracy, a measure of false negatives, ranged from 44.1% to 100% across
taxa and sites (Table 2), averaging 78.0 + 15.3%. Producer's Accuracy averaged slightly lower
across all habitat classes at the two created marsh sites (LHA: 73.5 + 18.2%.; LHB: 68.6 + 15.6%.)
relative to the two reference marsh sites (LHC: 82.6 + 6.4%.; CRMS-3680: 83.7 + 18.5%). User's
Accuracy, a measure of false positives, ranged from 54.8% to 100% across taxa and sites (Table
2), averaging 78.6 + 14.1%. User's Accuracy averaged slightly lower cross all habitat classes at
the two created marsh sites (LHA: 79.3 + 12.7%.; LHB: 72.6 + 15.5%.) relative to the two
reference marsh sites (LHC: 81.0 + 16.4%.; CRMS-3680: 84.1 + 15.1%). Total Accuracy ranged
from 77.9 — 84.5% across taxa and sites (Table 2), averaging 81.2 + 3.2%. Kappa values,
measures showing how well a classification performed against random assignment, were 0.65,
0.68, 0.76, and 0.74 at sites LHA, LHB, LHC, and CRMS-3680 respectively. Total accuracies and
Kappa values averaged slightly lower at the two created marsh sites relative to the two

reference marsh sites.

3.3 In-situ Vegetation Sampling

Grasses were the dominant vegetation class recorded during in situ vegetation sampling
at all four sites, ranging from 63 to 98% of plot biomass (LHA, LHC, and LHB) or cover (CRMS-
3680; Fig. 4). Four grass taxa were recorded in plots including: Distichlis spicata, Paspalum sp.,
Spartina alterniflora, and Spartina patens. Spartina alterniflora comprised the highest
percentage of plots by biomass at LHA (35.6%), LHB (44.4%), and LHC (35.8%) and Spartina

patens comprised the highest percentage of plots by coverage at CRMS-3680 (32.3%; Fig. 4).
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Rushes, predominately Juncus roemerianus but also Schoenoplectus spp. and Bolboschoenus
robustus, were the second most abundant vegetation class, ranging from 2 to 33% by biomass
(LHA, LHC, and LHB) or cover (CRMS-3860; Fig. 4). Shrub/tree (Iva frutescens) and reed (Typha
latifolia and Phragmites australis) species were present in low abundance in LHA plots only,
with 7% and 3% of total plot biomass, respectively (Fig. 4). Shrubs/trees were observed in areas
outside of plots at LHB (but not LHC and CRMS-3860), and reeds were observed in areas outside
of plots at both LHB and LHC (but not CRMS-3860). Other herbaceous plant species observed in
plots at low abundance (<2% by biomass or cover) include Cynanchum angustifolium, Ipomea

sp., Lythrum salicaria, Solidago sempervirens, and Symphyotrichum tenuifolium (Fig. 4).

3.4 Created vs. Reference Marshes

At the two created marsh sites (LHA and LHB) the predicted dominant vegetation from
UAS classified maps agreed with the observed dominant vegetation on the ground in four out
of five plots (80%) at each site. We obtained a similar result, with agreement in 8 out of 10 plots
(80%) at the CRMS-3680 reference marsh site, while 100% of plots (four out of four) were in
agreement at the LHC reference marsh site. Three of the incorrectly classified in-situ vegetation
plots were misclassified as the Grasses class, when in situ sampling indicated these plots were
dominated by Rushes. In addition, one incorrectly classified vegetation plot at CRMS-3680 was
classified as Grasses when in situ sampling noted that this plot was shallow water just adjacent

to the vegetated marsh edge.

The comparison of vegetation community patterns showed distinct differences between

UAS-derived data and field plot observations at the vegetation class level. Specifically, a
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dendrogram based on UAS-derived data revealed two primary clusters that separated the
created marsh sites (LHA and LHB) from the reference sites (LHC and CRMS-3680; Fig. 5). This
separation was primarily due to the higher presence of Reeds and Shrubs/trees in the UAS-
classified maps at LHA and LHB, in contrast to the reference sites where these vegetation
classes were either significantly less common or completely absent (Fig. 4). On the other hand,
a dendrogram based on in-situ plot data grouped the sites into two clusters without
distinguishing between created and reference marshes: one cluster included LHC, and the other

combined LHA, LHB, and CRMS-3680 (Fig. 5).

3.5 Power Analysis

At the three marsh sites with existing monitoring plans our regression model indicated
that their current levels of monitoring predicted a 50.6% (LHA: 2 plots), 51.5% (LHB: 4 plots),
and 99.9% (CRMS-3680: 10 plots) chance of the resulting vegetation cover estimates being
within 10% of the actual site-wide vegetation cover, respectively (Fig. 6). If our three Lake
Hermitage marsh sites (LHA, LHB, and, LHC) had monitoring efforts similar to CRMS-3680 and
other CRMS stations (i.e., 10 plots per site) our regression model predicted that it would result
ina 59.9%, 57.9%, and 89.3% chance of the resulting vegetation cover estimates being within
10% of the actual site-wide vegetation cover (Fig. 6). Finally, our regression models predicted
that it would require 70, 79, 108, and 31 in situ plots at sites LHA, LHB, LHC, and CRMS-3680,
respectively to provide vegetation cover estimates that would consistently (i.e. 100% of

iterations) be within 10% of the actual site-wide vegetation cover (Fig 6).

4. DISCUSSION AND CONCLUSIONS
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Our case study highlights the utility of UAS-based imagery for post-construction
monitoring of coastal marsh restoration projects. Habitat classification map accuracies were
slightly higher on the two reference sites relative to the two created sites and both UAS-based
and in situ plot sampling identified greater habitat and vegetation heterogeneity at the created
marsh sites. In addition, UAS-derived data discriminated between created and reference marsh
sites based on vegetation class community similarity, while in-situ plot data did not likely due to
differences in the innate spatial scales of the two sampling methods. The greater habitat and
vegetation heterogeneity seen at created sites led to their slightly lower UAS classification
accuracies and higher number of in situ plots needed to reliably characterize site-wide
vegetation cover as predicted by our power analysis. In addition, our power analysis also
indicates that all four sites examined in our study sites require increased sampling effort (i.e., a
higher number of in situ plots per site) than what is currently implemented for these
monitoring plans to consistently (i.e. 100% of the time) provide vegetation cover estimates that

are within 10% of the actual site-wide vegetation cover at each site.

4.1 UAS-based Habitat and Vegetation Classification

The generation of accurate habitat and vegetation classifications using UAS-based
imagery can be challenging in heterogeneous environments such as coastal marshes. Even so,
classification total accuracies in our study ranged from 77.9 — 84.5% which is similar to the
levels of classification accuracy observed in several prior UAS-based studies in coastal regions
(C. Brooks et al. 2022; Broussard, Visser, and Brooks 2020; Cao et al. 2018; Harris 2020). In

these prior studies and ours, homogenous marsh sites were more easily/accurately classified
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compared to heterogeneous sites (Broussard, Visser, and Brooks 2020; Harris 2020). However,
while the created sites in our study were more heterogenous and difficult to classify relative to
reference sites, the created sites studied by Harris (2020) were more homogenous and easier to

classify than adjacent reference sites.

Our study encountered some of the challenges reported by other UAS-based marsh and
coastal system studies (DiGiacomo et al. 2022; Dronova 2015; Manfreda et al. 2018). For
example, our study required site-specific habitat classification algorithms due to differences in
spectral baselines between sites that were likely due in part to differences in time of day when
imagery was collected. Prior studies have also found that the OBIA methodologies we used in
our study can be limited by their site-specificity and often require trial and error when
parametrizing classifiers to tailor them for sites (Dronova 2015). In addition, prior studies have
noted how the use of DSMs in UAS-based habitat classifications can be heavily affected by
variable ground elevations (DiGiacomo et al. 2022; Manfreda et al. 2018). Ground elevation
survey conducted by a prior study at the three Lake Hermitages sites indicates much more
variable average ground elevations at the two created sites (LHA: 0.18 + 0.13 m; LHB: 0.07 +
0.11 m) relative to the reference site (LHC: 0.09 + 0.04 m; Keppeler et al. 2023). The more
variable ground elevation may have led to greater misclassification of tall vegetation classes
such as Reeds and Shrubs/trees which relied on DSMs for classification. We found that the
presences of senesced S. alterniflora at our sites with similar spectral similarity to other
vegetation types prevented our ability to classify specific grass taxa and likely contributed to

the lower classification accuracies obtained for Rushes. In addition, Phragmites australis, the



406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

20

dominant plant within our Reeds category, was undergoing a die-back period on our sites at the
time of image collection, creating large spectral value overlap with senesced marsh grasses and
leading to a reliance on DSM values for distinguishing between the two classes. Doughty and
Cavanaugh (2019) employed the use of a handheld spectrometer during their in-situ vegetation
sampling to measure canopy reflectance and inform their later UAS classification. In retrospect,
we find that this method could have improved our classification parameters by providing
expected spectral values for each target class and recommend implementing the method in

future monitoring efforts if within logistical constraints.

Our case study also highlights several of the logistical benefits related to the application
of UAS coastal marsh monitoring. First, this technology allows for mostly noninvasive
monitoring compared to traditional in-situ methodology as exemplified in our study where the
only site impact from our UAS collection occurred at the edge of the sites where our boat was
moored (DiGiacomo et al. 2022; Manfreda et al. 2018). In addition, we were able to collect
aerial imagery for ~170 hectares of marsh in a single day of flights. This demonstrates the
potential for UAS-based imagery to expand the spatial coverage of monitoring projects in a
manner that is not logistically feasible using solely in-situ methods. However, while time
efficient in the field, collecting imagery over a single day was likely a contributing factor for the
need for site-specific habitat classification algorithms due to differences in spectral baselines
between sites. While the framework for UAS analysis applied in our case study (i.e., imagery
collection, processing, and classification algorithm development) can serve as a model, future

studies will need to similarly balance the likely tradeoffs between rapid (e.g., flights conducted
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throughout the day) vs. systematic (e.g., flights conducted at consistent times and conditions)

imagery collection.

4.2 Created vs. Reference Marsh Vegetation Communities

Marsh restoration is enacted in the attempt to return systems to their original states
prior to environmental impacts. Our study is not the first to assess if vegetation communities
within the Lake Hermitage Marsh Creation Project are similar to those found in nearby
reference marshes. Keppeler et al. (2023) performed a comprehensive analysis of vegetation
communities at six marsh sites, including LHA, LHB, and LHC, in 2018 using in-situ, plot-based
sampling. They reported these three sites as each being dominated first by marsh grasses
followed by rushes. Using Bray—Curtis resemblance matrices and hierarchical clustering of
biomass data at the species level Keppeler et al. (2023) also found that vegetation communities
varied among marshes. Specifically, the created marsh site LHB clustering with three of
reference marsh sites and differed from created marsh site LHA and reference marsh site LHC

which clustered together.

Our UAS and in situ-based vegetation class data agree with Keppeler et al.'s (2023)
findings in that LHA, LHB, and LHC were primarily dominated by marsh grasses followed by
rushes. However, the results of our vegetation community similarity analyses differed from
Keppeler et al.'s (2023) as well differing between our two data sources (i.e., UAS and in-situ
plots). Specifically, UAS-derived data clustered our two created marshes (LHA and LHB)

together as being different from the two reference marshes (LHC and CRMS-3680) which
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clustered together. In contrast, in-situ-derived data clustered LHA, LHB and CRMS-3680
together as having similar vegetation communities that differed from LHC. These contrasting
results may be attributable to the inherent strengths and biases of each method. For example,
UAS-derived vegetation data provides site-wide coverage but can be limited to estimating
percent coverage of the dominant vegetation at lower taxonomic resolution. In contrast, in-situ
derived vegetation data provides higher taxonomic resolution within the plot area but may not
accurately reflect site-wide vegetation cover due to sampling biases related to the number and
placement of plots. For example, the in-situ vegetation plots employed by Keppeler et al.'s
(2023) and our case study were taken within 100 m of the edge of the sites, limiting the
likelihood of data from these plots reflecting vegetation communities found within the interior
of each site. Even so, there are past studies that have successfully used UAS for vegetation
mapping with higher taxonomic resolution, especially where projects were targeting a specific
species of vegetation. The efforts of Brooks et al. (2022) highlight their ability to classify
Eurasian Watermilfoil separately from other submerged vegetation in the Great Lakes primarily
due to significant spectral differences among their vegetation species. A separate study
conducted along the banks of Lake Erie was able to accurately map Phragmites australis in the
efforts to control the plant’s presence as an invasive species wherein they highlight NDVI and a
canopy height model being features useful in separating Phragmites from other vegetation

(Abeysinghe et al. 2019).

4.3 Power Analysis of Plot-Based Sampling
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Plot sampling is a common vegetation monitoring method. However, care should be
taken when designing monitoring studies to ensure that the number and/or size of plots
employed can reliably characterize vegetation communities and/or detect change within or
between sites over time (Hao et al. 2021; Hoffmann et al. 2019; James-Pirri, Roman, and
Heltshe 2007; Steyer et al. 2003). For example, James-Pirri et al. (2007) conducted a power
analysis to determine the number of 1m? plots needed for in-situ monitoring vegetation
community change in New England salt marshes. They found that 20 plots were required to
detect subtle changes over time, though in some cases between 5 to 15 plots were adequate to

detect major shifts in vegetation communities.

In our study, we sought to evaluate the ability of the current, plot-based vegetation
monitoring plan at the Lake Hermitage Mash Creation Project and adjacent reference sites to
characterize site-wide vegetation cover. The monitoring plan employed within this CWPPRA
project is heavily based on the methods used at CRMS sites (Folse et al. 2023) as the goal of
CRMS is to provide a network of regularly monitored reference sites that can be compared to
CWPPRA restoration projects (Steyer et al. 2003). Past power analyses of CRMS have focused
on the number and distribution of reference sites required to identify trends in vegetation
communities across coastal Louisiana (Steyer et al. 2003). However, to our knowledge no prior
study has assessed the number of plots required to accurately reflect site-wide vegetation

cover within CRMS or CWPPRA marsh sites.

Our analysis suggests that the current number of monitoring plots at Lake Hermitage

Marsh Creation Project sites LHB (4) and the portion of LHA surveyed here (2) are insufficient to
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reflect site-wide vegetation cover. Specifically, we found that approximately 50% of the time
the current level of plot sampling at these two sites is likely to result in estimates that fall
outside 10% of the actual site-wide vegetation cover. In contrast, the current number of
monitoring plots at CRMS-3680 (10) is 99.9% likely to result in estimates that fall within 10% of
the actual site-wide vegetation cover. Furthermore, our results indicate the effort needed to
reliably characterize site-wide vegetation cover using plot-based sampling is site dependent,
with larger more heterogenous sites (e.g., LHA and LHB) requiring a higher number of
monitoring plots than smaller more homogeneous sites (e.g., CRMS-3680). Our conclusions
support the recommendation made by prior researchers who suggests that heterogeneous sites
require more accuracy sampling points than homogenous sites for statistically valid

assessments to be performed (Congalton and Green 2019).

We also found that the predicted number of sampling plots needed to reliably
characterize site-wide vegetation cover at our four study sites (31-108 plots per site) is well
outside of what would be likely logistically or financially feasible for CRMS or CWPPRA projects.
As such, UAS-based vegetation surveys represent a more effective and cost-efficient method
for characterization of site-wide vegetation cover at these sites. However, it is important to
note that the primary goal of plot-based vegetation monitoring at CRMS sites and CWPPRA
projects is not site-wide vegetation assessment per se, instead it is to generate floristic quality
and productivity indices that can be used to track changes in vegetation assemblage over time
associated with either natural variation (i.e., CRMS sites) or restoration activities (i.e., CWPPRA

projects; Cretini et al. 2011). Furthermore, it is important to recognize that the UAS-based
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analysis employed in our case study only identifies the single dominant vegetation class in a
discrete area, and not the relative cover of multiple vegetation taxa within plots as in-situ
sampling. Even so, our results suggest the potential for the indices and trends derived from in-
situ plots at CRMS sites and CWPPRA projects to not necessarily be reflective of site-wide
vegetation conditions. Given the differing spatial and taxonomic resolutions, using UAS and
plot-based methods in combination is likely to provide a more accurate and comprehensive
assessment view of vegetation communities than either method can provide in isolation. As
such, we recommend that restoration managers in Louisiana embrace the potential for UAS-
based surveys to optimize the number and placement of monitoring plots at CWPPRA and
CRMS sites to ensure they are reflective of the vegetation communities present, similar to how
UAS-based approaches have been integrated into studies of other systems (Hao et al. 2021;

Hoffmann et al. 2019).

4.4 Conclusions and Recommendations

This case study highlights the ability of high-resolution, multispectral UAS-based imagery
to create accurate habitat and vegetation classification maps in brackish coastal marshes in
Louisiana. It also illustrates the ability of UAS-based vegetation classification maps to compare
site-wide vegetation communities among created and reference marsh sites in a manner not
logistically feasible using traditional plot-based sampling. Furthermore, we found that unlike
UAS-based surveys, the current, plot-based vegetation monitoring at the Lake Hermitage Marsh
Creation Project does not accurately represent site-wide vegetation cover at both created and

reference sites. Moreover, our case study illustrates the potential for UAS-based methods to
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complement traditional plot-based sampling and aid restoration managers in optimizing the
number and placement of plots to reliably characterize vegetation communities and assess the

success of marsh creation projects intended to offset coastal land loss.
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714  Table 1. Class area statistics for the habitat and vegetation classes found on each site
715  calculated from UAS-based classification maps.

Site Class Area (ha) Total area (%) Land area (%)

LHA Water 14.8 22.2 -
Land 52 77.8 -

Reeds 3.2 4.8 6.2

Trees/Shrubs 1.3 1.9 2.5

Grasses 40.6 60.8 78.1

Rushes 6.9 10.3 13.3
LHB Water 22.6 27.1 -
Land 60.7 72.9 -

Reeds 9.4 11.3 15.5

Trees/Shrubs 4.4 5.3 7.2

Grasses 45.3 54.4 74.6

Rushes 1.6 1.9 2.6
LHC Water 4.8 31 -
Land 10.7 69 -

Reeds 0.1 0.6 0.9
Trees/Shrubs 0 - -

Grasses 9.7 62.6 90.7

Rushes 0.9 5.8 8.4
CRMS-3680 Water 1.6 28.1 -
Land 4.1 71.9 -
Reeds 0 - -
Trees/Shrubs 0 - -

Grasses 4 70.2 97.6

Rushes 0.1 1.8 2.4
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Table 2. The accuracy metrics of the imagery-based accuracy assessment performed for this

project including Producer's, User’s, and Total Accuracies. Producer's accuracy is a measure of
errors of omission/false negatives for each habitat class. User’s accuracy is a measure of errors
of commission/false positives for each habitat class. Total accuracy describes how much of the
target area/points were correctly classified by a classification map.

Site Accuracy Habitat Classes (%)
Metric Water Shrubs/Trees Reeds Grasses Rushes Total
LHA Producer's 70.4 83.3 77.8 91.7 441 -
User's 80.9 100.0 70.0 77.3 68.2 -
Total - - - - - 77.9
LHB Producer's 79.5 64.3 65.4 87.0 46.7 -
User's 95.9 64.3 54.8 78.1 70.0 -
Total - - - - - 79.2
LHC Producer's 75.0 - 80.0 89.7 85.7 -
User's 100.0 - 80.0 83.9 60.0 -
Total - - - - - 83.3
CRMS-3680 Producer's 63.6 - - 100.0 87.5 -
User's 100.0 - - 82.4 70.0 -
Total - - - - - 84.5
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Figure Captions

Figure 1. Location map of the four marsh areas used in this study. The dashed outline denotes
the eastern half of LHA that was not surveyed during this study due to logistical constraints.

Figure 2. Detailed UAS workflow performed in this project. Bold text below each step indicates
the software used for each step of planning, processing, and analysis. Modified from Harris
(2020).

Figure 3. UAS-derived habitat classification maps of the created (a,b) and reference (c,d) marsh
sites examined in this study.

Figure 4. Vegetation class composition of each site using UAS data (a) and in-situ vegetation
composition (b,c) at both the class and taxa level. In-situ vegetation composition reflects
percent by biomass at LHA, LHB, and LHC and percent cover at CRMS-3680.

Figure 5. Similarity analyses of created (blue) and reference (green) marsh sites vegetation
community composition at the class level using UAS (a) and in-situ (b) data.

Figure 6. Power analysis with binomial regression curves indicating the probability of being
within 10% of the true of site-wide vegetation cover with increasing number of in-situ sampling
points (1-200 plots) at the created (a, b) and reference (b,c) marsh sites examined in this study.
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Figure 1. Location map of the four marsh areas used in this study. The dashed outline denotes the eastern half of
LHA that was not surveyed during this study due to logistical constraints.
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746 Figure 2. Detailed UAS workflow performed in this project. Bold text below each step indicates the software used
747  for each step of planning, processing, and analysis. Modified from Harris (2020).
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Figure 3. UAS-derived habitat classification maps of the created (a,b) and reference (c,d) marsh sites examined in

this study.
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Figure 4. Vegetation class composition of each site using UAS data (a) and in-situ vegetation composition (b,c) at
both the class and taxa level. In-situ vegetation composition reflects percent by biomass at LHA, LHB, and LHC and

percent cover at CRMS-3680.
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758 Figure 5. Similarity analyses of created (blue) and reference (green) marsh sites vegetation community composition
759 at the class level using UAS (a) and in-situ (b) data.
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Figure 6. Power analysis with binomial regression curves indicating the probability of being within 10% of the true
of site-wide vegetation cover with increasing number of in-situ sampling points (1-200 plots) at the created (a, b)

and reference (b,c) marsh sites examined in this study.
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