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ABSTRACT: 14 

Much of Louisiana’s coastal wetlands have been lost over the last century, leading to federal 15 

and state agencies allocating billions of dollars towards coastal restoration, flood protection, 16 

and marsh creation projects. Traditional post-construction monitoring of marshes involves in-17 

situ vegetation sampling and aerial imagery from fixed-wing occupied aircraft, but these 18 

methods can be logistically intensive and limited in spatial and temporal resolution. To address 19 

these limitations, we evaluated the use of Unoccupied Aerial Systems (UAS) in post-20 

construction monitoring of the Lake Hermitage Marsh Creation Project in Plaquemine Parish, 21 

Louisiana as a case study. Specifically, we used UAS-derived habitat classification maps to 22 

compare vegetation cover between created and reference (i.e., natural) marsh sites and 23 

conducted a power analysis to quantify the number of in-situ plots needed to reliably 24 

characterize site-wide vegetation cover. Habitat classification accuracies of UAS-derived maps 25 

ranged from 77.9 – 84.5% with slightly lower accuracies at created relative to reference marsh 26 

sites due to their more heterogenous vegetation cover. UAS-derived maps discriminated 27 

between created and reference marsh sites based on vegetation community similarity, while in-28 

situ vegetation monitoring plots did not. Furthermore, our case study illustrates the ability of 29 

UAS-based habitat and vegetation classifications to complement, inform, and optimize plot-30 

based, in-situ vegetation sampling in future post-construction marsh monitoring plans. 31 

32 
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1. INTRODUCTION35 

Louisiana’s coastal wetlands have been disappearing over the last century and will 36 

continue to do so unless significant action is taken (Barras et al. 2003). Approximately 5000 km2 37 

or 25% of coastal wetland has been lost since the 1930s and another 4500 km2 are projected to 38 

be lost over the next 50 years (Couvillion et al. 2016). Federal and state agencies have allocated 39 

funds to counteract existing coastal land loss and potentially prevent further losses.  For 40 

example, the Coastal Wetlands, Planning, Protection and Restoration Act (CWPPRA) is federal 41 

legislation that supports wetland restoration and funds selected projects (CWPPRA 1990; 42 

LCWCRTF 1993). In addition, the Louisiana Coastal Protection and Restoration Authority (CPRA) 43 

has developed a Coastal Master Plan that allocates $50 billion for restoration and risk reduction 44 

projects (CPRA 2023). This includes sediment diversions, barrier island restoration, hydrologic 45 

restoration, and shoreline protection projects, with the largest funding, $15 billion, directed 46 

towards marsh creation (CPRA 2023). 47 

Marsh creation projects commonly uses dredged sediments taken from commercial 48 

waterways and places them in project areas where marsh habitats have been previously 49 

degraded into open-water systems (CPRA 2023). Post-construction monitoring, including 50 

vegetation surveys, is a common component of marsh creation projects which allows managers 51 

to assess project success (DWHNRDAT 2017). Post-construction vegetation surveys typically 52 

estimate the percent cover of plant taxa in plots along one or multiple transects or distributed 53 

in a semi-random fashion. CWPPRA funded projects in Louisiana use an adaptation of the 54 
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Coastwide Reference Monitoring System’s (CRMS) vegetation sampling methods for post-55 

construction monitoring (Folse et al. 2023). 56 

For example, the post-construction vegetation monitoring plan for the Lake Hermitage 57 

Marsh Creation Project in Plaquemine Parish, Louisiana includes twenty 2 m x 2 m monitoring 58 

plots across the 322 hectare CWPPRA project area (Richardi 2016). The number of monitoring 59 

plots employed in this project was based on the expectations of the site’s topographic, 60 

hydrologic, and sediment variability (D. Richardi, pers. comm.).  Plot locations were then 61 

selected in a semi-random fashion informed by topographic surveys and the monitoring 62 

budget’s constraints that vegetation sampling be completed within a 1–2-day window (Richardi 63 

2016). Vegetation monitoring at the Lake Hermitage Marsh Creation Project is also 64 

complemented by aerial imagery captured from fixed-wing aircraft used for vegetation analysis 65 

(height and composition estimates) and conducting land/water surveys (Folse et al. 2023). 66 

While in situ vegetation sampling is common, it is also time and labor intensive and can 67 

result in vegetation knockdown, soil compression, and ponding resulting from sampling 68 

collections and vehicle access to site interiors (Christie et al. 2016; Minchinton et al. 2019). In 69 

addition, aircraft-based imagery is expensive and electro-optical satellite imagery is often 70 

limited by spatial/temporal resolution and cloud cover obstruction which can hamper their use 71 

in post-construction monitoring plans (Christie et al. 2016; Pettorelli et al. 2018). These 72 

logistical and financial issues can limit the effectiveness of post-construction monitoring plans 73 

that rely on these techniques. 74 
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Unoccupied Aerial Systems (UAS) can potentially overcome many challenges faced by 75 

traditional in-situ sampling methods. These platforms enable the gathering of visible spectrum, 76 

multi-spectral, or hyper-spectral imagery that can be used to produce highly accurate maps for 77 

habitat (wetlands, beaches, sea cliffs) and vegetation (marsh, mangrove, aquatic) monitoring 78 

(Barlow, Gilham, and Ibarra Cofrã 2017; Cao et al. 2018; Chabot et al. 2018; Jaud et al. 2019; 79 

DiGiacomo et al., 2022; Dronova, 2015). In addition, UAS imagery can function as a 80 

supplementary tool alongside in -situ vegetation sampling to inform plot selection and expand 81 

site characterization (Anderson and Gaston 2013). For example, researchers have used UAS 82 

imagery to quantify marsh vegetation height and above-ground biomass (DiGiacomo et al. 83 

2022; Doughty and Cavanaugh 2019), derive land/water area metrics and Normalized 84 

Difference Vegetation Indices (NDVI; (C. N. Brooks et al. 2019; Broussard, Suir, and Visser 2018; 85 

Sturdivant et al. 2017; Yang et al. 2019)), and evaluate wetland vegetation quality and 86 

productivity (Broussard, Visser, and Brooks 2020; Harris 2020). Other studies have applied UAS 87 

in coastal erosion, flooding, and storm event assessment both over long timescales and as 88 

quick-response data collection (Appeaning Addo et al. 2018; Duo et al. 2018; R. Morgan et al. 89 

2022; Morgan et al. 2023). These studies highlight the ability of UAS approaches to quantify 90 

habitat characteristics in coastal systems and indicate their potential to inform post-91 

construction vegetation monitoring. 92 

The goal of this study is to evaluate the use of UAS platforms for post-construction 93 

vegetation monitoring using the Lake Hermitage Marsh Creation Project as a case study. Our 94 

study had three specific objectives. First, we used UAS imagery in conjunction with in-situ 95 
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vegetation data to generate and assess high-resolution habitat and vegetation classification 96 

maps. Second, we used a combination of UAS imagery and in situ vegetation plots to compare 97 

habitat and vegetation cover between created and reference (i.e., natural) marsh sites. Finally, 98 

we used UAS-derived vegetation classification maps to conduct a power analysis that evaluates 99 

current monitoring plans at these sites and guide restoration managers in the selection of the 100 

appropriate number of monitoring plots needed to reliably characterize site-wide vegetation 101 

communities using plot-based sampling. We aim to use the products generated from these 102 

efforts to evaluate the implementation of UAS platforms as a complement to in-situ 103 

methodologies for large-scale/site-wide vegetation monitoring and to inform existing in-situ 104 

methods including transect and plot placement for vegetation monitoring. 105 

2. METHODS106 

2.1 Study Area 107 

Our study focused on the Lake Hermitage Marsh Creation Project (BA-42) located along 108 

the eastern side of Barataria Bay, in Plaquemine Parish, Louisiana (Fig. 1). This area of Barataria 109 

Bay is characterized by brackish marshes with salinity ranging from 8-15 (Chabreck 1970), with 110 

vegetation typically dominated by grasses such as Spartina alterniflora, Spartina patens, or 111 

Distichlus spicata, rushes such as Juncus roemarianus, reed such as Phragmites australis, and 112 

shrubs, small trees and other woody vegetation such as Iva frutescens (Keppeler et al. 2023). 113 

The Lake Hermitage Marsh Creation Project constructed ~322 hectares of land using 114 

hydraulically dredged Mississippi River sediments (Richardi 2016) with support from the Coastal 115 
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Wetlands Planning, Protection and Restoration Act (CWPPRA) between 2012 and 215 (Fig. 1). 116 

An additional ~42 acres of marsh area was created using excess dredged materials with Natural 117 

Resource Damage Assessment (NRDA) support (DHNMP 2015). We examined two created and 118 

two reference (i.e., natural) marsh sites in and adjacent to the project area for this study. We 119 

sampled created marsh sites within two of the project’s primary fill areas in this study: Marsh 120 

Creation Areas A and B, referred to hereafter as Lake Hermitage A (LHA) and Lake Hermitage B 121 

(LHB; Fig. 1). LHA was constructed from August 2012 to October 2013 and was approximately 122 

8.5 years old at the time of this study, and LHB was constructed between December 2013 to 123 

May 2014 and was approximately 8 years old at the time of this study. Due to logistical 124 

constraints, only the western half of LHA was surveyed in this study (Fig. 1). In addition, we 125 

sampled two reference marshes adjacent to the Lake Hermitage Marsh Creation Project: Lake 126 

Hermitage Control (LHC) and the Coastwide Reference Monitoring System (CRMS) site CRMS-127 

3680 (Fig. 1). 128 

2.2 Imagery Collection 129 

Imagery used in this study was collected on a single day May 3, 2022, between 10:00. – 130 

17:00 CST, using a Trinity F90+ fixed-wing UAS equipped with a MicaSense RedEdge-MX Dual 131 

camera system (Fig. 2). Conditions during the image collection were sunny with occasional 132 

clouds with mild winds. This fixed-wing UAS is noteworthy for its vertical takeoff and landing 133 

capabilities while being a fixed-wing UAS, its integrated autopilot system, long flight times (90+ 134 

minutes), and high wind tolerance during flights (12 m/s). The MicaSense RedEdge-MX Dual 135 

camera system integrates two five-band sensors as well as a Downwelling Light Sensor to 136 
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output 10 reflectance bands: coastal blue at 444 nm, blue at 475 nm, green at 531 and 560 nm, 137 

red at 650 and 668 nm, red edge at 705, 717, and 740 nm, and near-infrared at 842 nm.  Facing 138 

downward, the sensor’s maximum field of view was 34.5 degrees. The drone platform includes 139 

an internal GNSS receiver that communicated with the closest available reference station to 140 

produce georeferenced imagery with 8 mm horizontal RMS and 15 mm vertical RMS. 141 

We planned flights using the Quantum Systems QBase 3D mission planning software 142 

(Fig. 2). Flights were conducted at ~122 m altitude, the U.S. Federal Aviation Administration’s 143 

legal high limit for small UAS operations, to output high resolution imagery while maximizing 144 

area coverage. Side and front overlap of the imagery ranged from 70 – 75 percent on each of 145 

the sites and flight speed was variable as the UAS compensates for changes in wind speed. 146 

Flight times over our selected sites ranged from 50 – 90 minutes totaling flight time for this 147 

study at ~5 hours. These parameters allowed for < 8.4 cm pixel resolution in the final maps used 148 

in this study. 149 

2.3 Imagery Processing 150 

Imagery obtained during UAS flights was mosaicked within the Pix4D Mapper software 151 

to create orthomosaics and 3D digital surface models (DSMs) using Structure from Motion 152 

(SfM) algorithms. Orthomosaics are high-resolution, georeferenced photo representations of a 153 

ground area generated from, in this study’s case, 4500 to 15000 images per site (Fig. 2). Digital 154 

Surface Models are digital elevation models that represent the tallest point of surfaces and 155 

objects such as vegetation. The SfM technique to generate surface models provides an 156 
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affordable yet effective alternative to producing elevation data compared to LiDAR (Forsmoo et 157 

al. 2019). 158 

Pix4D evaluated imagery metadata to determine the image coordinate system, altitude, 159 

and location details for each picture. The coordinate system for output orthomosaics was NAD 160 

1983 StatePlane Louisiana South FIPS 1702 (US Feet). Image scale used for processing was one 161 

half. A maximum number of five images were used per manual tie point and orthomosaics were 162 

generated with 10000 keypoints (Fig. 2). Processing was performed on a computer with 128 GB 163 

of RAM, an Intel Xeon CPU E5-1603 v3 @ 2.80GHz, and an NVIDIA GeForce RTX 2080 Ti GPU. 164 

2.4 Object-Based Imagery Analysis (OBIA) 165 

We used an object-based image analysis method to perform vegetation analysis of our 166 

sites using eCognition Developer v 10.3 (Trimble Inc. 2023; Fig. 2). Orthomosaics and Digital 167 

Surface Models (DSMs) output from Pix4D were uploaded into eCognition for each site and 168 

provided 11 layers for use in imagery analysis: two blue, two red, two green, one near-infrared, 169 

three red-edge, and one elevation surface model bands. Using these 11 available layers, we 170 

performed a multi-stage image segmentation to group pixels together into larger distinct image 171 

“objects” (Dronova 2015). 172 

From these created objects, we developed an object classifier to distinguish among 173 

habitat classes at each site (Fig. 2). Habitat classes included water and four terrestrial 174 

vegetation types. Water was chosen as it is both spectrally and functionally distinct from 175 

terrestrial habitat classes (Broussard, Suir, and Visser 2018) and the four terrestrial feature 176 
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classes were selected to best characterize the dominant vegetation at each site. First, a “reeds” 177 

class, reflecting the dominance of Phragmites australis. This species occurs in tall (1-6 m), dense 178 

stands and stabilizes marsh platform due to its extensive root systems (Knight et al. 2018). 179 

Second, a “shrubs/trees” class, reflecting a dominance of woody vegetation that is visually 180 

distinct from the herbaceous species present on these sites. Third, a “grasses” class reflecting a 181 

combination of the three dominant marsh grass species found on these sites - Spartina 182 

alterniflora, Spartina patens, and Distichlus spicata. Some prior studies using aerial imagery 183 

have had success in classifying S. alterniflora separately from S. patens and D. spicata (Harris 184 

2020), as S. alterniflora is functionally distinct (food source, habitat, biogeochemistry) from S. 185 

patens and D. spicata, while others have not (Correll et al. 2019). We chose to group these 186 

three taxa into a single class in this study as a preliminary analysis indicated that on these four 187 

sites senesced patches of S. alterniflora had broadly similar spectral characteristics relative to S. 188 

patens and D. spicata making distinct classification among these grasses beyond the capacity of 189 

this project. Fourth, a “rushes” class reflecting a dominance of Juncus roemarianus which occur 190 

on these sites as tightly packed, spiky, dark green patches. 191 

We adopted a fully supervised method to configure our object classifier, starting by 192 

choosing a set of known objects from each habitat/vegetation category (such as water, reeds, 193 

shrubs/trees, grasses, and rushes) at every site. We used these selected objects to determine 194 

which features (reflectance bands, elevation, brightness, NDVI, etc.) were most effective at 195 

distinguishing our specified habitat/vegetation classes, detailed further in our Supplementary 196 

Methodology. This approach allowed us to tailor the object features for each site, which were 197 
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then applied to classify objects into the five predetermined habitat/vegetation classes at each 198 

location using eCognition, as documented in Supplementary Tables 1-5. Finally, the fully 199 

classified habitat/vegetation maps for each site were exported from eCognition for additional 200 

analysis. 201 

2.5 Classification Accuracy Analysis 202 

We conducted an accuracy assessment based on a comparison of the classified maps 203 

and base imagery at select points within each site using a stratified random approach in ArcGIS 204 

Pro (Congalton 1988). Accuracy assessment points at each site were standardized to three 205 

points per hectare of site area or a minimum of 50 points per site whichever was larger.  The 206 

classification of accuracy points was compared to site orthomosaics to create an Error Matrix 207 

that contained the Producer’s, User’s, and Total accuracies of each site. Producer's accuracy 208 

assesses errors of omission made by the classification map (i.e., a measure of false negatives). 209 

An example of an error of omission is when a point on the base imagery is water, but the 210 

classification map misclassified the point as reeds. User’s accuracy assesses errors of 211 

commission made by the classification map (i.e., a measure of false positives). An example of an 212 

error of commission is when the classification map says a point is water, but the base imagery 213 

shows it as reeds. Total accuracy describes how often the accuracy points were correctly 214 

classified across all habitat classes by a classification map. The Kappa coefficient was also 215 

calculated at each site. This is a statistical evaluation of the accuracy of a classification that can 216 

range from -1 to 1, with values near -1 being worse than randomly assigned classifications, 0 217 
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being no better than randomly assigned classifications, and values near 1 being significantly 218 

better. 219 

2.6 In Situ Vegetation Sampling 220 

The post-construction vegetation monitoring plan for the Lake Hermitage Marsh 221 

Creation Project includes 20 sampling plots that was last sampled in 2018 and will be sampled 222 

again in 2025 and 2034 (Richardi 2016). This includes 4 plots at LHB and 2 plots in the western 223 

portion of LHA surveyed in this study. Given the timing between the last vegetation survey 224 

(2018) and this study (2022), and because the monitoring plan does not include plots at the LHC 225 

reference marsh site, we conducted independent vegetation sampling at the three Lake 226 

Hermitage sites (LHA, LHB, and LHC) on May 12, 2022. Aboveground vegetation (clipped at the 227 

sediment surface) was collected from replicate (1 m apart) 0.25m x 0.25m plots at five 228 

distances (1, 10, 25, 50, and 100 m) from the marsh edge along a transect at each site. The 229 

vegetation was sorted by species, and rinsed free of sediment and epiphytes, and then dried to 230 

constant mass at 70°C to determine aerial aboveground biomass (in grams) by species for each 231 

quadrat (Hill and Roberts 2017). 232 

Vegetation sampling data from one additional reference marsh, CRMS-3680, was 233 

retrieved from the Coastal Information Management System (CIMS) database 234 

(http://cims.coastal.louisiana.gov). CRMS site sampling occurs between August 1 and 235 

September 30 (end of growing season) of each year and is conducted along a 282.8-m transect 236 

at ten 2 m x 2 m vegetation plots. CRMS-3680 was sampled on July 28, 2022. Specifically, we 237 

retrieved data on the percent cover of vegetative species for each plot collected using visual 238 

http://cims.coastal.louisiana.gov/


12 

estimates. Aboveground biomass (LHA, LHB, LHC) and percent cover (CRMS-3680) data was 239 

then used to identify the dominant vegetation type found in each sampled plot. 240 

2.7 Created vs. Reference Marsh Sites 241 

As a secondary accuracy assessment, we compared the vegetation classes predicted by 242 

UAS-classified maps (such as trees/shrubs, reeds, rushes, or grasses) against the dominant 243 

vegetation types actually observed in the in-situ vegetation plots sampled at each site. This 244 

comparison enabled us to verify whether the dominant vegetation predicted by UAS maps 245 

aligned with what was physically observed in each sample plot. Additionally, this process 246 

provided a measure of how accurately our maps reflected the real-world conditions of both 247 

created and reference sites, in relation to direct, on-the-ground observations. Next, we 248 

assessed the similarity of vegetation communities between created and reference sites by 249 

creating Bray–Curtis resemblance matrices using the vegan package in R (Oksanen et al., 2018). 250 

We created two resemblance matrices: one using classified UAS map data and a second using in 251 

situ plot data. To allow for direct comparisons between methods we used percent vegetation 252 

class data (i.e., reeds, shrubs/trees, grasses, and rushes) to create both UAS and in-situ 253 

resemblance matrices and square-root transformed percentage data prior to analyses. To visualize 254 

similarity among created and reference marshes, we then calculated the centroids for each site 255 

and constructed separate hierarchical clustering dendrograms using ward.D’s algorithm 256 

(Murtagh & Legendre, 2014). These dendrograms were then cut into two clusters based on 257 

calculated similarity to assess the degree to which UAS classified maps and in-situ plot data 258 

identified differences in vegetation communities between created and reference marshes. 259 
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2.8 Power Analysis 260 

We used UAS-derived vegetation classification maps to conduct a power analysis to 261 

evaluate the degree to which the current, plot-based vegetation monitoring efforts at our 262 

sampling sites are representative and identify the required sampling intensity (i.e., number of 263 

monitoring plots) needed to reliably characterize site-wide vegetation. We used a probabilistic 264 

approach to our power analysis, by generating between 1 to 200 random points (i.e. vegetation 265 

plots) within each marsh site’s terrestrial area without replacement, iterated 1000 times per 266 

number of plots at each site. Randomly generated plots were structured to be no closer than 2 267 

meters together to simulate the average size of CRMS vegetation plots (2 m x 2 m). We then 268 

assigned a dominant vegetation class (i.e., reeds, shrubs/trees, grasses, and rushes) to each 269 

randomly generated plot using the UAS-derived vegetation classification maps from each site 270 

and calculated the proportional occurrence of each vegetation class for each iteration. We then 271 

calculated the percentage of iterations that resulted in predicted proportional occurrence of 272 

the four vegetation classes that fell within 10% of the actual site-wide vegetation cover seen in 273 

the UAS-derived vegetation classification maps. 274 

We then used binomial regressions between the number of sample plots (1-200) and 275 

the probability of the resulting predicted proportional occurrence falling within 10% of the 276 

actual site-wide vegetation cover. The resulting statistical relationship allowed us to evaluate 277 

the reliability of current monitoring plans at three of our sites by calculating the probability that 278 

plot-based sampling accurately reflects site-wide vegetation cover given the 2, 4, and 10 279 

vegetation monitoring plots currently in place at sites LHA, LHB, and CRMS-3680 respectively. In 280 
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addition, we also used this relationship to assess the expected degree reliability if plot-based 281 

sampling at LHA and LHB was increased to 10 plots per site similar to CRMS-3680 and other 282 

CRMS monitored sites. Finally, we calculated the minimum number of vegetation plots needed 283 

to reliably characterize site-wide vegetation at each site by determining when the 95% 284 

confidence interval around each binomial regression lines overlapped with 100% (i.e., the 285 

number of plots needed for the predicted proportional occurrence of each vegetation class to 286 

consistently fall within 10% of the actual site-wide values). 287 

3. RESULTS288 

3.1 Habitat Classifications 289 

Total landscape area for the sites ranged from 5.7 to 83.3 hectares (CRMS-3680 and LHB 290 

respectively; Table 1). The proportion of total landscape area that was land ranged between 291 

69.0 – 77.8% (Table 1). The created sites generally had higher proportions of land area than our 292 

reference sites (Table 1). Classified maps indicated that the terrestrial habitat of the four study 293 

sites were dominated by the grasses class at all four sites (Table 2; Fig. 3; Fig. 4). The 294 

percentage of terrestrial habitat classified (i.e., excluding area classified as water) as grasses 295 

ranged from a low of 74.6% at LHB to a high of 97.6% coverage at CRMS-3680. Rushes 296 

comprised the second most abundant class at three of the sites (LHA, LHC, and CRMS-3680) 297 

with Reeds being the second most abundant at the final site (LHB). Shrubs/trees abundance 298 

ranged from 2.5% at LHA to 7.2% at LHB and were not present on the classification maps of LHC 299 

and CRMS-3680. 300 
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3.2 Classification Accuracy 301 

Producer's Accuracy, a measure of false negatives, ranged from 44.1% to 100% across 302 

taxa and sites (Table 2), averaging 78.0 ± 15.3%. Producer's Accuracy averaged slightly lower 303 

across all habitat classes at the two created marsh sites (LHA: 73.5 ± 18.2%.; LHB: 68.6 ± 15.6%.) 304 

relative to the two reference marsh sites (LHC: 82.6 ± 6.4%.; CRMS-3680: 83.7 ± 18.5%). User's 305 

Accuracy, a measure of false positives, ranged from 54.8% to 100% across taxa and sites (Table 306 

2), averaging 78.6 ± 14.1%. User's Accuracy averaged slightly lower cross all habitat classes at 307 

the two created marsh sites (LHA: 79.3 ± 12.7%.; LHB: 72.6 ± 15.5%.) relative to the two 308 

reference marsh sites (LHC: 81.0 ± 16.4%.; CRMS-3680: 84.1 ± 15.1%). Total Accuracy ranged 309 

from 77.9 – 84.5% across taxa and sites (Table 2), averaging 81.2 ± 3.2%. Kappa values, 310 

measures showing how well a classification performed against random assignment, were 0.65, 311 

0.68, 0.76, and 0.74 at sites LHA, LHB, LHC, and CRMS-3680 respectively. Total accuracies and 312 

Kappa values averaged slightly lower at the two created marsh sites relative to the two 313 

reference marsh sites. 314 

3.3 In-situ Vegetation Sampling 315 

Grasses were the dominant vegetation class recorded during in situ vegetation sampling 316 

at all four sites, ranging from 63 to 98% of plot biomass (LHA, LHC, and LHB) or cover (CRMS-317 

3680; Fig. 4).  Four grass taxa were recorded in plots including: Distichlis spicata, Paspalum sp., 318 

Spartina alterniflora, and Spartina patens. Spartina alterniflora comprised the highest 319 

percentage of plots by biomass at LHA (35.6%), LHB (44.4%), and LHC (35.8%) and Spartina 320 

patens comprised the highest percentage of plots by coverage at CRMS-3680 (32.3%; Fig. 4). 321 
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Rushes, predominately Juncus roemerianus but also Schoenoplectus spp. and Bolboschoenus322 

robustus, were the second most abundant vegetation class, ranging from 2 to 33% by biomass 323 

(LHA, LHC, and LHB) or cover (CRMS-3860; Fig. 4). Shrub/tree (Iva frutescens) and reed (Typha 324 

latifolia and Phragmites australis) species were present in low abundance in LHA plots only, 325 

with 7% and 3% of total plot biomass, respectively (Fig. 4). Shrubs/trees were observed in areas 326 

outside of plots at LHB (but not LHC and CRMS-3860), and reeds were observed in areas outside 327 

of plots at both LHB and LHC (but not CRMS-3860). Other herbaceous plant species observed in 328 

plots at low abundance (<2% by biomass or cover) include Cynanchum angustifolium, Ipomea 329 

sp., Lythrum salicaria, Solidago sempervirens, and Symphyotrichum tenuifolium (Fig. 4). 330 

3.4 Created vs. Reference Marshes 331 

At the two created marsh sites (LHA and LHB) the predicted dominant vegetation from 332 

UAS classified maps agreed with the observed dominant vegetation on the ground in four out 333 

of five plots (80%) at each site. We obtained a similar result, with agreement in 8 out of 10 plots 334 

(80%) at the CRMS-3680 reference marsh site, while 100% of plots (four out of four) were in 335 

agreement at the LHC reference marsh site. Three of the incorrectly classified in-situ vegetation 336 

plots were misclassified as the Grasses class, when in situ sampling indicated these plots were 337 

dominated by Rushes. In addition, one incorrectly classified vegetation plot at CRMS-3680 was 338 

classified as Grasses when in situ sampling noted that this plot was shallow water just adjacent 339 

to the vegetated marsh edge. 340 

The comparison of vegetation community patterns showed distinct differences between 341 

UAS-derived data and field plot observations at the vegetation class level. Specifically, a 342 
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dendrogram based on UAS-derived data revealed two primary clusters that separated the 343 

created marsh sites (LHA and LHB) from the reference sites (LHC and CRMS-3680; Fig. 5). This 344 

separation was primarily due to the higher presence of Reeds and Shrubs/trees in the UAS-345 

classified maps at LHA and LHB, in contrast to the reference sites where these vegetation 346 

classes were either significantly less common or completely absent (Fig. 4). On the other hand, 347 

a dendrogram based on in-situ plot data grouped the sites into two clusters without 348 

distinguishing between created and reference marshes: one cluster included LHC, and the other 349 

combined LHA, LHB, and CRMS-3680 (Fig. 5). 350 

3.5 Power Analysis 351 

At the three marsh sites with existing monitoring plans our regression model indicated 352 

that their current levels of monitoring predicted a 50.6% (LHA: 2 plots), 51.5% (LHB: 4 plots), 353 

and 99.9% (CRMS-3680: 10 plots) chance of the resulting vegetation cover estimates being 354 

within 10% of the actual site-wide vegetation cover, respectively (Fig. 6). If our three Lake 355 

Hermitage marsh sites (LHA, LHB, and, LHC) had monitoring efforts similar to CRMS-3680 and 356 

other CRMS stations (i.e., 10 plots per site) our regression model predicted that it would result 357 

in a 59.9%, 57.9%, and 89.3% chance of the resulting vegetation cover estimates being within 358 

10% of the actual site-wide vegetation cover (Fig. 6). Finally, our regression models predicted 359 

that it would require 70, 79, 108, and 31 in situ plots at sites LHA, LHB, LHC, and CRMS-3680, 360 

respectively to provide vegetation cover estimates that would consistently (i.e. 100% of 361 

iterations) be within 10% of the actual site-wide vegetation cover (Fig 6). 362 

4. DISCUSSION AND CONCLUSIONS363 
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Our case study highlights the utility of UAS-based imagery for post-construction 364 

monitoring of coastal marsh restoration projects. Habitat classification map accuracies were 365 

slightly higher on the two reference sites relative to the two created sites and both UAS-based 366 

and in situ plot sampling identified greater habitat and vegetation heterogeneity at the created 367 

marsh sites. In addition, UAS-derived data discriminated between created and reference marsh 368 

sites based on vegetation class community similarity, while in-situ plot data did not likely due to 369 

differences in the innate spatial scales of the two sampling methods. The greater habitat and 370 

vegetation heterogeneity seen at created sites led to their slightly lower UAS classification 371 

accuracies and higher number of in situ plots needed to reliably characterize site-wide 372 

vegetation cover as predicted by our power analysis. In addition, our power analysis also 373 

indicates that all four sites examined in our study sites require increased sampling effort (i.e., a 374 

higher number of in situ plots per site) than what is currently implemented for these 375 

monitoring plans to consistently (i.e. 100% of the time) provide vegetation cover estimates that 376 

are within 10% of the actual site-wide vegetation cover at each site. 377 

4.1 UAS-based Habitat and Vegetation Classification 378 

The generation of accurate habitat and vegetation classifications using UAS-based 379 

imagery can be challenging in heterogeneous environments such as coastal marshes. Even so, 380 

classification total accuracies in our study ranged from 77.9 – 84.5% which is similar to the 381 

levels of classification accuracy observed in several prior UAS-based studies in coastal regions 382 

(C. Brooks et al. 2022; Broussard, Visser, and Brooks 2020; Cao et al. 2018; Harris 2020). In 383 

these prior studies and ours, homogenous marsh sites were more easily/accurately classified 384 



19 

compared to heterogeneous sites (Broussard, Visser, and Brooks 2020; Harris 2020). However, 385 

while the created sites in our study were more heterogenous and difficult to classify relative to 386 

reference sites, the created sites studied by Harris (2020) were more homogenous and easier to 387 

classify than adjacent reference sites. 388 

Our study encountered some of the challenges reported by other UAS-based marsh and 389 

coastal system studies (DiGiacomo et al. 2022; Dronova 2015; Manfreda et al. 2018). For 390 

example, our study required site-specific habitat classification algorithms due to differences in 391 

spectral baselines between sites that were likely due in part to differences in time of day when 392 

imagery was collected.  Prior studies have also found that the OBIA methodologies we used in 393 

our study can be limited by their site-specificity and often require trial and error when 394 

parametrizing classifiers to tailor them for sites (Dronova 2015). In addition, prior studies have 395 

noted how the use of DSMs in UAS-based habitat classifications can be heavily affected by 396 

variable ground elevations (DiGiacomo et al. 2022; Manfreda et al. 2018). Ground elevation 397 

survey conducted by a prior study at the three Lake Hermitages sites indicates much more 398 

variable average ground elevations at the two created sites (LHA: 0.18 ± 0.13 m; LHB: 0.07 ± 399 

0.11 m) relative to the reference site (LHC: 0.09 ± 0.04 m; Keppeler et al. 2023). The more 400 

variable ground elevation may have led to greater misclassification of tall vegetation classes 401 

such as Reeds and Shrubs/trees which relied on DSMs for classification. We found that the 402 

presences of senesced S. alterniflora at our sites with similar spectral similarity to other 403 

vegetation types prevented our ability to classify specific grass taxa and likely contributed to 404 

the lower classification accuracies obtained for Rushes. In addition, Phragmites australis, the 405 
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dominant plant within our Reeds category, was undergoing a die-back period on our sites at the 406 

time of image collection, creating large spectral value overlap with senesced marsh grasses and 407 

leading to a reliance on DSM values for distinguishing between the two classes. Doughty and 408 

Cavanaugh (2019) employed the use of a handheld spectrometer during their in-situ vegetation 409 

sampling to measure canopy reflectance and inform their later UAS classification. In retrospect, 410 

we find that this method could have improved our classification parameters by providing 411 

expected spectral values for each target class and recommend implementing the method in 412 

future monitoring efforts if within logistical constraints. 413 

Our case study also highlights several of the logistical benefits related to the application 414 

of UAS coastal marsh monitoring. First, this technology allows for mostly noninvasive 415 

monitoring compared to traditional in-situ methodology as exemplified in our study where the 416 

only site impact from our UAS collection occurred at the edge of the sites where our boat was 417 

moored (DiGiacomo et al. 2022; Manfreda et al. 2018). In addition, we were able to collect 418 

aerial imagery for ~170 hectares of marsh in a single day of flights. This demonstrates the 419 

potential for UAS-based imagery to expand the spatial coverage of monitoring projects in a 420 

manner that is not logistically feasible using solely in-situ methods. However, while time 421 

efficient in the field, collecting imagery over a single day was likely a contributing factor for the 422 

need for site-specific habitat classification algorithms due to differences in spectral baselines 423 

between sites.  While the framework for UAS analysis applied in our case study (i.e., imagery 424 

collection, processing, and classification algorithm development) can serve as a model, future 425 

studies will need to similarly balance the likely tradeoffs between rapid (e.g., flights conducted 426 
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throughout the day) vs. systematic (e.g., flights conducted at consistent times and conditions) 427 

imagery collection. 428 

4.2 Created vs. Reference Marsh Vegetation Communities 429 

Marsh restoration is enacted in the attempt to return systems to their original states 430 

prior to environmental impacts. Our study is not the first to assess if vegetation communities 431 

within the Lake Hermitage Marsh Creation Project are similar to those found in nearby 432 

reference marshes. Keppeler et al. (2023) performed a comprehensive analysis of vegetation 433 

communities at six marsh sites, including LHA, LHB, and LHC, in 2018 using in-situ, plot-based 434 

sampling. They reported these three sites as each being dominated first by marsh grasses 435 

followed by rushes.  Using Bray–Curtis resemblance matrices and hierarchical clustering of 436 

biomass data at the species level Keppeler et al. (2023) also found that vegetation communities 437 

varied among marshes. Specifically, the created marsh site LHB clustering with three of 438 

reference marsh sites and differed from created marsh site LHA and reference marsh site LHC 439 

which clustered together. 440 

Our UAS and in situ-based vegetation class data agree with Keppeler et al.'s (2023) 441 

findings in that LHA, LHB, and LHC were primarily dominated by marsh grasses followed by 442 

rushes. However, the results of our vegetation community similarity analyses differed from 443 

Keppeler et al.'s (2023) as well differing between our two data sources (i.e., UAS and in-situ 444 

plots). Specifically, UAS-derived data clustered our two created marshes (LHA and LHB) 445 

together as being different from the two reference marshes (LHC and CRMS-3680) which 446 
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clustered together. In contrast, in-situ-derived data clustered LHA, LHB and CRMS-3680 447 

together as having similar vegetation communities that differed from LHC. These contrasting 448 

results may be attributable to the inherent strengths and biases of each method. For example, 449 

UAS-derived vegetation data provides site-wide coverage but can be limited to estimating 450 

percent coverage of the dominant vegetation at lower taxonomic resolution. In contrast, in-situ 451 

derived vegetation data provides higher taxonomic resolution within the plot area but may not 452 

accurately reflect site-wide vegetation cover due to sampling biases related to the number and 453 

placement of plots. For example, the in-situ vegetation plots employed by Keppeler et al.'s 454 

(2023) and our case study were taken within 100 m of the edge of the sites, limiting the 455 

likelihood of data from these plots reflecting vegetation communities found within the interior 456 

of each site. Even so, there are past studies that have successfully used UAS for vegetation 457 

mapping with higher taxonomic resolution, especially where projects were targeting a specific 458 

species of vegetation. The efforts of Brooks et al. (2022) highlight their ability to classify 459 

Eurasian Watermilfoil separately from other submerged vegetation in the Great Lakes primarily 460 

due to significant spectral differences among their vegetation species. A separate study 461 

conducted along the banks of Lake Erie was able to accurately map Phragmites australis in the 462 

efforts to control the plant’s presence as an invasive species wherein they highlight NDVI and a 463 

canopy height model being features useful in separating Phragmites from other vegetation 464 

(Abeysinghe et al. 2019). 465 

4.3 Power Analysis of Plot-Based Sampling 466 
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Plot sampling is a common vegetation monitoring method. However, care should be 467 

taken when designing monitoring studies to ensure that the number and/or size of plots 468 

employed can reliably characterize vegetation communities and/or detect change within or 469 

between sites over time (Hao et al. 2021; Hoffmann et al. 2019; James-Pirri, Roman, and 470 

Heltshe 2007; Steyer et al. 2003). For example, James-Pirri et al. (2007) conducted a power 471 

analysis to determine the number of 1m2 plots needed for in-situ monitoring vegetation 472 

community change in New England salt marshes. They found that 20 plots were required to 473 

detect subtle changes over time, though in some cases between 5 to 15 plots were adequate to 474 

detect major shifts in vegetation communities. 475 

In our study, we sought to evaluate the ability of the current, plot-based vegetation 476 

monitoring plan at the Lake Hermitage Mash Creation Project and adjacent reference sites to 477 

characterize site-wide vegetation cover. The monitoring plan employed within this CWPPRA 478 

project is heavily based on the methods used at CRMS sites (Folse et al. 2023) as the goal of 479 

CRMS is to provide a network of regularly monitored reference sites that can be compared to 480 

CWPPRA restoration projects (Steyer et al. 2003). Past power analyses of CRMS have focused 481 

on the number and distribution of reference sites required to identify trends in vegetation 482 

communities across coastal Louisiana (Steyer et al. 2003). However, to our knowledge no prior 483 

study has assessed the number of plots required to accurately reflect site-wide vegetation 484 

cover within CRMS or CWPPRA marsh sites. 485 

Our analysis suggests that the current number of monitoring plots at Lake Hermitage 486 

Marsh Creation Project sites LHB (4) and the portion of LHA surveyed here (2) are insufficient to 487 
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reflect site-wide vegetation cover. Specifically, we found that approximately 50% of the time 488 

the current level of plot sampling at these two sites is likely to result in estimates that fall 489 

outside 10% of the actual site-wide vegetation cover. In contrast, the current number of 490 

monitoring plots at CRMS-3680 (10) is 99.9% likely to result in estimates that fall within 10% of 491 

the actual site-wide vegetation cover. Furthermore, our results indicate the effort needed to 492 

reliably characterize site-wide vegetation cover using plot-based sampling is site dependent, 493 

with larger more heterogenous sites (e.g., LHA and LHB) requiring a higher number of 494 

monitoring plots than smaller more homogeneous sites (e.g., CRMS-3680). Our conclusions 495 

support the recommendation made by prior researchers who suggests that heterogeneous sites 496 

require more accuracy sampling points than homogenous sites for statistically valid 497 

assessments to be performed (Congalton and Green 2019). 498 

We also found that the predicted number of sampling plots needed to reliably 499 

characterize site-wide vegetation cover at our four study sites (31-108 plots per site) is well 500 

outside of what would be likely logistically or financially feasible for CRMS or CWPPRA projects. 501 

As such, UAS-based vegetation surveys represent a more effective and cost-efficient method 502 

for characterization of site-wide vegetation cover at these sites. However, it is important to 503 

note that the primary goal of plot-based vegetation monitoring at CRMS sites and CWPPRA 504 

projects is not site-wide vegetation assessment per se, instead it is to generate floristic quality 505 

and productivity indices that can be used to track changes in vegetation assemblage over time 506 

associated with either natural variation (i.e., CRMS sites) or restoration activities (i.e., CWPPRA 507 

projects; Cretini et al. 2011).  Furthermore, it is important to recognize that the UAS-based 508 
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analysis employed in our case study only identifies the single dominant vegetation class in a 509 

discrete area, and not the relative cover of multiple vegetation taxa within plots as in-situ 510 

sampling. Even so, our results suggest the potential for the indices and trends derived from in-511 

situ plots at CRMS sites and CWPPRA projects to not necessarily be reflective of site-wide 512 

vegetation conditions. Given the differing spatial and taxonomic resolutions, using UAS and 513 

plot-based methods in combination is likely to provide a more accurate and comprehensive 514 

assessment view of vegetation communities than either method can provide in isolation. As 515 

such, we recommend that restoration managers in Louisiana embrace the potential for UAS-516 

based surveys to optimize the number and placement of monitoring plots at CWPPRA and 517 

CRMS sites to ensure they are reflective of the vegetation communities present, similar to how 518 

UAS-based approaches have been integrated into studies of other systems (Hao et al. 2021; 519 

Hoffmann et al. 2019). 520 

4.4 Conclusions and Recommendations 521 

This case study highlights the ability of high-resolution, multispectral UAS-based imagery 522 

to create accurate habitat and vegetation classification maps in brackish coastal marshes in 523 

Louisiana. It also illustrates the ability of UAS-based vegetation classification maps to compare 524 

site-wide vegetation communities among created and reference marsh sites in a manner not 525 

logistically feasible using traditional plot-based sampling. Furthermore, we found that unlike 526 

UAS-based surveys, the current, plot-based vegetation monitoring at the Lake Hermitage Marsh 527 

Creation Project does not accurately represent site-wide vegetation cover at both created and 528 

reference sites. Moreover, our case study illustrates the potential for UAS-based methods to 529 
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complement traditional plot-based sampling and aid restoration managers in optimizing the 530 

number and placement of plots to reliably characterize vegetation communities and assess the 531 

success of marsh creation projects intended to offset coastal land loss. 532 
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Table 1.  Class area statistics for the habitat and vegetation classes found on each site 714 
calculated from UAS-based classification maps. 715 

Site Class  Area (ha) Total area (%) Land area (%) 

LHA Water 14.8 22.2 - 
Land 52 77.8 - 

Reeds 3.2 4.8 6.2 
Trees/Shrubs 1.3 1.9 2.5 

Grasses 40.6 60.8 78.1 
Rushes 6.9 10.3 13.3 

LHB Water 22.6 27.1 - 
Land 60.7 72.9 - 

Reeds 9.4 11.3 15.5 
Trees/Shrubs 4.4 5.3 7.2 

Grasses 45.3 54.4 74.6 
Rushes 1.6 1.9 2.6 

LHC Water 4.8 31 - 
Land 10.7 69 - 

Reeds 0.1 0.6 0.9 
Trees/Shrubs 0 - - 

Grasses 9.7 62.6 90.7 
Rushes 0.9 5.8 8.4 

CRMS-3680 Water 1.6 28.1 - 
Land 4.1 71.9 - 

Reeds 0 - - 
Trees/Shrubs 0 - - 

Grasses 4 70.2 97.6 
Rushes 0.1 1.8 2.4 

716 

717 
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Table 2. The accuracy metrics of the imagery-based accuracy assessment performed for this 718 
project including Producer's, User’s, and Total Accuracies. Producer's accuracy is a measure of 719 
errors of omission/false negatives for each habitat class. User’s accuracy is a measure of errors 720 
of commission/false positives for each habitat class. Total accuracy describes how much of the 721 
target area/points were correctly classified by a classification map. 722 

Site Accuracy 
Metric 

Habitat Classes (%)
Water Shrubs/Trees Reeds Grasses Rushes Total 

LHA Producer's 70.4 83.3 77.8 91.7 44.1 - 
User's 80.9 100.0 70.0 77.3 68.2 - 
Total - - - - - 77.9

LHB Producer's 79.5 64.3 65.4 87.0 46.7 - 
User's 95.9 64.3 54.8 78.1 70.0 - 
Total - - - - - 79.2

LHC Producer's 75.0 - 80.0 89.7 85.7 - 
User's 100.0 - 80.0 83.9 60.0 - 
Total - - - - - 83.3

CRMS-3680 Producer's 63.6 - - 100.0 87.5 - 
User's 100.0 - - 82.4 70.0 - 
Total - - - - - 84.5

723 



33 

Figure Captions 724 

Figure 1. Location map of the four marsh areas used in this study. The dashed outline denotes 725 
the eastern half of LHA that was not surveyed during this study due to logistical constraints. 726 

Figure 2. Detailed UAS workflow performed in this project. Bold text below each step indicates 727 
the software used for each step of planning, processing, and analysis. Modified from Harris 728 
(2020). 729 

Figure 3. UAS-derived habitat classification maps of the created (a,b) and reference (c,d) marsh 730 
sites examined in this study. 731 

Figure 4.  Vegetation class composition of each site using UAS data (a) and in-situ vegetation 732 
composition (b,c) at both the class and taxa level. In-situ vegetation composition reflects 733 
percent by biomass at LHA, LHB, and LHC and percent cover at CRMS-3680. 734 

Figure 5. Similarity analyses of created (blue) and reference (green) marsh sites vegetation 735 
community composition at the class level using UAS (a) and in-situ (b) data. 736 

Figure 6. Power analysis with binomial regression curves indicating the probability of being 737 
within 10% of the true of site-wide vegetation cover with increasing number of in-situ sampling 738 
points (1-200 plots) at the created (a, b) and reference (b,c) marsh sites examined in this study. 739 

740 
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741 

Figure 1. Location map of the four marsh areas used in this study. The dashed outline denotes the eastern half of 742 
LHA that was not surveyed during this study due to logistical constraints. 743 

744 
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Figure 2. Detailed UAS workflow performed in this project. Bold text below each step indicates the software used 746 
for each step of planning, processing, and analysis. Modified from Harris (2020). 747 
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749 

Figure 3. UAS-derived habitat classification maps of the created (a,b) and reference (c,d) marsh sites examined in 750 
this study. 751 

752 
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753 

Figure 4.  Vegetation class composition of each site using UAS data (a) and in-situ vegetation composition (b,c) at 754 
both the class and taxa level. In-situ vegetation composition reflects percent by biomass at LHA, LHB, and LHC and 755 
percent cover at CRMS-3680. 756 
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757 

Figure 5. Similarity analyses of created (blue) and reference (green) marsh sites vegetation community composition 758 
at the class level using UAS (a) and in-situ (b) data. 759 

760 
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761 

Figure 6. Power analysis with binomial regression curves indicating the probability of being within 10% of the true 762 
of site-wide vegetation cover with increasing number of in-situ sampling points (1-200 plots) at the created (a, b) 763 
and reference (b,c) marsh sites examined in this study. 764 
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