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Abstract 

Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as 
an assessment of the eutrophication state of a waterbody and are the primary biogeochemical 
rates causing oxygen depletion in coastal waters. However, given the additional labor involved in 
measuring biogeochemical rate processes, few monitoring programs regularly measure these 
properties and thus few long-term monitoring records of plankton respiration exist. An eight-
year, biweekly plankton community respiration rate time series was analyzed as part of a 
monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. 
We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated 
co-variates with respiration rate. Additionally, statistical and kinetic models including variables 
both water temperature and particulate nitrogen were able to explain 74% of the variability in 
respiration. Over the long-term record, both particulate nutrients and respiration rate were 
elevated when measured at higher tides. Separate measurements of respiration rate during ten 
consecutive days and during high and low tide on three separate days also support the 
enhancement of respiration with high tide. The enhancement was likely due to the import of 
particulate nutrients from the highly productive mid-bay region. This analysis of the longest 
consistently measured community respiration rate dataset in Chesapeake Bay has implications 
for how to interpret long-term records of measurements made at fixed locations in estuaries. 

Introduction 

Worldwide, the depletion of dissolved oxygen concentrations in estuaries and marine ecosystems 
is a growing ecological problem. Low dissolved oxygen conditions, often referred to as hypoxia 
(low oxygen) or anoxia (no oxygen) degrades habitat conditions and can cause mortality or 
physiological stress for many organisms (e.g., Diaz and Rosenberg 2008; Breitburg et al. 2018). 
Oxygen depletion can also trigger a cascade of biogeochemical reactions that lead to elevated 
recycling of nitrogen and phosphorus (e.g., Conley et al. 2009; Testa and Kemp 2012), 
potentially sustaining hypoxic conditions. Given that future changes in water temperature, 
freshwater input, nutrient loading, and sea level will likely alter oxygen dynamics through both 
physical (e.g., solubility, stratification) and biogeochemical (respiration rates) processes, there is 
a need to better constrain the growing number of projections of oxygen depletion in estuaries 
worldwide (Irby et al. 2018; Laurent et al. 2018; Ni et al. 2019; Meier et al. 2019). 

Respiration is the primary biogeochemical driver of oxygen depletion, and the organic matter 
fueling water-column respiration is typically derived from surface water productivity (Kemp et 
al. 2005; Rabalais et al. 2014). Consequently, elevated eutrophication associated with increases 
in primary production (Boynton et al. 1982) and/or phytoplankton biomass (e.g., Harding and 
Perry 1997) often leads to coastal hypoxia and anoxia. Although eutrophication is defined as the 
rate of input of organic matter into aquatic ecosystems, it is typically assessed using more easily 
available concentration or “state” measures (e.g., chlorophyll-a, dissolved oxygen, or nutrient 
concentrations) because they are less expensive and more readily available than rates of 
biogeochemical processes (Testa et al. 2022). Thus, a more accurate assessment of 
eutrophication would involve using measures of biogeochemical rate processes (e.g., respiration) 
that provide more direct estimates of the relevant processes that consume oxygen. Moreover, 
microbial respiration has been identified as a critical, yet unconstrained rate process in the ocean 
despite its relevance for deoxygenation (Robinson 2019). 
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Despite the value of biogeochemical rate processes for understanding eutrophication and 
associated oxygen depletion, few long-term, consistently measured rates of these processes have 
been collected in the coastal zone. For example, in the few systems where measurements of 
sediment-water fluxes of oxygen and nitrogen (proxies for sediment respiration) have been 
collected over multiple decades, clear metabolic signals of reduced eutrophication have been 
identified as nutrient loads have been reduced (Taylor et al. 2020; Testa et al. 2022). Perhaps 
more numerous are long-term records of plankton primary productivity, given the widespread 
application of the 14C method since the mid-20th century (e.g., Boynton et al. 1982; Cloern and 
Jassby 2010) and the growing accuracy of remote-sensing or biogeochemically-derived 
estimates (Benway et al. 2019). In contrast, few long-term records of water-column community 
respiration have been collected in estuaries, despite the central roles these rates play in our 
understanding of oxygen depletion and in constraining models used to predict oxygen depletion 
into the future. This gap exists despite the fact that many monitoring programs have been 
collecting estuarine biogeochemical and ‘water quality’ data for over four decades. 

Here we report on an analysis of a 8-year, monitoring effort to measure surface water community 
respiration rates in a single location at the mouth of the Patuxent River estuary where it 
exchanges with Chesapeake Bay, in eastern North America. The Patuxent River is a coastal plain 
tributary of the Chesapeake Bay that experiences depleted oxygen conditions during the summer 
(Jordan et al. 2003). The goals of this analysis were (1) to develop a suite of statistical and 
numerical models to determine which factors influenced respiration rate variability, toward a 
greater understanding of how these rates will be influenced by future change, and (2) make these 
measurements available to the numerical modeling community better constrain projections of 
climate effects and management actions. We hypothesized that variability in respiration rate 
would be elevated by temperature and freshwater inputs through physiological stimulation and 
the import or production of organic substrate, but we also hypothesized that respiration would 
also be enhanced through the influence of labile organic matter import from adjacent Chesapeake 
Bay. This study highlights how long-term hydrographic and biogeochemical measurements can 
be used to assess controls on the eutrophication state of a tidal estuary and how they would 
benefit long-term water monitoring programs. 

Methods 

Study Site and Biogeochemical Data 
The Chesapeake Biological Laboratory (CBL) has maintained daily monitoring of temperature 
and salinity at its research pier since 1938 (Beaven 1960) and has recently (2015) installed a 
comprehensive environmental monitoring system (https://cblmonitoring.umces.edu/). The CBL 
pier is situated in the lower Patuxent River estuary where the Patuxent meets the mainstem of 
Chesapeake Bay (Fig. 1). The water depth at the site is 2.5 m and surface and bottom salinity 
measurements verify that the water-column is consistently well mixed. We made biweekly 
measurements of dissolved inorganic nitrogen (ammonium, nitrate + nitrite), orthophosphate,  
total dissolved phosphorus and nitrogen, total suspended solids, particulate phosphorus, carbon, 
and nitrogen, and active chlorophyll-a,  (Fig. 2 B, C) using standard methods at the Chesapeake 
Biological Laboratory Nutrient and Analytical Services Laboratory (NASL; 
https://www.umces.edu/nutrient-analytical-services-laboratory). At each sampling, a YSI Pro 30 
was used to measure surface and bottom water temperature and salinity (Fig. 2D). Water-column 
community respiration rate was also measured biweekly by incubating triplicate 300 mL 
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borosilicate bottles in-situ, suspended ~1 m below the water surface,  and measuring the change 
in oxygen concentration over the course of the incubation ( Fig.  2A). Oxygen was  measured  
within 5 minutes of collection  via a  YSI ProDO optical oxygen meter  (sensor accuracy is  
reported to be  ±0.1 mg/L)  and incubations were either 6 hours long (May to October) or 24 hours  
long (November to April). B ottles were painted black and wrapped in opaque bags before being  
incubated in-situ from a floating pier in the same location where sample water was collected.  
Rates were considered  to be non-detectable if oxygen  did not decrease during the  experiment, 
and we assigned  a zero value to these rates. We ran models where these z ero values were omitted  
from the dataset, and the model results were not different. This analysis uses the entire time-
series  made  from March 2015 to December 2022, using the mean of the  triplicate respiration  
rates as the daily value. We also measured  respiration rates  at higher  frequencies during targeted  
experiments  on two occasions, using the same methods as previously described. First, we  
sampled on 10 consecutive days  between June 27th  and July 11th, 2016 (Bonilla-Pagan  2016), 
where  community  respiration  was measured  at the  same time (~9:30 AM) each day, along w ith 
the associated biogeochemical measurements of the pier monitoring program.  In this way the tide  
height and stage changed for each day, but the sampling time stayed constant.  Secondly, we 
measured  community  respiration and particulate nitrogen (PN)  on 3 consecutive days between  
July 25-27, 2023, but sampled  at the time of  both high and low  tide  each day.  Tide stage was  
determined using  water level data collected by the National Oceanographic and Atmospheric 
Administration tide gauging station location on the CBL Pier (NOAA Tides and Currents station 
8577330, S olomons Island, Maryland).  
 
Statistical Analysis   
The relationship between  community  respiration rate (hereafter ‘respiration rate’) and all  
variables measured in the pier monitoring program was  first  examined  by performing  linear  
regression.  We then  sought to predict  the respiration rate with two types of  existing models  
designed  for water quality  assessment.  First,  we applied  generalized additive models (GAM)  that 
incorporated terms for season, year  (i.e., a long-term trend), and variability  in water-column 
conditions.  We used  a  GAM  approach t hat is comparable to those  used for evaluation of  
ecosystem response to nutrient reduction efforts  (Murphy  et al. 2019), but   here we  performed  
hypothesis testing  using different environmental  predictors of respiration rate.  The GAMs  
estimate respiration rate  from  the sum of smooth functions of independent  variables.  The  first  
model,  called  the  “base” GAM  model, only  included terms for  season and  year  (Eq.  1):   
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐶𝐶 + 𝑓𝑓1(𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅) + 𝑓𝑓2(𝐷𝐷𝑅𝑅𝐷𝐷  𝑅𝑅𝑓𝑓  𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅)  
(1)  

where the Day of Year  function was sinusoidal and approximated the annual water temperature  
cycle. The secondary models included additional terms  relative to  the base  GAM, including  
functions for temperature, river discharge, chlorophyll-a, dissolved nutrients, and particulate  
nitrogen  (PN) concentration. Model assessment revealed that the base model with a term for PN  
explained the highest amount of variability in the  respiration rate (Eq. 2).  
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶 + 𝑓𝑓1(𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅) + 𝑓𝑓2(𝐷𝐷𝑅𝑅𝐷𝐷  𝑅𝑅𝑓𝑓  𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅) +  𝑓𝑓3([𝑃𝑃𝑃𝑃]2) 
(2)  
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187 The GAM models were  generated using the  gam()  function in the mcgv  package in R  (Wood 
2018). W e also modeled respiration rate with a kinetic model  comparable to formulations  
commonly used to estimate phytoplankton respiration in water quality  models  (Testa et al.  2014;  
Cerco  et al.  2000). This  kinetic model estimates respiration  rate as  a function of temperature and  
PN concentration (Eq.  3).  
  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑘𝑘 ∗ 𝜃𝜃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−20) ∗  [𝑃𝑃𝑃𝑃]2  
(3)  

where k is the respiration rate at 20  oC, 𝜃𝜃  is the temperature sensitivity coefficient (1.08), and 
𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅  is water temperature at the time of the rate measurement. We solved for the value of  k in  
the kinetic model by  finding the value that  generated the  smallest  sum of squares  in the model-
observation comparison.  To assess the  goodness of fit of each model  in reproducing the observed 
respiration rate, three d ifferent statistics were computed: sum of squares error (SSE), the  
correlation coefficient squared  (𝑅𝑅2),  and the root mean squared error (RMSE).  The SSE is the 
sum of the squared differences between  the estimated and observed values  where values close to  
zero  indicate less variation  measured in the units of the observed values squared.  The 𝑅𝑅2  statistic  
measures the tendency of the estimated values and the observed values to vary together,  where 
values vary from 0 to 1 with ideal values close to one  (Stow 2009).  RMSE is a measure of the 
size of the differences between estimated and observed values,  measured in units of the observed 
values  where values near  zero  indicate a close match (Stow 2009).  
 
Tidal  controls on particulate  matter  
We then sought to understand what forcing variables at this location influenced PN and thus  the 
respiration rate.  GAMs that included Susquehanna  River  and Patuxent River discharge did not  
reproduce the observed variability in respiration rate. Prior analysis of a 10-day time-series of  
respiration at this location suggested  a tide-stage effect on respiration (Bonilla-Pagan 2016), and 
given  that this location is at the interface of the Chesapeake Bay and the lower Patuxent estuary,  
we suspected that high-productivity Chesapeake  Bay water  could influence this site. Thus, the 
relationship of the tidal  stage versus the respiration rate was  examined  in more detail. First, we  
compared  respiration rate  during ebbing tide to the respiration rate measured during flooding  
tide. A  Student’s  t  test was  used to determine if the respiration rates differed by tide  stage.  The 
respiration  rate and PN  concentration data were  then separated by tide height into groups of  
0.125 m . Kruskal-Wallis rank sum  tests  was used to determine if the mean respiration rate or 
mean  PN concentration  of the tide height  groups were  different, with a Dunne’s post-hoc used 
for pairwise  comparisons.  
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This analysis of  an eight  year time series of respiration rate and key associated environmental  
variables suggests  several time scales of variability  (Fig. 2). Respiration rate had a regular  
seasonal cycle, with higher rates during the  summer period  with higher temperatures, and 
respiration rate was positively related to water temperature (linear regression, r2  = 0.4, p <  
0.001). PN, chlorophyll-a, and salinity  also had  somewhat regular seasonal patterns that were 
sometimes  interrupted by more episodic variability  (Fig. 2).  For example, PN, salinity, and 
chlorophyll-a had  a consistent seasonal cycle in the first  three  years of the record (2015-2017)  
that was interrupted by  a large increase in  chlorophyll-a  and PN in 2018 (and an associated 
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reduction in salinity and increase in respiration rate), followed by a three year period with less 
substantial seasonal cycles (Fig. 2). After the 2018 low-salinity event, which was associated with 
a record precipitation period (see Discussion), chlorophyll-a and PN were somewhat elevated 
with lower variability and respiration rates reached higher seasonal maxima (Fig. 2). 

The particulate nutrient concentrations (nitrogen, phosphorus, and carbon) were the only 
variables tested aside from temperature that explained substantial variability in respiration rate 
(r2 > 0.25). Linear regression results indicated that particulate carbon had an r2 of 0.285, while 
particulate phosphorus and nitrogen had an r2 of 0.542 and 0.514 respectively (Fig. 3). 
Consequently, particulate nutrient concentrations were the only variables whose inclusion in 
GAMs led to high predictability for respiration rate, where the PN-based GAMs resulted in the 
best goodness of fit measures (Table 1) relative to other models (note the same model with PP 
yielded similar results; r2 = 0.72 and RMSE = 0.29). The base GAM model only captured the 
overall trend and seasonality in the respiration rate, and GAMs with freshwater discharge, water 
temperature, and chlorophyll-a as predictive terms did not reduce SSE, RMSE, or r2 (Table 1). 
Only the PN-based GAM and the kinetic model were able to capture the larger periods of 
variability in the respiration rate time-series (Fig. 4). Because PN and PP explained more 
variability in respiration rate than PC, we also built GAMs with the PC:PN and PC:PP ratio with 
the assumption that these variables, like PN and PP, reflect organic material lability. These 
models did not perform better than the PN-only models. We also ran the models after removing 
the zero values from the dataset, and the resulting models only improved the model fits slightly 
(RMSE = 0.37, 0.35, 0.27 for the Kinetic, Base GAM, and PN-GAM, respectively). 

The respiration rates measured at the same time of day during a 10 day period in 2016 were 
positively, but weakly related with tidal height (Fig. 5; r2 = 0.29; Bonilla-Pagan 2016). The 2023 
experiment, which sampled twice a day (at high tide and low tide) during a 3 day period, found 
that the respiration rate was higher at high tide compared to low tide on two of the three days 
sampled (Fig. 6). In the two days where respiration rates were higher at high tide, surface water 
PN concentrations were also higher at high tide (Fig. 6). Given the apparent relationship between 
tidal height and respiration rate, we examined the relationship of these variables over the long-
term respiration rate data set. The difference in the respiration rate during the ebbing tide was not 
different than the respiration rate during the flooding tide at a significance level of 0.05 (p = 
0.766). However, there was a difference in the respiration rate at different tide heights at a 
significance level of 0.05 (p = 0.00123). Specifically, the respiration rates at tide heights of 0.25-
0.375 m were larger than 0-0.125 m (Fig. 7). As the tide height increased, the upper limit of the 
respiration rate increased (Fig. 7). The patterns of PN over different ranges of tide height also 
had a similar relationship as respiration rate (higher PN at higher tide; Fig. 4). However, there 
was not a difference in the PN at different tide heights at a significance level of 0.05 (p = 0.3). 

Discussion 

This analysis aimed to determine which factors were most important in affecting variability in 
the respiration rate using a rare long-term record. Global syntheses have found that water column 
respiration is the dominant sink for oxygen in waters deeper than 10 meters, and even in 
shallower systems like the one described here, water-column respiration can be 50% of total 
oxygen consumption (Boynton et al. 2018). Thus, any advance in understanding controls on 
water column respiration will help improve our understanding of oxygen depletion and thus our 
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ability to effectively represent this process in models. We found that water temperature and 
particulate nutrients (carbon, phosphorus, and nitrogen) were most strongly related to respiration 
compared to all other variables measured, and that models that included both water temperature 
and particulate nutrients (PN and PP) best reproduced the temporal variability in respiration. 
Both respiration rates and PN tended to be elevated at high tide, suggesting that the local 
metabolic rates are sensitive to transport of organic-enriched waters from adjacent habitats. 

Water temperature has been well-described as a strong seasonal driver of respiration in 
Chesapeake Bay (e.g., Smith and Kemp 1995), and this variable was an important factor in 
predictive models (GAM, kinetic model) of respiration rate developed in this study. This is 
consistent with a wealth of literature describing the positive relationship between temperature 
and respiration rate across various ecosystems and methods (Yvon-Durocher et al. 2012; Caffrey 
et al. 2014; Bordin et al. 2023; Wikner et al. 2023). Although the record of respiration 
measurements in this study was not long enough to address climate-scale warming trends that 
have been detected at this location (Orth et al. 2017), the strong temperature effect suggests that 
future increases in temperature could contribute to higher respiration rates at this location. Water 
temperature only explained 40% of the variability in the respiration rate in this dataset, however, 
suggesting that other variables control variability in these rates. 

The inclusion of PN or PP in both the GAM and kinetic model increased the power of the models 
to reproduce variability in the respiration rate. This is consistent with the fact that respiration rate 
can be amplified with nutrient enrichment (Del Giorgio 2005), whereby elevated nutrient loads 
lead to elevated uptake of inorganic nutrients and thus incorporation into particulate matter. 
Estuarine particulate matter is composed of both living and dead organic material, and thus 
represents both actively respiring phytoplankton and microbially-driven oxidation of detritus. 
This is consistent with recent global syntheses that found organic material to be as strong a 
predictor of respiration as temperature (Wikner et al. 2023). The fact that PN was more 
correlated with respiration than dissolved organic nitrogen (DON) suggests that either the DON 
pool as measured was not reflective of labile dissolved organic material, or that algal respiration 
(whereby higher PN = higher algal biomass) is a dominant component of the measured rates. The 
fact that a squared term for PN provided a better fit in both the GAM and kinetic models reflects 
the possibility that PN may represent both non-living PON and actively growing algal cells. PN 
and PP had a much higher correlation with respiration compared to PC, suggesting that labile, 
newly-produced organic matter is supporting respiration and consistent with the fact that the 
middle and lower reaches of Chesapeake Bay are less influenced by the bulk carbon pool (Smith 
and Kemp 1995). 

The influence of episodic events and other physical factors on respiration rates were also evident 
in the variations in respiration rate. Although freshwater discharge and salinity were not 
substantial contributors to predictive models (Table 1), the effect on respiration of a large 
precipitation and discharge event is evident in the record (e.g., Fig. 2). In 2018, parts of 
Maryland, including the Patuxent River watershed, experienced record precipitation levels 
(NOAA 2019) and during this event the respiration rate was 1.5 to 2 times above the typical 
summer peaks (Fig. 2A). Both PN and chlorophyll-a peaked during this period, suggesting that 
elevated riverine flows supported additional algal growth and respiration (Boynton and Kemp 
2000; Chen et al. 2009). This sensitivity to large river flow events is consistent with prior 
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analyses that showed phytoplankton biomass in the Patuxent River estuary to be highly 
responsive to freshwater discharge (Testa et al. 2008).The fact that discharge and salinity were 
not good predictors of respiration rate over the entire record, however, is due to the fact that the 
lower Patuxent is influenced by both the Patuxent River and the Susquehanna River (through 
exchange with Chesapeake Bay), whose discharge volume and timing are distinct. As a result, 
high and incoming tides can often have lower salinity than ebb/low tide (data not shown), owing 
to the fact that the mainstem Bay can have low salinity when Susquehanna River discharge 
(whose watershed extends >300 km to the north) has been high. 

Perhaps the most surprising result of this analysis was the positive correlation of respiration rate 
with tide heights across the three types of analyses and experiments performed. Because PN was 
also observed to have a positive relationship with tide height, this effect of tide may simply 
reflect a higher productivity within adjacent waters that transit the site. Respiration rate was also 
higher at the lowest PC:PN ratios (Kruskal-Wallis, p = 0.2), suggesting that the most N-rich 
organic material enhances respiration. Given the proximity of the mainstem Chesapeake Bay to 
this location (Fig. 1) and an assumption that high tide waters are Chesapeake Bay-derived, we 
hypothesized that the study site is highly influenced by adjacent waters. The fact that high tide 
associated positively with respiration while there were not differences between flood and ebb 
rates likely results from the fact that tidal velocities are out of phase with water level at this site 
and because there are asymmetries in flood and ebb velocities (data not shown). The region of 
Chesapeake Bay that exchanges with the lower Patuxent estuary is the most productive region of 
the Bay (Smith and Kemp 1995; Feng et al. 2015), is rich with labile organic matter, and has 
been previously found to influence productivity in the lower Patuxent estuary (Testa et al. 2008). 
This result is consistent with other studies that have found an influence of organic material from 
Chesapeake Bay on metabolic properties in the lower reaches of other Chesapeake Bay 
tributaries (e.g., Lake and Brush 2008), while import of organic matter from adjacent seaward 
waters has been implicated in supporting local respiration rates (Smith and Hollibaugh 1997). 
Despite the evidence presented here to suggest the influence of tide height at the study location, 
there still remains substantial unexplained variability in the respiration rates, reflecting the varied 
factors that drive metabolism in estuaries. For example, the suggestive, but inconsistent 
relationship between tide height and respiration over the consecutive day experiments could 
result if conditions stimulated organic matter production during prior days and in adjacent water, 
leading to elevated respiration measured at the site. Future work could address this hypothesis. 

The estimates of respiration rate presented here are comparable to in magnitude to similar 
measurements made in Chesapeake Bay, but differ from a range of other types of estuarine 
environments. In Chesapeake Bay, Smith and Kemp (1995) measured respiration rates in 
mainstem surface waters, with rates ranging from 0.2 to 2.0 g O2 m-3 d-1 in the mid-Bay region 
over an annual cycle, where the annual mean (± SD) of rates measured in this study were 1.3 ± 
0.3 g O2 m-3 d-1. Smith and Kemp (2003) also measured respiration rates of 1.2 g O2 m-3 d-1 in 
August at 38oN, comparable to the long-term mean of this study’s August rates of 1.1 ± 0.2 g O2 
m-3 d-1, and reinforcing the potential influence of mainstem waters on the lower Patuxent estuary. 
These summer rates are also comparable to those measured near the study site in the Patuxent 
River during June-August 1967, where Flemer and Olmon (1967) reported surface water rates of 
0.9 to 1.5 g O2 m-3 d-1. The Patuxent rates were typically higher than many other estuaries and 
coastal shelves, whose rates were typically less than 1.0 g O2 m-3 d-1 and whose mean was 
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typically less than 0.5 g O2 m-3 d-1 (e.g. Dortch et al. 1994; Smith and Hopkinson 2005). This 
may reflect the fact that the Patuxent River estuary remains a eutrophic estuary, resulting from 
high rates of nutrient loading (Testa et al. 2008). However, the Patuxent rates were lower than 
those measured in historically highly eutrophic estuaries (e.g., Roskilde Fjord; Jensen et al. 
1990), in some lagoons (Herrera-Silveira 1998) with presumably high residence times, and in 
shallow nearshore environments (Caffrey et al. 2004) that are often influenced by wetlands and 
are highly productive. 

An analysis of 8 years of regularly measured respiration rates at a fixed station identified 
multiple controls on metabolic rates in coastal ecosystems. These rates are not typically included 
in eutrophication assessments because of the higher cost associated with measuring 
biogeochemical rates (Testa et al. 2022), but this analysis highlights the value of collecting such 
time-series. These findings are relevant for water quality management in Chesapeake Bay, 
revealing that some regions of tributary water bodies are highly influenced by adjacent water 
parcels at tidal time scales. These results also offer a way to test numerical model formulations 
for a key metabolic rate (respiration or oxygen consumption), possibly improving their ability to 
make accurate predictions of the effects of climate and nutrient management. We conclude that 
similar respiration data measured by the simple, fast approach used in this study could be more 
widely implemented and lead to better assessments of eutrophication. 
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Model Type   SSE 𝒓𝒓𝟐𝟐   RMSE 
 GAM with time and PN   14.64  0.741  0.282 

  GAM with time and C:N Ratio  14.56  0.742  0.281 
 GAM with time and chlorophyll-a   18.23  0.678  0.315 

 Kinetic Model  20.49  0.669  0.334 
 GAM with time and temperature   20.48  0.637  0.334 
  GAM with time and C:P Ratio  22.78  0.597  0.352 

  Base GAM with time  22.92  0.594  0.353 
  GAM with time and discharge  22.90  0.593  0.353 
  GAM with time and salinity  22.89  0.595  0.352 
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Figure 1: Map of the Patuxent River estuary, including the location of the CBL Research Pier 
where respiration rates and biogeochemical data were collected. Note location of the Patuxent 
River on the western shore of Chesapeake Bay in the mid-Atlantic region of the USA. 
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Figure 2. Biweekly measurements of community respiration rate (A), chlorophyll-a (B), 
particulate nitrogen (C), and salinity (black line) and water temperature (red line) (D) collected 
from surface water at the CBL research pier monitoring program from 2015-2022. 
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611 Figure  3. Plots of  community  respiration rate versus  surface water  particulate nitrogen  (A),  

particulate phosphorus (B), and particulate carbon (C). E quations for linear regression of  
respiration rate and particulate material included  with corresponding statistics.  
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Figure 4. Time-series (2015-2022) of the observed respiration rates (open circles) and the three 
candidate models, including the time-only GAM (black line), the time- and PN-based GAM 
(blue line), and the kinetic model (red line). 
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Figure 5. Relationship between respiration rate and mean tide height from the 10-day 
consecutive sampling carried out in June and July of 2016. Error bars represent the standard 
deviation of triplicate incubations on each sampling day. Equations for linear regression of 
respiration rate and particulate material ide height included with corresponding statistics. 
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Figure 6. Respiration rate measured at high and low tides from the consecutive 3-day sampling 
(A, bar = mean +/-SD of triplicate incubations) and particulate nitrogen measured at high and 
low tides (B, no replicates). 
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Figure 7. Box plots of surface-water particulate nitrogen (A) and respiration rate (B) aggregated 
versus ranges of tide height for the bi-weekly samples collected in this study. For each box, the 
central line is the median, the top and bottom of the box are the 75th and 25th percentiles, 
respectively, the vertical lines capture the remaining range of the data, and the black circles are 
outliers. Box widths indicate range of tide heights in group. In panel B, the hatched lines indicate 
groups whose differences had a p-value less than 0.05 as determined by a Kruskal-Wallis with 
Dunn’s post-hoc comparison. 
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