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Abstract

Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as
an assessment of the eutrophication state of a waterbody and are the primary biogeochemical
rates causing oxygen depletion in coastal waters. However, given the additional labor involved in
measuring biogeochemical rate processes, few monitoring programs regularly measure these
properties and thus few long-term monitoring records of plankton respiration exist. An eight-
year, biweekly plankton community respiration rate time series was analyzed as part of a
monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay.
We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated
co-variates with respiration rate. Additionally, statistical and kinetic models including variables
both water temperature and particulate nitrogen were able to explain 74% of the variability in
respiration. Over the long-term record, both particulate nutrients and respiration rate were
elevated when measured at higher tides. Separate measurements of respiration rate during ten
consecutive days and during high and low tide on three separate days also support the
enhancement of respiration with high tide. The enhancement was likely due to the import of
particulate nutrients from the highly productive mid-bay region. This analysis of the longest
consistently measured community respiration rate dataset in Chesapeake Bay has implications
for how to interpret long-term records of measurements made at fixed locations in estuaries.

Introduction

Worldwide, the depletion of dissolved oxygen concentrations in estuaries and marine ecosystems
is a growing ecological problem. Low dissolved oxygen conditions, often referred to as hypoxia
(low oxygen) or anoxia (no oxygen) degrades habitat conditions and can cause mortality or
physiological stress for many organisms (e.g., Diaz and Rosenberg 2008; Breitburg et al. 2018).
Oxygen depletion can also trigger a cascade of biogeochemical reactions that lead to elevated
recycling of nitrogen and phosphorus (e.g., Conley et al. 2009; Testa and Kemp 2012),
potentially sustaining hypoxic conditions. Given that future changes in water temperature,
freshwater input, nutrient loading, and sea level will likely alter oxygen dynamics through both
physical (e.g., solubility, stratification) and biogeochemical (respiration rates) processes, there is
a need to better constrain the growing number of projections of oxygen depletion in estuaries
worldwide (Irby et al. 2018; Laurent et al. 2018; Ni et al. 2019; Meier et al. 2019).

Respiration is the primary biogeochemical driver of oxygen depletion, and the organic matter
fueling water-column respiration is typically derived from surface water productivity (Kemp et
al. 2005; Rabalais et al. 2014). Consequently, elevated eutrophication associated with increases
in primary production (Boynton et al. 1982) and/or phytoplankton biomass (e.g., Harding and
Perry 1997) often leads to coastal hypoxia and anoxia. Although eutrophication is defined as the
rate of input of organic matter into aquatic ecosystems, it is typically assessed using more easily
available concentration or “state” measures (e.g., chlorophyll-a, dissolved oxygen, or nutrient
concentrations) because they are less expensive and more readily available than rates of
biogeochemical processes (Testa et al. 2022). Thus, a more accurate assessment of
eutrophication would involve using measures of biogeochemical rate processes (e.g., respiration)
that provide more direct estimates of the relevant processes that consume oxygen. Moreover,
microbial respiration has been identified as a critical, yet unconstrained rate process in the ocean
despite its relevance for deoxygenation (Robinson 2019).
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Despite the value of biogeochemical rate processes for understanding eutrophication and
associated oxygen depletion, few long-term, consistently measured rates of these processes have
been collected in the coastal zone. For example, in the few systems where measurements of
sediment-water fluxes of oxygen and nitrogen (proxies for sediment respiration) have been
collected over multiple decades, clear metabolic signals of reduced eutrophication have been
identified as nutrient loads have been reduced (Taylor et al. 2020; Testa et al. 2022). Perhaps
more numerous are long-term records of plankton primary productivity, given the widespread
application of the '*C method since the mid-20" century (e.g., Boynton et al. 1982; Cloern and
Jassby 2010) and the growing accuracy of remote-sensing or biogeochemically-derived
estimates (Benway et al. 2019). In contrast, few long-term records of water-column community
respiration have been collected in estuaries, despite the central roles these rates play in our
understanding of oxygen depletion and in constraining models used to predict oxygen depletion
into the future. This gap exists despite the fact that many monitoring programs have been
collecting estuarine biogeochemical and ‘water quality’ data for over four decades.

Here we report on an analysis of a 8-year, monitoring effort to measure surface water community
respiration rates in a single location at the mouth of the Patuxent River estuary where it
exchanges with Chesapeake Bay, in eastern North America. The Patuxent River is a coastal plain
tributary of the Chesapeake Bay that experiences depleted oxygen conditions during the summer
(Jordan et al. 2003). The goals of this analysis were (1) to develop a suite of statistical and
numerical models to determine which factors influenced respiration rate variability, toward a
greater understanding of how these rates will be influenced by future change, and (2) make these
measurements available to the numerical modeling community better constrain projections of
climate effects and management actions. We hypothesized that variability in respiration rate
would be elevated by temperature and freshwater inputs through physiological stimulation and
the import or production of organic substrate, but we also hypothesized that respiration would
also be enhanced through the influence of labile organic matter import from adjacent Chesapeake
Bay. This study highlights how long-term hydrographic and biogeochemical measurements can
be used to assess controls on the eutrophication state of a tidal estuary and how they would
benefit long-term water monitoring programs.

Methods

Study Site and Biogeochemical Data

The Chesapeake Biological Laboratory (CBL) has maintained daily monitoring of temperature
and salinity at its research pier since 1938 (Beaven 1960) and has recently (2015) installed a
comprehensive environmental monitoring system (https://cblmonitoring.umces.edu/). The CBL
pier is situated in the lower Patuxent River estuary where the Patuxent meets the mainstem of
Chesapeake Bay (Fig. 1). The water depth at the site is 2.5 m and surface and bottom salinity
measurements verify that the water-column is consistently well mixed. We made biweekly
measurements of dissolved inorganic nitrogen (ammonium, nitrate + nitrite), orthophosphate,
total dissolved phosphorus and nitrogen, total suspended solids, particulate phosphorus, carbon,
and nitrogen, and active chlorophyll-a, (Fig. 2 B, C) using standard methods at the Chesapeake
Biological Laboratory Nutrient and Analytical Services Laboratory (NASL;
https://www.umces.edu/nutrient-analytical-services-laboratory). At each sampling, a YSI Pro 30
was used to measure surface and bottom water temperature and salinity (Fig. 2D). Water-column
community respiration rate was also measured biweekly by incubating triplicate 300 mL
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borosilicate bottles in-situ, suspended ~1 m below the water surface, and measuring the change
in oxygen concentration over the course of the incubation (Fig. 2A). Oxygen was measured
within 5 minutes of collection via a YSI ProDO optical oxygen meter (sensor accuracy is
reported to be 0.1 mg/L) and incubations were either 6 hours long (May to October) or 24 hours
long (November to April). Bottles were painted black and wrapped in opaque bags before being
incubated in-situ from a floating pier in the same location where sample water was collected.
Rates were considered to be non-detectable if oxygen did not decrease during the experiment,
and we assigned a zero value to these rates. We ran models where these zero values were omitted
from the dataset, and the model results were not different. This analysis uses the entire time-
series made from March 2015 to December 2022, using the mean of the triplicate respiration
rates as the daily value. We also measured respiration rates at higher frequencies during targeted
experiments on two occasions, using the same methods as previously described. First, we
sampled on 10 consecutive days between June 27" and July 1 1™ 2016 (Bonilla-Pagan 2016),
where community respiration was measured at the same time (~9:30 AM) each day, along with
the associated biogeochemical measurements of the pier monitoring program. In this way the tide
height and stage changed for each day, but the sampling time stayed constant. Secondly, we
measured community respiration and particulate nitrogen (PN) on 3 consecutive days between
July 25-27, 2023, but sampled at the time of both high and low tide each day. Tide stage was
determined using water level data collected by the National Oceanographic and Atmospheric
Administration tide gauging station location on the CBL Pier (NOAA Tides and Currents station
8577330, Solomons Island, Maryland).

Statistical Analysis

The relationship between community respiration rate (hereafter ‘respiration rate’) and all
variables measured in the pier monitoring program was first examined by performing linear
regression. We then sought to predict the respiration rate with two types of existing models
designed for water quality assessment. First, we applied generalized additive models (GAM) that
incorporated terms for season, year (i.e., a long-term trend), and variability in water-column
conditions. We used a GAM approach that is comparable to those used for evaluation of
ecosystem response to nutrient reduction efforts (Murphy et al. 2019), but here we performed
hypothesis testing using different environmental predictors of respiration rate. The GAMs
estimate respiration rate from the sum of smooth functions of independent variables. The first
model, called the “base” GAM model, only included terms for season and year (Eq. 1):

Respiration Rate = C + fy(Year) + f,(Day of Year)
(1)

where the Day of Year function was sinusoidal and approximated the annual water temperature
cycle. The secondary models included additional terms relative to the base GAM, including
functions for temperature, river discharge, chlorophyll-a, dissolved nutrients, and particulate
nitrogen (PN) concentration. Model assessment revealed that the base model with a term for PN
explained the highest amount of variability in the respiration rate (Eq. 2).

Respiration Rate = C + f;(Year) + f,(Day of Year) + f;([PN]?)
(2)
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The GAM models were generated using the gam() function in the mecgv package in R (Wood
2018). We also modeled respiration rate with a kinetic model comparable to formulations
commonly used to estimate phytoplankton respiration in water quality models (Testa et al. 2014;
Cerco et al. 2000). This kinetic model estimates respiration rate as a function of temperature and
PN concentration (Eq. 3).

Respiration Rate = k  §(TemP=20) 4 [PN]?

(3)

where k is the respiration rate at 20 °C, 8 is the temperature sensitivity coefficient (1.08), and
Temp is water temperature at the time of the rate measurement. We solved for the value of k in
the kinetic model by finding the value that generated the smallest sum of squares in the model-
observation comparison. To assess the goodness of fit of each model in reproducing the observed
respiration rate, three different statistics were computed: sum of squares error (SSE), the
correlation coefficient squared (r2), and the root mean squared error (RMSE). The SSE is the
sum of the squared differences between the estimated and observed values where values close to
zero indicate less variation measured in the units of the observed values squared. The r? statistic
measures the tendency of the estimated values and the observed values to vary together, where
values vary from 0 to 1 with ideal values close to one (Stow 2009). RMSE is a measure of the
size of the differences between estimated and observed values, measured in units of the observed
values where values near zero indicate a close match (Stow 2009).

Tidal controls on particulate matter

We then sought to understand what forcing variables at this location influenced PN and thus the
respiration rate. GAMs that included Susquehanna River and Patuxent River discharge did not
reproduce the observed variability in respiration rate. Prior analysis of a 10-day time-series of
respiration at this location suggested a tide-stage effect on respiration (Bonilla-Pagan 2016), and
given that this location is at the interface of the Chesapeake Bay and the lower Patuxent estuary,
we suspected that high-productivity Chesapeake Bay water could influence this site. Thus, the
relationship of the tidal stage versus the respiration rate was examined in more detail. First, we
compared respiration rate during ebbing tide to the respiration rate measured during flooding
tide. A Student’s t test was used to determine if the respiration rates differed by tide stage. The
respiration rate and PN concentration data were then separated by tide height into groups of
0.125 m. Kruskal-Wallis rank sum tests was used to determine if the mean respiration rate or
mean PN concentration of the tide height groups were different, with a Dunne’s post-hoc used
for pairwise comparisons.

Results

This analysis of an eight year time series of respiration rate and key associated environmental
variables suggests several time scales of variability (Fig. 2). Respiration rate had a regular
seasonal cycle, with higher rates during the summer period with higher temperatures, and
respiration rate was positively related to water temperature (linear regression, 1 = 0.4, p <
0.001). PN, chlorophyll-a, and salinity also had somewhat regular seasonal patterns that were
sometimes interrupted by more episodic variability (Fig. 2). For example, PN, salinity, and
chlorophyll-a had a consistent seasonal cycle in the first three years of the record (2015-2017)
that was interrupted by a large increase in chlorophyll-a and PN in 2018 (and an associated
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reduction in salinity and increase in respiration rate), followed by a three year period with less
substantial seasonal cycles (Fig. 2). After the 2018 low-salinity event, which was associated with
a record precipitation period (see Discussion), chlorophyll-a and PN were somewhat elevated
with lower variability and respiration rates reached higher seasonal maxima (Fig. 2).

The particulate nutrient concentrations (nitrogen, phosphorus, and carbon) were the only
variables tested aside from temperature that explained substantial variability in respiration rate
(r* > 0.25). Linear regression results indicated that particulate carbon had an r* of 0.285, while
particulate phosphorus and nitrogen had an 1* of 0.542 and 0.514 respectively (Fig. 3).
Consequently, particulate nutrient concentrations were the only variables whose inclusion in
GAMs led to high predictability for respiration rate, where the PN-based GAMs resulted in the
best goodness of fit measures (Table 1) relative to other models (note the same model with PP
yielded similar results; r* = 0.72 and RMSE = 0.29). The base GAM model only captured the
overall trend and seasonality in the respiration rate, and GAMs with freshwater discharge, water
temperature, and chlorophyll-a as predictive terms did not reduce SSE, RMSE, or r* (Table 1).
Only the PN-based GAM and the kinetic model were able to capture the larger periods of
variability in the respiration rate time-series (Fig. 4). Because PN and PP explained more
variability in respiration rate than PC, we also built GAMs with the PC:PN and PC:PP ratio with
the assumption that these variables, like PN and PP, reflect organic material lability. These
models did not perform better than the PN-only models. We also ran the models after removing
the zero values from the dataset, and the resulting models only improved the model fits slightly
(RMSE =0.37, 0.35, 0.27 for the Kinetic, Base GAM, and PN-GAM, respectively).

The respiration rates measured at the same time of day during a 10 day period in 2016 were
positively, but weakly related with tidal height (Fig. 5; r’ =0.29; Bonilla-Pagan 2016). The 2023
experiment, which sampled twice a day (at high tide and low tide) during a 3 day period, found
that the respiration rate was higher at high tide compared to low tide on two of the three days
sampled (Fig. 6). In the two days where respiration rates were higher at high tide, surface water
PN concentrations were also higher at high tide (Fig. 6). Given the apparent relationship between
tidal height and respiration rate, we examined the relationship of these variables over the long-
term respiration rate data set. The difference in the respiration rate during the ebbing tide was not
different than the respiration rate during the flooding tide at a significance level of 0.05 (p =
0.766). However, there was a difference in the respiration rate at different tide heights at a
significance level of 0.05 (p = 0.00123). Specifically, the respiration rates at tide heights of 0.25-
0.375 m were larger than 0-0.125 m (Fig. 7). As the tide height increased, the upper limit of the
respiration rate increased (Fig. 7). The patterns of PN over different ranges of tide height also
had a similar relationship as respiration rate (higher PN at higher tide; Fig. 4). However, there
was not a difference in the PN at different tide heights at a significance level of 0.05 (p = 0.3).

Discussion

This analysis aimed to determine which factors were most important in affecting variability in
the respiration rate using a rare long-term record. Global syntheses have found that water column
respiration is the dominant sink for oxygen in waters deeper than 10 meters, and even in
shallower systems like the one described here, water-column respiration can be 50% of total
oxygen consumption (Boynton et al. 2018). Thus, any advance in understanding controls on
water column respiration will help improve our understanding of oxygen depletion and thus our
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ability to effectively represent this process in models. We found that water temperature and
particulate nutrients (carbon, phosphorus, and nitrogen) were most strongly related to respiration
compared to all other variables measured, and that models that included both water temperature
and particulate nutrients (PN and PP) best reproduced the temporal variability in respiration.
Both respiration rates and PN tended to be elevated at high tide, suggesting that the local
metabolic rates are sensitive to transport of organic-enriched waters from adjacent habitats.

Water temperature has been well-described as a strong seasonal driver of respiration in
Chesapeake Bay (e.g., Smith and Kemp 1995), and this variable was an important factor in
predictive models (GAM, kinetic model) of respiration rate developed in this study. This is
consistent with a wealth of literature describing the positive relationship between temperature
and respiration rate across various ecosystems and methods (Yvon-Durocher et al. 2012; Caffrey
et al. 2014; Bordin et al. 2023; Wikner et al. 2023). Although the record of respiration
measurements in this study was not long enough to address climate-scale warming trends that
have been detected at this location (Orth et al. 2017), the strong temperature effect suggests that
future increases in temperature could contribute to higher respiration rates at this location. Water
temperature only explained 40% of the variability in the respiration rate in this dataset, however,
suggesting that other variables control variability in these rates.

The inclusion of PN or PP in both the GAM and kinetic model increased the power of the models
to reproduce variability in the respiration rate. This is consistent with the fact that respiration rate
can be amplified with nutrient enrichment (Del Giorgio 2005), whereby elevated nutrient loads
lead to elevated uptake of inorganic nutrients and thus incorporation into particulate matter.
Estuarine particulate matter is composed of both living and dead organic material, and thus
represents both actively respiring phytoplankton and microbially-driven oxidation of detritus.
This is consistent with recent global syntheses that found organic material to be as strong a
predictor of respiration as temperature (Wikner et al. 2023). The fact that PN was more
correlated with respiration than dissolved organic nitrogen (DON) suggests that either the DON
pool as measured was not reflective of labile dissolved organic material, or that algal respiration
(whereby higher PN = higher algal biomass) is a dominant component of the measured rates. The
fact that a squared term for PN provided a better fit in both the GAM and kinetic models reflects
the possibility that PN may represent both non-living PON and actively growing algal cells. PN
and PP had a much higher correlation with respiration compared to PC, suggesting that labile,
newly-produced organic matter is supporting respiration and consistent with the fact that the
middle and lower reaches of Chesapeake Bay are less influenced by the bulk carbon pool (Smith
and Kemp 1995).

The influence of episodic events and other physical factors on respiration rates were also evident
in the variations in respiration rate. Although freshwater discharge and salinity were not
substantial contributors to predictive models (Table 1), the effect on respiration of a large
precipitation and discharge event is evident in the record (e.g., Fig. 2). In 2018, parts of
Maryland, including the Patuxent River watershed, experienced record precipitation levels
(NOAA 2019) and during this event the respiration rate was 1.5 to 2 times above the typical
summer peaks (Fig. 2A). Both PN and chlorophyll-a peaked during this period, suggesting that
elevated riverine flows supported additional algal growth and respiration (Boynton and Kemp
2000; Chen et al. 2009). This sensitivity to large river flow events is consistent with prior
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analyses that showed phytoplankton biomass in the Patuxent River estuary to be highly
responsive to freshwater discharge (Testa et al. 2008).The fact that discharge and salinity were
not good predictors of respiration rate over the entire record, however, is due to the fact that the
lower Patuxent is influenced by both the Patuxent River and the Susquehanna River (through
exchange with Chesapeake Bay), whose discharge volume and timing are distinct. As a result,
high and incoming tides can often have lower salinity than ebb/low tide (data not shown), owing
to the fact that the mainstem Bay can have low salinity when Susquehanna River discharge
(whose watershed extends >300 km to the north) has been high.

Perhaps the most surprising result of this analysis was the positive correlation of respiration rate
with tide heights across the three types of analyses and experiments performed. Because PN was
also observed to have a positive relationship with tide height, this effect of tide may simply
reflect a higher productivity within adjacent waters that transit the site. Respiration rate was also
higher at the lowest PC:PN ratios (Kruskal-Wallis, p = 0.2), suggesting that the most N-rich
organic material enhances respiration. Given the proximity of the mainstem Chesapeake Bay to
this location (Fig. 1) and an assumption that high tide waters are Chesapeake Bay-derived, we
hypothesized that the study site is highly influenced by adjacent waters. The fact that high tide
associated positively with respiration while there were not differences between flood and ebb
rates likely results from the fact that tidal velocities are out of phase with water level at this site
and because there are asymmetries in flood and ebb velocities (data not shown). The region of
Chesapeake Bay that exchanges with the lower Patuxent estuary is the most productive region of
the Bay (Smith and Kemp 1995; Feng et al. 2015), is rich with labile organic matter, and has
been previously found to influence productivity in the lower Patuxent estuary (Testa et al. 2008).
This result is consistent with other studies that have found an influence of organic material from
Chesapeake Bay on metabolic properties in the lower reaches of other Chesapeake Bay
tributaries (e.g., Lake and Brush 2008), while import of organic matter from adjacent seaward
waters has been implicated in supporting local respiration rates (Smith and Hollibaugh 1997).
Despite the evidence presented here to suggest the influence of tide height at the study location,
there still remains substantial unexplained variability in the respiration rates, reflecting the varied
factors that drive metabolism in estuaries. For example, the suggestive, but inconsistent
relationship between tide height and respiration over the consecutive day experiments could
result if conditions stimulated organic matter production during prior days and in adjacent water,
leading to elevated respiration measured at the site. Future work could address this hypothesis.

The estimates of respiration rate presented here are comparable to in magnitude to similar
measurements made in Chesapeake Bay, but differ from a range of other types of estuarine
environments. In Chesapeake Bay, Smith and Kemp (1995) measured respiration rates in
mainstem surface waters, with rates ranging from 0.2 to 2.0 g O, m™ d”' in the mid-Bay region
over an annual cycle, where the annual mean (£ SD) of rates measured in this study were 1.3
0.3 g0, m™ d™'. Smith and Kemp (2003) also measured respiration rates of 1.2 g O, m™ d' in
August at 38°N, comparable to the long-term mean of this study’s August rates of 1.1+ 0.2 g O,
m~ d”', and reinforcing the potential influence of mainstem waters on the lower Patuxent estuary.
These summer rates are also comparable to those measured near the study site in the Patuxent
River during June-August 1967, where Flemer and Olmon (1967) reported surface water rates of
0.9 to 1.5 g O, m™ d™'. The Patuxent rates were typically higher than many other estuaries and
coastal shelves, whose rates were typically less than 1.0 g O, m™ d”' and whose mean was
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typically less than 0.5 g O, m™ d™' (e.g. Dortch et al. 1994; Smith and Hopkinson 2005). This
may reflect the fact that the Patuxent River estuary remains a eutrophic estuary, resulting from
high rates of nutrient loading (Testa et al. 2008). However, the Patuxent rates were lower than
those measured in historically highly eutrophic estuaries (e.g., Roskilde Fjord; Jensen et al.
1990), in some lagoons (Herrera-Silveira 1998) with presumably high residence times, and in
shallow nearshore environments (Caffrey et al. 2004) that are often influenced by wetlands and
are highly productive.

An analysis of 8 years of regularly measured respiration rates at a fixed station identified
multiple controls on metabolic rates in coastal ecosystems. These rates are not typically included
in eutrophication assessments because of the higher cost associated with measuring
biogeochemical rates (Testa et al. 2022), but this analysis highlights the value of collecting such
time-series. These findings are relevant for water quality management in Chesapeake Bay,
revealing that some regions of tributary water bodies are highly influenced by adjacent water
parcels at tidal time scales. These results also offer a way to test numerical model formulations
for a key metabolic rate (respiration or oxygen consumption), possibly improving their ability to
make accurate predictions of the effects of climate and nutrient management. We conclude that
similar respiration data measured by the simple, fast approach used in this study could be more
widely implemented and lead to better assessments of eutrophication.
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591  Table 1. Goodness of fit statistics for statistical and mechanistic models used to predict
592  respiration rate, including those included in Figure 4 and other experimental models. “with time”
593  represents those models with Year and Day of Year as model terms.

Model Type SSE r? RMSE
GAM with time and PN 14.64 0.741 0.282
GAM with time and C:N Ratio 14.56 0.742 0.281
GAM with time and chlorophyll-a 18.23 0.678 0.315
Kinetic Model 20.49 0.669 0.334
GAM with time and temperature 20.48 0.637 0.334
GAM with time and C:P Ratio 22.78 0.597 0.352
Base GAM with time 22.92 0.594 0.353
GAM with time and discharge 22.90 0.593 0.353
GAM with time and salinity 22.89 0.595 0.352
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Figure 1: Map of the Patuxent River estuary, including the location of the CBL Research Pier
where respiration rates and biogeochemical data were collected. Note location of the Patuxent
River on the western shore of Chesapeake Bay in the mid-Atlantic region of the USA.

15



S04

w
o
L

)

40+

204 304

204

Chlorophyll-a (ug L™

Respiration Rate (g O, m day ')

0.04

Particulate Nitrogen (mg L")

304
054
0.4

204
0.34
0.24 104
0.14 & .

- Salnity

04 —=— Temperature

Salinity, Surface Temperature (°C)

2016 2018 2020 2022 2016 2018 2020 2022
603 Date Date

604

605  Figure 2. Biweekly measurements of community respiration rate (A), chlorophyll-a (B),

606  particulate nitrogen (C), and salinity (black line) and water temperature (red line) (D) collected
607  from surface water at the CBL research pier monitoring program from 2015-2022.
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Figure 3. Plots of community respiration rate versus surface water particulate nitrogen (A),
particulate phosphorus (B), and particulate carbon (C). Equations for linear regression of
respiration rate and particulate material included with corresponding statistics.
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Figure 7. Box plots of surface-water particulate nitrogen (A) and respiration rate (B) aggregated
versus ranges of tide height for the bi-weekly samples collected in this study. For each box, the
central line is the median, the top and bottom of the box are the 75" and 25™ percentiles,
respectively, the vertical lines capture the remaining range of the data, and the black circles are
outliers. Box widths indicate range of tide heights in group. In panel B, the hatched lines indicate
groups whose differences had a p-value less than 0.05 as determined by a Kruskal-Wallis with
Dunn’s post-hoc comparison.
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