

1 Controls on Water-Column Respiration Rates in a Coastal Plain Estuary: Insights from Long-
2 Term Time-Series Measurements

3
4
5 David Prichett^{1,2}, Joan Bonilla-Pagan³, Casey Hodgkins¹, Jeremy M. Testa¹
6

7 ¹Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science,
8 Solomons, MD, USA

9
10 ²Rochester Institute of Technology, Rochester, NY, USA

11
12 ³The Johns Hopkins University, Baltimore, MD, USA

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50 Keywords: Respiration, metabolism, estuary, tides, organic matter, Chesapeake

51 **Abstract**

52
53 Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as
54 an assessment of the eutrophication state of a waterbody and are the primary biogeochemical
55 rates causing oxygen depletion in coastal waters. However, given the additional labor involved in
56 measuring biogeochemical rate processes, few monitoring programs regularly measure these
57 properties and thus few long-term monitoring records of plankton respiration exist. An eight-
58 year, biweekly plankton community respiration rate time series was analyzed as part of a
59 monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay.
60 We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated
61 co-variates with respiration rate. Additionally, statistical and kinetic models including variables
62 both water temperature and particulate nitrogen were able to explain 74% of the variability in
63 respiration. Over the long-term record, both particulate nutrients and respiration rate were
64 elevated when measured at higher tides. Separate measurements of respiration rate during ten
65 consecutive days and during high and low tide on three separate days also support the
66 enhancement of respiration with high tide. The enhancement was likely due to the import of
67 particulate nutrients from the highly productive mid-bay region. This analysis of the longest
68 consistently measured community respiration rate dataset in Chesapeake Bay has implications
69 for how to interpret long-term records of measurements made at fixed locations in estuaries.

70
71 **Introduction**

72
73 Worldwide, the depletion of dissolved oxygen concentrations in estuaries and marine ecosystems
74 is a growing ecological problem. Low dissolved oxygen conditions, often referred to as hypoxia
75 (low oxygen) or anoxia (no oxygen) degrades habitat conditions and can cause mortality or
76 physiological stress for many organisms (e.g., Diaz and Rosenberg 2008; Breitburg et al. 2018).
77 Oxygen depletion can also trigger a cascade of biogeochemical reactions that lead to elevated
78 recycling of nitrogen and phosphorus (e.g., Conley et al. 2009; Testa and Kemp 2012),
79 potentially sustaining hypoxic conditions. Given that future changes in water temperature,
80 freshwater input, nutrient loading, and sea level will likely alter oxygen dynamics through both
81 physical (e.g., solubility, stratification) and biogeochemical (respiration rates) processes, there is
82 a need to better constrain the growing number of projections of oxygen depletion in estuaries
83 worldwide (Irby et al. 2018; Laurent et al. 2018; Ni et al. 2019; Meier et al. 2019).

84
85 Respiration is the primary biogeochemical driver of oxygen depletion, and the organic matter
86 fueling water-column respiration is typically derived from surface water productivity (Kemp et
87 al. 2005; Rabalais et al. 2014). Consequently, elevated eutrophication associated with increases
88 in primary production (Boynton et al. 1982) and/or phytoplankton biomass (e.g., Harding and
89 Perry 1997) often leads to coastal hypoxia and anoxia. Although eutrophication is defined as the
90 *rate of input* of organic matter into aquatic ecosystems, it is typically assessed using more easily
91 available concentration or “state” measures (e.g., chlorophyll-a, dissolved oxygen, or nutrient
92 concentrations) because they are less expensive and more readily available than rates of
93 biogeochemical processes (Testa et al. 2022). Thus, a more accurate assessment of
94 eutrophication would involve using measures of biogeochemical rate processes (e.g., respiration)
95 that provide more direct estimates of the relevant processes that consume oxygen. Moreover,
96 microbial respiration has been identified as a critical, yet unconstrained rate process in the ocean
97 despite its relevance for deoxygenation (Robinson 2019).

98 Despite the value of biogeochemical rate processes for understanding eutrophication and
99 associated oxygen depletion, few long-term, consistently measured rates of these processes have
100 been collected in the coastal zone. For example, in the few systems where measurements of
101 sediment-water fluxes of oxygen and nitrogen (proxies for sediment respiration) have been
102 collected over multiple decades, clear metabolic signals of reduced eutrophication have been
103 identified as nutrient loads have been reduced (Taylor et al. 2020; Testa et al. 2022). Perhaps
104 more numerous are long-term records of plankton primary productivity, given the widespread
105 application of the ^{14}C method since the mid-20th century (e.g., Boynton et al. 1982; Cloern and
106 Jassby 2010) and the growing accuracy of remote-sensing or biogeochemically-derived
107 estimates (Benway et al. 2019). In contrast, few long-term records of water-column community
108 respiration have been collected in estuaries, despite the central roles these rates play in our
109 understanding of oxygen depletion and in constraining models used to predict oxygen depletion
110 into the future. This gap exists despite the fact that many monitoring programs have been
111 collecting estuarine biogeochemical and ‘water quality’ data for over four decades.
112

113 Here we report on an analysis of a 8-year, monitoring effort to measure surface water community
114 respiration rates in a single location at the mouth of the Patuxent River estuary where it
115 exchanges with Chesapeake Bay, in eastern North America. The Patuxent River is a coastal plain
116 tributary of the Chesapeake Bay that experiences depleted oxygen conditions during the summer
117 (Jordan et al. 2003). The goals of this analysis were (1) to develop a suite of statistical and
118 numerical models to determine which factors influenced respiration rate variability, toward a
119 greater understanding of how these rates will be influenced by future change, and (2) make these
120 measurements available to the numerical modeling community better constrain projections of
121 climate effects and management actions. We hypothesized that variability in respiration rate
122 would be elevated by temperature and freshwater inputs through physiological stimulation and
123 the import or production of organic substrate, but we also hypothesized that respiration would
124 also be enhanced through the influence of labile organic matter import from adjacent Chesapeake
125 Bay. This study highlights how long-term hydrographic and biogeochemical measurements can
126 be used to assess controls on the eutrophication state of a tidal estuary and how they would
127 benefit long-term water monitoring programs.
128

129 **Methods**

131 ***Study Site and Biogeochemical Data***

132 The Chesapeake Biological Laboratory (CBL) has maintained daily monitoring of temperature
133 and salinity at its research pier since 1938 (Beaven 1960) and has recently (2015) installed a
134 comprehensive environmental monitoring system (<https://cblmonitoring.umces.edu/>). The CBL
135 pier is situated in the lower Patuxent River estuary where the Patuxent meets the mainstem of
136 Chesapeake Bay (Fig. 1). The water depth at the site is 2.5 m and surface and bottom salinity
137 measurements verify that the water-column is consistently well mixed. We made biweekly
138 measurements of dissolved inorganic nitrogen (ammonium, nitrate + nitrite), orthophosphate,
139 total dissolved phosphorus and nitrogen, total suspended solids, particulate phosphorus, carbon,
140 and nitrogen, and active chlorophyll-a, (Fig. 2 B, C) using standard methods at the Chesapeake
141 Biological Laboratory Nutrient and Analytical Services Laboratory (NASL;
142 <https://www.umces.edu/nutrient-analytical-services-laboratory>). At each sampling, a YSI Pro 30
143 was used to measure surface and bottom water temperature and salinity (Fig. 2D). Water-column
144 community respiration rate was also measured biweekly by incubating triplicate 300 mL

145 borosilicate bottles in-situ, suspended ~1 m below the water surface, and measuring the change
146 in oxygen concentration over the course of the incubation (Fig. 2A). Oxygen was measured
147 within 5 minutes of collection via a YSI ProDO optical oxygen meter (sensor accuracy is
148 reported to be ± 0.1 mg/L) and incubations were either 6 hours long (May to October) or 24 hours
149 long (November to April). Bottles were painted black and wrapped in opaque bags before being
150 incubated in-situ from a floating pier in the same location where sample water was collected.
151 Rates were considered to be non-detectable if oxygen did not decrease during the experiment,
152 and we assigned a zero value to these rates. We ran models where these zero values were omitted
153 from the dataset, and the model results were not different. This analysis uses the entire time-
154 series made from March 2015 to December 2022, using the mean of the triplicate respiration
155 rates as the daily value. We also measured respiration rates at higher frequencies during targeted
156 experiments on two occasions, using the same methods as previously described. First, we
157 sampled on 10 consecutive days between June 27th and July 11th, 2016 (Bonilla-Pagan 2016),
158 where community respiration was measured at the same time (~9:30 AM) each day, along with
159 the associated biogeochemical measurements of the pier monitoring program. In this way the tide
160 height and stage changed for each day, but the sampling time stayed constant. Secondly, we
161 measured community respiration and particulate nitrogen (PN) on 3 consecutive days between
162 July 25-27, 2023, but sampled at the time of both high and low tide each day. Tide stage was
163 determined using water level data collected by the National Oceanographic and Atmospheric
164 Administration tide gauging station location on the CBL Pier (NOAA Tides and Currents station
165 8577330, Solomons Island, Maryland).

166

167 **Statistical Analysis**

168 The relationship between community respiration rate (hereafter ‘respiration rate’) and all
169 variables measured in the pier monitoring program was first examined by performing linear
170 regression. We then sought to predict the respiration rate with two types of existing models
171 designed for water quality assessment. First, we applied generalized additive models (GAM) that
172 incorporated terms for season, year (i.e., a long-term trend), and variability in water-column
173 conditions. We used a GAM approach that is comparable to those used for evaluation of
174 ecosystem response to nutrient reduction efforts (Murphy et al. 2019), but here we performed
175 hypothesis testing using different environmental predictors of respiration rate. The GAMs
176 estimate respiration rate from the sum of smooth functions of independent variables. The first
177 model, called the “base” GAM model, only included terms for season and year (Eq. 1):
178

$$179 \quad \text{Respiration Rate} = C + f_1(\text{Year}) + f_2(\text{Day of Year}) \quad (1)$$

180 where the *Day of Year* function was sinusoidal and approximated the annual water temperature
181 cycle. The secondary models included additional terms relative to the base GAM, including
182 functions for temperature, river discharge, chlorophyll-a, dissolved nutrients, and particulate
183 nitrogen (PN) concentration. Model assessment revealed that the base model with a term for PN
184 explained the highest amount of variability in the respiration rate (Eq. 2).
185

$$186 \quad \text{Respiration Rate} = C + f_1(\text{Year}) + f_2(\text{Day of Year}) + f_3([\text{PN}]^2) \quad (2)$$

187 The GAM models were generated using the `gam()` function in the `mgcv` package in R (Wood
188 2018). We also modeled respiration rate with a kinetic model comparable to formulations
189 commonly used to estimate phytoplankton respiration in water quality models (Testa et al. 2014;
190 Cerco et al. 2000). This kinetic model estimates respiration rate as a function of temperature and
191 PN concentration (Eq. 3).
192

$$\text{Respiration Rate} = k * \theta^{(\text{Temp}-20)} * [\text{PN}]^2 \quad (3)$$

193 where k is the respiration rate at 20 °C, θ is the temperature sensitivity coefficient (1.08), and
194 Temp is water temperature at the time of the rate measurement. We solved for the value of k in
195 the kinetic model by finding the value that generated the smallest sum of squares in the model-
196 observation comparison. To assess the goodness of fit of each model in reproducing the observed
197 respiration rate, three different statistics were computed: sum of squares error (SSE), the
198 correlation coefficient squared (r^2), and the root mean squared error (RMSE). The SSE is the
199 sum of the squared differences between the estimated and observed values where values close to
200 zero indicate less variation measured in the units of the observed values squared. The r^2 statistic
201 measures the tendency of the estimated values and the observed values to vary together, where
202 values vary from 0 to 1 with ideal values close to one (Stow 2009). RMSE is a measure of the
203 size of the differences between estimated and observed values, measured in units of the observed
204 values where values near zero indicate a close match (Stow 2009).
205

206 ***Tidal controls on particulate matter***

207 We then sought to understand what forcing variables at this location influenced PN and thus the
208 respiration rate. GAMs that included Susquehanna River and Patuxent River discharge did not
209 reproduce the observed variability in respiration rate. Prior analysis of a 10-day time-series of
210 respiration at this location suggested a tide-stage effect on respiration (Bonilla-Pagan 2016), and
211 given that this location is at the interface of the Chesapeake Bay and the lower Patuxent estuary,
212 we suspected that high-productivity Chesapeake Bay water could influence this site. Thus, the
213 relationship of the tidal stage versus the respiration rate was examined in more detail. First, we
214 compared respiration rate during ebbing tide to the respiration rate measured during flooding
215 tide. A Student's t test was used to determine if the respiration rates differed by tide stage. The
216 respiration rate and PN concentration data were then separated by tide height into groups of
217 0.125 m. Kruskal-Wallis rank sum tests was used to determine if the mean respiration rate or
218 mean PN concentration of the tide height groups were different, with a Dunne's post-hoc used
219 for pairwise comparisons.
220

221 **Results**

222 This analysis of an eight year time series of respiration rate and key associated environmental
223 variables suggests several time scales of variability (Fig. 2). Respiration rate had a regular
224 seasonal cycle, with higher rates during the summer period with higher temperatures, and
225 respiration rate was positively related to water temperature (linear regression, $r^2 = 0.4$, $p <$
226 0.001). PN, chlorophyll-a, and salinity also had somewhat regular seasonal patterns that were
227 sometimes interrupted by more episodic variability (Fig. 2). For example, PN, salinity, and
228 chlorophyll-a had a consistent seasonal cycle in the first three years of the record (2015-2017)
229 that was interrupted by a large increase in chlorophyll-a and PN in 2018 (and an associated
230

232 reduction in salinity and increase in respiration rate), followed by a three year period with less
233 substantial seasonal cycles (Fig. 2). After the 2018 low-salinity event, which was associated with
234 a record precipitation period (see Discussion), chlorophyll-a and PN were somewhat elevated
235 with lower variability and respiration rates reached higher seasonal maxima (Fig. 2).

236
237 The particulate nutrient concentrations (nitrogen, phosphorus, and carbon) were the only
238 variables tested aside from temperature that explained substantial variability in respiration rate
239 ($r^2 > 0.25$). Linear regression results indicated that particulate carbon had an r^2 of 0.285, while
240 particulate phosphorus and nitrogen had an r^2 of 0.542 and 0.514 respectively (Fig. 3).
241 Consequently, particulate nutrient concentrations were the only variables whose inclusion in
242 GAMs led to high predictability for respiration rate, where the PN-based GAMs resulted in the
243 best goodness of fit measures (Table 1) relative to other models (note the same model with PP
244 yielded similar results; $r^2 = 0.72$ and RMSE = 0.29). The base GAM model only captured the
245 overall trend and seasonality in the respiration rate, and GAMs with freshwater discharge, water
246 temperature, and chlorophyll-a as predictive terms did not reduce SSE, RMSE, or r^2 (Table 1).
247 Only the PN-based GAM and the kinetic model were able to capture the larger periods of
248 variability in the respiration rate time-series (Fig. 4). Because PN and PP explained more
249 variability in respiration rate than PC, we also built GAMs with the PC:PN and PC:PP ratio with
250 the assumption that these variables, like PN and PP, reflect organic material lability. These
251 models did not perform better than the PN-only models. We also ran the models after removing
252 the zero values from the dataset, and the resulting models only improved the model fits slightly
253 (RMSE = 0.37, 0.35, 0.27 for the Kinetic, Base GAM, and PN-GAM, respectively).

254
255 The respiration rates measured at the same time of day during a 10 day period in 2016 were
256 positively, but weakly related with tidal height (Fig. 5; $r^2 = 0.29$; Bonilla-Pagan 2016). The 2023
257 experiment, which sampled twice a day (at high tide and low tide) during a 3 day period, found
258 that the respiration rate was higher at high tide compared to low tide on two of the three days
259 sampled (Fig. 6). In the two days where respiration rates were higher at high tide, surface water
260 PN concentrations were also higher at high tide (Fig. 6). Given the apparent relationship between
261 tidal height and respiration rate, we examined the relationship of these variables over the long-
262 term respiration rate data set. The difference in the respiration rate during the ebbing tide was not
263 different than the respiration rate during the flooding tide at a significance level of 0.05 ($p =$
264 0.766). However, there was a difference in the respiration rate at different tide heights at a
265 significance level of 0.05 ($p = 0.00123$). Specifically, the respiration rates at tide heights of 0.25-
266 0.375 m were larger than 0-0.125 m (Fig. 7). As the tide height increased, the upper limit of the
267 respiration rate increased (Fig. 7). The patterns of PN over different ranges of tide height also
268 had a similar relationship as respiration rate (higher PN at higher tide; Fig. 4). However, there
269 was not a difference in the PN at different tide heights at a significance level of 0.05 ($p = 0.3$).
270

271 Discussion

272
273 This analysis aimed to determine which factors were most important in affecting variability in
274 the respiration rate using a rare long-term record. Global syntheses have found that water column
275 respiration is the dominant sink for oxygen in waters deeper than 10 meters, and even in
276 shallower systems like the one described here, water-column respiration can be 50% of total
277 oxygen consumption (Boynton et al. 2018). Thus, any advance in understanding controls on
278 water column respiration will help improve our understanding of oxygen depletion and thus our

ability to effectively represent this process in models. We found that water temperature and particulate nutrients (carbon, phosphorus, and nitrogen) were most strongly related to respiration compared to all other variables measured, and that models that included both water temperature and particulate nutrients (PN and PP) best reproduced the temporal variability in respiration. Both respiration rates and PN tended to be elevated at high tide, suggesting that the local metabolic rates are sensitive to transport of organic-enriched waters from adjacent habitats.

Water temperature has been well-described as a strong seasonal driver of respiration in Chesapeake Bay (e.g., Smith and Kemp 1995), and this variable was an important factor in predictive models (GAM, kinetic model) of respiration rate developed in this study. This is consistent with a wealth of literature describing the positive relationship between temperature and respiration rate across various ecosystems and methods (Yvon-Durocher et al. 2012; Caffrey et al. 2014; Bordin et al. 2023; Wikner et al. 2023). Although the record of respiration measurements in this study was not long enough to address climate-scale warming trends that have been detected at this location (Orth et al. 2017), the strong temperature effect suggests that future increases in temperature could contribute to higher respiration rates at this location. Water temperature only explained 40% of the variability in the respiration rate in this dataset, however, suggesting that other variables control variability in these rates.

The inclusion of PN or PP in both the GAM and kinetic model increased the power of the models to reproduce variability in the respiration rate. This is consistent with the fact that respiration rate can be amplified with nutrient enrichment (Del Giorgio 2005), whereby elevated nutrient loads lead to elevated uptake of inorganic nutrients and thus incorporation into particulate matter. Estuarine particulate matter is composed of both living and dead organic material, and thus represents both actively respiring phytoplankton and microbially-driven oxidation of detritus. This is consistent with recent global syntheses that found organic material to be as strong a predictor of respiration as temperature (Wikner et al. 2023). The fact that PN was more correlated with respiration than dissolved organic nitrogen (DON) suggests that either the DON pool as measured was not reflective of labile dissolved organic material, or that algal respiration (whereby higher PN = higher algal biomass) is a dominant component of the measured rates. The fact that a squared term for PN provided a better fit in both the GAM and kinetic models reflects the possibility that PN may represent both non-living PON and actively growing algal cells. PN and PP had a much higher correlation with respiration compared to PC, suggesting that labile, newly-produced organic matter is supporting respiration and consistent with the fact that the middle and lower reaches of Chesapeake Bay are less influenced by the bulk carbon pool (Smith and Kemp 1995).

The influence of episodic events and other physical factors on respiration rates were also evident in the variations in respiration rate. Although freshwater discharge and salinity were not substantial contributors to predictive models (Table 1), the effect on respiration of a large precipitation and discharge event is evident in the record (e.g., Fig. 2). In 2018, parts of Maryland, including the Patuxent River watershed, experienced record precipitation levels (NOAA 2019) and during this event the respiration rate was 1.5 to 2 times above the typical summer peaks (Fig. 2A). Both PN and chlorophyll-a peaked during this period, suggesting that elevated riverine flows supported additional algal growth and respiration (Boynton and Kemp 2000; Chen et al. 2009). This sensitivity to large river flow events is consistent with prior

325 analyses that showed phytoplankton biomass in the Patuxent River estuary to be highly
326 responsive to freshwater discharge (Testa et al. 2008). The fact that discharge and salinity were
327 not good predictors of respiration rate over the entire record, however, is due to the fact that the
328 lower Patuxent is influenced by both the Patuxent River and the Susquehanna River (through
329 exchange with Chesapeake Bay), whose discharge volume and timing are distinct. As a result,
330 high and incoming tides can often have lower salinity than ebb/low tide (data not shown), owing
331 to the fact that the mainstem Bay can have low salinity when Susquehanna River discharge
332 (whose watershed extends >300 km to the north) has been high.

333
334 Perhaps the most surprising result of this analysis was the positive correlation of respiration rate
335 with tide heights across the three types of analyses and experiments performed. Because PN was
336 also observed to have a positive relationship with tide height, this effect of tide may simply
337 reflect a higher productivity within adjacent waters that transit the site. Respiration rate was also
338 higher at the lowest PC:PN ratios (Kruskal-Wallis, $p = 0.2$), suggesting that the most N-rich
339 organic material enhances respiration. Given the proximity of the mainstem Chesapeake Bay to
340 this location (Fig. 1) and an assumption that high tide waters are Chesapeake Bay-derived, we
341 hypothesized that the study site is highly influenced by adjacent waters. The fact that high tide
342 associated positively with respiration while there were not differences between flood and ebb
343 rates likely results from the fact that tidal velocities are out of phase with water level at this site
344 and because there are asymmetries in flood and ebb velocities (data not shown). The region of
345 Chesapeake Bay that exchanges with the lower Patuxent estuary is the most productive region of
346 the Bay (Smith and Kemp 1995; Feng et al. 2015), is rich with labile organic matter, and has
347 been previously found to influence productivity in the lower Patuxent estuary (Testa et al. 2008).
348 This result is consistent with other studies that have found an influence of organic material from
349 Chesapeake Bay on metabolic properties in the lower reaches of other Chesapeake Bay
350 tributaries (e.g., Lake and Brush 2008), while import of organic matter from adjacent seaward
351 waters has been implicated in supporting local respiration rates (Smith and Hollibaugh 1997).
352 Despite the evidence presented here to suggest the influence of tide height at the study location,
353 there still remains substantial unexplained variability in the respiration rates, reflecting the varied
354 factors that drive metabolism in estuaries. For example, the suggestive, but inconsistent
355 relationship between tide height and respiration over the consecutive day experiments could
356 result if conditions stimulated organic matter production during prior days and in adjacent water,
357 leading to elevated respiration measured at the site. Future work could address this hypothesis.
358

359 The estimates of respiration rate presented here are comparable to in magnitude to similar
360 measurements made in Chesapeake Bay, but differ from a range of other types of estuarine
361 environments. In Chesapeake Bay, Smith and Kemp (1995) measured respiration rates in
362 mainstem surface waters, with rates ranging from 0.2 to 2.0 g O₂ m⁻³ d⁻¹ in the mid-Bay region
363 over an annual cycle, where the annual mean (\pm SD) of rates measured in this study were 1.3 \pm
364 0.3 g O₂ m⁻³ d⁻¹. Smith and Kemp (2003) also measured respiration rates of 1.2 g O₂ m⁻³ d⁻¹ in
365 August at 38°N, comparable to the long-term mean of this study's August rates of 1.1 \pm 0.2 g O₂
366 m⁻³ d⁻¹, and reinforcing the potential influence of mainstem waters on the lower Patuxent estuary.
367 These summer rates are also comparable to those measured near the study site in the Patuxent
368 River during June-August 1967, where Flemer and Olmon (1967) reported surface water rates of
369 0.9 to 1.5 g O₂ m⁻³ d⁻¹. The Patuxent rates were typically higher than many other estuaries and
370 coastal shelves, whose rates were typically less than 1.0 g O₂ m⁻³ d⁻¹ and whose mean was

371 typically less than $0.5 \text{ g O}_2 \text{ m}^{-3} \text{ d}^{-1}$ (e.g. Dortch et al. 1994; Smith and Hopkinson 2005). This
372 may reflect the fact that the Patuxent River estuary remains a eutrophic estuary, resulting from
373 high rates of nutrient loading (Testa et al. 2008). However, the Patuxent rates were lower than
374 those measured in historically highly eutrophic estuaries (e.g., Roskilde Fjord; Jensen et al.
375 1990), in some lagoons (Herrera-Silveira 1998) with presumably high residence times, and in
376 shallow nearshore environments (Caffrey et al. 2004) that are often influenced by wetlands and
377 are highly productive.

378
379 An analysis of 8 years of regularly measured respiration rates at a fixed station identified
380 multiple controls on metabolic rates in coastal ecosystems. These rates are not typically included
381 in eutrophication assessments because of the higher cost associated with measuring
382 biogeochemical rates (Testa et al. 2022), but this analysis highlights the value of collecting such
383 time-series. These findings are relevant for water quality management in Chesapeake Bay,
384 revealing that some regions of tributary water bodies are highly influenced by adjacent water
385 parcels at tidal time scales. These results also offer a way to test numerical model formulations
386 for a key metabolic rate (respiration or oxygen consumption), possibly improving their ability to
387 make accurate predictions of the effects of climate and nutrient management. We conclude that
388 similar respiration data measured by the simple, fast approach used in this study could be more
389 widely implemented and lead to better assessments of eutrophication.
390
391

392 Acknowledgements

393
394 We thank the Chesapeake Biological Laboratory for their support of the Patuxent Sentinel
395 Monitoring Program and to Jerome Frank and the Chesapeake Biological Laboratory Nutrient
396 Analytical Services Laboratory (NASL) for processing water samples for nutrients, chlorophyll,
397 and particulate matter. We would also like to thank current and prior CBL colleagues and
398 members of the Testa Lab for their participation in the Patuxent Sentinel Monitoring Program.
399 This project was partially supported by a Maryland Sea Grant REU program funded by the
400 National Science Foundation. Initial funding for the Pier monitoring system came from a
401 National Science Foundation grant (OCE-1756244) co-authored with Lora Harris and Thomas
402 Miller. We also would like to thank the United States National Oceanographic and Atmospheric
403 Administration (NOAA) for the tide/meteorological data used in this project. Walter Boynton
404 provided helpful feedback on this manuscript. This is UM CES Contribution number XXXX and
405 CBL Ref. No. XXXX-XXX.
406
407

408 **References**

409

410 Beaven, G.F., 1960. Temperature and salinity of surface water at Solomons, Maryland.

411 Chesapeake Science 1: 2-11.

412

413 Benway, H.M., Lorenzoni, L., White, A.E., Fiedler, B., Levine, N.M., Nicholson, D.P.,

414 DeGrandpre, M.D., Sosik, H.M., Church, M.J., O'Brien, T.D., Leinen, M., Weller, R.A., Karl,

415 D.M., Henson, S.A., and Letelier, R.M. 2019. Ocean time series observations of changing marine

416 ecosystems: An era of integration, synthesis, and societal applications. *Frontiers in Marine*

417 Sciences

418 Sciences 6, 10.3389/fmars.2019.00393.

419

420 Bonilla-Pagan, J., Testa, J.M. 2016. Modeling the response to nutrient load reductions in shallow

421 coastal ecosystems. Final Report, Maryland Sea Grant REU Program.

422

423 Breitburg, Denise, Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon,

424 V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi,

425 S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M.

426 Yasuhara, M., and Zhang, J. 2018. Declining oxygen in the global ocean and coastal waters.

427 Science 359.6371: eaam7240.

428

429 Bordin, L.H., Machado, E.D.C., Mendes, C.R.B., Fernandes, E.H.L., Camargo, M.G., Kerr, R.

430 and Schettini, C.A. 2023. Daily variability of pelagic metabolism in a subtropical lagoonal

431 estuary. *Journal of Marine Systems* 240: 103861, <https://doi.org/10.1016/j.jmarsys.2023.103861>.

432

433 Boynton, W.R. and Kemp, W.M., 2000. Influence of river flow and nutrient loads on selected

434 ecosystem processes: A synthesis of Chesapeake Bay data. In: Hobbie, J.H. (ed.) *Estuarine*

435 *science: A synthetic approach to research and practice*. Island Press, Washington D.C. 269-298.

436

437 Boynton, W.R., Ceballos, M.A.C., Bailey, E.M., Hodgkins, C.L.S., Humphrey, J.L. and Testa,

438 J.M., 2018. Oxygen and nutrient exchanges at the sediment-water interface: A global synthesis

439 and critique of estuarine and coastal data. *Estuaries Coasts* 41: 301-333.

440

441 Caffrey, J.M. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. *Estuaries*.

442 27: 90-101.

443

444 Caffrey, J.M., Murrell, M.C., Amacker, K.S., Harper, J.W., Phipps, S. and Woodrey, M.S. 2014.

445 Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem

446 metabolism in three estuaries in the northeast Gulf of Mexico. *Estuaries and Coasts* 37: 222-241,

447 10.1007/s12237-013-9701-5.

448

449 Cerco, C., Sung-Chan Kim, and M. Noel. 2010. The 2010 Chesapeake Bay Eutrophication

450 Model—A Report to the US Environmental Protection Agency Chesapeake Bay Program and to

451 The US Army Engineer Baltimore District. US Army Engineer Research and Development

452 Center, Vicksburg, MS.

453 Chen, C.-C., Shiah, F.-K., Chiang, K.-P., Gong, G.-C. and Kemp, W.M., 2009. Effects of the
454 Changjiang (Yangtze) River discharge on planktonic community respiration in the East China
455 Sea. *Journal of Geophysical Research: Oceans* 114, doi:10.1029/2008JC004891.

456

457 Del Giorgio, P., and P.J. le B. Williams (eds.). 2005. *Respiration in aquatic ecosystems*. Oxford
458 University Press, Oxford, UK.

459

460 Díaz, R.J. and Rosenberg, R. 2008. Spreading dead zones and consequences for marine
461 ecosystems. *Science* 321: 926-929.

462

463 Dortch, Q., Rabalais, N.N., Turner, R.E. and Rowe, G.T. 1994. Respiration rates and hypoxia on
464 the Louisiana shelf. *Estuaries* 17: 862-872.

465

466 Feng, Y., Friedrichs, M.A.M., Wilkin, J., Tian, H., Yang, Q., Hofmann, E.E., Wiggert, J.D., and
467 Hood, R.R. 2015. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean
468 biogeochemical modeling system: Model description, evaluation, and nitrogen budgets. *Journal*
469 *of Geophysical Research: Biogeosciences* 120: 1666-1695, 10.1002/2015jg002931.

470

471 Flemer, D.A. and Olmon, J. 1971. Daylight incubator estimates of primary production in the
472 mouth of the Patuxent River, Maryland. *Chesapeake Science* 12: 105-110.

473

474 Irby, I.D., Friedrichs, M.A.M., Da, F. and Hinson, K.E. 2018. The competing impacts of climate
475 change and nutrient reductions on dissolved oxygen in Chesapeake Bay. *Biogeosciences* 15:
476 2649-2668, 10.5194/bg-15-2649-2018.

477

478 Jensen, L.M., Sand-Jensen, K., Marcher, S. and Hansen, M. 1990. Plankton community
479 respiration along a nutrient gradient in a shallow Danish estuary. *Marine Ecology Progress Series*
480 61: 75-85.

481

482 Jordan, T. E., Weller, D. E., and Correll, D. L. 2003. Sources of nutrient inputs to the Patuxent
483 River estuary. *Estuaries* 26: 226-243.

484

485 Herrera-Silveira, J.A. 1998. Nutrient-phytoplankton production relationships in a groundwater-
486 influenced tropical coastal lagoon. *Aquatic Ecosystem Health and Management* 1: 373-385.
487 [https://doi.org/10.1016/S1463-4988\(98\)00015-3](https://doi.org/10.1016/S1463-4988(98)00015-3).

488

489 Hopkinson, C.S. and Smith, E.M. 2005. Estuarine respiration: an overview of benthic, pelagic,
490 and whole system respiration. In: *Estuarine Respiration*, P. del Giorgio and P.J. le B. Williams
491 (eds). *Respiration in Aquatic Ecosystems*, Oxford University Press, Oxford, UK, 122-146.

492

493 Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell,
494 T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller
495 R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of
496 Chesapeake Bay: Historical trends and ecological interactions. *Marine Ecology Progress Series*
497 303: 1-29.

498

499 Kemp, W.M., and J.M. Testa. 2011. Metabolic balance between ecosystem production and
500 consumption. *Treatise on Estuarine and Coastal Science*. Volume 7: 83-118.

501

502 Lake, S.J. and Brush, M.J. 2015. Modeling estuarine response to load reductions in a warmer
503 climate: The York River Estuary, Virginia, USA. *Marine Ecology Progress Series* 538: 81-98.

504

505 Laurent, A., Fennel, K., Ko, D.S. and Lehrter, J. 2018. Climate change projected to exacerbate
506 impacts of coastal eutrophication in the northern Gulf of Mexico. *Journal of Geophysical*
507 *Research: Oceans* 123: 3408-3426. 10.1002/2017jc013583.

508

509 Meier, H.E.M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A.,
510 Höglund, A., Pemberton, P., Liu, Y., and Väli, G. 2019. Disentangling the impact of nutrient
511 load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. *Climate*
512 *Dynamics* 53: 1145–1166.

513

514 Murphy, R.R., E. Perry, J. Harcum, and J.L. Keisman. 2019. A generalized additive model
515 approach to evaluating water quality: Chesapeake Bay case study. *Environmental Modelling &*
516 *Software* 118: 1-13.

517

518 Ni, W., Li, M., Ross, A.C. and Najjar, R.G. 2019. Large projected decline in dissolved oxygen in
519 a eutrophic estuary due to climate change. *Journal of Geophysical Research: Oceans*. 124: 8271-
520 8289, 10.1029/2019jc015274.

521

522 Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future
523 concerns. *Ophelia* 41: 199-219.

524

525 Orth, R.J., Dennison, W.C., Lefcheck, J.S., Gurbisz, C., Hannam, M., Keisman, J., Landry, J.B.,
526 Moore, K.A., Murphy, R.R., Patrick, C.J., Testa, J.M., Weller, D.E., and Wilcox, D.J. 2017.
527 Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world.
528 *Bioscience*, <https://doi.org/10.1093/biosci/bix058>.

529

530 Rabalais, N.N., Cai, W.-J., Carstensen, J., Conley, D.J., Fry, B., Hu, X., et al. 2014.
531 Eutrophication-driven deoxygenation in the coastal ocean. *Oceanography*. 27: 172-183.

532

533 Robinson, C. 2019. Microbial respiration, the engine of ocean deoxygenation. *Frontiers in*
534 *Marine Science* 5, 10.3389/fmars.2018.00533.

535

536 Smith, S.V. and Hollibaugh, J.T. 1997. Annual cycle and interannual variability of net ecosystem
537 metabolism in a temperate climate embayment. *Ecological Monographs* 67: 509-533.

538

539 Smith, E.M. and Kemp, W.M. 1995. Seasonal and regional variations in plankton community
540 production and respiration for Chesapeake Bay. *Marine Ecology Progress Series* 116: 217-231.

541

542 Stow, C.A., J. Jolliff, D.J. McGillicuddy, S.C. Doney, J.I. Allen, M.A.M. Friedrichs, K.A. Rose,
543 and P. Wallhead. 2009. Skill assessment for coupled biological/physical models of marine
544 systems. *Journal of Marine Systems* 76: 4-15.

545 Taylor, D.I., Oviatt, C.A., Giblin, A.E., Tucker, J., Diaz, R.J. and Keay, K., 2020. Wastewater
546 input reductions reverse historic hypereutrophication of Boston Harbor, USA. *Ambio* 49: 187-
547 196, 10.1007/s13280-019-01174-1.

548

549 Testa, J.M., Boynton, W.R., Hodgkins, C.L.S., Moore, A.L., Bailey, E.M., and Rambo, J. 2022.
550 Biogeochemical states, rates, and exchanges exhibit linear responses to large nutrient load
551 reductions in a shallow, eutrophic urban estuary. *Limnology and Oceanography* 67: 739-752.

552

553 Testa, J.M., Y. Li, Y.J. Lee, M. Li, D.C. Brady, D.M. Di Toro, and W.M. Kemp 2014.
554 Quantifying the effects of nutrient loading on dissolved O₂ cycling and hypoxia in Chesapeake
555 Bay using a coupled hydrodynamic–biogeochemical model. *Journal of Marine Systems* 139:
556 139-158.

557

558 Testa, J.M., Kemp, W.M., Boynton, W.R. and Hagy, J.D. 2008. Long-term changes in water
559 quality and productivity in the Patuxent River estuary: 1985 to 2003. *Estuaries Coasts* 31: 1021-
560 1037.

561

562 Wikner, J., Vikström, K. and Verma, A. 2023. Regulation of marine plankton respiration: A test
563 of models. *Frontiers in Marines Science* 10, 10.3389/fmars.2023.1134699.

564

565 Wood, S. 2018. Mgcv, vol. 1. pp. 8–23. <https://CRAN.R-project.org/package=mgcv>.

566

567 Yvon-Durocher, G., Caffrey, J.M., Cescatti, A., Dossena, M., del Giorgio, P., Gasol, J.M.,
568 Montoya, J.M., Pumpanen, J., Staehr, and P.A. Trimmer, M. 2012. Reconciling the temperature
569 dependence of respiration across timescales and ecosystem types. *Nature* 487: 472–476.

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

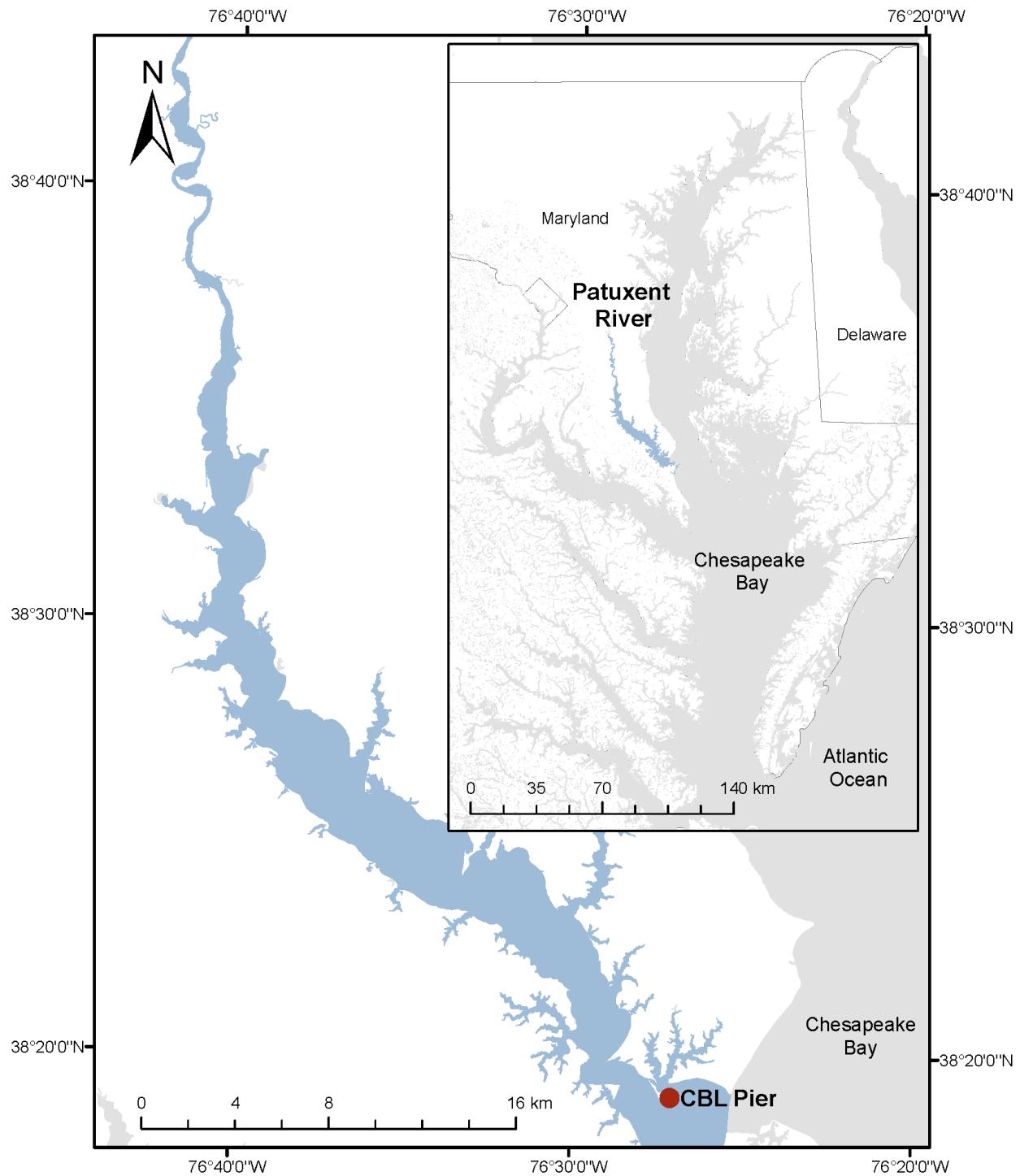
589

590

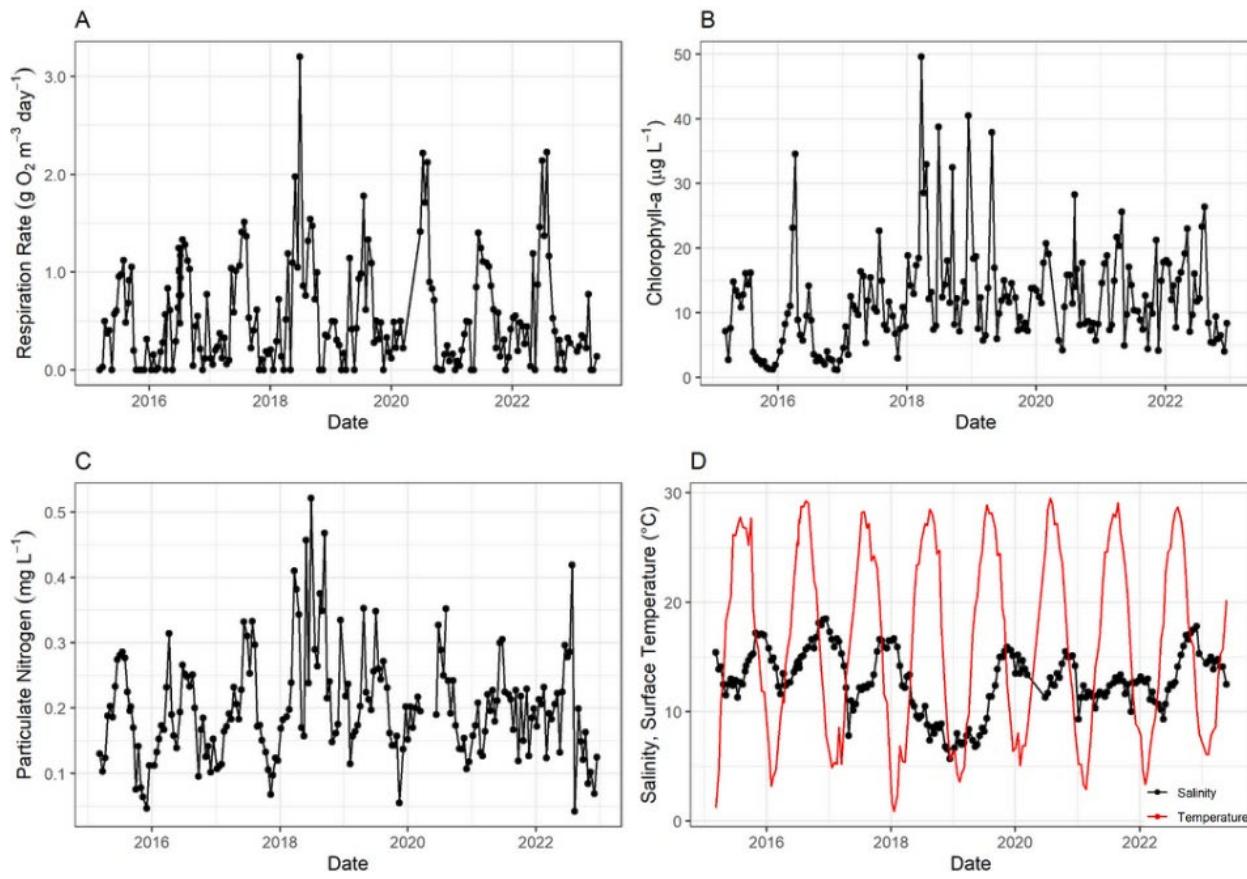
591 Table 1. Goodness of fit statistics for statistical and mechanistic models used to predict
 592 respiration rate, including those included in Figure 4 and other experimental models. “with time”
 593 represents those models with *Year* and *Day of Year* as model terms.

Model Type	SSE	r^2	RMSE
GAM with time and PN	14.64	0.741	0.282
GAM with time and C:N Ratio	14.56	0.742	0.281
GAM with time and chlorophyll-a	18.23	0.678	0.315
Kinetic Model	20.49	0.669	0.334
GAM with time and temperature	20.48	0.637	0.334
GAM with time and C:P Ratio	22.78	0.597	0.352
Base GAM with time	22.92	0.594	0.353
GAM with time and discharge	22.90	0.593	0.353
GAM with time and salinity	22.89	0.595	0.352

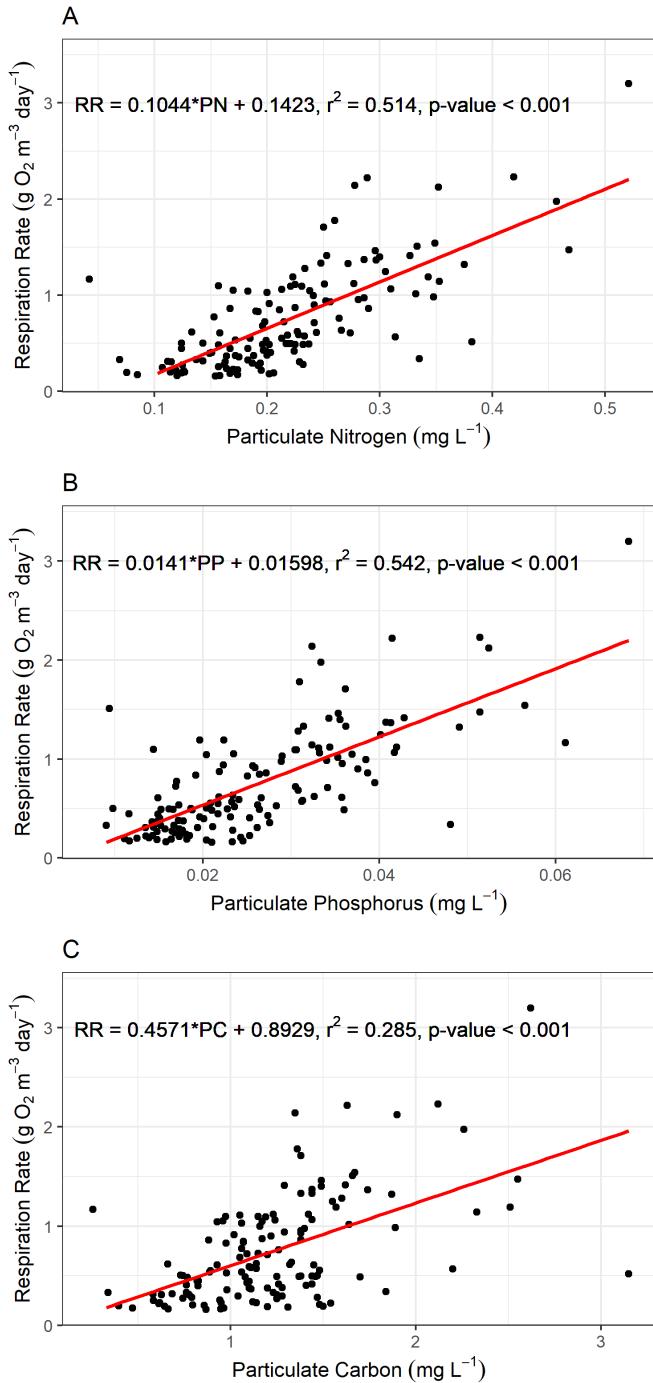
594
 595



596
 597 Figure 1: Map of the Patuxent River estuary, including the location of the CBL Research Pier
 598 where respiration rates and biogeochemical data were collected. Note location of the Patuxent
 599 River on the western shore of Chesapeake Bay in the mid-Atlantic region of the USA.
 600
 601
 602

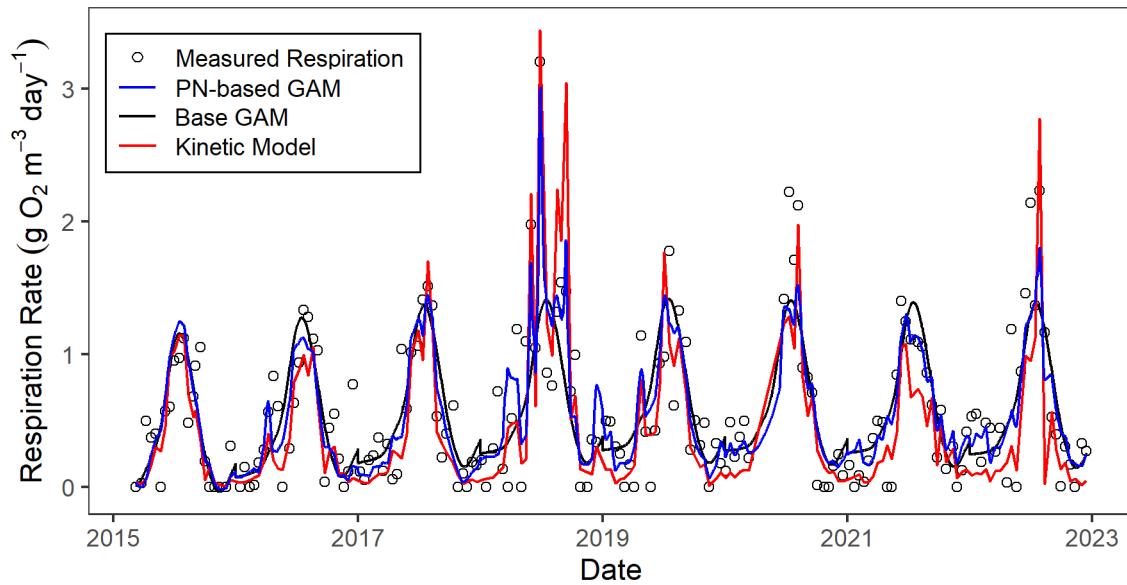


603
604
605 Figure 2. Biweekly measurements of community respiration rate (A), chlorophyll-a (B),
606 particulate nitrogen (C), and salinity (black line) and water temperature (red line) (D) collected
607 from surface water at the CBL research pier monitoring program from 2015-2022.
608
609



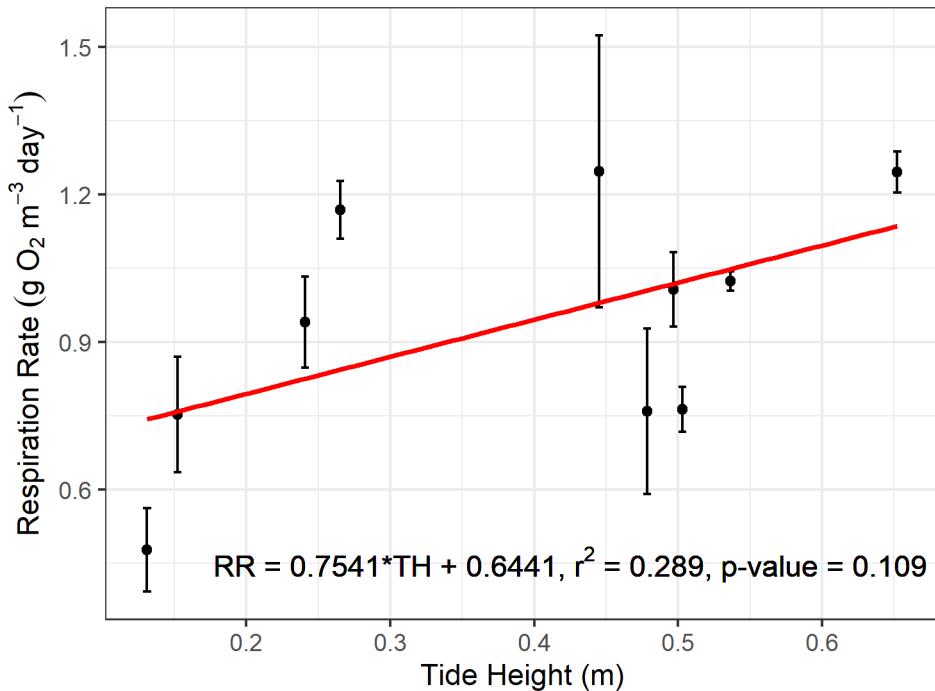
610
611
612
613

Figure 3. Plots of community respiration rate versus surface water particulate nitrogen (A), particulate phosphorus (B), and particulate carbon (C). Equations for linear regression of respiration rate and particulate material included with corresponding statistics.

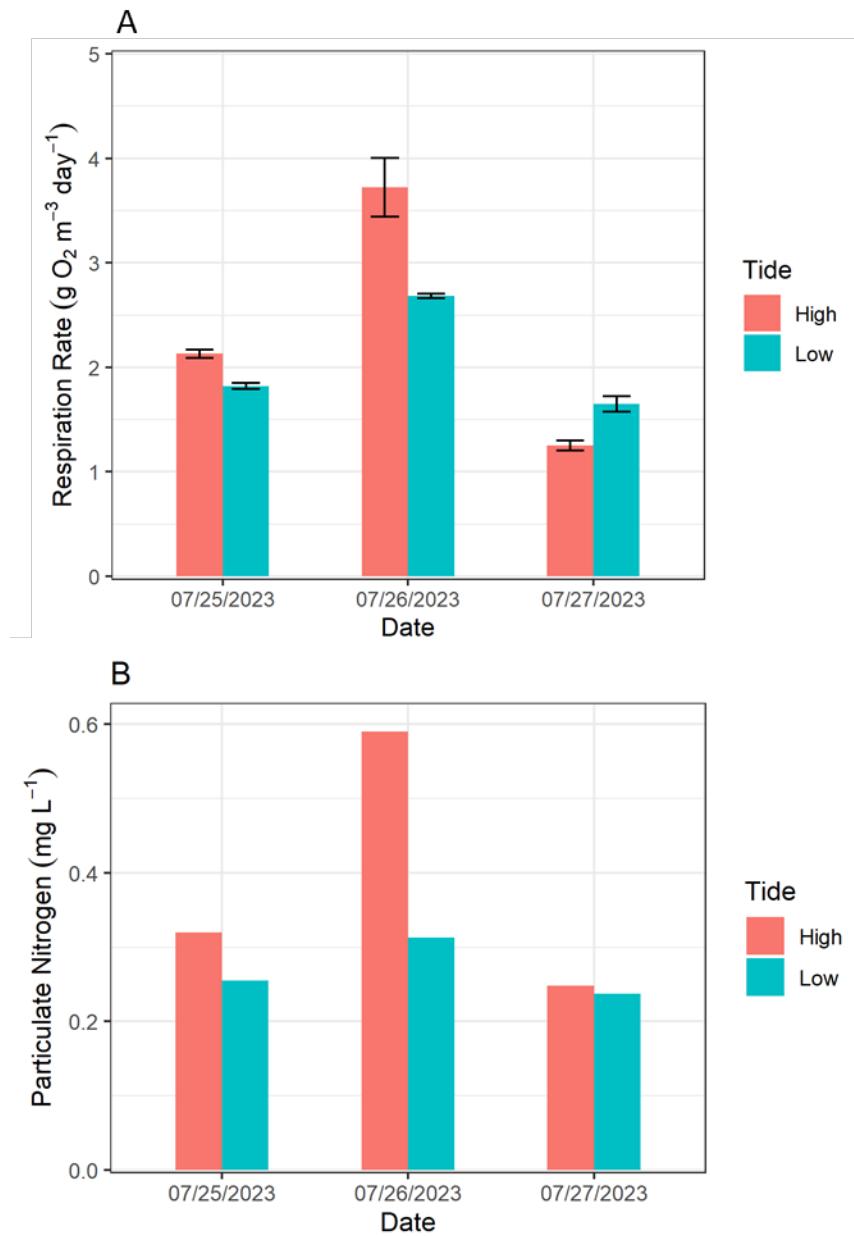


614
615
616
617
618
619
620
621
622

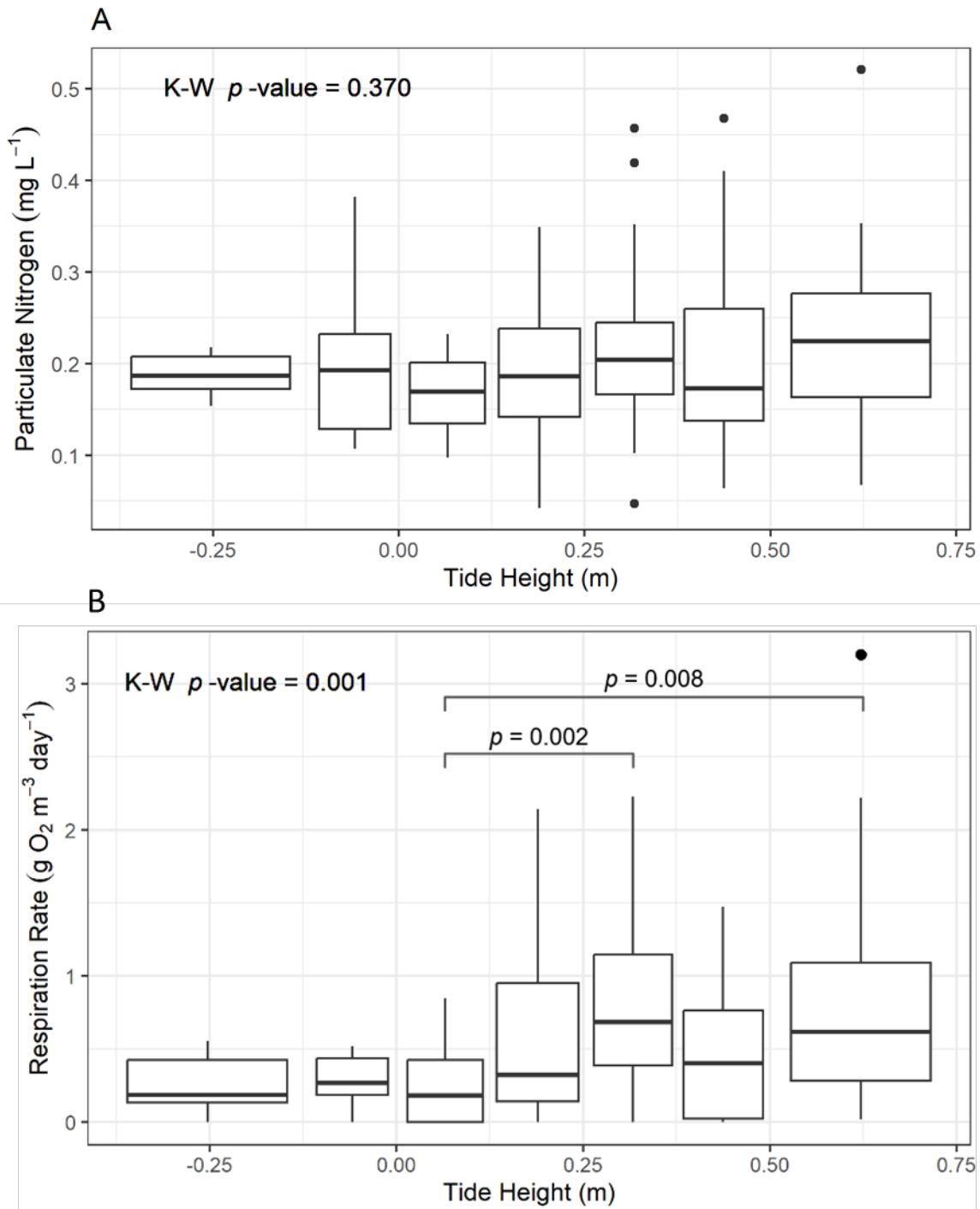
Figure 4. Time-series (2015-2022) of the observed respiration rates (open circles) and the three candidate models, including the time-only GAM (black line), the time- and PN-based GAM (blue line), and the kinetic model (red line).



623
624 Figure 5. Relationship between respiration rate and mean tide height from the 10-day
625 consecutive sampling carried out in June and July of 2016. Error bars represent the standard
626 deviation of triplicate incubations on each sampling day. Equations for linear regression of
627 respiration rate and particulate material tide height included with corresponding statistics.
628
629
630
631
632
633
634
635
636



637
 638 Figure 6. Respiration rate measured at high and low tides from the consecutive 3-day sampling
 639 (A, bar = mean \pm SD of triplicate incubations) and particulate nitrogen measured at high and
 640 low tides (B, no replicates).
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650



651
652

653 Figure 7. Box plots of surface-water particulate nitrogen (A) and respiration rate (B) aggregated
654 versus ranges of tide height for the bi-weekly samples collected in this study. For each box, the
655 central line is the median, the top and bottom of the box are the 75th and 25th percentiles,
656 respectively, the vertical lines capture the remaining range of the data, and the black circles are
657 outliers. Box widths indicate range of tide heights in group. In panel B, the hatched lines indicate
658 groups whose differences had a p-value less than 0.05 as determined by a Kruskal-Wallis with
659 Dunn's post-hoc comparison.