
 
 

            

  

                

                    

                  

                 

                

                 

                 

                 

                  

                  

                   

                 

              

                  

               

                 

              

                 

        

            

   

  

  

  

1 Improved forest dynamics leads to better hydrological predictions in watershed modeling 

2 ABSTRACT 

3 This study explored how the characterization of forest processes in hydrologic models affects watershed hydrological 

4 responses. To that end, we applied the widely used Soil and Water Assessment Tool (SWAT) model to two forested 

5 watersheds in the southeastern United States. Although forests can cover a large portion of watersheds, tree attributes 

6 such as leaf area index (LAI), biomass accumulation, and processes such as evapotranspiration (ET) are rarely 

7 calibrated in hydrological modeling studies. The advent of freely and readily available remote-sensing data, combined 

8 with field observations from forestry studies and published literature, allowed us to develop an improved forest 

9 parameterization for SWAT. We tested our proposed parameterization at the watershed scale in Florida and Georgia 

10 and compared simulated LAI, biomass, and ET with the default model settings. Our results showed major 

11 improvements in predicted monthly LAI and ET based on MODIS reference data (NSE > 0.6). Simulated forest 

12 biomass also showed better agreement with the USDA forest biomass gridded data. Through a series of modeling 

13 experiments, we isolated the benefits of LAI, biomass, and ET in predicting streamflow and baseflow at the watershed 

14 level. The combined benefits of improved LAI, biomass, and ET predictions yielded the most optimal model 

15 configuration where terrestrial and in-stream processes were simulated reasonably well. We performed automated 

16 model calibration using two calibration strategies. In the first calibration scheme (M0), SWAT was calibrated for daily 

17 streamflow without adjusting LAI, biomass, and ET. In the second calibration scheme (MLAI+BM+ET), previously 

18 calibrated parameters constraining LAI, biomass, and ET were incorporated into the model and daily streamflow was 

19 recalibrated. The MLAI+BM+ET model showed superior performance and reduced uncertainties in predicting daily 

20 streamflow, with NSE values ranging from 0.52 to 0.8. Our findings highlight the importance of accurately 

21 representing forest dynamics in hydrological models. 

22 KEYWORDS: SWAT, Forest dynamics, Watershed hydrologic modeling, Leaf area index, Evapotranspiration, 

23 Biomass, MODIS 
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27 1. INTRODUCTION 

Any ecosystem in a watershed affects the quantity and quality of the water passing through it by 

either improving or degrading the hydrologic services (Brauman et al., 2007). For example, 

forested ecosystems might increase rainfall infiltration rates while decreasing water yield (Filoso 

et al., 2017). This is mainly due to the higher water infiltration capacity of forest soils compared 

to other land uses (Bruijnzeel, 2004). Since forests can make up large portions of a watershed 

system, it is important to understand their role in the hydrologic cycle and how they influence the 

pathways and distribution of water in the watershed (Amatya el al., 2015). Forests can tightly 

interact with the hydrologic cycle through the canopy interception of precipitation; the 

redistribution of water via throughfall, stemflow, surface runoff, lateral flow, soil infiltration, 

percolation, groundwater recharge and baseflow; and the loss of water by soil evaporation and 

transpiration from foliage. Thus, through the use, transport, and partitioning of water, forest 

ecosystems can significantly alter the volume and timing of water reaching downstream locations 

(Brauman et al., 2007). 

In recent years, there has been a growing interest in investigating the interface between 

watershed vegetation and hydrologic processes (Amatya et al., 2015; Hernandez et al., 2018; Sun 

et al., 2005; Williams et al., 2012; Wit, 2001). As water yield from forestlands is critical for 

supporting ecosystem biodiversity and local communities, there is an urgent need to better 

understand the nexus between forests and water in order to orient science-based sustainable 

watershed development (Amatya et al., 2015; Brown et al., 2016; Sun et al., 2005). Watershed-

scale hydrological models have been successfully employed to investigate the interactions among 

forests and components of the hydrological cycle (Brown et al., 2015; Golden et al., 2016; Ziemer 

et al., 1991). A hydrological model capable of accounting for the spatial and temporal variability 
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of factors affecting hydrological processes (e.g., intra-annual plant growth cycle, landscape 

heterogeneity) is a useful tool for understanding, predicting, and managing water resources (Khaki 

et al., 2019; Loizu et al., 2018; Zhang et al., 2019). In this context, reliable watershed models that 

can realistically represent forest-water relationships can be powerful tools. 

An accurate representation of the simulated system is critically important for the 

performance of hydrological models in predicting a given target variable (Jiang and Wang, 2019). 

Even though forests can regulate water cycling and significantly affect water fluxes within a 

watershed, watershed modelers rarely pay attention to the accuracy of their representation in 

capturing forest attributes and processes such as leaf area index (LAI), biomass, and 

evapotranspiration (ET). Streamflow is usually selected as the only variable to measure the 

performance of watershed models since streamflow data are relatively easy to obtain (Li Zejun et 

al., 2020). The information contained in gauged streamflow data may not sufficiently capture 

vertical fluxes and how they vary in space and time within the watershed (Rajib et al., 2018), thus 

leading to inaccurate representation of relative contributions of various fluxes. For instance, 

hydrological fluxes such as infiltration, soil evaporation, plant transpiration, and 

evapotranspiration evolve at different spatial and temporal scales within a watershed and affect the 

water balance (Tague and Band, 2001). Streamflow data lumps horizontal water movement (i.e., 

runoff) and vertical water fluxes (e.g., evapotranspiration) together (Li Zejun et al., 2020), thus 

leading to inaccurate representation of horizontal and vertical fluxes. This may lead to erroneous 

conclusions if the model is used to assess, for example, the impacts of forest management practices 

(e.g., thinning, fertilization) or deforestation/afforestation on water resources. Also, forestlands 

can modify soil hydraulic conductivity, porosity, capillarity, and texture (e.g., increased organic 
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matter content), having underlying effects on soil water infiltration, subsurface flows, and 

groundwater flows (Tabacchi et al. 2000). 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) has been extensively 

applied worldwide to estimate water yield (Abou Rafee et al., 2019; Adla et al., 2019; Kaur et al., 

2019), sediment loss (Wang and Kalin, 2018; Brighenti et al., 2019; Himanshu et al., 2019; Mishra 

et al., 2007), nutrient loading ( Ramesh et al., 2020; Akhavan et al., 2010; Chu et al., 2004; Haas 

et al., 2016), and assess the impacts of climate ( Dosdogru et al., 2020; Ahn et al., 2016; Anjum et 

al., 2019; Awan and Ismaeel, 2014) and land use/cover changes (Anand et al., 2018; Haas et al., 

2021a; Jodar-Abellan et al., 2018; Li et al., 2014; Romanowicz et al., 2005; Teklay et al., 2019; 

Wang et al., 2018) on water resources. 

SWAT has not been sufficiently tested in forested ecosystems yet (Yang et al., 2018) and 

had shown some limitations to accurately simulate plant growth (Zhang et al., 2020), especially 

LAI development. To address these issues, a few studies have been carried out to revise SWAT’s 

plant database. For example, Strauch and Volk (2013) proposed a new plant growth approach 

based on changes in soil moisture for tropical regions and presented a logistic LAI decline function. 

Similarly, Alemayehu et al. (2017) presented a quotient of rainfall and reference 

evapotranspiration to initialize the plant growth cycle in SWAT. The authors tested the 

methodology for a variety of land uses in Kenya and Tanzania and showed improvements in 

simulated LAI based on remote-sensing derived data. Yang and Zhang (2016) identified unrealistic 

parameter values representing evergreen forests, deciduous forests, and mixed forests in SWAT 

and proposed an improved model parameterization tested at ten Ameriflux sites. Yang et al. (2018) 

extended the previous study to the watershed scale and showed positive effects for streamflow 

prediction. Watson et al. (2005) replaced the original SWAT plant growth model with the 3-PG 
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95 forest growth model to better represent the growth of Eucalyptus trees in Australia. More recently, 

96 Lai et al. (2020) presented a forest growth model featuring variable density and mixed vegetation 

97 types in SWAT. Their results showed that the modified model outperformed the original model in 

98 simulating flow and nutrient load. 

99 Although all these studies offer valuable insights and potential contributions to the 

100 modeling community, they fall into oversimplifications (e.g., lumped forest types), insufficient 

101 representation of plant growth components (e.g., LAI + biomass + ET), an excessive amount of 

102 input data (e.g., forest growth data required by 3-PG), and lack of demonstration of the extents to 

103 which forest processes affect the watershed hydrology. To the best of the author’s knowledge, no 

104 study in the literature demonstrated the watershed-scale benefits of realistically representing forest 

105 attributes in watershed modeling. Most of the modeling studies found in the literature lumped 

106 parameters for groups of forests and thus did not consider underlying characteristics of specific 

107 forest types, such as pines. In forested regions such as the southeastern U.S., for example, where 

108 specific pine species like loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii) dominate 

109 the landscape, it is necessary to better test SWAT’s skills and tune the model to better represent 

110 these tree species. 

111 Considering that forests can cover large portions of watersheds and greatly interfere with 

112 the hydrological cycle and that SWAT has been widely applied as a hydrological prediction and 

113 assessment tool, it is fundamental to understand and evaluate the model’s skills in forested 

114 ecosystems. LAI and biomass, besides being key forest attributes representing forest growth and 

115 dynamics, play important roles in SWAT’s hydrological computations. For instance, LAI affects 

116 plant transpiration, canopy rainfall storage, and evapotranspiration (if the Penman-Monteith 

117 method is used to simulate ET) in SWAT (Neitsch et al., 2011). Likewise, aboveground biomass 
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and soil residue affect soil evaporation rates in the model. SWAT’s semi-distributed characteristic 

capable of discretizing the landscape into smaller units combined with the vast amount of freely 

available remote-sensing data presents a great opportunity for modelers to step forward from the 

traditional modeling calibration approach (i.e., streamflow only) and incorporate additional 

constraints into the models. A large number of studies have reported the benefits of using remote-

sensing derived data to increase the accuracy of watershed models (Gui Ziling et al., 2019; Ha et 

al., 2018; Herman et al., 2018; Jiang and Wang, 2019; Ma et al., 2019; Odusanya et al., 2019; 

Parajuli et al., 2018; Rajib et al., 2016; Tobin and Bennett, 2017; Y. Zhang et al., 2020). In a recent 

effort, Haas et al. (2021b) developed an improved SWAT re-parameterization of forest processes 

and tested it for loblolly pine and slash pine, the two major pine species in the southeastern United 

States. The methodology was based on remote-sensing data combined with field observations and 

was successfully tested at different field-scale sites across the southeastern United States. Although 

the developed re-parameterization outperformed the default model in predicting tree LAI, biomass, 

and ET, the hydrological implications at the watershed scale were not investigated. 

Therefore, the overreaching goal of this study was to investigate the importance of 

accurately capturing forest processes in watershed-scale hydrological models and assess their 

implications for simulated discharge and water balance computation. Our specific objectives were 

to: (1) assess the feasibility of transferring previously calibrated biophysical parameters to two 

forested watersheds; (2) determine which forest attributes and processes (LAI development, 

biomass accumulation, or ET rates) affect streamflow and water budget the most; and (3) assess 

the effects of multi-facet model calibration (LAI + biomass + ET + streamflow) on streamflow 

prediction compared to traditional model calibration (streamflow only). It is hypothesized that an 

enhanced representation of forest dynamics in SWAT will positively affect its performance in 
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simulating streamflow due to a more realistic prediction of leaf area development, canopy storage, 

and precipitation lost as ET. The novelty of this study is in demonstrating the effect of forest 

dynamics on hydrological processes using a ready-to-go improved model parameterization based 

on open-source remote sensing products, published literature, and shared field observations. Such 

level of detail and reflection of real-world interplays of natural processes (i.e., water, energy, 

vegetation) could never be achieved through traditional model calibration against streamflow only. 

The remainder of the paper is organized as follows: In section two, we describe the study 

area, the watershed model utilized, the modeling scenarios designed to assess the importance of 

forest processes in hydrologic predictions, and the statistical analyses employed to evaluate the 

model performance. In section three, we present the results, discuss, and interpret them in light of 

the published literature, highlight some limitations of our study, and suggest future directions 

related to the incorporation of forest growth and dynamics in watershed models. Finally, in section 

four, we summarize our main findings and stress their implications in applying watershed models 

as tools to support decision-making. 

2. MATERIAL AND METHODS 

2.1.Study sites 

The Upatoi Creek and Upper Santa Fe River watersheds located in Florida and Georgia, 

respectively, were selected as the study sites (Fig. 1). These watersheds were suitable to test our 

hypothesis that a better simulation of key forest processes can result in better streamflow prediction 

because both are highly forested in either loblolly or slash pine tree species. Both have long-term 

daily streamflow records. The Upatoi Creek Watershed (UCW) is in Chattahoochee County, near 

Columbus, Georgia, and has a drainage area of approximately 900 km2. Upatoi Creek is a 57 km 

long river running from South Columbus to the Chattahoochee River. The elevation ranges from 
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73 to 255 meters in the watershed, and according to the Soil Survey Geographic Database 

(SSURGO), there are 172 different soil classes at UCW, out of which 75 are hydrological soil 

group (HSG) A, 47 are HSG B, and 50 are HSG C. The land use and cover at UCW are mainly 

dominated by loblolly pine trees (57%) and shrubs (9%). 

The Upper Santa Fe River Watershed (SFRW) is part of the Santa Fe River Basin system 

and has a drainage area of approximately 500 km2 and elevation ranging from 25 to 83 meters. 

Located predominantly in Union County, Florida, the SFRW is situated approximately 40 km north 

of the city of Gainesville. In terms of land use and cover, the SFRW is dominated by slash pine 

trees (56%) and hay-pasture (12%). (Soils in the SFRW are mostly HSG’s A and B with a few 

HSG’s C. 

Additional Hydrometeorological characteristics portraying both watersheds are 

summarized in Table 1. 
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176 

177  Figure  1.  Location  map.  (A)  Upatoi  Creek  watershed,  (B)  Upper  Santa  Fe  River  watershed.  

178   

179  Table  1.  Watershed  characteristics  

Hydrometeorological  variable  Upatoi  Creek  Upper  Santa  Fe  

Latitude  32.544,  32.61  N   29.964,  30.165  N  

Longitude  -84.811,  -84.442  W  -82.247,  -82.045  W  

Area  (km2)  881.75  487.84  

Average  mean  daily  temperature  (ₒC)  (1995-2018)  18.2  20.48  

Average  annual  precipitation  (mm)  (1995-2018)  1295.8  1326.5  

Mean  annual  potential  evapotranspiration  (mm)  (1995-2018)  1268  1215.2  

Mean  annual  discharge  (mm)*  (2002-2018)  481  314  

Mean  daily  streamflow  (m3/s)  (1998-2018)  10.7  3.1  

   180

2.2.The SWAT Model 
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182 The SWAT hydrological model was used in the current study to investigate the effects of forest 

183 dynamics on key hydrological processes within the study watersheds. SWAT is one of the most 

184 widely used hydrological models and a well-established tool capable of simulating various water 

185 fluxes (e.g., surface runoff, lateral flow, groundwater contribution) and plant growth. Additional 

186 model components include weather, transport of sediment, nutrients, bacteria, and pesticides, and 

187 land management. SWAT is a watershed-scale, semi-distributed, continuous-time, open-source 

188 model developed by the United States Department of Agriculture (USDA) Agricultural Research 

189 Service (ARS). The model discretizes a watershed into subwatersheds, which are further 

190 discretized into unique combinations of land use, soils, and slope called hydrological response 

191 units (HRU’s) (Neitsch et al., 2011). 

192 In SWAT, the water balance calculation for each HRU considers five storages: snow, canopy 

193 storage, the soil profile with up to ten layers, a shallow aquifer, and a deep aquifer. The water 

194 balance is calculated using the following: 

195 ௧∆𝑆 = ∑ (𝑃 − 𝑄௧௢௧௔௟ − 𝐸𝑇 − 𝑤௦௘௘௣) (1) ௧ୀଵ 

196 where, ∆𝑆 is the change in water storage, P, Qtotal, ET, and 𝑤௦௘௘௣ are the daily amount of 

197 precipitation, total water yield, evapotranspiration, and the total amount of water exiting the 

198 bottom of the soil profile on a given day, respectively. The value of 𝑤௦௘௘௣ is a sum of the amount 

199 of water percolating out of the lowest soil layer and the amount of water flowing past the lowest 

200 boundary of the soil profile due to bypass flow. The total water yield (Qtotal) represents an 

201 aggregated sum of surface runoff, lateral flow, and the base flow contribution to streamflow. In 

202 this study, surface runoff was computed using the Soil Conservation Service (SCS) Curve Number 
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(CN) method based on daily rainfall observations, and the Penman-Monteith (Monteith, 1965) 

method was selected for estimating evapotranspiration. 

SWAT incorporates a simplified version of the Environmental Policy Integrated Climate 

(EPIC) model (Williams, 1990) to simulate the growth of different types of crops and trees. The 

initialization of the growth cycle in SWAT is based on the heat unit theory: plants require a certain 

amount of heat to reach maturity, which is only reached when a plant-specific total heat unit is 

attained. Once the plant reaches maturity, it stops transpiring and uptake of water and nutrients. In 

SWAT, the growth cycle restarts every year based on a latitude-dependent dormancy routine or 

via harvest and kill operation in the model’s management module. At the beginning of each growth 

cycle, the accumulated heat units drop to zero and the LAI is set to a plant-specific minimum value 

defined by the user (Neitsch et al., 2011). During the early stage of plant growth, SWAT simulates 

phenological development using an optimal leaf area index development curve. The plant’s 

biomass accumulation is based on canopy light interception and the plant’s efficiency in converting 

intercepted radiation into biomass. For detailed information about SWAT’s representation of forest 

growth and dynamics and how it affects the simulation of hydrological processes, readers are 

referred to Haas et al. (2021b). 

Given SWAT’s limitations in simulating tree growth (Lai et al., 2020; Ma et al., 2019; 

Strauch and Volk, 2013; Yang et al., 2018; Yang and Zhang, 2016), the current study uses the 

improved model parameterization describing loblolly and slash pine growth and dynamics 

introduced by Haas et al. (2021b). This improved forest parameterization was developed based on 

field measured forestry data, remote-sensing estimates of LAI, expert knowledge, and a review of 

published literature. Further details about SWAT’s computation of physical processes can be found 

in Neitsch et al. (2011). 
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226 2.3.Model setup and data acquisition 

As a semi-distributed watershed-scale hydrological model, SWAT requires several geospatial 

inputs and weather forcing to simulate physical processes within a watershed. The ArcSWAT 2012 

(version 10.4.19) interface was used in this study to delineate the watersheds and define their 

respective number of HRU’s. First, the watershed’s boundaries were delineated based on 10 meters 

resolution digital elevation model (DEM) from the National Elevation Dataset (NED) and 

hydrography network from the National Hydrography Dataset (NHD). Soil maps and soil 

characteristics (e.g., soil depth, soil hydraulic conductivity, available water capacity) needed to 

parameterize SWAT’s soil database were obtained from SSURGO as gridded data covering the 

watershed’s drainage area. A reclassified land use map based on the publicly available 30 meters 

resolution National Land Cover Database (NLCD) 2016 was ingested in ArcSWAT. 

The land use reclassification was deemed necessary to capture the spatial distribution of 

loblolly and slash pine across the watersheds as accurately as possible. Thus, a pre-processing step 

involving reclassification of NLCD 2016 was conducted using the National Forest Type Dataset 

(NFTD) (Ruefenacht et al., 2008) as a background map to discretize NLCD’s forest classification 

into species-specific and geographically-meaningful types of trees. NFTD is a publicly available 

geospatial dataset at 250 meters resolution developed by the United States Forest Service (USFS) 

Forest Inventory and Analysis (FIA) program and the Geospatial Technology and Applications 

Center (GTAC). This dataset was created to show the extent, spatial distribution, and forest type 

composition of forests within the United States territory. We pre-processed this gridded dataset in 

ArcMap 10.4.1 to make it readable in ArcSWAT during the HRU definition phase. Initially, we 

isolated loblolly pine and slash pine species from NFTD and saved them as a separate raster layer. 

Next, the original NLCD 2016 raster layer was overlaid with the NFTD raster. Using the erase 
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249 function from the Analysis Tool toolbox and ingesting the NFTD loblolly and slash pine layers as 

250 input (one after the other), the NLCD land use classes overlapping with loblolly and slash pine 

251 layers were erased. The geospatial information of the previously isolated loblolly and slash pine 

252 rasters were then copied (copy function on ArcMap’s main toolbar enabled through an edit session) 

253 and pasted (paste function on ArcMap’s main toolbar) into the NLCD rasters that had their original 

254 classes erased in the previous step. It is worth mentioning that this sequential pre-processing was 

255 applied to the NLCD’s land use classes representing forests only (e.g., forests deciduous, forests 

256 evergreen, forests mixed, and forested wetlands), exempting other land use classes such as 

257 agricultural lands and urban spaces. This decision was made to avoid misclassification, given the 

258 coarser resolution of NFTD compared to NLCD. Table 2 shows the percentage cover of each land 

259 use class with respect to the watershed’s area, before and after reclassification. 

Table   2. Land   use  and  cover  change after   reclassification  to  consider loblolly   and slash   pine  spatial distribution  
 across the   watersheds 

Upper  Santa   Fe 
coverage    - NLCD  % coverage    - Modified 

 2016 NLCD  
Land  

 

 use  class 
 % 

 Upatoi Creek  
coverage    - NLCD  % coverage    - Modified  % 

 2016 NLCD  
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Open Water 3% 3% 0% 0% 

Developed, Open Space 4% 4% 6% 6% 

Developed, Low Intensity 2% 2% 1% 1% 

Developed, Medium Intensity 1% 1% 0% 0% 

Developed, High Intensity 0% 0% 0% 0% 

Barren Land 0% 0% 1% 1% 

Deciduous Forest 14% 3% 2% 0% 

Evergreen Forest 30% 4% 40% 5% 

Mixed Forest 15% 3% 0% 0% 

Shrub/Scrub 9% 9% 6% 6% 

Herbaceuous 5% 5% 5% 5% 

Hay/Pasture 4% 4% 13% 12% 

Cultivated Crops 4% 4% 0% 1% 

Woody Wetlands 8% 2% 25% 6% 
Emergent Herbaceuous 

0% 0% 0% 0% 
Wetlands 
Slash Pine _ 0% 56% 

Loblolly Pine _ 57% 1% 

  

           

          

               

            

               

              

               

                 

              

           

              

             

269 

270 For weather forcings, this study used daily precipitation and minimum/maximum 

271 temperature from the PRISM Climate Group (http://www.prism.oregonstate.edu), hourly solar 

272 radiation and wind speed data from the North American Land Data Assimilation System (NLDAS) 

273 (https://ldas.gsfc.nasa.gov/nldas) aggregated to a daily basis, and hourly relative humidity data 

274 from the National Solar Radiation Database (NSRD) (Sengupta et al., 2018), also aggregated to 

275 daily time-step. Precipitation, temperature, and relative humidity data at 4 km resolution were 

276 extracted using the centroid of each subwatershed as a spatial reference, resulting in twenty-three 

277 virtual stations at UCW and twenty-one at SFRW. Solar radiation and wind speed estimates at 12.5 

278 km resolution were extracted to all NLDAS grids overlapping the watershed’s boundary, which 

279 resonated in eight virtual stations at both UCW and SFRW. 

280 To assess the effects of improved SWAT forest parameterization at the watershed scale, 

281 we compared SWAT predicted ET and LAI against MODIS-derived estimates. To accomplish 
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this, we selected subwatersheds almost entirely covered by loblolly and slash pine and then 

compared SWAT outputs of LAI and ET from the largest HRU against MODIS estimates. 

MOD15A2H (Myneni et al., 2015) and MOD16A2 (Running et al., 2017) datasets were used to 

derive LAI and ET data at 4-days and 8-days intervals, respectively, at 500 meters resolution. 

MODIS extracted data were geo-referenced and spatially aggregated to the shape of previously 

delineated polygons representing the located loblolly and slash pine areas using automated routines 

in the Google Earth Engine platform (Gorelick et al., 2017). The simulated forest biomass was 

compared to gridded forest biomass data from the U.S. Department of Agriculture (USDA) Forest 

Service Forest Biomass product, which was developed based on field measurements and statistical 

models (Blackard et al., 2008). Comparison of simulated and observed forest dynamics using the 

default and re-parameterized models are shown in section S1 of the supplementary materials 

(Appendix C). 

We set up the initial growing conditions of slash and loblolly pine in the models by deleting 

all management operations assigned to the management file in ArcSWAT. Next, we assumed that 

trees were fully developed at the beginning of the simulation period by setting the HRU’s land 

cover status as land cover growing from the beginning of the simulation period. Moreover, some 

initial physical conditions like the number of heat units (PHU_PLT), initial leaf area index 

(LAI_INIT), and initial biomass (BIO_INIT) had to be defined to configure the annual growth cycle 

of trees. For loblolly and slash pine, PHU_PLT and LAI_INIT were defined based on the field-

scale model parameterization presented by Haas et al. (2021b) while BIO_INIT was initialized 

according to USDA’s Forest Service forest biomass data for each watershed. 

For streamflow calibration and validation, we used daily streamflow data from the U.S. 

Geological Survey (USGS) gaging stations 02341800 and 02321000 at UCW and SFRW, 
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305 respectively. The complete dataset used for constructing and calibrating/validating the SWAT 

306 models, as well as their sources, are summarized in Table 3. Based on the described data, 

307 SWAT2012 (revision 664) through the ArcSWAT interface with a 10%-10%-0% (land-use, soils, 

308 slope) threshold generated 23 subbasins and 172 HRU’s for UCW, whereas, 21 subbasins and 138 

309 HRU’s were generated for the SFRW. The models were run from 1995 to 2018, using 3 years 

310 (1995-1997) of initialization as model warm-up period. 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 Table 3. Description of data and their sources. Model input data refers to datasets utilized to construct the watershed 
322 models. Model calibration refers to data utilized to constrain intra-watershed processes and calibrate discharge at the 
323 watershed’s outlet. 
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Topography 

Land use 

Model input 
data 

Soil 

Climate 

Atmospheric 
deposition 

Seasonal LAI 

Model 
calibration 

ET 

Biomass 

Annual LAI 

Streamflow 

National Elevation 
Dataset at 10 meters 

resolution 

2016 NLCD 

Gridded Soil Survey 
Geographic (gSSURGO) 

Daily precipitation, 
maximum/minimum 

temperature, solar 
radiation, wind speed 

Wet and dry deposition of 
nitrate and ammonia 

United States Department of Agriculture (USDA) Geospatial Data Gateway 
(https://datagateway.nrcs.usda.gov/) 

United States Department of Agriculture (USDA) Geospatial Data Gateway 
(https://datagateway.nrcs.usda.gov/) 

United States Department of Agriculture (USDA) Geospatial Data Gateway 
(https://datagateway.nrcs.usda.gov/) 

PRISM climate group (http://www.prism.oregonstate.edu/),National Land Data 
Assimilation Systems (NLDAS) phase 2 

(https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php), National 
Solar Radiation Database (https://nsrdb.nrel.gov/) 

National Atmospheric Deposition Program (NADP) 
(http://nadp.slh.wisc.edu/) 

Moderate Resolution Imaging Spectroradiometer (MODIS) 
(https://lpdaac.usgs.gov/products/mcd15a3hv006/) 

Moderate Resolution Imaging Spectroradiometer (MODIS) 
(https://lpdaac.usgs.gov/products/mod16a2v006/) 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 
Florida and Alabama, respectively 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 
Florida and Alabama, respectively 

USGS Water data 
(https://waterdata.usgs.gov/nwis) 

4 days composite dataset 
at 500 meters pixel 

resolution 

8 days composite dataset 
at 500 meters pixel 

resolution 

Field-measured annual 
total trees biomass 

Field-measured annual 
LAI 

Daily discharge from 
stations USGS 02321000 

(FL) and USGS 
02341800 (GA) 
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2.4.Experimental design 
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343

344

345

346

347

348

349

Parameter-rich models such as SWAT can be easily calibrated for streamflow even though key 

intra-watershed processes such as forest dynamics are simulated poorly. This is because an 

observed signal (e.g., point-scale streamflow) may be reproduced in such models using thousands 

of different parameter sets or ranges of parameter combinations. This problem is known as 

equifinality (Beven and Freer, 2001), where, models can give right answers for wrong reasons. 

One possible way of minimizing the equifinality problem is by constraining more model variables 

(e.g., LAI, biomass, ET) through additional observed data. Here we perform four modeling 

experiments before streamflow calibration in which we progressively constrain more variables 

with additional data. These experiments can help us isolate the impacts of LAI, biomass, and ET 

on streamflow prediction and water budget computation without the confounding effect stemming 

from the calibration of streamflow-related parameters. To measure the benefits and drawbacks of 

each experiment, we compared simulated baseflow, streamflow, watershed-average ET, and runoff 

coefficient against observations and remote-sensing derived estimates. Observed baseflow was 

estimated from observed streamflow using the Web-based Hydrograph Analysis Tool (WHAT) 

(Lim et al., 2005) using its standard settings for perennial streams with a porous aquifer. The 

experiments were as follows: 

1. Default model (M0): SWAT model was setup and run without altering plant growth-related 

parameters; 

2. ET (MET): this experiment added ET-related parameters (transferred from Haas et al. 

(2021b)) to the default model (M0); 

3. LAI + biomass (MLAI+BM): this experiment incorporated parameters controlling LAI and 

biomass, which were previously calibrated by Haas et al. (2021b); 
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4. LAI + biomass + ET (MLAI+BM+ET): this experiment included calibrated parameter values 

representing the full coupling of vegetation, water, and energy relations in SWAT. 

Comparison of MET, MLAI+BM, and MLAI+BM+ET against M0 tells us how much model 

performance has improved or deteriorated due to the addition/removal of new variables. The fourth 

experiment (MLAI+BM+ET) was the one we were most interested in because it fully considered the 

tree growth cycle in SWAT and included the largest number of variable constraints. MLAI+BM 

compared to M0 tells us how much model performance has improved or deteriorated by including 

improved phenological development and biomass accumulation without adjusting for canopy 

evaporation, plant water uptake, and soil evaporation. MET shows how remote-sensed ET data can 

help predictions in ungauged basins or watersheds with limited streamflow records. M0 is a 

baseline scenario serving as a reference to measure the advantages and disadvantages of MET, 

MLAI+BM, and MLAI+BM+ET. 

2.5. Streamflow calibration and validation strategies 

Hydrological models often cannot accurately simulate streamflow under default parameterization. 

Each watershed is unique and dominant hydrological processes can vary, which default 

parameterization may not capture. Thus, model calibration is frequently performed to adjust 

selected model parameters representing the processes of interest. In this study, we employ an 

automated model calibration approach to enhance SWAT’s accuracy in simulating streamflow at 

the watershed’s outlet. We split the time series data into calibration (1998-2014) and validation 

(2015-2018) periods in both watersheds. SWAT Calibration and Uncertainty Program (SWAT-

CUP) (Abbaspour, 2015a), a standalone calibration software developed specifically to be used 

with SWAT, was used to optimize model parameters. Model calibration was carried out at the 

daily time step using the Sequential Uncertainty Fitting algorithm (SUFI-2) option in SWAT-CUP. 
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In SUFI-2, global sensitivity analysis is performed by calculating the regression 

coefficients of the parameters generated by the Latin hypercube sampling method against the 

values of the defined objective function. The relative significance of each sampled parameter is 

measured using a t-test. Parameter sensitivities are computed by quantifying the average changes 

in the objective function resulting from changes in each parameter (Abbaspour, 2015b). The p-

value tests the null hypothesis that the coefficient of a parameter is equal to zero (i.e., the parameter 

is not sensitive). Low p-values (typically <0.05) indicate sensitive parameters. 

In SUFI-2, uncertainty in parameters is expressed as ranges representing uncertainties 

associated with forcing input data (e.g., precipitation), the conceptual model, parameters, and 

observations (Abbaspour, 2015b). Uncertainties in parameters are reflected as uncertainties in the 

model output variable, which are represented as the 95% probability distributions (95PPU). The 

95PPU is hence the model solution in a stochastic calibration approach, considering all sources of 

uncertainties. SWAT-CUP provides two statistics to quantify the fit between the 95PPU and 

observed data: P-factor and R-factor. The P-factor expresses the percentage of observed data 

enveloped by the 95PPU, while the R-factor is the relative thickness of the 95PPU band and is 

calculated as the average of the 95PPU thickness divided by the standard deviation of the 

corresponding observed variable (Abbaspour et al., 2018). Ideally, most of the observations should 

be captured by the 95PPU (i.e., P-factor close to 1) in a small envelope (i.e., small R-factor value). 

As model performance measures, this study used the coefficient of determination (R2), the 

Nash-Sutcliff-Efficiency (NSE), and the percentage bias (PBIAS). Further, NSE was selected as 

the objective function in SUFI-2, and 500 simulations were performed per iteration. The number 

of iterations was based on how fast the model was converging to a higher NSE value in the 

subsequent iteration. The parameters used to calibrate SWAT for streamflow in this study were 
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selected based on the model’s structure and equations regulating discharge computation described 

in Neitsch et al. (2011). 

We calibrated daily streamflow for the two extreme modeling experiments, namely M0 

(default) and MLAI+BM+ET (LAI + biomass + ET). Comparing these two calibration schemes can 

show the benefits of including all variables describing forest dynamics simulation in model 

calibration and how it changes the solution space (i.e., the most optimal value within the range of 

parameters) relative to a model constraint with gauged streamflow data only. Since MLAI+BM+ET 

considers improved LAI, biomass, and ET estimates and theoretically represents the most optimal 

model condition among the four experiments (i.e., a model able to predict forest attributes and 

streamflow reasonably well), this experiment was selected to quantify the effects of improved 

forest processes on automated streamflow calibration. Both calibration approaches are explained 

below. 

2.5.1. Traditional model calibration (M0) 

Calibration of M0 involved adjusting the parameters listed in Table S1 for the default model setup. 

This is a traditional calibration approach employed in most hydrologic modeling studies, where 

model parameters related to vertical fluxes (e.g., ET) and horizontal fluxes (e.g., surface runoff) 

are lumped together and calibrated with streamflow data only. This is considered a “simple 

strategy” (Daggupati et al., 2015), where a single model output variable (e.g., streamflow) is 

optimized at a single site, such as the watershed outlet. In their guidelines for calibration/validation 

of hydrologic models, Daggupati et al. (2015) only recommends this strategy for watersheds 

having uniform characteristics (e.g., climate, land-use, soil, slope). A major drawback of such 

calibration approach is that it may produce pseudo-accurate models showing statically good 

performances for streamflow at the watershed’s outlet, whilst completely misrepresenting internal 
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watershed processes. This calibration scheme was performed to generate a base condition to which 

the next calibration configuration could be compared. 

2.5.2. Multi-facet model calibration (MLAI+BM+ET) 

In this calibration scheme, we decoupled horizontal (streamflow) and vertical (ET) water fluxes 

by constraining parameter values representing biophysical processes within a physically 

meaningful range. This approach does not optimize parameters controlling vertical fluxes (e.g., 

CANMX, EPCO, ESCO) when performing automated streamflow calibration, which is typically 

the case in traditional calibration. Such parameters had their values derived for loblolly and slash 

pine trees at the field-scale level in a previous study by Haas et al. (2021b). At the UCW, 

previously calibrated parameters controlling the LAI development curve, water loss through ET, 

and tree total biomass for loblolly pine and slash pine were transferred from the Loblolly 2 – GA 

and Slash - FL sites described in Haas et al. (2021b). For the SFRW model, loblolly and slash pine 

calibrated parameters were transferred from pine plantation fields located approximately 25 km 

south of the watershed outlet, namely Loblolly 3 - FL and Slash – FL in Haas et al. (2021b). The 

transferred parameter values were extended to HRU’s covered by loblolly and slash pine at both 

watersheds. One could argue that transferring parameter values from field-scale to watershed-scale 

without further calibration is not adequate because of varying physical conditions (e.g., soil types, 

weather). Unlike reach/subbasin level parameters in SWAT, plant-specific parameters cannot vary 

spatially in the plant database. In other words, these parameters are species-specific and even 

though a given type of plant can be present in several HRU’s, its parameter values cannot change 

from HRU to HRU. This model limitation challenges a spatially distributed calibration of 

biophysical parameters in SWAT-CUP. Such an effort would essentially result in a lumped 

calibration inconsistent with the spatially distributed characteristic of remote-sensing data. Thus, 
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442 our approach is adequate to capture the importance of forest dynamics in hydrological models 

443 since the biophysical parameter values included in MLAI+BM+ET were developed based on species-

444 specific high-quality datasets. 

445 2.6. Ecohydrological flow parameters 

446 To better understand the degree of hydrologic alteration attributable to improved forest 

447 parameterization in hydrologic models, we utilized the Indicators of Hydrologic Alterations (IHA) 

448 desktop model (TNC 2009). IHA was developed by The Nature Conservancy (TNC) based on 

449 Richter et al. (1996) for calculating the characteristics of natural and altered hydrologic regimes. 

450 This tool summarizes long periods of daily flow data into 67 statistical parameters representing 

451 ecologically relevant conditions. These 67 statistical parameters are subdivided into two groups: 

452 the IHA parameters (33 parameters) and the Environmental Flow Component (EFC) parameters 

453 (34 parameters). In the current study, we selected 10 IHA parameters and 12 EFC parameters to 

454 investigate how an improved representation of forest dynamics processes in SWAT affects model 

455 predictions of ecologically relevant flow metrics at the SFRW and UCW from 1998 to 2018. To 

456 accomplish this, we fed the IHA desktop model with SWAT-simulated daily time-series of 

457 streamflow from the calibrated M0 and MLAI+BM+ET models as well as with observed time-series of 

458 streamflow collected at the outlet of both watersheds (i.e., USGS stations 02341800 and 

459 02321000). Next, we compared the percent deviations in IHA metrics between simulations and 

460 observations. The percent error of a given ecohydrological flow metric in relation to the 

461 observations was calculated using Eq. 2: 

462 𝑑𝑄𝑉 (2) ೉౉బష೉ైఽ౅శా౉శు౐ ௅௎௅஼ୀ ௫ ଵ଴଴(%) 
೉ైఽ౅శా౉శు౐ 

463 where, 𝑋 corresponds to a given ERF metric. 
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464 The description and importance of the IHA and EFC parameters used in this study are 

465 shown in Table S1 of the supplementary materials (Appendix B). Figure 2 illustrates the 

466 methodology employed in the current study. 

467 

468 

469 Figure 2. Methodology flowchart. 

470 

471 3. RESULTS AND DISCUSSION 

472 3.1. Hydrological responses to improved forest dynamics 
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The inclusion of improved forest dynamic processes in the model remarkably influenced the 

watershed hydrological responses. The improvements and drawbacks brought about by each 

modeling experiment are individually described and discussed below. 

3.1.1. The baseline model 

Prior to streamflow calibration, the baseline model configuration M0 showed poor performance in 

simulating daily and monthly streamflow, as well as monthly baseflow, at both watersheds (Fig. 

3-4). Flow duration curves of daily streamflows are shown for both watersheds in Fig. 3. As can 

be seen, high flows were captured reasonably well in M0, however, low flows were poorly 

simulated, especially at SFRW. Overall, daily streamflow was overestimated by 67% and 267% at 

UCW and SFRW, respectively, and NSE values were lower than 0.2 (Fig. 3). Similarly, monthly 

streamflow showed low NSE values and poor agreement with observed data at both watersheds 

(Fig. 4). M0 overestimated most of the peaks at both study sites. The monthly baseflow simulated 

by the SWAT models in M0 show big differences compared to observations (Fig. 5). M0 

overestimated baseflow by 55% at UCW and 460% at SFRW in the period 1998-2018. Simulated 

mean annual baseflow was also highly overestimated at both study sites compared to the observed 

data (Fig. S3 of the supplementary materials under Appendix A). The watershed-average ET 

simulated from 1998 to 2018 at the UCW was 614 mm/year in M0 (Fig. S2 – of the supplementary 

materials under Appendix A), 25% lower than MODIS estimates (815 mm/year). Similarly, at the 

SFRW, the simulated watershed-average ET was 546 mm/year, 57% lower than the MODIS 

estimated value of 1013 mm/year. Considering MODIS ET data, 24% of rainfall became runoff at 

SFRW and 37% at UCW. The predicted fractions in M0 were 59% at SFRW and 52% at UCW, 

which is the direct consequence of ET underestimation. 
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495 

496 Figure 3. Model verification under different configuration setups against USGS observed daily streamflow data for 
497 different exceedance probability of simulated streamflow at the watershed outlet from 1999 to 2019 at Upatoi Creek 
498 at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted in log scale. The statistical rating 
499 metrics displayed in the table refer to daily streamflow variability (not shown), and not to the exceedance probability 
500 curves. 

501 

502 

503 Figure 4. Hydrograph showing monthly simulated streamflow against USGS observed data for different model 
504 configurations setups from 1999-2019. 

505 
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506 

507 Figure 5. Hydrograph showing monthly simulated baseflow against estimated baseflow for different model 
508 configurations setups from 1999-2019. Observed baseflow is estimated via baseflow separation program. 

509 

510 3.1.2. Effect of ET on streamflow simulation 

511 The inclusion of previously calibrated ET parameters in MET dramatically improved the model’s 

512 performance for streamflow and baseflow, as evidenced by increased NSE values (Fig. 3-4). The 

513 consistent model overestimations of streamflow and baseflow produced under M0 were remarkably 

514 decreased at both study watersheds in MET. The enhanced model performance was particularly 

515 alluring at UCW where simulated daily streamflow was overestimated by 12% and baseflow by 

516 less than 1%. By analyzing the exceedance probability curves (Fig. 3), it is possible to notice that 

517 MET increased the agreement between simulated and observed streamflow, especially for low 

518 flows (≥ 70%) at SFRW. Similarly, monthly peak streamflow and baseflow estimates improved in 

519 MET in comparison to M0 (Fig. 4 and Fig. 5). The main effect of MET configuration on the watershed 

520 water budget was concerning baseflow (Fig. 6). Increases in annual average ET of 25% at UCW 

521 (2% overestimation) and 33% at SFRW (20% underestimation) in MET compared to M0 led to 

522 reductions in mean annual baseflow of 41% and 40%, respectively. Higher ET simulated in MET 

523 reduced water yields in the watersheds. Under the MET model configuration, 37% of precipitation 
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541
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546

became discharge at UCW, which perfectly matched the 37% calculated using MODIS-derived 

data. Also, 38% of the incoming precipitation resulted in modeled discharge at the SFRW, 

relatively close to the 24% estimated using observed data. These findings should not come as a 

surprise considering that ET is the main component of the forest water budget, having underlying 

effects on watershed-scale water quantity. Also, studies such as Zhang et al. (2012), Brauman et 

al. (2012), and Sun et al. (2011) have demonstrated that taller vegetation, such as forest stands, are 

associated with higher ET rates and consequent lower water yield. Other studies have shown the 

benefits of constraining ET in hydrological models based on remote-sensing data (Herman et al., 

2018; Odusanya et al., 2019; Rajib et al., 2016, 2018; Strauch and Volk, 2013). Our results are in 

line with studies such as Rajib et al. (2018b), who demonstrated the perks of ingesting remotely-

sensed PET from MODIS in simulating streamflow with SWAT. The authors showed that by 

improving ET estimations, the model predictions of streamflow improved as well, especially 

concerning high flows. Parajuli et al. (2018) derived time-series of ET from MODIS to enhance 

SWAT ET predictions and evaluated the impacts on streamflow simulation. Results showed that 

the model performance in predicting streamflow jumped from a NSE value of 0.39 under the 

default model settings to a value 0.71when considering ET data. In a similar study, Tobin and 

Bennett (2017) used ET data from the Global Land Evapotranspiration: the Amsterdam Model 

(GLEAM) to constrain SWAT parameter values related to ET in an experimental watershed in 

Oklahoma-USA. Their findings indicate a better match between simulated and observed 

streamflow when considering ET data. In the current study, results of MET suggest that readily 

available remote-sensing ET data can help to improve the performance of hydrological models in 

predicting streamflow and baseflow in ungauged watersheds. This finding concurs well with the 

study of Y. Zhang et al. (2020), who demonstrated the potential of solely using ET data to calibrate 
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547 hydrologic  models  in  222  ungauged  watersheds  in  Australia.  It  is  worth  highlighting  that  ET-

related  parameters  were  not  re-calibrated  for  our  study  watersheds  but  rather  transferred  from  the  

field-scale  level.  This  may  indicate  that  the  model  performance  could  be  further  improved  by  

carrying  out  a  site-specific  calibration  at  each  watershed.  

548 

549 

550 

551 

552 Figure 6. Change in simulated water budget under different model setup configurations from 1999 to 2019 at Upatoi 
553 Creek and Upper Santa Fe watersheds. 

554 

555 3.1.3. Effect of LAI and biomass on streamflow simulation 
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In the next model configuration (MLAI+BM), we added calibrated parameter values regulating LAI 

and biomass prediction to the baseline model (but removed ET). As shown by the rating metrics 

and the flow temporal variability displayed in Figures 2-4, the model performance for streamflow 

and baseflow in MLAI+BM deteriorated compared to MET. SWAT performed particularly poorly in 

MLAI+BM at the UCW, where the performance metrics worsened even in comparison to the baseline 

model M0. In contrast, MLAI+BM showed superior performance compared to M0 for all statistical 

measures at SFRW. This difference can be understood by considering the different tree growth 

and dynamics of loblolly pine and slash pine. As described in section 2.1, UCW is dominated by 

loblolly pine while the SFRW is mainly covered by slash pine trees. As shown in Fig. S1 of the 

supplementary materials (Appendix A), the M0 configuration considerably overestimated LAI for 

loblolly pine at UCW, whereas, underestimated it for slash pine at the SFRW. As a result of lower 

simulated LAI at UCW, after incorporating previously calibrated LAI parameters, compared to 

M0, simulated ET in MLAI+BM had decreased 22% (Fig. S3 – of the supplementary materials under 

Appendix A). Consequently, the simulated baseflow increased 16% in relation to M0 and was 

further overestimated (Fig. S3 – of the supplementary materials under Appendix A), which led to 

the deterioration of model performance under MLAI+BM. As expected, due to lower ET losses in 

MLAI+BM, the runoff coefficient increased to 0.63, deviating significantly from 0.37 calculated with 

the observed data. These results are in good accordance with Sun et al. (2011), who highlights that 

monthly LAI is the single most important biophysical variable regulating ET. At the SFRW, 

because of larger LAI values obtained after the incorporation of pre-calibrated LAI parameters 

(Fig. S1 - of the supplementary materials under Appendix A), the MLAI+BM configuration predicted 

higher ET rates compared to M0, increasing the watershed-average ET by 12%. Accordingly, the 

simulated streamflow and baseflow were reduced in MLAI+BM (Fig. S3 - of the supplementary 
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materials under Appendix A), which ameliorated the model’s performance compared to M0. 

Besides LAI, the higher stand biomass predicted under MLAI+BM (Fig. S2 - of the supplementary 

materials under Appendix A) compared to M0 most likely contributed to the lower water yield and 

helped mitigating the model overestimation of streamflow observed in the M0 scenario at the 

SFRW. This is in good agreement with studies such as McLaughlin et al. (2013), which shows that 

reduced biomass may lead to reduced ecosystem water use and thus increased regional and local 

water yield. The extent to which the watershed water balance was impacted by LAI and biomass 

(Fig. 6) highlights the importance of considering forest dynamics in hydrologic modeling studies, 

and the necessity of including ET in the modeling spectrum. Past studies have also shown how 

biophysical variables such as LAI and biomass can help improving streamflow prediction in 

hydrologic models. For instance, Ma et al. (2019) and Rajib et al. (2020) have replaced SWAT’s 

empirical LAI algorithm with remotely-sensed LAI data assimilated from MODIS. Results showed 

superior model performances for simulating streamflow and sediment yield in China and United 

States. Guo et al. (2018) introduced new LAI and biomass algorithms to predict the growth and 

dynamics of Populus trees in SWAT. By constraining LAI and biomass parameters, the authors 

showed enhanced model performance in predicting streamflow, sediment, and nitrate. Unlike these 

studies, the methodology tested here does not involve modifying SWAT’s source code, but rather 

improving the representation of forest processes by constraining the model with physically 

meaningful information derived from remote-sensing, field observations, and published literature. 

Thus, the improved forest parameterization tested here is readily available and can be broadly 

useful to the modeling community. 

3.1.4. Effect of coupled water, surface land, and energy processes on streamflow 

simulations 
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Results from MLAI+BM+ET were the most telling in terms of the impacts of forest processes on the 

model performance of hydrologic predictions. Under MLAI+BM+ET, the models were constraint with 

the largest number of variables among all experiments, and, besides showing the best performance 

in predicting streamflow and baseflow, the models also predicted forest growth and dynamics 

reasonably well under this parameterization. At UCW, the model performance for streamflow and 

baseflow simulations slightly deteriorated compared to MET but largely improved in relation to M0 

and MLAI+BM (Fig. 3-4). Compared to MODIS-derived data, the watershed-average ET predicted 

in MLAI+BM+ET was less than 1% higher and showed the closest agreement with MODIS estimates 

among all modeling experiments at the UCW (Fig. S3 - of the supplementary materials under 

Appendix A). The mean annual baseflow simulated in MLAI+BM+ET also showed good agreement 

with the observed data (2% overestimation) (Fig. S3 - of the supplementary materials under 

Appendix A). Although the inclusion of improved LAI and biomass into the model configuration 

led to the deterioration in model performance compared to MET, it is more coherent to include 

biophysical parameters values representing LAI development and biomass accumulation along 

with ET calibration, given the interplays between tree attributes (e.g., aboveground biomass and 

canopy) and the volume of water lost to the atmosphere as vapor. Additionally, enhanced model 

representation of tree attributes such as LAI and biomass may positively influence water quality 

applications. For instance, the adjusted total biomass to residue ratio (BIO_LEAF) from 30% to 

2% reduces the amount of plant residue on the soil that is available for mineralization and 

nitrification. Likewise, the sediment yield simulated in SWAT through the Universal Soil Loss 

Equation (USLE) (Williams, 1975) is affected by the amount of residue on the soil surface. The 

combined positive effects of MET and MLAI+BM at SFRW yielded MLAI+BM+ET as the best model 

configuration at this study site. The agreement between the simulated and observed streamflow 
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and baseflow at the watershed outlet increased under MLAI+BM+ET (Fig.2-4) compared to the other 

experimental conditions, as indicated by the highest goodness-of-fit measured by NSE and R2 . The 

model overestimation of horizontal fluxes was also the smallest under MLAI+BM+ET at SFRW. This 

was mainly because of the better agreement between watershed-average simulated ET and 

MODIS-derived data (Fig. S3 - of the supplementary materials under Appendix A), which 

decreased the simulated water yield compared to the other modeling experiments. The runoff 

coefficient estimated based on simulated ET (0.34) was the closest to the observed runoff 

coefficient (0.24) among all scenarios. The changes produced in the water balance components, as 

we progressively moved from one experiment to the next, are shown in Fig. 6. There was a 

significant difference between M0 and MLAI+BM+ET, with a drastic increase in predicted ET and 

consequent decrease in predicted baseflow under the MLAI+BM+ET configuration at both watersheds. 

The water balance of MLAI+BM+ET at both watersheds concurs with the findings of Amatya and 

Skaggs (2011) and Amatya et al. (1996), which indicate that streamflow is mainly derived from 

subsurface flow (i.e., lateral flow and baseflow) in forested ecosystems, where surface runoff is 

usually low. The results of MLAI+BM+ET indicate that the main improvement in streamflow and 

baseflow prediction came from the ET component. Studies such as Strauch and Volk (2013) and 

Alemayehu et al. (2017) also reported improvements in modeled streamflow under enhanced LAI 

and ET predictions. Similarly, Yang et al. (2018) showed how enhanced biomass and ET estimates 

can improve the model’s performance in simulating streamflow and sediment losses in a forested 

watershed. Our findings are also in line with Rajib et al. (2018) and Ha et al. (2018), who showed 

the benefits of incorporating improved biophysical parameters values regulating variables such as 

LAI and ET for predicting streamflow with SWAT. However, our study is the first to fully consider 
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the effects of forest dynamics (i.e., LAI, biomass, and ET) on hydrological processes by 

constraining parameter values representing nationally relevant tree species. 

3.2. Impact of forest dynamics on streamflow calibration and validation 

As mentioned earlier, SWAT was calibrated for streamflow only under M0 and MLAI+BM+ET. Note 

again that M0 represents the current practice in watershed modeling. Based on the visual 

comparison and statistical measures, MLAI+BM+ET proved to be a better model in predicting daily 

streamflow at both watersheds during the calibration and validation periods (Fig. 7). According to 

the model performance evaluation criteria proposed by Moriasi et al. (2015), the results achieved 

with the multi-facet calibration scheme ranged from “good” to “very good” at UCW, and 

“satisfactory” to “very good” at SFRW. Under the traditional calibration scheme, the model 

performance fell within the same range of categories at UCW but deteriorated to unsatisfactory-

satisfactory at SFRW. 
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659 

660 Figure 7. Observed vs. simulated daily streamflow in calibration and validation periods under traditional and multi-
661 facet calibration approaches. The upper hydrographs show the monthly discharge evolution in the period 1999-2019, 
662 while the bottom flow duration curves show exceedance probability of simulated streamflow at the watershed outlet 
663 from 1999 to 2019 at Upatoi Creek at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted 
664 in log scale. The statistical rating metrics displayed in the table refer to daily streamflow variability. 

665 

666 The enhanced model performance achieved with the multi-facet calibration scheme shows 

667 that better representation of forest dynamic processes enables SWAT to yield more accurate 

668 streamflow estimates. Our findings are in disagreement with the results of studies such as Herman 

669 et al. (2018), Dembélé et al. (2020), and Gui Ziling et al. (2019), which suggest that the 

670 improvement of terrestrial processes such as ET and soil moisture resonates in lower model 

671 performance in predicting in-stream fluxes at the watershed’s outlet. In the aforementioned studies, 

672 the authors pursued a spatially-distributed calibration approach of terrestrial variables by 

673 constraining ET- and/or soil moisture-related parameters for each subwatershed. A pitfall of such 
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an approach is that it lumps land use/cover classes together and does not consider species-specific 

characteristics. For instance, it is fair to assume that the ET rates of forests and shrubs are 

substantially different and that fitting parameter values to satisfy both species according to an 

objective-function may misrepresent both species and lead to unrealistic parameter values. On the 

other hand, under our calibration approach, we tune the parameter values to dominant tree species. 

Our results also highlight the advantages of decoupling horizontal hydrological fluxes (i.e., 

streamflow) from vertical hydrological fluxes (i.e., ET) when calibrating watershed models. In the 

traditional calibration approach, ET-related parameters such as CANMX, EPCO, and ESCO were 

calibrated simultaneously with parameters regulating the horizontal water flux. Although this led 

to an increased mean annual ET in M0, the watershed-average annual ET was still lower compared 

to MODIS estimates. This underestimation of rainfall lost through ET resulted in a higher 

overestimation of simulated streamflow in M0 compared to MLAI+BM+ET (Fig. 7). Moreover, in the 

calibration period, the obtained values of P-factor and R-factor were 0.07/0.73 at SFRW/UCW, 

and 0.19/0.58 at SFRW/UCW, respectively, with the traditional calibration approach. Under the 

multi-facet calibration scheme, P-factor and R-factor ranged from 0.09-0.72 and 0.11-0.50, 

respectively. While the values of P-factor did not change much according to the calibration 

approach employed, R-factor showed a considerable decrease with the multi-facet calibration 

scheme, suggesting reduced uncertainties due to consideration of improved forest dynamic 

processes in the modeling framework. 

Results from the global sensitivity analysis revealed that CN2 is the most sensitive 

streamflow parameter at both watersheds under M0 and MLAI+BM+ET (Fig. S4 – of the 

supplementary materials under Appendix A). However, the rank of sensitive parameters changed 

in response to the calibration approach utilized. Parameters such as saturated soil hydraulic 
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conductivity (SOL_K), groundwater revap coefficient (GW_REVAP), groundwater delay time 

(GW_DELAY), and deep aquifer percolation factor (RCHRG_DP) became less sensitive in the 

multi-facet calibration scheme at the UCW. An opposite trend was observed at the SFRW, where 

most of the groundwater-related parameters had their sensitivity increased under the multi-facet 

model calibration scheme, as indicated by lower p-values in Fig. S4 (of the supplementary 

materials under Appendix A). This may be related to the higher baseflow:precipitation ratio 

observed in the SFRW compared to the UCW (Fig. 6). 

A similar effect can be noticed by paying closer attention to the best parameter values 

found with the traditional and multi-facet calibration schemes (Table S3 - of the supplementary 

materials under Appendix B). Parameters such as RCHRG_DP and GW_DELAY, for instance, 

witnessed substantial changes in their best-fitted values depending on the calibration approach. At 

both study sites, RCHRG_DP decreased in the multi-facet calibration scheme, which is most 

probably because of higher ET losses in MLAI+BM+ET compared to M0. In the traditional calibration 

approach, because of the underestimated ET rates in M0, the models tended to lose more water 

through deep aquifer percolation in order to compensate for streamflow overestimation. Similarly, 

the improved forest dynamics considered in the multi-facet calibration scheme decreased the lag 

between the time that water exits the soil profile and recharges the shallow aquifer (GW_DELAY). 

Because of excessive water yield and percolation produced in M0, the traditional calibration 

scheme slowed down the recharge to the shallow aquifer by assigning larger values to 

GW_DELAY. 

Although the traditional calibration approach was able to yield a “very good” model 

performance in predicting streamflow, it massively failed to accurately replicate key forest 

dynamic processes such as LAI and biomass within the watersheds (Figures S1 and S2 – of the 
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supplementary materials under Appendix A). This “very good” model performance for streamflow 

was accomplished at the cost of an excessively high deep aquifer percolation and lumped values 

of parameters regulating plant transpiration (EPCO), soil evaporation (ESCO), and canopy storage 

(CANMX) (Table S3 - of the supplementary materials under Appendix B). Alternatively, the multi-

facet calibration scheme demonstrated the feasibility of constructing realistic models that can 

reasonably represent forest processes without losing accuracy in predicting streamflow. Our study 

is a prime illustration of the concept of equifinality, where models calibrated based on different 

parameter values may yield equally good outputs (Beven, 2006; Beven and Freer, 2001). 

Equifinality has been widely associated with semi-distributed watershed models such as SWAT 

(Ficklin and Barnhart, 2014; Her and Chaubey, 2015; Shen et al., 2012). As highlighted by studies 

such as Tobin and Bennett (2017), equifinality can be mitigated by constraining the model with 

more observations. This is demonstrated here, where models constrained by intra-watershed 

processes such as LAI, ET, and biomass showed improved performance and reduced uncertainties 

in predicting streamflow, giving the right answers for the right reasons. Although forest dynamics 

are usually overlooked in watershed modeling studies, we highlight the study of Fernandez-

Palomino et al. (2020), which also showed how the calibration of species-specific LAI and ET can 

improve the simulation of streamflow in SWAT. It is time for watershed modelers to incorporate 

spatially-distributed information such as remote-sensing based time-series into the modeling 

framework in order to build models that accurately capture terrestrial and aquatic processes. That 

said, we believe that our study may open new avenues and bring contributions towards more 

realistic applications of watershed models. 

3.3. Impact of forests on ecological flows 
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Biotic processes such as vegetation growth may affect the hydrologic regime within the watershed 

(Caro Camargo and Velandia Tarazona, 2019; Dalzell and Mulla, 2018; McLaughlin et al., 2013; 

Mwangi et al., 2016). However, the interplays between the forest and hydrological processes and 

their watershed-scale effects may not be immediately evident based only on simplistic analysis 

such as daily and seasonal streamflow, baseflow hydrographs, and mean annual water balance. 

Figure 8 illustrates the effect of improved forest processes on the relative error of simulated 

mean monthly flows at both study watersheds. At the UCW, 9 out of 12 parameters showed a 

smaller percent deviation in relation to the observations under the MLAI+BM+ET model configuration, 

where the inclusion of enhanced forest dynamic processes reduced the model overestimation of 

mean monthly flows (Fig. 8a). The only cases where M0 outperformed MLAI+BM+ET in simulating 

mean monthly flows were for March, August, and September. At the SFRW, improved forest 

dynamics also reduced model overestimation of monthly flows, all of which showed better 

agreement with observation under MLAI+BM+ET (Fig. 8b). The relatively high percent deviation of 

simulated monthly flows at the SFRW is most likely related to the higher model overestimation of 

streamflow and poorer performance compared to the UCRW model (Fig. 7). Since monthly flows 

represent the normal mean daily water conditions for a given month, accurate predictions can be 

valuable for water resources management applications. Additionally, the magnitude of monthly 

flows have impacts on aquatic ecosystems and can influence habitat availability, the availability 

of water for terrestrial animals, besides affecting physical characteristics such as water temperature 

and oxygen concentrations (Richter et al., 1996; TNC, 2009). 

39 



 
 

  

                 
                     

   

  

              

               

                

              

762 

763 Figure 8. Percentage change of simulated monthly low flow with traditional and multi-facet model calibration in 
764 relation to observed USGS daily streamflow data from 1999 to 2019 at Upatoi Creek (A), and Upper Santa Fe River 
765 watersheds (B). 

766 

767 The enhanced representation of forest processes in SWAT also resonated in the overall 

768 improvement of the model performance for simulating extreme flows of various durations at both 

769 watersheds (Fig. 9). At the UCW, MLAI+BM+ET yielded smaller percent errors than M0 in replicating 

770 maximum flows of daily (1-day, 3-days), weekly (7-days), monthly (30 days), and seasonal 
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durations (90-days), besides showing better agreement with observations in predicting minimum 

flows of monthly and seasonal durations (Fig. 9a). MLAI+BM+ET performed poorer than M0 in 

simulating minimum flows of daily and weekly durations. Similar results were found at the SFRW, 

where model simulations of extreme flows under MLAI+BM+ET returned smaller percent deviations 

from the observations (Fig. 9b). The only exceptions were maximum flows of daily and seasonal 

durations for which the model performance deteriorated under MLAI+BM+ET compared to M0. As 

shown in Fig. 7, low flows were substantially overestimated at the SFRW, which may help to 

interpret the large and positive percent deviation of minimum flows found at this watershed. 

Overall, improved forest dynamics mitigated SWAT’s overestimation/underestimation of 

minimum/maximum flows at the SFRW. These findings are relevant considering the importance 

of extreme flows for water resources management (Wheater and Evans, 2009), flood control 

(Archer et al., 2007; Arnaud et al., 2002), infrastructure design (Hailegeorgis and Alfredsen, 2017; 

Pregnolato et al., 2016), and ecosystems health (Kiesel et al., 2017; Richter et al., 1996), and 

indicate that the benefits of accurately representing forest processes in watershed models 

extrapolate improved streamflow simulation. 

41 



 
 

  

                
                     

   

  

      

             

               

              

786 

787 Figure 9. Percentage change of simulated extreme flows with traditional and multi-facet model calibration in 
788 relation to observed USGS daily streamflow data from 1999 to 2019 at Upatoi Creek (A), and Upper Santa Fe River 
789 watersheds (B). 

790 

791 3.4. Broader implications and limitations 

792 Although our improved forest parameterization relied on field observations from nearby pine 

793 plantation fields, we did not have field-measured data within the study watersheds. Thus, our 

794 methodological insights were validated against remotely sensed LAI and ET and gridded biomass 
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data. As with any remote-sensing estimate, there are uncertainties associated with MODIS LAI 

and ET data (Jensen et al., 2011; Long et al., 2014), as well as with the USDA Forest Service forest 

biomass data. While it may raise uncertainties concerning the validity of our findings, the global 

coverage of MODIS data facilitates the replication of our methodology worldwide. Moreover, 

SWAT’s flexible plant database allows other researchers to further refine our forest 

parameterization for other evergreen species. 

In this study, the focus of our modeling effort was on streamflow and baseflow predictions. 

The impacts of improved forest growth and dynamics on modeled water quality (e.g., sediment 

yield, nutrient load) must be addressed in a future endeavor. As demonstrated here, increased ET 

losses resulting from our improved forest parameterization led to decreased surface runoff and 

baseflow. It can be inferred that lower surface runoff and baseflow rates will likely decrease 

sediment and nutrient loads transported to the main channel. Additionally, the adjusted amount of 

biomass converted to residue every year reduces the source of fresh residue on the soil surface 

available for mineralization and nitrification. Consequently, the forest parameterization tested in 

this study may resonate in less nitrate being transported to water bodies. The sediment loss may 

also be impacted by the improved forest parameterization, especially because the USLE’s cover 

and management factor is computed as a function of plant residue. 

4. SUMMARY AND CONCLUSIONS 

The improved representation of forest processes in SWAT returned better streamflow and 

baseflow predictions. This was demonstrated by performing four modeling experiments aiming to 

show the individual impacts of LAI, biomass, and ET on water fluxes. Results showed that 

improved ET prediction is the main reason leading to more accurate streamflow and baseflow 
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simulations in watershed models. The improvements in forest processes substantially altered the 

watershed water budget towards increased ET and decreased baseflow rates. 

By calibrating streamflow-related parameters with and without the inclusion of improved 

LAI, biomass, and ET, we demonstrated that a physically meaningful representation of forest 

hydrological processes led to superior model performance in predicting streamflow. Moreover, the 

improved forest parameterization decreased the uncertainties associated with daily streamflow 

prediction. The importance of forest dynamics was further scrutinized by analyzing multiple 

ecohydrological parameters. Our results point to the importance of accurately accounting for forest 

processes in watershed models, especially in highly forested watersheds. The latter not only yields 

a more realistic model, but also enhances the model’s performance in predicting streamflow, 

reduces the model uncertainties, and improves the terrestrial and aquatic connections, as 

demonstrated by the 22 ecohydrological parameters considered here. 

Given the considerable disparity between the two extreme model configurations (i.e., M0 

and MLAI+BM+ET) in replicating the watershed water budget, the conclusions drawn by each model 

would largely differ. This could generate impacts on management decisions in case the models 

were employed to support decision-making. Therefore, we suggest that key forest processes such 

as LAI, biomass, and ET should be ameliorated in hydrological models before simulating 

streamflow. 

Finally, by constraining the models with readily available remote-sensing data we were 

able to decouple vertical water fluxes and processes (e.g., evapotranspiration, plant water uptake, 

soil evaporation, and canopy storage) from horizontal water fluxes (i.e., streamflow) in model 

calibration. This allowed us to simultaneously capture forest dynamics and in-stream processes 

reasonably well. Such a level of detail and representation of plant-water-energy relations would 
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840 hardly be obtained through model calibration against gauged streamflow data only. Considering 

841 that the ultimate goal of watershed modeling studies is typically drawing scenario analysis 

842 representing different real-world conditions, a model able to accurately represent terrestrial and 

843 in-stream processes can produce positive implications for watershed modeling applications. 
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