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Improved forest dynamics leads to better hydrological predictions in watershed modeling

ABSTRACT

This study explored how the characterization of forest processes in hydrologic models affects watershed hydrological
responses. To that end, we applied the widely used Soil and Water Assessment Tool (SWAT) model to two forested
watersheds in the southeastern United States. Although forests can cover a large portion of watersheds, tree attributes
such as leaf area index (LAI), biomass accumulation, and processes such as evapotranspiration (ET) are rarely
calibrated in hydrological modeling studies. The advent of freely and readily available remote-sensing data, combined
with field observations from forestry studies and published literature, allowed us to develop an improved forest
parameterization for SWAT. We tested our proposed parameterization at the watershed scale in Florida and Georgia
and compared simulated LAI, biomass, and ET with the default model settings. Our results showed major
improvements in predicted monthly LAI and ET based on MODIS reference data (NSE > 0.6). Simulated forest
biomass also showed better agreement with the USDA forest biomass gridded data. Through a series of modeling
experiments, we isolated the benefits of LAI, biomass, and ET in predicting streamflow and baseflow at the watershed
level. The combined benefits of improved LAI, biomass, and ET predictions yielded the most optimal model
configuration where terrestrial and in-stream processes were simulated reasonably well. We performed automated
model calibration using two calibration strategies. In the first calibration scheme (My), SWAT was calibrated for daily
streamflow without adjusting LAI, biomass, and ET. In the second calibration scheme (Mparsm+eT), previously
calibrated parameters constraining LAI, biomass, and ET were incorporated into the model and daily streamflow was
recalibrated. The Mparem+er model showed superior performance and reduced uncertainties in predicting daily
streamflow, with NSE values ranging from 0.52 to 0.8. Our findings highlight the importance of accurately

representing forest dynamics in hydrological models.

KEYWORDS: SWAT, Forest dynamics, Watershed hydrologic modeling, Leaf area index, Evapotranspiration,

Biomass, MODIS
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1. INTRODUCTION

Any ecosystem in a watershed affects the quantity and quality of the water passing through it by
either improving or degrading the hydrologic services (Brauman et al., 2007). For example,
forested ecosystems might increase rainfall infiltration rates while decreasing water yield (Filoso
et al., 2017). This is mainly due to the higher water infiltration capacity of forest soils compared
to other land uses (Bruijnzeel, 2004). Since forests can make up large portions of a watershed
system, it is important to understand their role in the hydrologic cycle and how they influence the
pathways and distribution of water in the watershed (Amatya el al., 2015). Forests can tightly
interact with the hydrologic cycle through the canopy interception of precipitation; the
redistribution of water via throughfall, stemflow, surface runoff, lateral flow, soil infiltration,
percolation, groundwater recharge and baseflow; and the loss of water by soil evaporation and
transpiration from foliage. Thus, through the use, transport, and partitioning of water, forest
ecosystems can significantly alter the volume and timing of water reaching downstream locations

(Brauman et al., 2007).

In recent years, there has been a growing interest in investigating the interface between
watershed vegetation and hydrologic processes (Amatya et al., 2015; Hernandez et al., 2018; Sun
et al., 2005; Williams et al., 2012; Wit, 2001). As water yield from forestlands is critical for
supporting ecosystem biodiversity and local communities, there is an urgent need to better
understand the nexus between forests and water in order to orient science-based sustainable
watershed development (Amatya et al., 2015; Brown et al., 2016; Sun et al., 2005). Watershed-
scale hydrological models have been successfully employed to investigate the interactions among
forests and components of the hydrological cycle (Brown et al., 2015; Golden et al., 2016; Ziemer

et al., 1991). A hydrological model capable of accounting for the spatial and temporal variability
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of factors affecting hydrological processes (e.g., intra-annual plant growth cycle, landscape
heterogeneity) is a useful tool for understanding, predicting, and managing water resources (Khaki
etal., 2019; Loizu et al., 2018; Zhang et al., 2019). In this context, reliable watershed models that

can realistically represent forest-water relationships can be powerful tools.

An accurate representation of the simulated system is critically important for the
performance of hydrological models in predicting a given target variable (Jiang and Wang, 2019).
Even though forests can regulate water cycling and significantly affect water fluxes within a
watershed, watershed modelers rarely pay attention to the accuracy of their representation in
capturing forest attributes and processes such as leaf area index (LAI), biomass, and
evapotranspiration (ET). Streamflow is usually selected as the only variable to measure the
performance of watershed models since streamflow data are relatively easy to obtain (Li Zejun et
al., 2020). The information contained in gauged streamflow data may not sufficiently capture
vertical fluxes and how they vary in space and time within the watershed (Rajib et al., 2018), thus
leading to inaccurate representation of relative contributions of various fluxes. For instance,
hydrological fluxes such as infiltration, soil evaporation, plant transpiration, and
evapotranspiration evolve at different spatial and temporal scales within a watershed and affect the
water balance (Tague and Band, 2001). Streamflow data lumps horizontal water movement (i.e.,
runoff) and vertical water fluxes (e.g., evapotranspiration) together (Li Zejun et al., 2020), thus
leading to inaccurate representation of horizontal and vertical fluxes. This may lead to erroneous
conclusions if the model is used to assess, for example, the impacts of forest management practices
(e.g., thinning, fertilization) or deforestation/afforestation on water resources. Also, forestlands

can modify soil hydraulic conductivity, porosity, capillarity, and texture (e.g., increased organic
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matter content), having underlying effects on soil water infiltration, subsurface flows, and

groundwater flows (Tabacchi et al. 2000).

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) has been extensively
applied worldwide to estimate water yield (Abou Rafee et al., 2019; Adla et al., 2019; Kaur et al.,
2019), sediment loss (Wang and Kalin, 2018; Brighenti et al., 2019; Himanshu et al., 2019; Mishra
et al., 2007), nutrient loading ( Ramesh et al., 2020; Akhavan et al., 2010; Chu et al., 2004; Haas
et al., 2016), and assess the impacts of climate ( Dosdogru et al., 2020; Ahn et al., 2016; Anjum et
al., 2019; Awan and Ismaeel, 2014) and land use/cover changes (Anand et al., 2018; Haas et al.,
2021a; Jodar-Abellan et al., 2018; Li et al., 2014; Romanowicz et al., 2005; Teklay et al., 2019;

Wang et al., 2018) on water resources.

SWAT has not been sufficiently tested in forested ecosystems yet (Yang et al., 2018) and
had shown some limitations to accurately simulate plant growth (Zhang et al., 2020), especially
LAI development. To address these issues, a few studies have been carried out to revise SWAT’s
plant database. For example, Strauch and Volk (2013) proposed a new plant growth approach
based on changes in soil moisture for tropical regions and presented a logistic LAI decline function.
Similarly, Alemayehu et al. (2017) presented a quotient of rainfall and reference
evapotranspiration to initialize the plant growth cycle in SWAT. The authors tested the
methodology for a variety of land uses in Kenya and Tanzania and showed improvements in
simulated LAI based on remote-sensing derived data. Yang and Zhang (2016) identified unrealistic
parameter values representing evergreen forests, deciduous forests, and mixed forests in SWAT
and proposed an improved model parameterization tested at ten Ameriflux sites. Yang et al. (2018)
extended the previous study to the watershed scale and showed positive effects for streamflow

prediction. Watson et al. (2005) replaced the original SWAT plant growth model with the 3-PG
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forest growth model to better represent the growth of Eucalyptus trees in Australia. More recently,
Lai et al. (2020) presented a forest growth model featuring variable density and mixed vegetation
types in SWAT. Their results showed that the modified model outperformed the original model in

simulating flow and nutrient load.

Although all these studies offer valuable insights and potential contributions to the
modeling community, they fall into oversimplifications (e.g., lumped forest types), insufficient
representation of plant growth components (e.g., LAI + biomass + ET), an excessive amount of
input data (e.g., forest growth data required by 3-PG), and lack of demonstration of the extents to
which forest processes affect the watershed hydrology. To the best of the author’s knowledge, no
study in the literature demonstrated the watershed-scale benefits of realistically representing forest
attributes in watershed modeling. Most of the modeling studies found in the literature lumped
parameters for groups of forests and thus did not consider underlying characteristics of specific
forest types, such as pines. In forested regions such as the southeastern U.S., for example, where
specific pine species like loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii) dominate
the landscape, it is necessary to better test SWAT’s skills and tune the model to better represent

these tree species.

Considering that forests can cover large portions of watersheds and greatly interfere with
the hydrological cycle and that SWAT has been widely applied as a hydrological prediction and
assessment tool, it is fundamental to understand and evaluate the model’s skills in forested
ecosystems. LAI and biomass, besides being key forest attributes representing forest growth and
dynamics, play important roles in SWAT’s hydrological computations. For instance, LAI affects
plant transpiration, canopy rainfall storage, and evapotranspiration (if the Penman-Monteith

method is used to simulate ET) in SWAT (Neitsch et al., 2011). Likewise, aboveground biomass
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and soil residue affect soil evaporation rates in the model. SWAT’s semi-distributed characteristic
capable of discretizing the landscape into smaller units combined with the vast amount of freely
available remote-sensing data presents a great opportunity for modelers to step forward from the
traditional modeling calibration approach (i.e., streamflow only) and incorporate additional
constraints into the models. A large number of studies have reported the benefits of using remote-
sensing derived data to increase the accuracy of watershed models (Gui Ziling et al., 2019; Ha et
al., 2018; Herman et al., 2018; Jiang and Wang, 2019; Ma et al., 2019; Odusanya et al., 2019;
Parajuli et al., 2018; Rajib et al., 2016; Tobin and Bennett, 2017; Y. Zhang et al., 2020). In a recent
effort, Haas et al. (2021b) developed an improved SWAT re-parameterization of forest processes
and tested it for loblolly pine and slash pine, the two major pine species in the southeastern United
States. The methodology was based on remote-sensing data combined with field observations and
was successfully tested at different field-scale sites across the southeastern United States. Although
the developed re-parameterization outperformed the default model in predicting tree LAI biomass,

and ET, the hydrological implications at the watershed scale were not investigated.

Therefore, the overreaching goal of this study was to investigate the importance of
accurately capturing forest processes in watershed-scale hydrological models and assess their
implications for simulated discharge and water balance computation. Our specific objectives were
to: (1) assess the feasibility of transferring previously calibrated biophysical parameters to two
forested watersheds; (2) determine which forest attributes and processes (LAI development,
biomass accumulation, or ET rates) affect streamflow and water budget the most; and (3) assess
the effects of multi-facet model calibration (LAI + biomass + ET + streamflow) on streamflow
prediction compared to traditional model calibration (streamflow only). It is hypothesized that an

enhanced representation of forest dynamics in SWAT will positively affect its performance in
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simulating streamflow due to a more realistic prediction of leaf area development, canopy storage,
and precipitation lost as ET. The novelty of this study is in demonstrating the effect of forest
dynamics on hydrological processes using a ready-to-go improved model parameterization based
on open-source remote sensing products, published literature, and shared field observations. Such
level of detail and reflection of real-world interplays of natural processes (i.e., water, energy,

vegetation) could never be achieved through traditional model calibration against streamflow only.

The remainder of the paper is organized as follows: In section two, we describe the study
area, the watershed model utilized, the modeling scenarios designed to assess the importance of
forest processes in hydrologic predictions, and the statistical analyses employed to evaluate the
model performance. In section three, we present the results, discuss, and interpret them in light of
the published literature, highlight some limitations of our study, and suggest future directions
related to the incorporation of forest growth and dynamics in watershed models. Finally, in section
four, we summarize our main findings and stress their implications in applying watershed models

as tools to support decision-making.

2. MATERIAL AND METHODS

2.1.Study sites

The Upatoi Creek and Upper Santa Fe River watersheds located in Florida and Georgia,
respectively, were selected as the study sites (Fig. 1). These watersheds were suitable to test our
hypothesis that a better simulation of key forest processes can result in better streamflow prediction
because both are highly forested in either loblolly or slash pine tree species. Both have long-term
daily streamflow records. The Upatoi Creek Watershed (UCW) is in Chattahoochee County, near
Columbus, Georgia, and has a drainage area of approximately 900 km?. Upatoi Creek is a 57 km

long river running from South Columbus to the Chattahoochee River. The elevation ranges from

7
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73 to 255 meters in the watershed, and according to the Soil Survey Geographic Database
(SSURGO), there are 172 different soil classes at UCW, out of which 75 are hydrological soil
group (HSG) A, 47 are HSG B, and 50 are HSG C. The land use and cover at UCW are mainly

dominated by loblolly pine trees (57%) and shrubs (9%).

The Upper Santa Fe River Watershed (SFRW) is part of the Santa Fe River Basin system
and has a drainage area of approximately 500 km? and elevation ranging from 25 to 83 meters.
Located predominantly in Union County, Florida, the SFRW is situated approximately 40 km north
of the city of Gainesville. In terms of land use and cover, the SFRW is dominated by slash pine
trees (56%) and hay-pasture (12%). (Soils in the SFRW are mostly HSG’s A and B with a few

HSG’s C.

Additional Hydrometeorological characteristics portraying both watersheds are

summarized in Table 1.



South Carolin 9,'

Alabama

Elevation (m)
High : 255
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176
177  Figure 1. Location map. (A) Upatoi Creek watershed, (B) Upper Santa Fe River watershed.
178
179 Table 1. Watershed characteristics
Hydrometeorological variable Upatoi Creek Upper Santa Fe
Latitude 32.544,32.61 N 29.964, 30.165 N
Longitude -84.811,-84.442 W -82.247,-82.045 W
Area (km?) 881.75 487.84
Average mean daily temperature (“C) (1995-2018) 18.2 20.48
Average annual precipitation (mm) (1995-2018) 1295.8 1326.5
Mean annual potential evapotranspiration (mm) (1995-2018) 1268 1215.2
Mean annual discharge (mm)* (2002-2018) 481 314
Mean daily streamflow (m3/s) (1998-2018) 10.7 3.1
180
181 2.2.The SWAT Model
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The SWAT hydrological model was used in the current study to investigate the effects of forest
dynamics on key hydrological processes within the study watersheds. SWAT is one of the most
widely used hydrological models and a well-established tool capable of simulating various water
fluxes (e.g., surface runoff, lateral flow, groundwater contribution) and plant growth. Additional
model components include weather, transport of sediment, nutrients, bacteria, and pesticides, and
land management. SWAT is a watershed-scale, semi-distributed, continuous-time, open-source
model developed by the United States Department of Agriculture (USDA) Agricultural Research
Service (ARS). The model discretizes a watershed into subwatersheds, which are further
discretized into unique combinations of land use, soils, and slope called hydrological response

units (HRU’s) (Neitsch et al., 2011).

In SWAT, the water balance calculation for each HRU considers five storages: snow, canopy
storage, the soil profile with up to ten layers, a shallow aquifer, and a deep aquifer. The water

balance is calculated using the following:
AS = Z€=1(P — Qtotar — ET — Wseep) (D

where, AS is the change in water storage, P, Qwwi, ET, and Wy, are the daily amount of
precipitation, total water yield, evapotranspiration, and the total amount of water exiting the
bottom of the soil profile on a given day, respectively. The value of W, is a sum of the amount
of water percolating out of the lowest soil layer and the amount of water flowing past the lowest
boundary of the soil profile due to bypass flow. The total water yield (Qrwi represents an
aggregated sum of surface runoff, lateral flow, and the base flow contribution to streamflow. In

this study, surface runoff was computed using the Soil Conservation Service (SCS) Curve Number

10
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(CN) method based on daily rainfall observations, and the Penman-Monteith (Monteith, 1965)

method was selected for estimating evapotranspiration.

SWAT incorporates a simplified version of the Environmental Policy Integrated Climate
(EPIC) model (Williams, 1990) to simulate the growth of different types of crops and trees. The
initialization of the growth cycle in SWAT is based on the heat unit theory: plants require a certain
amount of heat to reach maturity, which is only reached when a plant-specific total heat unit is
attained. Once the plant reaches maturity, it stops transpiring and uptake of water and nutrients. In
SWAT, the growth cycle restarts every year based on a latitude-dependent dormancy routine or
via harvest and kill operation in the model’s management module. At the beginning of each growth
cycle, the accumulated heat units drop to zero and the LAI is set to a plant-specific minimum value
defined by the user (Neitsch et al., 2011). During the early stage of plant growth, SWAT simulates
phenological development using an optimal leaf area index development curve. The plant’s
biomass accumulation is based on canopy light interception and the plant’s efficiency in converting
intercepted radiation into biomass. For detailed information about SWAT’s representation of forest
growth and dynamics and how it affects the simulation of hydrological processes, readers are

referred to Haas et al. (2021b).

Given SWAT’s limitations in simulating tree growth (Lai et al., 2020; Ma et al., 2019;
Strauch and Volk, 2013; Yang et al., 2018; Yang and Zhang, 2016), the current study uses the
improved model parameterization describing loblolly and slash pine growth and dynamics
introduced by Haas et al. (2021b). This improved forest parameterization was developed based on
field measured forestry data, remote-sensing estimates of LAI, expert knowledge, and a review of
published literature. Further details about SWAT’s computation of physical processes can be found

in Neitsch et al. (2011).

11
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2.3.Model setup and data acquisition

As a semi-distributed watershed-scale hydrological model, SWAT requires several geospatial
inputs and weather forcing to simulate physical processes within a watershed. The ArcSWAT 2012
(version 10.4.19) interface was used in this study to delineate the watersheds and define their
respective number of HRU’s. First, the watershed’s boundaries were delineated based on 10 meters
resolution digital elevation model (DEM) from the National Elevation Dataset (NED) and
hydrography network from the National Hydrography Dataset (NHD). Soil maps and soil
characteristics (e.g., soil depth, soil hydraulic conductivity, available water capacity) needed to
parameterize SWAT’s soil database were obtained from SSURGO as gridded data covering the
watershed’s drainage area. A reclassified land use map based on the publicly available 30 meters

resolution National Land Cover Database (NLCD) 2016 was ingested in ArcSWAT.

The land use reclassification was deemed necessary to capture the spatial distribution of
loblolly and slash pine across the watersheds as accurately as possible. Thus, a pre-processing step
involving reclassification of NLCD 2016 was conducted using the National Forest Type Dataset
(NFTD) (Ruefenacht et al., 2008) as a background map to discretize NLCD’s forest classification
into species-specific and geographically-meaningful types of trees. NFTD is a publicly available
geospatial dataset at 250 meters resolution developed by the United States Forest Service (USFS)
Forest Inventory and Analysis (FIA) program and the Geospatial Technology and Applications
Center (GTAC). This dataset was created to show the extent, spatial distribution, and forest type
composition of forests within the United States territory. We pre-processed this gridded dataset in
ArcMap 10.4.1 to make it readable in ArcSWAT during the HRU definition phase. Initially, we
isolated loblolly pine and slash pine species from NFTD and saved them as a separate raster layer.

Next, the original NLCD 2016 raster layer was overlaid with the NFTD raster. Using the erase

12



249  function from the Analysis Tool toolbox and ingesting the NFTD loblolly and slash pine layers as
250 input (one after the other), the NLCD land use classes overlapping with loblolly and slash pine
251  layers were erased. The geospatial information of the previously isolated loblolly and slash pine
252  rasters were then copied (copy function on ArcMap’s main toolbar enabled through an edit session)
253  and pasted (paste function on ArcMap’s main toolbar) into the NLCD rasters that had their original
254  classes erased in the previous step. It is worth mentioning that this sequential pre-processing was
255  applied to the NLCD’s land use classes representing forests only (e.g., forests deciduous, forests
256  evergreen, forests mixed, and forested wetlands), exempting other land use classes such as
257  agricultural lands and urban spaces. This decision was made to avoid misclassification, given the
258  coarser resolution of NFTD compared to NLCD. Table 2 shows the percentage cover of each land
259  use class with respect to the watershed’s area, before and after reclassification.
260
261
262
263
264
265
266
267 Table 2. Land use and cover change after reclassification to consider loblolly and slash pine spatial distribution
268 across the watersheds
Upatoi Creek Upper Santa Fe
Land use class % coverage - NLCD % coverage - Modified % coverage - NLCD % coverage - Modified
" 2016 NLCD 2016 NLCD

13



Open Water 3% 3% 0% 0%
Developed, Open Space 4% 4% 6% 6%
Developed, Low Intensity 2% 2% 1% 1%
Developed, Medium Intensity 1% 1% 0% 0%
Developed, High Intensity 0% 0% 0% 0%
Barren Land 0% 0% 1% 1%
Deciduous Forest 14% 3% 2% 0%
Evergreen Forest 30% 4% 40% 5%
Mixed Forest 15% 3% 0% 0%
Shrub/Scrub 9% 9% 6% 6%
Herbaceuous 5% 5% 5% 5%
Hay/Pasture 4% 4% 13% 12%
Cultivated Crops 4% 4% 0% 1%
Woody Wetlands 8% 2% 25% 6%
Ernergei)r\llte tfllai::;lc)laslceuous 0% 0% 0% 0%
Slash Pine _ 0% 56%
Loblolly Pine _ 57% 1%
269
270 For weather forcings, this study used daily precipitation and minimum/maximum
271  temperature from the PRISM Climate Group (http://www.prism.oregonstate.edu), hourly solar
272 radiation and wind speed data from the North American Land Data Assimilation System (NLDAS)
273 (https://Idas.gsfc.nasa.gov/nldas) aggregated to a daily basis, and hourly relative humidity data
274  from the National Solar Radiation Database (NSRD) (Sengupta et al., 2018), also aggregated to
275  daily time-step. Precipitation, temperature, and relative humidity data at 4 km resolution were
276  extracted using the centroid of each subwatershed as a spatial reference, resulting in twenty-three
277  virtual stations at UCW and twenty-one at SFRW. Solar radiation and wind speed estimates at 12.5
278  km resolution were extracted to all NLDAS grids overlapping the watershed’s boundary, which
279  resonated in eight virtual stations at both UCW and SFRW.
280 To assess the effects of improved SWAT forest parameterization at the watershed scale,
281  we compared SWAT predicted ET and LAI against MODIS-derived estimates. To accomplish
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this, we selected subwatersheds almost entirely covered by loblolly and slash pine and then
compared SWAT outputs of LAI and ET from the largest HRU against MODIS estimates.
MODI15A2H (Myneni et al., 2015) and MOD16A2 (Running et al., 2017) datasets were used to
derive LAI and ET data at 4-days and 8-days intervals, respectively, at 500 meters resolution.
MODIS extracted data were geo-referenced and spatially aggregated to the shape of previously
delineated polygons representing the located loblolly and slash pine areas using automated routines
in the Google Earth Engine platform (Gorelick et al., 2017). The simulated forest biomass was
compared to gridded forest biomass data from the U.S. Department of Agriculture (USDA) Forest
Service Forest Biomass product, which was developed based on field measurements and statistical
models (Blackard et al., 2008). Comparison of simulated and observed forest dynamics using the
default and re-parameterized models are shown in section S1 of the supplementary materials

(Appendix C).

We set up the initial growing conditions of slash and loblolly pine in the models by deleting
all management operations assigned to the management file in ArcSWAT. Next, we assumed that
trees were fully developed at the beginning of the simulation period by setting the HRU’s land
cover status as land cover growing from the beginning of the simulation period. Moreover, some
initial physical conditions like the number of heat units (PHU PLT), initial leaf area index
(LAI INIT), and initial biomass (B/O_INIT) had to be defined to configure the annual growth cycle
of trees. For loblolly and slash pine, PHU PLT and LAI INIT were defined based on the field-
scale model parameterization presented by Haas et al. (2021b) while BIO INIT was initialized

according to USDA’s Forest Service forest biomass data for each watershed.

For streamflow calibration and validation, we used daily streamflow data from the U.S.

Geological Survey (USGS) gaging stations 02341800 and 02321000 at UCW and SFRW,
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respectively. The complete dataset used for constructing and calibrating/validating the SWAT
models, as well as their sources, are summarized in Table 3. Based on the described data,
SWAT2012 (revision 664) through the ArcSWAT interface with a 10%-10%-0% (land-use, soils,
slope) threshold generated 23 subbasins and 172 HRU’s for UCW, whereas, 21 subbasins and 138
HRU’s were generated for the SFRW. The models were run from 1995 to 2018, using 3 years

(1995-1997) of initialization as model warm-up period.

Table 3. Description of data and their sources. Model input data refers to datasets utilized to construct the watershed
models. Model calibration refers to data utilized to constrain intra-watershed processes and calibrate discharge at the
watershed’s outlet.

Data Description Source

16



National Elevation United States Department of Agriculture (USDA) Geospatial Data Gateway

Topography Dataset at 10 meters (https://datagateway.nrcs.usda.gov/)
resolution
United States Department of Agriculture (USDA) Geospatial Data Gateway
Land use 2016 NLCD (https://datagateway.nrcs.usda.gov/)
data Geographic (gSSURGO) ' . '
Dailv precinitation PRISM climate group (http://www.prism.oregonstate.edu/),National Land Data
maxi}rlnlljl m /nlzinimuril Assimilation Systems (NLDAS) phase 2
Climate (https://1das.gsfc.nasa.gov/nldas/NLDAS2model download.php), National
temperature, solar T T
Lk . Solar Radiation Database (https:/nsrdb.nrel.gov/)
radiation, wind speed
Atmospheric ~ Wet and dry deposition of National Atmospheric Deposition Program (NADP)
deposition nitrate and ammonia (http://nadp.slh.wisc.edu/)
4 days composite dataset Moderate Resolution Imaging Spectroradiometer (MODIS)
Seasonal LAI at 500 meters pixel (https://lpdaac.usgs.gov/products/mcd15a3hv006/)
resolution
Model 8 days composite dataset Moderate Resolution Imaging Spectroradiometer (MODIS)
o ET at 500 meters pixel (https://Ipdaac.usgs.gov/products/mod16a2v006/)
calibration .
resolution
. Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia,
. Field-measured annual . .
Biomass . Florida and Alabama, respectively
total trees biomass
. Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia,
Field-measured annual . .
Annual LAI LAI Florida and Alabama, respectively
Daily discharge from
Streamflow stations USGS 02321000 USGS Water data
(FL) and USGS (https://waterdata.usgs.gov/nwis)
02341800 (GA)
324
325
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327 2.4.Experimental design
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Parameter-rich models such as SWAT can be easily calibrated for streamflow even though key
intra-watershed processes such as forest dynamics are simulated poorly. This is because an
observed signal (e.g., point-scale streamflow) may be reproduced in such models using thousands
of different parameter sets or ranges of parameter combinations. This problem is known as
equifinality (Beven and Freer, 2001), where, models can give right answers for wrong reasons.
One possible way of minimizing the equifinality problem is by constraining more model variables
(e.g., LAI, biomass, ET) through additional observed data. Here we perform four modeling
experiments before streamflow calibration in which we progressively constrain more variables
with additional data. These experiments can help us isolate the impacts of LAI, biomass, and ET
on streamflow prediction and water budget computation without the confounding effect stemming
from the calibration of streamflow-related parameters. To measure the benefits and drawbacks of
each experiment, we compared simulated baseflow, streamflow, watershed-average ET, and runoff
coefficient against observations and remote-sensing derived estimates. Observed baseflow was
estimated from observed streamflow using the Web-based Hydrograph Analysis Tool (WHAT)
(Lim et al., 2005) using its standard settings for perennial streams with a porous aquifer. The

experiments were as follows:

1. Default model (Mo): SWAT model was setup and run without altering plant growth-related
parameters;

2. ET (Mgr): this experiment added ET-related parameters (transferred from Haas et al.
(2021b)) to the default model (Mo);

3. LAI + biomass (MrarBm): this experiment incorporated parameters controlling LAI and

biomass, which were previously calibrated by Haas et al. (2021b);
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4. LAI + biomass + ET (Mrarsm+ET): this experiment included calibrated parameter values

representing the full coupling of vegetation, water, and energy relations in SWAT.

Comparison of Mgr, Mrarsm, and Miarsmier against Mo tells us how much model
performance has improved or deteriorated due to the addition/removal of new variables. The fourth
experiment (MrarBm+ET) Was the one we were most interested in because it fully considered the
tree growth cycle in SWAT and included the largest number of variable constraints. MrarBm
compared to My tells us how much model performance has improved or deteriorated by including
improved phenological development and biomass accumulation without adjusting for canopy
evaporation, plant water uptake, and soil evaporation. Mgt shows how remote-sensed ET data can
help predictions in ungauged basins or watersheds with limited streamflow records. My is a
baseline scenario serving as a reference to measure the advantages and disadvantages of Megr,

M_iarBM, and MLAKHBMH+ET.

2.5. Streamflow calibration and validation strategies

Hydrological models often cannot accurately simulate streamflow under default parameterization.
Each watershed is unique and dominant hydrological processes can vary, which default
parameterization may not capture. Thus, model calibration is frequently performed to adjust
selected model parameters representing the processes of interest. In this study, we employ an
automated model calibration approach to enhance SWAT’s accuracy in simulating streamflow at
the watershed’s outlet. We split the time series data into calibration (1998-2014) and validation
(2015-2018) periods in both watersheds. SWAT Calibration and Uncertainty Program (SWAT-
CUP) (Abbaspour, 2015a), a standalone calibration software developed specifically to be used
with SWAT, was used to optimize model parameters. Model calibration was carried out at the

daily time step using the Sequential Uncertainty Fitting algorithm (SUFI-2) option in SWAT-CUP.
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In SUFI-2, global sensitivity analysis is performed by calculating the regression
coefficients of the parameters generated by the Latin hypercube sampling method against the
values of the defined objective function. The relative significance of each sampled parameter is
measured using a t-test. Parameter sensitivities are computed by quantifying the average changes
in the objective function resulting from changes in each parameter (Abbaspour, 2015b). The p-
value tests the null hypothesis that the coefficient of a parameter is equal to zero (i.e., the parameter
is not sensitive). Low p-values (typically <0.05) indicate sensitive parameters.

In SUFI-2, uncertainty in parameters is expressed as ranges representing uncertainties
associated with forcing input data (e.g., precipitation), the conceptual model, parameters, and
observations (Abbaspour, 2015b). Uncertainties in parameters are reflected as uncertainties in the
model output variable, which are represented as the 95% probability distributions (95PPU). The
95PPU is hence the model solution in a stochastic calibration approach, considering all sources of
uncertainties. SWAT-CUP provides two statistics to quantify the fit between the 95PPU and
observed data: P-factor and R-factor. The P-factor expresses the percentage of observed data
enveloped by the 95PPU, while the R-factor is the relative thickness of the 95PPU band and is
calculated as the average of the 95PPU thickness divided by the standard deviation of the
corresponding observed variable (Abbaspour et al., 2018). Ideally, most of the observations should
be captured by the 95PPU (i.e., P-factor close to 1) in a small envelope (i.e., small R-factor value).

As model performance measures, this study used the coefficient of determination (R?), the
Nash-Sutcliff-Efficiency (NSE), and the percentage bias (PBIAS). Further, NSE was selected as
the objective function in SUFI-2, and 500 simulations were performed per iteration. The number
of iterations was based on how fast the model was converging to a higher NSE value in the

subsequent iteration. The parameters used to calibrate SWAT for streamflow in this study were
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selected based on the model’s structure and equations regulating discharge computation described
in Neitsch et al. (2011).

We calibrated daily streamflow for the two extreme modeling experiments, namely Mo
(default) and MparBm+ET (LAI + biomass + ET). Comparing these two calibration schemes can
show the benefits of including all variables describing forest dynamics simulation in model
calibration and how it changes the solution space (i.e., the most optimal value within the range of
parameters) relative to a model constraint with gauged streamflow data only. Since MpakBM+ET
considers improved LAI, biomass, and ET estimates and theoretically represents the most optimal
model condition among the four experiments (i.e., a model able to predict forest attributes and
streamflow reasonably well), this experiment was selected to quantify the effects of improved
forest processes on automated streamflow calibration. Both calibration approaches are explained
below.

2.5.1. Traditional model calibration (Mo)

Calibration of My involved adjusting the parameters listed in Table S1 for the default model setup.
This is a traditional calibration approach employed in most hydrologic modeling studies, where
model parameters related to vertical fluxes (e.g., ET) and horizontal fluxes (e.g., surface runoft)
are lumped together and calibrated with streamflow data only. This is considered a “simple
strategy” (Daggupati et al., 2015), where a single model output variable (e.g., streamflow) is
optimized at a single site, such as the watershed outlet. In their guidelines for calibration/validation
of hydrologic models, Daggupati et al. (2015) only recommends this strategy for watersheds
having uniform characteristics (e.g., climate, land-use, soil, slope). A major drawback of such
calibration approach is that it may produce pseudo-accurate models showing statically good

performances for streamflow at the watershed’s outlet, whilst completely misrepresenting internal
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watershed processes. This calibration scheme was performed to generate a base condition to which

the next calibration configuration could be compared.

2.5.2. Multi-facet model calibration (MpABM+ET)

In this calibration scheme, we decoupled horizontal (streamflow) and vertical (ET) water fluxes
by constraining parameter values representing biophysical processes within a physically
meaningful range. This approach does not optimize parameters controlling vertical fluxes (e.g.,
CANMX, EPCO, ESCO) when performing automated streamflow calibration, which is typically
the case in traditional calibration. Such parameters had their values derived for loblolly and slash
pine trees at the field-scale level in a previous study by Haas et al. (2021b). At the UCW,
previously calibrated parameters controlling the LAI development curve, water loss through ET,
and tree total biomass for loblolly pine and slash pine were transferred from the Loblolly 2 — GA
and Slash - FL sites described in Haas et al. (2021b). For the SFRW model, loblolly and slash pine
calibrated parameters were transferred from pine plantation fields located approximately 25 km
south of the watershed outlet, namely Loblolly 3 - FL and Slash — FL in Haas et al. (2021b). The
transferred parameter values were extended to HRU’s covered by loblolly and slash pine at both
watersheds. One could argue that transferring parameter values from field-scale to watershed-scale
without further calibration is not adequate because of varying physical conditions (e.g., soil types,
weather). Unlike reach/subbasin level parameters in SWAT, plant-specific parameters cannot vary
spatially in the plant database. In other words, these parameters are species-specific and even
though a given type of plant can be present in several HRU’s, its parameter values cannot change
from HRU to HRU. This model limitation challenges a spatially distributed calibration of
biophysical parameters in SWAT-CUP. Such an effort would essentially result in a lumped

calibration inconsistent with the spatially distributed characteristic of remote-sensing data. Thus,
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our approach is adequate to capture the importance of forest dynamics in hydrological models
since the biophysical parameter values included in Mrarsm+ET Were developed based on species-

specific high-quality datasets.

2.6. Ecohydrological flow parameters

To better understand the degree of hydrologic alteration attributable to improved forest
parameterization in hydrologic models, we utilized the Indicators of Hydrologic Alterations (IHA)
desktop model (TNC 2009). IHA was developed by The Nature Conservancy (TNC) based on
Richter et al. (1996) for calculating the characteristics of natural and altered hydrologic regimes.
This tool summarizes long periods of daily flow data into 67 statistical parameters representing
ecologically relevant conditions. These 67 statistical parameters are subdivided into two groups:
the IHA parameters (33 parameters) and the Environmental Flow Component (EFC) parameters
(34 parameters). In the current study, we selected 10 IHA parameters and 12 EFC parameters to
investigate how an improved representation of forest dynamics processes in SWAT affects model
predictions of ecologically relevant flow metrics at the SFRW and UCW from 1998 to 2018. To
accomplish this, we fed the IHA desktop model with SWAT-simulated daily time-series of
streamflow from the calibrated Mo and Mrarsm+eT models as well as with observed time-series of
streamflow collected at the outlet of both watersheds (i.e., USGS stations 02341800 and
02321000). Next, we compared the percent deviations in IHA metrics between simulations and
observations. The percent error of a given ecohydrological flow metric in relation to the

observations was calculated using Eq. 2:

dov Xno—X 2
Q LULC="MO~XLAL+BM+ET . 104 ( )
XLAI+BM+ET

where, X corresponds to a given ERF metric.
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The description and importance of the IHA and EFC parameters used in this study are

shown in Table S1 of the supplementary materials (Appendix B). Figure 2 illustrates the

methodology employed in the current study.

Impacts of forest processes on
hydrologic predictions
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Figure 2. Methodology flowchart.
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3. RESULTS AND DISCUSSION

3.1. Hydrological responses to improved forest dynamics
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The inclusion of improved forest dynamic processes in the model remarkably influenced the
watershed hydrological responses. The improvements and drawbacks brought about by each

modeling experiment are individually described and discussed below.

3.1.1. The baseline model

Prior to streamflow calibration, the baseline model configuration Mo showed poor performance in
simulating daily and monthly streamflow, as well as monthly baseflow, at both watersheds (Fig.
3-4). Flow duration curves of daily streamflows are shown for both watersheds in Fig. 3. As can
be seen, high flows were captured reasonably well in Mo, however, low flows were poorly
simulated, especially at SFRW. Overall, daily streamflow was overestimated by 67% and 267% at
UCW and SFRW, respectively, and NSE values were lower than 0.2 (Fig. 3). Similarly, monthly
streamflow showed low NSE values and poor agreement with observed data at both watersheds
(Fig. 4). My overestimated most of the peaks at both study sites. The monthly baseflow simulated
by the SWAT models in My show big differences compared to observations (Fig. 5). Mo
overestimated baseflow by 55% at UCW and 460% at SFRW in the period 1998-2018. Simulated
mean annual baseflow was also highly overestimated at both study sites compared to the observed
data (Fig. S3 of the supplementary materials under Appendix A). The watershed-average ET
simulated from 1998 to 2018 at the UCW was 614 mm/year in Mo (Fig. S2 — of the supplementary
materials under Appendix A), 25% lower than MODIS estimates (815 mm/year). Similarly, at the
SFRW, the simulated watershed-average ET was 546 mm/year, 57% lower than the MODIS
estimated value of 1013 mm/year. Considering MODIS ET data, 24% of rainfall became runoff at
SFRW and 37% at UCW. The predicted fractions in Mo were 59% at SFRW and 52% at UCW,

which is the direct consequence of ET underestimation.
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PBIAS (%) -66 -12 -101 -14 -268 -134 -233 -104
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495

496 Figure 3. Model verification under different configuration setups against USGS observed daily streamflow data for
497 different exceedance probability of simulated streamflow at the watershed outlet from 1999 to 2019 at Upatoi Creek
498 at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted in log scale. The statistical rating

499 metrics displayed in the table refer to daily streamflow variability (not shown), and not to the exceedance probability
500  curves.
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503 Figure 4. Hydrograph showing monthly simulated streamflow against USGS observed data for different model
504  configurations setups from 1999-2019.
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Figure 5. Hydrograph showing monthly simulated baseflow against estimated baseflow for different model
configurations setups from 1999-2019. Observed baseflow is estimated via baseflow separation program.

3.1.2. Effect of ET on streamflow simulation

The inclusion of previously calibrated ET parameters in Mgt dramatically improved the model’s
performance for streamflow and baseflow, as evidenced by increased NSE values (Fig. 3-4). The
consistent model overestimations of streamflow and baseflow produced under Mo were remarkably
decreased at both study watersheds in Mgr. The enhanced model performance was particularly
alluring at UCW where simulated daily streamflow was overestimated by 12% and baseflow by
less than 1%. By analyzing the exceedance probability curves (Fig. 3), it is possible to notice that
Mgt increased the agreement between simulated and observed streamflow, especially for low
flows (2 70%) at SFRW. Similarly, monthly peak streamflow and baseflow estimates improved in
MEetin comparison to Mo (Fig. 4 and Fig. 5). The main effect of Mgt configuration on the watershed
water budget was concerning baseflow (Fig. 6). Increases in annual average ET of 25% at UCW
(2% overestimation) and 33% at SFRW (20% underestimation) in Mgt compared to My led to
reductions in mean annual baseflow of 41% and 40%, respectively. Higher ET simulated in Mgt

reduced water yields in the watersheds. Under the Mgt model configuration, 37% of precipitation
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became discharge at UCW, which perfectly matched the 37% calculated using MODIS-derived
data. Also, 38% of the incoming precipitation resulted in modeled discharge at the SFRW,
relatively close to the 24% estimated using observed data. These findings should not come as a
surprise considering that ET is the main component of the forest water budget, having underlying
effects on watershed-scale water quantity. Also, studies such as Zhang et al. (2012), Brauman et
al. (2012), and Sun et al. (2011) have demonstrated that taller vegetation, such as forest stands, are
associated with higher ET rates and consequent lower water yield. Other studies have shown the
benefits of constraining ET in hydrological models based on remote-sensing data (Herman et al.,
2018; Odusanya et al., 2019; Rajib et al., 2016, 2018; Strauch and Volk, 2013). Our results are in
line with studies such as Rajib et al. (2018b), who demonstrated the perks of ingesting remotely-
sensed PET from MODIS in simulating streamflow with SWAT. The authors showed that by
improving ET estimations, the model predictions of streamflow improved as well, especially
concerning high flows. Parajuli et al. (2018) derived time-series of ET from MODIS to enhance
SWAT ET predictions and evaluated the impacts on streamflow simulation. Results showed that
the model performance in predicting streamflow jumped from a NSE value of 0.39 under the
default model settings to a value 0.71when considering ET data. In a similar study, Tobin and
Bennett (2017) used ET data from the Global Land Evapotranspiration: the Amsterdam Model
(GLEAM) to constrain SWAT parameter values related to ET in an experimental watershed in
Oklahoma-USA. Their findings indicate a better match between simulated and observed
streamflow when considering ET data. In the current study, results of Mgt suggest that readily
available remote-sensing ET data can help to improve the performance of hydrological models in
predicting streamflow and baseflow in ungauged watersheds. This finding concurs well with the

study of Y. Zhang et al. (2020), who demonstrated the potential of solely using ET data to calibrate
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hydrologic models in 222 ungauged watersheds in Australia. It is worth highlighting that ET-
related parameters were not re-calibrated for our study watersheds but rather transferred from the
field-scale level. This may indicate that the model performance could be further improved by

carrying out a site-specific calibration at each watershed.

Upatoi Creek watershed Upper Santa Fe River watershed
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Figure 6. Change in simulated water budget under different model setup configurations from 1999 to 2019 at Upatoi
Creek and Upper Santa Fe watersheds.

3.1.3. Effect of LAI and biomass on streamflow simulation
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In the next model configuration (Mra+Bm), we added calibrated parameter values regulating LAI
and biomass prediction to the baseline model (but removed ET). As shown by the rating metrics
and the flow temporal variability displayed in Figures 2-4, the model performance for streamflow
and baseflow in Mrarsm deteriorated compared to Mer. SWAT performed particularly poorly in
M_iarsMm at the UCW, where the performance metrics worsened even in comparison to the baseline
model My. In contrast, MLarsm showed superior performance compared to Mo for all statistical
measures at SFRW. This difference can be understood by considering the different tree growth
and dynamics of loblolly pine and slash pine. As described in section 2.1, UCW is dominated by
loblolly pine while the SFRW is mainly covered by slash pine trees. As shown in Fig. S1 of the
supplementary materials (Appendix A), the My configuration considerably overestimated LAI for
loblolly pine at UCW, whereas, underestimated it for slash pine at the SFRW. As a result of lower
simulated LAI at UCW, after incorporating previously calibrated LAI parameters, compared to
Mo, simulated ET in Mrar+sm had decreased 22% (Fig. S3 — of the supplementary materials under
Appendix A). Consequently, the simulated baseflow increased 16% in relation to Mo and was
further overestimated (Fig. S3 — of the supplementary materials under Appendix A), which led to
the deterioration of model performance under MpLaBm. As expected, due to lower ET losses in
M_iarBM, the runoff coefficient increased to 0.63, deviating significantly from 0.37 calculated with
the observed data. These results are in good accordance with Sun et al. (2011), who highlights that
monthly LAI is the single most important biophysical variable regulating ET. At the SFRW,
because of larger LAI values obtained after the incorporation of pre-calibrated LAI parameters
(Fig. S1 - of the supplementary materials under Appendix A), the MLarsm configuration predicted
higher ET rates compared to My, increasing the watershed-average ET by 12%. Accordingly, the

simulated streamflow and baseflow were reduced in Mransm (Fig. S3 - of the supplementary
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materials under Appendix A), which ameliorated the model’s performance compared to Mo.
Besides LAI the higher stand biomass predicted under Mparsm (Fig. S2 - of the supplementary
materials under Appendix A) compared to Mo most likely contributed to the lower water yield and
helped mitigating the model overestimation of streamflow observed in the My scenario at the
SFRW. This is in good agreement with studies such as McLaughlin et al. (2013), which shows that
reduced biomass may lead to reduced ecosystem water use and thus increased regional and local
water yield. The extent to which the watershed water balance was impacted by LAI and biomass
(Fig. 6) highlights the importance of considering forest dynamics in hydrologic modeling studies,
and the necessity of including ET in the modeling spectrum. Past studies have also shown how
biophysical variables such as LAI and biomass can help improving streamflow prediction in
hydrologic models. For instance, Ma et al. (2019) and Rajib et al. (2020) have replaced SWAT’s
empirical LAI algorithm with remotely-sensed LAl data assimilated from MODIS. Results showed
superior model performances for simulating streamflow and sediment yield in China and United
States. Guo et al. (2018) introduced new LAI and biomass algorithms to predict the growth and
dynamics of Populus trees in SWAT. By constraining LAI and biomass parameters, the authors
showed enhanced model performance in predicting streamflow, sediment, and nitrate. Unlike these
studies, the methodology tested here does not involve modifying SWAT’s source code, but rather
improving the representation of forest processes by constraining the model with physically
meaningful information derived from remote-sensing, field observations, and published literature.
Thus, the improved forest parameterization tested here is readily available and can be broadly

useful to the modeling community.

3.1.4. Effect of coupled water, surface land, and energy processes on streamflow

simulations
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Results from Mrarsm+ET Were the most telling in terms of the impacts of forest processes on the
model performance of hydrologic predictions. Under Mpar+Bm+ET, the models were constraint with
the largest number of variables among all experiments, and, besides showing the best performance
in predicting streamflow and baseflow, the models also predicted forest growth and dynamics
reasonably well under this parameterization. At UCW, the model performance for streamflow and
baseflow simulations slightly deteriorated compared to Mgt but largely improved in relation to Mo
and Mrawsm (Fig. 3-4). Compared to MODIS-derived data, the watershed-average ET predicted
in Mrarsm+ET Was less than 1% higher and showed the closest agreement with MODIS estimates
among all modeling experiments at the UCW (Fig. S3 - of the supplementary materials under
Appendix A). The mean annual baseflow simulated in MpaBwm+ET also showed good agreement
with the observed data (2% overestimation) (Fig. S3 - of the supplementary materials under
Appendix A). Although the inclusion of improved LAI and biomass into the model configuration
led to the deterioration in model performance compared to Mg, it is more coherent to include
biophysical parameters values representing LAI development and biomass accumulation along
with ET calibration, given the interplays between tree attributes (e.g., aboveground biomass and
canopy) and the volume of water lost to the atmosphere as vapor. Additionally, enhanced model
representation of tree attributes such as LAI and biomass may positively influence water quality
applications. For instance, the adjusted total biomass to residue ratio (BIO LEAF) from 30% to
2% reduces the amount of plant residue on the soil that is available for mineralization and
nitrification. Likewise, the sediment yield simulated in SWAT through the Universal Soil Loss
Equation (USLE) (Williams, 1975) is affected by the amount of residue on the soil surface. The
combined positive effects of Mer and Mraem at SFRW yielded Mrarwm+ET as the best model

configuration at this study site. The agreement between the simulated and observed streamflow
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and baseflow at the watershed outlet increased under Mparsm+ET (Fig.2-4) compared to the other
experimental conditions, as indicated by the highest goodness-of-fit measured by NSE and R°. The
model overestimation of horizontal fluxes was also the smallest under Mparsm-+er at SFRW. This
was mainly because of the better agreement between watershed-average simulated ET and
MODIS-derived data (Fig. S3 - of the supplementary materials under Appendix A), which
decreased the simulated water yield compared to the other modeling experiments. The runoff
coefficient estimated based on simulated ET (0.34) was the closest to the observed runoff
coefficient (0.24) among all scenarios. The changes produced in the water balance components, as
we progressively moved from one experiment to the next, are shown in Fig. 6. There was a
significant difference between Mo and Mrawsm+ET, With a drastic increase in predicted ET and
consequent decrease in predicted baseflow under the MparsMm+ET configuration at both watersheds.
The water balance of Mrarsm+ET at both watersheds concurs with the findings of Amatya and
Skaggs (2011) and Amatya et al. (1996), which indicate that streamflow is mainly derived from
subsurface flow (i.e., lateral flow and baseflow) in forested ecosystems, where surface runoff is
usually low. The results of MrareMm+ET indicate that the main improvement in streamflow and
baseflow prediction came from the ET component. Studies such as Strauch and Volk (2013) and
Alemayehu et al. (2017) also reported improvements in modeled streamflow under enhanced LAI
and ET predictions. Similarly, Yang et al. (2018) showed how enhanced biomass and ET estimates
can improve the model’s performance in simulating streamflow and sediment losses in a forested
watershed. Our findings are also in line with Rajib et al. (2018) and Ha et al. (2018), who showed
the benefits of incorporating improved biophysical parameters values regulating variables such as

LAIand ET for predicting streamflow with SWAT. However, our study is the first to fully consider
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the effects of forest dynamics (i.e., LAI, biomass, and ET) on hydrological processes by

constraining parameter values representing nationally relevant tree species.

3.2. Impact of forest dynamics on streamflow calibration and validation

As mentioned earlier, SWAT was calibrated for streamflow only under My and MpaBm+ET. Note
again that Mo represents the current practice in watershed modeling. Based on the visual
comparison and statistical measures, MLarBm+ET proved to be a better model in predicting daily
streamflow at both watersheds during the calibration and validation periods (Fig. 7). According to
the model performance evaluation criteria proposed by Moriasi et al. (2015), the results achieved
with the multi-facet calibration scheme ranged from “good” to “very good” at UCW, and
“satisfactory” to “very good” at SFRW. Under the traditional calibration scheme, the model
performance fell within the same range of categories at UCW but deteriorated to unsatisfactory-

satisfactory at SFRW.
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Figure 7. Observed vs. simulated daily streamflow in calibration and validation periods under traditional and multi-
facet calibration approaches. The upper hydrographs show the monthly discharge evolution in the period 1999-2019,
while the bottom flow duration curves show exceedance probability of simulated streamflow at the watershed outlet
from 1999 to 2019 at Upatoi Creek at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted
in log scale. The statistical rating metrics displayed in the table refer to daily streamflow variability.

The enhanced model performance achieved with the multi-facet calibration scheme shows
that better representation of forest dynamic processes enables SWAT to yield more accurate
streamflow estimates. Our findings are in disagreement with the results of studies such as Herman
et al. (2018), Dembél¢ et al. (2020), and Gui Ziling et al. (2019), which suggest that the
improvement of terrestrial processes such as ET and soil moisture resonates in lower model
performance in predicting in-stream fluxes at the watershed’s outlet. In the aforementioned studies,
the authors pursued a spatially-distributed calibration approach of terrestrial variables by

constraining ET- and/or soil moisture-related parameters for each subwatershed. A pitfall of such
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an approach is that it lumps land use/cover classes together and does not consider species-specific
characteristics. For instance, it is fair to assume that the ET rates of forests and shrubs are
substantially different and that fitting parameter values to satisfy both species according to an
objective-function may misrepresent both species and lead to unrealistic parameter values. On the
other hand, under our calibration approach, we tune the parameter values to dominant tree species.
Our results also highlight the advantages of decoupling horizontal hydrological fluxes (i.e.,
streamflow) from vertical hydrological fluxes (i.e., ET) when calibrating watershed models. In the
traditional calibration approach, ET-related parameters such as CANMX, EPCO, and ESCO were
calibrated simultaneously with parameters regulating the horizontal water flux. Although this led
to an increased mean annual ET in Mo, the watershed-average annual ET was still lower compared
to MODIS estimates. This underestimation of rainfall lost through ET resulted in a higher
overestimation of simulated streamflow in Mo compared to Mparswm+ET (Fig. 7). Moreover, in the
calibration period, the obtained values of P-factor and R-factor were 0.07/0.73 at SFRW/UCW,
and 0.19/0.58 at SFRW/UCW, respectively, with the traditional calibration approach. Under the
multi-facet calibration scheme, P-factor and R-factor ranged from 0.09-0.72 and 0.11-0.50,
respectively. While the values of P-factor did not change much according to the calibration
approach employed, R-factor showed a considerable decrease with the multi-facet calibration
scheme, suggesting reduced uncertainties due to consideration of improved forest dynamic

processes in the modeling framework.

Results from the global sensitivity analysis revealed that CN2 is the most sensitive
streamflow parameter at both watersheds under Mo and Mpawsm+er (Fig. S4 — of the
supplementary materials under Appendix A). However, the rank of sensitive parameters changed

in response to the calibration approach utilized. Parameters such as saturated soil hydraulic
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conductivity (SOL K), groundwater revap coefficient (GW_REVAP), groundwater delay time
(GW _DELAY), and deep aquifer percolation factor (RCHRG DP) became less sensitive in the
multi-facet calibration scheme at the UCW. An opposite trend was observed at the SFRW, where
most of the groundwater-related parameters had their sensitivity increased under the multi-facet
model calibration scheme, as indicated by lower p-values in Fig. S4 (of the supplementary
materials under Appendix A). This may be related to the higher baseflow:precipitation ratio

observed in the SFRW compared to the UCW (Fig. 6).

A similar effect can be noticed by paying closer attention to the best parameter values
found with the traditional and multi-facet calibration schemes (Table S3 - of the supplementary
materials under Appendix B). Parameters such as RCHRG DP and GW_DELAY, for instance,
witnessed substantial changes in their best-fitted values depending on the calibration approach. At
both study sites, RCHRG DP decreased in the multi-facet calibration scheme, which is most
probably because of higher ET losses in MLarsm+ET compared to Mo. In the traditional calibration
approach, because of the underestimated ET rates in My, the models tended to lose more water
through deep aquifer percolation in order to compensate for streamflow overestimation. Similarly,
the improved forest dynamics considered in the multi-facet calibration scheme decreased the lag
between the time that water exits the soil profile and recharges the shallow aquifer (GW_DELAY).
Because of excessive water yield and percolation produced in My, the traditional calibration
scheme slowed down the recharge to the shallow aquifer by assigning larger values to

GW _DELAY.

3

Although the traditional calibration approach was able to yield a “very good” model
performance in predicting streamflow, it massively failed to accurately replicate key forest

dynamic processes such as LAI and biomass within the watersheds (Figures S1 and S2 — of the
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supplementary materials under Appendix A). This “very good” model performance for streamflow
was accomplished at the cost of an excessively high deep aquifer percolation and lumped values
of parameters regulating plant transpiration (EPCO), soil evaporation (ESCO), and canopy storage
(CANMX) (Table S3 - of the supplementary materials under Appendix B). Alternatively, the multi-
facet calibration scheme demonstrated the feasibility of constructing realistic models that can
reasonably represent forest processes without losing accuracy in predicting streamflow. Our study
is a prime illustration of the concept of equifinality, where models calibrated based on different
parameter values may yield equally good outputs (Beven, 2006; Beven and Freer, 2001).
Equifinality has been widely associated with semi-distributed watershed models such as SWAT
(Ficklin and Barnhart, 2014; Her and Chaubey, 2015; Shen et al., 2012). As highlighted by studies
such as Tobin and Bennett (2017), equifinality can be mitigated by constraining the model with
more observations. This is demonstrated here, where models constrained by intra-watershed
processes such as LAI ET, and biomass showed improved performance and reduced uncertainties
in predicting streamflow, giving the right answers for the right reasons. Although forest dynamics
are usually overlooked in watershed modeling studies, we highlight the study of Fernandez-
Palomino et al. (2020), which also showed how the calibration of species-specific LAl and ET can
improve the simulation of streamflow in SWAT. It is time for watershed modelers to incorporate
spatially-distributed information such as remote-sensing based time-series into the modeling
framework in order to build models that accurately capture terrestrial and aquatic processes. That
said, we believe that our study may open new avenues and bring contributions towards more

realistic applications of watershed models.

3.3. Impact of forests on ecological flows
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Biotic processes such as vegetation growth may affect the hydrologic regime within the watershed
(Caro Camargo and Velandia Tarazona, 2019; Dalzell and Mulla, 2018; McLaughlin et al., 2013;
Mwangi et al., 2016). However, the interplays between the forest and hydrological processes and
their watershed-scale effects may not be immediately evident based only on simplistic analysis

such as daily and seasonal streamflow, baseflow hydrographs, and mean annual water balance.

Figure 8 illustrates the effect of improved forest processes on the relative error of simulated
mean monthly flows at both study watersheds. At the UCW, 9 out of 12 parameters showed a
smaller percent deviation in relation to the observations under the Mrar-sm+ET model configuration,
where the inclusion of enhanced forest dynamic processes reduced the model overestimation of
mean monthly flows (Fig. 8a). The only cases where My outperformed MparBm+ET in simulating
mean monthly flows were for March, August, and September. At the SFRW, improved forest
dynamics also reduced model overestimation of monthly flows, all of which showed better
agreement with observation under Mrarsm-+£T (Fig. 8b). The relatively high percent deviation of
simulated monthly flows at the SFRW is most likely related to the higher model overestimation of
streamflow and poorer performance compared to the UCRW model (Fig. 7). Since monthly flows
represent the normal mean daily water conditions for a given month, accurate predictions can be
valuable for water resources management applications. Additionally, the magnitude of monthly
flows have impacts on aquatic ecosystems and can influence habitat availability, the availability
of water for terrestrial animals, besides affecting physical characteristics such as water temperature

and oxygen concentrations (Richter et al., 1996; TNC, 2009).
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Figure 8. Percentage change of simulated monthly low flow with traditional and multi-facet model calibration in
relation to observed USGS daily streamflow data from 1999 to 2019 at Upatoi Creek (A), and Upper Santa Fe River
watersheds (B).

The enhanced representation of forest processes in SWAT also resonated in the overall
improvement of the model performance for simulating extreme flows of various durations at both
watersheds (Fig. 9). At the UCW, MLawrsm+ET yielded smaller percent errors than My in replicating

maximum flows of daily (1-day, 3-days), weekly (7-days), monthly (30 days), and seasonal
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durations (90-days), besides showing better agreement with observations in predicting minimum
flows of monthly and seasonal durations (Fig. 9a). Mrarsm+ET performed poorer than My in
simulating minimum flows of daily and weekly durations. Similar results were found at the SFRW,
where model simulations of extreme flows under Mrarswm+ET returned smaller percent deviations
from the observations (Fig. 9b). The only exceptions were maximum flows of daily and seasonal
durations for which the model performance deteriorated under Mpa+m+ET compared to Mo. As
shown in Fig. 7, low flows were substantially overestimated at the SFRW, which may help to
interpret the large and positive percent deviation of minimum flows found at this watershed.
Overall, improved forest dynamics mitigated SWAT’s overestimation/underestimation of
minimum/maximum flows at the SFRW. These findings are relevant considering the importance
of extreme flows for water resources management (Wheater and Evans, 2009), flood control
(Archer et al., 2007; Arnaud et al., 2002), infrastructure design (Hailegeorgis and Alfredsen, 2017,
Pregnolato et al., 2016), and ecosystems health (Kiesel et al., 2017; Richter et al., 1996), and
indicate that the benefits of accurately representing forest processes in watershed models

extrapolate improved streamflow simulation.
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Figure 9. Percentage change of simulated extreme flows with traditional and multi-facet model calibration in
relation to observed USGS daily streamflow data from 1999 to 2019 at Upatoi Creek (A), and Upper Santa Fe River
watersheds (B).

3.4. Broader implications and limitations

Although our improved forest parameterization relied on field observations from nearby pine
plantation fields, we did not have field-measured data within the study watersheds. Thus, our

methodological insights were validated against remotely sensed LAI and ET and gridded biomass
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data. As with any remote-sensing estimate, there are uncertainties associated with MODIS LAI
and ET data (Jensen et al., 2011; Long et al., 2014), as well as with the USDA Forest Service forest
biomass data. While it may raise uncertainties concerning the validity of our findings, the global
coverage of MODIS data facilitates the replication of our methodology worldwide. Moreover,
SWAT’s flexible plant database allows other researchers to further refine our forest

parameterization for other evergreen species.

In this study, the focus of our modeling effort was on streamflow and baseflow predictions.
The impacts of improved forest growth and dynamics on modeled water quality (e.g., sediment
yield, nutrient load) must be addressed in a future endeavor. As demonstrated here, increased ET
losses resulting from our improved forest parameterization led to decreased surface runoff and
baseflow. It can be inferred that lower surface runoff and baseflow rates will likely decrease
sediment and nutrient loads transported to the main channel. Additionally, the adjusted amount of
biomass converted to residue every year reduces the source of fresh residue on the soil surface
available for mineralization and nitrification. Consequently, the forest parameterization tested in
this study may resonate in less nitrate being transported to water bodies. The sediment loss may
also be impacted by the improved forest parameterization, especially because the USLE’s cover

and management factor is computed as a function of plant residue.

4. SUMMARY AND CONCLUSIONS

The improved representation of forest processes in SWAT returned better streamflow and
baseflow predictions. This was demonstrated by performing four modeling experiments aiming to
show the individual impacts of LAI, biomass, and ET on water fluxes. Results showed that

improved ET prediction is the main reason leading to more accurate streamflow and baseflow
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simulations in watershed models. The improvements in forest processes substantially altered the

watershed water budget towards increased ET and decreased baseflow rates.

By calibrating streamflow-related parameters with and without the inclusion of improved
LAI biomass, and ET, we demonstrated that a physically meaningful representation of forest
hydrological processes led to superior model performance in predicting streamflow. Moreover, the
improved forest parameterization decreased the uncertainties associated with daily streamflow
prediction. The importance of forest dynamics was further scrutinized by analyzing multiple
ecohydrological parameters. Our results point to the importance of accurately accounting for forest
processes in watershed models, especially in highly forested watersheds. The latter not only yields
a more realistic model, but also enhances the model’s performance in predicting streamflow,
reduces the model uncertainties, and improves the terrestrial and aquatic connections, as

demonstrated by the 22 ecohydrological parameters considered here.

Given the considerable disparity between the two extreme model configurations (i.e., Mo
and MrarBwm+ET) in replicating the watershed water budget, the conclusions drawn by each model
would largely differ. This could generate impacts on management decisions in case the models
were employed to support decision-making. Therefore, we suggest that key forest processes such
as LAI, biomass, and ET should be ameliorated in hydrological models before simulating

streamflow.

Finally, by constraining the models with readily available remote-sensing data we were
able to decouple vertical water fluxes and processes (e.g., evapotranspiration, plant water uptake,
soil evaporation, and canopy storage) from horizontal water fluxes (i.e., streamflow) in model
calibration. This allowed us to simultaneously capture forest dynamics and in-stream processes

reasonably well. Such a level of detail and representation of plant-water-energy relations would
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hardly be obtained through model calibration against gauged streamflow data only. Considering
that the ultimate goal of watershed modeling studies is typically drawing scenario analysis
representing different real-world conditions, a model able to accurately represent terrestrial and

in-stream processes can produce positive implications for watershed modeling applications.
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