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19 Abstract 

20 The Coastal Generalized Ecosystem Model (CGEM) is a biogeochemical model developed to 

21 study regulating processes of water-column optical properties, water-column and benthic 

22 carbon, oxygen, and nutrient cycles, and phytoplankton and zooplankton dynamics. CGEM 

23 offers numerous formulations for important rate processes, providing users flexibility in 
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1 

altering model structure. This flexibility also provides a means for evaluating model structural 

uncertainty and impacts on simulations, which are rarely evaluated with numerical ecosystem 

models. As an open-source model, CGEM also offers users the option to implement new 

formulations or modify existing routines. We also provide a full description of the model 

formulations, state variables, and model parameters in CGEM. Using two published case 

studies, we explore how different formulations for light attenuation, phytoplankton 

temperature growth response, and sediment processes impact simulations. We discuss 

CGEM’s role as a new ecosystem model within the modeling community and opportunities to 

address current and future water quality issues. 

Introduction 

Water quality models are an important tool for effective management of water resources. 

Mechanistic models are now commonly applied to inform ecosystem response to various 

physical and biological forcings in 3-dimensional space and time in lakes (Rowe et al., 2023; 

Wool et al., 2020), estuaries (Cagle et al., 2023; Hood et al., 2021; Testa et al., 2021), and the 

coastal ocean (Khangaonkar et al., 2018; Laurent and Fennel, 2017). When validated with 

observations, models may also provide a more comprehensive assessment of ecosystems than 

monitoring alone. Mechanistic models are also uniquely capable of assessing ecosystem 

response to future conditions, making them an invaluable resource for managers and 

policymakers in the development of management plans adaptive to local environmental 

change and/or climate change. 

As our understanding of coastal processes becomes more detailed, the complexity of water 

quality models has also increased. Whether this complexity is justified or serves to improve 

model outcomes has been a topic of debate (Anderson, 2005; Flynn, 2003; Flynn, 2005; Ward 

et al., 2013). In one respect, simulating all relevant processes is necessary to represent the 

main drivers, responses, and feedback that dictate a complex ecosystem’s biotic and abiotic 

state (Doney, 1999; Glibert et al., 2013). In another respect, increased model complexity 

yields additional unconstrained processes that lead to loss of precision and added uncertainty 

in model outcomes (Voinov and Cerco, 2010; Ward et al., 2013). Some studies demonstrate 
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that more complex models can have greater skill (Friedrichs et al., 2007; Xiao and Friedrichs, 

2014) while others highlight enhanced uncertainty and lack of transferability for 

over-parameterized models (Beck et al., 2017; Refsgaard et al., 2007; Wade et al., 2008). 

Selection of functional response formulations is also an important consideration for 

implementation of mechanistic models. A given process-based or empirical formulation may 

prove suitable for certain conditions or ecosystems but unsuitable for others, particularly 

when faced with fundamental shifts in ecosystem dynamics presented by climate change 

(Ralston and Moore, 2020; Wells et al., 2015). For example, if temperature dependent 

phytoplankton growth is represented as an optimum threshold temperature function (Cerco 

and Noel, 2004), increased warming in climate change scenarios may result in decreased 

rather than increased phytoplankton growth as would be expected by the Eppley curve 

(Eppley, 1972). Therefore, selection of appropriate formulations can have a significant impact 

on simulation response to changing physical and biological forcings, resulting in reduced 

uncertainty in model outcomes (Jarvis et al., 2022). These issues of structural uncertainty are 

well-known for ecosystem and water quality models but are rarely addressed (Reckhow and 

Chapra, 1983), despite calls for ensemble modeling approaches to better evaluate model 

uncertainty (Ganju et al., 2016). 

The Coastal Generalized Ecosystem Model (CGEM) is a complex mechanistic model that 

provides users the flexibility to select or build new model formulations and parameterizations 

to best suit varying ecosystem conditions. One of the factors motivating the development of 

CGEM is the need to evaluate how simple to complex model structures affect model outputs 

and associated uncertainty. We hope that CGEM’s flexibility in process representations will 

further the modeling community’s ability to quantify model structural uncertainty. CGEM 

offers users different numerical formulations for eight important biogeochemical processes 

(Table 1, described below). This flexibility can be used to test how different process 

representations, or combinations thereof, influence a model system and can therefore be 

leveraged to evaluate structural uncertainty (Chatfield, 1995). As an open-source modeling 

framework CGEM also provides full transparency of the source code, allowing users to 

evaluate model parameterization, formulations, and assumptions that may best apply to a 

3 
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82 given ecosystem or process of concern. This open-source framework further allows users the 

83 opportunity to add their own formulations, state variables, and parameters as required. 

84 Our primary objective in this paper is to provide a full description of CGEM. We use case 

studies to highlight how different model formulations influence important model variables 

86 and simulation outcomes. We further describe the advantages and disadvantages of selected 

87 formulations as applied to different ecosystem conditions and processes of concern. In the 

88 following sections we describe the CGEM model and its application. The model state 

89 variables and component processes, including functional forms of alternative mathematical 

equations, are described in Section 2. A description of the CGEM modeling framework and 

91 code availability are provided in Section 3. Application of CGEM to eutrophication and 

92 hypoxia issues in different coastal ecosystems are presented in Sections 4 and 5, including 

93 case studies of the Louisiana Shelf in the northern Gulf of Mexico and in Weeks Bay, AL. 

94 Finally, a review of CGEM’s role in eutrophication modeling of coastal and marine 

ecosystems is described in Section 6. The full model equations are presented in the 

96 supplemental materials. 

97 2 Model Description 

98 CGEM was derived from the model of Eldridge and Roelke (2010), which included 

99 representations of: (1) nutrients and dissolved oxygen (DO); (2) a simple lower trophic level 

food web consisting of six phytoplankton functional types (PFTs) and a zooplankton grazer; 

101 (3) particulate organic matter derived from phytoplankton, zooplankton, and rivers, and (4) a 

102 one-layer sediment diagenesis model linked to organic matter deposition to the sediments. 

103 CGEM includes air-sea exchange; water column light attenuation, nutrient, phytoplankton, 

104 zooplankton, and organic matter; and sediment processes (Figure 1). Initial release of 

CGEM-1.0, hereafter referred to simply as CGEM, differs from the Eldridge and Roelke 

106 (2010) model by the following: (1) CGEM code was rewritten in Fortran from the original 

107 MATLAB scripts and functions; (2) the equations were generalized for 0- to 3-Dimensional 

108 numerical grids; (3) an optical model of light attenuation based on inherent optical properties 

109 (IOP) was incorporated (Figure 2; Penta et al., 2009); (4) PFTs and zooplankton functional 

types were expanded to allow the use of up to 99 functional types; (5) detrital organic matter 

4 
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135

111 was changed to represent eight organic matter classes with particulate and dissolved pools for 

112 organic matter derived from phytoplankton, zooplankton, rivers, and ocean boundaries; (6) 

113 Silica (Si) was added as a state variable; (7) the chlorophyll to carbon ratio (Chl:C) is 

114 calculated for each PFT; and (8) alternative mathematical representations of processes, 

referred to as code switches, were included for testing and assessing model structural 

116 uncertainty, e.g. three different representations of PFT growth rate dependencies on 

117 temperature (Figure 3). 

118 Throughout this manuscript, names of biogeochemical processes (Table 1), model state 

119 variables (Appendix A, Table 2), and parameters (Tables 3-8) are shown in italics. Process, 

state variable, and parameter names conform to those used in the Fortran code. In section 2 

121 we present the model representations of light attenuation, phytoplankton (six PFTs), 

122 zooplankton, organic matter, nutrients, oxygen, and carbon dioxide using the model 

123 parameterization described in (Eldridge and Roelke, 2010). 

124 2.1 Light attenuation 

Two representations of water-column light attenuation are included in CGEM (Table 1). 

126 Irradiance switch (E1) calculates light attenuation as a function of absorption and 

127 backscattering related to concentrations of Chl, CDOM, and SPM (Penta et al., 2009; Penta et 

128 al., 2008) (supplemental section B, Table 3). Irradiance switch (E2) uses a simpler model to 

129 calculate down-welling light attenuation based on partial attenuation coefficients (Eldridge 

and Roelke, 2010) (supplemental equation B6, Table 3). In both cases, light attenuation varies 

131 by depth as a function of the vertical distribution of modeled Chl, CDOM, and SPM. 

132 Phytoplankton biomass is tracked in CGEM as cell abundance (A, cells m-3). However, the 

133 phytoplankton biomass calculated in terms of Chl (mg m-3) is desired because the optical 

134 model (supplemental equations B2 and B3) requires Chl and because field observations of 

phytoplankton biomass are generally reported as chlorophyll-a. Thus, Chl is calculated based 

136 on A, the Chl:C, and the fixed cellular carbon quota per cell (Qc) (supplemental equation B4). 

137 A switch is provided to (C1) input a fixed Chl:C ratio or (C2) calculate Chl based on a Chl:C, 

138 which is calculated as a function of temperature, irradiance, and nutrient dependent growth 

139 rate (supplemental equation B4) (Cloern et al., 1995). CDOM is loaded to the model from the 

5 
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rivers and then allowed to decay in the model domain (supplemental equation A13). 

141 Absorption due to suspended particulate matter is calculated per time step as a function of 

142 particulate organic matter (OM1; supplemental equation B2). Backscattering is calculated as a 

143 function of Chl (supplemental equation B3). 

144 The light attenuation scheme (Penta et al., 2009; Penta et al., 2008) is derived from the 

Inherent Optical Properties (IOP) based model of vertical transmittance of solar radiation of 

146 Lee et al. (2005) where the attenuation of visible light is modeled as a function of depth, solar 

147 zenith angle, and the IOP of the water. The vertical attenuation coefficient is a spectrally 

148 averaged value with a significant portion determined by the large absorption of red 

149 wavelengths by water (Lee et al., 2005). Thus, the attenuation of photosynthetic active 

radiation (PAR) with depth is not constant – longer wavelengths (red, orange, yellow) are 

151 attenuated near the surface while the longer wavelengths (blue, green) penetrate much deeper. 

152 The original model was developed to simulate underwater light from ocean color satellite data 

153 and the scheme was modified for inclusion in numerical simulation models (Penta et al., 

154 2009; Penta et al., 2008). The IOPs (total or as individual components) used in the model can 

be determined from model components, literature values, external data (in situ and/or remote 

156 sensing) and/or models, or any combination thereof. 

157 2.2 Phytoplankton 

158 For each of the six PFTs (Ai) presented in section 2, phytoplankton cell abundance (Ai=1:6) is 

159 the net of growth, respiration, mortality, grazing, and sinking (equation A4). Specific growth 

rates, uAi (d-1), are a function of the maximum growth rate for a PFT (umaxi, Table 4) and 

161 growth dependence on temperature, irradiance, and nutrients. A model switch for different 

162 specific growth rate formulations (Table 1) is provided to calculate the specific growth rate as: 

163 (G1) a Liebig minimum being dependent on the most limiting of light, N, P, or Si 

164 (supplemental equation C2); (G2) a product formulation of nutrient-limited growth and 

light-limited growth (supplemental equation C3); or (G3) a formulation where umax in the 

166 light-dependent growth equations (supplemental equation C7-C9) is modified based on 

167 nutrient status, i.e. umax·min(func_N, func_P, func_Si) (see supplemental section C.4) 

6 
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Model switches are also included to explore numerical representations relating specific PFT 

growth rates to temperature, irradiance, and cellular nutrient quota (Table 1). A switch for 

growth rate dependence on temperature (functional form described in Figure 3), provides (1) a 

sigmoidal function (supplemental equation C4; Eldridge and Roelke, 2010) (supplemental 

equation C4), or (2) an optimum threshold function (supplemental equation C5; Cerco and 

Noel, 2004), or (3) an Arrhenius function (supplemental equation C6; Geider et al., 1997). A 

switch for growth rate dependence on irradiance (supplemental equation C7) allows for (1) 

photoinhibition (supplemental equation C8), (2) no photoinhibition (supplemental equation 

C9) or (3) nutrient dependence of the maximum growth rate at saturating irradiance 

(supplemental equation C10) (Flynn, 2003). Functional forms of growth rate dependence are 

detailed in Figure 4. A switch for growth rate dependence on internal cellular nutrient quota 

provides three cell quota formulations of increasing complexity (supplemental equations 

C11-C14) (Droop, 1973; Flynn, 2003; Nyholm, 1978). Functional form selection via model 

switches applies to all phytoplankton functional types. 

Phytoplankton respiration is modeled as a function of growth and abundance (supplemental 

equation C16). Phytoplankton mortality is modeled as a simple linear dependence of 

abundance (supplemental equation C20). Phytoplankton losses to grazing are modeled 

(Eldridge and Roelke, 2010; Roelke, 2000) for two zooplankton types (supplemental equation 

C21); a macrozooplankton (Z1) and a microzooplankton (Z2). Zooplankton grazing rates are 

represented as a threshold response to the biovolume of phytoplankton cells, calculated as the 

product of cell abundance (A) and cell size (volcell, Table 4). Zooplankton prey on PFTs as 

specified by an edibility vector (ediblevector, Table 4) where edibility for a PFT could range 

from zero (no grazing) to one. 

PFT internal nutrient cell quotas (Q, mmol cell-1) are calculated as the difference of 

phytoplankton nutrient uptake and utilization (supplemental equations A2 and A3). For N and 

P uptake kinetics (equation C24), a model switch is provided to select from uptake kinetics 

based on (1) Michaelis-Menten kinetics (supplemental equation C25) (Dugdale and Goering, 

1967), or (2) a quota based form (equation C26) (Geider et al., 1998; Lehman et al., 1975), or 

(3) a quota based form that allows for surge uptake of nutrients (equation C27) (Roelke, 

2000). Silica uptake kinetics for diatom PFTs is modeled as a Michaelis-Menten form. When 

7 
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198 a nutrient is non-limiting, its uptake rate is modified by the growth-rate limiting nutrient 

199 (supplemental equation C28). 

2.3 Zooplankton 

201 For the CGEM structure presented here, Macrozooplankton (Z1) and microzooplankton (Z2) 

202 are simulated, with Z1 representative of a coastal copepod (length = 250 µm) and Z2 

203 representative of a ciliate herbivore (length = 50 µm). Zooplankton abundances (Z1 and Z2) 

204 are calculated as the net of growth, respiration, and mortality (supplemental equation A8). 

m-3 d-1)Zooplankton growth rates (individuals are a function of ingestion rates and 

206 temperature ((Roelke, 2000); equation D1). Ingestion rates (mmol C, N, or P m-3 d-1) are 

207 calculated as the difference between grazing rates and losses to zooplankton sloppy feeding 

208 and unassimilated prey (supplemental equations D2 through D4). Zooplankton respiration are 

209 the sum of growth and basal respiration terms (supplemental equation D5). Zooplankton 

mortality (supplemental equation D8) is represented as a quadratic expression (Cerco and 

211 Noel, 2004). 

212 2.4 Organic matter 

213 The model tracks organic matter (OM) in particulate (OM1) and dissolved (OM2) fractions 

214 for four types: phytoplankton (OM1_A and OM2_A); zooplankton (OM1_Z and OM2_Z); 

river (OM1_R and OM2_R); and lateral boundary condition organic matter (OM1_BC and 

216 OM2_BC). OM1_R and OM2_R are loaded to the model based on observed concentrations of 

217 particulate and dissolved organic carbon in the rivers entering the model domain. OM1_BC 

218 and OM2_BC are derived from user supplied inputs at open water boundaries. Phytoplankton 

219 mortality is the source for OM1_A and OM2_A. Zooplankton mortality and zooplankton 

grazing processes (sloppy feeding, egestion, and unassimilated prey) are sources of OM1_Z 

221 and OM2_Z. Loss terms for all eight of the OM types included remineralization and sinking, 

222 with decay and sinking rates being model parameters (Table 7). The OM stoichiometry varies 

223 based on source contributions (Table 7, supplemental equations E21 to E25) and reactions 

224 (supplemental equations E28 and E31). 
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In the CGEM structure presented here, decay rates of 50 and 1 y-1 were assigned to OM1 and 

226 OM2, respectively, derived from phytoplankton and zooplankton (Table 7). Decay rates of 

227 riverine OM (KG1_R and KG2_R) are specified by the user. We calculated these based on 

228 observed riverine Biological Oxygen Demand (BOD) measurements and the river particulate 

229 organic carbon (POC) and dissolved organic carbon (DOC) concentrations. Sinking rates 

(Table 7) of organic matter are specified as 10 m d-1 for OM1, which is on the low end of the 

231 range of sinking rates for zooplankton fecal pellets and phytodetritus (Turner, 2002). OM2 is 

232 assigned a sinking rate of 1 m d-1 . The effect of temperature on biogeochemical rates is 

233 represented using a Q10 factor = 2 (supplemental equations E32-E36). 

234 2.5 Nutrients 

Sources of NH4, NO3, PO4, and Si in the model (supplemental equations A17-A20) are from 

236 OM remineralization (supplemental equations E49-E54), exudation by phytoplankton 

237 (supplemental equations C18 and C19), excretion by zooplankton (supplemental equations D6 

238 and D7) and sediments, which may be a source or loss. Losses include phytoplankton uptake 

239 of NH4, NO3, PO4, and Si, and for NH4 and NO3 denitrification (supplemental equation E30) 

and nitrification (supplemental equations E46 and E48). 

241 Sediment-water exchanges for NH4, NO3, PO4, and Si (mmol m-2 d-1) may be specified, 

242 based on empirical relationships, or calculated with a full sediment diagenesis model (Morse 

243 and Eldridge, 2007). The sensitivity of sediment rates to temperature is governed by a Q10 

244 relationship. 

2.6 Oxygen 

246 O2 sources and sinks in the model include O2 production due to photosynthesis, O2 

247 utilization by respiration in the water-column and sediments, and air-sea exchange. O2 

248 boundary conditions are user defined inputs. In the water-column, O2 is produced by 

249 photosynthesis and consumed by respiration by phytoplankton and zooplankton, oxidation of 

OM1 and OM2, and nitrification (Eldridge and Roelke, 2010; Van Cappellen and Wang, 

251 1996). Similar to nutrients, a sediment boundary layer O2 flux may be specified with a 

252 sediment switch (Table 1). 
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260
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275

280

253 With sediment switch set to (0), empirically derived equations are used to specify sediment 

254 oxygen demand and dissolved inorganic carbon (DIC) efflux as a function of bottom water O2 

concentration. Switch (2) applies empirically-derived equations relating benthic microalgal 

256 O2 production to irradiance at the bottom (Gattuso et al., 2006; Jahnke et al., 2008; Lehrter et 

257 al., 2014). Users may also apply empirically-derived formulations of nutrient fluxes (Lehrter 

258 et al., 2012; Murrell and Lehrter, 2010) using switch (3). Switch (4) applies an instant 

259 remineralization of OM at the sediment-water interface. Switch (5) applies the sediment 

diagenesis model (SDM) from Morse and Eldridge (2007) and Eldridge and Morse (2008), 

261 which was adapted from (Van Cappellen and Wang, 1996) and Boudreau (1996). 

262 Vertical exchanges of O2 across the air-sea interface are modeled based on O2 concentration 

263 gradients from surface water to atmosphere and wind speed (Eldridge and Roelke, 2010; 

264 Justić et al., 2002). 

3 CGEM Modeling Framework and Code Availability 

266 CGEM is available for download via the USEPA’s Center for Exposure Assessment Modeling 

267 (CEAM) Hydrologic Modeling Community of Practice website 

268 (https://www.epa.gov/ceam/coastal-generalized-ecosystem-model-cgem). Users have the 

269 option of downloading a zip package of the model code directly from the website, or 

accessing the model code from the CGEM Github repository 

271 (https://github.com/USEPA/CGEM). Users may also provide feedback and suggestions for 

272 future CGEM versions via the Github repository or by email at CEAM@epa.gov. 

273 The CGEM model framework provides researchers and managers with a powerful and 

274 flexible open-source modeling tool that can be implemented at varying spatial dimensions 

(i.e. 0-dimensional to 3-dimensional) and adapted as required with new model formulations to 

276 address the user’s needs. CGEM features interoperability with commonly applied 

277 hydrodynamic models (Environmental Fluid Dynamics Code (EFDC), Navy Coastal Ocean 

278 Model (NCOM), Finite Volume Community Ocean Model (FVCOM), Semi-implicit 

279 Cross-scale Hydroscience Integrated System Model (SCHISM)) across a range of spatial 

scales in coastal and freshwater ecosystems. A pre-processing tool is also available for users 

10 
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285

290
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300

305

281 to easily set up CGEM applications with EFDC, an established hydrodynamic model 

282 commonly applied to freshwater and coastal ecosystems of varying scale. 

283 While this manuscript focuses on CGEM, the CGEM framework includes two water quality 

284 models that are available to the user within a single code base. Users can switch between 

CGEM and the Water Quality Eutrophication Model (WQEM) model formulations based on 

286 specific modeling needs. The WQEM model, previously published as the Gulf of Mexico 

287 Dissolved Oxygen Model (GoMDOM), is based on the Integrated Compartment Model 

288 (CE-QUAL-ICM) model (Cerco et al., 1995). A description of the WQEM model and its 

289 formulations is provided with CGEM model documentation as well as in numerous 

publications (Feist et al., 2016; Melendez, 2009; Pauer et al., 2020). 

291 CGEM provides a simple text interface to parameterize model setup. Users choose between 

292 multiple model switches (e.g. varying phytoplankton temperature formulations, nutrient 

293 uptake options, etc.) and define values for biogeochemical rate processes. Model grid 

294 dimensions and initial conditions are also entered in text format. CGEM reads water column 

advection, state variables, and boundary conditions as netcdf files. Simulation output from 

296 CGEM is in a netcdf format. Users can extract and visualize data from netcdf as needed and 

297 may also utilize a series of R scripts to visualize model data provided as part of the model 

298 download package. 

299 4 Ecosystem Application 

We have applied CGEM in two different coastal ecosystems of varying scale (Figure 7). The 

301 Louisiana Continental Shelf model evaluates seasonal hypoxia resulting from Mississippi 

302 River Basin nutrient loads (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017). CGEM 

303 in Weeks Bay examines diel oxygen dynamics in a shallow hypereutrophic estuary (Jarvis et 

304 al., 2023). Detailed model calibration statistics and illustrations are provided in the respective 

manuscripts for both model implementations. Broadly, model calibration for both the 

306 Louisiana Shelf and Weeks Bay were performed in a non-automated fashion based on CGEM 

307 specific sensitivity analysis described in Beck et al. (2017). On the Louisiana Shelf CGEM 

308 was calibrated for 2006 and was validated across a 5-year period from 2003-2007 (Jarvis et 

309 al., 2020). Weeks Bay simulations were not validated beyond the one-year simulation period 
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320

325

330

335

(2015), however multiple benthic simulation processes were evaluated to determine their 

311 effects on simulating oxygen dynamics in shallow coastal ecosystems (Jarvis et al., 2023). 

312 Model calibration and validation performance for both models applied numerous statistical 

313 measures, including R2, mean absolute error (MAE), root mean square error (RMSE), 

314 normalized RMSE (NRMSE), Index of Agreement (IA), bias, and skill (Wilmott, 1981). For a 

detailed description of parameter sets and model structure applied to the Louisiana Shelf and 

316 Weeks Bay models please refer to Jarvis et al. (2020) and Jarvis et al. (2023), respectively. 

317 In this paper, we use these two model applications to demonstrate the effects of model 

318 structure on simulation outcomes. Specifically, we focus on spatially and temporally 

319 integrated model outcomes to best describe the differences produced by the various model 

switch options provided in CGEM. The two model applciations are described briefly below to 

321 establish the basis for subsequent analyses. 

322 4.1 Louisiana Continental Shelf 

323 Bottom water hypoxia on the Louisiana continental shelf (LCS) in the northern Gulf of 

324 Mexico (Figure 7) is the second largest area of eutrophication driven marine hypoxia in the 

world (Rabalais et al., 2002). Seasonally recurring hypoxia on the LCS ranged between 40 to 

326 22,720 km2 during 1985 to 2023 (LUMCON, 2021), and varies interannually with spring 

327 discharge and nutrient concentrations from the Mississippi-Atchafalaya River Basin (MARB) 

328 (Greene, 2009; Turner and Rabalais, 2003). The CGEM model domain on the Louisiana Shelf 

329 extends from east of the Mississippi River Delta (~88.2oW) to west of Atchafalaya Bay 

(~93.2oW) and covers the nearshore coast at depths ≤5 m to depths ≥100 m offshore (Figure 

331 7). CGEM was coupled with a hydrodynamic model, NCOM, which had a horizontal grid 

332 resolution of 2 km x 2 km and included 20 vertical sigma layers from 5-100 m depth and up 

333 to 14 hybrid coordinate layers at depths greater than 100 m. Implementation of CGEM 

334 applied here is the same as described in detail in previous publications (Jarvis et al., 2021; 

Jarvis et al., 2020; Lehrter et al., 2017), and includes three phytoplankton and two 

336 zooplankton functional types, an advanced light attenuation model (Penta et al., 2009; Penta 

337 et al., 2008), and Droop cell-quota nutrient kinetics (Droop, 1973). 
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365

338 4.2 Weeks Bay 

339 Weeks Bay is a hypereutrophic sub-estuary of Mobile Bay (Figure 7). The shallow (mean 

depth ~1.4 m) microtidal (tide range ~0.4 m) estuary has a high ratio of watershed area to 

341 estuary surface area (~71), resulting in extremely high gross primary production rates 

y-1 
342 exceeding 825 g carbon m-2 (Caffrey et al., 2014; Lehrter, 2008). Weeks Bay has a 

343 multi-decadal record of DO and other water quality monitoring due to the establishment of the 

344 Weeks Bay National Estuarine Research Reserve (NERRS) in 1986, making it an excellent 

test case for modeling with an abundant dataset available for calibration. CGEM in Weeks 

346 Bay was coupled with an EFDC hydrodynamic model to evaluate fine-scale diel-cycling 

347 vertical DO gradients (Jarvis et al., 2023). That model is applied here to evaluate the effects of 

348 alternate formulations in CGEM on simulation results. 

349 5 Effects of model structure on simulation outcomes 

To compare the effects of model structure on simulations in contrasting coastal ecosystems we 

351 applied the Louisiana Shelf and Weeks Bay models using the same parameterization and setup 

352 as described in previous publications (Jarvis et al., 2023; Jarvis et al., 2020); Lehrter et al. 

353 (2017). In this paper, we address three parameter sets that control important processes in 

354 coastal ecosystems and which have a significant effect on model outcomes (Beck et al., 2017). 

These parameter sets involve phytoplankton temperature response kinetics, benthic processes, 

356 and light attenuation. We focus on simulation of phytoplankton concentration and growth, 

357 total respiration, and bottom water DO, as they are critical eutrophication response pathways 

358 and water quality criteria parameters applied to eutrophication studies in coastal and marine 

359 ecosystems. 

5.1 Phytoplankton temperature response and application to future climate modeling 

361 Phytoplankton play a critical role in the marine biogeochemical cycle and are the primary 

362 pathway for converting nutrients to organic matter in surface waters. However, there is little 

363 agreement regarding the necessary complexity for modeling phytoplankton dynamics in 

364 coastal and marine ecosystems (Priyadarshi et al., 2022). Simple 

nutrient-phytoplankton-zooplankton-detritus (NPZD) modeling approaches have been used 

13 
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375

380

385

390

366 for many decades but may overly simplify the phytoplankton pool as a single functional type 

367 (Anderson, 2005). Conversely, more complex modeling approaches that incorporate multiple 

368 phytoplankton functional types (i.e., diatoms, dinoflagellates, cyanobacteria, etc.) face 

369 considerable challenges in parameterizing the various functional forms often with minimal 

data (Flynn, 2003; Flynn, 2005). 

371 Complexity in simulating phytoplankton dynamics extends beyond selection of functional 

372 forms, with numerous formulation options available to modelers for simulating important 

373 growth and nutrient uptake dynamics. CGEM includes formulation switches for variable 

374 growth rates, temperature response, photosynthesis-irradiance relationships, 

chlorophyll:carbon ratio, internal cell quota nutrient dependent growth, and nutrient uptake 

376 kinetics (Table 1). Here we compare simulation outcomes with three phytoplankton 

377 temperature dependent growth formulations, including sigmoidal, optimum threshold, and 

378 Arrhenius functions. 

379 5.1.1 Louisiana Shelf: Primary Production, Respiration, and Hypoxia 

Application of different temperature growth response curves (section 2.2 and Figure 3) alters 

381 the timing and magnitude of phytoplankton growth during the spring-summer period during 

382 which phytoplankton growth rates are highest. On the LCS daily depth integrated primary 

383 production and total respiration rates using an Arrhenius growth curve were 17% to 33% 

384 higher than other growth curve formulations during the peak of summer production (Figure 

8). By comparison a sigmoidal growth curve produced lower total primary production and 

386 respiration throughout the spring-summer-fall. The optimum threshold growth curve produced 

387 the greatest spring growth of all formulations beginning April through June as waters warmed 

388 above 27oC, followed by a 52% and 37% decrease in production and respiration, respectively, 

389 as water temperatures increased above the set optimum threshold temperature (Table 5). 

These growth formulations also significantly affect estimates of hypoxic area, the principal 

391 endpoint of management concern on the Louisiana Shelf and the sole metric used to guide 

392 management decisions. Differences in hypoxic area obtained using the three temperature 

393 response curves varied by 8,952 km2 (48%) at the beginning of July (Figure 8). Generally, 

394 selection of phytoplankton temperature dependent growth formulations can have important 
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410

415

420

395 consequences for simulating the timing and magnitude of phytoplankton growth and 

396 community composition shifts in response to changes in future warming (Ralston and Moore, 

397 2020). 

398 5.1.2 Weeks Bay: PFT Response to Climate Forcing 

399 Mean surface temperatures in coastal ecosystems are steadily rising (IPCC, 2014) and are 

forecast to produce significant shifts in marine and coastal phytoplankton community 

401 composition (Henson et al., 2021). Differences in optimum growth temperatures for 

402 phytoplankton functional types commonly result in predictable shifts in phytoplankton 

403 assemblages. For example, diatoms and green algae that are abundant in lower temperatures 

404 are typically dominated by dinoflagellates and cyanobacteria as surface water temperatures 

warm (Paerl and Huisman, 2008). Modelers can reproduce these temperature driven dynamics 

406 by selecting and parameterizing the appropriate temperature growth response curves to mimic 

407 observed conditions. 

408 In Weeks Bay we applied the optimum threshold temperature growth curve to induce 

409 phytoplankton community shifts, as temperature is the dominant forcing mechanism for 

phytoplankton community assemblages in the estuary (Novoveska and MacIntyre, 2019). This 

411 formulation was ideal in this situation because of the importance of temperature as a driver in 

412 phytoplankton community composition shifts, as opposed to species advantages in prey 

413 avoidance or nutrient uptake and utilization. Simulations produced three distinct shifts in 

414 phytoplankton assemblages (Figure 9) driven by the parameterized optimal temperature 

thresholds (diatoms: 21oC; dinoflagellates: 25oC, and cyanobacteria: 28oC). Similar shifts in 

416 phytoplankton community structure were not observed using the sigmoidal or Arrhenius 

417 curves, although similar results may be obtained through significant additional effort in 

418 parameterizing and calibrating nutrient uptake kinetics and zooplankton grazing and mortality 

419 parameters when these temperature growth response curve switches are applied. 

The timing and magnitude of peak spring-summer phytoplankton assemblages varied in 

421 response to a uniform increase in surface water temperature of 1.5oC applied to evaluate 

422 climate change effects (Lehrter et al., 2017). Early spring diatom assemblages were 18% 

423 lower under future warming conditions with an earlier April peak in concentrations as well as 
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450

424 earlier dissipation in May (Figure 9). Dinoflagellates increased ~42% during an earlier May 

peak that quickly dissipated by June. Cyanobacteria also responded to warming with earlier 

426 summer growth, transitioning peak concentrations ~4 weeks earlier than under current 

427 conditions. Higher water temperatures throughout summer dampened cyanobacteria 

428 concentrations an average of 33% between June through September (Figure 9). 

429 This case study of simulated phytoplankton assemblages in Weeks Bay demonstrates the 

utility of multiple functional types in CGEM for simulation of real-world conditions. Data 

431 describing phytoplankton communities are becoming more common as gene sequencing 

432 techniques continue to improve and become more cost efficient (Bourlat et al., 2013), and 

433 thus more effective data driven parameterization may be utilized for defining functional forms 

434 in complex simulation models. This is becoming increasingly important for evaluating climate 

change effects, as increasing water temperatures may alter phytoplankton assemblages, 

436 including the timing and collapse of bloom events (Lake and Brush, 2015; Nixon, 1995). 

437 Given a choice among temperature growth response relationships, users must carefully 

438 consider the best formulation for their objectives. For example, while application of optimum 

439 temperature thresholds may produce the desired community composition shifts, inadequate 

parameterization may result in rapid decline in phytoplankton communities once optimum 

441 temperatures are exceeded. In this instance modelers may need to re-parameterize the model 

442 to adjust for higher temperature effects or consider application of a sigmoidal approach where 

443 growth remains high at elevated temperatures, simplifying parameterization to adjusting for 

444 the optimum temperature only. In these instances, we strongly recommend that users review 

functional forms of the model formulations that are applied to guide decision making and best 

446 practices for site specific calibration. 

447 5.2 Benthic modeling and its impact on water column processes 

448 In shallow coastal ecosystems, dissolved oxygen and nutrient fluxes at the sediment-water 

449 interface are an important factor regulating biogeochemical feedback between the water 

column and sediments. Sediments can affect water column biogeochemistry over long 

451 timescales as either a source and/or sink of nutrients and organic matter (Toro et al., 1990) and 

452 can also influence bottom water conditions over short timescales (Albert et al., 2021; De 
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465
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453 Borger et al., 2021; Jarvis et al., 2023). Simulation of sediment processes in water quality 

454 models varies greatly, with approaches including parameterized aerobic decay with advection 

and mixing (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017), instant 

456 remineralization (Fennel and Laurent, 2018; Jarvis et al., 2023; Laurent et al., 2018; Pauer et 

457 al., 2020), sediment diagenesis (Xia and Jiang, 2016; Zhang et al., 2015), and parameterized 

458 sediment oxygen consumption (Di Toro, 1984; Hu and Wang, 2018; Terry et al., 2017). 

459 When sediment switches are turned off in CGEM, organic matter (OM) that sinks to the 

bottom model layer is subjected to remineralization (Appendix E). CGEM also includes 

461 several sediment formulation options: zero-order sediment oxygen consumption (SOC), 

462 parameterized sediment nutrient fluxes (NutFlux), oxygen production via microphytobenthos 

463 (MPB), instant remineralization of OM (IR), and a sediment diagenesis model (SDM) based 

464 on Eldridge and Morse (2008). 

5.2.1 Louisiana Continental Shelf: Effects of Simulated Sediment Processes on Bottom 

466 DO 

467 Prior modeling studies have demonstrated the outsized importance of diagenetic processes on 

468 development of bottom-water hypoxia on the Louisiana Shelf (Fennel et al., 2013; Fennel and 

469 Testa, 2019; McCarthy et al., 2013). Efforts to improve representation of diagenetic processes 

in biogeochemical models for the LCS have focused on parameterization of sediment-water 

471 fluxes (Laurent et al., 2016; Lehrter et al., 2012), as well as the effects of sediment 

472 resuspension (Moriarty et al., 2018) and sub-pycnocline primary production (Lehrter et al., 

473 2009; Yu et al., 2015) on bottom water oxygen. 

474 The CGEM parameterization published on the LCS (described here as the "Base" model) does 

not impose any sediment switch formulations, thus OM settled to the bottom is mixed and 

476 advected while undergoing aerobic decay (Jarvis et al., 2020). This formulation resulted in 

477 higher nearshore DO and hypoxic (DO ≤ 2 mg L-1) bottom water at mid-depths across the 

478 shelf (Figure 10a). The SOC switch imposes a draw down of oxygen from the sediment that 

479 varies non-linearly with temperature and DO, such that the magnitude of sediment oxygen 

consumption increases when DO and temperature increase. In the LCS the largest decrease in 
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mean summertime bottom DO due to SOC was observed at nearshore locations with elevated 

DO concentrations in the Base model (Figure 10b). 

When the NutFlux switch is activated, nutrients are exchanged at the sediment-water interface 

based on observed relationships (Lehrter et al., 2012). This switch compromises strict model 

mass balance, however mass balance should be approximately correct if the empirical 

relationships included in the model reflect local, site-specific conditions. In northern GOM, 

changes in bottom DO between Base and NutFlux model runs were attributable to changes in 

water column nutrient concentrations. The empirically derived NO3 flux at the sediment-water 

interface varied linearly with DO, such that the largest increases in water column NO3 

corresponded to locations with elevated bottom DO in the Base model. Changes in nutrient 

concentrations altered water column respiration and primary production, the balance of which 

determined relative shifts in bottom DO between NutFlux and Base runs (Figure 10c). 

The MPB switch simulates microphytobenthos production which is controlled by irradiance at 

the sediment-water interface. There are several empirical models relating microphytobenthos 

production to light availability included in CGEM. For most of the model domain, MPB is 

zero due to insufficient irradiance at the bottom model layer. The greatest increase in bottom 

DO associated with MPB production was observed at locations where more than 10% of 

surface irradiance reached the bottom (Figure 10d). 

When the IR switch is turned on, OM is instantaneously remineralized when it sinks to the 

bottom layer. The IR switch preserves mass balance at the expense of realistic lag times 

associated with sediment diagenesis. In northern GOM, IR increased DO in locations with 

low bottom DO in the Base model (Figure 10e). These locations generally had elevated OM 

in the Base model, which increased water column nutrient concentrations when IR was 

activated. The net effect of decreased OM and increased nutrients was increased bottom DO 

due to decreased respiration and/or increased production. On the other hand, IR decreased DO 

concentrations in areas with high DO. In the Base model these areas had lower OM and 

turning on IR decreased primary production resulting in lower DO. 

The sediment diagenesis switch employs a highly vertically resolved (> 400 layers) sediment 

model that provides a realistic mass balance accounting of sediment fluxes and OM 
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535

remineralization (Eldridge and Morse, 2008). In northern GOM, SDM slightly decreased 

511 nearshore bottom DO, but overall resulted in little change (Figure 10F). Changes in bottom 

512 DO are attributable to changes in fluxes at the sediment-water interface. The magnitude of the 

513 oxygen flux was greater in the SDM model, implying greater sediment oxygen demand in the 

514 SDM model compared to the Base model. 

5.2.2 Weeks Bay: Sediment Effects on Diel-Cycling DO 

516 In shallow ecosystems sediment processes often play an important role in water column 

517 conditions. In addition to impacting smaller water volumes, generally higher irradiance at the 

518 sediment-water interface can result in enhanced algal growth at depth and the need to account 

519 for microphytobenthic production in model simulations. Weeks Bay’s hypereutrophic state 

results in enhanced OM sedimentation, resulting in elevated SOD rates that yield strong 

521 vertical gradients in observed bottom DO (Jarvis et al., 2023). Simulation of strong diel DO 

522 gradients in shallow ecosystems such as Weeks Bay are challenging, as bottom layer diel DO 

523 dynamics range from anoxia in the early morning hours to supersaturation during the day 

524 (Figure 11). The CGEM model in Weeks Bay successfully simulated these dynamics using an 

instant remineralization approach that rapidly consumed OM settled from the water column as 

526 well as incorporation of microphytobenthos for benthic DO production (Jarvis et al., 2023). 

527 Here we apply alternative sediment formulations to evaluate their effects on bottom water 

528 DO. None of the formulations applied on their own matched the range of observed daily DO 

529 gradients. Both instant remineralization and parameterized SOC resulted in dampened oxygen 

concentrations throughout the diel cycle, ranging between 60-110 and 50-90 mmol m-3 , 

531 respectively (Figure 11). Application of microphytobenthic production resulted in higher DO 

532 concentrations that never reached hypoxic conditions, but matched observed daytime peak 

533 DO concentrations (Figure 11). DO simulation using the sediment diagenesis model closely 

534 matched mean diel DO gradients from the Base model, but still failed to match the lowest and 

highest DO observations. The diagenesis model did, however, produce the greatest diel DO 

536 gradients of any single model switch, validating the approach for a more realistic 

537 approximation of sediment processes that more directly respond to water column conditions 

538 and OM production. This was identified as a key shortcoming of the modeling approach from 
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539 (Jarvis et al., 2023), as a well calibrated sediment diagenesis model and more explicit benthic 

540 algae parameterization is needed to improve simulation of benthic-pelagic coupling over long 

541 time periods and in response to changing environmental forcing conditions and management 

542 actions. 

543 5.3 Light attenuation effects on phytoplankton production 

544 Temporal and spatial variability in optical properties of water is a fundamental control of 

545 biogeochemical processes in waterbodies (Dickey and Falkowski, 2002). Light attenuation 

546 through the water column is a critical factor affecting phytoplankton growth (Cole and 

547 Cloern, 1984; Kromkamp et al., 1995), distribution of heat and stratification (Hocking and 

548 Straškraba, 1999; Morel, 1988), and photochemical production and destruction of chemical 

549 compounds (Dickey et al., 2006). Given the unique importance of light on phytoplankton 

550 growth and survival, it is important for ecosystem models to accurately represent light 

551 distribution through the water column. CGEM provides users the option between a complex 

552 (IOP) and a simple Apparent Optical Properties (AOP) light attenuation scheme, described in 

553 detail in Section 2.1 and Supplemental B (optical equations). Here we present a comparison of 

554 simulation outcomes using both light attenuation models in different ecosystems, emphasizing 

555 light penetration and its impact on phytoplankton production and hypoxia. 

556 5.3.1 Louisiana Continental Shelf: Light Attenuation Effects of Primary Production 

557 and Bottom Chlorophyll 

558 A twin experiment was run for the LCS domain with all switches, inputs, and parameters 

559 identical except for the light model used. With the initial conditions of chlorophyll, CDOM, 

560 and SPM, the IOP light scheme allowed deeper light penetration into the water compared to 

561 the AOP scheme, reaching the bottom layer over most of the shelf (Figure 12A and 12C). 

562 Differences in light attenuation resulted in higher bottom chlorophyll that varied spatially 

563 across the nearshore shelf (Figure 12B), patterns of which may also result from nutrient 

564 limitation or grazing pressure variances due to the different evolutions of the two model runs. 

565 The IOP model run, when integrated over the entire bottom layer, maintained deeper light 

566 penetration throughout the 426 day simulation (Figure 12B), further resulting in higher 
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567 bottom chlorophyll concentrations. This light field supported higher vertically integrated 

568 primary production on the shelf for most of the yearly cycle, the exception being Nov-Dec 

569 when the two model primary productivities were similar in magnitude (Figure 12D). The IOP 

model produced a deeper euphotic zone (58m) compared to the AOP model (16m) as defined 

571 by the depth of the 1% light level (Figure 12E). 

572 Differences in primary production driven by the different light attenuation models further 

573 impact simulation of hypoxia. Mechanistic models applied to the Louisiana Shelf demonstrate 

574 high sensitivty in hypoxia outcomes based on the timing and location of phytoplankton 

production on the shelf (Jarvis et al., 2022; Pauer et al., 2020). In our simulations we observed 

576 a ~6% decrease in hypoxic area and a delay of nearly 20 days in hypoxia formation during 

577 mid-spring using the AOP model compared to IOP simulations (data not shown). Given the 

578 differences in light penetration, primary production, and hypoxia oberved in our simulations 

579 modelers should more carefully evaluate how light model selection may impact their 

modeling objectives. Failure to adequately simulate light dynamics can result in a cascade of 

581 challenges due to differences in the simulated timing and magnitude of phytoplankton 

582 production at depth. 

583 5.3.2 Weeks Bay: Light Attenuation Effects on Primary Production and Benthic 

584 Production 

Light attenuation effects in coastal ecosystems are especially important in shallow 

586 waterbodies where benthic primary producers contribute a greater percentage of total primary 

587 production. In Weeks Bay (mean depth <1.4 m) application of the IOP light model resulted in 

588 an ~11% increase in bottom light availability compared to the AOP model (Figure 13A). 

589 Reduced light availability in the AOP model resulted in a two-fold increase in phytoplankton 

light limitation and ~14% decrease in bottom primary production in the bottom layer of the 

591 model April through September (Figure 13B). Daily benthic production in the AOP model 

592 never exceeded 10 mmol m-2 d-1 during this period, whereas the IOP model yielded benthic 

593 production rates >40 mmol m-2 d-1 when bottom irradiance was greatest (Figure 13D). These 

594 benthic production rates result in a 50 mmol m-3 difference in mean bottom layer oxygen 

concentrations (Figure 13C). 
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596 Measured benthic production rates in Weeks Bay constitute between 21-27% of water column 

597 production (Caffrey et al., 2014; Schreiber and Pennock, 1995), making benthic algal 

598 production an important rate process that simulation models must include to adequately 

599 reproduce bottom layer oxygen dynamics (Jarvis et al., 2023). In these simulations the IOP 

formulation yields as much as a 4-fold increase in benthic oxygen production compared to the 

601 AOP model. Models that include simple attenuation formulations may therefore struggle to 

602 match oxygen variability observed in systems similar to Weeks Bay. Modelers must also 

603 consider the spatiotemporally dynamic nature of variables controlling light attenuation (i.e., 

604 suspended sediment, chlorophyll, CDOM, salinity, etc.) when selecting and evaluating a light 

model (Ganju et al., 2014). 

606 6 Eutrophication Modeling in Coastal and Freshwater Ecosystems 

607 Water quality modeling in coastal and freshwater ecosystems commonly utilize a range of 

608 disparate models established for site specific ecosystem applications or management needs 

609 (Ejigu, 2021; Gao and Li, 2015; Mateus et al., 2018). One reason for dissimilar modeling 

approaches in aquatic ecosystems is the range of complex ecosystem processes that challenge 

611 a given model’s ability to be generalizable and transferrable among seemingly similar 

612 ecosystems (Beck et al., 2017; Ganju et al., 2016). CGEM’s structural flexibility addresses 

613 these concerns by providing users with options to select appropriate biogeochemical 

614 formulations to suit site specific conditions and to better evaluate how different model 

structures affect simulation results. For example, a combined instant remineralization and 

616 benthic algae simulation approach is proved necessary to resolve highly dynamic diel oxygen 

617 conditions in Weeks Bay. However, neither approach seems suitable for the Louisiana Shelf, 

618 as microphytobenthos production had minimal impact on nearshore DO (Figure 10d) and 

619 instant remineralization resulted in displacement of hypoxia from mid-depths (Figure 10e) 

where it is commonly observed (Jarvis et al., 2022). Structural flexibility is an important 

621 consideration for implementing effective models in support of management action and policy 

622 development, as modelers must clearly convey model assumptions and uncertainties to 

623 decision makers. Water quality models incorporating different structural equations are 

624 uncommon but not unheard of. For example, USEPA's Water Quality Analysis Simulation 
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Program (WASP; (Wool et al., 2020)) has been recently updated to provide users the option of 

implementing phytoplankton temperature growth response curves comparable to the 

Arrhenius (Geider et al., 1997) and optimum threshold temperature growth (Cerco, 2007) 

response curves provided in CGEM. 

By offering multiple formulation options CGEM further allows for comparison of model 

structural uncertainty with parameter and observational uncertainty. As an example, we 

demonstrate how parameter sensitivity of bottom water DO at a frequently monitored site on 

the Louisiana Shelf (LUMCON Station C6; LUMCON, 2021) varies across model 

formulations of phytoplankton temperature growth response (Figure 14). Differences in 

bottom water DO due to structural variations (i.e. selection of temperature response 

formulations) are relatively small compared to parameter variability and follow similar 

patterns throughout the timeseries (Figure 14J). The effect of phytoplankton temperature 

response is particularly apparent in the shift between higher bottom water DO in early 

summer (May-July) and late summer (August-October) using the sigmoidal and optimum 

temperature formulations, respectively, mirroring shifts in primary production driven by the 

different formulations (Figure 8). 

In comparison, parameter sensitivities vary among the different formulations and in response 

to warming summer temperatures. In the case of reference temperature (Tref), the optimum 

temperature threshold formula (T2) is the only formulation demonstrating sensitivity to a 2oC 

change in reference temperature (Figure 14A). Further, the optimum temperature threshold 

formula is most sensitive to parameter uncertainty for both the maximum growth rate and 

mortality coefficient, particularly in late summer when water temperatures are likely to 

exceed the reference temperature (Tref). Conversely, the Arrhenius (T3) formulation’s 

exponential response rate at higher temperatures results in reduced parameter sensitivity 

beginning mid-late summer when waters are warmest (Figure 14I). While all of these models 

reasonably reproduce observed seasonal oxygen dynamics, the varying sensitivity to model 

parameterization has important implications for model outcomes, particularly when 

evaluating model transferability and for conveying estimates of uncertainty to decision 

makers. Further, model structural uncertainty plays an important role in parameter and 

predictive uncertainty (Højberg and Refsgaard, 2005; Moges et al., 2021; Rojas et al., 2008), 
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however studies evaluating the impact of structural uncertainty in highly parameterized water 

quality models is lacking. CGEM addresses this issue by providing modelers with a highly 

flexible modeling framework uniquely suited to address the combined effects of structural and 

parameter uncertainty. 

As policy tools, mechanistic models remain an important means for addressing eutrophication 

and hypoxia issues in freshwater and coastal ecosystems. However, existing models face new 

challenges in the face of global climate change and emerging modeling needs such as harmful 

algal blooms (HABs) and coastal acidification. To date HABs modeling has progressed 

primarily through numerous regional applications, with successful parameterization focusing 

on nutrient loading, light, temperature, and pH (Flynn and McGillicuddy, 2018). As nascent 

HABs modeling techniques continue to advance, new applications of mechanistic models are 

needed to help inform multiple stressors on HAB and non-HAB species (Anderson et al., 

2013; Wells et al., 2015), with selection of biological model formulations an important factor 

in determining model outcomes (Ralston and Moore, 2020). CGEM includes unlimited 

phytoplankton functional types and numerous nutrient, light, and growth kinetic formulation 

options to aid in parameterization of HAB and non HAB species. CGEM also includes 

zooplankton growth and edibility kinetics that are important but complex factors in dictating 

predator-prey interaction that change in response to warming temperatures and impact bloom 

development (Wells et al., 2015). As our understanding of model kinetics and rate processes 

improve based on progress in field and laboratory studies it is important that modelers have 

the capacity to actively update source code to improve and test new model formulations, as is 

offered through CGEM. 

Eutrophication enhanced acidification is another emerging issue with a small but growing 

number of mechanistic models applied to evaluate carbonate and acidification dynamics in 

coastal and estuarine ecosystems (Hauri et al., 2013; Laurent et al., 2017; Pacella et al., 2018; 

Shen et al., 2019). Evaluating acidification and oxygen dynamics is especially important for 

protection of aquatic life, as the cumulative effects of reduced pH and low DO threaten 

marine life through increased mortality, altered food web structure, and changes to 

biogeochemical cycling and ecosystem function (Gobler and Baumann, 2016). CGEM 

includes simulation allowing for calculation of pH, partial pressure of carbon dioxide (pCO2), 
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dissolved inorganic carbon (DIC), and total carbonate alkalinity (TA), providing a 

686 mechanistic link between nutrient loads and organic matter production and respiration that 

687 directly affect DO and pH conditions. CGEM may therefore serve as a valuable tool for 

688 informing acidification and DO conditions as well as forecasting ecosystem response to 

689 proposed management actions and reduced nutrient loads. 

7 Conclusions 

691 In this paper we fully describe the formulations, state variables, and parameter sets within 

692 CGEM, a complex biogeochemical model for simulating lower trophic levels in aquatic 

693 ecosystems. As an open-source model CGEM provides users the flexibility to modify the 

694 source code and test new model formulations against existing methodologies. CGEM enables 

easier model setup and facilitates user development of more advanced model formulations. 

696 CGEM’s flexibility to adapt model formulations also allows for easier assessment of model 

697 structural uncertainty, which can have a significant effect on simulation outcomes (Beck et al., 

698 2017; Jarvis et al., 2022). This is an important feature in the state-of-the-science of water 

699 quality modeling. 

CGEM has been successfully implemented in coastal marine environments of varying scales 

701 using different hydrodynamic models, summarized here in two case studies of the Louisiana 

702 Continental Shelf and Weeks Bay, AL. These case studies highlight CGEM’s adaptability in 

703 simulating seasonal versus hourly dynamics in ecosystems ranging from shallow 

704 hypereutrophic estuaries to the nearshore coastal ocean. Results further underscore how the 

different formulation options included in CGEM may be utilized to address varying 

706 environmental conditions and simulation goals. It is important that modelers understand how 

707 a given formulation will impact simulations, and we therefore provide visual illustration of 

708 functional forms of the various model formulations available in CGEM (Figures 2 through 6). 

709 To facilitate future CGEM implementation we are working to expand CGEM’s hydrodynamic 

model compatibility beyond the existing EFDC and NCOM model linkages, including future 

711 tools for linking CGEM to the Finite Volume Community Ocean Model (FVCOM; (Chen et 

712 al., 2006; Chen et al., 2003)) and Semi-implicit Cross-scale Hydroscience Integrated System 

713 Model (SCHISM; (Zhang and Baptista, 2008)). We are also integrating CGEM with the U.S. 
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740

714 Navy’s Hybrid Coordinate Ocean Model (HYCOM), which when complete will allow for 

CGEM implementation using publicly available hydrodynamic model output for the coastal 

716 ocean across the globe. As part of these updates CGEM is being applied to address large scale 

717 climate change and hypoxia issues in the northern Gulf of Mexico, including new forcings for 

718 atmospheric-nitrogen deposition from the Community Multiscale Air Quality Model (CMAQ) 

719 and watershed nutrient loads from the Soil and Water Assessment Tool (SWAT). Finally, we 

are investigating options for incorporating CGEM within the Framework for Aquatic 

721 Biogeochemical Models (FABM) to facilitate linkage with a larger number of hydrodynamic 

722 models (Bruggeman and Bolding, 2014). 

723 Future CGEM releases will continue to add additional model flexibility to simulate ecosystem 

724 processes more realistically. For example, fixed carbon to chlorophyll ratios implemented on 

the Louisiana Shelf and Weeks Bay may be better represented by a more advanced calculation 

726 of variable carbon to chlorophyll ratios in response to light and temperature (Cloern et al., 

727 1995; Geider, 1987). Additional model flexibility will allow for formulation options to vary 

728 among phytoplankton functional types to better match simulated phytoplankton growth with 

729 biological adaptations. CGEM will also be updated to simulate important carbonate variables 

and ions (such as manganese, calcium, and nickel) needed to evaluate emerging climate 

731 change mitigation techniques such as marine carbon dioxide removal and ocean alkalinity 

732 enhancement. Finally, we aim to improve CGEM’s existing sediment diagenesis application 

733 by facilitating easier parameterization and analysis of diagenesis routines in future releases of 

734 CGEM. 

With CGEM’s public release we anticipate an expanded user base that will facilitate CGEM 

736 advancement as a state-of-the art model. User feedback, including suggested code updates and 

737 new formulations, are encouraged and facilitated via the CGEM GitHub repository. 

738 Software and Data Availability 

739 Name of software: Coastal Generalized Ecosystem Model (Version 1.0). 

Developers: Brandon M. Jarvis, John C. Lehrter, James Pauer, Wilson Melendez, Lisa Lowe, 

741 Cody Simmons, Bradley Penta, Dong S. Ko 

742 First year available: September 29, 2023 (Version 1.0) 
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Hardware requirement: PC 

Operating System: Linux 

Program language: FORTRAN and C++ 

Program size: 2.38 MB. 

Availability: https://www.epa.gov/hydrowq/coastal-generalized-ecosystem-model-cgem 

License: free 
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1084 Table 1. CGEM representations of biogeochemical processes. Multiple cases per process are 
1085 provided for evaluating uncertainty related to equations used. 

  Process   Functional  Forms 
  Irradiance   Vertical   attenuation   of   photosynthetically   available 

  water-column  represented  by 
  (E1)  inherent  optical  properties  (Penta  et  al  2009) 
  (E2)  apparent  optical  properties  (Eldridge  and  Roelke 

  radiation 

 2010) 

  (PAR)   through   the 

  Growth   Phytoplankton  specific  growth  rate  calculated  using 
  (G1)  minimum  of  light  and  nutrient  dependent  growth 
  (G2)   product   of   the   light   dependent   growth   rate   and 
  dependent  growth  rates 
  (G3)   umax   in  the  light  dependent  growth  equation   is  a 

 rates 
  the   minimum   of  the  

 function  of  nutrients 

  nutrient 

  Temperature   Temperature  dependent 
  (T1)  sigmoidal  function 
  (T2)  optimum  threshold 
  (T3)  Arrhenius  function 

 growth  represented  as 
 (Eldridge  and  Roelke 

 temperature  function 
 (Geider  et  al.  1997) 

 2010) 
 (Cerco  and  Noel  2004) 

  Photosynthesis   Phytoplankton   light   dependent   growth   represented 
  function 

 by    photosynthesis-irradiance 

  (P1)  with  photo-inhibition  (Platt  et  al.  1980) 
  (P2)  without  photo-inhibition  (Webb  et  al.  1974) 
  (P3)  without  photo-inhibition  and  depends  on  nutrient  cell  quota  (Flynn  2003) 

  Chl:C   Chlorophyll:Carbon  (chl:C)  calculated  using 
  (C1)  fixed  chl:C  based  on  observed   chlorophyll   a   versus 
  (C2)  dynamic  chl:C  per  cell  based  on  light  and  nutrients 

 phytoplankton 
 (Cloern  1995) 

 abundance 

  Quota   Phytoplankton   nutrient 
  where  for 

  dependent   growth   represented  by    an   internal   cell   quota 

  (Q1)  internal  cell  quota 
  (Q2)  internal  cell  quota 
  (Q3)  internal  cell  quota 

 is  a  function 
 is  a  function 
 is  a  function 

 of  Qmin  (Droop  1973) 
 of  Qmin  and  Qmax  (Nyholm  1978) 
 of  Qmin,  Qmax,  and    KQ   (Flynn  2003) 

  Uptake   Phytoplankton  nutrient  uptake  rate  represented  by 
  (U1)  Michaelis-Menten  kinetics  (Dugdale  and  Goering  1967) 
  (U2)  nutrient  cell  quota  model  (Lehman  et  al.  1975;  Geider  et  al. 
  (U3)  nutrient  cell  quota  model  with  surge  uptake  (Roelke  2000) 

 1998) 

  Fluxes   Air-sea  and  sediment  fluxes  may  be  turned  on  (1)  or  off  (0) 
  Air-sea 
  (1  or  0)  air-sea    O2    flux  (Eldridge  and  Roelke  2010) 
  (1  or  0)  air-sea    CO2   flux  (Orr  and  Epitalon  2015) 
  Sediment 
  (1  or  0)  sediment    O2   consumption  (Murrell  and   Lehrter  2010;  Lehrter  et  al.  2012) 
  (1,2,3   or   0)   microphytobenthos   production   (1.   Gattuso   et   al.   2006;   2.   Jahnke  et    al. 
  2008;  3.  Lehrter  et  al.  2014) 
  (1  or 0)   sediment  nutrient  fluxes  (Lehrter  et  al.  2012) 
  (1  or 0)   instant  remineralization  of  organic  matter  in  bottom  layer 
  (1  or 0)   sediment  diagenesis  model  (Eldridge  and  Morse  2008) 

1086 

1087 Table 2. State variables. Number of possible functional types for phytoplankton (i) and 
1088 zooplankton (j) are noted. 
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Symbol State Variable Units 

A phytoplankton abundance (i = 1:6) cells m-3 

Qn cell nitrogen quota (i = 1:6) mmol N cell-1 

Qp cell phosphorus quota (i = 1:6) mmol P cell-1 

Z zooplankton (j = 1:2) individuals m-3 

OM1_A particulate organic matter from phytoplankton mmol m-3 

OM1_Z particulate organic matter from zooplankton fecal mmol m-3 

pellets 
OM1_R particulate organic matter from rivers mmol m-3 

OM1_BC particulate organic matter from lateral boundaries mmol m-3 

OM2_A dissolved organic matter from phytoplankton mmol m-3 

OM2_Z dissolved organic matter from zooplankton mmol m-3 

OM2_R dissolved organic matter from rivers mmol m-3 

OM2_BC dissolved organic matter from lateral boundaries mmol m-3 

CDOM colored dissolved organic matter ppb 
NH4 ammonium mmol m-3 

PO4 phosphate mmol m-3 

Si silica mmol m-3 

NO3 nitrate mmol m-3 

O2 oxygen mmol m-3 

DIC dissolved inorganic carbon mmol m-3 

Alk alkalinity mmol m-3 

1089 
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1090 Table 3. Optical parameters. 

Symbol Parameter Unit Value 
IOP light attenuation scheme (E1) 

chi0, chi1, chi2 coefficients dimensionless [-0.057, 0.482, 4.221] 

coefficients 

zeta0, zeta1, zeta2 dimensionless [0.183, 0.702, -2.567] 

coefficients 

alpha0, alpha1, alpha2 dimensionless [0.090, 1.465, -0.67] 

astar490 Chla specific absorption (490 nm) m-1(mg Chla m-3)-1 0.020 

aw490 water absorption (490 nm) m-1 0.005 

astarOMA OM1_A specific absorption (490 nm) m-1(g OM1_A m-3)-1 0.1 

astarOMZ OM1_Z specific absorption (490 nm) m-1(g OM1_Z m-3)-1 0.1 

astarOMR OM1_R specific absorption (490 nm) m-1(g OM1_R m-3)-1 0.1 

astarOMBC OM1_BC specific absorption (490 nm) m-1(g OM1_BC m-3)-1 0.1 

CF_SPM percentage of river SPM that is OM1_R % 1.8 

AOP light attenuation scheme 

kw light attenuation due to water m-1 0.146 

kcdom light attenuation due to CDOM m-1 (ppb CDOM)-1 0.001 

kspm light attenuation due to SPM m-1 (g SPM m-3)-1 0.029 

kchla light attenuation due to Chla m-1 (mg Chla m-3)-1 0.024 

1091 
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1092 Table 4. Phytoplankton parameters.  Switches are noted when specific for a parameter. 

Symbol Parameter (switch) Units Value (6 phytoplankton classes) 
volcell biovolume per cell µm3 [33693 2569 77429 513 547 87] 

Qc carbon per cell 10-7 mmol C cell-1 [13.5 1.68 26.5 0.454 0.478 0.108] 

umax maximum growth rate at 20 °C d-1 [0.41 0.76 0.34 1.12 1.10 1.72] 

alpha initial slope of the photosynthesis 
versus irradiance curve 

10-16 cm2 s 
quanta-1d-1 

[0.842 2.18 0.619 3.96 3.87 0.763] 

beta photoinhibition (P1) 10-18 cm2 s [1.1 1.1 1.1 1.1 1.1 1.1] 
quanta-1d-1 

respg growth dependent respiration dimensionless [0.1 0.1 0.1 0.1 0.1 0.1] 

respb basal respiration d-1 [0.02 0.02 0.02 0.02 0.02 0.02] 

QminN minimum N cell-quota 10-9 mmol N cell-1 [6.08 0.632 12.7 0.153 0.162 0.0321] 

QminP minimum P cell-quota 10-10 mmol P cell-1 [6.19 0.510 13.9 0.107 0.114 0.0191] 

QmaxN maximum N cell-quota (Q2) 10-7 mmol N cell-1 [2.04 0.253 4.01 0.0685 0.0722 0.0162] 

QmaxP maximum P cell-quota (Q2) 10-8 mmol P cell-1 [1.28 0.158 2.50 0.0428 0.0451 0.0102] 

Kn half saturation coefficient for N mmol N m-3 [4.51 1.93 5.93 1.13 1.16 0.63] 
uptake 

Kp half saturation coefficient for P mmol P m-3 [2.86 1.00 4.02 0.51 0.53 0.25] 
uptake 

Ksi half saturation coefficient for Si mmol Si m-3 [4.51 1.93 5.93 1.13 1.16 0.63] 
uptake 

KQn Qn constant (Q3) mmol N m-3 [5 5 5 5 5 5] 

KQp Qp constant (Q3) mmol P m-3 [0.2 0.2 0.2 0.2 0.2 0.2] 
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1094 Table 4 continued. Phytoplankton parameters 
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  Symbol 
  nfQs 

  Parameter  (switch) 
  exponent  for  switch  (U2) 

  Units 
  dimensionless 

  Value 
  [1  1  1  1  1  1  ] 

  vmaxN   N-uptake  rate  at  mumax   10-8          mmol  N    cell-1d-1   [4.10  0.497  8.11  0.133  0.140  0.0309] 

  vmaxP   P-uptake  rate  at  mumax   10-8          mmol  P    cell-1d-1   [2.68  0.204  6.15  0.0407  0.0434  0.00691] 

  vmaxSi   Si-uptake  rate  at  mumax   10-8          mmol  si    cell-1d-1   [4.10  0.497  8.11  0.133  0.140  0.0309] 

  aN 

  Athresh 

  coefficient  for  non-limiting 
  nutrient 

  phytoplankton  threshold  for 
  zooplankton  grazing 

  dimensionless 

     m-3   107   cells  

  [1  1  1  1  1  1  ] 

  [7  7  7  7  7  7  ] 

  ediblevector   edibility  of  phytoplankton   dimensionless   [0.25  0.5  0.25  0.5  0.6  1] 

  sink   sinking  rate   d-1   m    [1.49  0.55  2.07  0.29  0.29  0.15] 

  mA   mortality  of  phytoplankton   d-1     [0.041  0.076  0.034  0.11  0.11  0.17] 



                            
                                    
                            
    

  
  

      

          

        

        

        

  

  

  

  

  

  

1096 Table 5. Temperature parameters for phytoplankton and zooplankton (nospA = 3 + nospZ =2) 
1097 as applied in the model or the Louisiana Shelf . T1, T2, and T3 denote the three temperature 
1098 switches available for representing growth rate as a function of temperature. For switch T3, 
1099 Tref is converted to Kelvin in the code. 

Symbo Parameter Unit1 Value 
l 

Tref reference temperature (T1, T2, T3) oC [22 25 28 24 25] 

KTg1 effect of T below optimal (T2) dimensionless [0.01 0.01 0.01 0.035 0.035] 

KTg2 Effect of T above optimal (T2) dimensionless [0.03 0.02 0.02 0.001 0.001] 

Ea_R Arrhenius slope (T3) dimensionless [0.1 0.2 0.15 0.3 0.3] 
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1101 Table 6. Zooplankton parameters. 

Symbol Parameter Units Value 
Zvolcell volume per individual µm3 individual-1 [2.98e+7 6.74e+5] 

ZQc carbon per individual mmol C individual-1 [3.13e-4 7.08e-7] 

ZQn N per individual mmol N individual-1 [6.95e-5 1.57e-7] 

ZQp P per individual mmol P individual-1 [3.77e-6 8.53e-9] 

Zslop sloppy feeding coefficient dimensionless [0.25 0] 

Zeffic assimilation efficiency as a fraction of dimensionless [0.4 0.4] 
ingestion 

ZKa grazing half saturation coefficient µm3 m-3 [1.12e+12 1.12e+12] 

Zrespg growth dependent respiration dimensionless [0.2 0.3] 

Zrespb biomass (basal) dependent respiration d-1 [0.1 0.416] 

Zumax maximum growth rate in terms of volume of µm3 individual-1 d-1 [9.45e+8 2.98e+7] 
prey 

Zm zooplankton mortality constant for quadratic m6 individual-2 d-1 [0.00072 0.00072] 
mortality 
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1103 Table 7. Organic matter parameters. 

Parameter Units Value 

KG1 decay rate of OM1_A and OM1_G y-1 30 

KG2 decay rate of OM2_A and OM2_G y-1 30 

KG1_R decay rate of OM1_R y-1 11 

KG2_R decay rate of OM2_R y-1 3.7 

KG1_BC decay rate of OM1_BC y-1 1 

KG2_BC decay rate of OM2_BC y-1 1 

KG_bot decay rate of OM when instantaneous remineralization is used y-1 92,000 

k11 rate constant for nitrification (mmol m-3)-1 y-1 5 

KO2 half-saturation constant for O2 uptake mmol m-3 10 

KstarO2 inhibition constant for denitrification mmol m-3 10 

KNO3 half-saturation constant for denitrification mmol m-3 10 

stoich_x1R initial C:P stoichiometry of OM1_R mol/mol 51 

stoich_y1R initial N:P stoichiometry of OM1_R mol/mol 4.5 

stoich_x2R initial C:P stoichiometry of OM2_R mol/mol 700 

stoich_y2R initial N:P stoichiometry of OM2_R mol/mol 50 

stoich_x1BC initial C:P stoichiometry of OM1_BC mol/mol 106 

stoich_y1BC initial N:P stoichiometry of OM1_BC mol/mol 16 

stoich_x2BC initial C:P stoichiometry of OM2_BC mol/mol 106 

stoich_y2BC initial N:P stoichiometry of OM2_BC mol/mol 16 

sink_OM1_A sinking rate of OM1_A m d-1 10 

sink_OM2_A sinking rate of OM2_A m d-1 0 

sink_OM1_Z sinking rate of OM1_Z m d-1 10 

sink_OM2_Z sinking rate of OM2_Z m d-1 0 

sink_OM1_R sinking rate of OM1_R m d-1 10 

sink_OM2_R sinking rate of OM2_R m d-1 0 

sink_OM1_BC sinking rate of OM1_BC m d-1 10 

sink_OM2_BC sinking rate of OM2_BC m d-1 0 

sink_CDOM sinking rate of CDOM m d-1 0 

Kcdom_decay decay rate of CDOM d-1 0.01 

K Q10 coefficient such that a 10 °C increase results in a 2-fold increase dimensionless 0.07 
in OM remineralization 
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1105 Table 8. Miscellaneous parameters. 

Symbol Parameter Units Value 
a air-sea exchange transfer non-dimensional 2.85 
b velocity coefficients non-dimensional -9.65 

pCO2 atmospheric carbon dioxide ppm 380 
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1107 Figure 1. CGEM conceptual model representing (a) atmospheric surface boundary forcing 
1108 and air-sea exchange, (b) water-column horizontal exchange with river and ocean 
1109 end-members and mechanisms regulating light, nutrient, phytoplankton functional types, 
1110 zooplankton, and organic carbon dynamics, and (c) sediment processes. 
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1112 Figure 2. Example light attenuation profiles of PAR using model switches for Inherent 
1113 Optical Properties (IOP) and Apparent Optical Properties (AOP)). Optical parameters are set 
1114 to values defined in Table 3 and a uniform Chl depth profile equal to 1 mg m-3 . 
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1116 Figure 3. Examples of growth rate dependence on temperature using three functional forms 
1117 (T1, T2, and T3). Response curves are shown for the six phytoplankton functional types 
1118 A1-A6. (A) Temperature switch (1) uses a sigmoidal form; (B) Temperature switch (2) uses an 
1119 optimum threshold temperature; (C) Temperature switch (3) uses an Arrhenius expression. 
1120 Parameter values for Tref or Topt are shown and other parameters for these functions are 
1121 listed in Table 5. 
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1123 Figure 4. Effects of photoinhibition on growth response curves shown for the six 
1124 phytoplankton functional types A1-A6. 
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1127 Figure 5. Examples of growth rate dependence on nitrogen (Qn) and phosphorus (Qp) 
1128 internal cell quotas using three functional forms (Droop, Nyholm, and Flynn) for each of the 
1129 PFTs (A1-A6). Upper plots show the functional form using quota switch Q1 (equations C11 & 
1130 C12), middle plots show results using switch Q2 (equation C13) and bottom plots show 
1131 results with switch Q3 (equation C14). The parameter values used are shown in Table 4. 
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1133 Figure 6. Examples of growth rate dependence on phytoplankton nutrient uptake using three 
1134 functional forms (Michaelis-Mentin, cell quota, and surge uptake) for each of the PFTs 
1135 (A1-A6). Switch U1 describes N and P uptake dependence as a function of external inorganic 
1136 nutrient concentrations (equation C25). Switches U2 (equation C26) and U3 (equation C27) 
1137 have nutrient uptake dependence as a function of internal cell quota (Qn and Qp). For 
1138 switches U1 and U2, func_Qs ranges from 0 to 1. For switch U3, func_Qs approaches 1 as Q 
1139 approaches Qmax. The parameter values used are shown in Table 4. 
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1141 Figure 7. Louisiana Continental Shelf (A) and Weeks Bay(B) CGEM model domains. 
1142 LUMCON station C6, addressed in Figure 14, is highlighted in yellow. 
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1144 Figure 8. Shelfwide depth integrated primary production (x103 mol d-1; top panel), total 
1145 respiration (x103 mol d-1; middle panel), and bottom water hypoxic area (x103 km2) within the 
1146 CGEM model domain. Three phytoplankton temperature growth response formulations are 
1147 shown. Differences in hypoxic area at the beginning of July and at the start of the 2006 
1148 LUMCON hypoxia research cruise (LUMCON; July 21st 2006) are annotated. The grey circle 
1149 represents the measured hypoxic area estimated by LUMCON and Obenour et al. (2013). 
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1151 Figure 9. (A) Timeseries of phytoplankton functional type response in units of depth 
1152 integrated carbon (mmol) for the central continuous monitoring site in Weeks Bay, AL (Jarvis 
1153 et. al., 2023) using the optimum temperature threshold switch (T2). Timeseries response to an 
1154 increased water temperature of 1.5oC (grey lines) for Diatoms (B; Tref=), Dinoflagellates (C), 
1155 and Cyanobacteria (D). A full list of parameter values are provided in Jarvis et. al. (2023). 
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1157 Figure 10. (a) Mean bottom dissolved oxygen (DO, mg L-1) during July – August 2006 for the 
1158 Base model run. (b – f) Difference in bottom DO between Base model and runs that included 
1159 the following sediment-water exchange switches: sediment oxygen consumption (SOC), 
1160 sediment nutrient flux (NutFlux), microphytobenthos (MPB), instant remineralization (IR), 
1161 and a sediment diagenesis model (SDM). Negative values indicate lower mean DO in 
1162 sediment-water exchange model. 
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1164 Figure 11. Hourly DO for the simulated bottom layer at the Weeks Bay mid-bay station using 
1165 the base model (grey box plots) from Jarvis et. al. (2023) between April-September. Triangles 
1166 represent measured mean bottom DO. Mean hourly DO from different sediment formulations 
1167 during the same period are depicted for instant remineralization (IR; red), microphytobenthos 
1168 production (MPB; green), sediment diagenesis (SDM; orange), and sediment oxygen 
1169 consumption (SOC). 
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1171 Figure 12. Snapshots of percent difference between IOP and AOP for (A) bottom irradiance fraction (2/1/2006) and (B) bottom chlorophyll 
1172 (6/1/2006). Timeseries of domain integrated (C) bottom irradiance and (D) primary production for IOP and AOP model simulations. Snapshot of 
1173 vertical depth profiles (E) for percent irradiance (left) and chlorophyll (right) during mid-summer at a randomly selected point on the western 
1174 shelf (yellow circle depicted in (A); 29.365ºN, 93.492ºW). The grey line depicts the 1% light level of the euphotic zone. 
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1176 Figure 13. (A-C) Mean April-September vertical depth profiles by model sigma layer at the Weeks Bay mid-bay station. (A) Fraction of surface 
1177 irradiance for IOP and AOP light model simulations. (B) Mean (A1:3) phytoplankton light limitation and combined percent difference in primary 
1178 production between IOP and AOP per sigma layer. Black dashed line indicates the mean % surface irradiance measured during mid-morning 
1179 (~10 am) and mid-afternoon (~2 pm) vertical profiles. Grey shading indicates the 25th and 75th percentiles of irradiance observations at depth. (C) 
1180 Mean DO for IOP and AOP simulations. Black dashed line indicates the mean DO from vertical profile measurements collected between 
1181 8/7-8/17 2017 (Jarvis et. al., 2022). Grey shading indicates the 25th and 75th percentiles of DO observations matching sigma layer depths from 
1182 vertical profiles. (D) Daily benthic production or IOP (x-axis) and AOP (y-axis) simulations. 
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1185 Figure 14. Comparison of parameter sensitivities on the Louisiana Shelf at LUMCON Station 
1186 C6 (See Figure 7; LUMCON, 2021) using Optimum Temperature Threshold (T2; left 
1187 column), Sigmoidal (T1; middle column), and Arrhenius (T3; right column) temperature 
1188 growth response formulations. Parameter sensitivites are depicted as grey shaded areas, and 
1189 include a ± 2oC change in phytoplankton reference temperature (Tref; A-C), ±50% change in 
1190 phytoplankton maximum growth rate (umax; D-F), and ±50% change in phytoplankton 
1191 mortality (mA; G-I). Measured bottom dissolved oxygen (DO) concentrations include 
1192 LUMCON (red squares) and Environmental Protection Agency (EPA; blue triangles) data, as 
1193 described in (Jarvis et al., 2021). The three temperature response formulations from the Base 
1194 model calibration are plotted together (J) for comparison. 

1195 

60 


	Title
	Abstract
	1 Introduction
	2 Model Description
	3 CGEM Modeling Framework and Code Availability
	4 Ecosystem Application
	5 Effects of model structure on simulation outcomes
	6 Eutrophication Modeling in Coastal and Freshwater Ecosystems
	7 Conclusions
	Acknowledgements
	References
	Tables
	Figures



