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19 Abstract

20 The Coastal Generalized Ecosystem Model (CGEM) is a biogeochemical model developed to
21 study regulating processes of water-column optical properties, water-column and benthic
22 carbon, oxygen, and nutrient cycles, and phytoplankton and zooplankton dynamics. CGEM

23 offers numerous formulations for important rate processes, providing users flexibility in
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24 altering model structure. This flexibility also provides a means for evaluating model structural
25 uncertainty and impacts on simulations, which are rarely evaluated with numerical ecosystem
26 models. As an open-source model, CGEM also offers users the option to implement new
27 formulations or modify existing routines. We also provide a full description of the model
28 formulations, state variables, and model parameters in CGEM. Using two published case
29 studies, we explore how different formulations for light attenuation, phytoplankton
30 temperature growth response, and sediment processes impact simulations. We discuss
31 CGEM’s role as a new ecosystem model within the modeling community and opportunities to

32 address current and future water quality issues.
33
341 Introduction

35 Water quality models are an important tool for effective management of water resources.
36 Mechanistic models are now commonly applied to inform ecosystem response to various
37 physical and biological forcings in 3-dimensional space and time in lakes (Rowe et al., 2023;
38 Wool et al., 2020), estuaries (Cagle et al., 2023; Hood et al., 2021; Testa et al., 2021), and the
39 coastal ocean (Khangaonkar et al., 2018; Laurent and Fennel, 2017). When validated with
40 observations, models may also provide a more comprehensive assessment of ecosystems than
41 monitoring alone. Mechanistic models are also uniquely capable of assessing ecosystem
42 response to future conditions, making them an invaluable resource for managers and
43 policymakers in the development of management plans adaptive to local environmental

44 change and/or climate change.

45 As our understanding of coastal processes becomes more detailed, the complexity of water
46 quality models has also increased. Whether this complexity is justified or serves to improve
47 model outcomes has been a topic of debate (Anderson, 2005; Flynn, 2003; Flynn, 2005; Ward
ag et al., 2013). In one respect, simulating all relevant processes is necessary to represent the
49 main drivers, responses, and feedback that dictate a complex ecosystem’s biotic and abiotic
50 state (Doney, 1999; Glibert et al., 2013). In another respect, increased model complexity
51 yields additional unconstrained processes that lead to loss of precision and added uncertainty

52 in model outcomes (Voinov and Cerco, 2010; Ward et al., 2013). Some studies demonstrate



53 that more complex models can have greater skill (Friedrichs et al., 2007; Xiao and Friedrichs,
54 2014) while others highlight enhanced uncertainty and lack of transferability for
55 over-parameterized models (Beck et al., 2017; Refsgaard et al., 2007; Wade et al., 2008).

56 Selection of functional response formulations is also an important consideration for
57 implementation of mechanistic models. A given process-based or empirical formulation may
58 prove suitable for certain conditions or ecosystems but unsuitable for others, particularly
59 when faced with fundamental shifts in ecosystem dynamics presented by climate change
60 (Ralston and Moore, 2020; Wells et al., 2015). For example, if temperature dependent
61 phytoplankton growth is represented as an optimum threshold temperature function (Cerco
62 and Noel, 2004), increased warming in climate change scenarios may result in decreased
63 rather than increased phytoplankton growth as would be expected by the Eppley curve
64 (Eppley, 1972). Therefore, selection of appropriate formulations can have a significant impact
65 on simulation response to changing physical and biological forcings, resulting in reduced
66 uncertainty in model outcomes (Jarvis et al., 2022). These issues of structural uncertainty are
67 well-known for ecosystem and water quality models but are rarely addressed (Reckhow and
68 Chapra, 1983), despite calls for ensemble modeling approaches to better evaluate model

69 uncertainty (Ganju et al., 2016).

70 The Coastal Generalized Ecosystem Model (CGEM) is a complex mechanistic model that
71 provides users the flexibility to select or build new model formulations and parameterizations
72 to best suit varying ecosystem conditions. One of the factors motivating the development of
73 CGEM is the need to evaluate how simple to complex model structures affect model outputs
74 and associated uncertainty. We hope that CGEM’s flexibility in process representations will
75 further the modeling community’s ability to quantify model structural uncertainty. CGEM
76 offers users different numerical formulations for eight important biogeochemical processes
77 (Table 1, described below). This flexibility can be used to test how different process
78 representations, or combinations thereof, influence a model system and can therefore be
79 leveraged to evaluate structural uncertainty (Chatfield, 1995). As an open-source modeling
go framework CGEM also provides full transparency of the source code, allowing users to

81 evaluate model parameterization, formulations, and assumptions that may best apply to a



82 given ecosystem or process of concern. This open-source framework further allows users the

83 opportunity to add their own formulations, state variables, and parameters as required.

84 Our primary objective in this paper is to provide a full description of CGEM. We use case
85 studies to highlight how different model formulations influence important model variables
g6 and simulation outcomes. We further describe the advantages and disadvantages of selected
g7 formulations as applied to different ecosystem conditions and processes of concern. In the
g8 following sections we describe the CGEM model and its application. The model state
89 variables and component processes, including functional forms of alternative mathematical
90 equations, are described in Section 2. A description of the CGEM modeling framework and
91 code availability are provided in Section 3. Application of CGEM to eutrophication and
92 hypoxia issues in different coastal ecosystems are presented in Sections 4 and 5, including
93 case studies of the Louisiana Shelf in the northern Gulf of Mexico and in Weeks Bay, AL.
94 Finally, a review of CGEM’s role in eutrophication modeling of coastal and marine
95 ecosystems is described in Section 6. The full model equations are presented in the

96 supplemental materials.

972 Model Description

98 CGEM was derived from the model of Eldridge and Roelke (2010), which included
99 representations of: (1) nutrients and dissolved oxygen (DO); (2) a simple lower trophic level
100 food web consisting of six phytoplankton functional types (PFTs) and a zooplankton grazer;
101 (3) particulate organic matter derived from phytoplankton, zooplankton, and rivers, and (4) a

102 one-layer sediment diagenesis model linked to organic matter deposition to the sediments.

103 CGEM includes air-sea exchange; water column light attenuation, nutrient, phytoplankton,
104 zooplankton, and organic matter; and sediment processes (Figure 1). Initial release of
105 CGEM-1.0, hereafter referred to simply as CGEM, differs from the Eldridge and Roelke
106 (2010) model by the following: (1) CGEM code was rewritten in Fortran from the original
107 MATLAB scripts and functions; (2) the equations were generalized for 0- to 3-Dimensional
108 numerical grids; (3) an optical model of light attenuation based on inherent optical properties
109 (IOP) was incorporated (Figure 2; Penta et al., 2009); (4) PFTs and zooplankton functional

110 types were expanded to allow the use of up to 99 functional types; (5) detrital organic matter
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111 was changed to represent eight organic matter classes with particulate and dissolved pools for
112 organic matter derived from phytoplankton, zooplankton, rivers, and ocean boundaries; (6)
113 Silica (Si) was added as a state variable; (7) the chlorophyll to carbon ratio (Chl:C) is
114 calculated for each PFT; and (8) alternative mathematical representations of processes,
115 referred to as code switches, were included for testing and assessing model structural
116 uncertainty, e.g. three different representations of PFT growth rate dependencies on

117 temperature (Figure 3).

118 Throughout this manuscript, names of biogeochemical processes (Table 1), model state
119 variables (Appendix A, Table 2), and parameters (Tables 3-8) are shown in italics. Process,
120 state variable, and parameter names conform to those used in the Fortran code. In section 2
121 we present the model representations of light attenuation, phytoplankton (six PFTs),
122 zooplankton, organic matter, nutrients, oxygen, and carbon dioxide using the model

123 parameterization described in (Eldridge and Roelke, 2010).

124 2.1 Light attenuation

125 Two representations of water-column light attenuation are included in CGEM (Table 1).
126 Irradiance switch (E1) calculates light attenuation as a function of absorption and
127 backscattering related to concentrations of Chl, CDOM, and SPM (Penta et al., 2009; Penta et
128 al., 2008) (supplemental section B, Table 3). Irradiance switch (E2) uses a simpler model to
129 calculate down-welling light attenuation based on partial attenuation coefficients (Eldridge
130 and Roelke, 2010) (supplemental equation B6, Table 3). In both cases, light attenuation varies
131 by depth as a function of the vertical distribution of modeled Chl, CDOM, and SPM.
132 Phytoplankton biomass is tracked in CGEM as cell abundance (4, cells m™). However, the
133 phytoplankton biomass calculated in terms of Chl/ (mg m™) is desired because the optical
134 model (supplemental equations B2 and B3) requires Chl and because field observations of
135 phytoplankton biomass are generally reported as chlorophyll-a. Thus, Chl is calculated based
136 on A, the Chl:C, and the fixed cellular carbon quota per cell (Qc) (supplemental equation B4).
137 A switch is provided to (C1) input a fixed Chl:C ratio or (C2) calculate Chl based on a Chl:C,
138 which is calculated as a function of temperature, irradiance, and nutrient dependent growth

139 rate (supplemental equation B4) (Cloern et al., 1995). CDOM is loaded to the model from the



140 rivers and then allowed to decay in the model domain (supplemental equation A13).
141 Absorption due to suspended particulate matter is calculated per time step as a function of
142 particulate organic matter (OM1; supplemental equation B2). Backscattering is calculated as a

143 function of Chl (supplemental equation B3).

144 The light attenuation scheme (Penta et al., 2009; Penta et al., 2008) is derived from the
145 Inherent Optical Properties (IOP) based model of vertical transmittance of solar radiation of
146 Lee et al. (2005) where the attenuation of visible light is modeled as a function of depth, solar
147 zenith angle, and the IOP of the water. The vertical attenuation coefficient is a spectrally
148 averaged value with a significant portion determined by the large absorption of red
149 wavelengths by water (Lee et al., 2005). Thus, the attenuation of photosynthetic active
150 radiation (PAR) with depth is not constant — longer wavelengths (red, orange, yellow) are
151 attenuated near the surface while the longer wavelengths (blue, green) penetrate much deeper.
152 The original model was developed to simulate underwater light from ocean color satellite data
153 and the scheme was modified for inclusion in numerical simulation models (Penta et al.,
154 2009; Penta et al., 2008). The IOPs (total or as individual components) used in the model can
155 be determined from model components, literature values, external data (in situ and/or remote

156 sensing) and/or models, or any combination thereof.

157 2.2 Phytoplankton

158 For each of the six PFTs (4,) presented in section 2, phytoplankton cell abundance (4,=1:6) is
159 the net of growth, respiration, mortality, grazing, and sinking (equation A4). Specific growth
160 rates, ud; (d'), are a function of the maximum growth rate for a PFT (umax,, Table 4) and
161 growth dependence on temperature, irradiance, and nutrients. A model switch for different
162 specific growth rate formulations (Table 1) is provided to calculate the specific growth rate as:
163 (G1) a Liebig minimum being dependent on the most limiting of light, N, P, or Si
164 (supplemental equation C2); (G2) a product formulation of nutrient-limited growth and
165 light-limited growth (supplemental equation C3); or (G3) a formulation where umax in the
166 light-dependent growth equations (supplemental equation C7-C9) is modified based on

167 nutrient status, i.e. umax-min(func_N, func P, func_Si) (see supplemental section C.4)



168 Model switches are also included to explore numerical representations relating specific PFT
169 growth rates to temperature, irradiance, and cellular nutrient quota (Table 1). A switch for
170 growth rate dependence on temperature (functional form described in Figure 3), provides (1) a
171 sigmoidal function (supplemental equation C4; Eldridge and Roelke, 2010) (supplemental
172 equation C4), or (2) an optimum threshold function (supplemental equation C5; Cerco and
173 Noel, 2004), or (3) an Arrhenius function (supplemental equation C6; Geider et al., 1997). A
174 switch for growth rate dependence on irradiance (supplemental equation C7) allows for (1)
175 photoinhibition (supplemental equation C8), (2) no photoinhibition (supplemental equation
176 C9) or (3) nutrient dependence of the maximum growth rate at saturating irradiance
177 (supplemental equation C10) (Flynn, 2003). Functional forms of growth rate dependence are
178 detailed in Figure 4. A switch for growth rate dependence on internal cellular nutrient quota
179 provides three cell quota formulations of increasing complexity (supplemental equations
180 C11-C14) (Droop, 1973; Flynn, 2003; Nyholm, 1978). Functional form selection via model

181 switches applies to all phytoplankton functional types.

182 Phytoplankton respiration is modeled as a function of growth and abundance (supplemental
183 equation C16). Phytoplankton mortality is modeled as a simple linear dependence of
184 abundance (supplemental equation C20). Phytoplankton losses to grazing are modeled
185 (Eldridge and Roelke, 2010; Roelke, 2000) for two zooplankton types (supplemental equation
186 C21); a macrozooplankton (Z;) and a microzooplankton (Z,). Zooplankton grazing rates are
187 represented as a threshold response to the biovolume of phytoplankton cells, calculated as the
188 product of cell abundance (4) and cell size (volcell, Table 4). Zooplankton prey on PFTs as
189 specified by an edibility vector (ediblevector, Table 4) where edibility for a PFT could range

190 from zero (no grazing) to one.

191 PFT internal nutrient cell quotas (Q, mmol cell') are calculated as the difference of
192 phytoplankton nutrient uptake and utilization (supplemental equations A2 and A3). For N and
193 P uptake kinetics (equation C24), a model switch is provided to select from uptake kinetics
194 based on (1) Michaelis-Menten kinetics (supplemental equation C25) (Dugdale and Goering,
195 1967), or (2) a quota based form (equation C26) (Geider et al., 1998; Lehman et al., 1975), or
196 (3) a quota based form that allows for surge uptake of nutrients (equation C27) (Roelke,

197 2000). Silica uptake kinetics for diatom PFTs is modeled as a Michaelis-Menten form. When
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198 a nutrient is non-limiting, its uptake rate is modified by the growth-rate limiting nutrient

199 (supplemental equation C28).

200 2.3 Zooplankton

201 For the CGEM structure presented here, Macrozooplankton (Z;) and microzooplankton (Z,)
202 are simulated, with Z, representative of a coastal copepod (length = 250 um) and Z,
203 representative of a ciliate herbivore (length = 50 pm). Zooplankton abundances (Z; and Z,)
204 are calculated as the net of growth, respiration, and mortality (supplemental equation AS).
205 Zooplankton growth rates (individuals m™® d') are a function of ingestion rates and
206 temperature ((Roelke, 2000); equation D1). Ingestion rates (mmol C, N, or P m? d') are
207 calculated as the difference between grazing rates and losses to zooplankton sloppy feeding
208 and unassimilated prey (supplemental equations D2 through D4). Zooplankton respiration are
209 the sum of growth and basal respiration terms (supplemental equation D5). Zooplankton
210 mortality (supplemental equation DS8) is represented as a quadratic expression (Cerco and

211 Noel, 2004).

212 2.4 Organic matter

213 The model tracks organic matter (OM) in particulate (OM1) and dissolved (OM?2) fractions
214 for four types: phytoplankton (OMI A and OM?2 A); zooplankton (OM1 Z and OM?2 Z7);
215 river (OM1 R and OM?2_R); and lateral boundary condition organic matter (OMI BC and
216 OM2 _BC). OM1 R and OM2 R are loaded to the model based on observed concentrations of
217 particulate and dissolved organic carbon in the rivers entering the model domain. OM1 BC
218 and OM2 BC are derived from user supplied inputs at open water boundaries. Phytoplankton
219 mortality is the source for OMI A and OM2 A. Zooplankton mortality and zooplankton
220 grazing processes (sloppy feeding, egestion, and unassimilated prey) are sources of OMI Z
221 and OM?2 Z. Loss terms for all eight of the OM types included remineralization and sinking,
222 with decay and sinking rates being model parameters (Table 7). The OM stoichiometry varies
223 based on source contributions (Table 7, supplemental equations E21 to E25) and reactions

224 (supplemental equations E28 and E31).



225 In the CGEM structure presented here, decay rates of 50 and 1 y' were assigned to OM1 and
226 OM2, respectively, derived from phytoplankton and zooplankton (Table 7). Decay rates of
227 riverine OM (KGI R and KG2 R) are specified by the user. We calculated these based on
228 observed riverine Biological Oxygen Demand (BOD) measurements and the river particulate
229 organic carbon (POC) and dissolved organic carbon (DOC) concentrations. Sinking rates
230 (Table 7) of organic matter are specified as 10 m d' for OM1, which is on the low end of the
231 range of sinking rates for zooplankton fecal pellets and phytodetritus (Turner, 2002). OM2 is
232 assigned a sinking rate of 1 m d'. The effect of temperature on biogeochemical rates is

233 represented using a Q10 factor = 2 (supplemental equations E32-E36).

234 2.5 Nutrients

235 Sources of NH4, NO3, PO4, and Si in the model (supplemental equations A17-A20) are from
236 OM remineralization (supplemental equations E49-E54), exudation by phytoplankton
237 (supplemental equations C18 and C19), excretion by zooplankton (supplemental equations D6
238 and D7) and sediments, which may be a source or loss. Losses include phytoplankton uptake
239 of NH4, NO3, PO4, and Si, and for NH4 and NO3 denitrification (supplemental equation E30)

240 and nitrification (supplemental equations E46 and E48).

241 Sediment-water exchanges for NH4, NO3, PO4, and Si (mmol m? d') may be specified,
242 based on empirical relationships, or calculated with a full sediment diagenesis model (Morse
243 and Eldridge, 2007). The sensitivity of sediment rates to temperature is governed by a Q10

244 relationship.

245 2.6 Oxygen

246 02 sources and sinks in the model include O2 production due to photosynthesis, O2
247 utilization by respiration in the water-column and sediments, and air-sea exchange. O2
248 boundary conditions are user defined inputs. In the water-column, O2 is produced by
249 photosynthesis and consumed by respiration by phytoplankton and zooplankton, oxidation of
250 OM1 and OM2, and nitrification (Eldridge and Roelke, 2010; Van Cappellen and Wang,
251 1996). Similar to nutrients, a sediment boundary layer O2 flux may be specified with a

252 sediment switch (Table 1).



253 With sediment switch set to (0), empirically derived equations are used to specify sediment
254 oxygen demand and dissolved inorganic carbon (DIC) efflux as a function of bottom water O2
255 concentration. Switch (2) applies empirically-derived equations relating benthic microalgal
256 O2 production to irradiance at the bottom (Gattuso et al., 2006; Jahnke et al., 2008; Lehrter et
257 al., 2014). Users may also apply empirically-derived formulations of nutrient fluxes (Lehrter
258 et al., 2012; Murrell and Lehrter, 2010) using switch (3). Switch (4) applies an instant
259 remineralization of OM at the sediment-water interface. Switch (5) applies the sediment
260 diagenesis model (SDM) from Morse and Eldridge (2007) and Eldridge and Morse (2008),
261 which was adapted from (Van Cappellen and Wang, 1996) and Boudreau (1996).

262 Vertical exchanges of O2 across the air-sea interface are modeled based on O2 concentration
263 gradients from surface water to atmosphere and wind speed (Eldridge and Roelke, 2010;

264 Justi¢ et al., 2002).

2653 CGEM Modeling Framework and Code Availability

266 CGEM is available for download via the USEPA’s Center for Exposure Assessment Modeling
267 (CEAM) Hydrologic Modeling Community of Practice website

268 (https://www.epa.gov/ceam/coastal-generalized-ecosystem-model-cgem). Users have the

269 option of downloading a zip package of the model code directly from the website, or
270 accessing the model code from the CGEM Github repository
271 (https://github.com/USEPA/CGEM). Users may also provide feedback and suggestions for
272 future CGEM versions via the Github repository or by email at CEAM(@epa.gov.

273 The CGEM model framework provides researchers and managers with a powerful and
274 flexible open-source modeling tool that can be implemented at varying spatial dimensions
275 (i.e. 0-dimensional to 3-dimensional) and adapted as required with new model formulations to
276 address the wuser’s needs. CGEM features interoperability with commonly applied
277 hydrodynamic models (Environmental Fluid Dynamics Code (EFDC), Navy Coastal Ocean
278 Model (NCOM), Finite Volume Community Ocean Model (FVCOM), Semi-implicit
279 Cross-scale Hydroscience Integrated System Model (SCHISM)) across a range of spatial

280 scales in coastal and freshwater ecosystems. A pre-processing tool is also available for users
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281 to easily set up CGEM applications with EFDC, an established hydrodynamic model

282 commonly applied to freshwater and coastal ecosystems of varying scale.

283 While this manuscript focuses on CGEM, the CGEM framework includes two water quality
284 models that are available to the user within a single code base. Users can switch between
285 CGEM and the Water Quality Eutrophication Model (WQEM) model formulations based on
286 specific modeling needs. The WQEM model, previously published as the Gulf of Mexico
287 Dissolved Oxygen Model (GoMDOM), is based on the Integrated Compartment Model
288 (CE-QUAL-ICM) model (Cerco et al., 1995). A description of the WQEM model and its
289 formulations is provided with CGEM model documentation as well as in numerous

290 publications (Feist et al., 2016; Melendez, 2009; Pauer et al., 2020).

291 CGEM provides a simple text interface to parameterize model setup. Users choose between
292 multiple model switches (e.g. varying phytoplankton temperature formulations, nutrient
293 uptake options, etc.) and define values for biogeochemical rate processes. Model grid
294 dimensions and initial conditions are also entered in text format. CGEM reads water column
295 advection, state variables, and boundary conditions as netcdf files. Simulation output from
296 CGEM is in a netcdf format. Users can extract and visualize data from netcdf as needed and
297 may also utilize a series of R scripts to visualize model data provided as part of the model

298 download package.

299 4 Ecosystem Application

300 We have applied CGEM in two different coastal ecosystems of varying scale (Figure 7). The
301 Louisiana Continental Shelf model evaluates seasonal hypoxia resulting from Mississippi
302 River Basin nutrient loads (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017). CGEM
303 in Weeks Bay examines diel oxygen dynamics in a shallow hypereutrophic estuary (Jarvis et
304 al., 2023). Detailed model calibration statistics and illustrations are provided in the respective
305 manuscripts for both model implementations. Broadly, model calibration for both the
306 Louisiana Shelf and Weeks Bay were performed in a non-automated fashion based on CGEM
307 specific sensitivity analysis described in Beck et al. (2017). On the Louisiana Shelf CGEM
308 was calibrated for 2006 and was validated across a 5-year period from 2003-2007 (Jarvis et

309 al., 2020). Weeks Bay simulations were not validated beyond the one-year simulation period
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310 (2015), however multiple benthic simulation processes were evaluated to determine their
311 effects on simulating oxygen dynamics in shallow coastal ecosystems (Jarvis et al., 2023).
312 Model calibration and validation performance for both models applied numerous statistical
313 measures, including R?* mean absolute error (MAE), root mean square error (RMSE),
314 normalized RMSE (NRMSE), Index of Agreement (IA), bias, and skill (Wilmott, 1981). For a
315 detailed description of parameter sets and model structure applied to the Louisiana Shelf and

316 Weeks Bay models please refer to Jarvis et al. (2020) and Jarvis et al. (2023), respectively.

317 In this paper, we use these two model applications to demonstrate the effects of model
318 structure on simulation outcomes. Specifically, we focus on spatially and temporally
319 integrated model outcomes to best describe the differences produced by the various model
320 switch options provided in CGEM. The two model applciations are described briefly below to

321 establish the basis for subsequent analyses.

322 4.1 Louisiana Continental Shelf

323 Bottom water hypoxia on the Louisiana continental shelf (LCS) in the northern Gulf of
324 Mexico (Figure 7) is the second largest area of eutrophication driven marine hypoxia in the
325 world (Rabalais et al., 2002). Seasonally recurring hypoxia on the LCS ranged between 40 to
326 22,720 km? during 1985 to 2023 (LUMCON, 2021), and varies interannually with spring
327 discharge and nutrient concentrations from the Mississippi-Atchafalaya River Basin (MARB)
328 (Greene, 2009; Turner and Rabalais, 2003). The CGEM model domain on the Louisiana Shelf
329 extends from east of the Mississippi River Delta (~88.2°W) to west of Atchafalaya Bay
330 (~93.2°W) and covers the nearshore coast at depths <5 m to depths >100 m offshore (Figure
331 7). CGEM was coupled with a hydrodynamic model, NCOM, which had a horizontal grid
332 resolution of 2 km x 2 km and included 20 vertical sigma layers from 5-100 m depth and up
333 to 14 hybrid coordinate layers at depths greater than 100 m. Implementation of CGEM
334 applied here is the same as described in detail in previous publications (Jarvis et al., 2021;
335 Jarvis et al., 2020; Lehrter et al., 2017), and includes three phytoplankton and two
336 zooplankton functional types, an advanced light attenuation model (Penta et al., 2009; Penta

337 et al., 2008), and Droop cell-quota nutrient kinetics (Droop, 1973).
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338 4.2 Weeks Bay

339 Weeks Bay is a hypereutrophic sub-estuary of Mobile Bay (Figure 7). The shallow (mean
340 depth ~1.4 m) microtidal (tide range ~0.4 m) estuary has a high ratio of watershed area to
341 estuary surface area (~71), resulting in extremely high gross primary production rates
342 exceeding 825 g carbon m™® y' (Caffrey et al., 2014; Lehrter, 2008). Weeks Bay has a
343 multi-decadal record of DO and other water quality monitoring due to the establishment of the
344 Weeks Bay National Estuarine Research Reserve (NERRS) in 1986, making it an excellent
345 test case for modeling with an abundant dataset available for calibration. CGEM in Weeks
346 Bay was coupled with an EFDC hydrodynamic model to evaluate fine-scale diel-cycling
347 vertical DO gradients (Jarvis et al., 2023). That model is applied here to evaluate the effects of

348 alternate formulations in CGEM on simulation results.

349 5  Effects of model structure on simulation outcomes

350 To compare the effects of model structure on simulations in contrasting coastal ecosystems we
351 applied the Louisiana Shelf and Weeks Bay models using the same parameterization and setup
352 as described in previous publications (Jarvis et al., 2023; Jarvis et al., 2020); Lehrter et al.
353 (2017). In this paper, we address three parameter sets that control important processes in
354 coastal ecosystems and which have a significant effect on model outcomes (Beck et al., 2017).
355 These parameter sets involve phytoplankton temperature response kinetics, benthic processes,
356 and light attenuation. We focus on simulation of phytoplankton concentration and growth,
357 total respiration, and bottom water DO, as they are critical eutrophication response pathways
358 and water quality criteria parameters applied to eutrophication studies in coastal and marine

359 ecosystems.

360 5.1 Phytoplankton temperature response and application to future climate modeling

361 Phytoplankton play a critical role in the marine biogeochemical cycle and are the primary
362 pathway for converting nutrients to organic matter in surface waters. However, there is little
363 agreement regarding the necessary complexity for modeling phytoplankton dynamics in
3e4 coastal and  marine  ecosystems  (Priyadarshi et al,  2022).  Simple

365 nutrient-phytoplankton-zooplankton-detritus (NPZD) modeling approaches have been used
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366 for many decades but may overly simplify the phytoplankton pool as a single functional type
367 (Anderson, 2005). Conversely, more complex modeling approaches that incorporate multiple
368 phytoplankton functional types (i.e., diatoms, dinoflagellates, cyanobacteria, etc.) face
369 considerable challenges in parameterizing the various functional forms often with minimal

370 data (Flynn, 2003; Flynn, 2005).

371 Complexity in simulating phytoplankton dynamics extends beyond selection of functional
372 forms, with numerous formulation options available to modelers for simulating important
373 growth and nutrient uptake dynamics. CGEM includes formulation switches for variable
374 growth  rates,  temperature  response,  photosynthesis-irradiance  relationships,
375 chlorophyll:carbon ratio, internal cell quota nutrient dependent growth, and nutrient uptake
376 kinetics (Table 1). Here we compare simulation outcomes with three phytoplankton
377 temperature dependent growth formulations, including sigmoidal, optimum threshold, and

378 Arrhenius functions.

379 5.1.1 Louisiana Shelf: Primary Production, Respiration, and Hypoxia

380 Application of different temperature growth response curves (section 2.2 and Figure 3) alters
381 the timing and magnitude of phytoplankton growth during the spring-summer period during
382 which phytoplankton growth rates are highest. On the LCS daily depth integrated primary
383 production and total respiration rates using an Arrhenius growth curve were 17% to 33%
384 higher than other growth curve formulations during the peak of summer production (Figure
385 8). By comparison a sigmoidal growth curve produced lower total primary production and
386 respiration throughout the spring-summer-fall. The optimum threshold growth curve produced
387 the greatest spring growth of all formulations beginning April through June as waters warmed
388 above 27°C, followed by a 52% and 37% decrease in production and respiration, respectively,

389 as water temperatures increased above the set optimum threshold temperature (Table 5).

390 These growth formulations also significantly affect estimates of hypoxic area, the principal
391 endpoint of management concern on the Louisiana Shelf and the sole metric used to guide
392 management decisions. Differences in hypoxic area obtained using the three temperature
393 response curves varied by 8,952 km? (48%) at the beginning of July (Figure 8). Generally,

394 selection of phytoplankton temperature dependent growth formulations can have important
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395 consequences for simulating the timing and magnitude of phytoplankton growth and
396 community composition shifts in response to changes in future warming (Ralston and Moore,

397 2020).

398 5.1.2 Weeks Bay: PFT Response to Climate Forcing

399 Mean surface temperatures in coastal ecosystems are steadily rising (IPCC, 2014) and are
400 forecast to produce significant shifts in marine and coastal phytoplankton community
401 composition (Henson et al., 2021). Differences in optimum growth temperatures for
402 phytoplankton functional types commonly result in predictable shifts in phytoplankton
403 assemblages. For example, diatoms and green algae that are abundant in lower temperatures
404 are typically dominated by dinoflagellates and cyanobacteria as surface water temperatures
405 warm (Paerl and Huisman, 2008). Modelers can reproduce these temperature driven dynamics
406 by selecting and parameterizing the appropriate temperature growth response curves to mimic

407 observed conditions.

408 In Weeks Bay we applied the optimum threshold temperature growth curve to induce
409 phytoplankton community shifts, as temperature is the dominant forcing mechanism for
410 phytoplankton community assemblages in the estuary (Novoveska and MaclIntyre, 2019). This
411 formulation was ideal in this situation because of the importance of temperature as a driver in
412 phytoplankton community composition shifts, as opposed to species advantages in prey
413 avoidance or nutrient uptake and utilization. Simulations produced three distinct shifts in
414 phytoplankton assemblages (Figure 9) driven by the parameterized optimal temperature
415 thresholds (diatoms: 21°C; dinoflagellates: 25°C, and cyanobacteria: 28°C). Similar shifts in
416 phytoplankton community structure were not observed using the sigmoidal or Arrhenius
417 curves, although similar results may be obtained through significant additional effort in
418 parameterizing and calibrating nutrient uptake kinetics and zooplankton grazing and mortality

419 parameters when these temperature growth response curve switches are applied.

420 The timing and magnitude of peak spring-summer phytoplankton assemblages varied in
421 response to a uniform increase in surface water temperature of 1.5°C applied to evaluate
422 climate change effects (Lehrter et al.,, 2017). Early spring diatom assemblages were 18%

423 lower under future warming conditions with an earlier April peak in concentrations as well as
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424 earlier dissipation in May (Figure 9). Dinoflagellates increased ~42% during an earlier May
425 peak that quickly dissipated by June. Cyanobacteria also responded to warming with earlier
426 summer growth, transitioning peak concentrations ~4 weeks earlier than under current
427 conditions. Higher water temperatures throughout summer dampened cyanobacteria

428 concentrations an average of 33% between June through September (Figure 9).

429 This case study of simulated phytoplankton assemblages in Weeks Bay demonstrates the
430 utility of multiple functional types in CGEM for simulation of real-world conditions. Data
431 describing phytoplankton communities are becoming more common as gene sequencing
432 techniques continue to improve and become more cost efficient (Bourlat et al., 2013), and
433 thus more effective data driven parameterization may be utilized for defining functional forms
434 in complex simulation models. This is becoming increasingly important for evaluating climate
435 change effects, as increasing water temperatures may alter phytoplankton assemblages,

436 including the timing and collapse of bloom events (Lake and Brush, 2015; Nixon, 1995).

437 Given a choice among temperature growth response relationships, users must carefully
438 consider the best formulation for their objectives. For example, while application of optimum
439 temperature thresholds may produce the desired community composition shifts, inadequate
440 parameterization may result in rapid decline in phytoplankton communities once optimum
441 temperatures are exceeded. In this instance modelers may need to re-parameterize the model
442 to adjust for higher temperature effects or consider application of a sigmoidal approach where
443 growth remains high at elevated temperatures, simplifying parameterization to adjusting for
444 the optimum temperature only. In these instances, we strongly recommend that users review
445 functional forms of the model formulations that are applied to guide decision making and best

446 practices for site specific calibration.

447 5.2 Benthic modeling and its impact on water column processes

448 In shallow coastal ecosystems, dissolved oxygen and nutrient fluxes at the sediment-water
449 interface are an important factor regulating biogeochemical feedback between the water
450 column and sediments. Sediments can affect water column biogeochemistry over long
451 timescales as either a source and/or sink of nutrients and organic matter (Toro et al., 1990) and

452 can also influence bottom water conditions over short timescales (Albert et al., 2021; De
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453 Borger et al., 2021; Jarvis et al., 2023). Simulation of sediment processes in water quality
454 models varies greatly, with approaches including parameterized aerobic decay with advection
455 and mixing (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017), instant
456 remineralization (Fennel and Laurent, 2018; Jarvis et al., 2023; Laurent et al., 2018; Pauer et
457 al., 2020), sediment diagenesis (Xia and Jiang, 2016; Zhang et al., 2015), and parameterized
458 sediment oxygen consumption (Di Toro, 1984; Hu and Wang, 2018; Terry et al., 2017).

459 When sediment switches are turned off in CGEM, organic matter (OM) that sinks to the
460 bottom model layer is subjected to remineralization (Appendix E). CGEM also includes
461 several sediment formulation options: zero-order sediment oxygen consumption (SOC),
462 parameterized sediment nutrient fluxes (NutFlux), oxygen production via microphytobenthos
463 (MPB), instant remineralization of OM (IR), and a sediment diagenesis model (SDM) based
464 on Eldridge and Morse (2008).

465 5.2.1 Louisiana Continental Shelf: Effects of Simulated Sediment Processes on Bottom

466 DO

467 Prior modeling studies have demonstrated the outsized importance of diagenetic processes on
468 development of bottom-water hypoxia on the Louisiana Shelf (Fennel et al., 2013; Fennel and
469 Testa, 2019; McCarthy et al., 2013). Efforts to improve representation of diagenetic processes
470 in biogeochemical models for the LCS have focused on parameterization of sediment-water
471 fluxes (Laurent et al., 2016; Lehrter et al., 2012), as well as the effects of sediment
472 resuspension (Moriarty et al., 2018) and sub-pycnocline primary production (Lehrter et al.,

473 2009; Yu et al., 2015) on bottom water oxygen.

474 The CGEM parameterization published on the LCS (described here as the "Base" model) does
475 not impose any sediment switch formulations, thus OM settled to the bottom is mixed and
476 advected while undergoing aerobic decay (Jarvis et al., 2020). This formulation resulted in
477 higher nearshore DO and hypoxic (DO < 2 mg L") bottom water at mid-depths across the
478 shelf (Figure 10a). The SOC switch imposes a draw down of oxygen from the sediment that
479 varies non-linearly with temperature and DO, such that the magnitude of sediment oxygen

480 consumption increases when DO and temperature increase. In the LCS the largest decrease in
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481 mean summertime bottom DO due to SOC was observed at nearshore locations with elevated

482 DO concentrations in the Base model (Figure 10b).

483 When the NutFlux switch is activated, nutrients are exchanged at the sediment-water interface
484 based on observed relationships (Lehrter et al., 2012). This switch compromises strict model
485 mass balance, however mass balance should be approximately correct if the empirical
486 relationships included in the model reflect local, site-specific conditions. In northern GOM,
487 changes in bottom DO between Base and NutFlux model runs were attributable to changes in
488 water column nutrient concentrations. The empirically derived NO; flux at the sediment-water
489 interface varied linearly with DO, such that the largest increases in water column NO;
490 corresponded to locations with elevated bottom DO in the Base model. Changes in nutrient
491 concentrations altered water column respiration and primary production, the balance of which

492 determined relative shifts in bottom DO between NutFlux and Base runs (Figure 10c).

493 The MPB switch simulates microphytobenthos production which is controlled by irradiance at
494 the sediment-water interface. There are several empirical models relating microphytobenthos
495 production to light availability included in CGEM. For most of the model domain, MPB is
496 zero due to insufficient irradiance at the bottom model layer. The greatest increase in bottom
497 DO associated with MPB production was observed at locations where more than 10% of

498 surface irradiance reached the bottom (Figure 10d).

499 When the IR switch is turned on, OM is instantaneously remineralized when it sinks to the
500 bottom layer. The IR switch preserves mass balance at the expense of realistic lag times
501 associated with sediment diagenesis. In northern GOM, IR increased DO in locations with
502 low bottom DO in the Base model (Figure 10e). These locations generally had elevated OM
503 in the Base model, which increased water column nutrient concentrations when IR was
504 activated. The net effect of decreased OM and increased nutrients was increased bottom DO
505 due to decreased respiration and/or increased production. On the other hand, IR decreased DO
506 concentrations in areas with high DO. In the Base model these areas had lower OM and

507 turning on IR decreased primary production resulting in lower DO.

508 The sediment diagenesis switch employs a highly vertically resolved (> 400 layers) sediment

509 model that provides a realistic mass balance accounting of sediment fluxes and OM
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510 remineralization (Eldridge and Morse, 2008). In northern GOM, SDM slightly decreased
511 nearshore bottom DO, but overall resulted in little change (Figure 10F). Changes in bottom
512 DO are attributable to changes in fluxes at the sediment-water interface. The magnitude of the
513 oxygen flux was greater in the SDM model, implying greater sediment oxygen demand in the

514 SDM model compared to the Base model.

515 5.2.2  Weeks Bay: Sediment Effects on Diel-Cycling DO

516 In shallow ecosystems sediment processes often play an important role in water column
517 conditions. In addition to impacting smaller water volumes, generally higher irradiance at the
518 sediment-water interface can result in enhanced algal growth at depth and the need to account
519 for microphytobenthic production in model simulations. Weeks Bay’s hypereutrophic state
520 results in enhanced OM sedimentation, resulting in elevated SOD rates that yield strong
521 vertical gradients in observed bottom DO (Jarvis et al., 2023). Simulation of strong diel DO
522 gradients in shallow ecosystems such as Weeks Bay are challenging, as bottom layer diel DO
523 dynamics range from anoxia in the early morning hours to supersaturation during the day
524 (Figure 11). The CGEM model in Weeks Bay successfully simulated these dynamics using an
525 instant remineralization approach that rapidly consumed OM settled from the water column as

526 well as incorporation of microphytobenthos for benthic DO production (Jarvis et al., 2023).

527 Here we apply alternative sediment formulations to evaluate their effects on bottom water
528 DO. None of the formulations applied on their own matched the range of observed daily DO
529 gradients. Both instant remineralization and parameterized SOC resulted in dampened oxygen
530 concentrations throughout the diel cycle, ranging between 60-110 and 50-90 mmol m?,
531 respectively (Figure 11). Application of microphytobenthic production resulted in higher DO
532 concentrations that never reached hypoxic conditions, but matched observed daytime peak
533 DO concentrations (Figure 11). DO simulation using the sediment diagenesis model closely
534 matched mean diel DO gradients from the Base model, but still failed to match the lowest and
535 highest DO observations. The diagenesis model did, however, produce the greatest diel DO
536 gradients of any single model switch, validating the approach for a more realistic
537 approximation of sediment processes that more directly respond to water column conditions

538 and OM production. This was identified as a key shortcoming of the modeling approach from
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539 (Jarvis et al., 2023), as a well calibrated sediment diagenesis model and more explicit benthic
540 algae parameterization is needed to improve simulation of benthic-pelagic coupling over long
541 time periods and in response to changing environmental forcing conditions and management

542 actions.

543 5.3  Light attenuation effects on phytoplankton production

544 Temporal and spatial variability in optical properties of water is a fundamental control of
545 biogeochemical processes in waterbodies (Dickey and Falkowski, 2002). Light attenuation
546 through the water column is a critical factor affecting phytoplankton growth (Cole and
547 Cloern, 1984; Kromkamp et al., 1995), distribution of heat and stratification (Hocking and
548 StraSkraba, 1999; Morel, 1988), and photochemical production and destruction of chemical
549 compounds (Dickey et al., 2006). Given the unique importance of light on phytoplankton
550 growth and survival, it is important for ecosystem models to accurately represent light
551 distribution through the water column. CGEM provides users the option between a complex
552 (IOP) and a simple Apparent Optical Properties (AOP) light attenuation scheme, described in
553 detail in Section 2.1 and Supplemental B (optical equations). Here we present a comparison of
554 simulation outcomes using both light attenuation models in different ecosystems, emphasizing

555 light penetration and its impact on phytoplankton production and hypoxia.

556 5.3.1 Louisiana Continental Shelf: Light Attenuation Effects of Primary Production

557 and Bottom Chlorophyll

558 A twin experiment was run for the LCS domain with all switches, inputs, and parameters
559 identical except for the light model used. With the initial conditions of chlorophyll, CDOM,
560 and SPM, the IOP light scheme allowed deeper light penetration into the water compared to
561 the AOP scheme, reaching the bottom layer over most of the shelf (Figure 12A and 12C).
562 Differences in light attenuation resulted in higher bottom chlorophyll that varied spatially
563 across the nearshore shelf (Figure 12B), patterns of which may also result from nutrient
564 limitation or grazing pressure variances due to the different evolutions of the two model runs.
565 The IOP model run, when integrated over the entire bottom layer, maintained deeper light

566 penetration throughout the 426 day simulation (Figure 12B), further resulting in higher
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567 bottom chlorophyll concentrations. This light field supported higher vertically integrated
568 primary production on the shelf for most of the yearly cycle, the exception being Nov-Dec
569 when the two model primary productivities were similar in magnitude (Figure 12D). The IOP
570 model produced a deeper euphotic zone (58m) compared to the AOP model (16m) as defined
571 by the depth of the 1% light level (Figure 12E).

572 Differences in primary production driven by the different light attenuation models further
573 impact simulation of hypoxia. Mechanistic models applied to the Louisiana Shelf demonstrate
574 high sensitivty in hypoxia outcomes based on the timing and location of phytoplankton
575 production on the shelf (Jarvis et al., 2022; Pauer et al., 2020). In our simulations we observed
576 a ~6% decrease in hypoxic area and a delay of nearly 20 days in hypoxia formation during
577 mid-spring using the AOP model compared to IOP simulations (data not shown). Given the
578 differences in light penetration, primary production, and hypoxia oberved in our simulations
579 modelers should more carefully evaluate how light model selection may impact their
580 modeling objectives. Failure to adequately simulate light dynamics can result in a cascade of
581 challenges due to differences in the simulated timing and magnitude of phytoplankton

582 production at depth.

583 5.3.2 Weeks Bay: Light Attenuation Effects on Primary Production and Benthic

584 Production

585 Light attenuation effects in coastal ecosystems are especially important in shallow
586 waterbodies where benthic primary producers contribute a greater percentage of total primary
587 production. In Weeks Bay (mean depth <1.4 m) application of the IOP light model resulted in
588 an ~11% increase in bottom light availability compared to the AOP model (Figure 13A).
589 Reduced light availability in the AOP model resulted in a two-fold increase in phytoplankton
590 light limitation and ~14% decrease in bottom primary production in the bottom layer of the
591 model April through September (Figure 13B). Daily benthic production in the AOP model
592 never exceeded 10 mmol m™? d' during this period, whereas the IOP model yielded benthic
593 production rates >40 mmol m? d"' when bottom irradiance was greatest (Figure 13D). These
594 benthic production rates result in a 50 mmol m™ difference in mean bottom layer oxygen

595 concentrations (Figure 13C).
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596 Measured benthic production rates in Weeks Bay constitute between 21-27% of water column
597 production (Caffrey et al., 2014; Schreiber and Pennock, 1995), making benthic algal
598 production an important rate process that simulation models must include to adequately
599 reproduce bottom layer oxygen dynamics (Jarvis et al., 2023). In these simulations the IOP
600 formulation yields as much as a 4-fold increase in benthic oxygen production compared to the
601 AOP model. Models that include simple attenuation formulations may therefore struggle to
602 match oxygen variability observed in systems similar to Weeks Bay. Modelers must also
603 consider the spatiotemporally dynamic nature of variables controlling light attenuation (i.e.,
604 suspended sediment, chlorophyll, CDOM, salinity, etc.) when selecting and evaluating a light
605 model (Ganju et al., 2014).

606 6  Eutrophication Modeling in Coastal and Freshwater Ecosystems

607 Water quality modeling in coastal and freshwater ecosystems commonly utilize a range of
608 disparate models established for site specific ecosystem applications or management needs
609 (Ejigu, 2021; Gao and Li, 2015; Mateus et al., 2018). One reason for dissimilar modeling
610 approaches in aquatic ecosystems is the range of complex ecosystem processes that challenge
611 a given model’s ability to be generalizable and transferrable among seemingly similar
612 ecosystems (Beck et al., 2017; Ganju et al., 2016). CGEM’s structural flexibility addresses
613 these concerns by providing users with options to select appropriate biogeochemical
614 formulations to suit site specific conditions and to better evaluate how different model
615 structures affect simulation results. For example, a combined instant remineralization and
616 benthic algae simulation approach is proved necessary to resolve highly dynamic diel oxygen
617 conditions in Weeks Bay. However, neither approach seems suitable for the Louisiana Shelf,
618 as microphytobenthos production had minimal impact on nearshore DO (Figure 10d) and
619 instant remineralization resulted in displacement of hypoxia from mid-depths (Figure 10e)
620 where it is commonly observed (Jarvis et al., 2022). Structural flexibility is an important
621 consideration for implementing effective models in support of management action and policy
622 development, as modelers must clearly convey model assumptions and uncertainties to
623 decision makers. Water quality models incorporating different structural equations are

624 uncommon but not unheard of. For example, USEPA's Water Quality Analysis Simulation
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625 Program (WASP; (Wool et al., 2020)) has been recently updated to provide users the option of
626 implementing phytoplankton temperature growth response curves comparable to the
627 Arrhenius (Geider et al., 1997) and optimum threshold temperature growth (Cerco, 2007)

628 response curves provided in CGEM.

629 By offering multiple formulation options CGEM further allows for comparison of model
630 structural uncertainty with parameter and observational uncertainty. As an example, we
631 demonstrate how parameter sensitivity of bottom water DO at a frequently monitored site on
632 the Louisiana Shelf (LUMCON Station C6; LUMCON, 2021) varies across model
633 formulations of phytoplankton temperature growth response (Figure 14). Differences in
634 bottom water DO due to structural variations (i.e. selection of temperature response
635 formulations) are relatively small compared to parameter variability and follow similar
636 patterns throughout the timeseries (Figure 14J). The effect of phytoplankton temperature
637 response 1s particularly apparent in the shift between higher bottom water DO in early
638 summer (May-July) and late summer (August-October) using the sigmoidal and optimum
639 temperature formulations, respectively, mirroring shifts in primary production driven by the

640 different formulations (Figure 8).

641 In comparison, parameter sensitivities vary among the different formulations and in response
642 to warming summer temperatures. In the case of reference temperature (7ref), the optimum
643 temperature threshold formula (T2) is the only formulation demonstrating sensitivity to a 2°C
644 change in reference temperature (Figure 14A). Further, the optimum temperature threshold
645 formula is most sensitive to parameter uncertainty for both the maximum growth rate and
646 mortality coefficient, particularly in late summer when water temperatures are likely to
647 exceed the reference temperature (7ref). Conversely, the Arrhenius (T3) formulation’s
648 exponential response rate at higher temperatures results in reduced parameter sensitivity
649 beginning mid-late summer when waters are warmest (Figure 14I). While all of these models
650 reasonably reproduce observed seasonal oxygen dynamics, the varying sensitivity to model
651 parameterization has important implications for model outcomes, particularly when
652 evaluating model transferability and for conveying estimates of uncertainty to decision
653 makers. Further, model structural uncertainty plays an important role in parameter and

654 predictive uncertainty (Hojberg and Refsgaard, 2005; Moges et al., 2021; Rojas et al., 2008),
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655 however studies evaluating the impact of structural uncertainty in highly parameterized water
656 quality models is lacking. CGEM addresses this issue by providing modelers with a highly
657 flexible modeling framework uniquely suited to address the combined effects of structural and

658 parameter uncertainty.

659 As policy tools, mechanistic models remain an important means for addressing eutrophication
660 and hypoxia issues in freshwater and coastal ecosystems. However, existing models face new
661 challenges in the face of global climate change and emerging modeling needs such as harmful
662 algal blooms (HABs) and coastal acidification. To date HABs modeling has progressed
663 primarily through numerous regional applications, with successful parameterization focusing
664 on nutrient loading, light, temperature, and pH (Flynn and McGillicuddy, 2018). As nascent
665 HABs modeling techniques continue to advance, new applications of mechanistic models are
666 needed to help inform multiple stressors on HAB and non-HAB species (Anderson et al.,
667 2013; Wells et al., 2015), with selection of biological model formulations an important factor
668 in determining model outcomes (Ralston and Moore, 2020). CGEM includes unlimited
669 phytoplankton functional types and numerous nutrient, light, and growth kinetic formulation
670 options to aid in parameterization of HAB and non HAB species. CGEM also includes
671 zooplankton growth and edibility kinetics that are important but complex factors in dictating
672 predator-prey interaction that change in response to warming temperatures and impact bloom
673 development (Wells et al., 2015). As our understanding of model kinetics and rate processes
674 improve based on progress in field and laboratory studies it is important that modelers have
675 the capacity to actively update source code to improve and test new model formulations, as is

676 offered through CGEM.

677 Eutrophication enhanced acidification is another emerging issue with a small but growing
678 number of mechanistic models applied to evaluate carbonate and acidification dynamics in
679 coastal and estuarine ecosystems (Hauri et al., 2013; Laurent et al., 2017; Pacella et al., 2018;
680 Shen et al., 2019). Evaluating acidification and oxygen dynamics is especially important for
681 protection of aquatic life, as the cumulative effects of reduced pH and low DO threaten
682 marine life through increased mortality, altered food web structure, and changes to
683 biogeochemical cycling and ecosystem function (Gobler and Baumann, 2016). CGEM

684 includes simulation allowing for calculation of pH, partial pressure of carbon dioxide (pCO,),
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685 dissolved inorganic carbon (DIC), and total carbonate alkalinity (TA), providing a
686 mechanistic link between nutrient loads and organic matter production and respiration that
687 directly affect DO and pH conditions. CGEM may therefore serve as a valuable tool for
688 informing acidification and DO conditions as well as forecasting ecosystem response to

689 proposed management actions and reduced nutrient loads.

690 7 Conclusions

691 In this paper we fully describe the formulations, state variables, and parameter sets within
692 CGEM, a complex biogeochemical model for simulating lower trophic levels in aquatic
693 ecosystems. As an open-source model CGEM provides users the flexibility to modify the
694 source code and test new model formulations against existing methodologies. CGEM enables
695 easier model setup and facilitates user development of more advanced model formulations.
696 CGEM’s flexibility to adapt model formulations also allows for easier assessment of model
697 structural uncertainty, which can have a significant effect on simulation outcomes (Beck et al.,
698 2017; Jarvis et al., 2022). This is an important feature in the state-of-the-science of water

699 quality modeling.

700 CGEM has been successfully implemented in coastal marine environments of varying scales
701 using different hydrodynamic models, summarized here in two case studies of the Louisiana
702 Continental Shelf and Weeks Bay, AL. These case studies highlight CGEM’s adaptability in
703 simulating seasonal versus hourly dynamics in ecosystems ranging from shallow
704 hypereutrophic estuaries to the nearshore coastal ocean. Results further underscore how the
705 different formulation options included in CGEM may be utilized to address varying
706 environmental conditions and simulation goals. It is important that modelers understand how
707 a given formulation will impact simulations, and we therefore provide visual illustration of

708 functional forms of the various model formulations available in CGEM (Figures 2 through 6).

709 To facilitate future CGEM implementation we are working to expand CGEM’s hydrodynamic
710 model compatibility beyond the existing EFDC and NCOM model linkages, including future
711 tools for linking CGEM to the Finite Volume Community Ocean Model (FVCOM; (Chen et
712 al., 2006; Chen et al., 2003)) and Semi-implicit Cross-scale Hydroscience Integrated System
713 Model (SCHISM; (Zhang and Baptista, 2008)). We are also integrating CGEM with the U.S.
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714 Navy’s Hybrid Coordinate Ocean Model (HYCOM), which when complete will allow for
715 CGEM implementation using publicly available hydrodynamic model output for the coastal
716 ocean across the globe. As part of these updates CGEM is being applied to address large scale
717 climate change and hypoxia issues in the northern Gulf of Mexico, including new forcings for
718 atmospheric-nitrogen deposition from the Community Multiscale Air Quality Model (CMAQ)
719 and watershed nutrient loads from the Soil and Water Assessment Tool (SWAT). Finally, we
720 are investigating options for incorporating CGEM within the Framework for Aquatic
721 Biogeochemical Models (FABM) to facilitate linkage with a larger number of hydrodynamic
722 models (Bruggeman and Bolding, 2014).

723 Future CGEM releases will continue to add additional model flexibility to simulate ecosystem
724 processes more realistically. For example, fixed carbon to chlorophyll ratios implemented on
725 the Louisiana Shelf and Weeks Bay may be better represented by a more advanced calculation
726 of variable carbon to chlorophyll ratios in response to light and temperature (Cloern et al.,
727 1995; Geider, 1987). Additional model flexibility will allow for formulation options to vary
728 among phytoplankton functional types to better match simulated phytoplankton growth with
729 biological adaptations. CGEM will also be updated to simulate important carbonate variables
730 and ions (such as manganese, calcium, and nickel) needed to evaluate emerging climate
731 change mitigation techniques such as marine carbon dioxide removal and ocean alkalinity
732 enhancement. Finally, we aim to improve CGEM’s existing sediment diagenesis application
733 by facilitating easier parameterization and analysis of diagenesis routines in future releases of

734 CGEM.

735 With CGEM’s public release we anticipate an expanded user base that will facilitate CGEM
736 advancement as a state-of-the art model. User feedback, including suggested code updates and

737 new formulations, are encouraged and facilitated via the CGEM GitHub repository.

738 Software and Data Availability

739 Name of software: Coastal Generalized Ecosystem Model (Version 1.0).

740 Developers: Brandon M. Jarvis, John C. Lehrter, James Pauer, Wilson Melendez, Lisa Lowe,
741 Cody Simmons, Bradley Penta, Dong S. Ko

742 First year available: September 29, 2023 (Version 1.0)
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743 Hardware requirement: PC

744 Operating System: Linux

745 Program language: FORTRAN and C++
746 Program size: 2.38 MB.

747 Availability: https://www.epa.gov/hydrowg/coastal-generalized-ecosystem-model-cgem

748 License: free

749
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1084 Table 1. CGEM representations of biogeochemical processes. Multiple cases per process are
1085 provided for evaluating uncertainty related to equations used.

Process Functional Forms
Irradiance Vertical attenuation of photosynthetically available radiation (PAR) through the
water-column represented by
(E1) inherent optical properties (Penta et al 2009)
(E2) apparent optical properties (Eldridge and Roelke 2010)
Growth Phytoplankton specific growth rate calculated using
(G1) minimum of light and nutrient dependent growth rates
(G2) product of the light dependent growth rate and the minimum of the nutrient
dependent growth rates
(G3) umax in the light dependent growth equation is a function of nutrients
Temperature Temperature dependent growth represented as
(T1) sigmoidal function (Eldridge and Roelke 2010)
(T2) optimum threshold temperature function (Cerco and Noel 2004)
(T3) Arrhenius function (Geider et al. 1997)
Photosynthesis ~ Phytoplankton light dependent growth represented by photosynthesis-irradiance
function
(P1) with photo-inhibition (Platt et al. 1980)
(P2) without photo-inhibition (Webb et al. 1974)
(P3) without photo-inhibition and depends on nutrient cell quota (Flynn 2003)
Chl:.C Chlorophyll:Carbon (chl:C) calculated using
(C1) fixed chl:C based on observed chlorophyll a versus phytoplankton abundance
(C2) dynamic chl:C per cell based on light and nutrients (Cloern 1995)
Quota Phytoplankton nutrient dependent growth represented by an internal cell quota
where for
(Q1) internal cell quota is a function of Qmin (Droop 1973)
(Q2) internal cell quota is a function of Qmin and Qmax (Nyholm 1978)
(Q3) internal cell quota is a function of Qmin, Qmax, and K (Flynn 2003)
Uptake Phytoplankton nutrient uptake rate represented by
(U1) Michaelis-Menten kinetics (Dugdale and Goering 1967)
(U2) nutrient cell quota model (Lehman et al. 1975; Geider et al. 1998)
(U3) nutrient cell quota model with surge uptake (Roelke 2000)
Fluxes Air-sea and sediment fluxes may be turned on (1) or off (0)
Air-sea
(1 or 0) air-sea O, flux (Eldridge and Roelke 2010)
(1 or 0) air-sea CO, flux (Orr and Epitalon 2015)
Sediment
(1 or 0) sediment O, consumption (Murrell and Lehrter 2010; Lehrter et al. 2012)
(1,2,3 or 0) microphytobenthos production (1. Gattuso et al. 2006; 2. Jahnke et al.
2008; 3. Lehrter et al. 2014)
(1 or 0) sediment nutrient fluxes (Lehrter et al. 2012)
(1 or 0) instant remineralization of organic matter in bottom layer
(1 or 0) sediment diagenesis model (Eldridge and Morse 2008)
1086

1087 Table 2. State variables. Number of possible functional types for phytoplankton (i) and
1088 zooplankton (j) are noted.
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Symbol State Variable Units
A phytoplankton abundance (i = 1:6) cells m?
On cell nitrogen quota (i= 1:6) mmol N cell
Op cell phosphorus quota (i = 1:6) mmol P cell”!
Z zooplankton (j = 1:2) individuals m
OMI A particulate organic matter from phytoplankton mmol m™
OMI1 Z  particulate organic matter from zooplankton fecal mmol m”
pellets
OMI1 R particulate organic matter from rivers mmol m”
OMI1 BC particulate organic matter from lateral boundaries mmol m™
OM2 A dissolved organic matter from phytoplankton mmol m”
oM?2 7 dissolved organic matter from zooplankton mmol m™
OM?2 R dissolved organic matter from rivers mmol m™
OM2 BC  dissolved organic matter from lateral boundaries mmol m™
CDOM colored dissolved organic matter ppb
NH4 ammonium mmol m™
PO4 phosphate mmol m”
Si silica mmol m™
NO3 nitrate mmol m”
02 oxygen mmol m”
DIC dissolved inorganic carbon mmol m™
Alk alkalinity mmol m™

1089
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1090 Table 3. Optical parameters.

Symbol Parameter Unit Value
IOP light attenuation scheme (E1)
chi0, chil, chi2 coefficients dimensionless [-0.057, 0.482, 4.221]
coefficients
zeta0, zetal, zeta?2 dimensionless [0.183, 0.702, -2.567]
coefficients
alpha0, alphal, alpha?2 dimensionless [0.090, 1.465, -0.67]
astar490 Chla specific absorption (490 nm) m’(mg Chla m?)’! 0.020
aw490 water absorption (490 nm) m’! 0.005
astarOMA OM1 A specific absorption (490 nm) m’'(g OMI A m?)! 0.1
astarOMZ OM] Z specific absorption (490 nm)  m(g OMI Zm?)! 0.1
astarOMR OM1 R specific absorption (490 nm)  m’'(g OMI R m?)! 0.1
astarOMBC OM]1 BC specific absorption (490 nm) m'(g OMI BC m?)! 0.1
CF SPM percentage of river SPM that is OM1 R % 1.8
AOP light attenuation scheme
k,, light attenuation due to water m’! 0.146
Kedom light attenuation due to CDOM m™' (ppb CDOM)’! 0.001
Ko light attenuation due to SPM m™' (g SPM m?)"! 0.029
ko light attenuation due to Chla m™! (mg Chla m?)’ 0.024
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1092 Table 4. Phytoplankton parameters. Switches are noted when specific for a parameter.

Symbol Parameter (switch) Units Value (6 phytoplankton classes)
volcell biovolume per cell um’ [33693 2569 77429 513 547 87]
Oc carbon per cell 107" mmol C cell! [13.51.68 26.5 0.454 0.478 0.108]
umax  maximum growth rate at 20 °C d! [0.41 0.76 0.34 1.12 1.10 1.72]
alpha initial slope of the photosynthesis 10" cm?s [0.842 2.18 0.619 3.96 3.87 0.763]
versus irradiance curve quanta'd’!
beta photoinhibition (P1) 10" cm?s [1.1 1.1 1.1 1.1 1.1 1.1]
quanta'd’!
respg growth dependent respiration dimensionless [0.10.10.10.10.10.1]
respb basal respiration d’! [0.02 0.02 0.02 0.02 0.02 0.02]
OminN minimum N cell-quota 10°mmol N cell!  [6.08 0.632 12.7 0.153 0.162 0.0321]
OminP minimum P cell-quota 10" mmol P cell’  [6.190.510 13.9 0.107 0.114 0.0191]
OmaxN  maximum N cell-quota (Q2) 107" mmol N cell' [2.04 0.253 4.01 0.0685 0.0722 0.0162]
OmaxP maximum P cell-quota (Q2) 10®* mmol P cell' [1.28 0.158 2.50 0.0428 0.0451 0.0102]
Kn half saturation coefficient for N mmol N m* [4.511.935.931.131.16 0.63]
uptake
Kp half saturation coefficient for P mmol P m? [2.86 1.00 4.02 0.51 0.53 0.25]
uptake
Ksi half saturation coefficient for Si mmol Sim? [4.511.935.931.131.16 0.63]
uptake
KQOn Qn constant (Q3) mmol N m™ [5555575]
KQOp Qp constant (Q3) mmol P m™ [0.20.20.20.2 0.2 0.2]
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1094 Table 4 continued. Phytoplankton parameters

Symbol Parameter (switch) Units Value

nfQOs exponent for switch (U2) dimensionless [1T11111]
vmaxN N-uptake rate at mumax  10®* mmol N cell'd"  [4.10 0.497 8.11 0.133 0.140 0.0309]
vmaxP

P-uptake rate at mumax 10 mmol P cell’'d"! [2.68 0.204 6.15 0.0407 0.0434 0.00691]

vmaxSi Si-uptake rate at mumax ~ 10® mmol si cell'd’  [4.10 0.497 8.11 0.133 0.140 0.0309]
aN coefficient for non-limiting dimensionless [1T11111]
nutrient
Athresh  phytoplankton threshold for 107 cells m™ [777777]
zooplankton grazing
ediblevector edibility of phytoplankton dimensionless [0.250.50.250.50.6 1]

sink sinking rate m d’! [1.49 0.55 2.07 0.29 0.29 0.15]
mA mortality of phytoplankton d!

[0.041 0.076 0.034 0.11 0.11 0.17]
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1096 Table 5. Temperature parameters for phytoplankton and zooplankton (nospA = 3 + nospZ =2)
1097 as applied in the model or the Louisiana Shelf . T1, T2, and T3 denote the three temperature
1098 switches available for representing growth rate as a function of temperature. For switch T3,
1099 Tref'is converted to Kelvin in the code.

Symbo Parameter Unitl Value

T ifef reference temperature (T1, T2, T3) °C [22 25 28 24 25]
KTgl effect of T below optimal (T2) dimensionless [0.01 0.01 0.01 0.035 0.035]
KTg2  Effect of T above optimal (T2) dimensionless [0.03 0.02 0.02 0.001 0.001]
Ea R Arrhenius slope (T3) dimensionless [0.10.20.150.3 0.3]
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1101 Table 6. Zooplankton parameters.

Symbol Parameter Units Value
Zvolcell volume per individual pum® individual [2.98e+7 6.74¢+5]
ZQc carbon per individual mmol C individual™ [3.13e-4 7.08e-7]
Z0n N per individual mmol N individual™ [6.95¢e-5 1.57¢-7]
Z0p P per individual mmol P individual™ [3.77e-6 8.53¢-9]
Zslop sloppy feeding coefticient dimensionless [0.25 0]
Zeffic assimilation efficiency as a fraction of dimensionless [0.4 0.4]
ingestion
ZKa grazing half saturation coefficient pum’m [1.12e+12 1.12e+12]
Zrespg growth dependent respiration dimensionless [0.2 0.3]
Zrespb biomass (basal) dependent respiration d! [0.1 0.416]
Zumax maximum growth rate in terms of volume of ~ pm® individual ' d! [9.45e+8 2.98¢e+7]
prey
Zm  zooplankton mortality constant for quadratic m°® individual® d”! [0.00072 0.00072]
mortality
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1103 Table 7. Organic matter parameters.

Parameter Units Value
KGI decay rate of OM1_A and OM1_G y! 30
KG2 decay rate of OM2_A and OM2_G y! 30
KGI R decay rate of OM1_R y! 11
KG2 R decay rate of OM2_R y! 3.7
KG1 BC decay rate of OM1_BC y! 1
KG2 BC decay rate of OM2_BC y! 1
KG bot decay rate of OM when instantaneous remineralization is used y! 92,000
ki1l rate constant for nitrification (mmol m?)! y! 5
KO2 half-saturation constant for O, uptake mmol m™ 10
KstarO2 inhibition constant for denitrification mmol m™ 10
KNO3 half-saturation constant for denitrification mmol m™ 10
stoich_xIR initial C:P stoichiometry of OM1 R mol/mol 51
stoich_yIR initial N:P stoichiometry of OM1 R mol/mol 4.5
stoich_x2R initial C:P stoichiometry of OM2 R mol/mol 700
stoich_y2R initial N:P stoichiometry of OM2 R mol/mol 50
stoich_x1BC initial C:P stoichiometry of OM1 BC mol/mol 106
stoich_yIBC initial N:P stoichiometry of OM1 BC mol/mol 16
stoich_x2BC initial C:P stoichiometry of OM2 BC mol/mol 106
stoich_y2BC initial N:P stoichiometry of OM2 BC mol/mol 16
sink_ OM1_A sinking rate of OM1_A md 10
sink OM2 A sinking rate of OM2_A md’ 0
sink OM1 Z sinking rate of OM1_Z md’ 10
sink OM2 Z sinking rate of OM2 Z md’ 0
sink OM1 R sinking rate of OM1 R md’ 10
sink OM2 R sinking rate of OM2 R md’ 0
sink_ OM1 _BC sinking rate of OM1_BC md! 10
sink_ OM2 _BC sinking rate of OM2_BC md! 0
sink CDOM sinking rate of CDOM md! 0
Kcdom_decay decay rate of CDOM d! 0.01
K Q10 coefficient such that a 10 °C increase results in a 2-fold increase  dimensionless 0.07

in OM remineralization
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1105 Table 8. Miscellaneous parameters.

Symbol Parameter Units Value
a air-sea exchange transfer non-dimensional 2.85
b velocity coefficients non-dimensional -9.65

pCO2 atmospheric carbon dioxide ppm 380
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1107 Figure 1. CGEM conceptual model representing (a) atmospheric surface boundary forcing
1108 and air-sea exchange, (b) water-column horizontal exchange with river and ocean
1109 end-members and mechanisms regulating light, nutrient, phytoplankton functional types,
1110 zooplankton, and organic carbon dynamics, and (c) sediment processes.
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1112 Figure 2. Example light attenuation profiles of PAR using model switches for Inherent
1113 Optical Properties (IOP) and Apparent Optical Properties (AOP)). Optical parameters are set
1114 to values defined in Table 3 and a uniform Chl depth profile equal to 1 mg m™ .
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1116 Figure 3. Examples of growth rate dependence on temperature using three functional forms
1117 (T1, T2, and T3). Response curves are shown for the six phytoplankton functional types
1118 A;-Ag. (A) Temperature switch (1) uses a sigmoidal form; (B) Temperature switch (2) uses an
1119 optimum threshold temperature; (C) Temperature switch (3) uses an Arrhenius expression.
1120 Parameter values for Tref or Topt are shown and other parameters for these functions are
1121 listed in Table 5.
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1123 Figure 4. Effects of photoinhibition on growth response

1124 phytoplankton functional types 4,;-4,.
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1127 Figure 5. Examples of growth rate dependence on nitrogen (Qn) and phosphorus (Qp)
1128 internal cell quotas using three functional forms (Droop, Nyholm, and Flynn) for each of the
1129 PFTs (4,-4,). Upper plots show the functional form using quota switch Q1 (equations C11 &
1130 C12), middle plots show results using switch Q2 (equation C13) and bottom plots show

1131 results with switch Q3 (equation C14). The parameter values used are shown in Table 4.
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1133 Figure 6. Examples of growth rate dependence on phytoplankton nutrient uptake using three
1134 functional forms (Michaelis-Mentin, cell quota, and surge uptake) for each of the PFTs
1135 (A;-As). Switch U1 describes N and P uptake dependence as a function of external inorganic
1136 nutrient concentrations (equation C25). Switches U2 (equation C26) and U3 (equation C27)
1137 have nutrient uptake dependence as a function of internal cell quota (Qn and Qp). For
1138 switches Ul and U2, func_ Qs ranges from 0 to 1. For switch U3, func_Qs approaches 1 as Q
1139 approaches Qmax. The parameter values used are shown in Table 4.
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1141 Figure 7. Louisiana Continental Shelf (A) and Weeks Bay(B) CGEM model domains.
1142 LUMCON station C6, addressed in Figure 14, is highlighted in yellow.
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1144 Figure 8. Shelfwide depth integrated primary production (x10° mol d'; top panel), total
1145 respiration (x10° mol d'; middle panel), and bottom water hypoxic area (x10° km?) within the
1146 CGEM model domain. Three phytoplankton temperature growth response formulations are
1147 shown. Differences in hypoxic area at the beginning of July and at the start of the 2006
1148 LUMCON hypoxia research cruise (LUMCON; July 21% 2006) are annotated. The grey circle

1149 represents the measured hypoxic area estimated by LUMCON and Obenour et al. (2013).
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1151 Figure 9. (A) Timeseries of phytoplankton functional type response in units of depth
1152 integrated carbon (mmol) for the central continuous monitoring site in Weeks Bay, AL (Jarvis
1153 et. al., 2023) using the optimum temperature threshold switch (T2). Timeseries response to an
1154 increased water temperature of 1.5°C (grey lines) for Diatoms (B; Tref=), Dinoflagellates (C),
1155 and Cyanobacteria (D). A full list of parameter values are provided in Jarvis et. al. (2023).
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1157 Figure 10. (a) Mean bottom dissolved oxygen (DO, mg L") during July — August 2006 for the
1158 Base model run. (b — f) Difference in bottom DO between Base model and runs that included
1159 the following sediment-water exchange switches: sediment oxygen consumption (SOC),
1160 sediment nutrient flux (NutFlux), microphytobenthos (MPB), instant remineralization (IR),
1161 and a sediment diagenesis model (SDM). Negative values indicate lower mean DO in
1162 sediment-water exchange model.
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1164 Figure 11. Hourly DO for the simulated bottom layer at the Weeks Bay mid-bay station using
1165 the base model (grey box plots) from Jarvis et. al. (2023) between April-September. Triangles
1166 represent measured mean bottom DO. Mean hourly DO from different sediment formulations
1167 during the same period are depicted for instant remineralization (IR; red), microphytobenthos
1168 production (MPB; green), sediment diagenesis (SDM; orange), and sediment oxygen
1169 consumption (SOC).
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1171 Figure 12. Snapshots of percent difference between IOP and AOP for (A) bottom irradiance fraction (2/1/2006) and (B) bottom chlorophyll
1172 (6/1/2006). Timeseries of domain integrated (C) bottom irradiance and (D) primary production for IOP and AOP model simulations. Snapshot of
1173 vertical depth profiles (E) for percent irradiance (left) and chlorophyll (right) during mid-summer at a randomly selected point on the western
1174 shelf (yellow circle depicted in (A); 29.365°N, 93.492°W). The grey line depicts the 1% light level of the euphotic zone.
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1176 Figure 13. (A-C) Mean April-September vertical depth profiles by model sigma layer at the Weeks Bay mid-bay station. (A) Fraction of surface
1177 irradiance for IOP and AOP light model simulations. (B) Mean (A ;) phytoplankton light limitation and combined percent difference in primary
1178 production between IOP and AOP per sigma layer. Black dashed line indicates the mean % surface irradiance measured during mid-morning
1179 (~10 am) and mid-afternoon (~2 pm) vertical profiles. Grey shading indicates the 25™ and 75" percentiles of irradiance observations at depth. (C)
1180 Mean DO for IOP and AOP simulations. Black dashed line indicates the mean DO from vertical profile measurements collected between
1181 8/7-8/17 2017 (Jarvis et. al., 2022). Grey shading indicates the 25" and 75" percentiles of DO observations matching sigma layer depths from
1182 vertical profiles. (D) Daily benthic production or IOP (x-axis) and AOP (y-axis) simulations.
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1185 Figure 14. Comparison of parameter sensitivities on the Louisiana Shelf at LUMCON Station
1186 C6 (See Figure 7; LUMCON, 2021) using Optimum Temperature Threshold (T2; left
1187 column), Sigmoidal (T1; middle column), and Arrhenius (T3; right column) temperature
1188 growth response formulations. Parameter sensitivites are depicted as grey shaded areas, and
1189 include a = 2°C change in phytoplankton reference temperature (7ref; A-C), £50% change in
1190 phytoplankton maximum growth rate (umax; D-F), and +50% change in phytoplankton
1191 mortality (md; G-I). Measured bottom dissolved oxygen (DO) concentrations include
1192 LUMCON (red squares) and Environmental Protection Agency (EPA; blue triangles) data, as
1193 described in (Jarvis et al., 2021). The three temperature response formulations from the Base
1194 model calibration are plotted together (J) for comparison.
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