

¹ Coastal Generalized Ecosystem Model (CGEM) 1.0: Flexible Model
² Formulations for Simulating Complex Biogeochemical Processes in
³ Aquatic Ecosystems

⁴ Brandon M. Jarvis¹, John C. Lehrter², Lisa Lowe³, Bradley Penta⁴, Yongshan Wan¹, Melissa
⁵ Duvall⁵, Cody Simmons⁶, Wilson Melendez⁶, Dong S. Ko⁴⁺

⁶

⁷ ¹US EPA, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL
⁸ 32561, USA

⁹ ²University of South Alabama and Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA

¹⁰ ³L3 Scientific Applications Consulting, Cary, NC ⁴Naval Research Laboratory, Stennis
¹¹ Space Center, MS 39529, USA

¹² ⁵US EPA, Long Island Sound Office, 888 Washington Blvd Stamford, CT 06904, USA

¹³ ⁶General Dynamics Information Technology, 109 T.W. Alexander Drive, Research Triangle
¹⁴ Park, NC, 27711, USA

¹⁵ Correspondence to: B. Jarvis (Jarvis.brandon@epa.gov)

¹⁶ ⁺ Retired, dongsko@gmail.com

¹⁷ Keywords: Water Quality Modelling; Open-Source; Ecological Modelling; Eutrophication;
¹⁸ Model Structure; Model Formulation

¹⁹ **Abstract**

²⁰ The Coastal Generalized Ecosystem Model (CGEM) is a biogeochemical model developed to
²¹ study regulating processes of water-column optical properties, water-column and benthic
²² carbon, oxygen, and nutrient cycles, and phytoplankton and zooplankton dynamics. CGEM
²³ offers numerous formulations for important rate processes, providing users flexibility in

24 altering model structure. This flexibility also provides a means for evaluating model structural
25 uncertainty and impacts on simulations, which are rarely evaluated with numerical ecosystem
26 models. As an open-source model, CGEM also offers users the option to implement new
27 formulations or modify existing routines. We also provide a full description of the model
28 formulations, state variables, and model parameters in CGEM. Using two published case
29 studies, we explore how different formulations for light attenuation, phytoplankton
30 temperature growth response, and sediment processes impact simulations. We discuss
31 CGEM's role as a new ecosystem model within the modeling community and opportunities to
32 address current and future water quality issues.

33

34 1 Introduction

35 Water quality models are an important tool for effective management of water resources.
36 Mechanistic models are now commonly applied to inform ecosystem response to various
37 physical and biological forcings in 3-dimensional space and time in lakes (Rowe et al., 2023;
38 Wool et al., 2020), estuaries (Cagle et al., 2023; Hood et al., 2021; Testa et al., 2021), and the
39 coastal ocean (Khangaonkar et al., 2018; Laurent and Fennel, 2017). When validated with
40 observations, models may also provide a more comprehensive assessment of ecosystems than
41 monitoring alone. Mechanistic models are also uniquely capable of assessing ecosystem
42 response to future conditions, making them an invaluable resource for managers and
43 policymakers in the development of management plans adaptive to local environmental
44 change and/or climate change.

45 As our understanding of coastal processes becomes more detailed, the complexity of water
46 quality models has also increased. Whether this complexity is justified or serves to improve
47 model outcomes has been a topic of debate (Anderson, 2005; Flynn, 2003; Flynn, 2005; Ward
48 et al., 2013). In one respect, simulating all relevant processes is necessary to represent the
49 main drivers, responses, and feedback that dictate a complex ecosystem's biotic and abiotic
50 state (Doney, 1999; Glibert et al., 2013). In another respect, increased model complexity
51 yields additional unconstrained processes that lead to loss of precision and added uncertainty
52 in model outcomes (Voinov and Cerco, 2010; Ward et al., 2013). Some studies demonstrate

53 that more complex models can have greater skill (Friedrichs et al., 2007; Xiao and Friedrichs,
54 2014) while others highlight enhanced uncertainty and lack of transferability for
55 over-parameterized models (Beck et al., 2017; Refsgaard et al., 2007; Wade et al., 2008).

56 Selection of functional response formulations is also an important consideration for
57 implementation of mechanistic models. A given process-based or empirical formulation may
58 prove suitable for certain conditions or ecosystems but unsuitable for others, particularly
59 when faced with fundamental shifts in ecosystem dynamics presented by climate change
60 (Ralston and Moore, 2020; Wells et al., 2015). For example, if temperature dependent
61 phytoplankton growth is represented as an optimum threshold temperature function (Cerco
62 and Noel, 2004), increased warming in climate change scenarios may result in decreased
63 rather than increased phytoplankton growth as would be expected by the Eppley curve
64 (Eppley, 1972). Therefore, selection of appropriate formulations can have a significant impact
65 on simulation response to changing physical and biological forcings, resulting in reduced
66 uncertainty in model outcomes (Jarvis et al., 2022). These issues of structural uncertainty are
67 well-known for ecosystem and water quality models but are rarely addressed (Reckhow and
68 Chapra, 1983), despite calls for ensemble modeling approaches to better evaluate model
69 uncertainty (Ganju et al., 2016).

70 The Coastal Generalized Ecosystem Model (CGEM) is a complex mechanistic model that
71 provides users the flexibility to select or build new model formulations and parameterizations
72 to best suit varying ecosystem conditions. One of the factors motivating the development of
73 CGEM is the need to evaluate how simple to complex model structures affect model outputs
74 and associated uncertainty. We hope that CGEM's flexibility in process representations will
75 further the modeling community's ability to quantify model structural uncertainty. CGEM
76 offers users different numerical formulations for eight important biogeochemical processes
77 (Table 1, described below). This flexibility can be used to test how different process
78 representations, or combinations thereof, influence a model system and can therefore be
79 leveraged to evaluate structural uncertainty (Chatfield, 1995). As an open-source modeling
80 framework CGEM also provides full transparency of the source code, allowing users to
81 evaluate model parameterization, formulations, and assumptions that may best apply to a

82 given ecosystem or process of concern. This open-source framework further allows users the
83 opportunity to add their own formulations, state variables, and parameters as required.

84 Our primary objective in this paper is to provide a full description of CGEM. We use case
85 studies to highlight how different model formulations influence important model variables
86 and simulation outcomes. We further describe the advantages and disadvantages of selected
87 formulations as applied to different ecosystem conditions and processes of concern. In the
88 following sections we describe the CGEM model and its application. The model state
89 variables and component processes, including functional forms of alternative mathematical
90 equations, are described in Section 2. A description of the CGEM modeling framework and
91 code availability are provided in Section 3. Application of CGEM to eutrophication and
92 hypoxia issues in different coastal ecosystems are presented in Sections 4 and 5, including
93 case studies of the Louisiana Shelf in the northern Gulf of Mexico and in Weeks Bay, AL.
94 Finally, a review of CGEM's role in eutrophication modeling of coastal and marine
95 ecosystems is described in Section 6. The full model equations are presented in the
96 supplemental materials.

97 2 Model Description

98 CGEM was derived from the model of Eldridge and Roelke (2010), which included
99 representations of: (1) nutrients and dissolved oxygen (DO); (2) a simple lower trophic level
100 food web consisting of six phytoplankton functional types (PFTs) and a zooplankton grazer;
101 (3) particulate organic matter derived from phytoplankton, zooplankton, and rivers, and (4) a
102 one-layer sediment diagenesis model linked to organic matter deposition to the sediments.

103 CGEM includes air-sea exchange; water column light attenuation, nutrient, phytoplankton,
104 zooplankton, and organic matter; and sediment processes (Figure 1). Initial release of
105 CGEM-1.0, hereafter referred to simply as CGEM, differs from the Eldridge and Roelke
106 (2010) model by the following: (1) CGEM code was rewritten in Fortran from the original
107 MATLAB scripts and functions; (2) the equations were generalized for 0- to 3-Dimensional
108 numerical grids; (3) an optical model of light attenuation based on inherent optical properties
109 (IOP) was incorporated (Figure 2; Penta et al., 2009); (4) PFTs and zooplankton functional
110 types were expanded to allow the use of up to 99 functional types; (5) detrital organic matter

111 was changed to represent eight organic matter classes with particulate and dissolved pools for
112 organic matter derived from phytoplankton, zooplankton, rivers, and ocean boundaries; (6)
113 Silica (Si) was added as a state variable; (7) the chlorophyll to carbon ratio (Chl:C) is
114 calculated for each PFT; and (8) alternative mathematical representations of processes,
115 referred to as code switches, were included for testing and assessing model structural
116 uncertainty, e.g. three different representations of PFT growth rate dependencies on
117 temperature (Figure 3).

118 Throughout this manuscript, names of biogeochemical processes (Table 1), model state
119 variables (Appendix A, Table 2), and parameters (Tables 3-8) are shown in italics. Process,
120 state variable, and parameter names conform to those used in the Fortran code. In section 2
121 we present the model representations of light attenuation, phytoplankton (six PFTs),
122 zooplankton, organic matter, nutrients, oxygen, and carbon dioxide using the model
123 parameterization described in (Eldridge and Roelke, 2010).

124 2.1 Light attenuation

125 Two representations of water-column light attenuation are included in CGEM (Table 1).
126 Irradiance switch (E1) calculates light attenuation as a function of absorption and
127 backscattering related to concentrations of *Chl*, *CDOM*, and *SPM* (Penta et al., 2009; Penta et
128 al., 2008) (supplemental section B, Table 3). Irradiance switch (E2) uses a simpler model to
129 calculate down-welling light attenuation based on partial attenuation coefficients (Eldridge
130 and Roelke, 2010) (supplemental equation B6, Table 3). In both cases, light attenuation varies
131 by depth as a function of the vertical distribution of modeled *Chl*, *CDOM*, and *SPM*.
132 Phytoplankton biomass is tracked in CGEM as cell abundance (A , cells m^{-3}). However, the optical
133 phytoplankton biomass calculated in terms of *Chl* ($mg\ m^{-3}$) is desired because the optical
134 model (supplemental equations B2 and B3) requires *Chl* and because field observations of
135 phytoplankton biomass are generally reported as chlorophyll-*a*. Thus, *Chl* is calculated based
136 on A , the *Chl:C*, and the fixed cellular carbon quota per cell (Q_c) (supplemental equation B4).
137 A switch is provided to (C1) input a fixed *Chl:C* ratio or (C2) calculate *Chl* based on a *Chl:C*,
138 which is calculated as a function of temperature, irradiance, and nutrient dependent growth
139 rate (supplemental equation B4) (Cloern et al., 1995). *CDOM* is loaded to the model from the

140 rivers and then allowed to decay in the model domain (supplemental equation A13).
141 Absorption due to suspended particulate matter is calculated per time step as a function of
142 particulate organic matter (OM1; supplemental equation B2). Backscattering is calculated as a
143 function of *Chl* (supplemental equation B3).

144 The light attenuation scheme (Penta et al., 2009; Penta et al., 2008) is derived from the
145 Inherent Optical Properties (IOP) based model of vertical transmittance of solar radiation of
146 Lee et al. (2005) where the attenuation of visible light is modeled as a function of depth, solar
147 zenith angle, and the IOP of the water. The vertical attenuation coefficient is a spectrally
148 averaged value with a significant portion determined by the large absorption of red
149 wavelengths by water (Lee et al., 2005). Thus, the attenuation of photosynthetic active
150 radiation (PAR) with depth is not constant – longer wavelengths (red, orange, yellow) are
151 attenuated near the surface while the longer wavelengths (blue, green) penetrate much deeper.
152 The original model was developed to simulate underwater light from ocean color satellite data
153 and the scheme was modified for inclusion in numerical simulation models (Penta et al.,
154 2009; Penta et al., 2008). The IOPs (total or as individual components) used in the model can
155 be determined from model components, literature values, external data (in situ and/or remote
156 sensing) and/or models, or any combination thereof.

157 2.2 Phytoplankton

158 For each of the six PFTs (A_i) presented in section 2, phytoplankton cell abundance ($A_i=1:6$) is
159 the net of growth, respiration, mortality, grazing, and sinking (equation A4). Specific growth
160 rates, uA_i (d^{-1}), are a function of the maximum growth rate for a PFT ($umax_i$, Table 4) and
161 growth dependence on temperature, irradiance, and nutrients. A model switch for different
162 specific growth rate formulations (Table 1) is provided to calculate the specific growth rate as:
163 (G1) a Liebig minimum being dependent on the most limiting of light, N, P, or Si
164 (supplemental equation C2); (G2) a product formulation of nutrient-limited growth and
165 light-limited growth (supplemental equation C3); or (G3) a formulation where $umax$ in the
166 light-dependent growth equations (supplemental equation C7-C9) is modified based on
167 nutrient status, i.e. $umax \cdot \min(func_N, func_P, func_Si)$ (see supplemental section C.4)

168 Model switches are also included to explore numerical representations relating specific PFT
169 growth rates to temperature, irradiance, and cellular nutrient quota (Table 1). A switch for
170 growth rate dependence on temperature (functional form described in Figure 3), provides (1) a
171 sigmoidal function (supplemental equation C4; Eldridge and Roelke, 2010) (supplemental
172 equation C4), or (2) an optimum threshold function (supplemental equation C5; Cerco and
173 Noel, 2004), or (3) an Arrhenius function (supplemental equation C6; Geider et al., 1997). A
174 switch for growth rate dependence on irradiance (supplemental equation C7) allows for (1)
175 photoinhibition (supplemental equation C8), (2) no photoinhibition (supplemental equation
176 C9) or (3) nutrient dependence of the maximum growth rate at saturating irradiance
177 (supplemental equation C10) (Flynn, 2003). Functional forms of growth rate dependence are
178 detailed in Figure 4. A switch for growth rate dependence on internal cellular nutrient quota
179 provides three cell quota formulations of increasing complexity (supplemental equations
180 C11-C14) (Droop, 1973; Flynn, 2003; Nyholm, 1978). Functional form selection via model
181 switches applies to all phytoplankton functional types.

182 Phytoplankton respiration is modeled as a function of growth and abundance (supplemental
183 equation C16). Phytoplankton mortality is modeled as a simple linear dependence of
184 abundance (supplemental equation C20). Phytoplankton losses to grazing are modeled
185 (Eldridge and Roelke, 2010; Roelke, 2000) for two zooplankton types (supplemental equation
186 C21); a macrozooplankton (Z_1) and a microzooplankton (Z_2). Zooplankton grazing rates are
187 represented as a threshold response to the biovolume of phytoplankton cells, calculated as the
188 product of cell abundance (A) and cell size ($volcell$, Table 4). Zooplankton prey on PFTs as
189 specified by an edibility vector (*ediblevector*, Table 4) where edibility for a PFT could range
190 from zero (no grazing) to one.

191 PFT internal nutrient cell quotas (Q , mmol cell $^{-1}$) are calculated as the difference of
192 phytoplankton nutrient uptake and utilization (supplemental equations A2 and A3). For N and
193 P uptake kinetics (equation C24), a model switch is provided to select from uptake kinetics
194 based on (1) Michaelis-Menten kinetics (supplemental equation C25) (Dugdale and Goering,
195 1967), or (2) a quota based form (equation C26) (Geider et al., 1998; Lehman et al., 1975), or
196 (3) a quota based form that allows for surge uptake of nutrients (equation C27) (Roelke,
197 2000). Silica uptake kinetics for diatom PFTs is modeled as a Michaelis-Menten form. When

198 a nutrient is non-limiting, its uptake rate is modified by the growth-rate limiting nutrient
199 (supplemental equation C28).

200 2.3 Zooplankton

201 For the CGEM structure presented here, Macrozooplankton (Z_1) and microzooplankton (Z_2)
202 are simulated, with Z_1 representative of a coastal copepod (length = 250 μm) and Z_2
203 representative of a ciliate herbivore (length = 50 μm). Zooplankton abundances (Z_1 and Z_2)
204 are calculated as the net of growth, respiration, and mortality (supplemental equation A8).
205 Zooplankton growth rates (individuals $\text{m}^{-3} \text{ d}^{-1}$) are a function of ingestion rates and
206 temperature ((Roelke, 2000); equation D1). Ingestion rates (mmol C, N, or P $\text{m}^{-3} \text{ d}^{-1}$) are
207 calculated as the difference between grazing rates and losses to zooplankton sloppy feeding
208 and unassimilated prey (supplemental equations D2 through D4). Zooplankton respiration are
209 the sum of growth and basal respiration terms (supplemental equation D5). Zooplankton
210 mortality (supplemental equation D8) is represented as a quadratic expression (Cerco and
211 Noel, 2004).

212 2.4 Organic matter

213 The model tracks organic matter (OM) in particulate (OM1) and dissolved (OM2) fractions
214 for four types: phytoplankton ($OM1_A$ and $OM2_A$); zooplankton ($OM1_Z$ and $OM2_Z$);
215 river ($OM1_R$ and $OM2_R$); and lateral boundary condition organic matter ($OM1_BC$ and
216 $OM2_BC$). $OM1_R$ and $OM2_R$ are loaded to the model based on observed concentrations of
217 particulate and dissolved organic carbon in the rivers entering the model domain. $OM1_BC$
218 and $OM2_BC$ are derived from user supplied inputs at open water boundaries. Phytoplankton
219 mortality is the source for $OM1_A$ and $OM2_A$. Zooplankton mortality and zooplankton
220 grazing processes (sloppy feeding, egestion, and unassimilated prey) are sources of $OM1_Z$
221 and $OM2_Z$. Loss terms for all eight of the OM types included remineralization and sinking,
222 with decay and sinking rates being model parameters (Table 7). The OM stoichiometry varies
223 based on source contributions (Table 7, supplemental equations E21 to E25) and reactions
224 (supplemental equations E28 and E31).

225 In the CGEM structure presented here, decay rates of 50 and 1 y^{-1} were assigned to OM1 and
226 OM2, respectively, derived from phytoplankton and zooplankton (Table 7). Decay rates of
227 riverine OM ($KG1_R$ and $KG2_R$) are specified by the user. We calculated these based on
228 observed riverine Biological Oxygen Demand (BOD) measurements and the river particulate
229 organic carbon (POC) and dissolved organic carbon (DOC) concentrations. Sinking rates
230 (Table 7) of organic matter are specified as 10 m d^{-1} for OM1, which is on the low end of the
231 range of sinking rates for zooplankton fecal pellets and phytodetritus (Turner, 2002). OM2 is
232 assigned a sinking rate of 1 m d^{-1} . The effect of temperature on biogeochemical rates is
233 represented using a Q10 factor = 2 (supplemental equations E32-E36).

234 2.5 Nutrients

235 Sources of $NH4$, $NO3$, $PO4$, and Si in the model (supplemental equations A17-A20) are from
236 OM remineralization (supplemental equations E49-E54), exudation by phytoplankton
237 (supplemental equations C18 and C19), excretion by zooplankton (supplemental equations D6
238 and D7) and sediments, which may be a source or loss. Losses include phytoplankton uptake
239 of $NH4$, $NO3$, $PO4$, and Si , and for $NH4$ and $NO3$ denitrification (supplemental equation E30)
240 and nitrification (supplemental equations E46 and E48).

241 Sediment-water exchanges for $NH4$, $NO3$, $PO4$, and Si ($\text{mmol m}^{-2} \text{ d}^{-1}$) may be specified,
242 based on empirical relationships, or calculated with a full sediment diagenesis model (Morse
243 and Eldridge, 2007). The sensitivity of sediment rates to temperature is governed by a Q10
244 relationship.

245 2.6 Oxygen

246 $O2$ sources and sinks in the model include $O2$ production due to photosynthesis, $O2$
247 utilization by respiration in the water-column and sediments, and air-sea exchange. $O2$
248 boundary conditions are user defined inputs. In the water-column, $O2$ is produced by
249 photosynthesis and consumed by respiration by phytoplankton and zooplankton, oxidation of
250 OM1 and OM2, and nitrification (Eldridge and Roelke, 2010; Van Cappellen and Wang,
251 1996). Similar to nutrients, a sediment boundary layer $O2$ flux may be specified with a
252 sediment switch (Table 1).

253 With sediment switch set to (0), empirically derived equations are used to specify sediment
254 oxygen demand and dissolved inorganic carbon (*DIC*) efflux as a function of bottom water *O₂*
255 concentration. Switch (2) applies empirically-derived equations relating benthic microalgal
256 *O₂* production to irradiance at the bottom (Gattuso et al., 2006; Jahnke et al., 2008; Lehrter et
257 al., 2014). Users may also apply empirically-derived formulations of nutrient fluxes (Lehrter
258 et al., 2012; Murrell and Lehrter, 2010) using switch (3). Switch (4) applies an instant
259 remineralization of OM at the sediment-water interface. Switch (5) applies the sediment
260 diagenesis model (SDM) from Morse and Eldridge (2007) and Eldridge and Morse (2008),
261 which was adapted from (Van Cappellen and Wang, 1996) and Boudreau (1996).

262 Vertical exchanges of *O₂* across the air-sea interface are modeled based on *O₂* concentration
263 gradients from surface water to atmosphere and wind speed (Eldridge and Roelke, 2010;
264 Justić et al., 2002).

265 3 CGEM Modeling Framework and Code Availability

266 CGEM is available for download via the USEPA's Center for Exposure Assessment Modeling
267 (CEAM) Hydrologic Modeling Community of Practice website
268 (<https://www.epa.gov/ceam/coastal-generalized-ecosystem-model-cgem>). Users have the
269 option of downloading a zip package of the model code directly from the website, or
270 accessing the model code from the CGEM Github repository
271 (<https://github.com/USEPA/CGEM>). Users may also provide feedback and suggestions for
272 future CGEM versions via the Github repository or by email at CEAM@epa.gov.

273 The CGEM model framework provides researchers and managers with a powerful and
274 flexible open-source modeling tool that can be implemented at varying spatial dimensions
275 (i.e. 0-dimensional to 3-dimensional) and adapted as required with new model formulations to
276 address the user's needs. CGEM features interoperability with commonly applied
277 hydrodynamic models (Environmental Fluid Dynamics Code (EFDC), Navy Coastal Ocean
278 Model (NCOM), Finite Volume Community Ocean Model (FVCOM), Semi-implicit
279 Cross-scale Hydroscience Integrated System Model (SCHISM)) across a range of spatial
280 scales in coastal and freshwater ecosystems. A pre-processing tool is also available for users

281 to easily set up CGEM applications with EFDC, an established hydrodynamic model
282 commonly applied to freshwater and coastal ecosystems of varying scale.

283 While this manuscript focuses on CGEM, the CGEM framework includes two water quality
284 models that are available to the user within a single code base. Users can switch between
285 CGEM and the Water Quality Eutrophication Model (WQEM) model formulations based on
286 specific modeling needs. The WQEM model, previously published as the Gulf of Mexico
287 Dissolved Oxygen Model (GoMDOM), is based on the Integrated Compartment Model
288 (CE-QUAL-ICM) model (Cerco et al., 1995). A description of the WQEM model and its
289 formulations is provided with CGEM model documentation as well as in numerous
290 publications (Feist et al., 2016; Melendez, 2009; Pauer et al., 2020).

291 CGEM provides a simple text interface to parameterize model setup. Users choose between
292 multiple model switches (e.g. varying phytoplankton temperature formulations, nutrient
293 uptake options, etc.) and define values for biogeochemical rate processes. Model grid
294 dimensions and initial conditions are also entered in text format. CGEM reads water column
295 advection, state variables, and boundary conditions as netcdf files. Simulation output from
296 CGEM is in a netcdf format. Users can extract and visualize data from netcdf as needed and
297 may also utilize a series of R scripts to visualize model data provided as part of the model
298 download package.

299 4 Ecosystem Application

300 We have applied CGEM in two different coastal ecosystems of varying scale (Figure 7). The
301 Louisiana Continental Shelf model evaluates seasonal hypoxia resulting from Mississippi
302 River Basin nutrient loads (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017). CGEM
303 in Weeks Bay examines diel oxygen dynamics in a shallow hypereutrophic estuary (Jarvis et
304 al., 2023). Detailed model calibration statistics and illustrations are provided in the respective
305 manuscripts for both model implementations. Broadly, model calibration for both the
306 Louisiana Shelf and Weeks Bay were performed in a non-automated fashion based on CGEM
307 specific sensitivity analysis described in Beck et al. (2017). On the Louisiana Shelf CGEM
308 was calibrated for 2006 and was validated across a 5-year period from 2003-2007 (Jarvis et
309 al., 2020). Weeks Bay simulations were not validated beyond the one-year simulation period

310 (2015), however multiple benthic simulation processes were evaluated to determine their
311 effects on simulating oxygen dynamics in shallow coastal ecosystems (Jarvis et al., 2023).
312 Model calibration and validation performance for both models applied numerous statistical
313 measures, including R^2 , mean absolute error (MAE), root mean square error (RMSE),
314 normalized RMSE (NRMSE), Index of Agreement (IA), bias, and skill (Wilmott, 1981). For a
315 detailed description of parameter sets and model structure applied to the Louisiana Shelf and
316 Weeks Bay models please refer to Jarvis et al. (2020) and Jarvis et al. (2023), respectively.

317 In this paper, we use these two model applications to demonstrate the effects of model
318 structure on simulation outcomes. Specifically, we focus on spatially and temporally
319 integrated model outcomes to best describe the differences produced by the various model
320 switch options provided in CGEM. The two model applications are described briefly below to
321 establish the basis for subsequent analyses.

322 4.1 Louisiana Continental Shelf

323 Bottom water hypoxia on the Louisiana continental shelf (LCS) in the northern Gulf of
324 Mexico (Figure 7) is the second largest area of eutrophication driven marine hypoxia in the
325 world (Rabalais et al., 2002). Seasonally recurring hypoxia on the LCS ranged between 40 to
326 22,720 km² during 1985 to 2023 (LUMCON, 2021), and varies interannually with spring
327 discharge and nutrient concentrations from the Mississippi-Atchafalaya River Basin (MARB)
328 (Greene, 2009; Turner and Rabalais, 2003). The CGEM model domain on the Louisiana Shelf
329 extends from east of the Mississippi River Delta (~88.2°W) to west of Atchafalaya Bay
330 (~93.2°W) and covers the nearshore coast at depths ≤ 5 m to depths ≥ 100 m offshore (Figure
331 7). CGEM was coupled with a hydrodynamic model, NCOM, which had a horizontal grid
332 resolution of 2 km x 2 km and included 20 vertical sigma layers from 5-100 m depth and up
333 to 14 hybrid coordinate layers at depths greater than 100 m. Implementation of CGEM
334 applied here is the same as described in detail in previous publications (Jarvis et al., 2021;
335 Jarvis et al., 2020; Lehrter et al., 2017), and includes three phytoplankton and two
336 zooplankton functional types, an advanced light attenuation model (Penta et al., 2009; Penta
337 et al., 2008), and Droop cell-quota nutrient kinetics (Droop, 1973).

338 **4.2 Weeks Bay**

339 Weeks Bay is a hypereutrophic sub-estuary of Mobile Bay (Figure 7). The shallow (mean
340 depth ~1.4 m) microtidal (tide range ~0.4 m) estuary has a high ratio of watershed area to
341 estuary surface area (~71), resulting in extremely high gross primary production rates
342 exceeding 825 g carbon m⁻² y⁻¹ (Caffrey et al., 2014; Lehrter, 2008). Weeks Bay has a
343 multi-decadal record of DO and other water quality monitoring due to the establishment of the
344 Weeks Bay National Estuarine Research Reserve (NERRS) in 1986, making it an excellent
345 test case for modeling with an abundant dataset available for calibration. CGEM in Weeks
346 Bay was coupled with an EFDC hydrodynamic model to evaluate fine-scale diel-cycling
347 vertical DO gradients (Jarvis et al., 2023). That model is applied here to evaluate the effects of
348 alternate formulations in CGEM on simulation results.

349 **5 Effects of model structure on simulation outcomes**

350 To compare the effects of model structure on simulations in contrasting coastal ecosystems we
351 applied the Louisiana Shelf and Weeks Bay models using the same parameterization and setup
352 as described in previous publications (Jarvis et al., 2023; Jarvis et al., 2020); Lehrter et al.
353 (2017). In this paper, we address three parameter sets that control important processes in
354 coastal ecosystems and which have a significant effect on model outcomes (Beck et al., 2017).
355 These parameter sets involve phytoplankton temperature response kinetics, benthic processes,
356 and light attenuation. We focus on simulation of phytoplankton concentration and growth,
357 total respiration, and bottom water DO, as they are critical eutrophication response pathways
358 and water quality criteria parameters applied to eutrophication studies in coastal and marine
359 ecosystems.

360 **5.1 Phytoplankton temperature response and application to future climate modeling**

361 Phytoplankton play a critical role in the marine biogeochemical cycle and are the primary
362 pathway for converting nutrients to organic matter in surface waters. However, there is little
363 agreement regarding the necessary complexity for modeling phytoplankton dynamics in
364 coastal and marine ecosystems (Priyadarshi et al., 2022). Simple
365 nutrient-phytoplankton-zooplankton-detritus (NPZD) modeling approaches have been used

366 for many decades but may overly simplify the phytoplankton pool as a single functional type
367 (Anderson, 2005). Conversely, more complex modeling approaches that incorporate multiple
368 phytoplankton functional types (i.e., diatoms, dinoflagellates, cyanobacteria, etc.) face
369 considerable challenges in parameterizing the various functional forms often with minimal
370 data (Flynn, 2003; Flynn, 2005).

371 Complexity in simulating phytoplankton dynamics extends beyond selection of functional
372 forms, with numerous formulation options available to modelers for simulating important
373 growth and nutrient uptake dynamics. CGEM includes formulation switches for variable
374 growth rates, temperature response, photosynthesis-irradiance relationships,
375 chlorophyll:carbon ratio, internal cell quota nutrient dependent growth, and nutrient uptake
376 kinetics (Table 1). Here we compare simulation outcomes with three phytoplankton
377 temperature dependent growth formulations, including sigmoidal, optimum threshold, and
378 Arrhenius functions.

379 5.1.1 Louisiana Shelf: Primary Production, Respiration, and Hypoxia

380 Application of different temperature growth response curves (section 2.2 and Figure 3) alters
381 the timing and magnitude of phytoplankton growth during the spring-summer period during
382 which phytoplankton growth rates are highest. On the LCS daily depth integrated primary
383 production and total respiration rates using an Arrhenius growth curve were 17% to 33%
384 higher than other growth curve formulations during the peak of summer production (Figure
385 8). By comparison a sigmoidal growth curve produced lower total primary production and
386 respiration throughout the spring-summer-fall. The optimum threshold growth curve produced
387 the greatest spring growth of all formulations beginning April through June as waters warmed
388 above 27°C, followed by a 52% and 37% decrease in production and respiration, respectively,
389 as water temperatures increased above the set optimum threshold temperature (Table 5).

390 These growth formulations also significantly affect estimates of hypoxic area, the principal
391 endpoint of management concern on the Louisiana Shelf and the sole metric used to guide
392 management decisions. Differences in hypoxic area obtained using the three temperature
393 response curves varied by 8,952 km² (48%) at the beginning of July (Figure 8). Generally,
394 selection of phytoplankton temperature dependent growth formulations can have important

395 consequences for simulating the timing and magnitude of phytoplankton growth and
396 community composition shifts in response to changes in future warming (Ralston and Moore,
397 2020).

398 **5.1.2 Weeks Bay: PFT Response to Climate Forcing**

399 Mean surface temperatures in coastal ecosystems are steadily rising (IPCC, 2014) and are
400 forecast to produce significant shifts in marine and coastal phytoplankton community
401 composition (Henson et al., 2021). Differences in optimum growth temperatures for
402 phytoplankton functional types commonly result in predictable shifts in phytoplankton
403 assemblages. For example, diatoms and green algae that are abundant in lower temperatures
404 are typically dominated by dinoflagellates and cyanobacteria as surface water temperatures
405 warm (Paerl and Huisman, 2008). Modelers can reproduce these temperature driven dynamics
406 by selecting and parameterizing the appropriate temperature growth response curves to mimic
407 observed conditions.

408 In Weeks Bay we applied the optimum threshold temperature growth curve to induce
409 phytoplankton community shifts, as temperature is the dominant forcing mechanism for
410 phytoplankton community assemblages in the estuary (Novoveska and MacIntyre, 2019). This
411 formulation was ideal in this situation because of the importance of temperature as a driver in
412 phytoplankton community composition shifts, as opposed to species advantages in prey
413 avoidance or nutrient uptake and utilization. Simulations produced three distinct shifts in
414 phytoplankton assemblages (Figure 9) driven by the parameterized optimal temperature
415 thresholds (diatoms: 21°C; dinoflagellates: 25°C, and cyanobacteria: 28°C). Similar shifts in
416 phytoplankton community structure were not observed using the sigmoidal or Arrhenius
417 curves, although similar results may be obtained through significant additional effort in
418 parameterizing and calibrating nutrient uptake kinetics and zooplankton grazing and mortality
419 parameters when these temperature growth response curve switches are applied.

420 The timing and magnitude of peak spring-summer phytoplankton assemblages varied in
421 response to a uniform increase in surface water temperature of 1.5°C applied to evaluate
422 climate change effects (Lehrter et al., 2017). Early spring diatom assemblages were 18%
423 lower under future warming conditions with an earlier April peak in concentrations as well as

424 earlier dissipation in May (Figure 9). Dinoflagellates increased ~42% during an earlier May
425 peak that quickly dissipated by June. Cyanobacteria also responded to warming with earlier
426 summer growth, transitioning peak concentrations ~4 weeks earlier than under current
427 conditions. Higher water temperatures throughout summer damped cyanobacteria
428 concentrations an average of 33% between June through September (Figure 9).

429 This case study of simulated phytoplankton assemblages in Weeks Bay demonstrates the
430 utility of multiple functional types in CGEM for simulation of real-world conditions. Data
431 describing phytoplankton communities are becoming more common as gene sequencing
432 techniques continue to improve and become more cost efficient (Bourlat et al., 2013), and
433 thus more effective data driven parameterization may be utilized for defining functional forms
434 in complex simulation models. This is becoming increasingly important for evaluating climate
435 change effects, as increasing water temperatures may alter phytoplankton assemblages,
436 including the timing and collapse of bloom events (Lake and Brush, 2015; Nixon, 1995).

437 Given a choice among temperature growth response relationships, users must carefully
438 consider the best formulation for their objectives. For example, while application of optimum
439 temperature thresholds may produce the desired community composition shifts, inadequate
440 parameterization may result in rapid decline in phytoplankton communities once optimum
441 temperatures are exceeded. In this instance modelers may need to re-parameterize the model
442 to adjust for higher temperature effects or consider application of a sigmoidal approach where
443 growth remains high at elevated temperatures, simplifying parameterization to adjusting for
444 the optimum temperature only. In these instances, we strongly recommend that users review
445 functional forms of the model formulations that are applied to guide decision making and best
446 practices for site specific calibration.

447 5.2 Benthic modeling and its impact on water column processes

448 In shallow coastal ecosystems, dissolved oxygen and nutrient fluxes at the sediment-water
449 interface are an important factor regulating biogeochemical feedback between the water
450 column and sediments. Sediments can affect water column biogeochemistry over long
451 timescales as either a source and/or sink of nutrients and organic matter (Toro et al., 1990) and
452 can also influence bottom water conditions over short timescales (Albert et al., 2021; De

453 Borger et al., 2021; Jarvis et al., 2023). Simulation of sediment processes in water quality
454 models varies greatly, with approaches including parameterized aerobic decay with advection
455 and mixing (Jarvis et al., 2021; Jarvis et al., 2020; Lehrter et al., 2017), instant
456 remineralization (Fennel and Laurent, 2018; Jarvis et al., 2023; Laurent et al., 2018; Pauer et
457 al., 2020), sediment diagenesis (Xia and Jiang, 2016; Zhang et al., 2015), and parameterized
458 sediment oxygen consumption (Di Toro, 1984; Hu and Wang, 2018; Terry et al., 2017).

459 When sediment switches are turned off in CGEM, organic matter (OM) that sinks to the
460 bottom model layer is subjected to remineralization (Appendix E). CGEM also includes
461 several sediment formulation options: zero-order sediment oxygen consumption (SOC),
462 parameterized sediment nutrient fluxes (NutFlux), oxygen production via microphytobenthos
463 (MPB), instant remineralization of OM (IR), and a sediment diagenesis model (SDM) based
464 on Eldridge and Morse (2008).

465 5.2.1 Louisiana Continental Shelf: Effects of Simulated Sediment Processes on Bottom 466 DO

467 Prior modeling studies have demonstrated the outsized importance of diagenetic processes on
468 development of bottom-water hypoxia on the Louisiana Shelf (Fennel et al., 2013; Fennel and
469 Testa, 2019; McCarthy et al., 2013). Efforts to improve representation of diagenetic processes
470 in biogeochemical models for the LCS have focused on parameterization of sediment-water
471 fluxes (Laurent et al., 2016; Lehrter et al., 2012), as well as the effects of sediment
472 resuspension (Moriarty et al., 2018) and sub-pycnocline primary production (Lehrter et al.,
473 2009; Yu et al., 2015) on bottom water oxygen.

474 The CGEM parameterization published on the LCS (described here as the "Base" model) does
475 not impose any sediment switch formulations, thus OM settled to the bottom is mixed and
476 advected while undergoing aerobic decay (Jarvis et al., 2020). This formulation resulted in
477 higher nearshore DO and hypoxic ($DO \leq 2 \text{ mg L}^{-1}$) bottom water at mid-depths across the
478 shelf (Figure 10a). The SOC switch imposes a draw down of oxygen from the sediment that
479 varies non-linearly with temperature and DO, such that the magnitude of sediment oxygen
480 consumption increases when DO and temperature increase. In the LCS the largest decrease in

481 mean summertime bottom DO due to SOC was observed at nearshore locations with elevated
482 DO concentrations in the Base model (Figure 10b).

483 When the NutFlux switch is activated, nutrients are exchanged at the sediment-water interface
484 based on observed relationships (Lehrter et al., 2012). This switch compromises strict model
485 mass balance, however mass balance should be approximately correct if the empirical
486 relationships included in the model reflect local, site-specific conditions. In northern GOM,
487 changes in bottom DO between Base and NutFlux model runs were attributable to changes in
488 water column nutrient concentrations. The empirically derived NO_3 flux at the sediment-water
489 interface varied linearly with DO, such that the largest increases in water column NO_3
490 corresponded to locations with elevated bottom DO in the Base model. Changes in nutrient
491 concentrations altered water column respiration and primary production, the balance of which
492 determined relative shifts in bottom DO between NutFlux and Base runs (Figure 10c).

493 The MPB switch simulates microphytobenthos production which is controlled by irradiance at
494 the sediment-water interface. There are several empirical models relating microphytobenthos
495 production to light availability included in CGEM. For most of the model domain, MPB is
496 zero due to insufficient irradiance at the bottom model layer. The greatest increase in bottom
497 DO associated with MPB production was observed at locations where more than 10% of
498 surface irradiance reached the bottom (Figure 10d).

499 When the IR switch is turned on, OM is instantaneously remineralized when it sinks to the
500 bottom layer. The IR switch preserves mass balance at the expense of realistic lag times
501 associated with sediment diagenesis. In northern GOM, IR increased DO in locations with
502 low bottom DO in the Base model (Figure 10e). These locations generally had elevated OM
503 in the Base model, which increased water column nutrient concentrations when IR was
504 activated. The net effect of decreased OM and increased nutrients was increased bottom DO
505 due to decreased respiration and/or increased production. On the other hand, IR decreased DO
506 concentrations in areas with high DO. In the Base model these areas had lower OM and
507 turning on IR decreased primary production resulting in lower DO.

508 The sediment diagenesis switch employs a highly vertically resolved (> 400 layers) sediment
509 model that provides a realistic mass balance accounting of sediment fluxes and OM

510 remineralization (Eldridge and Morse, 2008). In northern GOM, SDM slightly decreased
511 nearshore bottom DO, but overall resulted in little change (Figure 10F). Changes in bottom
512 DO are attributable to changes in fluxes at the sediment-water interface. The magnitude of the
513 oxygen flux was greater in the SDM model, implying greater sediment oxygen demand in the
514 SDM model compared to the Base model.

515 5.2.2 Weeks Bay: Sediment Effects on Diel-Cycling DO

516 In shallow ecosystems sediment processes often play an important role in water column
517 conditions. In addition to impacting smaller water volumes, generally higher irradiance at the
518 sediment-water interface can result in enhanced algal growth at depth and the need to account
519 for microphytobenthic production in model simulations. Weeks Bay's hypereutrophic state
520 results in enhanced OM sedimentation, resulting in elevated SOD rates that yield strong
521 vertical gradients in observed bottom DO (Jarvis et al., 2023). Simulation of strong diel DO
522 gradients in shallow ecosystems such as Weeks Bay are challenging, as bottom layer diel DO
523 dynamics range from anoxia in the early morning hours to supersaturation during the day
524 (Figure 11). The CGEM model in Weeks Bay successfully simulated these dynamics using an
525 instant remineralization approach that rapidly consumed OM settled from the water column as
526 well as incorporation of microphytobenthos for benthic DO production (Jarvis et al., 2023).

527 Here we apply alternative sediment formulations to evaluate their effects on bottom water
528 DO. None of the formulations applied on their own matched the range of observed daily DO
529 gradients. Both instant remineralization and parameterized SOC resulted in dampened oxygen
530 concentrations throughout the diel cycle, ranging between 60-110 and 50-90 mmol m⁻³,
531 respectively (Figure 11). Application of microphytobenthic production resulted in higher DO
532 concentrations that never reached hypoxic conditions, but matched observed daytime peak
533 DO concentrations (Figure 11). DO simulation using the sediment diagenesis model closely
534 matched mean diel DO gradients from the Base model, but still failed to match the lowest and
535 highest DO observations. The diagenesis model did, however, produce the greatest diel DO
536 gradients of any single model switch, validating the approach for a more realistic
537 approximation of sediment processes that more directly respond to water column conditions
538 and OM production. This was identified as a key shortcoming of the modeling approach from

539 (Jarvis et al., 2023), as a well calibrated sediment diagenesis model and more explicit benthic
540 algae parameterization is needed to improve simulation of benthic-pelagic coupling over long
541 time periods and in response to changing environmental forcing conditions and management
542 actions.

543 5.3 Light attenuation effects on phytoplankton production

544 Temporal and spatial variability in optical properties of water is a fundamental control of
545 biogeochemical processes in waterbodies (Dickey and Falkowski, 2002). Light attenuation
546 through the water column is a critical factor affecting phytoplankton growth (Cole and
547 Cloern, 1984; Kromkamp et al., 1995), distribution of heat and stratification (Hocking and
548 Straškraba, 1999; Morel, 1988), and photochemical production and destruction of chemical
549 compounds (Dickey et al., 2006). Given the unique importance of light on phytoplankton
550 growth and survival, it is important for ecosystem models to accurately represent light
551 distribution through the water column. CGEM provides users the option between a complex
552 (IOP) and a simple Apparent Optical Properties (AOP) light attenuation scheme, described in
553 detail in Section 2.1 and Supplemental B (optical equations). Here we present a comparison of
554 simulation outcomes using both light attenuation models in different ecosystems, emphasizing
555 light penetration and its impact on phytoplankton production and hypoxia.

556 5.3.1 Louisiana Continental Shelf: Light Attenuation Effects of Primary Production 557 and Bottom Chlorophyll

558 A twin experiment was run for the LCS domain with all switches, inputs, and parameters
559 identical except for the light model used. With the initial conditions of chlorophyll, CDOM,
560 and SPM, the IOP light scheme allowed deeper light penetration into the water compared to
561 the AOP scheme, reaching the bottom layer over most of the shelf (Figure 12A and 12C).
562 Differences in light attenuation resulted in higher bottom chlorophyll that varied spatially
563 across the nearshore shelf (Figure 12B), patterns of which may also result from nutrient
564 limitation or grazing pressure variances due to the different evolutions of the two model runs.
565 The IOP model run, when integrated over the entire bottom layer, maintained deeper light
566 penetration throughout the 426 day simulation (Figure 12B), further resulting in higher

567 bottom chlorophyll concentrations. This light field supported higher vertically integrated
568 primary production on the shelf for most of the yearly cycle, the exception being Nov-Dec
569 when the two model primary productivities were similar in magnitude (Figure 12D). The IOP
570 model produced a deeper euphotic zone (58m) compared to the AOP model (16m) as defined
571 by the depth of the 1% light level (Figure 12E).

572 Differences in primary production driven by the different light attenuation models further
573 impact simulation of hypoxia. Mechanistic models applied to the Louisiana Shelf demonstrate
574 high sensitivity in hypoxia outcomes based on the timing and location of phytoplankton
575 production on the shelf (Jarvis et al., 2022; Pauer et al., 2020). In our simulations we observed
576 a ~6% decrease in hypoxic area and a delay of nearly 20 days in hypoxia formation during
577 mid-spring using the AOP model compared to IOP simulations (data not shown). Given the
578 differences in light penetration, primary production, and hypoxia observed in our simulations
579 modelers should more carefully evaluate how light model selection may impact their
580 modeling objectives. Failure to adequately simulate light dynamics can result in a cascade of
581 challenges due to differences in the simulated timing and magnitude of phytoplankton
582 production at depth.

583 5.3.2 Weeks Bay: Light Attenuation Effects on Primary Production and Benthic 584 Production

585 Light attenuation effects in coastal ecosystems are especially important in shallow
586 waterbodies where benthic primary producers contribute a greater percentage of total primary
587 production. In Weeks Bay (mean depth <1.4 m) application of the IOP light model resulted in
588 an ~11% increase in bottom light availability compared to the AOP model (Figure 13A).
589 Reduced light availability in the AOP model resulted in a two-fold increase in phytoplankton
590 light limitation and ~14% decrease in bottom primary production in the bottom layer of the
591 model April through September (Figure 13B). Daily benthic production in the AOP model
592 never exceeded 10 mmol m⁻² d⁻¹ during this period, whereas the IOP model yielded benthic
593 production rates >40 mmol m⁻² d⁻¹ when bottom irradiance was greatest (Figure 13D). These
594 benthic production rates result in a 50 mmol m⁻³ difference in mean bottom layer oxygen
595 concentrations (Figure 13C).

596 Measured benthic production rates in Weeks Bay constitute between 21-27% of water column
597 production (Caffrey et al., 2014; Schreiber and Pennock, 1995), making benthic algal
598 production an important rate process that simulation models must include to adequately
599 reproduce bottom layer oxygen dynamics (Jarvis et al., 2023). In these simulations the IOP
600 formulation yields as much as a 4-fold increase in benthic oxygen production compared to the
601 AOP model. Models that include simple attenuation formulations may therefore struggle to
602 match oxygen variability observed in systems similar to Weeks Bay. Modelers must also
603 consider the spatiotemporally dynamic nature of variables controlling light attenuation (i.e.,
604 suspended sediment, chlorophyll, CDOM, salinity, etc.) when selecting and evaluating a light
605 model (Ganju et al., 2014).

606 6 Eutrophication Modeling in Coastal and Freshwater Ecosystems

607 Water quality modeling in coastal and freshwater ecosystems commonly utilize a range of
608 disparate models established for site specific ecosystem applications or management needs
609 (Ejigu, 2021; Gao and Li, 2015; Mateus et al., 2018). One reason for dissimilar modeling
610 approaches in aquatic ecosystems is the range of complex ecosystem processes that challenge
611 a given model's ability to be generalizable and transferrable among seemingly similar
612 ecosystems (Beck et al., 2017; Ganju et al., 2016). CGEM's structural flexibility addresses
613 these concerns by providing users with options to select appropriate biogeochemical
614 formulations to suit site specific conditions and to better evaluate how different model
615 structures affect simulation results. For example, a combined instant remineralization and
616 benthic algae simulation approach is proved necessary to resolve highly dynamic diel oxygen
617 conditions in Weeks Bay. However, neither approach seems suitable for the Louisiana Shelf,
618 as microphytobenthos production had minimal impact on nearshore DO (Figure 10d) and
619 instant remineralization resulted in displacement of hypoxia from mid-depths (Figure 10e)
620 where it is commonly observed (Jarvis et al., 2022). Structural flexibility is an important
621 consideration for implementing effective models in support of management action and policy
622 development, as modelers must clearly convey model assumptions and uncertainties to
623 decision makers. Water quality models incorporating different structural equations are
624 uncommon but not unheard of. For example, USEPA's Water Quality Analysis Simulation

625 Program (WASP; (Wool et al., 2020)) has been recently updated to provide users the option of
626 implementing phytoplankton temperature growth response curves comparable to the
627 Arrhenius (Geider et al., 1997) and optimum threshold temperature growth (Cerco, 2007)
628 response curves provided in CGEM.

629 By offering multiple formulation options CGEM further allows for comparison of model
630 structural uncertainty with parameter and observational uncertainty. As an example, we
631 demonstrate how parameter sensitivity of bottom water DO at a frequently monitored site on
632 the Louisiana Shelf (LUMCON Station C6; LUMCON, 2021) varies across model
633 formulations of phytoplankton temperature growth response (Figure 14). Differences in
634 bottom water DO due to structural variations (i.e. selection of temperature response
635 formulations) are relatively small compared to parameter variability and follow similar
636 patterns throughout the timeseries (Figure 14J). The effect of phytoplankton temperature
637 response is particularly apparent in the shift between higher bottom water DO in early
638 summer (May-July) and late summer (August-October) using the sigmoidal and optimum
639 temperature formulations, respectively, mirroring shifts in primary production driven by the
640 different formulations (Figure 8).

641 In comparison, parameter sensitivities vary among the different formulations and in response
642 to warming summer temperatures. In the case of reference temperature (T_{ref}), the optimum
643 temperature threshold formula (T2) is the only formulation demonstrating sensitivity to a 2°C
644 change in reference temperature (Figure 14A). Further, the optimum temperature threshold
645 formula is most sensitive to parameter uncertainty for both the maximum growth rate and
646 mortality coefficient, particularly in late summer when water temperatures are likely to
647 exceed the reference temperature (T_{ref}). Conversely, the Arrhenius (T3) formulation's
648 exponential response rate at higher temperatures results in reduced parameter sensitivity
649 beginning mid-late summer when waters are warmest (Figure 14I). While all of these models
650 reasonably reproduce observed seasonal oxygen dynamics, the varying sensitivity to model
651 parameterization has important implications for model outcomes, particularly when
652 evaluating model transferability and for conveying estimates of uncertainty to decision
653 makers. Further, model structural uncertainty plays an important role in parameter and
654 predictive uncertainty (Højberg and Refsgaard, 2005; Moges et al., 2021; Rojas et al., 2008),

655 however studies evaluating the impact of structural uncertainty in highly parameterized water
656 quality models is lacking. CGEM addresses this issue by providing modelers with a highly
657 flexible modeling framework uniquely suited to address the combined effects of structural and
658 parameter uncertainty.

659 As policy tools, mechanistic models remain an important means for addressing eutrophication
660 and hypoxia issues in freshwater and coastal ecosystems. However, existing models face new
661 challenges in the face of global climate change and emerging modeling needs such as harmful
662 algal blooms (HABs) and coastal acidification. To date HABs modeling has progressed
663 primarily through numerous regional applications, with successful parameterization focusing
664 on nutrient loading, light, temperature, and pH (Flynn and McGillicuddy, 2018). As nascent
665 HABs modeling techniques continue to advance, new applications of mechanistic models are
666 needed to help inform multiple stressors on HAB and non-HAB species (Anderson et al.,
667 2013; Wells et al., 2015), with selection of biological model formulations an important factor
668 in determining model outcomes (Ralston and Moore, 2020). CGEM includes unlimited
669 phytoplankton functional types and numerous nutrient, light, and growth kinetic formulation
670 options to aid in parameterization of HAB and non HAB species. CGEM also includes
671 zooplankton growth and edibility kinetics that are important but complex factors in dictating
672 predator-prey interaction that change in response to warming temperatures and impact bloom
673 development (Wells et al., 2015). As our understanding of model kinetics and rate processes
674 improve based on progress in field and laboratory studies it is important that modelers have
675 the capacity to actively update source code to improve and test new model formulations, as is
676 offered through CGEM.

677 Eutrophication enhanced acidification is another emerging issue with a small but growing
678 number of mechanistic models applied to evaluate carbonate and acidification dynamics in
679 coastal and estuarine ecosystems (Hauri et al., 2013; Laurent et al., 2017; Pacella et al., 2018;
680 Shen et al., 2019). Evaluating acidification and oxygen dynamics is especially important for
681 protection of aquatic life, as the cumulative effects of reduced pH and low DO threaten
682 marine life through increased mortality, altered food web structure, and changes to
683 biogeochemical cycling and ecosystem function (Gobler and Baumann, 2016). CGEM
684 includes simulation allowing for calculation of pH, partial pressure of carbon dioxide (pCO₂),

685 dissolved inorganic carbon (DIC), and total carbonate alkalinity (TA), providing a
686 mechanistic link between nutrient loads and organic matter production and respiration that
687 directly affect DO and pH conditions. CGEM may therefore serve as a valuable tool for
688 informing acidification and DO conditions as well as forecasting ecosystem response to
689 proposed management actions and reduced nutrient loads.

690 7 Conclusions

691 In this paper we fully describe the formulations, state variables, and parameter sets within
692 CGEM, a complex biogeochemical model for simulating lower trophic levels in aquatic
693 ecosystems. As an open-source model CGEM provides users the flexibility to modify the
694 source code and test new model formulations against existing methodologies. CGEM enables
695 easier model setup and facilitates user development of more advanced model formulations.
696 CGEM's flexibility to adapt model formulations also allows for easier assessment of model
697 structural uncertainty, which can have a significant effect on simulation outcomes (Beck et al.,
698 2017; Jarvis et al., 2022). This is an important feature in the state-of-the-science of water
699 quality modeling.

700 CGEM has been successfully implemented in coastal marine environments of varying scales
701 using different hydrodynamic models, summarized here in two case studies of the Louisiana
702 Continental Shelf and Weeks Bay, AL. These case studies highlight CGEM's adaptability in
703 simulating seasonal versus hourly dynamics in ecosystems ranging from shallow
704 hypereutrophic estuaries to the nearshore coastal ocean. Results further underscore how the
705 different formulation options included in CGEM may be utilized to address varying
706 environmental conditions and simulation goals. It is important that modelers understand how
707 a given formulation will impact simulations, and we therefore provide visual illustration of
708 functional forms of the various model formulations available in CGEM (Figures 2 through 6).

709 To facilitate future CGEM implementation we are working to expand CGEM's hydrodynamic
710 model compatibility beyond the existing EFDC and NCOM model linkages, including future
711 tools for linking CGEM to the Finite Volume Community Ocean Model (FVCOM; (Chen et
712 al., 2006; Chen et al., 2003)) and Semi-implicit Cross-scale Hydroscience Integrated System
713 Model (SCHISM; (Zhang and Baptista, 2008)). We are also integrating CGEM with the U.S.

714 Navy's Hybrid Coordinate Ocean Model (HYCOM), which when complete will allow for
715 CGEM implementation using publicly available hydrodynamic model output for the coastal
716 ocean across the globe. As part of these updates CGEM is being applied to address large scale
717 climate change and hypoxia issues in the northern Gulf of Mexico, including new forcings for
718 atmospheric-nitrogen deposition from the Community Multiscale Air Quality Model (CMAQ)
719 and watershed nutrient loads from the Soil and Water Assessment Tool (SWAT). Finally, we
720 are investigating options for incorporating CGEM within the Framework for Aquatic
721 Biogeochemical Models (FABM) to facilitate linkage with a larger number of hydrodynamic
722 models (Bruggeman and Bolding, 2014).

723 Future CGEM releases will continue to add additional model flexibility to simulate ecosystem
724 processes more realistically. For example, fixed carbon to chlorophyll ratios implemented on
725 the Louisiana Shelf and Weeks Bay may be better represented by a more advanced calculation
726 of variable carbon to chlorophyll ratios in response to light and temperature (Cloern et al.,
727 1995; Geider, 1987). Additional model flexibility will allow for formulation options to vary
728 among phytoplankton functional types to better match simulated phytoplankton growth with
729 biological adaptations. CGEM will also be updated to simulate important carbonate variables
730 and ions (such as manganese, calcium, and nickel) needed to evaluate emerging climate
731 change mitigation techniques such as marine carbon dioxide removal and ocean alkalinity
732 enhancement. Finally, we aim to improve CGEM's existing sediment diagenesis application
733 by facilitating easier parameterization and analysis of diagenesis routines in future releases of
734 CGEM.

735 With CGEM's public release we anticipate an expanded user base that will facilitate CGEM
736 advancement as a state-of-the art model. User feedback, including suggested code updates and
737 new formulations, are encouraged and facilitated via the CGEM GitHub repository.

738 Software and Data Availability

739 Name of software: Coastal Generalized Ecosystem Model (Version 1.0).

740 Developers: Brandon M. Jarvis, John C. Lehrter, James Pauer, Wilson Melendez, Lisa Lowe,
741 Cody Simmons, Bradley Penta, Dong S. Ko

742 First year available: September 29, 2023 (Version 1.0)

743 Hardware requirement: PC

744 Operating System: Linux

745 Program language: FORTRAN and C++

746 Program size: 2.38 MB.

747 Availability: <https://www.epa.gov/hydrowq/coastal-generalized-ecosystem-model-cgem>

748 License: free

749

750

751 Acknowledgements

752 J. Hagy, J. Kurtz, R. Devereux, M. Murrell, R. Greene, J. Aukamp, D. Yates, and D. Beddick
753 provided invaluable support through the collection and analysis of observational data and
754 through helpful discussions regarding CGEM components. CGEM is dedicated to the memory
755 of our friend, colleague, and modeling mentor, Dr. Peter Eldridge, who inspired the
756 development of this model and envisioned its application to the problem of 3-Dimensional
757 hypoxia modeling. This research was supported by the U.S. Environmental Protection
758 Agency, Office of Research and Development, Center for Environmental Measurement and
759 Modeling and by U.S. EPA's Safe and Sustainable Water Resources research program. The
760 views expressed in this article are those of the authors and do not necessarily reflect the views
761 or policies of the U.S. Environmental Protection Agency. The mention of trade names or
762 commercial products does not constitute endorsement or recommendation for use.

763 References

764 Albert, S., Bonaglia, S., Stjärnkvist, N., Winder, M., Thamdrup, B., Nascimento, F.J.A., 2021.
765 Influence of settling organic matter quantity and quality on benthic nitrogen cycling.
766 Limnology and Oceanography 66, 1882-1895.

767 Anderson, D.M., Keafer, B.A., McGillicuddy, D.J., JR, Solow, A.R., Kleindinst, J.L., Lewis, J.M., Marret, F., Bradley, L.R., 2013. Improving the accuracy and utility of harmful algal bloom forecasting systems, Biological and Geological Perspectives of Dinoflagellates, vol. 5. Geological Society of London, p. 0.

771 Anderson, T.R., 2005. Plankton functional type modelling: running before we can walk?
772 Journal of Plankton Research 27, 1073-1081.

773 Beck, M.W., Lehrter, J., Lowe, L.L., Jarvis, B.M., 2017. Parameter sensitivity and
774 identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico.
775 Ecological Modelling 363, 17-30.

776 Boudreau, B., P., 1996. A Method of Lines Code for Carbon and Nutrient Diagenesis in
777 Aquatic Sediments. Computers & Geosciences 22, 479-496.

778 Bourlat, S.J., Borja, A., Gilbert, J., Taylor, M.I., Davies, N., Weisberg, S.B., Griffith, J.F.,
779 Lettieri, T., Field, D., Benzie, J., 2013. Genomics in marine monitoring: new opportunities for
780 assessing marine health status. Marine pollution bulletin 74, 19-31.

781 Bruggeman, J., Bolding, K., 2014. A general framework for aquatic biogeochemical models.
782 Environmental Modelling & Software 61, 249-265.

783 Caffrey, J., Murrell, M., Amacker, K., Harper, J., Phipps, S., Woodrey, M., 2014. Seasonal and
784 Inter-annual Patterns in Primary Production, Respiration, and Net Ecosystem Metabolism in
785 Three Estuaries in the Northeast Gulf of Mexico. Estuaries and Coasts 37, 222-241.

786 Cagle, S.E., Roelke, D.L., Bhattacharyya, J., 2023. A Spatially Explicit, Multi-nutrient,
787 Multi-species Plankton Model for Shallow Bay Systems. Estuaries and Coasts 46, 1573-1589.

788 Cerco, C.F., Cole, T., Engineers, U.S.A.C.o., Station, U.S.A.E.W.E., Laboratory, E.,
789 Laboratory, E., 1995. User's Guide to the CE-QUAL-ICM Three-dimensional Eutrophication
790 Model: Release Version 1.0. U.S. Army Engineer Waterways Experiment Station.

791 Authro, 2004. The 2002 Chesapeake Bay Eutrophication Model.

792 Cerco, C.F., Noel, M. R., 2007. Can Oyster Restoration Reverse Cultural Eutrophication in
793 Chesapeake Bay? Estuaries and Coasts 30, 331-343.

794 Chatfield, C., 1995. Model Uncertainty, Data Mining and Statistical Inference. Journal of the
795 Royal Statistical Society. Series A (Statistics in Society) 158, 419-466.

796 Chen, C., Beardsley, R.C., Cowles, G., 2006. An unstructured grid, finite-volume coastal
797 ocean model: FVCOM user manual. University of Massachusetts Dartmouth, School for
798 Marine Science and Technology, p. 315.

799 Chen, C., Liu, H., Beardsley, R., 2003. An Unstructured Grid, Finite-Volume,
800 Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and

801 Estuaries. Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL
802 20, 159-186.

803 Cloern, J.E., Grenz, C., Vidergar-Lucas, L., 1995. An empirical model of the phytoplankton
804 chlorophyll : carbon ratio-the conversion factor between productivity and growth rate.
805 Limnology and Oceanography 40, 1313-1321.

806 Cole, B.E., Cloern, J.E., 1984. Significance of biomass and light availability to phytoplankton
807 productivity in San Francisco Bay. Marine ecology progress series. Oldendorf 17, 15-24.

808 De Borger, E., Braeckman, U., Soetaert, K., 2021. Rapid organic matter cycling in North Sea
809 sediments. Continental Shelf Research 214, 104327.

810 Di Toro, D.M., 1984. Diagenetic Oxygen Equivalents Model of Sediment Oxygen Demand.
811 Environmental Research Laboratory, Office of Research and Development, US

812 Dickey, T., Falkowski, P., 2002. Solar energy and its biological-physical interactions in the
813 sea. The sea 12, 401-440.

814 Dickey, T., Lewis, M., Chang, G., 2006. Optical oceanography: Recent advances and future
815 directions using global remote sensing and in situ observations. Reviews of Geophysics 44.

816 Doney, S.C., 1999. Major challenges confronting marine biogeochemical modeling. Global
817 Biogeochemical Cycles 13, 705-714.

818 Droop, M.R., 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9,
819 264-272.

820 Dugdale, R.C., Goering, J.J., 1967. Uptake of New and Regenerated Forms of Nitrogen in
821 Primary Productivity. Limnology and Oceanography 12, 196-206.

822 Ejigu, M.T., 2021. Overview of water quality modeling. Cogent Engineering 8, 1891711.

823 Eldridge, P.M., Morse, J.W., 2008. Origins and temporal scales of hypoxia on the Louisiana
824 shelf: Importance of benthic and sub-pycnocline water metabolism. Marine Chemistry 108,
825 159-171.

826 Eldridge, P.M., Roelke, D.L., 2010. Origins and scales of hypoxia on the Louisiana shelf:
827 Importance of seasonal plankton dynamics and river nutrients and discharge. Ecological
828 Modelling 221, 1028-1042.

829 Eppley, R.W., 1972. Temperature and Phytoplankton Growth in the Sea. Fish. Bull. 70,
830 1063-1085.

831 Feist, T., Pauer, J., Melendez, W., Lehrter, J., DePetro, P., Rygwelski, K., Ko, D., Kreis, R.J.,
832 2016. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes,
833 and Sediment Fluxes on Gulf of Mexico Hypoxia. Environmental Science & Technology 50,
834 8713-8721.

835 Fennel, K., Hu, J.T., Laurent, A., Marta-Almeida, M., Hetland, R., 2013. Sensitivity of
836 hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and
837 model nesting. Journal of Geophysical Research-Oceans 118, 990-1002.

838 Fennel, K., Laurent, A., 2018. N and P as ultimate and proximate limiting nutrients in the
839 northern Gulf of Mexico: implications for hypoxia reduction strategies. *Biogeosciences* 15,
840 3121-3131.

841 Fennel, K., Testa, J.M., 2019. Biogeochemical Controls on Coastal Hypoxia. *Annual Review*
842 of Marine Science 11, 4.1-4.26.

843 Flynn, K., McGillicuddy, D., 2018. Modeling Marine Harmful Algal Blooms: Current Status
844 and Future Prospects: A Compendium Desk Reference, pp. 115-134.

845 Flynn, K.J., 2003. Modelling multi-nutrient interactions in phytoplankton; balancing
846 simplicity and realism. *Progress in Oceanography* 56, 249-279.

847 Flynn, K.J., 2005. Castles built on sand: dysfunctionality in plankton models and the
848 inadequacy of dialogue between biologists and modellers. *Journal of Plankton Research* 27,
849 1205-1210.

850 Friedrichs, M.A.M., Dusenberry, J.A., Anderson, L.A., Armstrong, R.A., Chai, F., Christian,
851 J.R., Doney, S.C., Dunne, J., Fujii, M., Hood, R., McGillicuddy Jr., D.J., Moore, J.K.,
852 Schartau, M., Spitz, Y.H., Wiggert, J.D., 2007. Assessment of skill and portability in regional
853 marine biogeochemical models: Role of multiple planktonic groups. *Journal of Geophysical*
854 *Research: Oceans* 112.

855 Ganju, N.K., Brush, M.J., Rashleigh, B., Aretxabaleta, A.L., del Barrio, P., Gear, J.S., Harris,
856 L.A., Lake, S.J., McCardell, G., O'Donnell, J., Ralston, D.K., Signell, R.P., Testa, J.M.,
857 Vaudrey, J.M.P., 2016. Progress and Challenges in Coupled Hydrodynamic-Ecological
858 Estuarine Modeling. *Estuaries and Coasts* 39, 311-332.

859 Ganju, N.K., Miselis, J.L., Aretxabaleta, A.L., 2014. Physical and biogeochemical controls on
860 light attenuation in a eutrophic, back-barrier estuary. *Biogeosciences* 11, 7193-7205.

861 Gao, L., Li, D., 2015. A review of hydrological/water-quality models. *Frontiers of*
862 *Agricultural Science and Engineering* 1, 267-276.

863 Gattuso, J.P., Gentili, B., Duarte, C.M., Kleypas, J.A., Middelburg, J.J., Antoine, D., 2006.
864 Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic
865 organisms and their contribution to primary production. *Biogeosciences* 3, 489-513.

866 Geider, R.J., 1987. Light and Temperature Dependence of the Carbon to Chlorophyll a Ratio
867 in Microalgae and Cyanobacteria: Implications for Physiology and Growth of Phytoplankton.
868 *New Phytologist* 106, 1-34.

869 Geider, R.J., MacIntyre, H.L., Kana, T.M., 1997. Dynamic model of phytoplankton growth
870 and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to
871 light, nutrient-limitation and temperature. *Marine Ecology Progress Series* 148, 187-200.

872 Geider, R.J., MacIntyre, H.L., Kana, T.M., 1998. A dynamic regulatory model of
873 phytoplanktonic acclimation to light, nutrients, and temperature. *Limnology and*
874 *Oceanography* 43, 679-694.

875 Glibert, P.M., Kana, T.M., Brown, K., 2013. From limitation to excess: the consequences of
876 substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and
877 biogeochemistry, and the implications for modeling. *Journal of Marine Systems* 125, 14-28.

878 Gobler, C.J., Baumann, H., 2016. Hypoxia and acidification in ocean ecosystems: coupled
879 dynamics and effects on marine life. *Biology Letters* 12, 20150976.

880 Greene, R.M., Lehrter, J. C., Hagy, J. D., III, 2009. Multiple regression models for
881 hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. *Ecological
882 Applications* 19, 1161-1175.

883 Hauri, C., Gruber, N., Vogt, M., Doney, S.C., Feely, R.A., Lachkar, Z., Leinweber, A.,
884 McDonnell, A.M.P., Munnich, M., Plattner, G.K., 2013. Spatiotemporal variability and
885 long-term trends of ocean acidification in the California Current System. *Biogeosciences* 10,
886 193-216.

887 Henson, S.A., Cael, B.B., Allen, S.R., Dutkiewicz, S., 2021. Future phytoplankton diversity in
888 a changing climate. *Nature Communications* 12, 5372.

889 Hocking, G.C., Straškraba, M., 1999. The Effect of Light Extinction on Thermal Stratification
890 in Reservoirs and Lakes. *International Review of Hydrobiology* 84, 535-556.

891 Højberg, A., Refsgaard, J., 2005. Model uncertainty-parameter uncertainty versus conceptual
892 models. *Water Science and Technology* 52, 177-186.

893 Hood, R.R., Shenk, G.W., Dixon, R.L., Smith, S.M.C., Ball, W.P., Bash, J.O., Batiuk, R.,
894 Boomer, K., Brady, D.C., Cerco, C., Claggett, P., de Mutsert, K., Easton, Z.M., Elmore, A.J.,
895 Friedrichs, M.A.M., Harris, L.A., Ihde, T.F., Lacher, L., Li, L., Linker, L.C., Miller, A.,
896 Moriarty, J., Noe, G.B., Onyullo, G.E., Rose, K., Skalak, K., Tian, R., Veith, T.L., Wainger,
897 L., Weller, D., Zhang, Y.J., 2021. The Chesapeake Bay program modeling system: Overview
898 and recommendations for future development. *Ecological Modelling* 456, 109635.

899 Authro, 2018. Mechanistic Modeling of Bottom Water Dissolved Oxygen Dynamics in Baffin
900 Bay. *Coastal Bend Bays & Estuaries Program*

901 Jahnke, R.A., Nelson, J.R., Richards, M.E., Robertson, C.Y., Rao, A.M.F., Jahnke, D.B.,
902 2008. Benthic primary productivity on the Georgia midcontinental shelf: Benthic flux
903 measurements and high-resolution, continuous in situ PAR records. *Journal of Geophysical
904 Research* 113.

905 Jarvis, B.M., Greene, R.M., Wan, Y., Lehrter, J.C., Lowe, L.L., Ko, D.S., 2021. Contiguous
906 Low Oxygen Waters between the Continental Shelf Hypoxia Zone and Nearshore Coastal
907 Waters of Louisiana, USA: Interpreting 30 Years of Profiling Data and Three-Dimensional
908 Ecosystem Modeling. *Environmental Science & Technology* 55, 4709-4719.

909 Jarvis, B.M., Hagy, J.D., Melendez, W., Simmons, C.W., Wan, Y., 2023. Measuring and
910 modeling diel oxygen dynamics in a shallow hypereutrophic estuary: Implications of low
911 oxygen exposure on aquatic life. *Science of The Total Environment* 882, 163474.

912 Jarvis, B.M., Lehrter, J.C., Lowe, L., Hagy, J.D., Wan, Y., Murrell, M.C., Ko, D.S., Penta, B.,
913 Gould, R.W., 2020. Modeling Spatiotemporal Patterns of Ecosystem Metabolism and Organic
914 Carbon Dynamics Affecting Hypoxia on the Louisiana Continental Shelf. *Journal of
915 Geophysical Research: Oceans* 125, 1-21.

916 Jarvis, B.M., Pauer, J.J., Melendez, W., Wan, Y., Lehrter, J.C., Lowe, L.L., Simmons, C.W.,
917 2022. Inter-model comparison of simulated Gulf of Mexico hypoxia in response to reduced

918 nutrient loads: Effects of phytoplankton and organic matter parameterization. Environmental
919 Modelling & Software 151, 105365.

920 Justić, D., Rabalais, N.N., Turner, R.E., 2002. Modeling the impacts of decadal changes in
921 riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta. Ecological
922 Modelling 152, 33-46.

923 Khangaonkar, T., Nugraha, A., Xu, W., Long, W., Bianucci, L., Ahmed, A., Mohamedali, T.,
924 Pelletier, G., 2018. Analysis of Hypoxia and Sensitivity to Nutrient Pollution in Salish Sea.
925 Journal of Geophysical Research: Oceans 123, 4735-4761.

926 Kromkamp, J., Peene, J., van Rijswijk, P., Sandee, A., Goosen, N., 1995. Nutrients, light and
927 primary production by phytoplankton and microphytobenthos in the eutrophic, turbid
928 Westerschelde estuary (The Netherlands). Hydrobiologia 311, 9-19.

929 Lake, S., Brush, M., 2015. Modeling estuarine response to load reductions in a warmer
930 climate: York River Estuary, Virginia, USA. Marine Ecology Progress Series 538.

931 Laurent, A., Fennel, K., 2017. Modeling River-Induced Phosphorus Limitation in the Context
932 of Coastal Hypoxia, in: Justic, D. (ed.), Modeling Coastal Hypoxia. Springer International
933 Publishing, pp. 149-171.

934 Laurent, A., Fennel, K., Cai, W.-J., Huang, W.-J., Barbero, L., Wanninkhof, R., 2017.
935 Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico:
936 Insights into origin and processes from a coupled physical-biogeochemical model.
937 Geophysical Research Letters 44, 946-956.

938 Laurent, A., Fennel, K., Ko, D.S., Lehrter, J., 2018. Climate Change Projected to Exacerbate
939 Impacts of Coastal Eutrophication in the Northern Gulf of Mexico. Journal of Geophysical
940 Research: Oceans 123, 3408-3426.

941 Laurent, A., Fennel, K., Wilson, R., Lehrter, J., Devereux, R., 2016. Parameterization of
942 biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model.
943 Biogeosciences 13, 77-94.

944 Lee, Z., Du, K., Arnone, R., Liew, S., Penta, B., 2005. Penetration of solar radiation in the
945 upper ocean: A numerical model for oceanic and coastal waters. Journal of Geophysical
946 Research: Oceans 110.

947 Lehman, J.T., Botkin, D.B., Likens, G.E., 1975. The assumptions and rationales of a computer
948 model of phytoplankton population dynamics1. Limnology and Oceanography 20, 343-364.

949 Lehrter, J., 2008. Regulation of eutrophication susceptibility in oligohaline regions of a
950 northern Gulf of Mexico estuary, Mobile Bay, Alabama. Marine Pollution Bulletin 56,
951 1446-1460.

952 Lehrter, J., Fry, B., Murrell, M., 2014. Microphytobenthos production potential and
953 contribution to bottom layer oxygen dynamics on the inner Louisiana continental shelf.
954 Bulletin of Marine Science 90, 765-780.

955 Lehrter, J.C., Beddick, D.L., Devereux, R., Yates, D.F., Murrell, M.C., 2012. Sediment-water
956 fluxes of dissolved inorganic carbon, O₂, nutrients, and N₂ from the hypoxic region of the
957 Louisiana continental shelf. Biogeochemistry 109, 233-252.

958 Lehrter, J.C., Ko, D.S., Lowe, L.L., 2017. Predicted effects of climate change on northern
959 Gulf of Mexico hypoxia, in: D. Justic, K.A.R., R. D. Hetland, & K. Fennel (ed.), Modeling
960 Coastal Hypoxia. Springer International Publishing, pp. 173-214.

961 Lehrter, J.C., Murrell, M.C., Kurtz, J.C., 2009. Interactions between freshwater input, light,
962 and phytoplankton dynamics on the Louisiana continental shelf. Continental Shelf Research
963 29, 1861-1872.

964 LUMCON, 2021. Hypoxia in the Northern Gulf of Mexico: Research: Shelfwide Cruises.

965 Mateus, M., Vieira, R.d.S., Almeida, C., Silva, M., Reis, F., 2018. ScoRE—A Simple
966 Approach to Select a Water Quality Model. Water 10, 1811.

967 McCarthy, M.J., Carini, S.A., Liu, Z.F., Ostrom, N.E., Gardner, W.S., 2013. Oxygen
968 consumption in the water column and sediments of the northern Gulf of Mexico hypoxic
969 zone. Estuarine Coastal and Shelf Science 123, 46-53.

970 Authro, 2009. LM3: A High-Resolution Lake Michigan Mass Balance Water Quality Model.
971 Grosse Ile, MI.

972 Moges, E., Demissie, Y., Larsen, L., Yassin, F., 2021. Review: Sources of Hydrological
973 Model Uncertainties and Advances in Their Analysis. Water 13, 28.

974 Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter
975 content (case I waters). Journal of Geophysical Research: Oceans 93, 10749-10768.

976 Moriarty, J.M., Harris, C.K., Friedrichs, M.A.M., Fennel, K., Xu, K., 2018. Impact of Seabed
977 Resuspension on Oxygen and Nitrogen Dynamics in the Northern Gulf of Mexico: A
978 Numerical Modeling Study. Journal of Geophysical Research: Oceans 123, 7237-7263.

979 Morse, J.W., Eldridge, P.M., 2007. A non-steady state diagenetic model for changes in
980 sediment biogeochemistry in response to seasonally hypoxic/anoxic conditions in the “dead
981 zone” of the Louisiana shelf. Marine Chemistry 106, 239-255.

982 Murrell, M.C., Lehrter, J.C., 2010. Sediment and Lower Water Column Oxygen Consumption
983 in the Seasonally Hypoxic Region of the Louisiana Continental Shelf. Estuaries and Coasts
984 34, 912-924.

985 Nixon, S.C., 1995. Coastal Marine Eutrophication: A Definition, Social Causes, and Future
986 Concerns. Ophelia 41, 199-219.

987 Novoveska, L., MacIntyre, H.L., 2019. Study of the seasonality and hydrology as drivers of
988 phytoplankton abundance and composition in a shallow estuary, Weeks Bay, Alabama (USA).
989 Journal of Aquaculture & Marine Biology 8, 69-80.

990 Nyholm, N., 1978. A simulation model for phytoplankton growth and nutrient cycling in
991 eutrophic, shallow lakes. Ecological Modelling 4, 279-310.

992 Obenour, D.R., Scavia, D., Rabalais, N.N., Turner, R.E., Michalak, A.M., 2013. Retrospective
993 Analysis of Midsummer Hypoxic Area and Volume in the Northern Gulf of Mexico,
994 1985-2011. Environmental Science & Technology 47, 9808-9815.

995 Pacella, S.R., Brown, C.A., Waldbusser, G.G., Labiosa, R.G., Hales, B., 2018. Seagrass
996 habitat metabolism increases short-term extremes and long-term offset of CO₂

997 under future ocean acidification. *Proceedings of the National Academy of Sciences* 115,
998 3870-3875.

999 Paerl, H.W., Huisman, J., 2008. Blooms Like It Hot. *Science* 320, 57-58.

1000 Pauer, J.J., Melendez, W., Feist, T.J., Lehrter, J.C., Rashleigh, B., Lowe, L.L., Greene, R.M.,
1001 2020. The impact of alternative nutrient kinetics and computational grid size on model
1002 predicted primary production and hypoxic area in the northern Gulf of Mexico.
1003 *Environmental Modelling & Software* 126, 104661.

1004 Penta, B., Ko, D., Gould, R., Arnone, R., Greene, R., Lehrter, J., Hagy, J., Schaeffer, B.,
1005 Murrell, M., Kurtz, J., 2009. Using coupled models to study the effects of river discharge on
1006 biogeochemical cycling and hypoxia in the northern Gulf of Mexico, *OCEANS 2009*,
1007 MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. IEEE,
1008 pp. 1-7.

1009 Penta, B., Lee, Z., Kudela, R.M., Palacios, S.L., Gray, D.C., Jolif, J.K., Shulman, I.G., 2008.
1010 An underwater light attenuation scheme for marine ecosystem models. *Optics Express* 16,
1011 1-11.

1012 Priyadarshi, A., Chandra, R., Kishi, M.J., Smith, S.L., Yamazaki, H., 2022. Understanding
1013 plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least
1014 three trophic levels. *Ecological Modelling* 467, 109936.

1015 Rabalais, N.N., Turner, R.E., Wiseman, W.J., 2002. Gulf of Mexico Hypoxia, A.K.A. "the
1016 Dead Zone". *Annual Review of Ecology and Systematics* 33, 235-263.

1017 Ralston, D.K., Moore, S.K., 2020. Modeling harmful algal blooms in a changing climate.
1018 *Harmful Algae* 91, 101729.

1019 Reckhow, K.H., Chapra, S.C., 1983. Confirmation of water quality models. *Ecological
1020 Modelling* 20, 113-133.

1021 Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A., 2007. Uncertainty in
1022 the environmental modelling process – A framework and guidance. *Environmental Modelling
1023 & Software* 22, 1543-1556.

1024 Roelke, D.L., 2000. Copepod food-quality threshold as a mechanism influencing
1025 phytoplankton succession and accumulation of biomass, and secondary productivity: a
1026 modeling study with management implications. *Ecological Modelling* 134, 245-274.

1027 Rojas, R., Feyen, L., Dassargues, A., 2008. Conceptual model uncertainty in groundwater
1028 modeling: Combining generalized likelihood uncertainty estimation and Bayesian model
1029 averaging. *Water Resources Research* 44.

1030 Rowe, M.D., Valipour, R., Redder, T.M., 2023. Intercomparison of three spatially-resolved,
1031 process-based Lake Erie hypoxia models. *Journal of Great Lakes Research* 49, 993-1003.

1032 Schreiber, R.A., Pennock, J.R., 1995. The relative contribution of benthic microalgae to total
1033 microalgal production in a shallow sub-tidal estuarine environment. *Ophelia* 42, 335-352.

1034 Shen, C., Testa, J.M., Li, M., Cai, W.-J., Waldbusser, G.G., Ni, W., Kemp, W.M., Cornwell, J.,
1035 Chen, B., Brodeur, J., Su, J., 2019. Controls on Carbonate System Dynamics in a Coastal

1036 Plain Estuary: A Modeling Study. *Journal of Geophysical Research: Biogeosciences* 124,
1037 61-78.

1038 Terry, J.A., Sadeghian, A., Lindenschmidt, K.-E., 2017. Modelling Dissolved
1039 Oxygen/Sediment Oxygen Demand under Ice in a Shallow Eutrophic Prairie Reservoir. *Water*
1040 9, 131.

1041 Testa, J.M., Basenback, N., Shen, C., Cole, K., Moore, A., Hodgkins, C., Brady, D., 2021.
1042 Modeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and
1043 Metabolism in a Shallow Estuarine Ecosystem. *Journal of the American Water Resources*
1044 Association, 1-22.

1045 Toro, D.M.D., Paquin, P.R., Subburamu, K., Gruber, D.A., 1990. Sediment Oxygen Demand
1046 Model: Methane and Ammonia Oxidation. *Journal of Environmental Engineering* 116,
1047 945-986.

1048 Turner, R.E., 2002. Element Ratios and Aquatic Food Webs. *Estuaries* 25, 694-703.

1049 Turner, R.E., Rabalais, N.N., 2003. Linking Landscape and Water Quality in the Mississippi
1050 River Basin for 200 Years. *BioScience* 53, 563-572.

1051 Van Cappellen, P., Wang, Y., 1996. Cycling of iron and manganese in surface sediments; a
1052 general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron,
1053 and manganese. *American Journal of Science* 296, 197-243.

1054 Voinov, A., Cerco, C., 2010. Model integration and the role of data. *Environmental Modelling
& Software* 25, 965-969.

1056 Wade, A.J., Jackson, B.M., Butterfield, D., 2008. Over-parameterised, uncertain
1057 'mathematical marionettes' — How can we best use catchment water quality models? An
1058 example of an 80-year catchment-scale nutrient balance. *Science of The Total Environment*
1059 400, 52-74.

1060 Ward, B.A., Schartau, M., Oschlies, A., Martin, A.P., Follows, M.J., Anderson, T.R., 2013.
1061 When is a biogeochemical model too complex? Objective model reduction and selection for
1062 North Atlantic time-series sites. *Progress in Oceanography* 116, 49-65.

1063 Wells, M.L., Trainer, V.L., Smayda, T.J., Karlson, B.S.O., Trick, C.G., Kudela, R.M.,
1064 Ishikawa, A., Bernard, S., Wulff, A., Anderson, D.M., Cochlan, W.P., 2015. Harmful algal
1065 blooms and climate change: Learning from the past and present to forecast the future.
1066 *Harmful Algae* 49, 68-93.

1067 Wilmott, C.J., 1981. On the Validation of Models. *Physical Geography* 2, 184-194.

1068 Wool, T., Ambrose, R.B., Martin, J.L., Comer, A., 2020. WASP 8: The Next Generation in the
1069 50-year Evolution of USEPA's Water Quality Model. *Water* 12, 1398.

1070 Xia, M., Jiang, L., 2016. Application of an Unstructured Grid-Based Water Quality Model to
1071 Chesapeake Bay and Its Adjacent Coastal Ocean. *Journal of Marine Science and Engineering*
1072 4, 52.

1073 Xiao, Y., Friedrichs, M.A.M., 2014. The assimilation of satellite-derived data into a
1074 one-dimensional lower trophic level marine ecosystem model. *Journal of Geophysical*
1075 *Research: Oceans* 119, 2691-2712.

1076 Yu, L., Fennel, K., Laurent, A., Murrell, M.C., Lehrter, J.C., 2015. Numerical analysis of the
1077 primary processes controlling oxygen dynamics on the Louisiana shelf. *Biogeosciences* 12,
1078 2063-2076.

1079 Zhang, Y., Baptista, A.M., 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element
1080 model for cross-scale ocean circulation. *Ocean Modelling* 102, 64-81.

1081 Zhang, Z., Sun, B., Johnson, B.E., 2015. Integration of a benthic sediment diagenesis module
1082 into the two dimensional hydrodynamic and water quality model – CE-QUAL-W2.
1083 *Ecological Modelling* 297, 213-231.

1084 Table 1. CGEM representations of biogeochemical processes. Multiple cases per process are
 1085 provided for evaluating uncertainty related to equations used.

Process	Functional Forms
Irradiance	Vertical attenuation of photosynthetically available radiation (PAR) through the water-column represented by (E1) inherent optical properties (Penta et al 2009) (E2) apparent optical properties (Eldridge and Roelke 2010)
Growth	Phytoplankton specific growth rate calculated using (G1) minimum of light and nutrient dependent growth rates (G2) product of the light dependent growth rate and the minimum of the nutrient dependent growth rates (G3) <i>umax</i> in the light dependent growth equation is a function of nutrients
Temperature	Temperature dependent growth represented as (T1) sigmoidal function (Eldridge and Roelke 2010) (T2) optimum threshold temperature function (Cerco and Noel 2004) (T3) Arrhenius function (Geider et al. 1997)
Photosynthesis	Phytoplankton light dependent growth represented by photosynthesis-irradiance function (P1) with photo-inhibition (Platt et al. 1980) (P2) without photo-inhibition (Webb et al. 1974) (P3) without photo-inhibition and depends on nutrient cell quota (Flynn 2003)
Chl:C	Chlorophyll:Carbon (chl:C) calculated using (C1) fixed chl:C based on observed chlorophyll a versus phytoplankton abundance (C2) dynamic chl:C per cell based on light and nutrients (Cloern 1995)
Quota	Phytoplankton nutrient dependent growth represented by an internal cell quota where for (Q1) internal cell quota is a function of Qmin (Droop 1973) (Q2) internal cell quota is a function of Qmin and Qmax (Nyholm 1978) (Q3) internal cell quota is a function of Qmin, Qmax, and K _o (Flynn 2003)
Uptake	Phytoplankton nutrient uptake rate represented by (U1) Michaelis-Menten kinetics (Dugdale and Goering 1967) (U2) nutrient cell quota model (Lehman et al. 1975; Geider et al. 1998) (U3) nutrient cell quota model with surge uptake (Roelke 2000)
Fluxes	Air-sea and sediment fluxes may be turned on (1) or off (0) <u>Air-sea</u> (1 or 0) air-sea O ₂ flux (Eldridge and Roelke 2010) (1 or 0) air-sea CO ₂ flux (Orr and Epitalon 2015) <u>Sediment</u> (1 or 0) sediment O ₂ consumption (Murrell and Lehrter 2010; Lehrter et al. 2012) (1,2,3 or 0) microphytobenthos production (1. Gattuso et al. 2006; 2. Jahnke et al. 2008; 3. Lehrter et al. 2014) (1 or 0) sediment nutrient fluxes (Lehrter et al. 2012) (1 or 0) instant remineralization of organic matter in bottom layer (1 or 0) sediment diagenesis model (Eldridge and Morse 2008)

1086

1087 Table 2. State variables. Number of possible functional types for phytoplankton (i) and
 1088 zooplankton (j) are noted.

Symbol	State Variable	Units
<i>A</i>	phytoplankton abundance (i = 1:6)	cells m ⁻³
<i>Qn</i>	cell nitrogen quota (i = 1:6)	mmol N cell ⁻¹
<i>Qp</i>	cell phosphorus quota (i = 1:6)	mmol P cell ⁻¹
<i>Z</i>	zooplankton (j = 1:2)	individuals m ⁻³
<i>OM1_A</i>	particulate organic matter from phytoplankton	mmol m ⁻³
<i>OM1_Z</i>	particulate organic matter from zooplankton fecal pellets	mmol m ⁻³
<i>OM1_R</i>	particulate organic matter from rivers	mmol m ⁻³
<i>OM1_BC</i>	particulate organic matter from lateral boundaries	mmol m ⁻³
<i>OM2_A</i>	dissolved organic matter from phytoplankton	mmol m ⁻³
<i>OM2_Z</i>	dissolved organic matter from zooplankton	mmol m ⁻³
<i>OM2_R</i>	dissolved organic matter from rivers	mmol m ⁻³
<i>OM2_BC</i>	dissolved organic matter from lateral boundaries	mmol m ⁻³
<i>CDOM</i>	colored dissolved organic matter	ppb
<i>NH4</i>	ammonium	mmol m ⁻³
<i>PO4</i>	phosphate	mmol m ⁻³
<i>Si</i>	silica	mmol m ⁻³
<i>NO3</i>	nitrate	mmol m ⁻³
<i>O2</i>	oxygen	mmol m ⁻³
<i>DIC</i>	dissolved inorganic carbon	mmol m ⁻³
<i>Alk</i>	alkalinity	mmol m ⁻³

1089

1090 Table 3. Optical parameters.

Symbol	Parameter	Unit	Value
IOP light attenuation scheme (E1)			
<i>chi0, chi1, chi2</i>	coefficients	dimensionless	[-0.057, 0.482, 4.221]
	coefficients		
<i>zeta0, zeta1, zeta2</i>		dimensionless	[0.183, 0.702, -2.567]
	coefficients		
<i>alpha0, alpha1, alpha2</i>		dimensionless	[0.090, 1.465, -0.67]
<i>astar490</i>	<i>Chla</i> specific absorption (490 nm)	$\text{m}^{-1}(\text{mg Chla m}^{-3})^{-1}$	0.020
<i>aw490</i>	water absorption (490 nm)	m^{-1}	0.005
<i>astarOMA</i>	<i>OMI_A</i> specific absorption (490 nm)	$\text{m}^{-1}(\text{g OMI_A m}^{-3})^{-1}$	0.1
<i>astarOMZ</i>	<i>OMI_Z</i> specific absorption (490 nm)	$\text{m}^{-1}(\text{g OMI_Z m}^{-3})^{-1}$	0.1
<i>astarOMR</i>	<i>OMI_R</i> specific absorption (490 nm)	$\text{m}^{-1}(\text{g OMI_R m}^{-3})^{-1}$	0.1
<i>astarOMBC</i>	<i>OMI_BC</i> specific absorption (490 nm)	$\text{m}^{-1}(\text{g OMI_BC m}^{-3})^{-1}$	0.1
<i>CF_SPM</i>	percentage of river <i>SPM</i> that is <i>OMI_R</i>	%	1.8
AOP light attenuation scheme			
<i>k_w</i>	light attenuation due to water	m^{-1}	0.146
<i>k_{cdom}</i>	light attenuation due to <i>CDOM</i>	$\text{m}^{-1}(\text{ppb CDOM})^{-1}$	0.001
<i>k_{spm}</i>	light attenuation due to <i>SPM</i>	$\text{m}^{-1}(\text{g SPM m}^{-3})^{-1}$	0.029
<i>k_{chla}</i>	light attenuation due to <i>Chla</i>	$\text{m}^{-1}(\text{mg Chla m}^{-3})^{-1}$	0.024

1091

1092 Table 4. Phytoplankton parameters. Switches are noted when specific for a parameter.

Symbol	Parameter (switch)	Units	Value (6 phytoplankton classes)
<i>volcell</i>	biovolume per cell	μm^3	[33693 2569 77429 513 547 87]
<i>Qc</i>	carbon per cell	$10^{-7} \text{ mmol C cell}^{-1}$	[13.5 1.68 26.5 0.454 0.478 0.108]
<i>umax</i>	maximum growth rate at 20 °C	d^{-1}	[0.41 0.76 0.34 1.12 1.10 1.72]
<i>alpha</i>	initial slope of the photosynthesis versus irradiance curve	$10^{-16} \text{ cm}^2 \text{ s}$ $\text{quanta}^{-1} \text{ d}^{-1}$	[0.842 2.18 0.619 3.96 3.87 0.763]
<i>beta</i>	photoinhibition (P1)	$10^{-18} \text{ cm}^2 \text{ s}$ $\text{quanta}^{-1} \text{ d}^{-1}$	[1.1 1.1 1.1 1.1 1.1 1.1]
<i>respg</i>	growth dependent respiration	dimensionless	[0.1 0.1 0.1 0.1 0.1 0.1]
<i>respb</i>	basal respiration	d^{-1}	[0.02 0.02 0.02 0.02 0.02 0.02]
<i>QminN</i>	minimum N cell-quota	$10^{-9} \text{ mmol N cell}^{-1}$	[6.08 0.632 12.7 0.153 0.162 0.0321]
<i>QminP</i>	minimum P cell-quota	$10^{-10} \text{ mmol P cell}^{-1}$	[6.19 0.510 13.9 0.107 0.114 0.0191]
<i>QmaxN</i>	maximum N cell-quota (Q2)	$10^{-7} \text{ mmol N cell}^{-1}$	[2.04 0.253 4.01 0.0685 0.0722 0.0162]
<i>QmaxP</i>	maximum P cell-quota (Q2)	$10^{-8} \text{ mmol P cell}^{-1}$	[1.28 0.158 2.50 0.0428 0.0451 0.0102]
<i>Kn</i>	half saturation coefficient for N uptake	mmol N m^{-3}	[4.51 1.93 5.93 1.13 1.16 0.63]
<i>Kp</i>	half saturation coefficient for P uptake	mmol P m^{-3}	[2.86 1.00 4.02 0.51 0.53 0.25]
<i>Ksi</i>	half saturation coefficient for Si uptake	mmol Si m^{-3}	[4.51 1.93 5.93 1.13 1.16 0.63]
<i>KQn</i>	Qn constant (Q3)	mmol N m^{-3}	[5 5 5 5 5]
<i>KQp</i>	Qp constant (Q3)	mmol P m^{-3}	[0.2 0.2 0.2 0.2 0.2 0.2]

1093

1094 Table 4 continued. Phytoplankton parameters

<i>Symbol</i>	<i>Parameter (switch)</i>	<i>Units</i>	<i>Value</i>
<i>nfQs</i>	exponent for switch (U2)	dimensionless	[1 1 1 1 1 1]
<i>vmaxN</i>	N-uptake rate at mumax	10^{-8} mmol N cell $^{-1}$ d $^{-1}$	[4.10 0.497 8.11 0.133 0.140 0.0309]
<i>vmaxP</i>	P-uptake rate at mumax	10^{-8} mmol P cell $^{-1}$ d $^{-1}$	[2.68 0.204 6.15 0.0407 0.0434 0.00691]
<i>vmaxSi</i>	Si-uptake rate at mumax	10^{-8} mmol si cell $^{-1}$ d $^{-1}$	[4.10 0.497 8.11 0.133 0.140 0.0309]
<i>aN</i>	coefficient for non-limiting nutrient	dimensionless	[1 1 1 1 1 1]
<i>Athresh</i>	phytoplankton threshold for zooplankton grazing	10^7 cells m $^{-3}$	[7 7 7 7 7 7]
<i>ediblevector</i>	edibility of phytoplankton	dimensionless	[0.25 0.5 0.25 0.5 0.6 1]
<i>sink</i>	sinking rate	m d $^{-1}$	[1.49 0.55 2.07 0.29 0.29 0.15]
<i>mA</i>	mortality of phytoplankton	d $^{-1}$	[0.041 0.076 0.034 0.11 0.11 0.17]

1095

1096 Table 5. Temperature parameters for phytoplankton and zooplankton ($nospA = 3 + nospZ = 2$)
 1097 as applied in the model or the Louisiana Shelf. T1, T2, and T3 denote the three temperature
 1098 switches available for representing growth rate as a function of temperature. For switch T3,
 1099 $Tref$ is converted to Kelvin in the code.

<i>Symbol</i>	<i>Parameter</i>	<i>Unit</i>	<i>Value</i>
$Tref$	reference temperature (T1, T2, T3)	°C	[22 25 28 24 25]
$KTg1$	effect of T below optimal (T2)	dimensionless	[0.01 0.01 0.01 0.035 0.035]
$KTg2$	Effect of T above optimal (T2)	dimensionless	[0.03 0.02 0.02 0.001 0.001]
Ea_R	Arrhenius slope (T3)	dimensionless	[0.1 0.2 0.15 0.3 0.3]

1100

1101 Table 6. Zooplankton parameters.

<i>Symbol</i>	<i>Parameter</i>	<i>Units</i>	<i>Value</i>
$Zvolcell$	volume per individual	$\mu\text{m}^3 \text{ individual}^{-1}$	[2.98e+7 6.74e+5]
ZQc	carbon per individual	$\text{mmol C individual}^{-1}$	[3.13e-4 7.08e-7]
ZQn	N per individual	$\text{mmol N individual}^{-1}$	[6.95e-5 1.57e-7]
ZQp	P per individual	$\text{mmol P individual}^{-1}$	[3.77e-6 8.53e-9]
$Zslop$	sloppy feeding coefficient	dimensionless	[0.25 0]
$Zeffic$	assimilation efficiency as a fraction of ingestion	dimensionless	[0.4 0.4]
ZKa	grazing half saturation coefficient	$\mu\text{m}^3 \text{ m}^{-3}$	[1.12e+12 1.12e+12]
$Zrespg$	growth dependent respiration	dimensionless	[0.2 0.3]
$Zrespb$	biomass (basal) dependent respiration	d^{-1}	[0.1 0.416]
$Zumax$	maximum growth rate in terms of volume of prey	$\mu\text{m}^3 \text{ individual}^{-1} \text{ d}^{-1}$	[9.45e+8 2.98e+7]
Zm	zooplankton mortality constant for quadratic mortality	$\text{m}^6 \text{ individual}^{-2} \text{ d}^{-1}$	[0.00072 0.00072]

1102

1103 Table 7. Organic matter parameters.

<i>Parameter</i>		<i>Units</i>	<i>Value</i>
<i>KG1</i>	decay rate of OM1_A and OM1_G	y^{-1}	30
<i>KG2</i>	decay rate of OM2_A and OM2_G	y^{-1}	30
<i>KG1_R</i>	decay rate of OM1_R	y^{-1}	11
<i>KG2_R</i>	decay rate of OM2_R	y^{-1}	3.7
<i>KG1_BC</i>	decay rate of OM1_BC	y^{-1}	1
<i>KG2_BC</i>	decay rate of OM2_BC	y^{-1}	1
<i>KG_bot</i>	decay rate of OM when instantaneous remineralization is used	y^{-1}	92,000
<i>k11</i>	rate constant for nitrification	$(\text{mmol m}^{-3})^{-1} y^{-1}$	5
<i>KO2</i>	half-saturation constant for O_2 uptake	mmol m^{-3}	10
<i>KstarO2</i>	inhibition constant for denitrification	mmol m^{-3}	10
<i>KNO3</i>	half-saturation constant for denitrification	mmol m^{-3}	10
<i>stoich_x1R</i>	initial C:P stoichiometry of OM1_R	mol/mol	51
<i>stoich_y1R</i>	initial N:P stoichiometry of OM1_R	mol/mol	4.5
<i>stoich_x2R</i>	initial C:P stoichiometry of OM2_R	mol/mol	700
<i>stoich_y2R</i>	initial N:P stoichiometry of OM2_R	mol/mol	50
<i>stoich_x1BC</i>	initial C:P stoichiometry of OM1_BC	mol/mol	106
<i>stoich_y1BC</i>	initial N:P stoichiometry of OM1_BC	mol/mol	16
<i>stoich_x2BC</i>	initial C:P stoichiometry of OM2_BC	mol/mol	106
<i>stoich_y2BC</i>	initial N:P stoichiometry of OM2_BC	mol/mol	16
<i>sink_OM1_A</i>	sinking rate of OM1_A	$m d^{-1}$	10
<i>sink_OM2_A</i>	sinking rate of OM2_A	$m d^{-1}$	0
<i>sink_OM1_Z</i>	sinking rate of OM1_Z	$m d^{-1}$	10
<i>sink_OM2_Z</i>	sinking rate of OM2_Z	$m d^{-1}$	0
<i>sink_OM1_R</i>	sinking rate of OM1_R	$m d^{-1}$	10
<i>sink_OM2_R</i>	sinking rate of OM2_R	$m d^{-1}$	0
<i>sink_OM1_BC</i>	sinking rate of OM1_BC	$m d^{-1}$	10
<i>sink_OM2_BC</i>	sinking rate of OM2_BC	$m d^{-1}$	0
<i>sink_CDOM</i>	sinking rate of CDOM	$m d^{-1}$	0
<i>Kcdom_decay</i>	decay rate of CDOM	d^{-1}	0.01
<i>K</i>	Q10 coefficient such that a 10 °C increase results in a 2-fold increase in OM remineralization	dimensionless	0.07

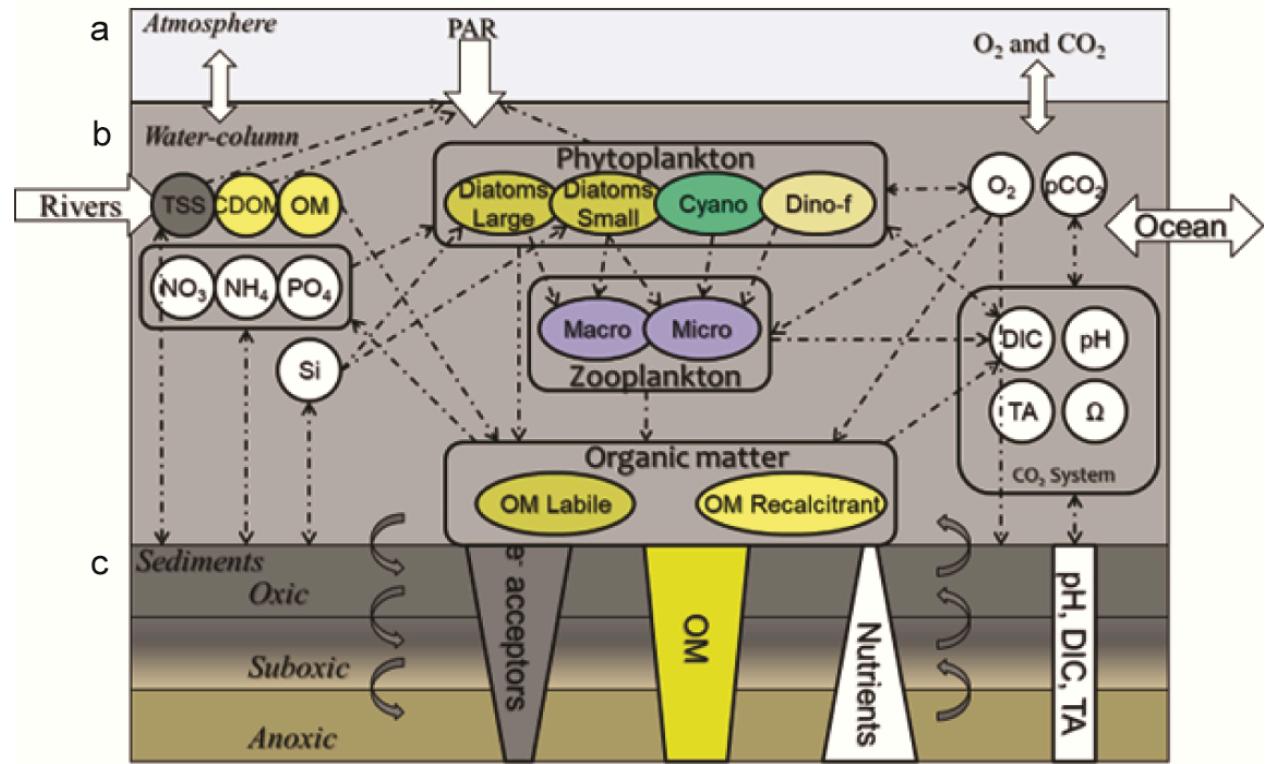
1104

[1105](#) Table 8. Miscellaneous parameters.

<i>Symbol</i>	<i>Parameter</i>	<i>Units</i>	<i>Value</i>
a	air-sea exchange transfer	non-dimensional	2.85
b	velocity coefficients	non-dimensional	-9.65
pCO_2	atmospheric carbon dioxide	ppm	380

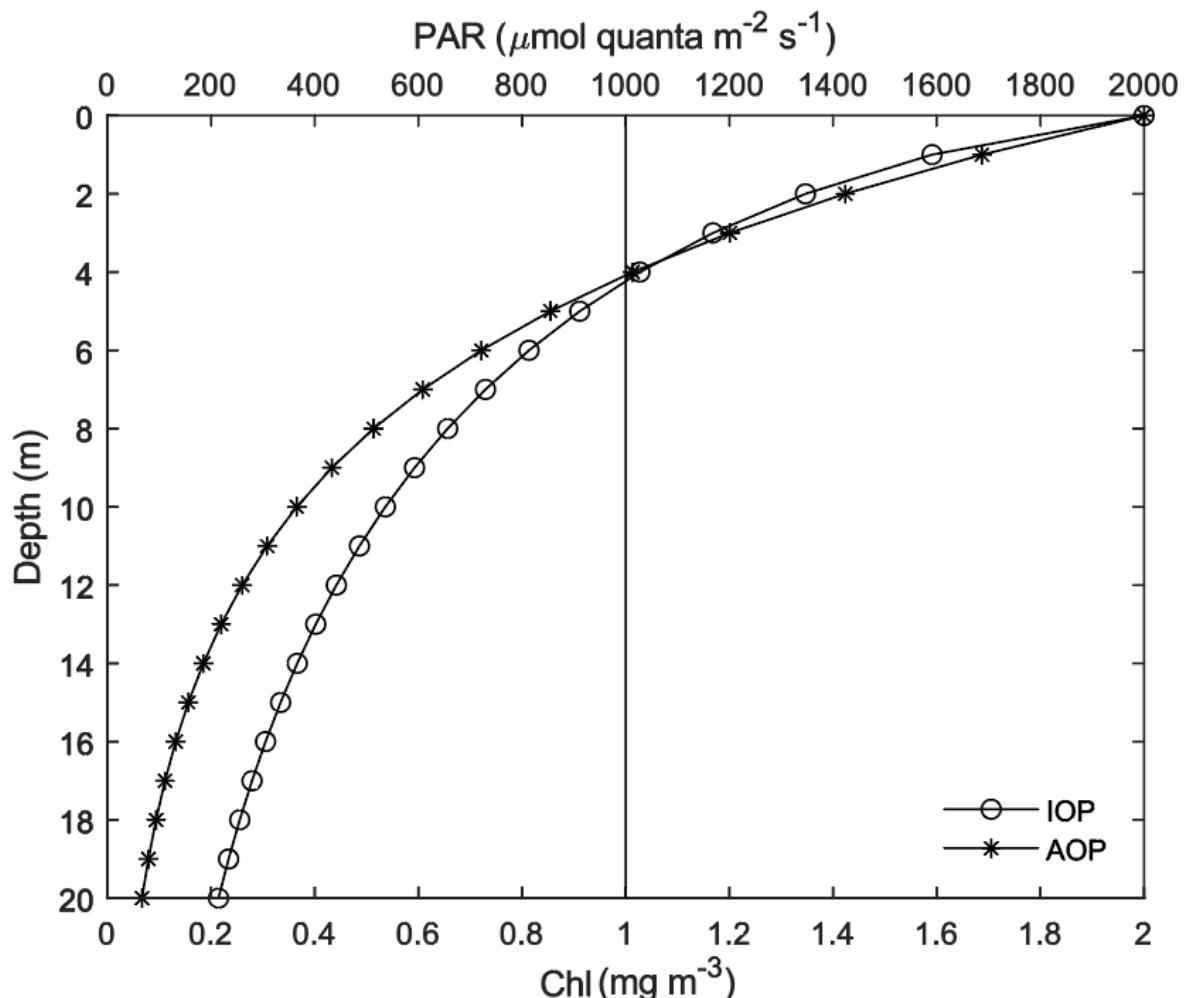
[1106](#)

1107 Figure 1. CGEM conceptual model representing (a) atmospheric surface boundary forcing
 1108 and air-sea exchange, (b) water-column horizontal exchange with river and ocean
 1109 end-members and mechanisms regulating light, nutrient, phytoplankton functional types,
 1110 zooplankton, and organic carbon dynamics, and (c) sediment processes.



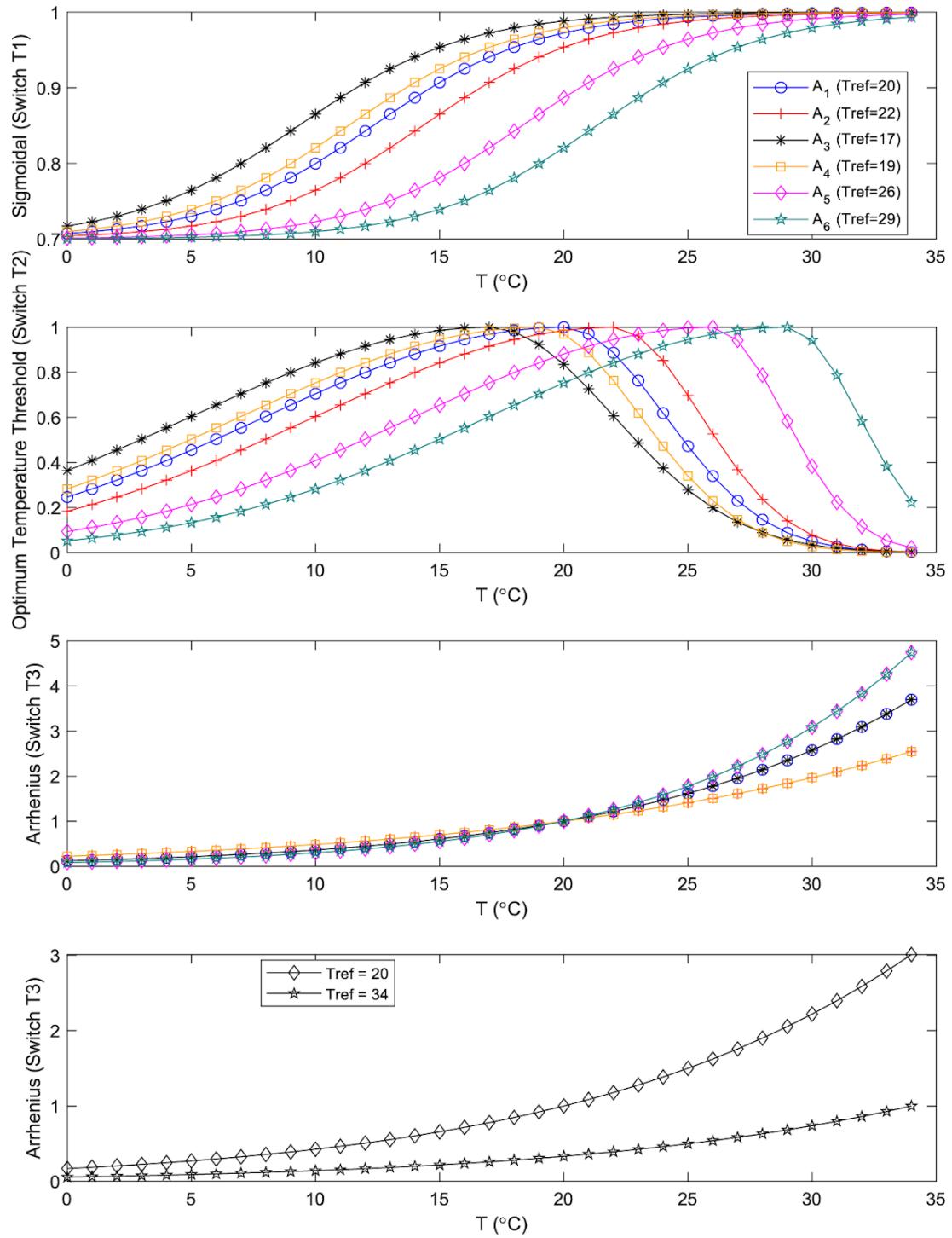
1111

1112 Figure 2. Example light attenuation profiles of PAR using model switches for Inherent
1113 Optical Properties (IOP) and Apparent Optical Properties (AOP)). Optical parameters are set
1114 to values defined in Table 3 and a uniform Chl depth profile equal to 1 mg m^{-3} .



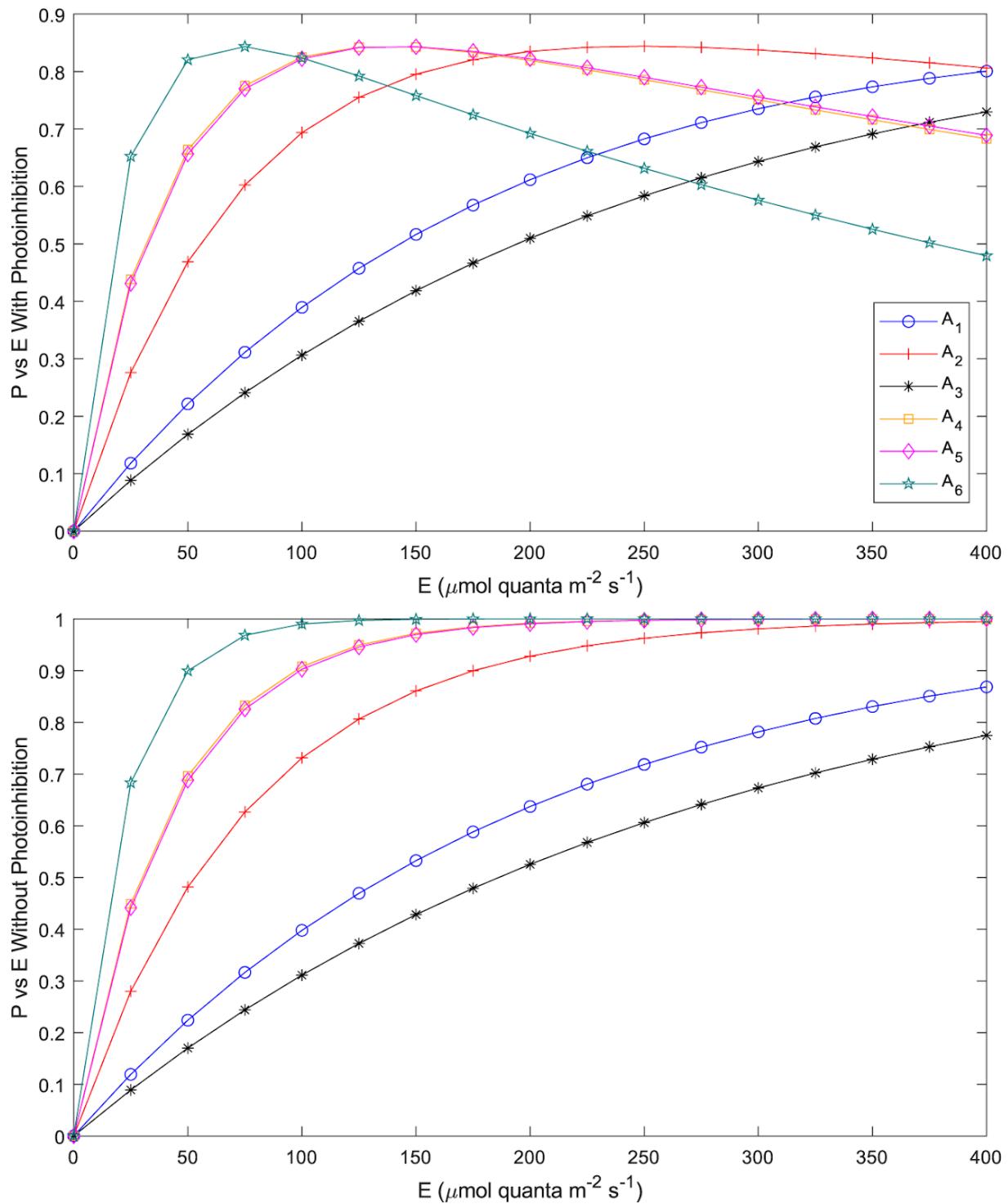
1115

1116 Figure 3. Examples of growth rate dependence on temperature using three functional forms
 1117 (T1, T2, and T3). Response curves are shown for the six phytoplankton functional types
 1118 A_1 - A_6 . (A) Temperature switch (1) uses a sigmoidal form; (B) Temperature switch (2) uses an
 1119 optimum threshold temperature; (C) Temperature switch (3) uses an Arrhenius expression.
 1120 Parameter values for T_{ref} or T_{opt} are shown and other parameters for these functions are
 1121 listed in Table 5.



1122

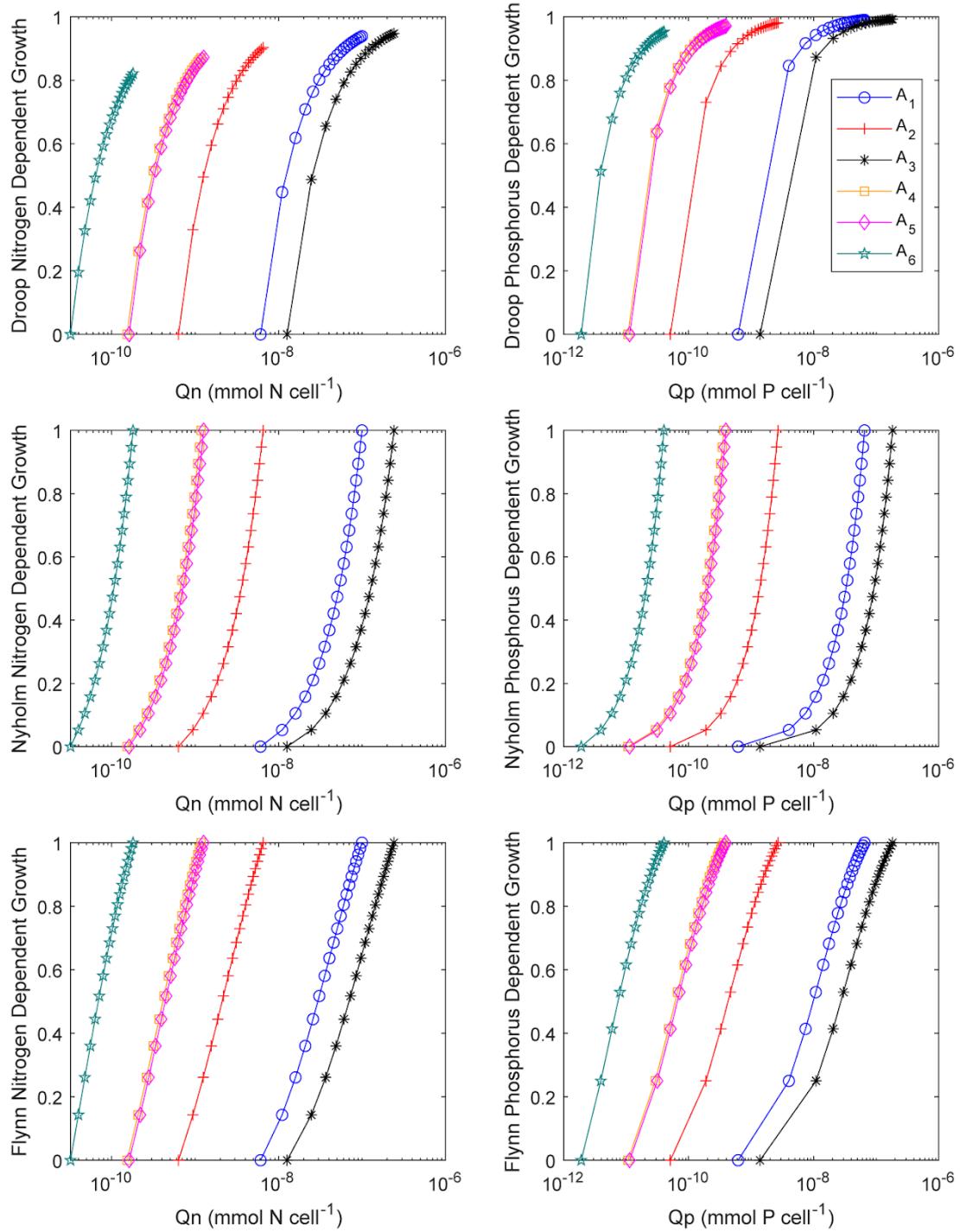
1123 Figure 4. Effects of photoinhibition on growth response curves shown for the six
 1124 phytoplankton functional types A_1 - A_6 .



1125

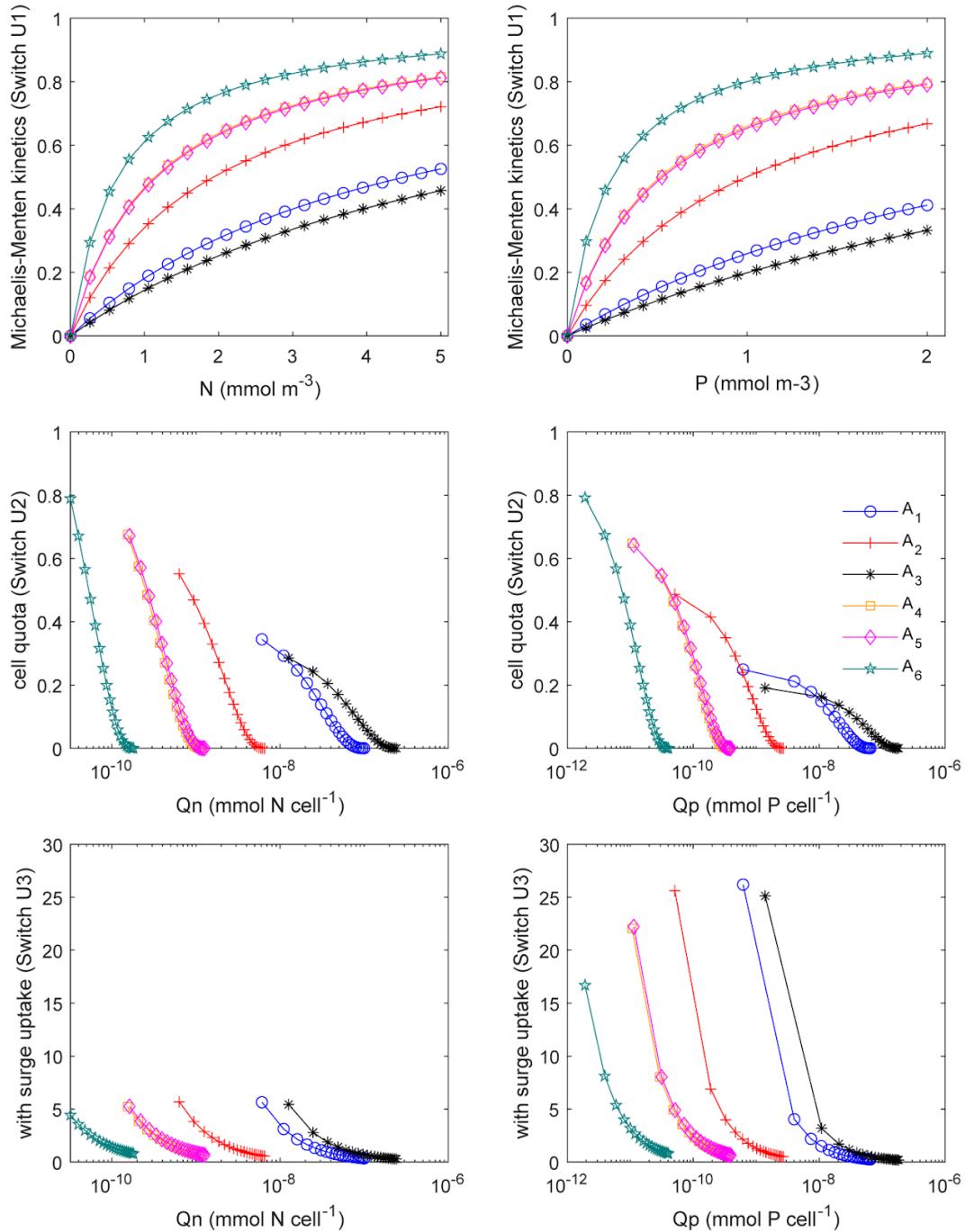
1126

1127 Figure 5. Examples of growth rate dependence on nitrogen (Qn) and phosphorus (Qp)
 1128 internal cell quotas using three functional forms (Droop, Nyholm, and Flynn) for each of the
 1129 PFTs (A_1 - A_6). Upper plots show the functional form using quota switch Q1 (equations C11 &
 1130 C12), middle plots show results using switch Q2 (equation C13) and bottom plots show
 1131 results with switch Q3 (equation C14). The parameter values used are shown in Table 4.



1132

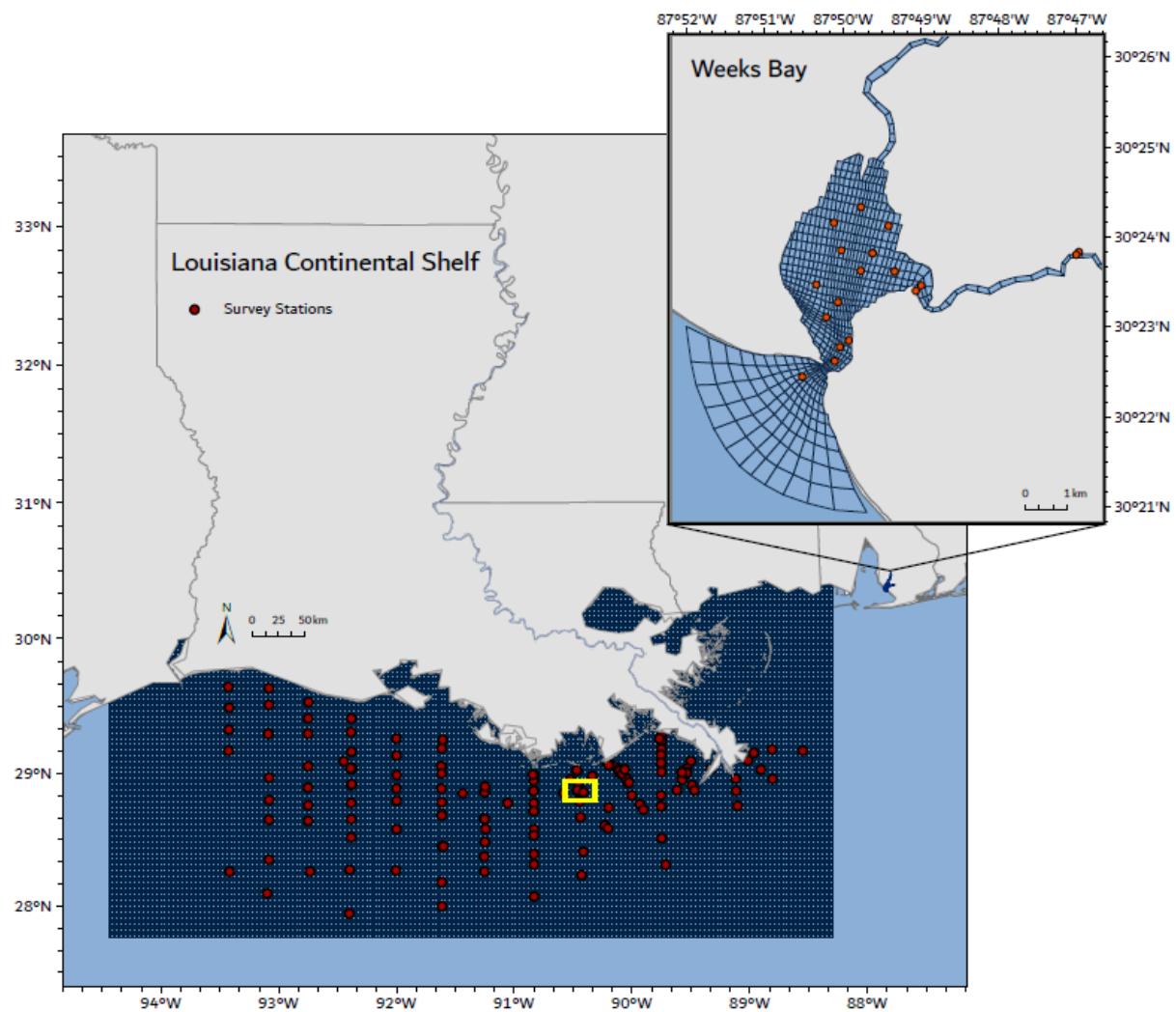
1133 Figure 6. Examples of growth rate dependence on phytoplankton nutrient uptake using three
 1134 functional forms (Michaelis-Menten, cell quota, and surge uptake) for each of the PFTs
 1135 (A_1 - A_6). Switch U1 describes N and P uptake dependence as a function of external inorganic
 1136 nutrient concentrations (equation C25). Switches U2 (equation C26) and U3 (equation C27)
 1137 have nutrient uptake dependence as a function of internal cell quota (Qn and Qp). For
 1138 switches U1 and U2, *func_Qs* ranges from 0 to 1. For switch U3, *func_Qs* approaches 1 as Q
 1139 approaches Qmax. The parameter values used are shown in Table 4.



1140

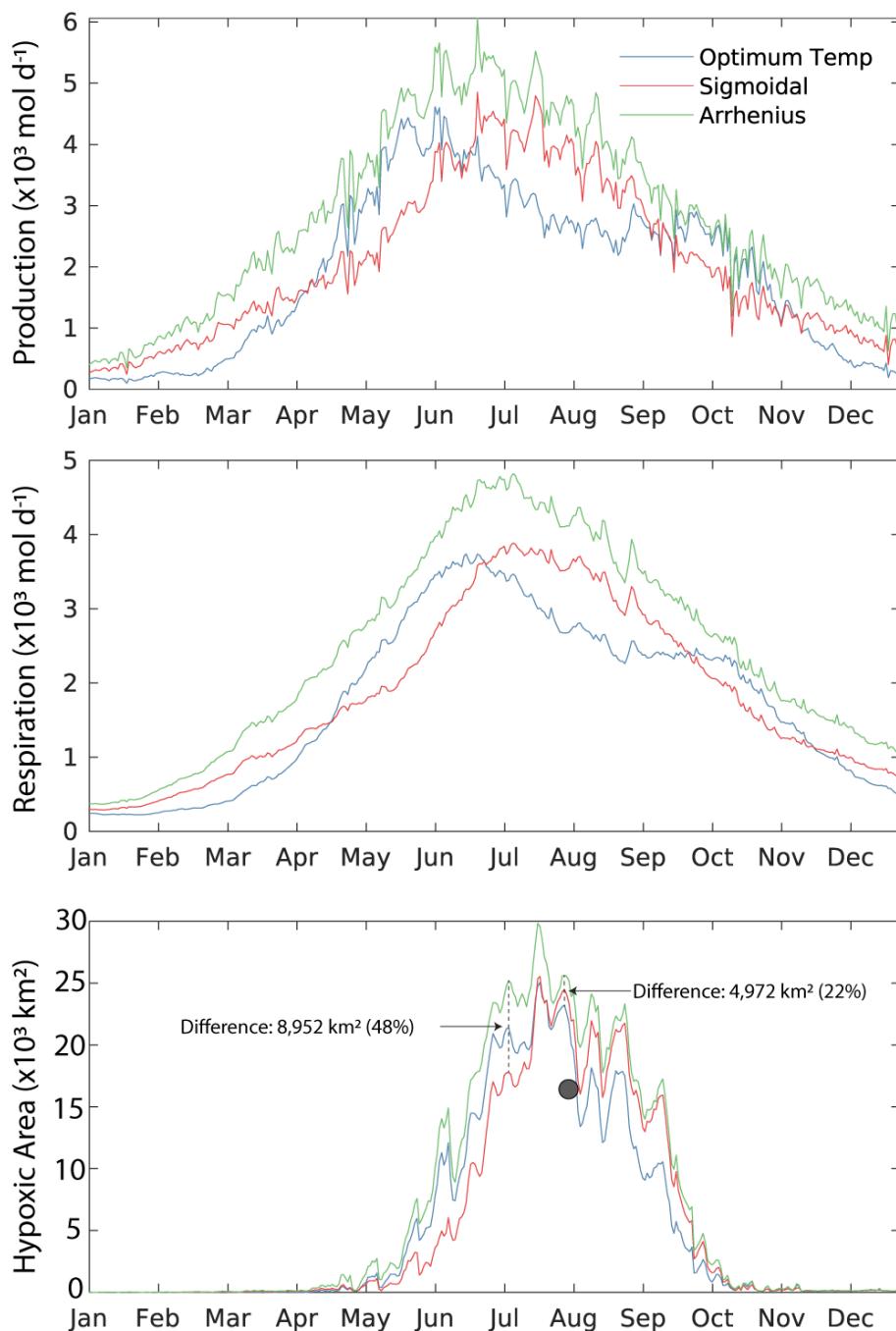
1141 Figure 7. Louisiana Continental Shelf (A) and Weeks Bay(B) CGEM model domains.

1142 LUMCON station C6, addressed in Figure 14, is highlighted in yellow.



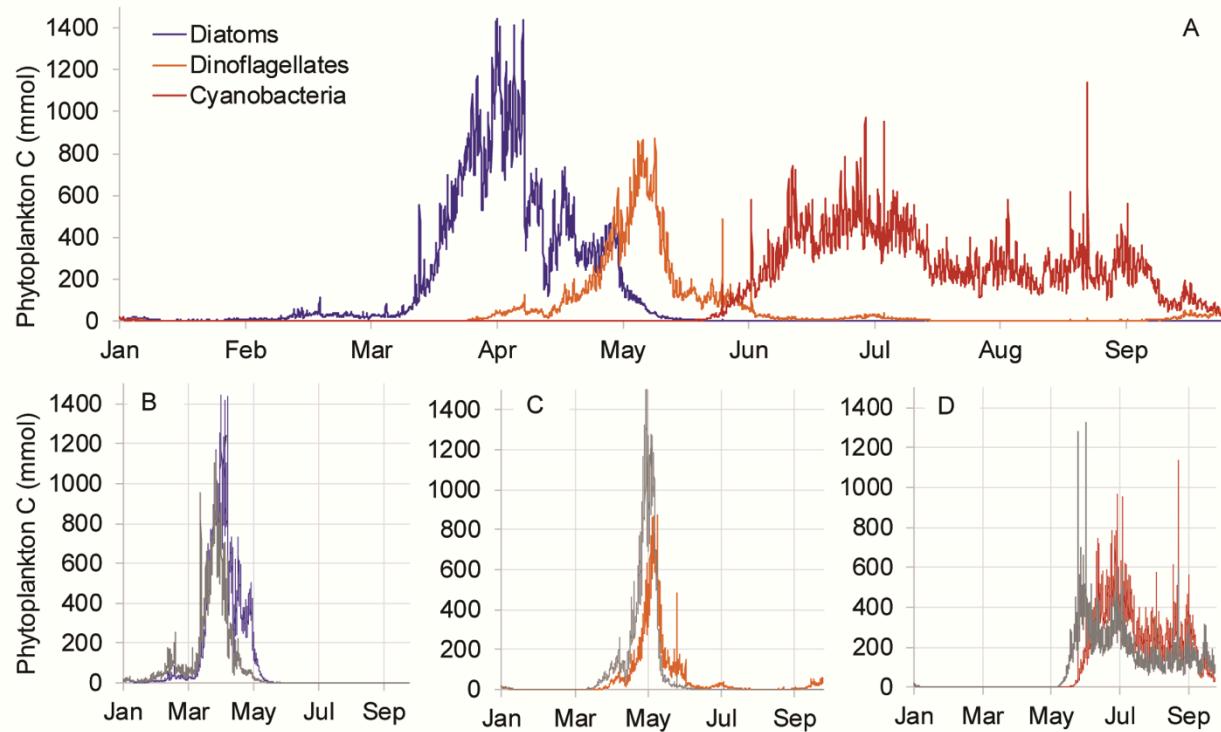
1143

1144 Figure 8. Shelfwide depth integrated primary production ($\times 10^3$ mol d^{-1} ; top panel), total
 1145 respiration ($\times 10^3$ mol d^{-1} ; middle panel), and bottom water hypoxic area ($\times 10^3$ km 2) within the
 1146 CGEM model domain. Three phytoplankton temperature growth response formulations are
 1147 shown. Differences in hypoxic area at the beginning of July and at the start of the 2006
 1148 LUMCON hypoxia research cruise (LUMCON; July 21st 2006) are annotated. The grey circle
 1149 represents the measured hypoxic area estimated by LUMCON and Obenour et al. (2013).



1150

1151 Figure 9. (A) Timeseries of phytoplankton functional type response in units of depth
1152 integrated carbon (mmol) for the central continuous monitoring site in Weeks Bay, AL (Jarvis
1153 et. al., 2023) using the optimum temperature threshold switch (T2). Timeseries response to an
1154 increased water temperature of 1.5°C (grey lines) for Diatoms (B; Tref=), Dinoflagellates (C),
1155 and Cyanobacteria (D). A full list of parameter values are provided in Jarvis et. al. (2023).



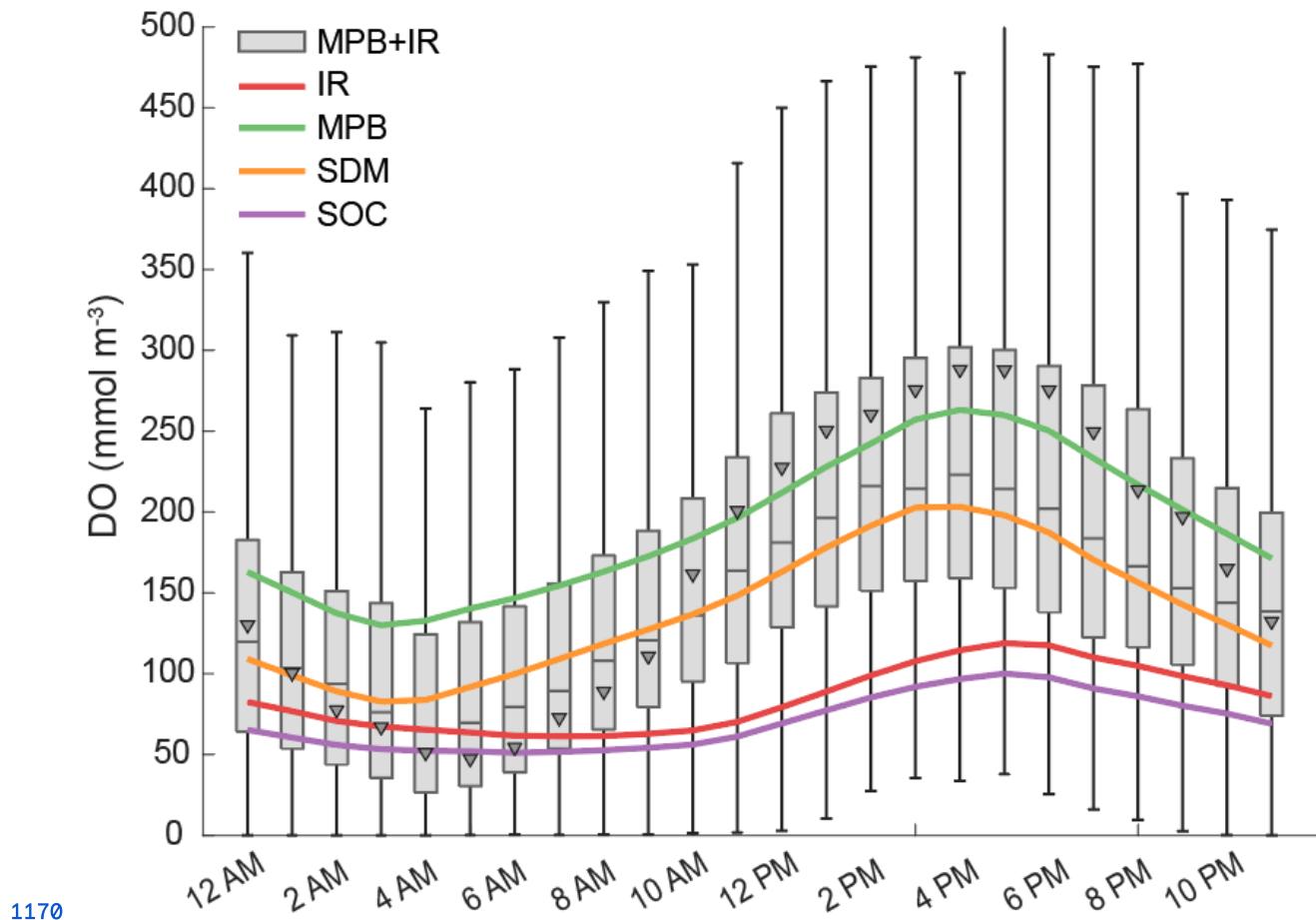
1156

1157 Figure 10. (a) Mean bottom dissolved oxygen (DO, mg L^{-1}) during July – August 2006 for the
1158 Base model run. (b – f) Difference in bottom DO between Base model and runs that included
1159 the following sediment-water exchange switches: sediment oxygen consumption (SOC),
1160 sediment nutrient flux (NutFlux), microphytobenthos (MPB), instant remineralization (IR),
1161 and a sediment diagenesis model (SDM). Negative values indicate lower mean DO in
1162 sediment-water exchange model.

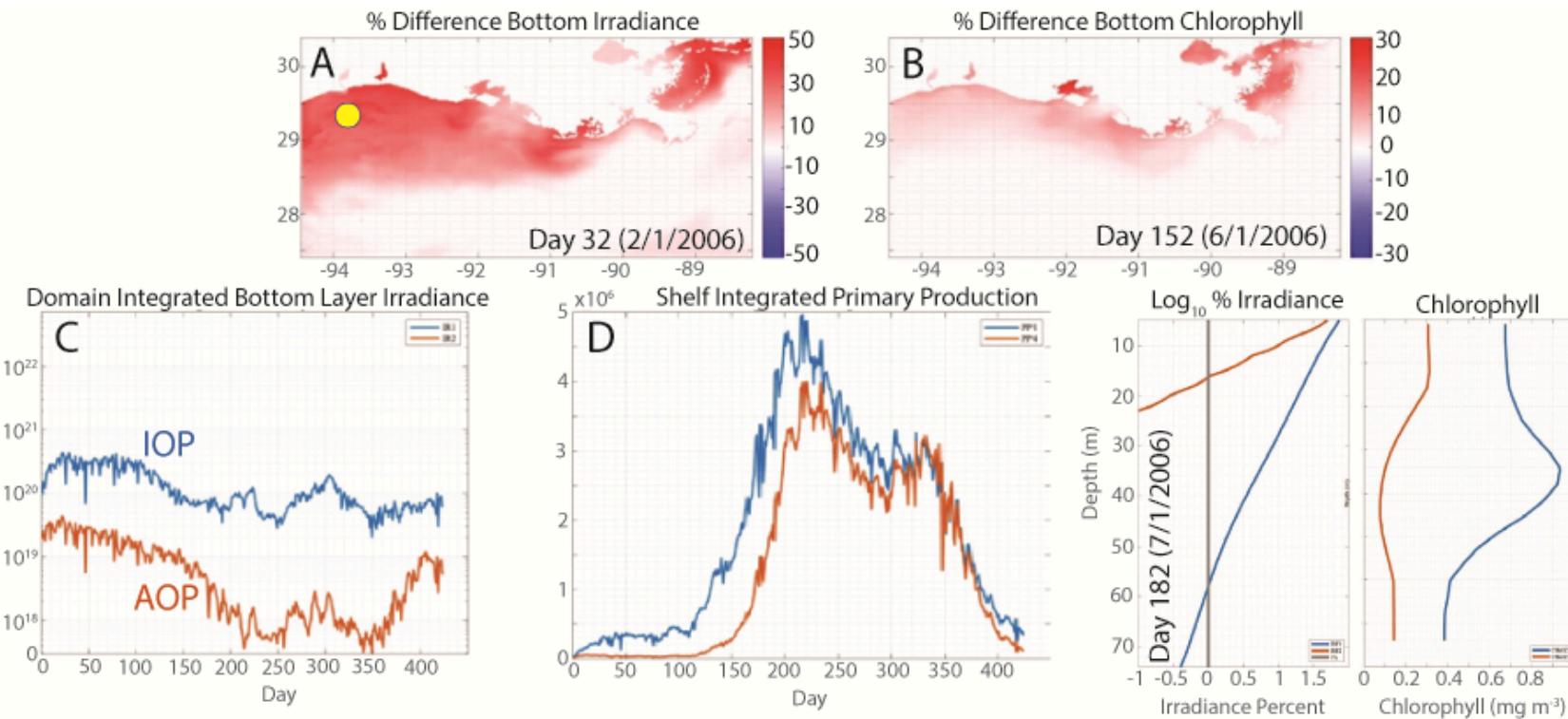


1163

1164 Figure 11. Hourly DO for the simulated bottom layer at the Weeks Bay mid-bay station using
 1165 the base model (grey box plots) from Jarvis et. al. (2023) between April-September. Triangles
 1166 represent measured mean bottom DO. Mean hourly DO from different sediment formulations
 1167 during the same period are depicted for instant remineralization (IR; red), microphytobenthos
 1168 production (MPB; green), sediment diagenesis (SDM; orange), and sediment oxygen
 1169 consumption (SOC).

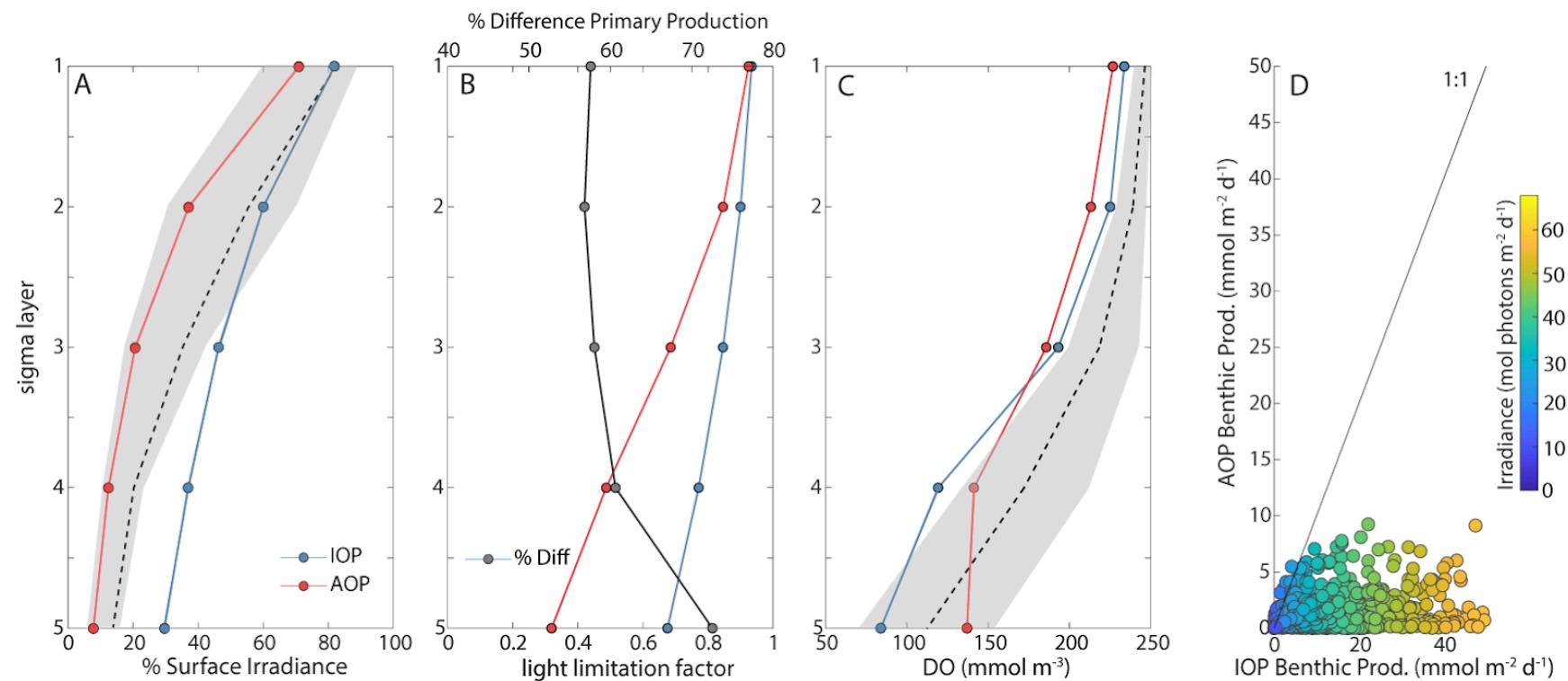


1171 Figure 12. Snapshots of percent difference between IOP and AOP for (A) bottom irradiance fraction (2/1/2006) and (B) bottom chlorophyll
 1172 (6/1/2006). Timeseries of domain integrated (C) bottom irradiance and (D) primary production for IOP and AOP model simulations. Snapshot of
 1173 vertical depth profiles (E) for percent irradiance (left) and chlorophyll (right) during mid-summer at a randomly selected point on the western
 1174 shelf (yellow circle depicted in (A); 29.365°N, 93.492°W). The grey line depicts the 1% light level of the euphotic zone.



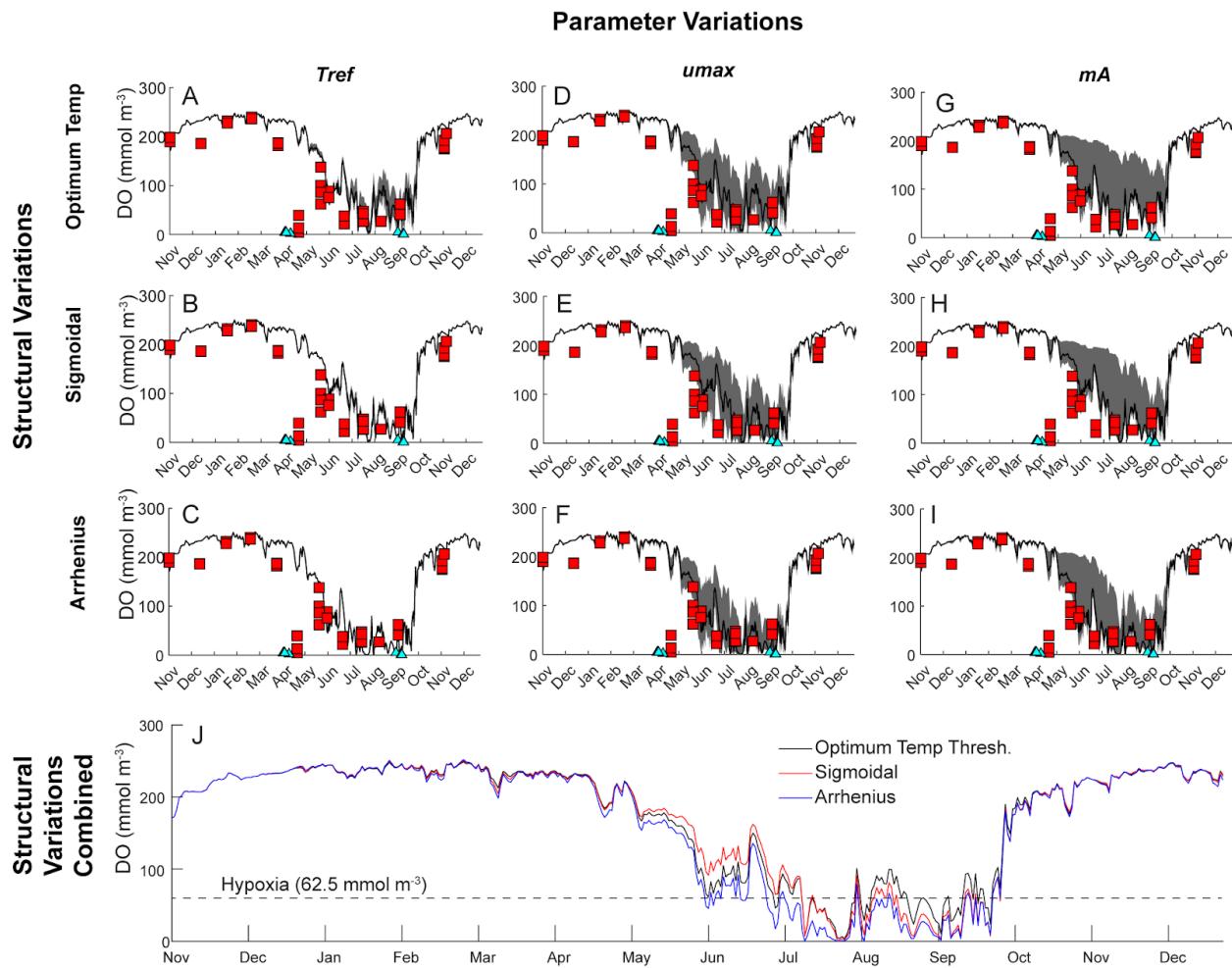
1175

1176 Figure 13. (A-C) Mean April-September vertical depth profiles by model sigma layer at the Weeks Bay mid-bay station. (A) Fraction of surface
 1177 irradiance for IOP and AOP light model simulations. (B) Mean ($A_{1:3}$) phytoplankton light limitation and combined percent difference in primary
 1178 production between IOP and AOP per sigma layer. Black dashed line indicates the mean % surface irradiance measured during mid-morning
 1179 (~10 am) and mid-afternoon (~2 pm) vertical profiles. Grey shading indicates the 25th and 75th percentiles of irradiance observations at depth. (C)
 1180 Mean DO for IOP and AOP simulations. Black dashed line indicates the mean DO from vertical profile measurements collected between
 1181 8/7-8/17 2017 (Jarvis et. al., 2022). Grey shading indicates the 25th and 75th percentiles of DO observations matching sigma layer depths from
 1182 vertical profiles. (D) Daily benthic production or IOP (x-axis) and AOP (y-axis) simulations.



1183

1185 Figure 14. Comparison of parameter sensitivities on the Louisiana Shelf at LUMCON Station
 1186 C6 (See Figure 7; LUMCON, 2021) using Optimum Temperature Threshold (T2; left
 1187 column), Sigmoidal (T1; middle column), and Arrhenius (T3; right column) temperature
 1188 growth response formulations. Parameter sensitivities are depicted as grey shaded areas, and
 1189 include a $\pm 2^{\circ}\text{C}$ change in phytoplankton reference temperature (T_{ref} ; A-C), $\pm 50\%$ change in
 1190 phytoplankton maximum growth rate ($umax$; D-F), and $\pm 50\%$ change in phytoplankton
 1191 mortality (mA ; G-I). Measured bottom dissolved oxygen (DO) concentrations include
 1192 LUMCON (red squares) and Environmental Protection Agency (EPA; blue triangles) data, as
 1193 described in (Jarvis et al., 2021). The three temperature response formulations from the Base
 1194 model calibration are plotted together (J) for comparison.



1195