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Abstract
In this study, we explore using satellite observations to assess com-
munity recovery from natural disasters such as fires and hurricanes, 
supplementing the Resilience Inference Model (RIM). The RIM model 
has been successfully used to quantify recoveries from hurricanes along 
the Gulf Coast, but it relies on long-term population changes over years 
or decades. Our approach integrates satellite observations to enhance 
recovery assessment with a shorter latency of weeks or months. Using 
fire, vegetation, and night light data from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) with daily global observations, Sentinel-2, 
Landsat-8, and Geostationary Operational Environmental Satellite/
Advanced Baseline Imager, we quantitatively evaluate fire intensity, light 
outage, and urban greenness changes, along with subsequent recovery, 
focusing on the 2023 Maui fire and selected hurricane cases along the 
Gulf Coast. This approach complements the RIM model by introducing 
quantifiable physical parameters with shorter latency, particularly ben-
eficial in areas where census data are either unavailable or unreliable.

Introduction
Natural disasters such as hurricanes and fires are detrimental to 
property and life. Extensive studies have been conducted to assess 
the effect of these disasters, which have occurred more frequently in 
recent years. Hurricanes have caused the most deaths and destruction 
among all recorded weather disasters in U.S. history (NOAA 2023). 
From 2020 to 2022, there have been 60 weather and climate disasters 
with losses exceeding $1 billion. The total cost of damages from 1980 
to the present is more than $2.6 trillion, almost equivalent to the gross 
domestic product of Italy or France. July and August 2023 were the 
warmest months on record, and there were more sea surface tempera-
ture anomalies than any other month in NOAA’s 174-year record. In 
August 2023, Southern California experienced the first tropical storm 
in 84 years, Hurricane Hilary, with gusty winds and torrential rain 
that broke all daily rainfall records for the area. At the same time, the 
Maui wildfires on 8 August 2023, caught everyone by surprise. They 
destroyed more than 2,000 structures, caused $4 to $6 billion in losses 
from property damage and business interruption, with the town of 
Lahaina practically destroyed (Schulz and Collins 2023). More than 
100 people died in the Maui fire. It will take years for Lahaina to 
recover from this disastrous event. 

Researchers have studied the social–ecological resilience, vul-
nerability, hazards, and risk assessment to natural disasters such as 

hurricanes and fires and recognized the importance of quantifying 
them (Cutter et al. 2003; Vogel 2006; Adger and Brown 2010; Tierney 
and Oliver-Smith 2012). Lam et al. (2016) introduced the Resilience 
Inference Measurement (RIM) model to quantify resilience to climate-
related hazards for 52 counties along the northern Gulf of America in 
the United States. The model uses three elements: exposure, damage, 
and recovery indicators, to denote two relationships: vulnerability 
and adaptability, and the model employs both K-means clustering and 
discriminant analysis to derive the resilience rankings, thus enabling 
validation and inference. 

Although the RIM model has been demonstrated in studying the re-
silience of the community to natural disasters along the Gulf Coast, we 
also recognized that the model primarily relies on social and economic 
data such as population change as well as other census statistics, which 
typically have long latency for quantifying the resilience after natural 
disasters. The period of the resilience study using this model can range 
from years to decades. In the current study, we explore expanding 
the use of the RIM model to other environmental factors that can be 
readily derived from remotely sensed satellite data that have shorter 
latency for natural disaster assessments. This extension of the RIM 
model to the short-term recovery with satellite observation assess-
ments complements Lam’s RIM model. In particular, we demonstrate 
the use of NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) 
observations and other high resolution data for quantifying the short- 
and long-term recovery from major disasters in days, months, and 
years. The VIIRS observed night light intensity by the day/night band 
and the urban greenness index from the imagery bands derived from 
daily observations were used for assessing the recovery of Lahaina in 
the Maui wildfire, as well as the recovery from hurricanes along the 
gulf coast. This paper is structured as follows: after the introduction, 
we review the RIM model, followed by a review of the various satellite 
instrument capabilities in observing disaster events and recovery. In the 
third section, we present the methodology for developing the indicators 
of recovery from VIIRS and other satellite observations, and the results 
are presented in the following section, with further discussion related to 
the RIM model. The final section provides a summary and conclusion.

Review of the RIM Model
As pointed out by Lam et al. (2016), the U.S. National Research 
Council report defined resilience as “the ability to prepare and plan 
for, absorb, recover from, and more successfully adapt to adverse 
events” (National Research Council 2012). At the same time, the 
Intergovernmental Panel on Climate Change (2007) considered vulner-
ability a function of three factors: exposure, sensitivity, and adaptive 
capacity. The RIM model (Lam et al. 2016) adopted the definition 
by the National Research Council report and considers resilience as 
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comprising both aspects of vulnerability and adaptability. The concep-
tual RIM model is best summarized in Lam et al. (2016) (Figure 1). 

Figure 1. Lam’s RIM model (modified from Lam et al. 2016).

For a given community, such as Lahaina (for wildfire) or New 
Orleans (for hurricanes), its exposure to hazards leads to vulnerability, 
which will have a high probability of causing damage in an unexpected 
event such as a hurricane or fire. The community may recover and 
hopefully recover faster next time due to adaptability and developing 
mitigation to be prepared for the next cycle in which the community 
will become more resilient (Cutter et al. 2003; Walker et al. 2006a; 
Lam et al. 2016; Bathiany et al. 2024). 

Although conceptually the RIM model is relatively easy to un-
derstand, quantifying resilience is challenging (Walker et al. 2006b; 
Peduzzi et al. 2009; Lam et al. 2016, 2018; Bathiany et al. 2024). To 
address this issue, resilience is considered a broader concept that in-
cludes aspects of both vulnerability and adaptive capacity over time in 
the RIM model, and therefore, the model considers three elements: ex-
posure, damage, and recovery, and two relationships: vulnerability and 
adaptability. A time interval of 10 years was used in the RIM model to 
compute the exposure and damage to coastal hazards. Statistical data 
including census from 1998 to 2008 were used as a key variable in the 
RIM model for the study area of Gulf Coast counties, which included 
five states: Texas, Louisiana, Mississippi, Alabama, and Florida. The 
three elements for each county were defined as: (1) the exposure to 
hazards, represented by the number of times hurricanes or climate-
related hazards hit a community; (2) the damage from exposure to 
hazards, represented by the property damage; and (3) the recovery, 
represented by population growth (Lam et al. 2016).

However, Lam et al. (2016) acknowledged that using population 
change alone may not be sufficient to indicate recovery. They suggested 
that other indicators could include economic, environmental, infrastruc-
tural, and social factors, such as development intensity. Nevertheless, 
no specific details were provided because some of these variables could 
be difficult to define and obtain data for. Also, aggregated statistical 
data are known to have a long latency from time of the event to the 
time when the data becomes available publicly, which is a drawback of 
using population as the major indicator of long-term recovery. 

In the current study, we explore using remotely sensed data from 
several satellites to quantify the recovery after natural disasters. In par-
ticular, satellite observation time series from the night light intensity 
observed from NOAA’s VIIRS day/night band (DNB), and the urban 
greenness index calculated from the Normalized Difference Vegetation 
Index (NDVI) in both short-term and long term are used as indicators 
of recovery, hopefully to complement the RIM model, which heavily 
relies on population growth as recovery indicator. Furthermore, disas-
ter events such as the Maui fire are analyzed using multiple satellite 

data including Geostationary Operational Environmental Satellite 
(GOES) Advanced Baseline Imager (ABI), VIIRS, Landsat, Sentinel-2, 
and hyperspectral data from Earth surface Mineral dust source 
InvesTigation (EMIT), at different spatial, temporal, and radiometric 
resolutions to quantify the damages from the disasters.

Methodology and Satellite Observation Data
In this section, we first examine the various satellites available for 
detecting the Maui Lahaina fire and their advantages and limitations. 
Then we focus on using VIIRS fire bands and the DNB to study the 
fire. The analysis is also extended to hurricane cases later. 

Satellite Capabilities and Limitations for Observing Disaster Events:  
The Lahaina Fire Case
Since the first satellite launch of Explorer 1 by the United States in 
1958, the number of Earth observation satellites has skyrocketed espe-
cially in recent years, with the proliferation of small satellite launches. 
The global space industry revenue is more than $300 billion a year. 
The number of orbital space launches worldwide reached 174 in 2022, 
the highest number since the beginning of the Space Race in 1957 
(Statista 2023). Not all of them are for Earth observations. According 
to the eoPortal satellite missions catalogue maintained by the European 
Space Agency (eoPortal 2023), there are more than 1000 Earth obser-
vation satellites in space today. 

However, not all satellites can observe disasters like fire and hur-
ricanes. There are four major constraints for each satellite sensor: 
spatial, spectral, radiometric, and temporal resolution and associated 
performance characteristics. Although it is known that hurricanes cause 
more damage in coastal regions such as along the coast of the Gulf of 
America and wildfires occur more frequently in arid to semi-arid cli-
mate regions, the precise time and location of such events are not well 
predicted. Very often, a satellite instrument can be perfectly designed 
for disaster monitoring, such as those in the Committee on Earth 
Observation Satellites Disaster Monitoring Constellations, the satellites 
unfortunately may not be in the right place at the exact time of such 
events as discussed below. In addition, each satellite mission has data 
downlink bandwidth limits, availability, and latency limitations. Here, 
we use the Maui Lahaina fire to illustrate the capabilities and limita-
tions of various satellite observations.

The Lahaina fire, on the northwest coast of Maui Island, Hawaii, 
practically destroyed the city of Lahaina, with more than 100 deaths, 
and more than 200 homes destroyed. It is among the biggest tragedies 
in the modern history of disaster events. It occurred so quickly from 
8 to 9 August 2023, precipitated by drought, the spread of non-native 
grasslands (Piper et al. 2023), downed power lines, and hurricane-
force winds from Hurricane Dora, moving across the Pacific despite 
being more than 500 km away. According to the official results from 
the investigation by the U.S. Fire Administration, on 8 August 2023, 
wind-driven wildfires on the island of Maui destroyed more than 2,200 
structures and caused about $5.5 billion in damages. The most signifi-
cantly affected area was the historic district of Lahaina, where more 
than 100 lives were lost. On April 17, 2024, Hawaii attorney general 
released the Lahaina Fire Comprehensive Timeline Report (Kerber and 
Alkonis 2024) on the devastating August 2023 fire that led to the fatali-
ties, widespread destruction, and devastating community effects.

Which satellite captured the Lahaina fire while it was burning? 
Figure 2 and Table 1 provide a snapshot of selected satellites over 
Lahaina between the evening of 8 August and early morning of 9 
August 2023, when the fire was burning. Our orbital analysis shows 
that three satellites captured this horrific event: GOES-18 West (posi-
tioned at 137.2 W longitude, 0 latitude) observed the Lahaina fire every 
10 minutes (Mode 6) with 2-km resolution in the 3.9-μm and other 
thermal infrared bands. It shows that the maximum fire radiative power 
was observed on the evening of 8 August local time between 6 and 9 
pm; meanwhile, Landsat-8 captured the Lahaina fire once at 10:25 pm 
local time on 8 August with its 1.6 μm and thermal infrared thermal 
infrared sensor (TIRS) bands at 30- and 100-m resolution, respec-
tively. On the other hand, VIIRS from three satellites (Suomi National 
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Polar-Orbiting Partnership [S-NPP], NOAA-20, and NOAA-21) with 
375-m spatial resolution (as well as other thermal bands with 750-m 
spatial resolution) observed the Lahaina fire multiple times. Sentinel-2, 
with a high spatial resolution of up to 10 m, captured the fire in the cen-
tral part of Maui around noon local time on 8 August and then after the 
fire event on 13 August but unfortunately did not capture the Lahaina 
fire, which started spreading in the afternoon of 8 August. Similarly, 
the EMIT instrument on the International Space Station (ISS) acquired 
hyperspectral data from 0.4 to 2.5 μm with ~7.4-nm spectral resolution 
and 60-m spatial resolution (Green et al. 2020; Green 2022; Thompson 
et al. 2024) over the Lahaina area on 18 August 2023 (after the fire), 
and the data were also used for analysis in this study. The multi-sat-
ellite observations over the same location during a disaster event can 
complement each other and help better capture the spatial and temporal 
evolution of the fire and assess its spread and damage.

The Lahaina fire provides an example of the advantages and short-
comings of various satellites. Although GOES West has high temporal 

resolution with 10-minute mode 6 full-disk observations (up to 30 
seconds if Mesoscan were activated to scan two overlapped regions), 
it has a low spatial resolution of 2 km, and therefore no details of the 
fire at the city level can be observed. ABI covers the entire city in just 
a few pixels. On the other hand, Sentinel-2 has a high spatial resolution 
of 10 m, but it was not there to observe the fire because it has a tempo-
ral coverage every 5 to 10 days. In contrast, the VIIRS instrument has a 
moderate resolution and observed the fire twice daily from each of the 
three satellites. It is quite possible that other satellite sensors may have 
captured the fire but mostly coincidentally during the time window of 
this event. In addition, the revisit time of 5 to 10 days is further affected 
by clouds, which appear frequently on the island of Maui. Other active 
sensors, such as the synthetic aperture radar on Sentinel-1, can pen-
etrate the cloud, but can only detect surface roughness instead of fire. 

Analysis of Data from Multiple Satellite Observations
Given the various limitations of different sensors on several satellites, 
we focus on using VIIRS observations to study the Maui Lahaina fire 

Figure 2. Location of multiple satellites on 9 August 2023, 2:14 A.M. local time (local time was UTC −10 hours) during the Lahaina fire. 

Table 1. Satellite overpass for the Maui site during the fire (4 pm on 8 August to 2 pm on 9 August)

Satellite/Sensor
Observed the Lahaina Fire 
(Local Overpass Time)

Temporal Resolution/
Revisit Time

Spatial 
Resolution Spectral Channel Comments

GOES West/ABI All times 10-minute  
(mode 6 full disk)

2000 m 3.9 μm, IR Video available (but no Mesoscan); 
14 bits for the 3.9-μm channel

Landsat-8/9 8 August 10:25 pm Every 8 to 16 days 30 m 1.6 μm, thermal 
infrared sensor

L8 overpass but saturated; L9 
observed after fire. (14 bits) 

S-NPP/VIIRS 9 August 1:25 am
9 August 2:17 pm

Twice daily  
(~1:30 am/pm)

375 m I4 and M13 (4 μm), 
SWIR, DNB, IR

12 bits; 14 bits (DNB night)

NOAA-20/VIIRS 9 August 2:14 am
9 August 1:26 pm

Twice daily  
(~1:30 am/pm)

375 m I4 and M13 (4 μm), 
SWIR, DNB, IR

12 bits; 14 bits (DNB night)

NOAA-21/VIIRS 9 August 2:37 am
9 August 1:48 pm

Twice daily  
(~1:30 am/pm) 

375 m I4 and M13 (4 μm), 
SWIR, DNB, IR

12 bits; 14 bits (DNB night)

Sentinel-2A/2B No overpass during fire Every 5–10 days 20 m SWIR and RGB Overpass before and after the fire 
(on 13 August), 12 bits

SPOT7 No overpass during fire 6 m Overpass after the fire (data not 
used for this study), 12 bits

JPL EMIT 18 August 2023 On demand 60 m Hyperspectral
380–2500 nm

16 bits; spectral resolution 7.4 nm

Note: All observation data (L1b) by instruments listed in Table 1 were used in this study, with the exception of SPOT7. ABI = Advanced Baseline Imager; DNB = 
Day/Night Band; JPL = Jet Propulsion Laboratory; EMIT = Earth surface Mineral dust source InvesTigation; GOES = Geostationary Operational Environmental 
Satellite; IR = infrared; S-NPP = Suomi National Polar-Orbiting Partnership; SWIR = Short-Wave InfraRed; VIIRS = Visible Infrared Imaging Radiometer Suite.
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event and the subsequent damage and recovery of the Lahaina city. 
From the ABI observations of GOES West, we found that the maxi-
mum intensity of the Lahaina fire occurred around 7:30 pm on 8 August 
2023 local time. GOES West ABI could have captured the fire with 
Mesoscale mode if this was requested and prescheduled, which would 
be able to monitor the event with 30-second time intervals. However, 
no other satellite observed the fire during this time window of maxi-
mum intensity (Table 1). 

Landsat-8 had a near nadir overpass over Lahaina on 8 August at 
10:25 pm local time (Figure 3). Analysis of the radiometric values of 
the Landsat TIRS bands show that these bands are saturated over a 
large area so the hottest pixel (Tmax) cannot be identified. According to 
Landsat-8 TIRS specification, the saturation temperature is at 360 K, 
which is far below the temperature of the intense fire at many locations 
in Lahaina (https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-
instruments/thermal-infrared-sensor/tirs-requirements/). Analysis of 
the Landsat-8 band 6 at 1.6 μm shows that relatively fewer pixels 
(about 40 in the north Lahaina area) were saturated. The hottest area 
with saturated pixels appears in the northern part of Lahaina city. We 
estimated that the maximum radiometric intensity of the fire occurred 
at 20.89N, −156.68W (UTM: 741163, 2311962, zone 4), although 
the maximum values are unknown because it is saturated (flagged as 
65535 in the Landsat data).

Figure 3. Landsat-8 OLI (Operational Land Imager) observed the 
Lahaina Maui fire at 10:25 pm local time on 8 August near nadir with 
its 1.6-μm channel. The color legend shows brightness temperature 
in kelvin (black represents saturated pixels).

Following the Landsat-8 observation, VIIRS observed the fire 
multiple times at midnight and in the early morning of 9 August 2023. 
In the following section, we performed more detailed analysis of the 
location of the highest fire intensity using VIIRS data.

As discussed previously, the launch of S-NPP VIIRS in 2011 
marked a new era of operational moderate resolution imaging in the 
sun-synchronous polar orbiting satellite, succeeding the heritage 
sensors such as Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Advanced Very High Resolution Radiometer (AVHRR). 

The S-NPP VIIRS has performed well over a decade by now (Cao 
et al. 2014, 2021), providing global Earth observations twice daily 
around 1:30 pm equator crossing local time ascending node (or 1:30 
am descending). The primary channel for fire detection is the 4.05-μm 
channel known as M13, with a moderate spatial resolution of 750 m at 
nadir, and a brightness temperature dynamic range up to 634 K with 
its dual gain design, which has a distinct advantage over many sensors 
for which saturation is common at such high temperatures for this 
channel. The M13 channel is complemented by the spectrally similar 
imaging band of I4, which has a spatial resolution of 375 m at nadir, 
but a saturation brightness temperature of ~367 K. Two VIIRS active 
fire products are typically generated independently using the available 
750- and 375-m resolution data. The 750-m fire product inherited the 
MODIS algorithm, adapted to VIIRS channels M5, M7, M11, M13, 
M15, and M16. The 375-m fire product uses the VIIRS imaging bands 
of I1–I5, complemented by channel M13, to detect and characterize 
subpixel active fire (Csiszar et al. 2014). 

Separately, the Nightfire algorithm (Elvidge et al. 2013) detects and 
characterizes subpixel hot sources using multispectral data collected 
globally, each night, by using VIIRS visible, near-infrared, short-wave 
infrared (SWIR), and mid-wave infrared channels. The primary detec-
tion band is in the VIIRS SWIR, centered at 1.6 μm for both VIIRS 
I3 and M10 bands. At night, this band is sensitive to high radiant 
emissions associated with gas flares, biomass burning, volcanoes, and 
industrial sites such as steel mills. Planck curve fitting of the hot source 
radiances produces temperature (K) and emission scaling factor. 

On the other hand, the VIIRS Day/Night Band, with its extremely 
high sensitivity to night lights, can also detect fires at night. It is known 
that this band can detect ~1000 optical watts of total energy in the 
0.4 to 0.9 spectral range within a pixel of 750 × 750 square meters. 
However, this band is mostly used for night light observations like 
city lights. In this study, we developed a time series of night lights for 
Lahaina to study its destruction due to fire and the subsequent recovery. 

In this study, we first investigated the evolution of the Lahaina 
fire hour-by-hour using GOES West observations to identify the time 
at which the maximum fire intensity was reached. Then, we used 
the VIIRS imaging band to zoom in on the area at the maximum fire 
temperature around the time to further identify the location of the 
maximum fire intensity. Once the time and location of the maximum 
fire intensity were identified, we extracted the radiometric data for this 
location to develop a time series using the VIIRS night light intensity 
and NDVI (as a proxy for urban greenness index) derived from the 
VIIRS imaging bands I2 and I1 to study the recovery of urban green-
ness and infrastructure in the process. It is noted that both MODIS and 
AVHRR have observed the Maui fire because they both have global 
coverage daily, and the AVHRR on Metop-B and -C satellites are in the 
mid-morning orbit similar to that of MODIS on Terra, whereas MODIS 
on Aqua is in a similar orbit as that of the S-NPP, NOAA-20, NOAA-21 
satellites. However, the spatial resolutions of both AVHRR and MODIS 
for the thermal infrared bands are lower than that of VIIRS, and neither 
one has the night light observation capabilities of VIIRS DNB.

As shown in Figure 2, NOAA-20 had a near nadir overpass over 
Lahaina in the early morning of 9 August. Analysis of the band I4 
(with 375-m spatial resolution at ~4 μm) shows that only one pixel 
was saturated due to very high brightness temperature. This pixel was 
identified by geographic location as 20.8986N, −156.6799W (pixel lo-
cation: 3810/73 in the granule), which is in the vicinity of the location 
of the hottest spot (Tmax) shown in the Landsat-8 image a few hours 
earlier. On the other hand, it is also known that when a NOAA-20 or 
S-NPP pixel is saturated, it could “roll over” to a lower value, which 
could make the pixel value an outlier compared to the background 
(Wang et al. 2022). The apparent saturated pixel is identifiable because 
it shows an unrealistic brightness temperature (208 K) far below the 
background temperature. It is also possible that other pixels may have 
rolled over to a temperature closer to the background temperature, 
which would be difficult to distinguish. This raises the question of 
whether the saturated pixel is the real hottest pixel (Tmax) and whether 
other saturated pixels are nearby. 
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To address this issue, we further investigated using the VIIRS M13 
band, which has a nearly identical spectral response to I4 except it has 
a lower spatial resolution of 750 m at its nadir and saturates at much 
higher temperatures. Geometrically, these two bands match well. The 2 
× 2 pixels in the I4 band are nested in one M13 pixel. It is also known 
that because the M13 is a dual gain band, the pixels are aggregated in 
the cross-track direction at about a 3:1 ratio at the nadir. The unag-
gregated data are downlinked from the satellite and the aggregation 
occurs in the ground processing system. An unaggregated M13 band 
has a higher spatial resolution (an intermediate product), although this 
is only for the cross-track direction, whereas in the along-track direc-
tion, it is still 750 m per pixel. Three unaggregated M13 pixels at the 
nadir make up for one standard (aggregated) M13 pixel at nadir, and 
the unaggregated pixel is rectangular in shape (250 × 750 m in size). 
Nevertheless, the unaggregated data would provide additional informa-
tion about the I4 band saturated pixel. 

Analysis of the same saturated pixel location in I4 is identified as 
having a brightness temperature of 407.01 K in M13 standard product, 
and its corresponding unaggregated data from this M13 pixel shows 
that the brightness temperature values are 439.41, 392.06, and 366.68 
K, respectively, before aggregation. According to the Planck function, 
the aggregation must be performed in the radiance space because the 
radiance and brightness temperature are highly nonlinear in this spec-
tral region. The radiance values for these three unaggregated pixels 
are 33.70, 12.69, and 6.78 W/m2-sr-μm, respectively, or an average 
of 17.72 W/m2-sr-μm, which matched the brightness temperature of 
407.01 K of the M13 aggregated pixel and did not saturate the M13 be-
cause this channel can measure up to 634 K due to its dual gain design. 
As a result, this suggests that the saturated pixel in I4 was the “hottest 
pixel” (Tmax) at the time, and this location (20.8986N, −156.6799W) 
is therefore used for subsequent analysis including the time series. 
Further cross-checking with the fire radiative power (FRP) product 
(https://firms.modaps.eosdis.nasa.gov/; https://firms.modaps.eosdis.
nasa.gov/usfs/map/#d:24hrs;@-156.62,20.89,11.64z) also confirmed 
this location and shows that the highest FRP is 73.66W retrieved using 
the FRP algorithm with I4 and I5.

With the hottest (Tmax) location identified, we also explored the 
hyperspectral observations of the Maui Lahaina fire to evaluate this 
hottest spot site. EMIT is a NASA Jet Propulsion Laboratory (JPL) 
mission to use state-of-the-art imaging spectroscopy across the visible 
to short wavelength infrared (VSWIR) spectral region to measure the 
Earth’s arid land dust source regions. The EMIT was launched to the 
ISS on 14 July 2022. EMIT measures the spectral range from 380 to 
2500 nm with 285 contiguous spectral channels. Spectral cross-track 
uniformity and spectral instantaneous field of view uniformity for this 
VSWIR imaging spectrometer are key requirements for EMIT spec-
troscopy (Thompson et al. 2024). 

Ideally, we would want to compare the spectral changes of the 
Lahaina site using EMIT observations before and after the fire event 
to study the change. However, although there was a good data set 
shortly after the fire, there were no EMIT observations of the site 
before the fire with clear sky. As a result, we used the Airborne Visible/
InfRared Imaging Spectrometer (AVIRIS) data (Green et al. 1998) to 
analyze the spectral signature of the site before the fire. Although the 
only recent AVIRIS data available for Lahaina region is from 2018, 
it still served well for the purpose of analyzing the region before the 
fire (it had a similar solar zenith angle to the EMIT observation after 
the fire). The main reason for using AVIRIS is that only one EMIT 
data set was available from before the fire, but the Lahaina area was 
covered by clouds. However, after the fire on 18 August 2023, it was a 
clear-sky day, and we were able to analyze the spectra with the EMIT 
data set. We performed this analysis with the assumption that both 
AVIRIS and EMIT represent typical urban spectra for this geographic 
area. In addition, both the instruments observe the site at similar solar 
zenith angles. To reduce the registration error, we have used similar 
size regions of interest (~300 × 300 m) for EMIT and AVIRIS. The 
top-of-atmosphere (TOA) reflectance spectra over the hottest region 
is compared before and after the fire (Figure 4). The spectra for the 

hottest area (before fire) indicates strong reflectance over visible, near-
infrared, and short-wave infrared regions. However, the TOA reflec-
tance dropped sharply for the same location (black curve) after the fire 
for the spectral region below 1.7 μm. The drop in signal is mainly due 
to the darkening of the surface at this location and loss in green vegeta-
tion after the fire. The drop in the reflectance before and after the fire is 
as expected and is quantified using the Normalized Burn Ratio (NBR), 
a measure of the burn severity (https://www.usgs.gov/landsat-missions/
landsat-normalized-burn-ratio). The NBR is an index that measures the 
difference in reflectance between near-infrared and shortwave infrared 
light to indicate the presence of burned areas. NBR values range from 
−1 to 1, with higher values indicating healthy vegetation and lower 
values indicating burned areas. The NBR for the hottest area was 0.43 
before burn, and reduced to −0.18 after burn. The sharp decrease in 
the NBR index for the hottest area indicates the change in the spectral 
characteristics of the land cover (darkening) after burn. The large dif-
ference in NBR before and after fire also indicates the severity of the 
burn over the hottest location.

Figure 4. Spectral measurements of Lahaina site over the hottest 
location, before (Airborne Visible/InfRared Imaging Spectrometer 
on 26 January 2018) and after the fire (Earth surface Mineral dust 
source InvesTigation on 18 August 2023)

Disaster Damage Indicators and  
Recovery with Time Series Analysis 
Time series analysis is a powerful technique to study phenomena 
changes over a period of time, including secular trend, short term 
variations, cyclic variation, or irregular variations. In this section, 
we quantify the recovery from the Lahaina fire in Maui and recovery 
from the hurricane damage in the Gulf of America with a series of 
satellite observations from VIIRS using the night light intensity and 
urban greenness as two major indicators of damage caused by natural 
disasters.

Recovery from Lahaina Fire 
Two indices are used to quantify the recovery from fire in this study: 
the night light intensity from the VIIRS/DNB, and the urban greenness 
index trend calculated using the NDVI formula with VIIRS I-band 
observations and Sentinel-2 bands 4 and 8. 

Using the NDVI as a proxy in this study, the urban greenness index 
can be an important indicator for recovery. Urban green spaces include 
public or private vegetated areas, such as parks, street trees, grasslands, 
and residential gardens. They are part of the urban ecosystem and habi-
tats for the residents and serve important functions such as heat reduc-
tion, air purification, flood mitigation, and environmental public health 
benefits for the dwellers’ physical, mental, and social well-being (Canada 
Statistics 2023). During the fire, many trees and gardens were burned, 
which would reduce the urban greenness. In this study, we first used the 
Sentinel-2 NDVI data before and after the fire to analyze the spatial pat-
terns of the urban greenness change within Lahaina city. Then, the NDVI 
time series from NOAA-20 VIIRS was used to study the recovery.

Figure 5 (top panels) shows the NDVI change, which reveals the 
areas of significant changes in urban greenness. Before the fire, the 
area along the coast was densely vegetated with high greenness along 
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Front Street. After the fire, a few spots are left unburned. The change in 
greenness spanned the entire city from latitude of 20.85N to 20.90N, or 
approximately 5 kilometers from north to south. We identified four ma-
jor areas (labeled as A, B, C, and D in Figure 5) to represent areas af-
fected by fire. Then, the NDVI time series of the sites are plotted in the 
bottom panel of Figure 5. It can be seen that areas A and D experienced 
a major decrease in NDVI due to fire burn, whereas areas of B and C 
had much smaller changes. The location labeled as Tmax is where the 
maximum fire temperature was observed, and its NDVI time series with 
higher temporal resolution is plotted in Figure 6 as discussed below.

Figure 5. The top panels show the change in urban greenness 
before (left) and after (right) the fire. The bottom panel shows the 
Normalized Difference Vegetation Index (NDVI) time series for 
selected areas from Sentinel-2.

Figure 6. Time series of the urban greenness index (using Normalized 
Difference Vegetation Index [NDVI]) at the hottest spot location 
(Tmax) with colored dots separated by three satellites and the Day/
Night Band (DNB) night light intensity at the shopping mall (location: 
20.8780, −156.6810) in Lahaina. The solid line represents the monthly 
composite DNB mean radiance (Earth Observation Group 2023).

The time series in Figure 6 shows that urban greenness exhibits three 
interesting patterns. First, since June 2023 before the fire, the urban 
greenness index had been decreasing slowly. The NDVI (far left on the 

figure) was about 0.28 in June, and it dropped to about 0.26 just before 
the fire in August, suggesting that the area was suffering from a drought, 
which may have been one of the contributors to the fire. Second, urban 
greenness decreased significantly due to the fire event on 8 August. The 
NDVI value for the hottest spot changed from 0.26 to 0.14, or by 46%. 
Third, the time series shows the recovery is fairly slow, with a relatively 
flat line in the NDVI value around 0.14 after the fire. However, we 
expect it to recover over time due to the resilience of the community.

The use of DNB to study light outages after a disaster has been 
demonstrated previously (Cao et al. 2013; Ghosh 2022).  The DNB 
radiance at the shopping mall site (Outlets of Maui, location: 20.8780, 
−156.6810) in Lahaina was extracted from the VIIRS observations and 
a time series was established. As shown in Figure 6, the VIIRS DNB 
radiance for this location was around 23 nW/cm2-sr in monthly mean 
value before the fire and was reduced by half after the fire (below 10 
nW/cm2-sr). For the day of the fire, the DNB radiance was very high 
(384.4 nW/cm2-sr) due to the intense flames and was out of the typical 
range of night light. The trend of the time series suggests that since the 
fire, the night light has been gradually increasing, which suggests that 
the infrastructure at that location is recovering slowly. We will continue 
monitoring the site to see when it will fully recover to previous levels.

Case Studies of Recovery from Hurricanes
Hurricane damage to power lines causes power and light outages and 
has previously been studied using satellite data. In particular, since the 
launch of S-NPP VIIRS in 2011, the extremely sensitive VIIRS/DNB 
images have been used to monitor light outages due to storms and hur-
ricanes and the recovery afterward (Cao et al. 2013; Miller et al. 2018; 
NASA 2018). For example, a study shows nighttime light changes in 
the Washington, DC, metropolitan region from 27 June 27 to 5 July 
2012, during which a Direncho swept through the area on 28 June 2012. 
The night lights gradually recovered 1 week after the event. The light 
intensity over selected areas in the DC region clearly showed a recov-
ery curve that resembles the RIM model discussed by Lam et al. (2016) 
(Figure 1) despite the differences in the recovery time. In this paper, the 
DNB data are also used for monitoring the recovery from hurricanes 
such as Ian, in Tampa, FL, and Ida in New Orleans, respectively. 

Figure 7 shows the light outage in the Tampa–Fort Myers, FL, 
region due to Hurricane Ian. The sudden drop in light intensity (Figure 
8) indicates power outages caused by hurricane damage. One caveat 
is that the DNB lights are affected by clouds, especially during the 
hurricane attenuating the lights, although the city lights are translucent, 
which means that some lights could penetrate clouds and reach the sat-
ellite sensor. As a result, the light outage and recovery may be affected 
by clouds, and it is difficult to separate the light outage from clouds, 
although the VIIRS cloud mask product can help to some extent.

Is there a regional difference in the recovery? We identified 12 sites 
in the Tampa–Fort Myers area to answer this question. Figure 8b shows 
that due to Hurricane Ian, all 12 sites suffered light outages. However, 
the recovery took longer at some locations than others. Specifically, 
sites #1, #2, #3, and #12 recovered relatively quickly. These sites are 
found to be on the outskirts of the hurricane’s eye. In contrast, power 
restoration took much longer for sites #4 to #9 (especially the Cape 
Coral–Fort Myers area in sites #7, #8, and #9), which are much closer 
to Hurricane Ian’s center. This suggests that the recovery is closely tied 
to the severity of the damage in the RIM model, although resilience is 
also a factor in the recovery speed. 

Figure 9 further shows Moran’s I spatial autocorrelation-based 
analysis (Moran 1950) of DNB radiance data over 4 days in the Cape 
Coral–Fort Myers and Gasparilla Sound–Charlotte Harbor area. 
Comparison of Figure 9a and 9b shows that the power outages right 
after Hurricane Ian in the Cape Coral–Fort Myers and Port Charlotte–
Punta Gorda areas are the most severe. Figures 9c and 9d on 3 October 
2022 and 8 October 2022 show the spatial extent of the recovery 
from the power outage in these areas over about 10 days. The average 
Moran’s I index for the entire region shown in Figure 9 changed from 
0.57 before the hurricane, to about 0.38 during the power outage and to 
0.44 on 8 October 2022. Over the Cape Coral–Fort Myers area, which 
was along the pathway of the hurricane center, the mean Moran I index 
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changes from 11.90 on 26 September 2022 to 0.85 on 30 September 
2022, right after the pass of the hurricane, to 4.00 on 3 October 2022 
during the recovery and to 6.77 on 8 October 2022, which shows the 
power recovery in this area. Over another area of interest, i.e., Port 
Charlotte–Punta Gorda area, the mean Moran I index dropped to 0.05 
on 30 September 2022, recovered to 0.3 on 3 October 2022, and then 
recovered further to 0.65 on 8 October 2022. 

Another example is Hurricane Ida over New Orleans. In the late 
morning of 29 August 2021, category 4 Hurricane Ida made landfall 
near Port Fourchon (NOAA/NWS 2023), Louisiana, on the same day as 
Hurricane Katrina in 2005. Hurricane Ida quickly intensified over the 3 
days before landfall, rapidly going from a tropical depression to a cat-
egory 4 hurricane. It produced significant wind damage, storm surges, 
and flash flooding across the Gulf Coast. Its remnants later produced 
deadly flooding across parts of the Northeastern United States, includ-
ing New York City, and a regional tornado outbreak along the Interstate 

95 corridor from Virginia to New England. Overall, Hurricane Ida 
caused 87 deaths and an estimated $75 billion in property damage from 
Louisiana to New England. These statistics are in contrast to Hurricane 
Katrina in 2005, which caused a total of 1,833 fatalities. 

We selected four sites around the New Orleans–Baton Rouge 
metropolitan area to study the recovery at different locations. Figure 
10a shows the four sites on a Sentinel true color map to illustrate where 
the sample VIIRS/DNB data are taken before, during, and after the 
hurricane. Figure 10b–e show panels of four selected DNB images 
before (Figure 10b) and during (Figure 10c–e) the recovery. The Moran 
I index values of these four selected areas are 0.46, 0.05, 0.09, and 
0.41, respectively, which characterizes well the sudden decrease of 
spatial clustering of night lights and their recoveries over time in this 
region. These sites were selected to see whether there is any difference 
in the light intensity change due to outage and time to recover. Figure 
10f shows that while all four locations suffered light outages during 

Figure 7. NOAA-20/Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite/Day/Night Band (DNB) detection 
of light outages in the Fort Myers area caused by Hurricane Ian. The left image is from before the hurricane, the middle image is from just after 
the hurricane, and the right image shows the light values of before minus after. The Landsat-8 image is used as background. The unit for DNB 
radiance is nW/(cm2-sr). 

Figure 8. (a) Locations of selected sites for Day/Night Band (DNB) light recovery assessment (radiance > 10−8 W/cm2-sr before Hurricane Ian 
on 26 September 2022). (b) Recovery of night lights over selected sites after Hurricane Ian. (Unconnected dots indicate cloudy data, which are 
excluded from the analysis.)
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the hurricane, the severity is different. For example, site 4 (the Baton 
Rouge region) suffered relatively smaller outages and recovered quick-
ly. Site 1 (west New Orleans) recovered relatively slowly in compari-
son with site 2 (New Orleans), which can also be seen by comparing 
the light maps near New Orleans in Figure 10b-e. This indicates that 
the time series analysis reveals the different recovery speeds between 
nearby sites such as sites 1 and 2. Site 3 (Slidell, LA) appears to have 
recovered fairly quickly, possibly due to a couple of factors. First, this 
is a growing community close to the NASA Stennis Space Center; 
therefore, the infrastructure is relatively newer. Second, this commu-
nity took a major hit during Hurricane Katrina, and the infrastructure 
may be upgraded and better prepared for future hurricanes (adaptabil-
ity). The mean night light radiances before (12 to 28 August) over the 
four selected sites are 53.0 ± 6.5, 55.2 ± 10.4, 24.4 ± 4.4, and 39.4 ± 
4.3 W/cm2-sr, respectively, and the mean radiances after the hurricane 
(5 to 12 September) are 27.9 ± 12.8, 49.1 ± 11.9, 23.4 ± 1.5, and 42.9 
± 6.1 W/cm2-sr, respectively. This indicates that site 2 to 4 recovered 
from the power outage by 5 September, whereas site 1 was still under 
recovery until 10 September. This result suggests that the short-term 
recovery speed from storm damage is closely tied to the resilience of 
the community, which is a crucial factor in the RIM model.

Figure 10f also shows that, after recovering from Hurricane Ida, 
the night light took another deep dive around 15 September. Further 
investigation shows that this is likely due to the remnants of Hurricane 
Nicholas. From 15 to 16 September, 2021, Tropical Depression 
Nicholas continued slowly eastward across southern Louisiana, making 

an anticyclonic loop on 16 September. Nicholas was designated post-
tropical due to the lack of convection early on 17 September while 
it headed northward across central Louisiana, dissipating later that 
evening across northern Louisiana. However, the DNB data taken were 
too cloudy, and the light outage cannot be accurately estimated (shown 
as crosses in the figure). 

Discussion on Community Vulnerability and Adaptability to Natural 
Disasters and Our Contributions to the RIM Model
Vulnerability, a complex interplay of exposure, sensitivity, and adap-
tive capacity, is integral to understanding a population’s response to 
natural hazards (Cutter et al. 2003). Lam et al. (2016) emphasize that 
vulnerability encapsulates elements of resilience. This discussion as-
sesses the vulnerability of Lahaina in Maui to fires and the Gulf Coast 
of America to hurricanes.

Maui’s diverse climatic conditions, influenced by various physi-
cal factors, result in distinct climate regions. Figure 11 shows that the 
mean annual precipitation at Lahaina is less than 10 inches, located at 
the base of the mountains on the leeward side, and has a hot, semi-arid 
climate type despite its coastal location with low elevation. It also 
faces unique challenges because the strong downslope “lehua” winds 
can reach speeds of 80 to 100 mph, which makes Lahaina susceptible 
to rapid fire spread. The 2023 Lahaina fire underscored the previously 
underestimated fire hazard, prompting increased awareness and pre-
paredness among the community.

Figure 9. Moran’s I spatial correlation analysis of Day/Night Band (DNB) radiance data over 4 days in the Cape Coral–Fort Myers and 
Gasparilla Sound–Charlotte Harbor areas. The spatial extent of power outage right after Hurricane Ian (b) and during the recovery (c and d) can 
be assessed by comparison with (a). The overall regional mean Moran’s I index is listed at the top right corner of each panel. The pink rectangle 
and numbers in each panel show the sampling region and corresponding mean Moran’s I index in the regions around Cape Coral–Fort Myers 
and Port Charlotte–Punta Gorda areas.
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Figure 10. Night light intensity time series measured by NOAA-20 Visible Infrared Imaging Radiometer Suite/Day/Night Band (DNB). (a) Four 
selected sites around New Orleans-Baton Rouge marked on Sentinel true color map with yellow county lines. (b–e) Four selected DNB images 
before (b) and during (c–e) the recovery. (f) DNB radiance time series for four sites over the recovery with cloudy data identified and lunar 
radiance subtracted (unconnected × data points indicate cloudy data, which are excluded from the analysis).

Figure 11. Maui mean annual precipitation (left) and digital elevation model (right) (PRISM Climate Group 2012).
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In contrast, the Gulf Coast of America experiences a hot and humid 
tropical/subtropical climate, making it prone to hurricanes. The gulf’s 
geographical location contributes to the high frequency of hurricanes. 
Warm waters, convergence of air masses, favorable atmospheric condi-
tions, and seasonal patterns collectively create an environment condu-
cive to hurricane formation. Florida and New Orleans, both susceptible 
to hurricanes, exhibit vulnerabilities due to extensive coastlines and 
low-lying topography.

The communities in Lahaina and the Gulf of America must 
acknowledge the hazards and risks associated with their geolocation 
and physical environment. The probability of damages from natural 
disasters is heightened, necessitating thorough preparedness, especially 
in the context of escalating climate change and variability.

This discussion underscores the critical importance of understand-
ing vulnerability dynamics and fostering resilience in communities 
facing diverse natural hazards. It emphasizes the need for continuous 
adaptation strategies and heightened awareness to mitigate the effects 
of these events on both life and property.

As discussed earlier, the RIM model provided an excellent frame-
work for connecting the dots among various elements associated with 
natural disasters from exposure and damage to recovery and the resil-
ience developed in the community in the iterative process of adaptation 
and mitigation to reduce vulnerability. Lam et al. (2016) demonstrated 
the model efficacy by using population growth over decades as an 
indicator of recovery. Our study further augments the RIM model by 
incorporating satellite observation and related indices, such as urban 
greenness, night light intensity, Moran’s I index, and wildfire dynam-
ics. These indicators complement the RIM model with more quantita-
tive measures of damage, recovery, and resilience and can be used as 
indicators with a much shorter time frame of days or weeks instead of 
decades. This also demonstrates the value of using remote sensing ob-
servations to facilitate more broad use of the RIM model for a variety 
of applications.

Conclusions
In this study, we have demonstrated the efficacy of using satellite 
observations to assess and quantify the effect and recovery of selected 
communities in the aftermath of natural disasters, complementing the 
RIM. Focusing on the Maui fire in 2023 and hurricanes along the Gulf 
of America coast, our approach involves time series analysis of urban 
greenness and night light intensity to gauge recovery.

For the Maui fire, we pinpointed the timeframe of peak brightness 
temperature using GOES ABI thermal infrared images, identified the 
location of the hottest spot (Tmax) in north Lahaina, and conducted 
time series analysis of urban greenness and night light changes. In the 
case of Gulf Coast hurricanes, we analyzed night light changes in the 
aftermath of Hurricane Ian over Tampa–Fort Myers, FL, and Ida over 
New Orleans.

Our findings reveal that satellite-derived indices, such as urban 
greenness, night light intensity, and Moran’s I index, serve as valuable 
quantitative measures for monitoring both short-term and long-term 
community recovery and can be included in the framework of the RIM 
model for assessing damage, recovery, and resilience. This methodolo-
gy significantly enhances the RIM model, which traditionally relies on 
socioeconomic parameters spanning decades. We believe that satellite 
assets contribute substantial value to the comprehensive assessment of 
recovery within the framework of the RIM model.

Moreover, our examination of the vulnerabilities of Maui to fires 
and the Gulf of America to hurricanes using the RIM model under-
scores the resilience of these communities. We anticipate that the les-
sons learned from these disasters will contribute to enhanced prepared-
ness, making these communities more resilient in future catastrophic 
events.
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