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Abstract This study presents the first regional‐scale analysis to quantify decadal trends and drivers of
surface ocean acidification (OA) across the highly sensitive Pacific‐Arctic Region (PAR) using a consistent
trend methodology. From 1993 to 2021, the Southern PAR acidified at rates comparable to the global average,
with pHT declining by 0.018 units dec− 1 and aragonite saturation state (ΩAr) decreasing by 0.063 units dec− 1,
primarily driven by anthropogenic CO2 uptake. In contrast, the Bering Strait exhibited slower acidification, with
pHT declining by 0.011 units dec− 1 and ΩAr decreasing by 0.020 units dec− 1—substantially lower than
previously reported—likely due to increased primary productivity. The Northern PAR experienced the most
rapid acidification: pHT decreased by 0.028 units dec− 1 and ΩAr by 0.078 units dec− 1, with the Beaufort Gyre
acidifying 2–4 times faster than the global mean. This rapid change was driven by rising atmospheric CO2 and
significant freshening linked to sea ice melt and increased riverine input, which reduced the ocean's buffering
capacity. Continued warming will likely exacerbate acidification in regions transitioning from multi‐year to
seasonal ice. While local processes such as primary productivity can temporarily counteract OA, whether they
can offset rising anthropogenic CO2 levels remains unclear. This underscores the importance of biogeochemical
models that integrate climatic and biological feedbacks, enabling accurate forecasts of OA changes and their
impacts on marine ecosystems. These findings highlight the urgent need for sustained monitoring in the PAR,
where accelerating changes threaten critical ecosystems.

Plain Language Summary Many human activities release carbon dioxide into the atmosphere, a
significant portion of which is absorbed by the ocean. This process causes the ocean to become more acidic and
can harm marine life. The Pacific‐Arctic Region (PAR) is particularly vulnerable to acidification due to its
unique chemical properties. The remote nature of this region makes data collection challenging and limits our
understanding of long‐term acidification trends. In our study, we used existing data sets and statistical methods
to address these data gaps and determined surface acidification rates from 1993 to 2021 across the PAR. Our
analysis revealed that surface waters in the Bering Strait acidified slowly, likely due to increased photosynthesis
by plankton. Additionally, the Northern PAR acidified 2–4 times faster than the global average due to rising
atmospheric CO2 and freshwater addition. The freshwater primarily came from melting sea ice, which reduces
the ocean's ability to resist acidification. This suggests that similar rapid acidification may soon occur in other
locations where sea ice is melting. Our results emphasize the need for continuous research into this highly
climate‐sensitive region.

1. Introduction
The industrial revolution spawned an era where global atmospheric carbon dioxide (CO2) levels have increased at
a rate unparalleled in the last 65 million years (Honisch et al., 2012; Zeebe et al., 2016). This surge in CO2 has
been a major driver of global climate change (H. Lee et al., 2023; Pörtner et al., 2019) and has significantly altered
ocean carbonate chemistry by increasing proton concentration ([H+]) and decreasing carbonate concentration
([CO3

2− ]), reducing pH and calcium carbonate saturation states (Ω) (i.e., ocean acidification) (Caldeira &
Wickett, 2003; Doney et al., 2009; H. Lee et al., 2023; Orr et al., 2005; Pörtner et al., 2019). When CO2 dissolves
in seawater, it reacts with H2O to form carbonic acid (H2CO3), which can dissociate into bicarbonate (HCO−3 ) and
carbonate (CO2−

3 ), releasing protons which lower pH. This shift in pH affects the relative proportion of the
carbonate species—as water acidifies, free protons react with CO2−

3 to form HCO−3 , decreasing [CO
2−
3 ]. The

ocean carbonate system consists of H+, OH− , weak acid‐base systems, and the four carbonate system parameters
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and is resolvable to a known degree of uncertainty if temperature, salinity, pressure, and two of the four carbonate
parameters are known (Dickson, 2007). The four carbonate system parameters are:

1. Dissolved inorganic carbon (DIC): the total concentration of carbonate species (carbonic acid, bicarbonate,
carbonate).

2. Total alkalinity (TA): the ability for seawater to resist changes in acidity due to the concentration of excess
proton acceptors relative to proton donors.

3. pHT: pH on the total scale, which accounts for contributions from both free protons and hydrogen sulfate ions.
It is defined as pHT = − log10([H+]F + [HSO−4 ]), and serves as the standard for high‐quality seawater pH
measurements.

4. pCO2: the partial pressure of CO2 in seawater.

A consequence of decreased [CO3
2− ] is the reduction in aragonite saturation state (ΩAr), which measures the

thermodynamic tendency of aragonite (a form of calcium carbonate prevalent in seawater and marine organisms)
to dissolve. Net dissolution of aragonite is thermodynamically favored when ΩAr < 1. This adversely affects
marine calcifiers by influencing their physiological functions (Doney et al., 2009; Feely et al., 2004; Orr
et al., 2005), making it difficult to form and maintain their aragonite exoskeletons, and potentially disrupting
overall ecosystem dynamics (AMAP, 2013, 2018; Cooley et al., 2009; H. Lee et al., 2023; Pörtner et al., 2019).

The global ocean has absorbed nearly a third of anthropogenic CO2 since the mid‐eighteenth century, resulting in
an average 30% increase in global surface ocean acidity (AMAP, 2013; Pörtner et al., 2019; Sabine et al., 2004).
The current understanding is that global mean surface acidification rates range from − 0.027 to − 0.016 pHT units
and − 0.081 to − 0.065 ΩAr units per decade since the 1980s (Iida et al., 2021; Lauvset et al., 2015; Ma et al., 2023;
Orr et al., 2005; Pörtner et al., 2019). While this broad range is due in part to methodological differences and
limited observational data, it primarily reflects the high spatial variability caused by diverse environmental factors
impacting the carbonate system. In addition to anthropogenic CO2 uptake, changes in temperature, salinity, or any
of the carbonate system parameters can affect OA rates. While carbon uptake exclusively drives acidification, the
effects of other processes may be less straightforward. For example, warming tends to decrease pHT but increase
ΩAr by promoting the dissociation of bicarbonate to carbonate (increasing [CO2−

3 ] and [H+]F). Additionally,
warming also lowers CO2 solubility, leading to CO2 outgassing that further increases [CO2−

3 ] and decreases [H+]F
(Jiang et al., 2019; Xue et al., 2020).

Certain regions, such as coastal and high‐latitude waters, exhibit acidification rates that significantly diverge from
the global mean due to natural and anthropogenic processes not present in typical open‐ocean environments. In
addition to spatial variations in temperature, salinity, and carbonate system parameters, the influence of sea ice,
watershed and riverine discharge, nutrient influx, and dense biological communities also drive variability in the
marine carbonate system (Carstensen & Duarte, 2019; Duarte et al., 2013). Climate change has the potential to
affect these processes and drive or offset OA, particularly in the dynamic Pacific‐Arctic Region (PAR).

The PAR, as defined in this study, encompasses the west Arctic Ocean, its marginal seas (East Siberian, Chukchi,
Beaufort), the western Canadian Archipelago, the Bering Sea, the Gulf of Alaska, and the subarctic Pacific Ocean
(Figure 1). The PAR is highly vulnerable to OA due to its inherently low buffer capacity and [CO2−

3 ]. This primes
the PAR to absorbCO2 as atmospheric concentrations rise, threatening to lower its already near‐undersaturatedΩAr
levels. The PAR's natural vulnerability, coupled with regional climate change impacts (H. Lee et al., 2023; Pörtner
et al., 2019), havemanifested in the highest observed rates of OA globally, with current trends suggesting it will be
the first major body of water to reach complete surface undersaturation (AMAP, 2013, 2018; Fabry et al., 2009). At
the same time, the region is gaining economic and geopolitical significance due to enhanced vessel accessibility
resulting from reduced sea ice (Intergovernmental Panel on Climate Change (IPCC), 2023). Consequently, it is
emerging as an economic hub in part due to its highly productive fisheries (IPCC, 2023). However, acidification
may threaten to curb the region's fishery potential given its detrimental effects on marine calcifiers and their vital
role in the food chain, underscoring the importance of quantifying regional acidification trends.

While numerous studies have documented surface pCO2 dynamics (Bates, 2006; L. Chen & Gao, 2007; Cai
et al., 2010; DeGrandpre et al., 2020; Ouyang et al., 2020, 2021; Tu et al., 2021; Wang et al., 2022a; Woosley &
Millero, 2020) and episodic ΩAr undersaturation events (Chierici & Fransson, 2009; Robbins et al., 2013;
Semiletov et al., 2016;Wynn et al., 2016; Yamamoto‐Kawai et al., 2009; Mathis et al., 2012) in the PAR, research
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quantifying long‐term (i.e., decadal) carbonate system trends remain scarce. Table 1 lists the studies that have
quantified surface rates for pCO2, pHT, and ΩAr and reveals a broad spectrum of results: 7.4 to 61.8 μatm pCO2,
− 0.086 to − 0.013 pHT units, and − 0.50 to − 0.04 ΩAr units per decade (dec− 1). This wide range in trend values in
Table 1 highlights two other important factors. For one, observational studies that quantify decadal acidification
rates are notably limited. This scarcity primarily stems from the limited availability of direct carbonate system
measurements in the PAR prior to the 1990s, and is further aggravated by significant spatial and temporal gaps
within existing data. Second, observational studies that are available tend to concentrate on specific areas within
the PAR, not the entire region. This focus is largely dictated by data availability, with regions such the Bering,
Beaufort, and Chukchi Seas sampled more often than less accessible areas such as the East Siberian Sea or
Canadian Archipelago. Furthermore, the variation in trend methodology and mechanism analysis across studies
complicates direct trend comparisons between them. This study aims to address these gaps in our current un-
derstanding by applying a consistent trend methodology for the same time period across the entire study area.

2. Study Area
This study divided the PAR into three oceanographically similar subregions based on the Marine Ecoregions of
the World (Spalding et al., 2007): the Southern PAR, the Bering Strait, and the Northern PAR (Figure 1). The
Southern PAR is a deep‐water, open‐ocean, and typically ice‐free environment comprised by the North Pacific
ocean, Gulf of Alaska, and Bering Sea basin. Waters from the Southern PAR feed into the Northern PAR by
passing through the Bering Strait. The Bering Strait subregion is composed of the shallow (<150 m depth) Bering
Sea and Chukchi Sea continental shelves which are separated by the narrow (80 km wide) Bering Strait passage.
This influx consists of saline, nutrient‐rich Anadyr water from the Russian coast on the western sector of the PAR
and fresher, lower‐nutrient Alaskan Coastal water from the Alaskan coast on the eastern sector of the PAR
(Grebmeier, 2012). These currents converge near the Bering Strait passage, driving primary productivity in one of
the world's most productive marine ecosystems (Grebmeier, 2012; Grebmeier et al., 2006).

The high primary productivity observed in the Bering Strait subregion is closely tied to its seasonal sea ice
dynamics. Sea ice extent is typically at its highest in March and lowest in September. Figure 1 depicts the median
March and September ice extent for the years 1981–2010. Waters between the March and September ice extents
(i.e., the Bering Strait subregion) undergo seasonal changes in ice coverage. Areas south of the March extent are

Figure 1. The Pacific‐Arctic Region (PAR). (Left) Bathymetry is sourced from the General Bathymetric Chart of the Oceans (GEBCO 2023), ice extents from the
National Snow and Ice Data Center. (Right) The PAR divided into three oceanographically similar subregions based on the Marine Ecoregions of the World (Spalding
et al., 2007).
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generally ice‐free throughout the year, while regions north of the September line maintain year‐round ice cover.
Sea ice breakup and melting in the Bering Strait subregion drive spring phytoplankton blooms by allowing more
light to penetrate the water column and keeping nutrients at the surface through increased stratification (Greb-
meier, 2012). Declining sea ice coverage has lengthened the growing season and led to the emergence of fall
phytoplankton blooms. These blooms are facilitated by extended light availability due to ice forming later in the
season and the replenishment of surface nutrients through storm‐induced upwelling (Waga & Hirawake, 2020).
The cold, highly soluble water of the region combined with high primary productivity makes the Bering Strait
subregion an exceptionally strong CO2 sink.

North of the Bering Strait, surface circulation in the Northern PAR is dominated by the Beaufort Gyre. Situated
between the continental shelves of the Chukchi Sea, Beaufort Sea, and Canadian Archipelago, the Beaufort Gyre
is a clockwise‐rotating surface circulation system that lies over the deepwater (mean depth 3.8 km) Canada Basin.
The Beaufort Gyre is the largest freshwater reservoir in the Arctic. It contains approximately 25% of the Arctic
Ocean's total freshwater due to freshwater discharge from Russian and North American rivers and, in recent
decades, significant sea ice loss (Timmermans & Toole, 2023). Climate change‐driven warming has caused
significant sea ice decline in the Arctic (Chapman & Walsh, 1993; Kwok, 2018; Walsh & Chapman, 2001). This
loss is particularly rapid in the Northern PAR, with the Beaufort Gyre and nearby marginal seas exhibiting a sea
ice cover decline of 10%–30% per decade since 1979 (Timmermans & Toole, 2023). This is illustrated by the
September 2012 ice extent (Figure 1), the lowest extent on record (Timmermans & Toole, 2023), which is
significantly further north than the median September ice extent of the prior three decades.

Table 1
Published Studies That Report Pacific‐Arctic Region Surface Trends in pCO2, pHT, And/Or ΩAr

Reference Subregion Time span pCO2 rate pHT rate ΩAr rate Note

Observation‐based

Ma et al. (2023) Southern PAR 1982–2021 15.9 − 0.017 − 0.048 NP‐SPSS (Figure 3)

Lauvset et al. (2015) Southern PAR 1991–2011 7.4 − 0.013 – NP‐SPSS (Figure 1)

Ouyang et al. (2020) Northern PAR 1994–2017 46.0 – – Canada Basin (Figure 1)

Ouyang et al. (2020) Northern PAR 1994–2017 38.1 – – Beaufort Sea (Figure 1)

Qi et al. (2022) Northern PAR 1994–2020 – − 0.086 to − 0.031 − 0.20 to − 0.11 IC, NWCB, NECB, SCB (Figure 1a)

Zhang, Yamamoto‐Kawai,
and Williams (2020)

Northern PAR 1997–2007 – – − 0.50

Zhang, Yamamoto‐Kawai,
and Williams (2020)

Northern PAR 2007–2016 – – No Trend

Model Output

Mathis et al. (2015) Bering Strait 2011–2100 – – − 0.07

Mathis et al. (2015) Bering Strait 2011–2100 – – − 0.06

Mathis et al. (2015) Northern PAR 2011–2100 – – − 0.06

Pilcher et al. (2019) Bering Strait 2003–2012 – – − 0.40 to − 0.25

Pilcher et al. (2022) Bering Strait 2010–2100 17.5 to 61.8 − 0.045 to − 0.015 − 0.10 to 0.04

Mortenson et al. (2020) Northern PAR 1981–2015 21.3 − 0.03 − 0.04 Beaufort Shelf (Figure 1b)

Mortenson et al. (2020) Northern PAR 1981–2015 12.6 − 0.02 − 0.05 Beaufort Basin (Figure 1b)

Mortenson et al. (2020) Northern PAR 1981–2015 19.6 − 0.03 − 0.09 CPS (Figure 1b)

Gruber et al. (2012) Northern PAR 1935–2064 – – − 0.07 Approx. from Figure 3

Note. pCO2, pHT, and ΩAr trends are in μatm dec− 1, pHT units dec− 1, and ΩAr units dec− 1, respectively. Studies are categorized as observation‐based or model output.
Observation‐based means trends were derived from direct observations or on algorithmically predicted data (e.g., neural network). The subregion column refers to the
closest‐matching area from Figure 1. Figures listed in the notes column refer to figures from that publication.
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3. Methods
Discrete Bottle Sample Data sets. To quantify carbonate system trends, we began by compiling a comprehensive
data set of field samples. These samples were used to train TA prediction models, validate carbonate system
predictions, and propagate uncertainties to the final trend calculations. Discrete bottle samples were primarily
sourced from the Global Ocean Data Analysis Project, GLODAPv2.2023 (Lauvset et al., 2024), due to its
extensive data coverage and rigorous quality control. The data set was expanded by leveraging online databases
and individual publications. Only observations in the upper 10 m with a WOCE quality flag of 2 consisting of
SSS, SST, depth, and at least one carbonate system parameter were selected. Details regarding the utilized data
sets, data standardization, and quality control measures are provided in Figure S1 and Text S1 in Supporting
Information S1, and Table S1.

Gridded Data sets. Gridded data sets complemented discrete bottle samples by providing broader spatial and
temporal coverage. The data sets used in this study, listed in Table 2, have a monthly resolution and span January
1993 to December 2021. Although some data sets include earlier data, the scarcity of carbonate system sampling
in the PAR before the 1990s (Figure S1 in Supporting Information S1) led us to restrict the study period to ensure
sufficient field measurements for validation.

Two carbonate system variables are necessary to resolve the full carbonate system. While we produced our own
gridded TA data set, we utilized the SOM‐FFN (v2024) pCO2 data set for the second carbonate system variable.
The SOM‐FFN pCO2 data set is the output of a two‐step neural network, detailed and validated in previous works
(Landschützer et al., 2013, 2014, 2016), and expanded in 2023 to encompass the Arctic Ocean. This approach
categorizes the global ocean into biogeochemically similar regions using a self‐organizing map, then leverages a
feed‐forward neural network (FFN) to establish regional non‐linear relationships between environmental vari-
ables (SSS, SST, atmospheric dry air CO2 mixing ratio, mixed‐layer depth, chlorophyll a) and surface pCO2
observations from the Surface Ocean CO2 Atlas (SOCAT). These relationships were applied to environmental
parameter data sets, which offer broader spatial and temporal coverage than direct surface pCO2 measurements, to
produce a monthly gapless gridded surface pCO2 data set. The OceanSODA‐ETHZ and CMEMS‐LSCE data sets
similarly use neural network methods but predict the entire carbonate system rather than just pCO2. The SOM‐
FFN pCO2 data set was selected as our second carbonate system variable because it is the only data set from
Table 2 with complete spatial and temporal coverage of the Arctic Ocean.

Carbonate System Reconstruction. The carbonate system reconstruction process is outlined in Figure 2a. Using
Equation 1, we employed SSS and SST as predictor variables to predict TA with a geographically weighted
regression (GWR) model trained on 7,148 TA samples from the upper 10 m across the PAR.

Table 2
Gridded Data Sets Used in This Study

Data set
Spatial

resolution
Temporal
resolution Variables used

Uncertainty
included Methodology Reference

Data sets used for analysis

SOM‐FFN (v2024) 1° × 1° Monthly pCO2, air‐sea C flux No Neural network Jersild et al. (2017)

Hadley EN4 (EN.4.2.2) 1° × 1° Monthly SSS Yes Objective analysis Good et al. (2013)

OI SST (v2) 1° × 1° Monthly SST Yes Objective analysis Reynolds et al. (2002)

WOA 2018 1° × 1° Monthlya Si, PO3−
4 No Objective analysis Garcia et al. (2019)

Data sets used for validation and comparison

OceanSODA‐ETHZ
(v2023)

1° × 1° Monthly pCO2, pHT, ΩAr Yes Neural network Gregor and Gruber (2021)

CMEMS‐LSCE (r100) 1° × 1° Monthly pCO2, pHT, ΩAr Yes Neural network Chau et al. (2023)

CMEMS‐LSCE (r25) 0.25° × 0.25° Monthly pCO2, pHT, ΩAr Yes Neural network Chau et al. (2023)

SOCAT (v2024) 1° × 1° Monthly fCO2 Yes Observational Bakker et al. (2016)

ORAS5 0.25° × 0.25° Monthly Sea ice thickness No Reanalysis Zuo et al. (2019)
aWOA silicate and phosphate data are a monthly climatology.
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TA = a + b(SSS) + c(SST) (1)

GWR is a variant of ordinary least squares linear regression that allows coefficients to vary spatially. In essence,
GWR performs a linear regression at each observation point and weights neighboring observations by their
distance, with closer observations carrying more weight. This produces unique intercept (a) and slope (b and c)
values for each TA sample location, which can then be averaged onto a continuous two‐dimensional grid and
interpolated in grid cells lacking TA samples. GWR was implemented using the MATLAB Spatial Econometrics
Toolbox (LeSage, 1999). All GWR calculations were conducted in a polar stereographic projection to ensure
uniform grid cell areas and avoid spatial distortion at high latitudes. Final results were then converted back to a
1° × 1° grid. This step was particularly important as the study area spans a broad latitudinal range (45°–90°N).

The trained GWR model was applied to gridded SSS and SST data sets to produce a gridded TA data set.
CO2SYSv3 (Lewis &Wallace, 1998) forMATLAB (van Heuven et al., 2011) was then used with the gridded TA,
pCO2, SSS, SST, silicate, and phosphate data sets to calculate monthly averaged 1° × 1° DIC, pHT, [H+]F, and
ΩAr fields. We report pH on the total scale (pHT), as recommended by OA best practices (Dickson, 2007; Rie-
besell et al., 2011). Conversely, hydrogen ion concentration is reported on the free scale ([H+]F), which excludes
sulfate ions and is more relevant when considering biological impacts (Ma et al., 2023). K1 and K2 dissociation
constants of Mehrbach et al. (1973) as refit by Dickson andMillero (1987) were selected as they show the greatest
internal consistency compared to other constants in the Arctic and yield the lowest error when TA and pCO2 are
used as input variables (Chen et al., 2015; Raimondi et al., 2019). All other constants were the default/recom-
mended CO2SYS settings: KSO4 dissociation constants from Dickson (1990) and the boron/chlorinity ratio from
Uppström (1974).

Carbonate System Uncertainty. The validity of final trend results depends on the accuracy of the reconstructed
carbonate system. Therefore, error was meticulously propagated through to the final trends and drivers. The
uncertainty propagation methodology for carbonate system predictions is outlined in Figure 2b. The SOM‐FFN
pCO2 data set did not include gridded uncertainty values. Although the method demonstrates near‐zero bias and
<20 μatm RMSE globally (Landschützer et al., 2016), its effectiveness in the Arctic Ocean and at a 1° × 1° spatial

Figure 2. Methods flowchart. (a) Discrete Total alkalinity (TA) samples trained a geographically weighted regression model, which, combined with gridded SSS and
SST, produced a gridded TA data set. Gridded SSS, SST, pCO2, TA, and nutrient data sets were input into CO2SYS to solve the remaining carbonate system.
(b) Uncertainty fields for pCO2 and TA were generated by comparing discrete samples to gridded data sets; SSS and SST uncertainties were pre‐existing. These data sets
and their uncertainties (excluding nutrient uncertainty) were processed through the CO2SYS “errors.m” subroutine to derive carbonate system uncertainty fields. (c) Trend
uncertainties were calculated by propagating monthly value uncertainties via a bootstrap method: each monthly value (black square) was randomly reassigned a new value
(red diamond) within its uncertainty range (error bars). This was repeated 1,000 times, each time finding the trend with the Theil‐Sen slope estimator, to generate a
distribution of trends. The mean and 95% confidence interval of this distribution represent the final trend and its uncertainty.
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resolution has not been evaluated in the literature. To account for this, we compared the gridded pCO2 data to
SOCAT v2024, averaged the residuals onto a 1° × 1° grid, and interpolated spatial gaps to create a gapless 1° × 1°
pCO2 uncertainty field. Gridded TA uncertainty was calculated in the same manner using residuals from the

GWR TA prediction model. Error was assessed using mean absolute error (MAE =
Σ | yPred − yObs |

NObs
) and mean bias

error (MBE =
Σ (yPred − yObs)

NObs
) .

We assumed pCO2 and TA uncertainty was consistent over time due to insufficient spatiotemporal data coverage
to support time‐dependent uncertainty fields, though recent evidence suggests the SOM‐FFN product does exhibit
seasonal patterns in uncertainty (Jersild & Landschützer, 2024). Error was propagated from the derived pCO2 and
TA uncertainty fields to calculated carbonate system variables (DIC, pHT, [H+]F, ΩAr) using the CO2SYS
“errors.m” subroutine (Orr et al., 2018). Although uncertainty (u) in our calculated carbonate system variables is
heavily influenced by the uncertainty in pCO2 (upCO2) and TA (uTA) , it also depends on the state of the carbonate
system (i.e., the values of pCO2, TA, SSS, SST, Si, and PO3−

4 ) per Equation 2, as well as the uncertainty of
dissociation constants. This introduces both spatial and seasonal variability to the uncertainty of calculated
variables, as detailed further in Text S2.

uDIC,pHT,[H+]F,ΩAr
= errors.m(pCO2,upCO2,TA,uTA,SSS,uSSS,SST,uSST,Si,PO

3−
4 ) (2)

Statistical Trend Methods. Once the carbonate system was reconstructed, we applied statistical trend methods to
determine carbonate system variable rates. However, detecting and quantifying trends in the marine carbonate
system requires careful consideration due to its non‐linear response to external influences such as increasing
atmospheric CO2 and concurrent climate change‐driven impacts on DIC, TA, SSS, and SST. This task is further
nuanced by inherent seasonality in oceanographic variables, meaning a robust statistical approach is more suitable
than simple linear regression. Therefore, we utilized the seasonal Kendall trend test and Theil‐Sen slope estimator
for trend analysis in this study.

The seasonal Kendall trend test (Hirsch et al., 1982), a non‐parametric (i.e., distribution‐free) method, excels in
identifying both the presence and direction of monotonic trends in seasonal data. This test determines whether
there is an upward or downward trend between every possible pair of data points.When no overall trend exists, the
total number of upward and downward trends between all pairs should be approximately equal. In contrast, an
underlying trend would yield more pairwise trends in one direction than could be explained by random chance.
Seasonality is handled by only comparing data points within the same month, then integrating individual monthly
statistics into a single overall trend.

While the seasonal Kendall trend test identifies trend direction in seasonal data, it does not measure trend
magnitude. This limitation is addressed by the seasonal Theil‐Sen estimator (Sen, 1968). Similar to the seasonal
Kendall Trend test, this non‐parametric method quantifies trend magnitude by first finding the slopes between all
pairs of data points with the same month (e.g., all June values of a time series). This produces a distribution of
slope values, the median of which is the trend value for that month. Repeating this process for every month of the
year yields 12 slope values, the median of which is the overall trend.

The seasonal Kendall trend test and Theil‐Sen estimator are widely used in environmental trend analysis. This
combined approach has been extensively applied to study long‐term trends in environmental parameters such as
salinity (Wiseman et al., 1990), chemical concentrations (Lehmann et al., 2005; R. A. Smith et al., 1982), aquatic
heatwaves (Kaushal et al., 2010; Tassone et al., 2021, 2023), sea‐level rise (Nguyen et al., 2022; Taibi & Had-
dad, 2019), and phytoplankton blooms (Friedland et al., 2018).

The uncertainty of carbonate system predictions was accounted for in the overall trend by utilizing a bootstrap
approach, as shown in Figure 2c. Bootstrapping the seasonal Kendall trend test involved re‐assigning each
monthly mean in every grid cell a random value within its uncertainty range before conducting the test. Repeating
this procedure 1,000 times yielded a normally distributed set of 1,000 p‐values and trend directions at every grid
cell. A grid cell's trend direction was deemed statistically significant if at least 95% of the bootstrapped p‐values
were below 0.05 with a consistent trend direction.
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Trend magnitude and uncertainty was calculated using a similar approach: every monthly mean at every grid cell
was re‐assigned a random value within its uncertainty range, then the slope of each grid cell's time series was
computed using the seasonal Theil‐Sen estimator. Repeating 1,000 times yielded a normally distributed set of
1,000 slopes for each grid cell, the mean of which was used as the trend magnitude and the 95% confidence
interval the trend uncertainty.

Driver Decomposition. Once carbonate system trends were determined, ΩAr and [H+]F trends were
decomposed into individual drivers to reveal which processes drove or mitigated observed acidification
trends. This decomposition approach was modeled after the work of Ma et al. (2023). A discrete change in
a calculated carbonate system parameter (y) is caused by changes in its drivers (X) relative to the sensitivity
of y to these changes (δy/δX). This is represented by the first‐order terms of a Taylor expansion (Land-
schützer et al., 2018; Takahashi et al., 1993) given by Equation 3. The drivers (X) were salinity‐normalized
TA and DIC (sTA and sDIC), freshwater (FW), and SST. Normalizing TA and DIC to a constant salinity
removed the effects of freshwater additions (which dilute TA and DIC) or removals (which concentrate TA
and DIC). The FW term accounts for changes in SSS and the associated effects on TA and DIC
(FW = FWSSS + FWTA + FWDIC). FWTA and FWDIC were calculated by taking the difference between
trends in TA and sTA, and DIC and sDIC, respectively, while FWSSS represents SSS directly. Nutrients
were omitted as drivers because climatological values lack long‐term trends, though their values were used
in sensitivity calculations.

Δy = ∑
X = sTA,sDIC,FW,SST

(
δy
δX

⋅ ΔX) (3)

To compare the impact of changing drivers and sensitivities across subregions with different baseline ΩAr and
[H+]F values, we replaced the sensitivity term in Equation 3 with relative sensitivities (ωX and βX) given by
Equations 4 and 5.

ωX =
1

ΩAr
⋅
δΩAr

δX
(4)

βX =
1

[H+]F
⋅
δ[H+]F
δX

(5)

Replacing the sensitivities in Equation 3 with the relative sensitivities of Equations 4 and 5 results in the updated
Taylor expansions given by Equations 6 and 7. Note that, in order to maintain proper units and account for the
added 1/ΩAr and 1/[H+]F terms, we must multiply each term by ΩAr and [H+]F, respectively (i.e., 1/ΩAr ⋅ ΩAr
cancel, maintaining the equality in Equations 6 and 7).

ΔΩAr = ∑
X = sTA,sDIC,FW,SST

(ωX ⋅ ΩAr ⋅ ΔX) (6)

Δ[H+]F = ∑
X = sTA,sDIC,FW,SST

(βX ⋅ [H+]F ⋅ ΔX) (7)

The same concept holds true for trends: a trend in ymust be due to trends in its drivers and/or sensitivities. Taking
the derivative of Equations 6 and 7 with respect to time using the product rule gives the total trends in ΩAr

(Equation 8) and [H+]F (Equation 9), where X = sTA, sDIC, FW, and SST.

dΩAr

dt
=∑

X

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

dωX
dt

⋅ ΩAr ⋅ ΔX
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
change in sensitivity

+ ωX ⋅
dΩAr

dt
⋅ ΔX

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅⏟
mass effect

+ ωX ⋅ ΩAr ⋅
dΔX
dt⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

change in driver

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)
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d[H+]F
dt

=∑
X

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

dβX
dt

⋅ [H+]F ⋅ ΔX
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
change in sensitivity

+ βX ⋅
d[H+]F
dt

⋅ ΔX
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

mass effect

+ βX ⋅ [H+]F ⋅
dΔX
dt⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

change in driver

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

Sensitivities were calculated for each grid cell by inputting long‐term averages of DIC, TA, SSS, SST, silicate,
and phosphate fields into the CO2SYS “derivnum” subroutine. ΔX is the discrete change in driver from 1993 to
2021. All time derivatives were calculated using the seasonal Theil‐Sen estimator except for dΔX/dt, which was
calculated by dividing ΔX by 29 years. Variables denoted by a bar on top indicate the long‐term mean for the grid
cell. This decomposition yields three distinct terms for each driver: change in sensitivity, mass effect, and change
in the driver itself, the sum of which equals the contribution of that driver to the total trend in ΩAr or [H+]F. The
sum of all three terms across all four drivers equals the total trend.

Salinity Normalization. TA and DIC were normalized to a constant salinity of 34.5 psu using Equations 10 and 11
(Friis et al., 2003). The linear relationships between SSS and TA, and SSS and DIC, vary by location due to
processes such as sea‐ice formation and melting, upwelling, surface water mass exchange, calcification, and
primary production (Friis et al., 2003). This variability highlights why a GWR approach was significantly more
effective at predicting TA than applying a single set of regression coefficients across the entire PAR. Conse-
quently, spatially variable zero‐salinity TA (TASSS=0) and DIC (DICSSS=0) values (i.e., the intercepts of local
linear regressions) must be considered when normalizing to a constant salinity. TASSS=0 and DICSSS=0 are gridded
GWR intercept fields calculated by running independent GWRs where TA and DIC are functions of salinity (i.e.,
coefficient a in equations TA = a + b(SSS) and DIC = a + b(SSS), respectively).

Figure 3. Total alkalinity (TA) prediction statistics for the entire Pacific‐Arctic Region (PAR) (a), along with the spatial distribution of error (b), and bias (c). Similarly,
pCO2 prediction statistics for the entire PAR are shown (d), with the spatial distribution of error (e) and bias (f). Note that (b) and (e) represent the TA and pCO2
uncertainty fields used in error propagation. The color scale of (a) and (d) denote data density, with yellow indicating more data points.
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sTA =
TA − TASSS=0

SSS
⋅ 34.5 + TASSS=0 (10)

sDIC =
DIC − DICSSS=0

SSS
⋅ 34.5 + DICSSS=0 (11)

4. Results
Carbonate System Reconstruction. Using GWR to predict TA with SSS and SST as predictor variables resulted in
an R2 of 0.93, MAE of 22 μmol kg− 1, and bias (MBE) of − 0.01 μmol kg− 1, as shown in Figure 3a. SSS was the
primary determinant of TA; however, the inclusion of SST improved prediction accuracy in specific areas. For
instance, regions experiencing seasonal shifts in water masses may benefit from the SST term, as water masses are
identified by both temperature and salinity. Additionally, temperature‐driven processes such as primary pro-
ductivity, sea ice melt, and riverine discharge influence TA, which the SST term may partially account for.

The spatial distributions of TA uncertainty (MAE) and bias (MBE), shown in Figures 3b and 3c, provide a more
nuanced perspective than the aggregate statistics in Figure 3a.While the overall TAMAE is 22 μmol kg− 1, 72% of
the study region (by area) exhibited a TA MAE below 20 μmol kg− 1. However, highly localized coastal areas in
the Beaufort and East Siberian Sea exhibited TAMAE values as high as 60 μmol kg− 1, raising the overall average.
While bias was consistently low and did not favor a particular direction across the region, the same coastal areas
with high TA MAE also exhibited bias as large as ±40 μmol kg− 1, significantly higher than the overall TA MBE
of − 0.1 μmol kg− 1 may suggest.

Comparison of the SOM‐FFN surface pCO2 data set to in situ observations yielded an R2 of 0.71, MAE of 19.8
μatm, and bias (MBE) of − 1.3 μatm as shown in Figure 3d. Similar to TA, the pCO2 MAE and MBE fields
(Figures 3e and 3f) highlight the spatial variability of prediction accuracy and bias not captured in the overall
averages. pCO2 predictions exhibited low error (<20 μatm) and bias (<10 μatm) in open‐ocean areas. Predictive
error and bias generally increased in coastal waters (MAE 20–60 μatm, MBE 20–40 μatm) with areas such as the
Russian and southeast Alaskan coast exhibiting errors and bias values as high as 80 μatm. pCO2 uncertainty
should be considered cautiously, however, given that we are comparing highly variable discrete pCO2 mea-
surements (which vary between 58 and 1,000 μatm) to monthly averaged 1° × 1° grid cells. Therefore, under-
sampling and sampling biases may result in overestimated error and bias.

The gridded uncertainty fields derived through error propagation (“errors.m”) were independently validated using
residuals from discrete DIC, pHT, and ΩAr bottle samples that were not part of the reconstruction process. These
residuals closely align with the gridded uncertainty estimates. Figures 4a–4c show the mean gridded uncertainty
fields for DIC, pHT, and ΩAr, calculated using the “errors.m” subroutine as outlined in the uncertainty propagation
flowchart (Figure 2b). Below each plot, Figures 4d–4f present the residuals from comparisons between the
discrete bottle sample measurements and the corresponding reconstructed gridded values.

The DIC comparison yielded a MAE of 30.5 μmol kg− 1 (N = 22,742), closely matching the gridded uncertainty
estimates. Similarly, the MAE for pHT was 0.061 units (N = 7,352), and for ΩAr it was 0.31 units (N = 4,896),
both of which align well with their respective gridded uncertainty fields. This agreement between the residuals of
reconstructed and observed carbonate system variables and the independently propagated uncertainty fields re-
inforces the robustness of the error propagation methodology and the reliability of the resulting trend calculations.

Regional Trends. Figure 5 illustrates the seasonal Kendall trend test results for January 1993 to December 2021,
with Figure 6 showing spatial trends in pCO2, [H+]F, pHT, and ΩAr for the same time period. pCO2 trends are
shown alongside acidification trends to provide additional context, as it is a key input variable in our calculations.
These results indicate widespread surface acidification across the PAR characterized by rising [H+]F and
declining pHT and ΩAr. The Bering Strait subregion is an exception as it exhibits portions with no trend in [H+]F,
pHT, and ΩAr. The other exception is a small portion of the Northern PAR, near the North Pole, which shows an
increase in pHT and ΩAr. Average carbonate system trends for each subregion are presented in Table 3.

Southern PAR Trends. The Southern PAR exhibited rates similar to global acidification trends: 0.32 nmol
kg− 1 dec− 1 for [H+]F, − 0.018 pHT units dec− 1, and − 0.063 ΩAr units dec− 1, which agrees with the established
literature (Table 1). pCO2 increased by 17.45 μatm dec− 1, while rising trends in DIC (7.20 μmol kg− 1 dec− 1) and
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sDIC (7.26 μmol kg− 1 dec− 1) were indistinguishable within trend uncertainties of ±0.99 μmol kg− 1 dec− 1,
indicating freshwater addition/removal was minimal. This is highlighted by statistically insignificant trends in
SSS (0.00± 0.01 psu dec− 1), TA (− 0.13± 0.45 μmol kg− 1 dec− 1), and sTA (− 0.19± 0.41 μmol kg− 1 dec− 1). The
Southern PAR also exhibited a slight decrease in SST (− 0.02 ± 0.02°C dec− 1).

Bering Strait Trends. Compared to global average trends, the Bering Strait subregion exhibited significantly
lower rates for [H+]F (0.18 nmol kg− 1 dec− 1) and pHT (− 0.011 units dec− 1), as well as a near‐zero trend for ΩAr

(− 0.020 ± 0.015 units dec− 1). Figures 5 and 6 show that, while the majority of the Bering Strait subregion had no
trend in [H+]F, pHT, or ΩAr, the eastern portion (off the Alaskan coast) did exhibit statistically significant
acidification trends for these variables. Overall, the Bering Strait subregion exhibited a minor increase in pCO2

(9.58 μatm dec− 1), DIC (2.71 μmol kg− 1 dec− 1), and sDIC (2.48 μmol kg− 1 dec− 1). There were no statistically
significant overall trends for SSS (0.01 ± 0.05 psu dec− 1), TA (0.16 ± 1.31 μmol kg− 1 dec− 1), or sTA
(0.08 ± 1.19 μmol kg− 1 dec− 1). The Bering Strait did exhibit the highest warming rate (0.05°C dec− 1) of the
entire PAR.

Northern PAR Trends. The Northern PAR was characterized by the most pronounced acidification rates observed
in this study with an average [H+]F increase of 0.53 nmol kg− 1 dec− 1, pHT decrease of − 0.028 units dec

− 1, and an
ΩAr rate of − 0.078 units dec− 1. The Beaufort Gyre was the epicenter of this acidification, with surface rates 2–4
times higher than the global average: 1.16 nmol kg− 1 dec− 1 for [H+]F, − 0.056 pHT units dec− 1, and − 0.180 ΩAr

units dec− 1 (Figure 6). While TA declined notably (− 24.09 μmol kg− 1 dec− 1), sTA was statistically insignificant
(− 0.63± 1.45 μmol kg− 1 dec− 1). Likewise, we observed a substantial decrease in DIC (− 14.87 μmol kg− 1 dec− 1)
which contrasted with rising pCO2 (21.16 μatm dec− 1) and sDIC (6.94 μmol kg− 1 dec− 1). The notable differences

Figure 4. Propagated and observed uncertainty. (a–c) Gridded uncertainty fields for dissolved inorganic carbon (DIC), pHT, and ΩAr, calculated using the “errors.m”
subroutine as outlined in Figure 2b. These uncertainty fields, originally at a monthly resolution, were averaged over the entire study period to produce a single
representative plot for each variable. (d–f) Residuals and corresponding statistics comparing discrete bottle sample measurements of DIC, pHT, and ΩAr to the
reconstructed gridded values. Notably, the results in panels (d–f) are independent of the propagated uncertainty fields in panels (a–c), as they are based on direct
comparisons to discrete bottle samples not included in the reconstruction process. For DIC, the in situ salinity of the bottle samples was normalized to the gridded SSS value
using Equation 11 to ensure an appropriate comparison.
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between TA and sTA, and DIC and sDIC, indicate that freshwater addition played a significant role in carbonate
system dynamics, which is further evidenced by substantial declines in SSS (− 0.44 psu dec− 1). The Northern
PAR exhibited slight signs of warming (0.03 ± 0.03°C dec− 1) but less than the Bering Strait subregion.

ΩAr and [H
+]F Drivers. The results of the driver decomposition, averaged by subregion, are presented in Figure 7.

In all cases, changes in sensitivity and the mass effect had near‐equal magnitudes and opposite directions,

Figure 5. A seasonal Kendall trend test was conducted 1,000 times at each grid cell. Areas in orange (increasing trend) and blue (decreasing trend) had a positive and
negative mean Mann‐Kendall statistic, respectively, with more than 95% of bootstrapped p‐values below 0.05. Gray (no trend) represents areas where <95% of the
bootstrapped values had a p‐value <0.05. This does not mean the result is statistically insignificant, but rather we failed to reject the null hypothesis of no trend. This means
either the genuine absence of a trend or that the trend exists but is undetectable due to uncertainty. [H+]F results are omitted as they mirror pHT results.
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meaning that changes in the drivers (sDIC, sTA, SST, FW) were solely responsible for long‐term trends in ΩAr
and [H+]F. As such, our results and discussion will focus solely on the change in driver's contribution to acid-
ification trends. Each driver is presented in units of ΩAr units dec− 1 or nmol H+Free kg

− 1 dec− 1 to show how much
the change in that driver contributed to the overall trend in ΩAr or [H+]F (Equations 8 and 9). The sum of all the
driver's contributions to these trends closely matches the overall trends of Table 3, but may not exactly match due
to the inherent randomness of the bootstrap trend methodology. Figure 7 also includes individual components of
the FW driver (FW = FWSSS + FWTA + FWDIC) for additional context on freshwater effects. Specific values for

Figure 6. The decadal trend (1993–2021) and relative trend uncertainty for pCO2, [H+]F, pHT, and ΩAr determined via the bootstrapped seasonal Theil‐Sen estimator
approach. Gray denotes grid cells with no statistically significant trend (Figure 5).

Table 3
Area‐Weighted Average of Trends and Trend Uncertainties for Each Subregion From January 1993 to December 2021

Southern PAR Bering strait Northern PAR Units (dec− 1)

pCO2 17.45 ± 1.85 9.58 ± 3.87 21.16 ± 2.40 μatm

[H+]Free 0.32 ± 0.04 0.18 ± 0.09 0.53 ± 0.06 nmol kg− 1

pHT − 0.018 ± 0.002 − 0.011 ± 0.004 − 0.028 ± 0.003 pHT units

ΩAr − 0.063 ± 0.011 − 0.020 ± 0.015 − 0.078 ± 0.010 ΩAr units

DIC 7.20 ± 0.99 2.71 ± 2.01 − 14.87 ± 1.93 μmol kg− 1

sDIC 7.26 ± 0.98 2.48 ± 2.04 6.94 ± 1.78 μmol kg− 1

TA − 0.13 ± 0.45 0.16 ± 1.31 − 24.09 ± 1.70 μmol kg− 1

sTA − 0.19 ± 0.41 0.08 ± 1.19 − 0.63 ± 1.45 μmol kg− 1

SSS 0.00 ± 0.01 0.01 ± 0.05 − 0.44 ± 0.07 psu

SST − 0.02 ± 0.02 0.05 ± 0.02 0.03 ± 0.03 °C

Note. For each variable, every grid cell has a distinct trend and trend uncertainty calculated via the bootstrap method. The
mean trend for each subregion was derived by computing the area‐weighted average of all grid cell trend values within the
subregion. The trend uncertainty for each subregion was calculated by taking the area‐weighted average of all grid cell trend
uncertainty values within the zone.
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drivers, changes in sensitivity, and mass effect and their uncertainties are provided in Table S2 in Supporting
Information S1.

Southern PAR Drivers. The drivers of acidification in the Southern PAR closely matched that of the global, ice‐
free ocean. Effectively, the entirety of the overall ΩAr trend (− 0.063 ΩAr units dec− 1) was accounted for by
increased sDIC, which caused ΩAr to decrease by − 0.068 units dec− 1. Changes in sTA (− 0.001 ΩAr units dec− 1),
and FW (− 0.001 ΩAr units dec− 1) drove acidification to a negligible degree, while SST trends had an insignificant
impact (0.000 ΩAr units dec− 1).

Similarly, the positive [H+]F trend (0.32 nmol kg− 1 dec− 1) observed in the Southern PAR was almost entirely
driven by increased sDIC (0.34 nmol kg− 1 dec− 1). Minuscule trends in sTA (0.01 nmol kg− 1 dec− 1), SST
(0.00 nmol kg− 1 dec− 1), and FW (0.01 nmol kg− 1 dec− 1) contributed to the increase in [H+]F, but their effect was
minimal.

Bering Strait Drivers. The ΩAr decline (− 0.020 units dec− 1) observed in the Bering Strait subregion was primarily
driven by increased sDIC (− 0.010 ΩAr units dec− 1), albeit at a much lower rate than the rest of the PAR. Similar to
the Southern PAR, changes in sTA (0.001 ΩAr units dec− 1) and SST (0.001 ΩAr units dec− 1) played an insig-
nificant role in overall ΩAr trends, though both slightly mitigated acidification. Freshwater balance played a
slightly larger role and further drove acidification trends, as the net freshwater driver (FW) was − 0.007 ΩAr units
dec− 1. This is explained by the slight increase in SSS, particularly on the Bering Sea shelf (Figure 5), which
increased both DIC and TA via additional dissolved ions. Although the direct effects of SSS trends on ΩAr were
insignificant (FWSSS = 0.000 ΩAr units dec− 1), the impact of freshwater balance–induced increases in DIC on
ΩAr (FWDIC = − 0.012 ΩAr units dec− 1) outweighed the impact of the corresponding increase in TA
(FWTA = 0.006 ΩAr units dec− 1). This resulted in a net negative FW term that drove acidification, as the increase
in SSS in the Bering Strait subregion increased DIC more than it increased TA, contributing to the decrease
in ΩAr.

Figure 7. Area‐weighted driver decomposition results for each subregion calculated using Equations 8 and 9. Only the “change in driver” terms are shown, as the change
in sensitivity and mass effect terms are omitted for clarity due to their nearly equal magnitudes and opposite directions. The four drivers (sDIC, sTA, SST, and FW) are
presented, with the sum of all drivers approximately equaling the total trend represented by the dashed line. For additional context, the individual components of the FW
driver are also displayed.
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The [H+]F increase (0.18 nmol kg− 1 dec− 1) in the Bering Strait subregion was driven by similar factors as the ΩAr

decline. Increased sDIC (0.06 nmol kg− 1 dec− 1) was the main driver, closely followed by the FW term. Again,
freshwater removal increased DIC (FWDIC = 0.07 nmol kg− 1 dec− 1) more than TA
(FWTA = − 0.03 nmol kg− 1 dec− 1) which, in conjunction with the direct effects of SSS
(FWSSS = 0.01 nmol kg− 1 dec− 1), resulted in a net positive FW term (0.04 nmol kg− 1 dec− 1) indicating that FW
removal contributed to the [H+]F increase. Minor changes in sTA slightly offset this increase
(− 0.01 nmol kg− 1 dec− 1), while the warming trend further drove acidification (0.02 nmol kg− 1 dec− 1).

Northern PAR Drivers. The ΩAr decline observed in the Northern PAR (− 0.078 units dec− 1) was primarily driven
by increased sDIC (− 0.053 ΩAr units dec− 1). Freshwater dynamics played a more significant role in ΩAr decline
in the Northern PAR than in any other subregion. Unlike the Bering Strait subregion, which experienced slight
salinization, the Northern PAR exhibited strong freshening trends likely caused by sea ice melt and increased
riverine discharge. On the Bering Sea shelf, DIC has a stronger relationship to SSS than TA does, meaning rising
SSS caused DIC to increase more than TA. The opposite was true for the Northern PAR, where TA has a stronger
relationship to SSS than DIC (Figure S3 in Supporting Information S1). As a result, a decrease in SSS caused a
larger decline in TA compared to DIC. This is reflected in the FW components: FWTA (− 0.208 ΩAr units dec− 1)
had a greater magnitude than FWDIC (0.178 ΩAr units dec− 1), leading to a net freshwater‐driven decline in ΩAr

(FW = − 0.027 ΩAr units dec− 1). Thus, freshening reduced TA more than DIC, further driving the observed
acidification trends. Additionally, the effects of sTA (0.001 ΩAr units dec− 1) and SST (0.001 ΩAr units dec− 1)
were relatively minor and did not significantly influence the observed ΩAr trends in the Northern PAR.

For observed [H+]F trends (0.53 nmol kg− 1 dec− 1) in the Northern PAR, sDIC accounted for the majority of the
trend (0.51 nmol kg− 1 dec− 1). Freshening contributed to acidification through decreased DIC
(FWDIC = − 1.71 nmol kg− 1 dec− 1), decreased TA (FWTA = 1.88 nmol kg− 1 dec− 1), and the direct effects of
salinity changes (FWSSS = − 0.13 nmol kg− 1 dec− 1), resulting in a net positive FW term (0.04 nmol kg− 1 dec− 1).
Although freshwater addition increased [H+]F, its impact was significantly smaller than for ΩAr. This difference
arises because the sensitivities of ΩAr and [H+]F to changes in drivers (Equations 4 and 5) can vary substantially,
leading to divergent outcomes for identical changes in drivers. Trends in sTA (0.01 nmol kg− 1 dec− 1) and SST
(0.01 nmol kg− 1 dec− 1) also contributed to the overall acidification trend, though their effects were significantly
smaller than those of sDIC and FW.

5. Discussion
TA and pCO2 Prediction Uncertainty. While our TA and pCO2 prediction methodology performed well overall
across the study region, certain locations exhibited higher error and/or bias, raising potential concerns about the
validity of final trend results. However, several factors support the accuracy and robustness of our results.

Predicting chemical properties in coastal waters, particularly at high latitudes, is inherently challenging due to
high natural variability and the complex interplay of physical and biogeochemical processes. Arctic coastal
waters are influenced by sea ice melt and formation, seasonal river discharge, permafrost and watershed inputs,
and dense biological communities. These challenges, compounded by significant data gaps, especially during
winter months, contribute to prediction uncertainties.

Additionally, the contribution of weak organic acids to TA (i.e., organic alkalinity) constitutes another source of
TA uncertainty, particularly in estuaries and coastal waters (Hunt et al., 2024). This influence is not captured by
SSS or SST data, nor is it accounted for in carbonate chemistry software such as CO2SYS. Furthermore,
phytoplankton and bacterial cells have been observed to contribute as much as 19 μmol kg− 1 to TA in our study
area (Lee et al., 2021), with high spatial and likely temporal variability, further emphasizing the complexity of TA
prediction in this region. Despite these difficulties, our uncertainty values align closely with those reported in the
established literature, highlighting the robustness of our approach within the context of these challenges.

For example, Gregor and Gruber (2021) applied a robust cluster‐regression method to predict global surface TA
and pCO2 at a 1° × 1° resolution, reporting coastal RMSE values of 45 μmol kg− 1 for TA and 32 μatm for pCO2,
with portions of the PAR exhibiting uncertainties exceeding 35 μmol kg− 1 and 35 μatm. Similarly, Chau
et al. (2023) reconstructed global TA and pCO2 at a 0.25° × 0.25° resolution using neural networks and
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multivariate regression and achieved global coastal RMSE values of 82.0 μmol kg− 1 for TA and 27.6 μatm for
pCO2. Additionally, the Empirical Seawater Property Estimation Routines (ESPERs) (Carter et al., 2021),
another established TA prediction model, achieved a RMSE of 65 μmol kg− 1 and an MBE of 22 μmol kg− 1 when
applied to our observational data set.

For comparison, our reported MAE values correspond to RMSE values of 40.1 μmol kg− 1 for TA and 31.6 μatm
for pCO2, closely matching or improving upon these established methods. These comparisons demonstrate that
while uncertainties remain, our results are consistent with the literature and reflect the inherent difficulty of
predicting carbonate system variables in coastal and high‐latitude regions. Most importantly, predictions for the
PAR, despite their uncertainties, provide critical insights into an ecologically significant and data‐sparse region.

Trend Uncertainty. Uncertainty and bias in TA and pCO2 predictions are mitigated by several factors. First, bias
in individual monthly predictions does not skew trend results as long as the bias is consistent. Additionally, error
does not propagate linearly into calculated ΩAr, [H+]F, and pHT values. For example, a 10% TA and 20% pCO2
error does not necessarily result in a 30% ΩAr error, as the relationships among carbonate system variables are
nonlinear. The extent to which error propagates depends on the state of the carbonate system (Equation 2),
meaning the impact of a given error combination varies based on environmental conditions.

Even in areas with high error in monthly values, the bootstrapping process ensures that trend uncertainties
accurately reflect these errors. While individual monthly errors (noise) can be significant, a strong underlying
trend (signal) can still emerge, as the long‐term trend relies on the collective behavior of all data points in the time
series. This statistical averaging reduces the influence of uncertainty in any single monthly value, allowing the
acidification signal to be detectable despite the noise. Trends are reported with their associated uncertainties, and
if the propagated uncertainty is too large, the trend is identified as statistically insignificant. Additionally, when
trends are averaged across thousands of grid cells to calculate subregion trends, the impact of outliers and
localized areas of high uncertainty is minimized, providing a more robust representation of regional trends.

For example, the Beaufort Sea exhibits relatively high TA error. However, because ΩAr uncertainty is determined
by the combined contributions of all input variables (TA, pCO2, SSS, SST, Si, and PO3−

4 ) and their respective
uncertainties, the impact of TA error is diluted within the overall ΩAr uncertainty. For a single grid cell, monthly
ΩAr uncertainty only moderately affects the trend uncertainty for that grid cell. When aggregating trends across
the Northern PAR, the proportional contribution of grid cells from the Beaufort Sea, where TA error is higher, is
small compared to the entire subregion, further reducing its influence on the overall trend uncertainty for the
Northern PAR.

Uncertainty Reveals Change. The spatial distribution of TA prediction error (Figure 3a) can shed light on regions
with more complex biogeochemical processes. While a strong linear correlation exists between SSS and TA,
certain processes can disrupt this relationship. For instance, the formation and dissolution of calcium carbonate
(CaCO3) impacts TA without affecting SSS. Areas undergoing CaCO3 dissolution would exhibit a rise in TA not
mirrored in SSS measurements, leading to a higher prediction error. This increase in error, while highlighting a
limitation in the TA prediction method's ability to accommodate salinity‐independent processes, also signals
underlying changes at these locations, providing valuable clues for further analysis.

Shifts in plankton species composition, particularly changes involving coccolithophores (a group of highly
productive marine calcifiers) represents another salinity‐independent factor that may affect TA prediction ac-
curacy. Coccolithophores have the potential to significantly influence carbonate system dynamics. While primary
productivity decreases DIC and marginally increases TA, CaCO3 formation characteristic of coccolithophores
reduces TA (by removing Ca2+) and ΩAr (by eliminating CO2−

3 ), as illustrated in the following reaction. This
reaction also raises CO2 levels, thereby lowering pHT:

2HCO−3 (aq) + Ca2+(aq)⇌ CO2(g) + CaCO3(s) + H2O(l) (12)

For example, the first recorded coccolithophore bloom in the Bering Strait subregion occurred during the summer
of 1997 (Vance et al., 1998). Since then, such blooms have become a regular phenomenon. On the Bering Sea
shelf, blooms of the coccolithophore E. huxleyi have been observed to decrease TA by as much as 82 μmol kg− 1

(Murata, 2006) and 59 μmol kg− 1 (Cross et al., 2013). Consequently, changes such as the poleward movement of
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Atlantic‐sourced coccolithophores into the Arctic (Ardyna & Arrigo, 2020) can substantially alter local carbonate
system dynamics, highlighting the complex interplay between biological activity and ocean chemistry. These
processes underscore how regions with high TA prediction residuals may indicate locations that warrant further
investigation.

Regions exhibiting the highest TA prediction errors correspond to areas where rivers drain into the sea, such as the
Beaufort Sea near the Mackenzie River discharge, the East Siberian Sea at the Kolyma River outlet, and the
northern Gulf of Alaska which is influenced by the Susitna and Copper Rivers. This pattern suggests that riverine
inputs significantly affect the accuracy of our TA predictions by introducing variability not accounted for by SSS
and SST alone. It also supports the notion that some Arctic rivers are undergoing significant changes in chemical
composition (e.g., TA, nutrient concentration, dissolved organic carbon) as a result of climate change and
anthropogenic activities and noted in prior work (Drake et al., 2018; Tank et al., 2023).

Southern PAR. Carbonate system trends and drivers for the Southern PAR represent the global mean state of OA.
The rising sDIC driving acidification in the Southern PAR is likely attributable to anthropogenic CO2 uptake as
noted in previous work and expected in an ice‐free, open‐ocean environment.

Portions of the southern Alaska coast exhibited weakened or a lack of trends in pHT or ΩAr (Figure 5). This
anomaly could stem from the considerable uncertainty in pCO2 measurements along the entire southern Alaska
coast and significant TA uncertainty in the northern Gulf of Alaska, hindering the bootstrap method's ability to
identify significant trends. However, coastal Alaska experiences significant runoff from land‐terminating glaciers
that contain higher TA than DIC (Pilcher et al., 2018). This runoff could buffer the coastal carbonate system,
explaining both the weakened acidification signal and higher prediction uncertainty.

Bering Strait. Our results indicate that the Bering Strait subregion acidified significantly slower than the global
mean rate, with portions of the subregion exhibiting no acidification signal at all. This challenges the prevailing
literature that identifies the Bering Strait subregion as an acidification hotspot, with studies listed in Table 1
showing OA rates at or far exceeding global levels. Considering the disagreement between our Bering Strait
trends and the established literature, we also applied our bootstrap trend methodology to pCO2, pHT, and ΩAr data

Figure 8. The bootstrapped seasonal Theil‐Sen estimator was used to determine area‐weighted average trends and trend uncertainties for pCO2, pHT, and ΩAr from 1993
to 2021 for the Bering Strait subregion. The trend methodology was applied to the CMEMSr100, CMEMSr25, and OceanSODA carbonate system data sets in order to
compare the trends of this study using a consistent methodology. Error bars denote the 95% bootstrap confidence interval. The wide range in trend uncertainty arises
because each data set defines monthly uncertainty differently (MAE, RMSE, ensemble mean) and should be interpreted with caution.
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from the OceanSODA and CMEMS gridded carbonate system data sets (Figure 8). This approach enabled us to
apply a consistent trend methodology to data sets that were independently produced and validated, reinforcing the
robustness of our trend results even in cases where they differed from prior studies.

Cross‐dataset trend results for the Bering Strait subregion show that our results are broadly consistent with the
other data sets. All data sets indicated an increase in pCO2, with our study closely matching both CMEMS data
sets at 10 μatm dec− 1. OceanSODA also showed an increase but at a higher rate of 17 μatm dec− 1, consistent with
the global mean. For pHT, our data set and both CMEMS data sets indicated a decline of approximately − 0.01
units dec− 1, while OceanSODA reported a larger decline of − 0.02 units dec− 1, double our result and consistent
with the global mean trend. This disparity in pHT trends highlights the variability among data sets but remains
within the range of plausible uncertainty. The largest differences were observed in ΩAr trends. Both CMEMS data
sets showed a slower decline than our data set, while OceanSODA showed a faster decline. Despite these dif-
ferences, all ΩAr trends were notably low compared to the mean global rate. This suggests that additional pro-
cesses beyond carbon uptake may be mitigating ΩAr decline in the Bering Strait region. Overall, the trends for all
three variables in the CMEMS and OceanSODA data sets were within or close to the uncertainty range of our
results, supporting the robustness of our findings.

Our results indicate that surface pCO2, and consequently surface DIC, increased at a significantly reduced rate
despite steadily rising atmospheric CO2 concentrations throughout the study period. This slower increase ac-
counts for the lower‐than‐expected acidification rates observed in the Bering Strait subregion. Enhanced surface
primary productivity, which removes inorganic carbon from surface waters and exports it to depth via the bio-
logical pump, appears to be the primary factor driving this phenomenon.

As outlined in the Study Area section, the Bering Strait subregion experiences large phytoplankton blooms due to
Alaskan Coastal water and nutrient‐rich Anadyr water mixing near the Bering Strait passage. This could explain
why we observed a weaker acidification signal in the western and northern sectors of the Bering Strait subregion,
where nutrient‐rich waters drive productivity (Figure 6). Notably, the emergence of fall phytoplankton blooms,
tied to delayed sea ice formation and an extended growing season, suggests that primary productivity may have
also risen in tandem with decreasing sea ice extent. This hypothesis is supported by observed positive decadal
trends in surface Chlorophyll a (Oziel et al., 2022) and annual primary production (Brown & Arrigo, 2012), as
well as a biologically driven increased summer carbon sink (Wang et al., 2022b) in the Bering Strait subregion
over a similar timeframe. Enhanced primary productivity may simultaneously explain the elevated acidification
rates observed in Bering Strait bottom waters (Mathis et al., 2014; Pilcher et al., 2022), as organic carbon exported
from the surface remineralizes at depth, increasing pCO2 and promoting acidification.

Although our findings diverge from the established literature for this area, they highlight the complex interplay of
physical and biogeochemical processes characteristic of coastal waters. Factors such as rising river alkalinity
concentrations (Kaushal et al., 2013), particularly from Arctic rivers (Drake et al., 2018; Tank et al., 2023), and
increasing riverine nutrient levels (V. H. Smith, 2003), may buffer coastal carbonate systems and enhance pri-
mary production, partially mitigating acidification. In some coastal regions, such as the Chesapeake Bay (Shen
et al., 2020), the Gulf of Mexico (Gomez et al., 2021; Hu et al., 2015), and the coastal Netherlands (Provoost
et al., 2010), these processes have even led to increases in both pHT and ΩAr, demonstrating that elevated at-
mospheric CO2 does not guarantee acidification. This underscores the need for further, ideally observational,
studies on acidification in the Bering Strait subregion to better understand these trends, particularly given the
region's significant economic importance as a fishery and the potential impacts of OA on marine ecosystems.

Northern PAR. Our results indicate that surface acidification rates in the Northern PAR far exceeded the global
average due to a combination of anthropogenic DIC and declining TA. This contrasts with the global, ice‐free
ocean, where sDIC is the dominant driver of acidification, exceeding the influence of sTA, SST, or FW by an
order of magnitude (Ma et al., 2023). The negative TA trend was driven by freshwater addition to the subregion,
likely due to a combination of sea ice melt and increased riverine discharge, as evidenced by Figure 9 and prior
studies (Qi et al., 2022; Zhang, Wei, et al., 2020). Figures 9a–9c present decadal trends (1993–2021) in sea ice
thickness, SSS, and TA for the Northern PAR. The Beaufort Gyre exhibits strong negative trends in sea ice
thickness (− 0.8 m dec− 1), SSS (− 1.0 psu dec− 1), and TA (− 56.5 μmol kg− 1 dec− 1), coinciding with the highest
observed acidification rates in the PAR (Figure 6). Positive Pearson correlation coefficients (r) between sea ice
thickness and SSS (Figure 9d) and between sea ice thickness and TA (Figure 9e) confirm the relationship among
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these variables. The Beaufort Gyre shows r values between 0.6 and 0.7, indicating a strong correlation between
ice thickness, SSS, and TA. Given that the Beaufort Gyre contains 25% of the Arctic's freshwater supply, and
riverine input into the Arctic increased over the study period (IPCC, 2023; Pörtner et al., 2019), it is likely that
increased riverine discharge also contributed to the freshening and subsequent acidification of the Beaufort Gyre
and the Northern PAR as a whole.

Sea ice decline drives acidification through dilution and enhanced CO2 uptake. The mechanisms by which this
occurs are heavily dependent on sea ice characteristics and can be broken into three distinct phases as shown in
Figure 10. Figure 10 compares time series of sea ice thickness, SSS, surface pCO2, and air‐sea carbon flux
(negative being into the water) from 1993 to 2021 in the Beaufort Gyre (75°N, 215°E). Phase I (1993–1998) is
characterized by year‐round multi‐year ice cover. Sea ice thickness declined (− 1.4 m dec− 1), driving dilution as
indicated by the negative SSS trend (− 4 psu dec− 1). Qi et al. (2022) found that the combined effects of dilution‐
driven reductions in TA and DIC from sea ice melt lowers pCO2, explaining the negative pCO2 trend of
− 89 μatm dec− 1). Persistent ice cover prevented significant air‐sea carbon flux, evidenced by near‐zero flux
values during Phase I. This dilution process primed surface waters underlying the ice for rapid acidification by
decreasing both TA, lowering its resistance to acidification, and pCO2, strengthening the pCO2 gradient between
underlying seawater and rising atmospheric CO2 concentrations.

Phase II (1998–2013) marks the transition from a regime dominated by thick, multi‐year ice with persistent
coverage to one where thinner, seasonal first‐year ice predominates, with September 1998 recording a historic
low in sea ice extent that signaled the sea ice transition (Hutchings & Rigor, 2012; Zhang, Wei, et al., 2020). The

Figure 9. Decadal trends in panels (a) sea ice thickness, (b) SSS, and (c) total alkalinity (TA) for the Northern Pacific‐Arctic Region from 1993 to 2021 determined using
the seasonal Theil‐Sen estimator. Locations with the highest rates of sea ice decline correspond to locations with strong negative SSS and TA trends. The Pearson
correlation coefficient (r) between time series of ice thickness and SSS (d) and ice thickness and TA (e) statistically verify this observation. Only cells with p < 0.05 are
plotted. The center of the Beaufort Gyre, which shows the highest rates of decline for sea ice, SSS, and TA, have r values between 0.6 and 0.7, indicating strong correlation.

Global Biogeochemical Cycles 10.1029/2024GB008249

CAERO ET AL. 19 of 26



remaining multi‐year ice continued to melt, indicated by the ice thickness rate of − 1.1 m dec− 1, driving further
dilution as seen in the SSS trend of − 3 psu dec− 1. Dilution‐induced low pCO2 values facilitated rapid carbon
uptake due to the strong air‐sea pCO2 gradient, reversing the negative pCO2 trend of Phase I to a positive trend of
52 μatm dec− 1 in Phase II. This is primarily because atmospheric CO2 could now flux into surface waters due to
the exposed air‐sea interface, as indicated by the large negative September spikes in air‐sea flux in Phase II that
were not present during Phase I. This swift uptake, alongside the dilution‐driven reduction in TA during Phases I
and II, primarily drove the rapid acidification observed in the Beaufort Gyre. As the air‐sea pCO2 gradient
diminished, so too did the seasonal carbon flux into the sea surface and the rate of pCO2 uptake, signaling the shift
to Phase III.

Phase III (2013–2021) is characterized by a stabilization of sea ice thickness and a lack of dilution, as evidenced
by p‐values for ice thickness and SSS trends of 0.69 and 0.61, respectively. Surface pCO2 levels continued to
climb at a rate of 8 μatm dec− 1, a pace six times slower than in Phase II and about half the global average rate of
17 μatm dec− 1. Surface waters remained a consistent carbon sink each September, albeit at considerably reduced
rates (− 1.7 to − 0.83 mol C m2 yr− 1) compared to Phase II. Although we identified January 2013 as the boundary
between Phase II and III, the actual transition likely represents a gradual, less distinct shift than the clear, stepwise
shift from Phase I to II and therefore cannot be easily defined.

This phase‐based framework for describing sea‐ice carbonate dynamics can also explain the portion of the
Northern PAR near the North Pole that exhibited a decrease in pCO2, accompanied by an increase in pHT and ΩAr
(Figure 5). Over the period 1993–2021, this area showed statistically significant trends in sea ice thickness
(− 0.3 m dec− 1) and SSS (− 0.4 psu dec− 1). However, sea ice thickness remained sufficiently high to avoid a
transition from a multi‐year to a seasonal ice regime. In other words, this area of the Northern PAR remained in
Phase I, where dilution drove the observed decrease in surface pCO2 while consistent ice cover prevented
substantial CO2 uptake.

Figure 10. Time series of ice thickness, SSS, surface pCO2, and air‐sea carbon flux in the Beaufort Gyre (75°N, 215°E) from 1993 to 2021. This location corresponds to
the highest observed acidification rates of the Pacific‐Arctic Region. The time series is broken into three phases: Phase I is characterized by thinning ice, which lowers
SSS, TA, and pCO2 via dilution. Persistent ice cover prevents air‐sea flux, enabling a negative pCO2 trend. Phase II marks when this location is predominated by
seasonal sea ice and air‐sea flux can rapidly increase pCO2 levels. Dilution stops by Phase III and the air‐sea pCO2 gradient is smaller, reducing CO2 uptake.
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Figure 10 does not include temperature effects on the carbonate system as they were relatively minor. Rising SST
reduces the solubility of CO2, causing some dissolved CO2 to become gaseous, thereby increasing pCO2. For the
Beaufort Gyre, we observed no statistically significant long‐term trend in SST, which is expected since the area
experiences seasonal sea ice formation and remains near its freezing point (− 1.8°C) for most of the year.
However, when examining only September data points, we found a warming trend of 0.7°C dec− 1 (p = 10− 5).
This seasonal warming would increase summertime surface pCO2, but its impact on long‐term trends is mitigated
as the water cools and ice forms again in autumn. Additionally, a higher summertime pCO2 value would weaken
the air‐sea pCO2 gradient, reducing the amount of carbon absorbed during air‐sea exchange.

Our findings reveal that increased freshwater likely due to significant sea ice melt and rising riverine discharge,
coupled with increasing atmospheric CO2 levels, led to rapid surface acidification in the Northern PAR, espe-
cially in zones undergoing shifts in sea ice dynamics. This observation has two primary implications. First, the
intense acidification rates observed might be a temporary condition in regions transitioning from dense, year‐
round ice to seasonal coverage, as depicted in Figure 10. Zhang, Yamamoto‐Kawai, and Williams (2020)
observed this in the Beaufort Sea, noting a decline in surface ΩAr by 0.5 units dec− 1 from 1997 to 2007 followed
by no ΩAr trend from 2007 to 2016. The second implication is that higher latitudes, currently under year‐round ice
cover, might undergo rapid acidification akin to Phase II of Figure 10 if their ice thins sufficiently to expose the
surface waters to the atmosphere. However, the acidification rate would likely decline over time as the air‐sea
CO2 gradient weakens as observed in Phase III.

6. Caveats and Limitations
Our study's primary limitation stems from the very issue it seeks to overcome: significant spatial and temporal
data gaps. Figure S1 in Supporting Information S1 highlights the scarcity of carbonate system observations during
the boreal spring and winter, especially in sea‐ice‐affected zones, with most sampling occurring in the summer
and fall. This scarcity complicates, and in some locations prevents, prediction validation for spring and winter
months. The complex interplay between sea ice dynamics and the carbonate system, coupled with the importance
of sea ice trends to our findings, underscores the critical gap presented by the absence of field samples in these
seasons. Moreover, certain areas within the PAR, such as key regions along the Russian coast and the Canadian
Archipelago, suffer from a chronic lack of data throughout the year.

In addition to these observational gaps, our analysis is inherently tied to the gridded SSS and SST data sets used
for TA prediction and driver decomposition. Although these SSS and SST data sets have been evaluated and
validated in the literature, any error or bias inherent in them could influence our overall trend and driver results.
Future efforts to conduct the same analysis with different combinations of SSS and SST data sets, or using an
ensemble approach, could help address this limitation and improve the robustness of the results.

While these data gaps and potential data set biases challenge our capacity to refine and validate predictive models
in some locale during certain seasons, they underscore the necessity of our efforts to reconstruct the carbonate
system from the limited data that is available. Enhanced sampling efforts in the Arctic would gradually refine such
predictions, sharpening our understanding of the region's evolving carbonate dynamics.

7. Conclusion
By harnessing open‐source data sets across the PAR, we identified spatial relationships to predict surface TA
from openly available data sets. In conjunction with the SOM‐FFN surface pCO2 data set, it was possible to
resolve the full surface carbonate system on a monthly basis from 1993 to 2021. Leveraging this data set, we
introduced a robust methodology for detecting and quantifying trends, marking the first effort to systemat-
ically quantify trends in surface carbonate system parameters across the PAR. This approach bridges spatial
and temporal gaps in our understanding of trends outlined in Table 1. The Northern PAR lacks a publicly
available comprehensive carbonate system data set, with existing resources such as CMEMS and Ocean-
SODA offering limited coverage in ice‐covered regions. Therefore, the surface carbonate system data set
compiled in this study, as well as the discrete bottle samples, are intended to facilitate subsequent research
efforts.

Our findings reveal that surface waters of the Southern PAR (an ice‐free, open‐ocean environment) acidified at a
similar rate to the global mean, primarily due to the uptake of anthropogenic carbon. Conversely, the Bering Strait
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subregion—a critical conduit for Pacific waters into the Arctic Ocean—exhibited a weakened acidification signal,
likely due to enhanced primary productivity. This suggests that while the PAR in general is vulnerable to
acidification, the highly productive ecosystems of the Bering and Chukchi Sea shelves acted to mitigate the
effects of rising atmospheric CO2, albeit with potential repercussions for acidification in deeper waters. Most
notably, the Northern PAR experienced surface acidification rates 2–4 times higher than the global average,
primarily due to anthropogenic CO2, freshwater addition, and dynamics between sea ice and the carbonate system
in zones of multi‐year ice recession.

Should atmospheric CO2 continue to rise, surface waters of the PAR will likely continue to acidify. Continued
anthropogenic warming poses a significant threat to the high‐latitude areas of the Northern PAR, which are
currently shielded from CO2 invasion by annually persistent sea ice. A transition in these regions from a multi‐
year ice cover to a dominantly seasonal, first‐year ice cover could trigger rapid acidification similar to that
observed in the Beaufort Gyre within this study. Although rising primary productivity, potentially driven by sea
ice changes, currently seems to mitigate surface acidification in the Bering Strait subregion, it is likely that this
CO2 export from the surface will be surpassed by the influx of atmospheric CO2, unless there is a sustained
increase in primary productivity. Therefore, the weakened trends observed in the Bering Strait subregion may be
temporary, with future data potentially showing faster acidification. Likewise, the Southern PAR is expected to
keep acidifying as atmospheric CO2 levels rise.

Key areas for future investigation include detailed analyses of regions with high uncertainties in pCO2 and TA to
refine trend identification. Moreover, enhancing the methodologies for predicting pCO2 and TA, especially by
explicitly incorporating seasonality, could significantly improve the accuracy of trend predictions and reduce
uncertainties. Refining TA and DIC drivers into specific processes such as net community production, calcifi-
cation, and anthropogenic carbon uptake (Fassbender et al., 2016; Ma et al., 2023), would offer further insight into
the drivers of long‐term change in the carbonate system. The results pertaining to the Bering Strait subregion,
which contrast with prevailing literature, highlight a need for future work focused on understanding the mech-
anisms driving changes in the carbonate system of this ecologically important region.

Data Availability Statement
All data used in this work is publicly available. Discrete bottle samples for each oceanographic cruise are located
at their respective DOI in Table S1. The gridded data sets used are listed, with the corresponding reference, in
Table 2. The carbonate system fields created in this work (Caero et al., 2024) are available at https://doi.org/10.
25921/P35D‐D778.
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