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Radiative forcing from the 2020 shipping
fuel regulation is large but hard to detect

Check for updates

Jianhao Zhang 1,2 , Yao-Sheng Chen1,2, Edward Gryspeerdt 3, Takanobu Yamaguchi1,2 &
Graham Feingold 2

Reduction in aerosol cooling unmasks greenhouse gas warming, exacerbating the rate of future
warming. The strict sulfur regulation on shipping fuel implemented in 2020 (IMO2020) presents an
opportunity to assess the potential impacts of such emission regulations and the detectability of
deliberate aerosol perturbations for climate intervention. Here we employmachine learning to capture
cloud natural variability and estimate a radiative forcing of +0.074 ±0.005 W m−2 related to IMO2020
associated with changes in shortwave cloud radiative effect over three low-cloud regions where
shipping routes prevail.We find lowdetectability of the cloud radiative effect of this event, attributed to
strong natural variability in cloud albedo and cloud cover. Regionally, detectability is higher for the
southeastern Atlantic stratocumulus deck. These results raise concerns that future reductions in
aerosol emissionswill acceleratewarming and that proposeddeliberate aerosol perturbations such as
marine cloud brightening will need to be substantial in order to overcome the low detectability.

Marine low-level, warm clouds exert a strong net cooling effect on the
climate1. As a result of their responses to increases in aerosol over the
twentieth century, these climate-cooling clouds have been a key player in
mitigating the rate at which the Earth warms in response to increasing
greenhouse gases (GHG) through aerosol-cloud interactions (ACI)2.
Although future aerosol mitigation policies will have important health
benefits, theymay exacerbate globalwarming as a result of the unmaskingof
GHG warming due to reduced aerosol radiative forcing3–5. An increase in
aerosol loading leads to an increase in the population of smaller cloud
droplets, all else equal, by ramping up available cloud condensation nuclei
(CCN). This increases the total surface area of the droplets that scatters
sunlight, resulting in more reflective clouds6. Knock-on effects such as
precipitation suppression, enhanced entrainment-evaporation, or short-
wave heating might augment or offset this brightening7–11. Ship tracks—
bright, linear features found over subtropical shipping corridors where
marine low clouds prevail12,13—are a visible manifestation of these aerosol
effects on clouds.

At the beginning of 2020, the world's maritime shipping sector
implemented the International Maritime Organization(IMO) Marine
Environment Protection Committee (MEPC) fuel regulation that limits the
maximum fuel sulfur mass concentration in ships from 3.5% to 0.5% or
requires an equivalent sulfur oxide reduction in the exhaust using gas
cleaning systems. This regulation is hereafter abbreviated as IMO202014.
The combustion of sulfur-containing fuel produces sulfate aerosol—an

effective source of CCN for marine boundary layer clouds—as a byproduct
or via oxidation of the emitted gaseous sulfur dioxide. This regulation leads
to a reduction in sulfate aerosol production over global oceans15, resulting in
lower cloud droplet number concentrations (Nd) that have been detected
regionally16–18. Since IMO2020, a pronounced reduction in ship track
occurrence has been shown globally15,16, adding to documented impacts
from earlier fuel regulations designated for specific emission zones near the
Californian and European coasts19. Furthermore, in the southeast Atlantic
shipping corridor, recent studies present robust evidence for a reduction in
cloud microphysical perturbations inside the shipping lane, along with a
weakened although less robust cloud brightening17.

In spite of the routine nature of shipping traffic, the occurrence of
visible ship tracks is only a few percent at the global scale15,16, in part because
of variable meteorological conditions and in part because of changes in the
background aerosol. Therefore, whether IMO2020 exerts a detectable per-
turbation to the cloud radiative effect after 3 years, taking into account the
co-varying meteorological conditions that also modify the cloud field, is an
openquestion and remains to be assessed. Previous studies suggest that (i) at
least 5 to 6 years of observations are needed to derive significant signals in
bothNd and cloud albedo changes from the shipping lane over the southeast
Atlantic20, and (ii) in a hypothetical geoengineering setting, substantial,
sustained increases in shortwave (SW) cloud albedo are required to surpass
the detection limit (or noise) set by the natural variability in cloud albedo21.
While these studies establish foundations for the topic ofACIdetectability in
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the climate system (a signal-to-noise ratio problem), they each focus on one
side of the problem, i.e., signal and noise, respectively. When the detect-
ability of a real-world event, such as IMO2020, is assessed, one needs to
connect both sides.

In this study, we aim to assess (i) signal significance—the strength of
the IMO2020 signal, due to aerosol changes alone, all else equal, by com-
paring the observed cloud field against a counterfactual cloud field con-
structed by an ensemble of neural networks, and (ii) signal detection relative
to natural variability—whether the post-perturbation observational record
stands out above the variability in the cloud radiative effect. The latter
evaluation includes all drivers of cloud variability, not only anthropogenic
but also natural, by comparing the observational records before and after
IMO2020. The combination of the two assessments informs us about the
general detectability of the IMO2020 event and has implications for the
detectability of marine cloud brightening (MCB), which if adopted, would
deliberately inject aerosol into clouds22–24.

Here, we focus on the relative cloud radiative effect (rCRE) of low
clouds, a quantity of high relevance to radiative forcing, that incorporates
both cloud brightness (cloud albedo) and areal coverage (cloud fraction; see
Methods).We use a data-driven approach25 to quantify the radiative forcing
of IMO2020 due to changes in the SW cloud radiative effect from the three
mainmarine low-cloud regionswhere shippingprevails, at a spatiotemporal
scale beyond that of individual ship tracks. This approach utilizes an
ensemble of neural networks, trained to capture the climatological rela-
tionship between large-scale meteorological conditions and cloud proper-
ties, to construct counterfactual cloud fields as if IMO2020 were not
implemented (i.e., business-as-usual). The ensemble approach not only
boosts the robustness of the forcing estimate, but also enables uncertainty
and significance evaluations. Despite an estimated radiative forcing of
+0.074 ±0.005Wm−2, we find low detectability of the cloud radiative effect
of this event, attributed to strong cloud natural variability.

Results
A data-driven approach to perturbation assessment
It has been shown that cloud properties and their radiative effect can be
robustly predicted by combinations of large-scale meteorological variables
(or cloud controlling factors) using data-driven approaches25–30. In parti-
cular, the ability of data-driven approaches to capture the climatological,
non-linear relationship among meteorology, aerosol conditions, and cloud
macrophysical properties is central to this work27,28, enabling a counter-
factual continuation of this climatological, non-linear relationship after
2020 under the assumption that it can be used to represent the business-as-
usual emission scenario. We train Neural Network Ensembles (NNEs) to
map 8 large-scale meteorological conditions to low-cloud properties,
including rCRE and Nd, on a gridded (1°) and monthly scale using satellite
observations and reanalysis datasets (see Methods). In this work, the three
major stratocumulus decks, namely the Northeastern Pacific (NEP), the
Southeastern Pacific (SEP), and the Southeastern Atlantic (SEA) stratocu-
mulus decks that coincidewithmajor shipping corridors are investigated for
3 years since IMO2020 (2020–2022, inclusive).

The task we assign to theNeural Network (NN) is to learn and capture
the complex, non-linear co-variability among large-scale meteorological
conditions, aerosol conditions, and low-cloud properties from the clima-
tological data record (2003–2018) for the stratocumulus regime. Applying
such climatological co-variability to the IMO2020 impacted years
(2020–2022) is equivalent to intentionally ignoring the implementation of
IMO2020—an abrupt change in the aerosol field, while keeping everything
else the same, especially the large-scale meteorological conditions. This
creates a counterfactual scenario fromwhich the impact of IMO2020 and its
detectability can be assessed.

Inevitably for any machine-learning (ML) approach, constraining
uncertainty within theML-prediction is a challenge—in our case to provide
a robust radiative forcing estimate. The skill of theNNand the robustness of
the predictions are central. To this end, we train an ensemble of NN instead
of a single NN to be able to assess the uncertainty associated with our

particular NN framework. The performance of these NNEs for the 4 target
variables, namely rCRE,Nd, low-cloud fraction (LCF), and low-cloudalbedo
(Ac), is well above community standards (Supplementary Fig. 1), and is not
subject to overfitting (Supplementary Fig. 2). Furthermore, a linear cor-
rection to the NNmodel is applied to account for cases where high spatial
correlations in cloud responses to the aerosol perturbation from ships are
evident, e.g., a shipping lane (see Methods). This step is particularly
important for robustly predicting the Nd field over the SEA, where
meteorological factors alone are less skilled at capturing the sharp gradient
in the climatological Nd distribution across a spatially narrow lane because
the main shipping route is aligned with the prevailing boundary layer
winds20. Another issue that NN-predictions are known to be prone to is
extrapolation. We examine the ranges of the 8 meteorological conditions
during 2020-2022 relative to the ranges of the training dataset (2003–2018)
and conclude that the probability of extrapolation in our case is minimal,
based on the overlapping distributions of the predictors between the
training and the predicting datasets (Supplementary Fig. 3). Known
expected responses, if they do exist, can serve as a sanity check for the
behavior of the NN. Among all the shipping corridors, the one in the
southeastern Atlantic presents such an opportunity, given the aligned wind
direction and the shipping route. This makes cloud micro- and macro-
properties within the shipping lane easily distinguishable from the sur-
rounding areas17,20. A lane-shaped decrease inNd due to IMO2020 is indeed
evident in the SEA region of this study, aligningwell with themain shipping
lane (Fig. 1a), providing assurance of the skill of our approach to assess the
IMO2020 perturbation.

Substantial radiative forcing from changes in cloudiness and
cloud brightness
Changes in Nd (ΔNd, the difference between observed and counterfactual
values, see Methods) during 2020–2022 are negative for most parts of the
three stratocumulus decks (Fig. 1); these are more pronounced near the
coasts, consistent with the strong reduction in fuel sulfur content since
IMO2020 and the dense shipping traffic in coastal regions15,16. Most of the
decreases inNd are statistically significant at the grid level against the NNE-
predicted counterfactual values (black dots in Fig. 1; based on theWilcoxon
signed-rank test at 95% confidence interval, see Methods). Over the SEA, a
bandof stronger negativeΔNd that is easily discernible fromtheneighboring
grids aligns well with the main shipping lane therein. The fact that Nd

decreases both inside and adjacent to the shipping lane are statistically
significant suggests a dilution of the shipping emission at the monthly
timescale. Regionally, the NEP (SEP) has the most (least) substantial
decrease in Nd (Fig. 1a, white labels), consistent with the fact that the NEP
(SEP) regionhas the highest (lowest) sulfur dioxide emission fromships and
the most frequent occurrence of ship tracks16. The SEA presents the most
discernible spatial pattern in Nd changes, including not only the linear
feature of a shipping lane but also the significant increases inNd closer to the
equator, which can be attributed, in part, to the 2019–2020 Australian
bushfires (positive ΔNd near the equator diminishes when 2020–2021 are
excluded from the analysis; not shown). Although, in the mean (spatio-
temporally), regional decreases in Nd are less than 5 cm−3 (Fig. 2b), the
percentage decrease can be as large as ~6% (e.g., over the NEP; Supple-
mentary Fig. 4) and local decreases can reach as high as ~30 cm−3 near the
coast (Figs. 1a, 2b).

Decreases in rCRE, corresponding to more incoming solar radiation
reaching the surface (i.e., a warming effect), are observed for most parts of
the stratocumulus regime (Fig. 1b). Substantial and significant warming is
concentrated in the northwestern part of theNEP stratocumulus deck.Over
the SEP, significant warming is mostly concentrated downwind of themain
stratocumulus deck, despite little change in Nd, suggesting a strong cloud
susceptibility to aerosol perturbations. This occurs in the broken cumulus
regime and is likely related to the precipitation-suppression mechanism7.
The lane-shaped feature observed in the spatial pattern of ΔNd is evident in
ΔrCREover the SEA, although to a lesser extent, but nevertheless indicates a
persistent warming along the main shipping lane since IMO2020. The
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general marine boundary layer flow over these low-cloud regions, i.e., from
cooler to warmer waters, dictates a typical transition from stratocumulus
clouds (more cloudiness) to cumulus clouds (less cloudiness), which would
otherwise be delayed under elevated aerosol loading (through drizzle

suppression)31, consistent with the pronounced changes in the cloud
radiative effect, especially via changes in LCF downwind of this transition in
each deck (Fig. 1b and Supplementary Fig. 5). The fact that the spatial
pattern of ΔrCRE does not match exactly that of ΔNd also suggests (i) a

Fig. 1 | IMO2020 perturbations of cloud properties. 3-year mean change in (a)
cloud droplet number concentration (Nd) and (b) relative cloud radiative effect
(rCRE) during 2020–2022 for the three stratocumulus decks. rCRE climatology
(2003-2018 mean) is indicated by gray contours. Black dots denote grid points for

which the IMO2020 aerosol-induced (all else equal) perturbation (i.e., OBSIMO

versus NNEIMO) is statistically significant according to the Wilcoxon signed-rank
test at 95% confidence interval. The fraction of significant (fsig) grids is indicated in
white labels.

Fig. 2 | IMO2020 radiative forcings. a Global shortwave radiative forcings based on
the 3 stratocumulus decks due to changes in low-cloud fraction (LCF), low-cloud
albedo (Ac), and low-cloud rCRE (including LCF and Ac adjustments). Positive values
indicate gain in incoming solar radiation, i.e., warming. b As in (a), but for changes in
Nd. Box-whiskers indicate the 10th, 25th, 75th, 90th percentiles, and the means of the

spatial distribution of the 3-year mean. ΔNd values outside the 10th and 90th per-
centiles are indicated by small dots. c Effective radiative forcing estimates of the
IMO2020 event from literature are compared to this study which reports the forcing
due to changes in the SW cloud radiative effect from the 3 stratocumulus decks. Mean
values are shown in symbols with uncertainty ranges indicated by vertical bars.
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spatially varying cloud susceptibility to aerosol perturbations32 and (ii) a
strong dependence of ACI-induced radiative forcing on the temporal co-
variation between background aerosol andmeteorological conditions that is
regionally distinct33. On average, our method suggests a positive suscept-
ibility of cloud radiative effect to Nd perturbations of ~0.25 for the strato-
cumulus regime (seeMethods and Supplementary Fig. 4), mostly attributed
to an albedo susceptibility of similar magnitude, which is in line with a
previous satellite-based assessment33. In contrast, the regional LCF sus-
ceptibility is weak (medians near zero) due to an offsetting between grids
with positive versus negative susceptibilities.

We estimate a global radiative forcing (RF) of +0.074 ±0.005 W m−2

(in shortwave radiation at the top-of-atmosphere, ΔSWTOA; see Methods)
from the changes in low-cloud shortwave rCRE over the three stratocu-
mulus regions during 2020–2022, scaled by their areal coverage of the globe
(Fig. 2). This is equivalent to the effective RF due to ACI (ERFACI)

2,34,
including instantaneous RF and cloud adjustments. Although within the
range provided by existing model-facilitated assessments of the RF of this
event (between +0.027 and +0.179 W m−2 in the mean; Fig. 2c)17,35–43, we
note that our estimate only includes contributions from the three main
marine low-cloud regions (where shipping routes are prevalent) and does
not account for the longwave cloud radiative effect or the direct aerosol
radiative effect (which tend tobenegligiblewhen low-cloud fraction is high).
The small uncertainty range reported here represents the spread of the
global mean RF estimates (i.e., after spatial averaging) among the NN
ensemble members; this uncertainty is specific to the particular NN fra-
mework employed in this work. There are, actually, pronounced spatial
variations in our RF estimates, ranging from ~+0.1 W m−2 over the NEP
and the SEA to+0.03Wm−2 over the SEP. The+0.1Wm−2 warming over
the SEA is in line with the estimate from a recent study that focuses on the
shipping corridor in that region17, consistent with the fact that shipping
emissions are strongly constrained within a narrow band in that basin.
Variations in ΔNd alone between basins are not enough to explain the

variations in the basin-specific radiative forcing (e.g., the difference between
SEP and SEA; Fig. 2), underscoring the importance of accounting for spa-
tiotemporal co-variations between ΔNd and cloud susceptibilities, particu-
larly those corresponding to cloud adjustments. On average, changes in Ac

contribute two-thirds to our RF estimate, and changes in LCF contribute
about one-third (Fig. 2a).

Natural variability masks detectability of the IMO2020-perturbation
A key question in this study is whether the significant IMO2020-
perturbations to cloud microphysics (ΔNd) and radiative effect (ΔrCRE)
due to only aerosol are detectable when compared to an a priori observa-
tional record, taking into account all natural drivers of cloud variability.
Now that we have established the significance of the aerosol-induced signal,
we evaluate it against the noise, set by the natural variability in cloud
properties, to assess the detectability of this event. Note that the Δ in this
study always denotes changes that are attributed to IMO2020 emission
changes, all else equal (i.e., the difference between observed and counter-
factual values during 2020–2022, see Methods).

Using the Wilcoxon signed-rank test, we evaluate (i) if the observa-
tional records before and after IMO2020 are significantly different from
each other—whether a change in the observational record is detected (or
signal detection against natural variability), and (ii) if the changes in cloud
properties due to aerosol emission changes are statistically significant, based
on the counterfactual cloud fields constructed by the NNE—significance of
the signal (seeMethods andFig. 3). In addition to the detectionof significant
IMO2020perturbations, this framework allowsus to identify caseswhere an
insignificant IMO2020 perturbation due to emission changes is detected
post-2020 in the observational record owing to meteorologically driven
changes in the cloud field (i.e., false detection). On the other hand, sig-
nificant IMO2020 perturbations can be masked by overwhelmingly large
natural variability in cloudproperties, post-2020, in theobservational record
(i.e., missed detection). Both these scenarios underscore an important

Fig. 3 | Definition of IMO2020 detectability. A
table showing how detectability of the IMO2020
event is characterized in this study. OBSIMO denotes
the observational record post-IMO2020, OBSpre-IMO

denotes the observational record pre-IMO2020, and
NNEIMO denotes the NNE-predicted counterfactual
cloud fields based on the 2020–2022 meteorological
conditions, representing the business-as-usual sce-
nario, with all else equal except for the aerosol. Color
scheme mimics that in Fig. 4.
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confounding effect of natural variability on the detectability of natural or
deliberate perturbations to the aerosol field, with the latter being a critical
checkpoint for the viability of marine cloud brightening44,45.

Using the 3-year immediately proceeding 2020 as the reference
observational record, we find the true detection rate (PTD, the percentage of
significant IMO2020 perturbations being detected in the observational
record) forNd ranges from 12% over the SEP to 79% over the SEA (Fig. 4a).
While only 12% of the significant IMO2020 Nd-perturbation is detec-
ted over the SEP, mostly in the shipping corridor, the false detection rate
(PFD, the percentage of insignificant IMO2020 perturbations being detec-
ted) is the lowest (2%) therein. The highPTDover the SEA is consistent with
the fact that shipping aerosol emissions arenarrowly constrained in space by
the general boundary layer flow of the region. Over the NEP and SEP
regions, more than half of the significant ΔNd are undetected (missed
detection, gray shading overlaid with blue dots) owing to the large natural
variability at these grids. The overall false detection rate forNd-perturbation

is less than 15% for all three decks, indicating that the climatological
meteorology-Nd relationship is less likely to cause a significant departure in
the observational record of Nd.

The detectability of ΔrCRE is much lower than that of ΔNd (Fig. 4b).
This is evident in the halving of PTD and the doubling of PFD for all decks,
except for the SEP where PTD slightly increases while PFD increases 20-fold
(a degrading of detectability, see discussion of Fig. 5). This comes as no
surprise given the detection limit of shortwave scene-albedo changes is
about 0.04–0.05 (at the grid level) for the NEP and the SEP regions21,
whereas our assessment indicates that ΔrCRE due to IMO2020 does not
exceed 0.03 for these two regions (Fig. 1). The lack of a spatially coherent
distribution of true detections (yellow shading overlaid withmagenta dots),
compared to that of Nd, reflects the complex, non-linear nature of aerosol-
cloud interactions, particularly the meteorology-dependent, spatiotempo-
rally varying cloud susceptibility to aerosol perturbations33,46. This suggests
that detecting a shift in the spatial pattern of rCRE is similarly difficult. The

Fig. 4 |Maps of IMO2020 detectability.Detectability of (a)Nd and (b) rCRE for the
IMO2020 event, when using the 2017–2019 observational record as OBSpre-IMO,
based on theWilcoxon signed-rank test at 95% confidence interval (seeMethods and
Fig. 3). Grids where observational records before (OBSpre-IMO) and after (OBSIMO)
IMO2020 are statistically different are shaded in yellow, including true detection
(magenta dots on yellow) and false detection (crossings on yellow). Grids where
OBSIMO is indifferent from OBSpre-IMO are shaded in gray, including missed

detection (blue dots on gray) and no detection (gray). Inserts indicate the areal
fraction of the four detection-scenarios for each region. The fraction of significant
IMO2020 (aerosol-induced) perturbation being detected (PTD) and the fraction of
insignificant IMO2020 (aerosol-induced) perturbation being detected (PFD) are
labeled in white. rCRE climatology (2003–2018 mean) are overlaid with white
contours.
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20-fold increase in the false detection rate of rCRE from that ofNd over the
SEP indicates a dominating role of the large-scalemeteorological conditions
in driving the natural variability in cloud radiative effect, especially over
higher latitudes where synoptic variability overwhelms anthropogenic
perturbations (Fig. 4b)47.

On a regional level, moving up-scale from grid level detection, we find
that the rCRE-detectability is in generalworse than that of a randombinary-
classifier (Fig. 5b),with the SEAregionbeing the best among the threedecks.
When more years prior to 2020 are used to construct the pre-IMO2020
observational record (shades of the colors in Fig. 5, seeMethods), we do not
see an improvement in the rCRE-detectability, as points are moving along
the bottom-left to upper-right diagonal,meaning that the true detection rate
and false detection rate increase at the same time. Similarly low detect-
abilities are found in LCF and Ac as well, except that the Ac-detectability is
higher over the SEA (Supplementary Fig. 6). In contrast, Nd-detectabilities
for all three decks are better than a random binary-classifier (Fig. 5a), and
they improve with increasing the number of years that go into the pre-
IMO2020 observational record. Again, the SEA region has the highest Nd-
detectability, which does not improve further when increasing the number
of years in the pre-IMO2020 observational record, representing a saturated
detectability. This is expected given the climatologically persistent, narrowly
constrained shipping emissions in the SEA shipping lane.

Using the IMO2020 event as a test, we find low detectability in cloud
radiative effect at both grid and regional levels, attributed to the strong
masking effect of its natural variability, driven by the variability in large-scale
meteorological conditions. In general, cloudmicrophysical changes (e.g.,Nd)
in response to aerosol perturbations have a higher chance of being detected,
due to the relatively weak variability in the climatological relationship
between meteorology and Nd and without the added layer of complexity
from cloud adjustments. Among the three marine low-cloud regions, the
SEApresents thehighest detectability in cloudmicro- andmacro-properties.
This suggests that deliberate aerosol seeding proposals for marine cloud
brightening may need to be ambitious in terms of the increase in aerosol
loading, compared to that of IMO2020, which is already substantial.

Discussion
Variations in the cloud radiative effect derive from natural variability, long
term, and transient perturbations. Physical process understanding, existing
modeling, and observational evidence suggest that the first is predictable

from given meteorological conditions, the second is somewhat predictable
givena long enoughobservational record,while third is ratherunpredictable
due to the unpredictable nature of socioeconomic activities (e.g. policy
changes, global pandemics, etc.) and of transient natural events (e.g., vol-
canic eruptions and wildfires). In this study, we take advantage of the pre-
dictable nature of natural variability and task a data-driven computer-
learning program to represent it. This method, by design, helps to remove
natural variability from the observed variations, attributing the remaining
variability to transient events such as the IMO2020.

Complicationsof this typeof attributionarise from,first, any long-term
trend in the aerosolfield that co-existswith its natural variability, such as the
change in the long-term anthropogenic aerosol trend due to global clean-air
efforts48 and previous IMO regulations on shipping emission of different
magnitudes at different spatial scales19. These non-meteorological changes
and trends in the background aerosol field complicate the relationship
betweenmeteorological fields and cloud properties that the NN is tasked to
learn, but given their magnitudes, abruptness, and scales, compared to the
IMO2020 event, their effect is small. Moreover, dissecting our training
datasets to address the impact of individual trends and all previous IMO
regulations would greatly limit our sample size for training and degrade the
skill of theNNmodel. Therefore,we choose the longest observational record
available to train the NNmodel, acknowledging the existence of weak, non-
meteorological influences in the climatological relationship between
meteorological conditions and low-cloud properties. This causes our NN
model to essentially extract the mean relationship when given a long-
term trend.

Second, transient events that have occurred during approximately the
same time period, but possibly of different duration, also complicate the
attribution to IMO2020. In our case, this includes theCOVID-19 pandemic
and the 2019-20Australianbushfires. Although themost severefirespeaked
between December 2019 to January 2020 during the 2019-20 Australian
bushfires, Earth System Model simulations have shown that the emitted
aerosol traveled around the southern Hemisphere, carried by the atmo-
spheric circulation, and caused radiative perturbations through direct and
indirect (via clouds) effects for at least three months at the beginning of
202049. We tested the impact of the 2019–2020 Australian bushfires, to the
best of our ability, by repeating the analysis excluding the first four months
of 2020. This did not change any of our qualitative conclusions or
the spatial patterns in Nd and rCRE perturbations. It only led to a slight

Fig. 5 | Detectability of each deck as ROC curves. Regional (Sc deck-level)
detectability illustration for (a) Nd and (b) rCRE in terms of true and false detection
rates. Shades of colors indicate the number of years that goes into the construction of
OBSpre-IMO with light colors denoting more years (see Methods). Open circles

highlight the results shown in Fig. 4 where the 3-year period immediately proceeding
2020 is used as OBSpre-IMO. Perfect detectability lies at the upper-left corner (0,1) of
the diagram, and a random detectability lies on the 1-to-1 line. Detectability
increases from bottom-right to upper-left.
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difference of −3 mW m−2 in the global radiative forcing estimate (more
warming when the first four months are left out of the analysis). This result
suggests that the IMO2020 perturbation overwhelmed perturbations from
the shorter-duration wildfires. Large-scale simulations are warranted for
further assessment of the degree of complexity added by the 2019–2020
Australian bushfires to the impact of IMO2020. Unfortunately, for an
observation-based study, it is not possible to disentangle the impact of the
COVID-19 pandemic from that of IMO2020 on the observed changes inNd

and rCRE because of the similar spatial scales of the two events. However, a
number of modeling and observational studies suggest that the impact of
COVID-19 on global and regional cloud properties, surface temperature and
precipitation is limited and undetectable (smaller than natural variability), in
part due to the offsetting between the weakening in both aerosol cooling and
GHG warming50–53. Nonetheless, if COVID-19 had not coincided with
IMO2020, our estimate might be seen as an upper limit on forcing.

Conclusions
In thiswork, we devise a data-driven approach to assess the radiative forcing
and its detectability of the IMO2020 event, by training an ensemble of neural
networks to capture the natural variability in the cloud radiative effect,
which is subsequently removed from the 2020-2022 observational record of
the cloud field to reveal a substantial warming of 0.074 ±0.005 Wm−2 as a
result of the implementation of the strict shipping fuel regulations in 2020.
Although only accounting for the contributions from changes in SW cloud
radiative effect from three marine low-cloud regions, our estimate is in line
with recent assessments taking different observational and modeling
approaches (Fig. 2)17,35–43. We extend the focus beyond individual shipping
lanes or shipping corridors andfind regionally distinct patterns of warming,
with a lane-shaped pattern evident in the SEA region that aligns well with
the main shipping lane (Fig. 1), providing confidence in the robustness of
the data-driven approach. Strong spatial variations in the forcing point to
the importance of accounting for co-variations between aerosol perturba-
tions and cloud susceptibility when scaling up radiative forcing from
ACI33,54.

Our radiative forcing estimate represents area-weighted contributions
from changes in only the low clouds over the three stratocumulus regions
where shipping routes prevail, suggesting that an even stronger warming
effect due to IMO2020 is plausible, e.g., with contributions from the les-
sening of aerosol scattering of sunlight and the adjustments in the trade
cumulus regime36. This positions our study to suggest that substantial
warming from IMO2020might have contributed to 2023being thewarmest
year on record, adding to the existing lines of evidence supporting the
postulation of accelerated GHG warming in the coming decades if aggres-
sive aerosol emission regulations are pursued3,5,55.

An important finding of this work is the strong masking effect of
natural variability on the detectability of the radiative impact from
IMO2020. By comparing the observational record of cloud properties since
2020 with the NNE-constructed counterfactual cloud fields (signal sig-
nificance) and the observational records before and after 2020 (signal
detection against natural variability), we have demonstrated an overall low
detectability in cloud radiative effect of the IMO2020 event, manifested as
concurrent changes in truedetection rate and false detection rate, despite the
substantial decreases in Nd, which has a higher chance of being detected
(Figs. 4 and 5). This has important implications for the detectability of large-
scale radiative perturbations of bothnegative andpositive sign. For example,
if marine cloud brightening were to be attempted our findings imply a
strong, regionally-dependent masking of MCB detectability by the natural
variability in cloud radiative effect, and that an ambitious seeding strategy
might be required. Regionally, the higher detectability for the southeastern
Atlantic stratocumulus deck speaks to the benefit of seeding a concentrated
area, instead of a widespread area to boost signal detection. The low
detectability of the radiative perturbation from IMO2020 at scales larger
than ship track or shipping lane speaks to the substantial challenge in
validating the viability of MCB at regional-to-global scales44,45.

Methods
Training data
We use 8 cloud controlling factors (CCFs) and low cloud properties,
including relative cloud radiative effect (rCRE), low-cloud fraction (LCF),
low-cloud albedo (Ac) and liquid cloud droplet number concentration (Nd)
to train the Neural Network (NN). The 8-CCF consists of 8 large-scale
meteorological variables (MVs) acquired from the ERA5 reanalysis56–58

every hour at 0.25° resolution, which are then averaged to monthly gridded
(1°) values. These MVs are: pressure velocity at 500 hPa (ω500), relative
humidity (RH) at 850 hPa and 925 hPa (RH850, RH925), potential tem-
perature (θ) at 1000 hPa, 850 hPa and 700 hPa (θ1000, θ850, θ700), column
water vapor (CWV), and latent heat flux (LHF). Simply including all
available MVs in the training process does not lead to a higher predictive
skill but increases the risk of overfitting. Therefore, we select MVs based on
the best-performing combination of the 8-MV sets in predicting monthly
gridded low-cloudproperties by testing all possible combinations of 14MVs
using an ensemble-NN approach25. By doing this, we implicitly select MVs
that may already be highly correlated with otherMVs that are not included
as predictors. In other words, the model has indirect access to information
not explicitly present as predictors. Essentially, we select the minimum
number of MVs that well represent the large-scale meteorological co-
variations in order to avoid overfitting. This explains why some seemingly
important cloud controlling factors, e.g., surface winds, are not included in
the predictors.

The choice of rCRE instead of cloud radiative effect (CRE), is to enable
attribution of the radiative effect to low clouds only, instead of all clouds,
without the confounding effects of solar angle or surface albedo. rCRE,
originally introduced as effective cloud albedo59, is essentially the effect of
cloud on the shortwave radiation received at surface, (i.e., 1–transmittance),
calculated as59,60

rCRE¼ 1� FSW;all

FSW;clr
ð1Þ

where FSW denotes net SW fluxes at the surface, all denotes all sky, and clr
denotes clear sky. As cloud absorption is generallymuch smaller than cloud
albedo61, Eq. 1 can be further reduced to

rCRE ¼ f cld � Acld ð2Þ

where fcld and Acld denote cloud fraction and cloud albedo. rCRE for low
clouds is calculated by replacing fcld and Acld with LCF and Ac, which are
obtained from monthly gridded Clouds and the Earth’s Radiant Energy
System (CERES) Flux By Cloud Type (FBCT) ed. 4.1 product62,63 where
TOA radiative fluxes are binned into 7 cloud effective pressure and 6 cloud
optical depth bins. Liquid-cloud areal fraction from the lowest two pressure
bins (1100–680 hPa), including all optical depth bins, are summed to obtain
LCF, and the shortwave (SW) cloud albedo in these bins are averaged by
weighting by their liquid-cloud areal fraction to obtain Ac.

Daily gridded Nd estimates from the Moderate Resolution Imaging
Spectroradiometer (MODIS)64,65 are calculated using the level-2 3.7-μm
cloud optical depth (τ) and effective radius (re) retrievals

66. This is an
extended version of ref. 64 to include years after 2020. The MODIS Nd

estimates can be biasedwhen the scene includesmulti-layer or broken cloud
fields, sufficiently small τ or re, inhomogeneous sub-pixels, or high solar
zenith angle67. Therefore, we further apply the G18 sampling in ref. 64 to
avoid these potentially biased cases. Daily values of Nd are averaged across
the satellite platforms (i.e., between Terra andAqua) over 1-month periods,
weighted by the number of available Nd retrievals after the G18 sampling.

We extract these data for oceanic grids covering the northeastern
Pacific stratocumulus (NEP) region (−155° to−115°W and 10° to 40° N),
the southeastern Pacific (SEP) stratocumulus region (−100° to−70°Wand
−40° to 0° S), and the southeastern Atlantic (SEA) stratocumulus region
(−15° W to 15° E and −25° to 0° S) for this study.
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All input data, i.e., MVs, are standardized before training by removing
their means and scaling to unit variance. We remove all land-affected grid
points using the land-mask variable provided in the ERA5 dataset. Data
covering 2003–2018 (inclusive) is used to train the NNs. In total, we have
532,931 data points for all 3 stratocumulus decks (trained all together),
which are randomly split into 68%:17%:15% for training, validation, and
testing, respectively. Training each stratocumulus region individually does
not provide improvement in the NN-performance.

Neural network ensemble architecture
A densely connected feedforward NN is used in this work25. It maps input
variables, as a vector (m!0) containing the 8 MVs, to corresponding target
variables (rCRE as the target variable, for example), using a series of
operations:

rCRE � gNþ1ðgN ð:::ðg2ðg1ðm!0ÞÞÞÞÞ: ð3Þ

where m!0 is the input vector and gN indicates the activation function g for

the N th hidden layer. Taking the first hidden layer as an example, m!0 is
mapped to n1 nodes:

m!1 ¼ g1ðm!0Þ ¼ φ1ðW1 � m!0 þ b
!

1Þ; ð4Þ

where m!1 is an n1 × 1 vector and φ1 indicates a nonlinear function, whose

weight matrix and bias vector areW1 and b
!

1, respectively.

Supportedbyperformance tests,we set theNNarchitecture tohave4 to
8 hidden layers from input to output with the number of node in each layer
ranging from 15 to 44.We use the SWISH activation function for all hidden
layers68, which is expressed as

φðxÞ ¼ x
1þ e�βx

; ð5Þ

where the parameter β is set to 1. Given the bounded nature of our target
variables (between 0 and 1), the output layer uses the tanh activation
function after variables have been transformed tobetween -1 and 1.Wenote
all outputs from theNNare scaled back to the target's rawunit for the rest of
the analyses, including the forcing estimate and the statistical significance
testing. TheNN is constructed and trainedwithTensorFlowv2.269 using the
He uniform variance scaling initializer70 and the ADAM optimizer71 for 60
epochs at a learning rate of 10-3, which further drops to 10–4 if the mean
squared error (MSE; used in the loss function) for validation plateaus.

We generate a 100-member NN ensemble to boost the robustness of
the NN prediction and assess the uncertainty of the NN-framework25. The
diversity of theNN-ensemblemembers comes from i) the random selection
of the training data (68% of all), ii) the number of hidden layers is randomly
selected between 4 to 8, iii) the number of nodes in each hidden layer is
randomly selected between 15 and 44, and iv) the total number of para-
meters ranges from 4641 to 4841. We believe this NN ensemble ensures
diverse-enough training architectures, to the extent that their predictive
skills are not compromised, and provides a robust uncertainty quantifica-
tion of this framework. The performance of the 100-member NNE,
including training, validation, and testing, is shown in Supplementary Fig. 1.
The relatively narrow spread in the ensemble performance indicates that the
inputmeteorological variables are well-suited and that the training data and
its spatiotemporal scale are optimized for the task of predicting cloud
properties at that scale, without any overfitting (Supplementary Fig. 2).

Prior studies have demonstrated the existence of a climatological
relationship between cloud properties (e.g., Nd and cloud fraction) and
large-scale meteorological conditions25,27,72. We here demonstrated the high
skill of this 8-MVs-to-cloud-field NNmodel (Supplementary Fig. 1 and 2).
However, when high spatial correlations in aerosol perturbations and cloud
responses exist, e.g., over the SEA owing to the alignment between the

shipping route and the prevailing boundary layerwind, theNNmodel tends
to smooth out the rather sharp gradient in Nd and rCRE in and out of the
shipping lane. This creates a linear bias across the shipping lane region,
particularly over the SEA. Therefore, we apply a linear bias correction to the
NN model using the training and testing data samples from 2003 to 2018.
The bias-corrected NN ensemble is used to predict the target variables to
construct the counterfactual cloud fields for the IMO2020 impacted year
(2020–2022).

A known issue with using NN to perform predictions given inputs
variables outside the training datasets is extrapolation. Based on the two-
dimensional probability density distributions of the 8-MV combinations
(Supplementary Fig. 3) between the training and testing time period (2003-
2018, shades of gray) and the IMO2020 time period (2020–2022, orange
contours),we conclude that the rangeof the input variables forpredictions is
within that of the training datasets, i.e., we are not extrapolating.

Definitions of perturbation-significance and perturbation-
detectability
The key message we want to convey in this study is that significant per-
turbations to a cloud field can be hard to detect at times due to coincident
changes fromother drivers (e.g., meteorological conditions). This involves a
key concept, that is the detectability of a signal, which is defined differently
from the significance of a signal in thiswork. The former assesseswhether an
observational record is significantly (in a statistical sense) different from a
reference observational record, taking into account all potential drivers of
the variability in the target, whereas the latter assesses the strength of the
signal from a single driver, e.g., in our case aerosol signal from the IMO2020
regulation, all else equal. Note the detectability assessment is purely a
comparison between two observational records, whereas the significance
assessment is a comparison between an observational record and a coun-
terfactual record, holding all else equal except the aerosol field.

First, we construct the counterfactual cloud field (NNEIMO) by pre-
dicting the target variables based on the exact meteorological fields of
IMO2020-affected years (2020-2022), using the NNE. NNEIMO represents
the aerosol-alone impact of the IMO2020 event, a business-as-usual sce-
nario where only the aerosol field is altered. Therefore, the difference
between NNEIMO and the CERES observational record during 2020-2022
(OBSIMO) indicates the impact of the IMO2020 event that abruptly and
globally affected aerosol emissions, assuming other short-lived abrupt or
long-term gradual changes in aerosol emissions during this time are neg-
ligible compared to the signal of IMO2020 (see Discussion). For the coun-
terfactual values, NN ensemble members are first averaged to produce
NNE-mean values for each grid at each month during 2020-2022.

The non-parametric, pairedWilcoxon signed-rank test (WSR test)73 is
used to test if OBSIMO (3-year time series) is significantly different from
NNEIMO (3-year time series), evaluating the significanceof the aerosol signal
due to IMO2020. TheWSR test is selected for this task because (i) it doesnot
assumeanunderlyingprobabilitydistributionof the target variables, and (ii)
it includes temporal information in the test (i.e., a paired test), which fits
better in the context of aerosol-cloud interactions given that cloud sus-
ceptibility to aerosol perturbations varies seasonally in response to the
seasonality in large-scale meteorological conditions33,54.

Next, we evaluate if a there is a detectable difference, in the observational
record, post- and pre- IMO2020 (OBSIMO versus OBSpre-IMO), including the
impact from all cloud variability drivers, using the WSR test. Since the WSR
test is a paired test, we need to construct a 3-year time series to use as the pre-
IMO2020 reference record. An obvious choice is the 3-year period that
immediatelyproceeds the IMO2020 event (2017–2019).This 2017–2019 time
period is used to produce the results shown in Fig. 4. We also explored the
dependence of the IMO2020 detectability on the number of years that goes
into the construction of the 3-year pre-IMO2020 record by averaging every
3-year periods that proceed 2020 with an 1-year interval. Essentially, the first
pre-IMO2020 record is simply the 2017–2019 record, the second is the
average between 2016–2018 and 2017–2019, the third is the average across
2015–2017, 2016–2018, and 2017–2019, and so on. In total, 15 3-year pre-
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IMO2020 records are constructed and used to produce the results shown in
Fig. 5, with the 15th being the average across 2003–2005, ..., and 2017–2019.

Statistical significance based on theWSR test is established at the 95%
confidence interval (CI), orP-value less than 0.05. Two tests, OBSIMO versus
NNEIMO (examining the significance of the aerosol signal) and OBSIMO

versus OBSpre-IMO (examining whether the observational records are dif-
ferent after and before IMO2020), yield four possible outcomes (Fig. 3): (i)
true detection—when the aerosol signal is significant while pre- and post-
IMO2020 observational records are different, (ii) no detection—when nei-
ther the aerosol signal is significant nor the two observational records are
different, (iii)missed detection—when the aerosol signal is significant while
the post-IMO2020 record is indifferent from the pre-IMO2020 record, and
(iv) false detection—when the post-IMO2020 record is different from the
pre-IMO2020 record while the aerosol signal is insignificant. The latter two
scenarios can be attributed to the influence of natural variability driven by
changes in the meteorological conditions, where natural variability is either
falsely taken as a perturbation (when the aerosol signal is weak) or strong
enough to obscure a significant aerosol signal. The similarity between these
four outcomes and the outcomes of a binary classifier (i.e., true positive, false
positive, false negative, and true negative) enables us to construct the
equivalent confusionmatrix and the receiver operating characteristic (ROC)
curve in Fig. 5. In our case, true detection rate is the fraction of significant
IMO2020 (aerosol-induced) perturbation being detected and false detection
rate is the fraction of insignificant IMO2020 (aerosol-induced) perturbation
being detected.

Radiative forcing and susceptibility calculations
Perturbations in rCRE, LCF and Ac are translated into perturbations in
shortwave radiation at the top-of-atmosphere (ΔSWTOA) using

ΔSWTOAjrCRE ¼ �hΔrCREjlon;lat;month × SWinjlon;lat;monthi; ð6Þ

ΔSWTOAjLCF ¼ �hΔLCFjlon;lat;month ×Acjlon;lat;month × SWinjlon;lat;monthi;
ð7Þ

ΔSWTOAjAc
¼ �hΔAcjlon;lat;month × LCFjlon;lat;month × SWinjlon;lat;monthi;

ð8Þ

where SWin|lon,lat,mounth denotes incoming solar radiation at a given long-
itude, latitude and month and angle brackets indicate temporal averaging.
Positive ΔSWTOA indicates warming. These radiative perturbations are
scaled by the fractional areal coverage of the domain relative to the globe to
derive global forcings that can be compared to estimates from other
studies17,36. Using the 100 ensemble members from the NNE, we estimate the
uncertainty ranges for the mean radiative forcing are ±0.002 Wm−2, ±0.005
W m−2, and ±0.007 W m−2, at 68%, 95%, and 99% confidence intervals,
respectively, equivalent to 1-σ, 2-σ, and 3-σ of a normal distribution.

A top-down rough estimation of cloud susceptibility to Nd perturba-
tions is provided by calculating the linear regression slope between per-
centage changes in cloud properties (ΔrCRE, ΔLCF, and ΔAc) and
percentage changes in Nd. Cloud susceptibilities indicate the percentage
change in cloud properties given a unit percentage change in Nd. These
values are reported in Supplementary Fig. 4.

Data availability
The CERES FBCT data were obtained from the NASA's Langley
Research Center CERES ordering tool at https://ceres.larc.nasa.gov/data/
(downloaded 21 February 2024), and are available at https://doi.org/10.
5067/Terra-Aqua/CERES/FLUXBYCLDTYP-MONTH_L3.004A. The
fifth-generation ECMWF (ERA5) atmospheric reanalyses of the global
climate data were obtained from the Copernicus Climate Change Service
at https://cds.climate.copernicus.eu/ (downloaded 21 February 2024),
and are available at https://doi.org/10.24381/cds.6860a573 and https://
doi.org/10.24381/cds.f17050d7. The MODIS-derived Nd data are

available from the Centre for Environmental Data Analysis at https://doi.
org/10.5285/864a46cc65054008857ee5bb772a2a2b.
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