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ABSTRACT: Space-borne remote sensing of atmospheric chemical constituents is crucial for moni-
toring and better understanding global and regional air quality. Since the 1990s, the continuous 
development of instruments onboard low-Earth orbiting (LEO) satellites has led to major advances 
in air quality research by providing daily global measurements of atmospheric chemical species. 
The next generation of atmospheric composition satellites measures from the geostationary Earth 
orbit (GEO) with hourly temporal resolution, allowing the observation of diurnal variations of air 
pollutants. The first two instruments of the GEO constellation coordinated by the Committee on 
Earth Observation Satellites (CEOS), the Geostationary Environment Monitoring Spectrometer 
(GEMS) for Asia and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) for North 
America, were successfully launched in 2020 and 2023, respectively. The European component, 
Sentinel-4, is planned for launch in 2025. This work provides an overview of satellite missions for 
atmospheric composition monitoring and the state of the science in air quality research. We cover 
recent advances in retrieval algorithms, the modeling of emissions and atmospheric chemistry, 
data assimilation, and the application of machine learning based on satellite data. We discuss 
the challenges and opportunities in air quality research in the era of GEO satellites and provide 
recommendations on research priorities for the near future.

SIGNIFICANCE STATEMENT: Space-borne measurements of the chemical composition of the 
atmosphere are crucial for understanding and forecasting air quality. With the next generation 
of atmospheric composition satellites measuring from the geostationary Earth orbit, air quality 
research has entered a new era. We provide an overview of the constellation of satellites for at-
mospheric composition monitoring and review the latest advances in satellite-driven air quality 
research. We identify the challenges and opportunities for a better exploitation of the wealth of 
satellite data from a geostationary perspective.
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1. Introduction
Air pollution is one of the leading causes of global premature mortality and economic dam-
ages (Cohen et al. 2017; Dechezleprêtre et al. 2019). Space-borne remote sensing instruments 
have played a key role in monitoring atmospheric composition since the 1990s (Burrows et al. 
1999; Bovensmann et al. 1999; Drummond and Mand 1996; Veefkind et al. 2006, 2012; 
Zoogman et al. 2017; Levelt et al. 2018; Kim et al. 2020, among others). Satellite observa-
tions have been used with sophisticated models to help develop policies to reduce emissions 
(e.g., Duncan et al. 2016; Jiang et al. 2018), improve our knowledge about air pollution (e.g., 
Fu et al. 2007; Silvern et al. 2019; Yang et al. 2023b), and better forecast air quality (e.g., 
Peuch et al. 2022; Eskes et al. 2024). Efficient reduction of air pollution often contributes to 
the reduction of co-emitted greenhouse gases (GHGs) and toward the mitigation of climate 
change (West et al. 2013; Miyazaki and Bowman 2023).

Efforts have been made to improve the observation of atmospheric composition from space 
over the past two decades. The Tropospheric Monitoring Instrument (TROPOMI; 2017–the 
present; Veefkind et al. 2012) is the first to provide daily global multiconstituent measure-
ments at a sub-10-km spatial resolution (Veefkind et al. 2012), which helps to reveal detailed 
linkages between human activities and air quality (e.g., Riess et al. 2022; Martínez-Alonso 
et al. 2023; Zuo et al. 2023). The next generation of atmospheric composition monitoring sat-
ellites measures column abundances of trace gases from the geostationary Earth orbit (GEO). 
The first two GEO atmospheric composition satellites, Geostationary Environment Monitoring 
Spectrometer (GEMS; Kim et al. 2020) for Asia and Tropospheric Emissions: Monitoring of 
Pollution (TEMPO; Zoogman et al. 2017) for North America, were successfully launched in 
2020 and 2023, respectively. The European component, Sentinel-4, is planned for launch in 
2025 (Stark et al. 2013). Ongoing low-Earth orbiting (LEO) missions have been proposed to 
sustain atmospheric composition observations outside the GEO domains.
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The International Space Science Institute (ISSI) offers the platform to facilitate interna-
tional collaboration on interdisciplinary research in space science. The ISSI International 
Expert Team 489 (Brasseur and Granier 2020) recently assessed advancements in the use of 
space-borne instruments to improve air quality characterization and forecasts. We summarize 
the discussion and conclusions from the ISSI Team 489 Workshop (2023) in this paper to pro-
vide an overview of the opportunities and challenges arising in the era of GEO atmospheric 
composition satellites. The recently launched and scheduled satellite instruments motivate 
us to review the state of air quality research based on satellite observations. We cover ad-
vances in the development of retrieval algorithms, modeling, and forecasting of air quality, 
data assimilation, and machine learning applications. We conclude with recommendations 
for research priorities for the near future to better exploit GEO satellite atmospheric composi-
tion observations.

2. Constellation of LEO and GEO atmospheric composition satellites
a. Heritage of LEO satellites. Column concentrations of short-lived air pollutants, includ-
ing tropospheric ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde 
(HCHO), and aerosols, are retrieved in the ultraviolet (UV), visible (Vis), and near-infrared 

Table 1.  Constellation of nadir-viewing LEO and GEO space-borne atmospheric chemistry monitoring instruments since 2000. 
Instruments dedicated to measuring GHGs are not considered within the scope of the paper. The asterisk symbol denotes (*) 
IASI and IASI-NG have a circular pixel geometry of 12-km diameter. The double asterisk symbol denotes ** AMI, AGRI, AHI, 
and ABI have pixel sizes from 0.5 × 0.5 km2 to 1 × 1 km2 for Vis bands and 2 × 2 km2 for IR bands at nadir. The triple asterisk 
symbol denotes *** ABI, AHI, and AMI scan the full disk of observational coverage every 10 min. AGRI scans the full disk every 
15 min. All three instruments support regional scans at 5 min or higher frequencies. The quadruple asterisk symbol denotes 
**** GOCI-2 scans northeast Asia hourly and scans the full disk of East Asia, Southeast Asia, and Oceania once per day. The 
quintuple asterisk symbol denotes ***** IRS scans Europe every 30 min and scans the full disk of Europe and Africa once per 
hour. The sextuple asterisk symbol denotes ****** GXI will be on the GeoXO East and GeoXO West platforms to be launched 
in 2032 and 2035, respectively. ACX and GXS will be hosted on the GeoXO Central platform scheduled for launch in 2035. The 
septuple asterisk symbol denotes ******* GXS scans the full disk of observational coverage every 30 min. It can also scan the 
contiguous United States every 15 min or scan mesoscale regions every 5 min. GXI will have the same overall scan rates as 
GOES ABI.

Satellite Instrument
Operation  

period Spectral range
Resolution  

(km2) Coveragea

Overpass 
time (local) Covered region

LEO

ERS-2 GOME 1995–2011 UV–Vis 40 × 320 3 days 1030 Global

Envisat SCIAMACHY 2002–12 UV–Vis–SWIR 30 × 60 6 days 1000

Aqua AIRS 2002– 
the present

TIR 13.5 × 13.5 0.5 day 0130/1330

Terra MOPITT 1999– 
the present

NIR–TIR 22 × 22 5 days 1030/2230

MetOp GOME-2 2006– 
the present

UV–Vis 40 × 80 1.5 days 0930

IASI TIR 12 × 12* 0.5 day 0930/2130

Aura OMI 2004– 
the present

UV–Vis 13 × 24 1 dayb 1345

JPSSc OMPS 2012– 
the present

UV–Vis 10 × 10d 1 day 1330

CrIS TIR 14 × 14 0.5 day 0130/1330

Sentinel-5P TROPOMI 2017– 
the present

UV–Vis–NIR–SWIR 3.5 × 5.5e 1 day 1330

Fengyun-3f HIRAS 2019– 
the present

TIR 14 × 14 0.5 day See 
footnote f

MetOp SG A IASI-NG 2025 TIR 12 × 12* 0.5 day 0930/2130

Sentinel-5 UV–Vis–NIR–SWIR 7 × 7 1 day 0930

(Continued)
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(NIR) spectral bands from nadir-viewing satellite instruments. NASA’s backscatter UV 
(BUV) instruments were the first satellite missions measuring total ozone columns since the 
1970s (Mateer et al. 1971; Heath et al. 1975; Frederick et al. 1986; Bhartia et al. 2013). 
As shown in Table 1, satellites in LEO provide a nearly daily global coverage, and their 
spatial resolution has improved over time. Compared to Global Ozone Monitoring Experi-
ment (GOME) (1995–2011; Burrows et  al. 1999), the GOME-2 series (2006–the present; 
Munro et al. 2016) measure at 4 times higher spatial resolution, and the Ozone Monitoring 

GEO

GK-2A AMI 2018– 
the present

Vis–IR 2 × 2 
at nadir**

10 min*** Continuous East Asia, 
Southeast Asia, 

and Oceania

GK-2B GEMS 2020– 
the present

UV–Vis 3.5 × 7.7 
at 37.5°N

1 h East Asia

GOCI-2 UV–NIR 2.5 × 2.5 
at equator

1 h**** Northeast Asia 
and the full 
disk****

Intelsat 40e TEMPO 2023– 
the present

UV–Vis 2.0 × 4.75 
at 33.7°N

1 h North America

MTG-S Sentinel-4 2025 UV–Vis–NIR 8 × 
8 at 45°N

1 h Europe and 
North Africa

IRS TIR 4 × 4 
at nadir

1 h***** Europe and 
Africa*****

Himawari-8/9 AHI 2015– 
the present

Vis–IR 2 × 2 
at nadir**

10 min*** East Asia, 
Southeast Asia, 

and Oceania

Fengyun-4 AGRI 2016– 
the present

Vis–IR 2 × 2 
at nadir**

15 min*** Asia, Southeast 
Asia, and Oceania

GIIRS TIR 12 × 12 
at nadirg

1.5 hh East Asia

GOESi ABI 2017– 
the present

Vis–IR 2 × 2 
at nadir**

10 min*** Western 
Hemisphere

GeoXO****** ACX 2035****** UV–Vis 8 × 3 
at nadir

1 h North America

GXS TIR 4 × 4 
at nadir

30 
min*******

Western 
Hemisphere

GXI 2032****** Vis–IR 1 × 1 
at nadirj

10 
min*******

Western 
Hemisphere

a �Time required for global coverage for LEO instruments or coverage of the field of regard for GEO instruments.
b �The revisit time of OMI was increased to 2–3 days since 2018 due to the OMI row anomaly (Torres et al. 2018).
c �CrIS and OMPS are currently on the Suomi NPP, NOAA-20, and NOAA-21 satellites. They will also fly on the JPSS-3 and JPSS-4 satellites.
d �Pixel size of OMPS nadir mapper (NM) on Suomi NPP is 50 × 50 km2 but improved to 17 × 13 km2 on NOAA-20 and then 10 × 10 km2 on NOAA-21. OMPS nadir 

profiler has 250 × 250 km2 resolution.
e �Resolution of TROPOMI at nadir observations was increased from 3.5 × 7 km2 to 3.5 × 5.5 km2 on 6 Aug 2019.
f �HIRAS is currently on the FY-3D, FY-3E, and FY-3F satellites. The overpass times are 0200/1400 and 0530/1730 local time for FY-3D and FY-3E and 1000/2200 local 
time for FY-3F.

g �Pixel size is 16 × 16 km2 for GIIRS on Fengyun-4A and is 12 × 12 km2 for GIIRS on Fengyun-4B.
h �Time required to scan the field of regard is 2 h for GIIRS on Fengyun-4A and is 1.5 h for GIIRS on Fengyun-4B.
i �ABI is now available on GOES-16, GOES-17, GOES-18, and GOES-19.
j �Several Vis bands on GXI have 0.5 × 0.5 km2 pixels at nadir, and the red band (0.64 µm) has 0.25 × 0.25 km2 pixels at nadir. The IR bands on GXI will have resolutions 
of 1 × 1 km2 and 2 × 2 km2.

Table 1.  Continued.

Satellite Instrument
Operation  

period Spectral range
Resolution  

(km2) Coveragea

Overpass 
time (local) Covered region
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Instrument (OMI; 2004–the present; Veefkind et al. 2006) has a further improved spatial 
resolution (13 × 24 km2). Measurements made by GOME, GOME-2, SCIAMACHY (2002–12;  
Bovensmann et  al. 1999), and OMI include important chemical species for atmospheric 
chemistry and have greatly advanced our understanding of air quality (e.g., Duncan et al. 
2016; Levelt et al. 2018). TROPOMI (2017–the present) onboard the Copernicus Sentinel-5 
Precursor (Sentinel-5P) mission measures from UV–Vis–NIR to shortwave infrared (SWIR), 
which allows the measurements of an extended list of trace gases (Veefkind et al. 2012). Its 
unprecedented resolution of 3.5 × 5.5 km2 and the high signal-to-noise ratio reveal enriched 
details of air pollution, which has greatly advanced air quality research in recent years (e.g., 
Fioletov et al. 2020; Stavrakou et al. 2020; Riess et al. 2022).

Infrared (IR) instruments also provide measurements about atmospheric composition. The 
Measurements of Pollution in the Troposphere (MOPITT; 1999–the present; Drummond et al. 
2022; Buchholz et al. 2021) instrument measures carbon monoxide (CO) from the shortwave 
infrared and thermal infrared (TIR) and was one of the first satellite instruments that tracked 
global pollution transport. The Infrared Atmospheric Sounding Interferometer (IASI; 2006–the 
present; Clerbaux et al. 2009) instruments were launched on the Meteorological Operational 
satellites (MetOp) series, measuring meteorological variables, air pollutants, and greenhouse 
gases from the TIR with a 12-km footprint resolution. To date, 33 chemical species have been 
detected above the IASI instrumental noise level (Clarisse et al. 2011; Franco et al. 2018). As 
a companion to IASI, a series of TIR instruments have been launched by NASA and NOAA, 
the Atmospheric Infrared Sounder (AIRS; 2002–the present; Lambrigtsen et al. 2004) on Aura 
and NOAA’s Cross-Track Infrared Sounder (CrIS; 2011–the present; Han et al. 2013).

Nadir-viewing LEO satellites provide valuable information on the seasonal and interannual 
variability of atmospheric composition. Rapid changes in emissions are detected, often in real 
time, as demonstrated during the lockdowns in response to the COVID-19 spread (Bauwens 
et al. 2020; F. Liu et al. 2020; Gkatzelis et al. 2021, among others). The LEO satellites provide 
decades of atmospheric composition measurements since the 1990s, allowing trend analysis 
at different spatial scales (e.g., Lamsal et al. 2015; Duncan et al. 2016; Stavrakou et al. 2018; 
Hedelius et al. 2021; Fortems-Cheiney et al. 2021).

b. GEO satellites for atmospheric chemistry. Atmospheric composition measurements from 
GEO satellites greatly expand the global observing system for air quality. They can provide 
continuous observations during daytime hours (24 h in the TIR). The geostationary orbit is 
36 000 km from Earth, as compared to ∼500 km for LEO, but the weaker photon flux is com-
pensated by a long staring capability so that pixel sizes and precisions from LEO and GEO 
atmospheric composition instruments are comparable. The same suite of species observable 
from LEO is also observable from GEO but with much higher data density over the field of re-
gard. The field of regard for a geostationary instrument can be as large as one-third of Earth, 
although smaller domains are used in the geostationary air quality constellation (see Fig. 1) 
to increase data density and achieve finer pixel resolution. Geostationary satellites observe 
from fixed longitudes in an equatorial plane, which means that they have highest resolution 
at the equator and limited observation capability for latitudes poleward of 60°.

The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s Fengyun-4 
satellite series (FY-4A/B) is the first GEO hyperspectral infrared sounder. FY-4A and FY-4B 
currently operate at 86.5° and 105°E, respectively. The GIIRS observations cover most of East 
Asia with a focus on China, with a 2-h observing cycle. GIIRS measures at a 12-km spatial 
resolution at nadir and was recently used to retrieve ammonia (NH3; Clarisse et al. 2021; Zeng 
et al. 2023b), CO (Zeng et al. 2023a), and formic acid (HCOOH; Zeng et al. 2024). The GIIRS 
onboard FY-4B (GIIRS/FY-4B; 2021–the present) demonstrates improved sensitivity, better 
spatial resolution, and higher accuracy compared to GIIRS/FY-4A (2016–the present; Yang 
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et al. 2017). FY-4A/B also carry the Advanced Geosynchronous Radiation Imager (AGRI) that 
measures in Vis and IR.

GEMS is the first component of the GEO air quality constellation (see Fig. 1) and measures 
aerosols, O3, NO2, SO2, HCHO, and glyoxal (CHOCHO), over Asia. It measures in UV–Vis with 
a spectral resolution of 0.6 nm and a spatial resolution of 3.5 km [north–south (NS)] × 7.7 km 
[east–west (EW)] at Seoul. It operates above 128.2°E, covering a field of regard from east of 
Japan to western India (75°–145°E) and from Mongolia to Indonesia (45°N–5°S). GEMS is the 
first satellite observing the diurnal variation of air pollution in Asia, including urban pollu-
tion, power plants, industrial activities, ship emissions, wildfires, Asian dust, and volcanic 
eruptions. Figure 2a shows tropospheric NO2 columns measured by GEMS for July 2023. Asian 
megacities are observed as pollution hotspots. The diurnal column variations of tropospheric 
NO2 columns in Seoul, Beijing, and New Delhi show large disparities due to regional differ-
ences in emissions, chemistry, and transport (see Fig. 2c).

NASA’s first Earth Venture Instrument (EVI), TEMPO, is hosted onboard the Intelsat 40e 
satellite operating above 91°W. Compared to GEMS, TEMPO has a similar spectral resolu-
tion and an additional Vis–NIR channel to enhance retrieval sensitivity for tropospheric O3  
(Zoogman et al. 2017) and aerosols (X. Chen et al. 2021). TEMPO scans North America from 
east to west hourly with a spatial resolution of 2.0 km (NS) × 4.75 km (EW) at the center of the 
field of regard (see Fig. 2). TEMPO started its nominal operation in October 2023. The beta 
version of data products was released on NASA’s Atmospheric Science Data Center (ASDC) 
in May 2024 and was upgraded to the provisional status in December 2024 (see Table 2).  

Fig. 1.  (top) Domain and coverage of the GEO satellites. Background is annual-mean TROPOMI NO2 
tropospheric columns in 2022. Regions not covered by the GEO satellites are shaded in gray. (bottom) 
Spatial and temporal resolution of space-borne instruments for atmospheric composition measure-
ments. Figure adapted from Fig. 1 in Kim et al. (2020).
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Figure 2 shows TEMPO tropospheric NO2 columns with marked pollution hotspots including  
the Northeast corridor, the Canadian oil sands, and the Los Angeles basin. The observed 
diurnal variations of tropospheric NO2 in New York City and Los Angeles for 17–24 December 
2023 show large regional differences as seen by GEMS (see Fig. 2b). TEMPO can also measure 
the spectral signatures of nighttime lights and differentiate lighting types (Carr et al. 2017).

c.  Future missions.  The Copernicus Sentinel-4 mission will cover Europe, parts of North  
Africa, and parts of the Atlantic (see Fig. 1) centered at a fixed longitude of 0°, with an hourly 

Fig. 2.  (a) Illustration of tropospheric NO2 column densities measured by (left) TEMPO and (right) GEMS. 
(top) Tropospheric NO2 column densities measured over selected cities are shown. (b),(c) Hourly tropo-
spheric NO2 column density measurements show diurnal and weekly cycles over large cities. The TEMPO 
dataset used in this figure is preliminary and unvalidated and is used for illustration purposes only.
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measuring frequency similar to GEMS and TEMPO. The operational products include NO2, 
O3, SO2, aerosols as well as the volatile organic compound (VOC) tracers HCHO and CHOCHO. 
The first Meteosat Third Generation Sounder (MTG-S1) satellite, expected to be launched 
in 2025, will carry a Sentinel-4 instrument on board as well as the Infrared Sounder (IRS) 
(Coopmann et al. 2023). The IRS has an observational coverage including the entire Africa 
and Europe. It will measure every 30 min above Europe and 1 h elsewhere in the field of 
regard, which could be useful for species with a strong diurnal variability such as NH3 (see 
Clarisse et al. 2023).

The Geostationary Extended Observations (GeoXO) mission, NOAA’s next-generation GEO 
constellation covering the Western Hemisphere, is scheduled for launch in the early 2030s 
(Lindsey et al. 2024). The central GeoXO platform (operating above ∼105°W) will carry an 
atmospheric composition instrument (ACX) in the UV–Vis as well as a hyperspectral IR 
sounder (GXS) for measurements of CO, NH3, isoprene, and other VOCs. The east and western 
GeoXO platforms will carry an imager (GXI) on board, similar to the Geostationary Opera-
tional Environmental Satellite-16 (GOES-16) Advanced Baseline Imager (ABI) currently used 
in various applications. For example, Zhang et al. (2022) and O’Dell et al. (2024) estimated 

Table 2.  Air pollutants retrieved from operational space-borne instruments, with DOIs to data products or references.

Instruments NO2 O3 SO2 VOC Aerosols HONO CO NH3

LEO

TROPOMI https://doi.
org/10.5270/
S5P-9bnp8q8

https://doi. 
org/10.5270/ 
S5P-hcp1l2m

https://doi.
org/10.5270/
S5P-74eidii

HCHO https://doi.org/ 
10.5270/S5P- 

vg1i7t0

https://
doi.org/ 

10.5270/S5P- 
7g4iapn

https://doi.
org/10.18758/ 

71021058

https://doi.
org/10.5270/
S5P-bj3nry0

Not measured

CHOCHO https://doi.
org/10.18758/ 

4oaroxyf

OMI https:// 
doi.org/ 
10.5067/ 

Aura/OMI/ 
DATA2018

https://doi. 
org/10.5067/ 
Aura/OMI/ 
DATA2013

https://doi.
org/10.5067/
Aura/OMI/
DATA2023

HCHO https://doi.org/ 
10.5067/Aura/ 

OMI/DATA2015

https://
doi.org/ 

10.5067/Aura/ 
OMI/

DATA2001

Not measured

GOME-2 Available at EUMETSAT Satellite Application Facility on Atmospheric Composition Monitoring (AC SAF) Not measured

IASI Not 
measured

Available at AERIS atmospheric data center https://doi. 
org/10.5281/ 

zenodo. 
10721381

Available at AERIS

OMPS https://doi.
org/10.5067/

N0X-
VLE2QAVR3

https://doi. 
org/10.5067/ 

0WF4HAAZ0VHK

https://doi.
org/10.5067/

A9O02ZH0J94R

HCHO https://doi.org/ 
10.5067/

IIM1GHT07QA8

https://
doi.org/ 
10.5067/ 

40L92G8144IV

Not measured

CrIS Not 
measured

https://doi.
org/10.5067/

WUK-
WENW76N5P

Hyman and  
Pavolonis (2020)

HCHO Fu et al. (2019) Not measured https://doi.
org/10.5067/

BYIIUV3PR9L6

https://doi. 
org/10.5067/ 

7I3KMUCCJNEN

Other LEO 
satellites

Not available AIRS: https://
doi.org/10.5067/

Aqua/
AIRS/DATA208

MLS: 
https://doi.

org/10.5067/
Aura/MLS/
DATA2519

Not available VIIRS: 
https://doi. 

org/10.5067/ 
VIIRS/

AERDB_L2_ 
VIIRS_

SNPP.002

Not  
available

MOPITT: 
https://doi.

org/10.5067/
TERRA/
MOPITT/

MOP03JM.009

AIRS: 
https://doi.

org/10.5067/
EYXLPVGTSWFF

GEO

GEMS Available from NIER, ESC Not  
available

Not measured

TEMPO https://doi.
org/10.5067/

IS-40e/
TEMPO/

NO2_L2.003

https://doi.
org/10.5067/

IS-40e/TEMPO/
O3TOT_L2.003

Not available HCHO https://doi.org/ 
10.5067/IS-40e/
TEMPO/HCHO_ 

L2.003

Not available Not measured

FY-4A/B  
(GIIRS)

Not measured Not available Available 
from Fengyun 
Data Center

Not  
measured

https://doi.
org/10.18170/
DVN/M7DKKL

https://doi.org/ 
10.18170/ 

DVN/VJ4MLO
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surface particulate matter (PM2.5) concentrations using aerosol optical depth measurements 
from GOES-16 and GOES-17. Watine-Guiu et al. (2023) also showed the potential of using the 
GOES constellation to monitor methane point sources.

IASI–new generation (IASI-NG; Clerbaux and Crevoisier 2013; Crevoisier et al. 2014) is 
the follow-on program for IASI, which will be flown onboard the MetOp Second Generation 
(MetOp SG) satellites. The first MetOp SG platform is planned to be launched in 2025 to LEO 
and will also carry the Copernicus Sentinel-5 mission. IASI-NG will have higher spectral 
resolution and signal-to-noise ratio relative to IASI, providing better sensitivity near the 
surface and an improved vertical resolution of retrievals. Detection of weak absorbers (e.g., 
NH3 and SO2) will also improve.

3. Advances in air quality research using space-borne measurements
Over the past few decades, advances in atmospheric composition satellites have set the stage 
for air quality research and emission monitoring. The wealth of space observations has driven 
progress across all aspects of the research process. In this section, we provide an overview of 
recent advances in satellite-based air quality research. In section 3a, we review recent prog-
ress in the retrieval of atmospheric composition abundances from satellite measurements. In 
sections 3b and 3c, we introduce efforts to improve emission estimation and data assimila-
tion techniques, respectively. Finally, in section 3d, we discuss the applications of machine 
learning in air quality research.

a. Improved retrieval algorithms. Technological innovations and increasing quality require-
ments are driving the science of satellite retrievals forward. For example, significant im-
provements have been made on retrieval algorithms for TROPOMI since its launch in 2017, 
with a focus on better constrained uncertainties and reduced biases (Theys et al. 2021; Heue 
et al. 2022; Van Geffen et al. 2022, among others). Besides an improved degradation cor-
rection (Ludewig et al. 2020) and better consistency among retrieval products (Tilstra et al. 
2024), new retrievals from TROPOMI measurements were developed, e.g., solar-induced 
fluorescence (SIF; Guanter et al. 2021), aerosol optical depth (Torres et al. 2020), CHOCHO 
(Alvarado et al. 2020; Lerot et al. 2021), and nitrous acid (HONO; Theys et al. 2020). An 
overview of key air pollutants retrieved from space measurements is shown in Table 2.

The TROPOMI data products are carefully validated, and validation reports are released 
regularly. As such, TROPOMI has been used as the reference and transfer standard for the 
development of GEMS retrieval algorithms. The first evaluation of GEMS retrievals using 
TROPOMI and ground-based measurements showed a good consistency (Baek et al. 2023; 
Kim et al. 2023). GEMS measurements captured clear seasonal variations over cities as well 
as hourly variations that are also seen in ground-based remotely sensed columns (Lee et al. 
2024). The list of GEMS retrievals was recently extended to SO2 (Park and Jeong 2021), aerosols 
(Cho et al. 2024; Park et al. 2025), and glyoxal (Ha et al. 2024).

Continued efforts to improve retrieval algorithms have led to new data products for older 
missions like OMI, e.g., SO2 (Li et al. 2022) and O3 (Bak et al. 2024). Thermal infrared measure-
ments are now better utilized to monitor extreme events, such as wildfires (Vu Van et al. 2023; 
Luo et al. 2024) and volcanic activities (Taylor et al. 2018). Notably, the phenomenal 2022 
Hunga Tonga–Hunga Ha’apai eruption was well observed by thermal infrared spectrometers 
(e.g., Wright et al. 2022). The IASI NH3 and ethylene (C2H4) retrievals were used to identify point 
sources from industrial and agricultural sectors (Van Damme et al. 2018; Franco et al. 2022).

The signal-to-noise ratio remains a limiting factor for the retrieval of weakly absorbing 
trace gases (e.g., formaldehyde, SO2, and NH3). Some recent studies average satellite mea-
surements over longer time periods to obtain a significant signal (e.g., Van Damme et al. 
2018). For more strongly absorbing gases, like NO2, sources of retrieval uncertainties include 
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surface reflectivity, clouds and aerosols, and aspects like thermal contrast for infrared 
measurements. Atmospheric profiles have a strong impact on retrievals in the UV–Vis due 
to the altitude dependency of Rayleigh scattering, which becomes more important as the 
spatial resolution increases (Lamsal et al. 2021). Averaging kernels have been used in the 
validation of retrievals and data assimilation to account for the information content of the 
retrievals (Eskes and Boersma 2003).

To use satellite data at a higher spatial resolution, new oversampling methods have been 
developed (Valin et al. 2013; Fioletov et al. 2015; Sun et al. 2018; Van Damme et al. 2018; 
Clarisse et al. 2019, among others). For retrievals over emission hotspots, the assumptions 
about the vertical distribution of gases and their retrieval sensitivities (characterized by 
averaging kernels and airmass factors) are particularly important for the quantification of 
tropospheric amounts and diurnal variations (Yang et al. 2023b). Regional models capable of 
achieving 10-km resolution are being used to provide a priori information for high-resolution 
retrieval products [e.g., T. Liu et al. (2020) for NO2 in Asia and Douros et al. (2023) for NO2 
in Europe].

b. Estimation of emissions. The development of emission inventories remains challenging 
due to the large number of species taken into account, the variety of emission sources, and 
because the a priori information is typically collected by networks that are spatially and 
temporally sparse (Granier et al. 2023; Sindelarova et al. 2023). For instance, the activity 
data and emission factors for anthropogenic emissions are available from diverse agencies, 
such as the International Energy Agency, but public access to this information is often lim-
ited. The development of open-source databases has been led by intergovernmental orga-
nizations, e.g., the Intergovernmental Panel on Climate Change Emissions Factor Database 
(IPCC EFDB) or the United Nations Framework Convention on Climate Change (UNFCCC), 
both of which are built on the data released in national reports. Global emission inventories 
are generally available with a delay of 3–4 years. To support policymaking and air quality 
applications, techniques have been developed to extrapolate emissions to the most recent 
years (Soulie et al. 2024). The development of emission inventories also needs to incorpo-
rate a finer temporal resolution and detailed categorization by specific emission sectors. To 
this end, temporal profiles based on statistical information (e.g., traffic counts) and meteo-
rological parameterizations are typically considered (e.g., Guevara et al. 2021). Additional 
constraints on temporal profiles can be obtained from the hourly GEO observations, espe-
cially the diurnal variations of emissions (Park et al. 2024). Table 3 lists the main publicly 
available emission inventories, covering both pollutants and greenhouse gases at global 
and regional scales.

Large discrepancies have been highlighted among emission inventories due to differences 
in the activity data and emission factors (Elguindi et al. 2020; Granier et al. 2023). Comple-
mentary to the emission inventories, a growing number of studies (cf. section 3c) use satel-
lite observations and inverse modeling techniques to estimate emissions, namely, NOx (e.g., 
Stavrakou et al. 2008; Kurokawa et al. 2009; Miyazaki et al. 2017; Jiang et al. 2022; Plauchu 
et al. 2024; van der A et al. 2024), VOCs (e.g., Millet et al. 2008; Stavrakou et al. 2012; Marais 
et al. 2012; Bauwens et al. 2016; Cao et al. 2018; Oomen et al. 2024; Müller et al. 2024), CO 
(e.g., Arellano et al. 2004; Müller et al. 2018; Qu et al. 2022b), and greenhouse gases (e.g., 
Wang et al. 2018; Lu et al. 2021). Figure 3 illustrates a comparison of NOx emissions in China 
from 2000 to 2020 from several emission inventories and satellite-based emission estimates 
(Elguindi et al. 2020). The differences between various estimates remain significant, especially 
for the trends, which underscores the need for continued efforts on mitigating uncertainties 
in emissions.
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The development of new retrievals (see section 3a) has advanced emission estimates 
from both natural and anthropogenic sources. For example, the new TROPOMI HONO re-
trieval product shows intense emissions in wildfire plumes, accounting for a substantial 
share of total hydroxyl radical (OH) production from natural sources (Theys et al. 2020). 
The first global satellite isoprene retrievals from CrIS (Fu et al. 2019), combined with 
HCHO observations, have been used to constrain isoprene emissions and atmospheric 
oxidation (Wells et al. 2020). These analyses reveal significantly underestimated isoprene 
emissions in emission inventories, particularly in tropical regions (Wells et al. 2020).  

Table 3.  List of several global and regional publicly available emissions inventories.

Acronym
Time period  

covered
Spatial 

resolution
Temporal 
resolution

Species 
considered DOI or reference

Global inventory

EDGARv8 1970–2022 0.1° × 0.1° Monthly Pollutants + GHGs Crippa et al. (2023a, 2024)

HTAPv3 2000–18 0.1° × 0.1° Monthly Pollutants Crippa et al. (2023b)

CEDS 1980–2019 0.1° × 0.1° Monthly Pollutants + GHGs https://www.pnnl.gov/projects/ceds

CAMS-GLOB-ANT v6.2 2000–25 0.1° × 0.1° Monthly Pollutants + GHGs https://doi.org/10.24380/eets-qd81

ECLIPSE v6 1990–2050 
(by 5 or 10 yrs)

0.5° × 0.5° Yearly Pollutants + CH4 Klimont et al. (2017)

Regional inventory

CAMS-REG (Europe) 2000–22 0.1° × 0.05° Yearly Pollutants + GHGs Kuenen et al. (2021)

EMEP (Europe) 1990–2022 No grid Yearly Pollutants European Environment Agency (2023)

EPAa (United States) 1970–2023 No grid Yearly Pollutants + GHGs epa.gov

Government Canada 1990–2022 No grid Yearly Pollutants + GHGs Environment and Climate Change  
Canada (2019), Government of  
Canada (2018)

PAPILA (Latin America) 2014–20 0.1° × 0.1° Yearly Pollutants + GHGs https://doi.org/10.5281/zenodo.12944491

DACCIWA (Africa) 1990–2015 0.1° × 0.1° Yearly Pollutants Keita et al. (2021)

MIXv2 (Asia) 2010–17 0.1° × 0.1° Monthly Pollutants + CO2 Li et al. (2024)

REASv3.2 (Asia) 1950–2015 0.25° × 0.25° Monthly Pollutants + CO2 Kurokawa and Ohara (2020)

MEIC 1.4 (China) 1990–2020 0.25° × 0.25° Monthly Pollutants + CO2 Zheng et al. (2018)
a Table shows the EPA Air Pollutant Emissions Trends Data. The EPA National Emissions Inventory (NEI) is available every 3 years with variable resolutions from 36 to 4 km.

Fig. 3.  Comparison of annual-mean NOx emissions in China from 2000 to 2020 (Tg NOx-NO/yr) from 
several datasets. Solid and dashed lines represent emission inventories and satellite-based emission 
estimates, respectively. (top) The references for the emission estimates are shown in the legend. Figure 
adapted from Elguindi et al. (2020).
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The use of satellite retrievals has also proven to be crucial for identifying seasonalities and 
weekly patterns in emissions, providing complementary information to temporal profiles 
derived from activity data. This is particularly valuable for sources with limited activity 
information, such as those in the agricultural sector (e.g., Damme et al. 2022). Wind rota-
tion method is another important advancement that estimates point source emissions by 
resolving emission plumes aligned with the wind direction (e.g., Beirle et al. 2011; Valin 
et al. 2013; Fioletov et al. 2015; Clarisse et al. 2019).

c. Advances in data assimilation.  Data assimilation in air quality research combines ob-
servations with chemical transport models (CTMs) to produce an analysis of the state of 
atmospheric composition (e.g., Carmichael et al. 2008; Lahoz and Schneider 2014). Areas 
of application include air quality forecasting (e.g., Inness et al. 2015), inverse modeling of 
emissions and other model parameters, and constructing reanalyses of atmospheric compo-
sition. Numerous advances have been achieved in data assimilation in the past decades, ow-
ing to improved satellite retrievals, better parameterized models, and advanced assimilation 
techniques (Sandu and Chai 2011; Streets et al. 2013; Bocquet et al. 2015). For example, as 
shown in Fig. 4, the assimilation of space-based NO2 data has evolved to increasingly high 
spatial resolution in recent years.

Data assimilation techniques solve for the statistically optimal solution based on observa-
tions and models (Kalnay et al. 2007). Filtering approaches such as the ensemble Kalman 
filter (EnKF) capture chemical nonlinearities using an ensemble of models and estimate 
emissions at regional (Tang et al. 2013; Yumimoto et al. 2014; Gaubert et al. 2020; Feng et al. 
2020; Dai et al. 2021; van der Graaf et al. 2022) and global (Miyazaki et al. 2012, 2020a; 
Gaubert et al. 2023) scales. The 4D-Var method utilizes the adjoint of forward models to 
minimize the model-observation mismatch. Although the development of adjoint models 
can be complex and running them can be computationally costly, 4D-Var has been suc-
cessfully implemented for various applications (Elbern et al. 2000; Müller and Stavrakou 
2005; Henze et al. 2007). 4D-Var is also used in the Integrated Forecasting System (IFS) 
of the European Union’s Copernicus Atmosphere Monitoring Service (CAMS) (Inness et al. 
2015, 2019, 2022).

Simultaneous joint assimilations of multiple species, such as CO/NO2 (Müller and Stavrakou 
2005), HCHO/CHOCHO (Stavrakou et al. 2009; Cao et al. 2018), SO2/NO2 (Qu et al. 2019; Wang 
et al. 2020), and NO2/CO/SO2 (Miyazaki et al. 2017, 2020a,b), have shown to improve data as-
similation results, as they account for the impact of emission changes on the chemical lifetimes 
of various species. Specifically, assimilating short-lived species can help better characterize 
the budget of longer-lived gases (e.g., Gaubert et al. 2017; Zheng et al. 2019). To address the 
increased computational cost of multispecies data assimilation, hybrid approaches combin-
ing 4D-Var and mass balance have been recently developed to improve the computational 
efficiency (Qu et al. 2017, 2019; Y. Chen et al. 2021).

d. Application of machine learning. Machine learning has recently become a popular choice 
for satellite retrievals due to its higher computational efficiency with respect to traditional 
retrieval methods. One of the first machine learning applications widely used in data prod-
ucts is the operational IASI NH3 retrievals based on neural networks (Whitburn et al. 2016; 
Van Damme et al. 2017). Following that, new data products have been developed for IASI, 
e.g., the acetone and ethylene retrievals (Franco et al. 2019, 2022) and the CrIS data prod-
ucts (Wells et al. 2022, 2024).

An emerging application of machine learning studies is the estimation of surface  
concentrations using neural networks and tree-based models for PM2.5 (Di et al. 2019; Wei 
et al. 2020; Pendergrass et al. 2022), O3 (Sayeed et al. 2021; Betancourt et al. 2022), NO2  
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(Di et al. 2020; Ghahremanloo et al. 2021; Chan et al. 2021), CO (Han et al. 2022; Chen et al. 
2024), and CH4 (Balasus et al. 2023). These studies rely on the fusion of data from multiple 
sources and show improved skill compared to conventional approaches (Balasus et al. 
2023; Oak et al. 2024; Huang et al. 2024). Other research directions include the develop-
ment of surrogate models or modules in conventional modeling systems with an improved 
efficiency (Keller and Evans 2019; Kelp et al. 2020, 2022; He et al. 2024b). Using machine 
learning to understand drivers of air pollution (Zhang et al. 2023; Ma et al. 2023; Wang 
et al. 2024) and conduct trend analysis (He et al. 2022a; Pendergrass et al. 2022, 2025; 
Li et al. 2023) are other intriguing directions. The potential of machine learning in the 
inverse modeling of emissions has also been explored (Huang et al. 2021; He et al. 2022b).

4. Challenges and opportunities in the era of geostationary space observations
Space observations from GEO offer a number of opportunities for improved characteriza-
tion of air quality and emissions as compared to LEO observations. The higher observation  
density due to more frequent return times allows for higher precision. It also facilitates cloud 
clearing, meaning an increased probability of observing a cloud-free scene in a certain loca-
tion (or adjacent locations) over a certain time period. The continuous observation available 
from GEO instruments enables the tracking of pollution transport on meso- and synoptic  
scales. Multiple measurements during the day provide information on the diurnal variations 
of emissions and chemical evolution. However, there are also important challenges in the 
retrieval and the interpretation of GEO observations. Next, we elaborate on the opportunities 
and challenges in retrieval development (section 4a), atmospheric composition modeling 
(section 4b), data assimilation (section 4c), and machine learning applications for GEO ob-
servations (section 4d), and we discuss air quality research for large world regions that are 
not covered by the planned GEO satellite constellation (section 4e).

Fig. 4.  Evolution of the spatial resolution of space-based NO2 DA studies over the past two decades. 
Orange symbols denote global studies, and blue symbols denote regional studies. Circles describe DA 
systems in which only NO2 is assimilated. Squares represent multispecies DA studies. The size of the 
symbol represents the temporal scale.
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a. Retrievals. For GEO observations, not only do the pollutant concentrations change over 
the day but also the position of the Sun, the surface temperature, the vertical mixing of the 
atmosphere, and meteorology also change. These parameters are either input variables or 
impact the a priori vertical profile of the trace gases being retrieved, of which the hourly 
variations need to be accounted for in retrieval algorithms.

An important aspect is the variation in surface reflectivity for UV–Vis retrievals. Larger 
reflectivity increases the sensitivity of satellite measurements to trace gases close to the sur-
face, and not considering the diurnal variations in surface reflectivity could lead to artifacts 
in the retrieved diurnal variation of pollutants. While surface reflectivity information is avail-
able from satellite observations, the temporal and spatial resolution may not be sufficient, 
and uncertainties can be large for individual observations. A similar problem exists for TIR 
retrievals, where surface radiation emission is strongly dependent on temperature.

A second challenge is the diurnal variation due to vertical mixing, which can change the 
sensitivity of the satellite measurements to different vertical layers in the atmosphere (Yang 
et al. 2023a). For UV–Vis retrievals, sensitivity is usually lowest close to the surface, and a 
shallow boundary layer in the morning reduces sensitivity compared to a fully developed 
boundary layer in the afternoon. The situation can further be complicated by residual 
aerosols above the boundary layer. Similar issues are expected from the combination of 
vertical trace gas distributions and temperature profiles for TIR observations. To account 
for these effects, atmospheric models used as a priori information in retrievals must reflect 
the diurnal evolution of the boundary layer, which can be challenging over complex urban 
areas and terrain.

The viewing geometry from GEO can also present challenges, especially for higher latitudes 
and at the edges of the field of regard. For UV–Vis observations, large viewing zenith angles 
can lead to increased scattering in the atmosphere and reduced sensitivity to trace gases near 
the surface. The effect is further amplified by the presence of aerosols and clouds. Spatial 
oversampling might have limited use for GEO observations due to the nearly constant ground 
pixel pattern, as reported in Lange et al. (2024) for the case of GEMS. A possible solution would 
be to adjust the latitudinal pointing and longitudinal sampling of GEO measurements, but 
this may complicate the retrievals of aerosol, cloud and gases, and their diurnal variations, 
which depend on accurate surface reflectance characterization. The pointing of TEMPO has 
a standard deviation of ∼1 pixel due to jitter and other uncertainties, so oversampling can 
still be useful for TEMPO.

For some trace gases, such as O3 and NO2, significant amounts are present in both the 
troposphere and the stratosphere. This necessitates a stratospheric correction, which, in the 
case of GEO observations, also needs to account for the diurnal change of the stratospheric 
amounts. This is particularly relevant for small signals, which are more affected by uncer-
tainties in the stratospheric correction.

Given the challenges outlined above, robust calibration and validation of GEO observa-
tions becomes essential to ensure a consistent retrieval quality across different sensors and 
GEO regions. The calibration and validation efforts for GEO observations will build on the 
experience from heritage LEO missions (CEOS 2019). These efforts should be supplemented 
by intensive ground-based and aircraft validation campaigns to evaluate the diurnal patterns 
measured by the GEO satellites (see, e.g., Kim et al. 2023; Lee et al. 2024; Lange et al. 2024; 
Ha et al. 2024). LEO air quality missions will serve as a traveling standard for the intercompa-
rability of the different GEO instruments. Further efforts should focus on the development of 
an harmonized framework for the processing, validation, and publication of all data products 
from the constellation of GEO composition observations (CEOS 2019).

The availability of multiple measurements per day also provides opportunities for im-
proved retrieval techniques. For example, the nearly simultaneous observation of contiguous  
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scenes facilitates cloud slicing, where differences in column amounts above optically  
thick clouds are used to provide information on vertical distribution (Marais et al. 2021). 
Imagers and spectrometers on GEO platforms, combined with LEO missions, will deliver 
measurements of multiple chemical species over emission hotspots across a broad spectral 
range. This expanded coverage has the potential to enable the retrieval of new information 
and deepen our understanding of emission activities.

b.  Modeling.  GEO composition observations will be useful for the evaluation of 
high-resolution regional and local chemical transport models and specifically to compare 
calculated diurnal variations with the hourly data provided by the retrievals. The mea-
sured variations in column concentrations may be very different from the time evolution 
of surface concentrations (e.g., Tang et  al. 2021). A full understanding of the observed 
diurnal variation is not straightforward because, in addition to the time-evolving forcing 
from solar radiation, it is driven by other factors such as local emissions and boundary 
layer meteorology (Edwards et al. 2024). One challenge is to improve the representation of 
small-scale dynamical features in the planetary boundary layer, including the formation 
of the heat island in urban areas, the development of convective cells and local cloudi-
ness, the impact of topography and buildings on the small-scale flow, and the influence of 
diurnal varying coastal circulation cells.

Regional chemical–meteorological models at a spatial resolution of typically 1–5 km are 
used to provide background information on the chemical composition; they are now often 
complemented by numerical simulations of large eddies in the boundary layer to resolve their 
impact on the reaction rates and on chemical segregation associated with emission heteroge-
neity in a complex urban canopy (Wang et al. 2022). Street network models such as the Model 
of Urban Network of Intersecting Canyons and Highways (MUNICH) model (Kim et al. 2018) 
provide the distribution of chemically reactive pollutants along street canyons. The success 
of such approaches depends on the availability of detailed high-resolution (better than 1 km) 
emission inventories, which are usually not yet available.

Recent efforts have led to the development of global multiscale models with grid refinement 
capabilities over selected geographical regions. An irregular model grid with a grid refine-
ment capability over the three regions covered by GEMS, TEMPO, and Sentinel-4 has been 
developed as part of the next-generation community modeling infrastructure, the Multi-Scale 
Infrastructure for Chemistry and Aerosols (MUSICA; Pfister et al. 2020). Its purpose is to in-
sert high-resolution regional information provided by the GEO satellites in a global modeling 
framework that accounts for large-scale transport and distant influences on chemical species 
(Pfister et al. 2020).

c. Data assimilation. There are several challenges related to the assimilation of GEO obser-
vations. The efficient assimilation of such dense observations will require high-resolution 
forecast models and appropriate data assimilation techniques, in addition to a flexible 
system handling multiple satellite sensors from both GEO and LEO. As summarized below, 
further innovations are needed to take advantage of GEO satellite observations with data 
assimilation.

1)	 Parameter estimation: In tropospheric chemistry, boundary conditions, reaction 
rates, and emissions often play an important role, whereas the role of initial condi-
tions is limited due to rapid chemical reactions (Sandu and Chai 2011; Goris and El-
bern 2013). Dense observations from GEO satellites may allow for detailed parameter 
estimation beyond a few key chemical species, improved sectoral emissions estimates  
(Qu et  al. 2022a; Gaubert et  al. 2023), and speciation information for VOCs and 
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aerosols. They can also be used to correct for meteorological parameters such as hori-
zontal wind (Liu et al. 2021).

2)	 Data assimilation methodology: With greater observational coverage and high measure-
ment accuracy, local emission sources could be estimated using computationally efficient 
approaches such as the mass balance approach (e.g., Cooper et al. 2017; Qu et al. 2017; 
Qu et al. 2019) or by making use of trajectories to describe the nonlocal relation between 
emissions and concentrations (e.g., van der A et al. 2024). Nevertheless, flow-dependent 
background covariance, including covariance among chemical species, is essential to 
integrate multiple-species information and their spatial distributions. Data assimilation 
(DA) techniques also need to account for diurnal changes in chemistry, emissions, and 
measurement characteristics (e.g., Timmermans et al. 2019; Shu et al. 2023). Efficient 
non-Gaussian methods such as particle filters may also be needed for high-resolution DA 
(Valmassoi et al. 2023).

3)	 Plume analysis and emission estimates: The latest GEO and LEO satellite composition  
observations are able to resolve plumes of urban emissions, major point sources (e.g., van 
der A et al. 2020), and even individual ships (e.g., Riess et al. 2022). Computationally 
efficient techniques such as plume fitting (e.g., Fioletov et al. 2017), the flux-divergence 
technique (e.g., Beirle et al. 2023), or the integrated mass enhancement method (e.g., 
Varon et al. 2018; He et al. 2024a) have been successful in providing emission estimates 
for short-lived and long-lived tracers at the instrumental resolution. A major challenge 
for short-lived compounds like NO2 is to account for the nonlinear chemistry in plumes, 
leading to a heterogeneous plume composition and lifetime (Krol et  al. 2024), and to 
determine how these local effects impact global or regional data assimilation systems.

4)	 Combination of multiple observing systems: LEO composition observations provide 
constraints on long-range transport (Miyazaki et al. 2022) and reduce model errors in 
regions constrained by GEO composition observations. Well-validated LEO data can 
be used to benchmark GEO composition observations, for example, as an anchor for 
DA bias correction. As the spatial resolution of both forecast models and satellites in-
creases, assimilation of in situ and satellite observations will be another effective ap-
proach to improve analysis, especially near the surface. New technical challenges for 
simultaneous assimilation include appropriate background error covariance at mul-
tiple scales and error statistics including representative errors of each measurement 
(Wang and Wang 2023).

d. Machine learning. For future applications of machine learning in air quality research, the 
differences between LEO and GEO viewing geometries need to be accounted for. Solar zenith 
angle and viewing zenith angle could have greater importance when constructing machine 
learning models for retrieving atmospheric composition from GEO satellites. Diurnal varia-
tions in related physical parameters should also be captured by input variables for machine 
learning models for GEO composition satellites.

Recent applications of machine learning for LEO atmospheric composition satellites have 
focused on concentration estimation and the development of surrogate models. More efforts 
are needed in applying machine learning to inverse modeling of emissions. Specifically, 
further development of explainable machine learning models is necessary to enhance the 
interpretability and robustness of emission estimates.

Despite the challenges, geostationary atmospheric composition satellites offer opportunities 
to further advance innovation in future machine learning applications. For example, machine 
learning is effective in anomaly detection and pattern recognition, both making it well suited 
for monitoring extreme events (e.g., wildfires and volcano eruptions). Its scalability to the 
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high temporal and spatial resolution of GEO composition measurements can be critical for 
real-time decision-making and mitigating the impacts of extreme events.

The generalizability of machine learning is another key strength that enhances data 
fusion. Recent studies indicate that integrating multisource measurements using machine 
learning can help reduce discrepancies between different datasets (Balasus et al. 2023; 
Oak et al. 2024; Huang et al. 2024). Integrating LEO composition measurements can play a 
critical role in improving the consistency of composition measurements made by different 
GEO satellites.

e. Atmospheric composition monitoring for other regions of the world. Space-borne in-
struments in LEO have been vital for addressing data sparsity in large parts of the world, in 
particular for the African and South American continents and parts of Asia. These regions 
will continue to rely on LEO instruments, as the planned GEO satellite constellation mainly 
covers the Northern Hemisphere (Paton-Walsh et al. 2022). The validation of both LEO and 
GEO observations and the derived products is also rare across the tropics and Southern 
Hemisphere. Such validation requires routine surface observations and aircraft campaigns 
to profile the troposphere under a range of representative conditions (Tang et al. 2023).

The Sentinel-4 GEO composition instrument will observe a portion of North Africa, and the 
IRS on the same platform will provide observations of infrared-absorbing compounds like 
CO and NH3. CO observations over Africa will be vital for understanding inefficient combus-
tion sources, including biomass burning for agricultural practices in Africa (Andreae 2019), 
burning of waste (Wiedinmyer et al. 2014), and from other inefficient combustion practices 
(Marais and Wiedinmyer 2016; Bockarie et al. 2020). High-frequency NH3 observations are 
well timed to coincide with agricultural intensification that includes the use of synthetic 
nitrogen fertilizer and intensive livestock farming (Hickman et al. 2021). A demonstration of 
the utility of GEO observations of NH3 and CO for informing diurnal changes in abundances, 
precursor emissions, and pollution transport patterns over Africa would aid in advocating for 
dedicated GEO instruments over Africa and South America. However, the long delay between 
mission concept and launch means missing out on advancing understanding in regions of 
the world during a period of unprecedented population growth and land-use changes. An 
advisory committee comprising researchers, academics, and satellite instrument develop-
ers has been formed to propose GEO missions over Africa and South America, but a greater 
representation of researchers from these regions is needed to inform the development of a 
fit-for-purpose mission (Marais and Chance 2015).

5. Conclusions and recommendations
The implementation of GEO satellites for atmospheric composition monitoring opens new 
perspectives for air quality research. The first two GEO composition satellites over Asia and 
North America have demonstrated the measurement of diurnal variation of chemical spe-
cies, thereby providing unprecedented information on the diel evolution of emissions, pho-
tochemical processes, and the effects of atmospheric dynamics over large regions. However, 
the development of retrievals and the validation of these GEO satellite composition data is 
still ongoing, as there is still room for improvement. Furthermore, the European component 
of the GEO constellation in Sentinel-4 is expected to be launched in 2025. The exploitation 
of measurements conducted by GEO satellites presents new challenges and several priority 
tasks can therefore be highlighted for future research.

•	 Retrieval algorithms need to be carefully adapted to the GEO composition observations. 
Specifically, the diurnal variations of various parameters used in the retrieval, such as 
surface reflectivity and vertical mixing, need to be resolved. Additionally, the viewing 
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geometry can present difficulties due to the large zenith angles of GEO instruments com-
pared to nadir-viewing satellites; hence, correcting for these effects at the edges of the field 
of regard is necessary.

•	 The hourly temporal resolution of GEO observations gives crucial information on diurnal 
profiles of emissions of atmospheric pollutants. In order to leverage this aspect in emission 
inversion studies and reduce the delay in the delivery of emission inventories, temporal 
profiles for different sectors in emission inventories need to be provided.

•	 Global and regional models should be adapted to be more compatible with the GEO atmo-
spheric composition satellites. Continuous model development, especially regarding the 
fine-scale chemical processes, is essential for retrievals, air quality forecasting, and data 
assimilation in the era of GEO satellites for atmospheric composition monitoring.

•	 Data assimilation methods need to be adapted to the geostationary case. Specifically, more 
computationally efficient methods should be explored in order to optimally process the 
high data volume. The coexistence of LEO and GEO measurements in the same area opens 
possibilities to assimilate both datasets simultaneously, along with ground-based and 
aircraft data. Deriving emissions from point sources from plume estimation methods also 
provides a promising avenue, considering the higher temporal resolution of observations.

•	 The computational efficiency and generalizability of machine learning make it a valu-
able area for further exploration. In addition to recent applications of machine learning 
in retrieval algorithm development and surface concentration estimation, greater efforts 
should be directed toward inverse modeling of emissions and the development of explain-
able models.

Finally, it is crucial to keep improving the accessibility of satellite measurements to agen-
cies in charge of air quality management, especially for regions lacking the capability to 
establish observation networks. Future GEO satellites should provide data over Africa, South 
America, southern Asia, Australia, New Zealand, and other regions not covered by the cur-
rent observing capabilities.
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