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Abstract Solar radiation modification (SRM) is increasingly discussed as a potential method to ameliorate
some negative effects of climate change. However, unquantified uncertainties in physical and environmental
impacts of SRM impede informed debate and decision making. Some uncertainties are due to lack of
understanding of processes determining atmospheric effects of SRM and/or a lag in development of their
representation in models, meaning even high-quality model intercomparisons will not necessarily reveal or
address them. Although climate models at multiple scales are advancing in complexity, there are specific areas
of uncertainty where additional model development (often requiring new observations) could significantly
advance understanding of SRM's effects, and improve our ability to assess and weigh potential risks against
those of choosing to not use SRM. We convene expert panels in the areas of atmospheric science most critical to
understanding the three most widely discussed forms of SRM. Each identifies three key modeling gaps relevant
to either stratospheric aerosols, cirrus, or low-altitude marine clouds. Within each area, key challenges remain in
capturing impacts due to complex interactions in aerosol physics, atmospheric chemistry/dynamics, and
aerosol-cloud interactions. Across all three, in addition to arguing for more observations, the panels argue that
model development work to either leverage different capabilities of existing models, bridge scales across which
relevant processes operate, or address known modeling gaps could advance understanding. By focusing on these
knowledge gaps we believe the modeling community could advance understanding of SRM's physical risks and
potential benefits, allowing better-informed decision-making about whether and how to use SRM.

Plain Language Summary Solar radiation modification has been suggested as a potential method to
reduce climate warming and its associated impacts, with three different types the subject of most research:
stratospheric aerosol injection; marine cloud brightening; and cirrus cloud thinning. However, while modeling
studies suggest some such methods could be effective, key challenges remain in accurately simulating their
impacts due to complex interactions in aerosol physics, atmospheric chemistry, atmospheric dynamics, and
aerosol-cloud interactions that are inherent to the three SRM methods. We highlight critical research gaps that
must be addressed to improve solar radiation modification modeling, including uncertainties in aerosol-cloud
interactions, aerosol microphysics, and their global effects. These gaps, identified by expert panels through the
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Geoengineering Modeling Research Consortium, emphasize the need for more detailed laboratory and field
studies, along with improved models at multiple scales. We specifically outline where additional fundamental
research is needed to support decision making around SRM, which will inevitably be made under uncertainty.

1. Introduction

Despite ongoing efforts to arrest climate change, the world is still on track to exceed 2°C of warming before the
end of the 21st century (IPCC, 2021). This has motivated research into solar radiation modification (SRM, also
referred to as solar radiation management, solar geoengineering, or climate intervention), which would involve a
deliberate alteration to the radiative balance of the Earth system to reduce climate warming and the damages
associated with this warming. Based on modeling studies, including those within the Geoengineering Modeling
Intercomparison Project (GeoMIP), multiple independent scientific assessments (National Academies of Sci-
ences et al., 2021; National Research Council, 2015; The Royal Society, 2009; United Nations Environment
Programme, 2023) have focused on three strategies in particular that may be feasible to rapidly reduce some
fraction of climate warming from increasing greenhouse gasses: stratospheric aerosol injection (SAI), marine
cloud brightening (MCB), and cirrus cloud thinning (CCT). Although CCT relies principally on modification of
the longwave radiation budget rather than solar radiation, it is generally included within the definition of SRM
(National Academies of Sciences et al., 2021; National Research Council, 2015).

There are many ethical, legal, and political issues that would need to be considered in deciding whether or how to
use any of these approaches, even if a strategy were proven to be technically feasible and effective. All of these
aspects include their own set of knowledge gaps and uncertainties that would affect decisions around SRM. Here,
we are specifically addressing key gaps in the modeling of physical impacts. Importantly, discussions around the
other (non-physical) aspects of the problem will be most effective if they are rooted in understanding of the
physical efficacy, limits, benefits, and risks of different possible implementations of SRM. A key concern is how
well modeling studies can capture the physical response of the Earth system to climate interventions since, as with
climate change in general, we must rely on models to project future climate impacts under different climate and
SRM scenarios.

All three SRM approaches discussed here induce changes in climate by adding aerosols to the atmosphere in
specific locations, thereby aiming to modify either stratospheric aerosols or tropospheric clouds. However, their
effects reach far beyond the locations where they are applied, either directly (especially for SAI) or through
teleconnections and other feedbacks. Accurate simulations of responses to their implementation rely on under-
standing aerosol microphysics, atmospheric chemistry, and aerosol-cloud interactions; how these produce
changes in Earth's radiative balance; and the local-to-global responses in the atmosphere and Earth system to these
changes. This is a challenge because many of the required processes are not well understood and/or simulated in
global climate models. Some such processes occur on temporal and spatial scales smaller than can be currently
represented in global-scale models, while others simply have not yet been identified as a priority in the context of
other, competing model development demands. Many processes that are key in representing the effects of climate
intervention are also relevant to accurately capturing the climate impacts of conventional anthropogenic aerosol
emissions, volcanic eruptions, and rising greenhouse gas concentrations. However, addressing these process
representations solely from the perspective of these other phenomena may not be sufficient to accurately capture
the climate impacts of SRM. Doing so incurs additional research priorities potentially aimed at different processes
and uncertainties.

Informed decision-making around the use of SRM demands that we understand the efficacy and impacts of
different SRM implementations, and are able to quantify the uncertainty in these predictions—which will be made
through the use of global-scale Earth System Models and regional-scale climate models. While these models do
not need to be—and indeed will never be—perfect, they are the main tool available for understanding the physical
responses to global-scale interventions. Robust identification and quantification of uncertainties in the modeled
physical and environmental side effects are critical to informed decisions around any potential future application.
For this purpose, it is essential to understand where modeling, laboratory experiments, or small-scale field ex-
periments are necessary or useful to reduce uncertainties in the effects of SRM. Identifying where research is
specifically needed to improve scientific understanding and model representation of SRM is therefore valuable.
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This can inform model development efforts while we work to also develop additional observational constraints
and continue performing model intercomparisons.

With this in mind, the Geoengineering Modeling Research Consortium (GMRC) convened groups of experts in
each domain—stratospheric aerosols, cirrus clouds, and marine clouds—with the goal of better understanding the
modeling knowledge gaps in each area, and what might be done to test models and reduce these gaps. The
members of each working group possessed a diverse range of competences, including global- and process-scale
modeling, remote sensing, laboratory studies, observational studies, and field studies. Through a series of online
meetings, the groups identified the research gaps in each area which are considered likely to compromise the
accuracy of simulations of SRM. These gaps were discussed prior to and presented during the 2023 GMRC
meeting in Exeter, UK, before a final round of iteration and revision with all of the original group members.

The results of the consultation are given below. We first provide an assessment of two common focus areas which
were highlighted independently by all three working groups. We then outline gaps which are specific to either
stratospheric aerosols, cirrus clouds, or marine clouds. Specifically, we highlight gaps to which simulations of
SRM are expected to be especially sensitive, and which may not be prioritized by work aimed at improving the
broader response of climate models to greenhouse gas emissions.

For each sub-section, although the group mostly addresses issues relevant to the associated form of SRM, the
concerns are not necessarily restricted to a specific SRM strategy. For example, aerosol injected for SAI or CCT
may ultimately affect low clouds, so while the key modeling gap is in the domain of aerosol-cloud interactions in
marine clouds the identified uncertainties could also be relevant to the full effects of SAI and CCT as well as
MCB. In addition to the three gaps described in detail by each group below, a complete list of the issues identified
by each group is provided in the Supporting Information S2.

2. Research Gaps

Although each group was able to identify key gaps which can be addressed in each area through model devel-
opment, a common focus was on the demand for more observations to better constrain models and improve
process-level understanding. This is elaborated in more detail below for each area, but all three groups pointed out
that—regardless of the larger effects of changes in stratospheric aerosols, cirrus clouds, or marine clouds—there
are large differences in the representation (and responses to aerosol injection) of stratospheric aerosol, marine
clouds, and cirrus clouds between models at the same scale, and between models and observations. While model
intercomparisons can reveal differences between different models, a true test of model accuracy requires testing
against observations. Such model validation can take the form of testing model accuracy in representing key
processes or systems that contribute to planetary albedo changes.

This is complemented by the value that would be gained, again across all three SRM approaches, by improving
the consistency of process representation across models of different scales. Different understandings and rep-
resentations of the underlying physics can produce useful and informative differences in model output, but
frequently we find that parameterizations in low-resolution models produce results which are simply inconsistent
with higher-resolution models which more accurately resolve the physics. For example, simulations of the effects
of cirrus cloud thinning are limited by the low level of confidence in the ability of global models to represent the
effect of a perturbation in sub-grid-scale conditions on the formation, properties, and fate of cirrus. Higher-
resolution models can be used to constrain these processes but the response is rarely consistent between fine-
and coarse-resolution models, and questions remain regarding the accuracy of said models and how to bridge
between the scales of localized processes and global responses. Although some process uncertainties can only be
reduced through lab experiments, scale consistency is an area where productive work can be carried out now
without necessarily needing additional observational data in order to proceed. This applies also to the evaluation
of local and regional impacts, where statistical and dynamical downscaling methods are needed which are suitable
for simulations of SRM. The application of machine learning and artificial intelligence (ML/AI) may be able to
assist in this area, for example, through development of efficient new subgrid parameterizations suitable for
downscaling. However, the same challenges apply regarding the need to verify that these approaches are accurate
in situations which have never previously been observed.

These two concerns together motivate a general need for targeted observational campaigns which aim to provide
stronger constraints on process-level models in each of the three areas, and for novel and/or concerted efforts to
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bridge the scales between observations, high-resolution modeling, and global-scale models. There furthermore
remain multiple gaps, several of which are highlighted in Appendix A of Supporting Information S2, which apply
generally to any form of SRM and are not restricted to one of the three science areas below. These can be
addressed through model-based investigations of the response to solar dimming without the need to specify the
method by which it is achieved, thus providing clearer insights regarding environmental outcomes which would
be expected to result from all forms of SRM.

2.1. Stratospheric Aerosols
Authors: Amy Butler, Simone Tilmes, Ewa M. Bednarz, Gabriel Chiodo, Daniele Visioni, Lili Xia, Pengfei Yu.

The focus of the first group is on stratospheric aerosol processes, which will primarily be key for modeling
stratospheric aerosol injection (SAI). SAI is a proposed method of counteracting anthropogenic warming of
global-mean surface temperatures by increasing the concentration of liquid or solid aerosols in the stratosphere to
reflect a small portion of sunlight away from Earth. While many facets of stratospheric aerosol processes and their
impacts are in theory understood, uncertainties arise when trying to simulate these processes in models that can't
fully resolve the spatial and temporal scales at which the processes occur (Kremser et al., 2016). Although model
simulations of SAI (primarily using sulfur injections) show relative reductions in global surface temperatures
(Visioni et al., 2021), there remain large uncertainties across models in many aspects of the Earth system response
to SAI (Haywood et al., 2022). In order to evaluate which of these uncertainties may be reducible by improving
model processes, we consider current modeling gaps for simulating SAI's impacts on the Earth system. These fall
within five broad categories of aerosol microphysics, chemistry, dynamics, radiation, and coupling to other
components of the Earth system (see Appendix B in Supporting Information S2). While all of these process
uncertainties are relevant to improved simulation of SAI, below we highlight the three modeling gaps that are
most fundamental to simulating stratospheric aerosol processes and are thus most likely to holistically reduce
uncertainties that propagate to the entire Earth system response. Much of this process understanding is also
imperative for understanding the effects of increases in stratospheric aerosols from other sources such as volcanic
eruptions, stratospheric pyrocumulus (Solomon et al., 2023), and emissions into the stratosphere from the space
sector (Maloney et al., 2022; Murphy et al., 2023).

Three broad modeling gaps are shown in Figure 1. The first modeling gap that has been identified is the rep-
resentation of detailed microphysical changes in the stratospheric aerosol layer that occur when aerosols or their
precursors are injected into the stratosphere. These processes include the relative roles of nucleation, coagulation,
and aerosol growth/condensation in the injected plume, as well as sedimentation. Global climate models with
interactive aerosol-chemistry schemes are not able to reproduce details of the observed aerosol distribution
following the Mount Pinatubo eruption (Brown et al., 2024; Quaglia et al., 2023; Stenchikov et al., 2021; Tilmes
et al., 2023; Vattioni, Weber et al., 2024). This may be related to how models simulate microphysical processes,
the relative roles of which may be dependent on background conditions or the co-presence of other chemical
constituents. For example, measurements taken soon after the 2022 Hunga Tonga-Hunga Ha'apai eruption
suggested that coagulation may be an important process in the size evolution of the stratospheric aerosols (Legras
et al., 2022). However, this eruption was unusual in the amount of water vapor it injected with the aerosols which
led to very unique aerosol formation conditions. Another example is the Raikoke eruption in 2019. The co-
emission of volcanic ash and mineral dust resulted in additional absorption of solar and terrestrial radiation
(Kloss et al., 2021; Wells et al., 2023). In general, explosive volcanic eruptions are not perfect analogs for the
aerosol sources associated with SAIL. SAI would involve continuous injections over many years at different lo-
cations, which may alter the relative importance of condensation, coagulation, and sedimentation of aerosols
compared to a singular event like a volcanic eruption. Nonetheless, comparison of model simulations to existing
and new observations of aerosol properties in the stratosphere (in particular rapid-response measurements after
volcanic eruptions) may be one of the best pathways forward to identify shortcomings in models and improve
understanding and parameterizations. Incorporating model developers into measurement field campaigns of
stratospheric aerosols would be valuable in order to help in identifying what observations are needed to verify or
improve parameterized processes (Sprintall et al., 2021).

An additional challenge is realistically representing precursor injections in global climate models, which treat
volumes of ~10,000 km® as a single cell (Boulon et al., 2011; Wrana et al., 2023). Comprehensive aerosols
models, including sectional aerosol models with comprehensive microphysical aerosol processes, could be used
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Figure 1. Modeling gaps in the representation of stratospheric aerosol under SRM scenarios.

to compare with and improve less sophisticated but computationally cheaper modal aerosol models often used in
global climate models. Plume-scale simulations that resolve small scale transport processes would be a valuable
step forward, but are limited to a refined region and are computationally expensive. Chamber experiments (or
possibly small, plume-scale field experiments, given the difficulties of replicating stratospheric conditions in the
lab) are needed to investigate aerosol microphysical properties, and to assess aerosol microphysics for candidate
SAI materials other than sulfate, for example, calcites (Huynh & McNeill, 2024; Keith et al., 2016; Vattioni,
Stenke et al., 2024). Model intercomparisons involving small and large injections are needed to compare the
effects on aerosol microphysics and size distributions, especially for aerosols composed of materials other than
sulfate.

A second key modeling gap to address is model uncertainties in aerosol interactions with radiation, in particular
uncertainties under SAI in (a) the radiative heating response in the stratosphere; (b) changes in radiative forcing at
the surface; and (c) changes in tropospheric photolysis. For (a), different radiative transfer models give different
stratospheric heating responses, which may be due to their assumptions about aerosol properties, for example, the
wavelength sensitivity to absorption/reflection/refraction and aerosol composition. It may further depend on how
specific aerosol size distributions affect radiative heating in the stratosphere (Haywood et al., 2022). The dif-
ference in the heating response in models changes atmospheric circulation and surface climate, including—but
not limited to—regional precipitation patterns (Ricke et al., 2023; Simpson et al., 2019). The uncertainty in
radiative heating across models is associated with uncertainties in (b) the magnitude of negative radiative forcing
at the surface. The magnitude of the cooling that can be achieved with SAI depends on aerosol optical depth,
which in turn is dependent on injection material, aerosol size, and on the injection location, altitude and timing
(Bednarz, Visioni et al., 2023; Laakso et al., 2022, 2024; Visioni et al., 2023; Zhang et al., 2024). Models also
have different sensitivities of surface temperatures to the same magnitude of aerosol forcing, a reflection of the
different climate sensitivities across climate models (Zelinka et al., 2020). All these uncertainties in both the
forcing and sensitivity may explain the existing large differences in surface temperature response to varying
stratospheric backgrounds and SAI perturbations across different models (Visioni et al., 2023), propagating to
other systems such as the hydrological cycle (McGraw & Polvani, 2024; Ricke et al., 2023). Finally, the changes
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in radiation due to SAI will affect (c) tropospheric photolysis rates, an interaction that is currently poorly rep-
resented in most climate models, but may have substantial effects on tropospheric air quality, thereby feeding into
the third key modeling gap discussed below.

One crucial interaction determining the effects of SAI on climate is the radiative efficiency of stratospheric
aerosols. However, radiative transfer is inherently complex and computationally expensive. The broad-band
radiation schemes employed in global models can often lead to biases in radiative fluxes, which can have
downstream effects on climate. Some modeling improvements could be achieved through model evaluation
against detailed line-by-line radiative transfer models (Dykema et al., 2016). Multi-model comparisons to existing
and new observations of radiative properties (such as extinction, aerosol optical depth, etc) for different wave-
lengths and their surface forcing would also be beneficial (Timmreck et al., 2018).

Uncertainties in the surface climate response including the hydrological cycle are due not only to uncertainties in
the direct radiative response to SAI but also to uncertainties in coupling to other aspects of the atmosphere and
climate system (land, ocean, and cryosphere). Idealized simulations, such as modeling injections in a dry
dynamical core (Hollowed et al., 2024), simplified experiments with fixed single-point SO, injections, or pre-
scribed aerosol simulations with fixed SSTs, could isolate processes contributing to inter-model uncertainties in
simulated SAI responses (Bednarz, Butler et al., 2023; Visioni et al., 2023). The same applies for SAI's other
impacts on atmospheric chemistry and dynamics, and can isolate the influence of top-down driven effects from
stratospheric heating from slower-evolving feedbacks with the ocean.

A third major modeling gap is missing or poorly simulated aerosol interactions with chemistry. While there is a
well-developed understanding of the response of chemistry to sulfur injections based on observations of volcanic
sulfate aerosols in the stratosphere, effects of continuous injections on concentrations of chemical species, for
example, stratospheric ozone, greenhouse gases, and on tropospheric and surface-level chemistry (Eastham
et al., 2018; Moch et al., 2023; Xia et al., 2017), are still not well characterized. For ozone, concentrations are
influenced by a range of heterogeneous (including on aerosol surfaces) and gas-phase chemical reactions, as well
as changes in temperatures and atmospheric transport. The impact of stratospheric aerosols on ozone is thus the
cumulative result of all those processes, leading to disagreement amongst different models (Tilmes et al., 2021).
In addition, some models lack certain processes, including interactions of aerosols with photolysis or a
comprehensive set of heterogeneous reactions on sulfate, both of which are important for stratospheric and
tropospheric chemistry.

Confident assessment of impacts of SAI on atmospheric chemistry thus requires that the performance of current
models is thoroughly evaluated, for example, using the observations of past volcanic eruptions and their impacts
on composition and chemistry. Specified-dynamics simulations that constrain meteorology and its interannual
variability may help isolate model uncertainties to chemical processes, though large-scale transport is not well-
constrained in these simulations (Chrysanthou et al., 2019; Tilmes et al., 2012). Additional chemical observations
(both “rapid response” and long-term monitoring) after volcanic eruptions, including of SO,, H,SO,, and various
related nitrogen and halogen products, could help with model assessment. Meanwhile little is known about how
injections of other materials would affect atmospheric chemical processes (Vattioni et al., 2023; Visioni
et al., 2024). Lab and small outdoor studies are needed to improve estimates of uptake rates and other chemical
reaction rates, especially for injection of materials other than sulfate. Finally, these data need to be integrated into
chemistry-climate models and sensitivity and scenario simulations performed to investigate the effects of
different aerosol materials on chemistry.

Addressing these key modeling gaps would likely lead to model improvements that would reduce model un-
certainties with regards to both SAI forcings and naturally occurring stratospheric aerosols, but this list is not
exhaustive. A full list of the stratospheric aerosol modeling gaps identified by the group is provided in Appendix
B of Supporting Information S1.

2.2. Cirrus Clouds

Authors: Blaz Gasparini, Sebastian D. Eastham, Ulrike Burkhardt, Daniel J. Cziczo, Thomas Leisner, Odran
Sourdeval, Isabelle Steinke.

Cirrus cloud thinning (CCT) is a method of climate intervention aimed at offsetting the anthropogenic greenhouse
effect by increasing the emission of longwave radiation to space (Lohmann & Gasparini, 2017; Mitchell &
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Finnegan, 2009). Cirrus clouds absorb thermal radiation from the surface but emit relatively little due to their low
temperature and reflect only a small fraction of solar radiation due to their (on average) low optical depth, leading
to a net positive (globally warming) cloud radiative effect (Hong et al., 2016; Matus & L’Ecuyer, 2017). CCT
would aim to reduce the coverage, lifetime, and/or thickness of cirrus clouds by injecting appropriate ice
nucleating particles, allowing more cirrus clouds to form through ice nucleation on the surface of these particles
by heterogeneous ice nucleation, while suppressing the new formation of cirrus produced by freezing of abundant
tiny solution droplets, known as homogeneous ice nucleation. This approach to reducing the number of cirrus ice
crystals is in contrast to the effect of air traffic within cirrus clouds, which on average increases the number of
cirrus ice crystals (Verma & Burkhardt, 2022) and prolongs their lifetime.

The existing literature on the radiative effectiveness of CCT by injections of ice nucleating particles is incon-
clusive, ranging from a potential inadvertent warming effect (so-called “overseeding” (Tully et al., 2023)) to an
upper bound cooling effect of 1.5°C (Gasparini et al., 2020; Lohmann & Gasparini, 2017; Storelvmo et al., 2014).
This uncertainty is mainly because there are many gaps in our understanding of cirrus cloud formation and the role
ice nucleating particles play in it. Fundamental gaps in understanding cirrus not only prevent progress and
convergence on the assessments of the effectiveness of CCT but also lead to large uncertainties in cirrus-aerosol
interactions, including the potential impact of sedimenting SAI particles on cirrus and the impacts of air traffic on
cirrus clouds and the radiative balance of the Earth (Kircher, 2018; Lee et al., 2021).

Although this working group primarily focused on identifying key gaps in research related to CCT, many, if not
all, of the conclusions can be applied more broadly to the study of cirrus clouds and their interactions with
aerosols. While similar working groups have already reviewed and summarized topics such as cirrus-aerosol
interaction (Bellouin et al., 2020; Intergovernmental Panel on Climate Change (IPCC), 2023b), CCT (Inter-
governmental Panel on Climate Change (IPCC), 2023a), and cirrus cloud climate feedbacks (Sherwood
et al., 2020), none of these efforts have exclusively focused on the question of which model developments could
most rapidly advance our understanding of anthropogenic cirrus cloud modification.

The group's findings are summarized in Figure 2. The group first identified an overarching issue that connects all
identified gaps and issues: the uncertain role that ice nucleating particles, and thus heterogeneous ice nucleation,
play for present-day, unperturbed cirrus clouds (Bacer et al., 2021; Gryspeerdt et al., 2018). Reducing uncertainty
in this issue is critical to understanding whether or not CCT could even theoretically produce a climate benefit of
the magnitude necessary to warrant further research. The remaining research gaps, listed below, are separated into
three groups: dynamical gaps, cloud physics gaps, and CCT-related gaps (see Appendix C in Supporting In-
formation S2 for a full list).

The key dynamical gap is our ability to simulate the occurrence, location, intensity (degree of supersaturation),
and extent of ice supersaturated regions in both standard and kilometer-scale climate models. These regions are
essential for the formation and maintenance of both naturally occurring and perturbed/seeded cirrus clouds. Not
simulating ice supersaturated regions correctly leads to flawed aerosol-cirrus interactions and an incorrect rep-
resentation of the role of heterogeneous ice nucleation in the climate system. This failure is in turn due to two
complementary model shortcomings: the inability to accurately simulate the upper tropospheric water budget, and
the inability to resolve the variability and frequency of updrafts necessary for cloud formation. Moreover, the
inability of models to reliably simulate upper tropospheric aerosol loading and its influence on ice nucleation and
water vapor uptake additionally complicates this issue and connects it to the microphysical gaps described below.
These issues particularly apply to coarse-resolution climate models, the tools most often used to estimate the
efficacy of CCT. The difficulty of accurately measuring supersaturation, among other critical parameters, is an
additional challenge and further research is needed to improve and expand observational data sets.

Despite advancements in sub-grid scale parameterization and the increasing use of data-driven approaches, there
is a need to leverage high-resolution (sub-kilometer scale) models which are capable of capturing the variability
of updrafts. These can be constrained by already-available updraft data to determine if the inputs to the micro-
physical schemes are appropriate for simulating cirrus clouds, but would benefit from the acquisition of more in
situ measurements of updrafts in the upper troposphere; this is possible with aircraft (Krdmer et al., 2016, 2020),
balloons (Bramberger et al., 2022), or remote sensing techniques (e.g., using products from the EarthCare and
INCUS missions including satellite-derived updraft velocity data).
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Figure 2. Modeling gaps in the representation of cirrus under SRM scenarios.

The key cloud-physics gap is in the microphysics of cirrus cloud formation, which inhibits advances in knowledge
on cirrus clouds and CCT. Many of the CMIP-type models used to simulate CCT (and most high-resolution
kilometer-scale models) only have basic representations of ice nucleation and the subsequent cirrus cloud evo-
lution. Addressing some subset of the key issues related to cirrus parameterizations may therefore already be
feasible with limited changes to model code and relatively low computational expense (R. L. Atlas et al., 2024).
However, there are still significant gaps in our understanding which originate in the lack of observations:
currently, information on naturally present ice nucleating particles at cirrus conditions are extremely rare and not
sufficient to constrain global models despite many dedicated measurement campaigns (Cziczo et al., 2013;
Kiselev et al., 2017; Schneider et al., 2021; Wagner et al., 2018, 2020). These global models in turn have to use
numerous assumptions to simulate cirrus formation, resulting in large model spread in the relative importance of
the two cirrus nucleation mechanisms (Gasparini et al., 2020; Penner et al., 2015).

The issue can begin to be resolved by creating a global ice nucleating particle climatology under cirrus conditions.
This could be achieved through numerous in situ ice-nucleating particle (INP) measurements at cirrus conditions
across all latitudinal bands and seasons, possibly complemented by measurements of cirrus ice residuals that
could determine the ice nucleating particles present in ice crystals (Cziczo et al., 2013). Such measurements are
urgently needed particularly in high latitude regions during winter, when CCT schemes are thought to be most
effective (Storelvmo & Herger, 2014).

Moreover, cirrus clouds are affected by cloud adjustments beyond nucleation. These may be strong enough to
substantially change the radiative forcing of CCT, either magnitying or mitigating CCT's intended cooling effect.
Cloud adjustments could for example, modify the lifetime of cirrus clouds, for example, through changes in
uncertain ice crystal loss processes. Such adjustments are currently unknown for high clouds. A possible model
framework to investigate this issue could include a global kilometer-scale simulation for studying CCT impacts at
large scales, paired with limited-area LES domain simulations focused on simulating microphysics and turbu-
lence. Such modeling studies would also benefit from a Lagrangian, cloud-evolution-following perspective.
Process-based, cloud-evolution perspectives could also yield benefits, especially if applied consistently both to
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model output and observational (in situ and remote-sensing) data containing collocated measurements of
dynamical, microphysical, and radiative properties.

Assuming that the first two gaps are resolved, we would still be left with a number of important concerns related to
determining the efficacy and impacts of CCT. Central among these gaps is the uncertainty surrounding the
properties of cirrus formed on seeded aerosols. This includes the conditions under which they nucleate ice, their
optical properties, the effects of atmospheric aging, and potentially the effect of in-contrail processing if delivered
by aircraft. This is not surprising given that, to our knowledge, no research has yet been conducted to find the most
appropriate ice nucleating particle for use in CCT. Furthermore, it is currently unclear whether the seeded INPs
can be controlled to achieve a target concentration over large areas without causing the unwanted “overseeding”
effect. This could either lead to the formation of additional (unwanted) cirrus or thicken the existing cirrus near the
sources of seeded INP, where the concentration of injected INPs may be very high (Tully et al., 2023).

To address this CCT-specific gap, we propose a multi-faceted approach. Laboratory experiments can elucidate the
behavior of INPs under different conditions, while large eddy model simulations will allow the exploration of
particle dispersion dynamics, which is critical for thinking about the engineering of CCT. Such experiments could
also constrain the potential impact of seeded particles on lower-lying mixed phase clouds, which were shown to
be substantial in one modeling study (Gruber et al., 2019). Finally, small-scale field experiments could serve as a
benchmark for such process-based model simulations.

The gaps listed above are complemented by a more extensive list of research gaps in Appendix C of Supporting
Information S2. Resolving the gaps in cirrus cloud modeling will require a concerted effort to bridge gaps in our
understanding of cirrus cloud formation and aerosol interactions, extending far beyond models to the satellite, in
situ observation, and laboratory communities. Only through such efforts can we advance our understanding of
CCT and its potential as a climate intervention strategy.

2.3. Marine Clouds
Authors: Sarah J. Doherty, Michael S. Diamond, Robert Wood, Johannes Quaas, Philip J. Rasch.

Marine clouds would be most directly affected by the form of SRM known as marine cloud brightening (MCB).
MCB leverages an effect that is currently observed in the atmosphere where aerosol pollution mixes into clouds
and increases their albedo (reflectivity), such as in “ship tracks” (Conover, 1966). These ship tracks were the
original inspiration behind the MCB concept (Latham, 1990). The modern definition of MCB involves inten-
tionally brightening low marine clouds with sub-micron sized aerosol, likely using sea salt generated from ocean
water using ship-based spray systems.

The clouds expected to be most susceptible to albedo increases from the addition of aerosols are clean strato-
cumulus clouds (Alterskjer et al., 2013; Oreopoulos & Platnick, 2008), which cover about 20% of the Earth's
oceans (Wood, 2012). These clouds have therefore been the focus of most MCB studies. Approximately 60% of
present-day effective radiative forcing from pollution via aerosol-cloud interactions is estimated to occur in
stratocumulus clouds (Diamond et al., 2020). However, there is growing evidence that other types of low marine
clouds may also be amenable to brightening (Chen et al., 2024; Malavelle et al., 2017), and any form of SRM
involving aerosol injection could cause a response in marine clouds. As such, the discussions of this working
group focused on the uncertainties around aerosol-cloud interactions in low marine clouds more broadly, where
“low” refers to clouds that are confined to approximately the lowermost two km of the atmosphere. A better
understanding of impacts from both possible deliberate (MCB) and expected inadvertent (pollution) changes in
marine clouds is important, highlighting the “dual purpose” of studying aerosol-cloud interactions in this type of
cloud.

Many of the uncertainties around both the present-day climate forcing through aerosol-cloud interactions and in
the potential for intentional marine cloud brightening to cool climate revolve around processes occurring at scales
ranging from that of the aerosols themselves (<1 pm) through the scales of cloud features (e.g., up- and down-
drafts at 10100 m), up to the scales of broad cloudy regions (10-100 km). It has long been understood that adding
sub-micron diameter sized aerosols can increase the cloud droplet number concentration in clouds thereby
increasing the water surface area for a given cloud volume and thus its reflectivity, particularly when background
aerosol concentrations are low (Twomey, 1974, 1977). This “Twomey effect” was the basis for the concept of
intentionally brightening low marine clouds with sea salt aerosols (Latham, 1990). We now understand that cloud
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Figure 3. Modeling gaps in the representation of marine clouds under SRM scenarios.

macrophysical properties (i.e., the horizontal and vertical extent of clouds, where the latter is often expressed in
terms of liquid water path) can subsequently respond to this change in cloud microphysics in ways that can either
offset or add to Twomey brightening. The total change in cloud albedo depends strongly on the background
meteorological conditions (especially updraft velocities, propensity to precipitate, and above-cloud humidity).
Cloud responses also depend strongly on background aerosol concentrations and the size and concentration of
added aerosols (e.g., Hoffman and Feingold, 2021; Wood, 2021). As such, although MCB's efficacy is more
certain than that of CCT, there is much greater uncertainty in the potential efficacy and capacity for MCB to cool
climate than for SAL

These uncertainties in how MCB would play out locally under different conditions directly affect what spatial and
temporal patterns of forcing could be produced using MCB, and therefore what patterns of climate impacts are
possible. In turn, climate changes from both greenhouse gases and other sources of climate forcing, including
SRM approaches, are expected to affect clouds (Klein et al., 2017; Schneider et al., 2019) and background
aerosols (Bodas-Salcedo et al., 2019; Li et al., 2022) in ways that could then alter the efficacy and potential range
of impacts of different MCB implementations.

Here, we highlight three areas, summarized in Figure 3, where focused efforts are needed specifically to assess
MCB as a climate intervention that are unlikely to be addressed through more general efforts to reduce un-
certainties in inadvertent climate forcing in low marine clouds. Further, while the broad scope of research needed
to assess MCB was recently described by Feingold et al. (2024), here we focus on three specific areas of research
that would address deficiencies specifically in accurately representing MCB in models.

A fundamental first need is to improve models' ability to represent MCB aerosol emissions using realistic aerosol
size distributions. It's currently estimated that optimal MCB implementation would involve the generation of a
large number (~10"° —10"®s7") of sea salt aerosols sized between approximately 10 and 200 nm dry diameter from
individual point sources at the ocean surface (Connolly et al., 2014; Wood, 2021). While some coarse resolution
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climate models have investigated the sensitivity of the radiative forcing and cooling impact to injections of sea-
salt aerosol of different sizes (Haywood et al., 2023), many climate models lack the ability to represent the in-
jection of sea-salt aerosols at the optimal size range. Instead, MCB aerosol injection is usually represented
through either an enhancement in the number of accumulation-mode aerosols, such as sulfate, or by enhancing or
scaling the natural sea salt aerosol source (e.g., Jones & Haywood, 2012). However, MCB-optimized aerosols are
smaller than natural accumulation mode aerosols (e.g. see Ueda et al., 2016, Table 1), and much smaller than
naturally produced sea salt aerosols.

There are multiple consequences to using incorrectly sized aerosols in simulations of MCB. The efficacy of
aerosols as cloud condensation nuclei is very strongly dependent on their size (e.g., Dusek et al., 2006), so this can
significantly affect conclusions about the efficacy of MCB for cooling climate. Where models have the ability to
represent the effects of larger aerosols (so-called “giant CCN”) in inducing precipitation, using incorrectly sized
aerosols can also produce biases in how MCB would affect cloud water amount and lifetime (e.g., Feingold
et al., 2024; Hoffmann & Feingold, 2021). Small differences in the injected aerosol geometric mean diameter and
mode width will also yield very large differences in the injected mass of sea salt aerosol, since the mass scales
with the cube of the aerosol diameter. Finally, use of larger aerosol than is realistic can lead to biased conclusions
about the relative roles of forcing through direct aerosol-radiation versus through aerosol-cloud interactions (as in
Ahlm et al., 2017; Alterskjer et al., 2013; Hill & Ming, 2012), since the former is optimized for larger-sized
aerosols than the latter. Currently, no GCMs have the ability to represent the effects of giant CCN on precipi-
tation, which is a significant gap.

A second issue regards accurately representing the point-source nature of MCB. Model studies don't currently
account for the fact that the sea salt aerosols for MCB would be coming from a point source at the ocean surface,
and that the resulting aerosol at cloud base likely would have variations in aerosol concentration and possibly size.
High-resolution modeling studies ground-tested against observations are needed to determine how the generated
aerosol size distribution changes in transit from the aerosol spray system to cloud base. Aerosol evolution in the
very near field (first 10's of meters) downwind of the spray system, where most coagulation would likely take
place, is particularly important and effectively unstudied at this time. Also lacking are studies on the plume
dispersion rate and how aerosol properties (size, concentration) will vary within the plume under different
ambient conditions. Specific to MCB is that evaporative cooling (Jenkins & Forster, 2013) could cause the plume
to subside, preventing the generated aerosol from reaching cloud-base. While one initial study (Hernandez-
Jaramillo et al., 2023) found this was not a significant issue at aerosol generation rates of 10" s™", this question
has not yet been rigorously assessed under flow rates needed for large-scale MCB. These questions need to be
addressed through a combination of higher-resolution (e.g., computational fluid dynamics, CFD, and large-eddy
simulation, LES) modeling studies (e.g., Dhandapani et al., 2025) and focused observational studies, then
accounted for in the representation of MCB implementations in global models.

The third issue identified as specific to MCB, but that also pertains to climate forcing by “ship tracks”, is the need
to be able to model how cloud macrophysical responses to aerosol perturbations are affected by the timing and
spatial distribution of the injection strategy (Prabhakaran et al., 2024). LES modeling studies have shown that
mesoscale circulations can develop in response to locally isolated injections of aerosols (Wang et al., 2011; Wang
& Feingold, 2009), such that cloud albedo can, for example, be increased in the region with enhanced aerosol
concentrations, but decreased in adjacent regions. Cloud responses to aerosol injections can also induce atmo-
spheric buoyancy perturbations that then affect the overall cloud evolution and albedo. LES simulations will
include these buoyancy perturbations—but not necessarily their compensation by a response in large-scale
subsidence induced through gravity wave activity (Sobel & Bretherton, 2000), because this response cannot be
captured over the smaller domain size covered by typical LES simulations. While it is possible to parameterize
this larger-scale circulation response, this is not routinely done, and not doing so can significantly bias the
resulting cloud albedo response to aerosol injections (Chun et al., 2024).

At the same time, regional-to global-scale models, which are capable of capturing the large-scale dynamical
responses, lack the ability to represent the detailed dynamical and microphysical responses and feedbacks to
aerosol-cloud interactions. This is a specific case of the broader need for greater focus on how to bridge the
different scales of modeling in order to better represent aerosol-cloud interactions and their effects on the climate
system.
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In addition to the need for improved capabilities for modeling multi-scale thermodynamic and dynamical re-
sponses to aerosol injections, this is simply an area where the needed model runs haven't been done. Almost all
high resolution MCB modeling studies to date have simulated either cloud responses to a single plume of aerosol,
usually in LES simulations (Berner et al., 2015; Chun et al., 2023; Erfani et al., 2022; Jenkins et al., 2013), or
cloud responses to a uniform perturbation in aerosol concentrations over broad regions, as is generally done in
global modeling studies (Alterskjer et al., 2013; Bower et al., 2006; Jones & Haywood, 2012; Rasch et al., 2009,
2024). In reality, MCB would likely be implemented as a series of point sources generating multiple, possibly
overlapping, plumes distributed over a broader region (Salter et al., 2008; Wang et al., 2011; Wood, 2021).
Regional simulations of North Atlantic ship tracks by Possner et al. (2016) found large differences in simulated
aerosol forcing from cloud changes as horizontal resolution decreased from GCM to convection-permitting
scales. The dynamical responses to these different configurations, and how they feed back to changes in cloud
albedo and climate forcing, are not currently known.

As for SAI addressing these challenges—and in particular the third gap—would likely yield improvements in the
representation of climate change and SRM more broadly. Work on all three would specifically also improve the
representation of ship tracks in global models, an issue of current interest given the finding of a potentially
climatically significant contribution to recent warming trends resulting from reduced ship emissions (Dia-
mond, 2023; Yuan et al., 2024). While these three gaps are considered the most pressing, in Appendix D of
Supporting Information S2 we provide a more comprehensive list of research areas that are important to assessing
MCB but are more likely to be addressed by general research into inadvertent climate forcing through aerosol-
cloud interactions.

3. Conclusions

The gaps described here are by no means all of the issues which currently limit the accuracy of simulations of
SRM. Other key uncertainties include insufficient or missing coupling to surface models and the associated lack
of feedbacks between SRM and processes such as land ice, the carbon and nitrogen cycles, or wildfires. A full list
of modeling gaps identified by the three working groups can be found in the Appendices.

Three key findings have emerged from this work. First, there are clear gaps which can be addressed to improve
model-based assessments of SRM. Across all three fields, we have identified an extensive list of specific areas
which, if addressed, would improve our quantitative understanding of the likely efficacy and physical impacts of
an SRM strategy and their uncertainties. Importantly, some gaps in process understanding are identified that could
be partially or largely addressed through model development without the need for new observations.

Second, more observational field studies are needed to verify that models are capable (or incapable) of repro-
ducing real world responses to aerosol injections with high fidelity, and for improved understanding of key
processes under real-world conditions. Observational data sets are needed to test and improve model simulations
of how both the stratospheric aerosol layer and tropospheric clouds respond to concentrated and diffuse sources of
aerosol of carefully specified composition and size, in pristine and polluted/perturbed conditions with varying
meteorology. In the meantime, careful comparisons of model responses to different injection scenarios (e.g.,
differing aerosol size and concentration) in well defined meteorological regimes with well defined specification
of background aerosol concentrations are useful for quantifying model differences and sensitivities to different
representations of key processes, and are useful for planning of observational field studies.

Finally, work is needed to harmonize the representation of key SRM-related processes across spatial scales.
Differences across high resolution models in simulated responses provide information about uncertainties in
understanding of the basic processes that are relevant to SRM specifically, and differences in responses between
low (e.g., GCM or Earth System model resolutions) and high (LES resolution) resolution models provide in-
formation about how well or poorly those processes are approximated in models used for climate studies (of SRM
or otherwise), compared to our current understanding of the underlying processes. However, even where high-
resolution models of key phenomena are shown to perform well against observations, this performance may
not propagate to simulations at the coarser spatial resolutions necessary for Earth system models to capture
decadal, global-scale change. Examples are the representation of specific injection sites for stratospheric aerosol,
cirrus modification by aircraft, and point-source salt injections into the marine boundary layer. Dedicated model
development is needed to evaluate and harmonize existing models so that the simulated effects of SRM in global
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scale models accurately reflect the complexities of the small-scale processes which are fundamentally driving the
large-scale response.

For all of the gaps discussed above, even a comprehensive and well-funded research effort supported by ample
observational data would only reduce, rather than eliminate, uncertainty in the physical impacts of an strategy.
However, a detailed quantification of uncertainties will frame the range of possible outcomes. As with all policy,
including on other questions relating to anthropogenic climate change, decisions about the use of SRM will need
to be made based on imperfect information. But also as with other policy-relevant research, the goal should be to
quantify and reduce uncertainties. In addition to exploring other methods to reduce uncertainties such as through
emergent constraints (Plazzotta et al., 2018), we believe that the knowledge gaps presented here constitute those
which can be most readily and productively addressed by the modeling and observational communities in order to
reduce key uncertainties in SRM approaches, and therefore increase confidence in model-based projections of the
likely physical effects of SRM.
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