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ABSTRACT 

This study presents novel predictive models for HTL of brown macroalgae, describing the formation of 

biocrude, gas, biochar, and water-soluble compounds as products. The models account for the chemical 

composition of the macroalgae and explain the effects of time, temperature, pressure, and water-to-

biomass ratio as input variables to estimate product yields from hydrothermal liquefaction (HTL). To 

achieve this goal, we used experimental kinetic data to develop a process simulation for batch HTL of 

macroalgae. We then applied the design of experiment (DOE) to generate simulation runs at different 

combinations of process variables. The results were used to develop predictive models describing the 

effects of such process conditions on product yields from HTL of macroalgae. Next, the predictive 

models generated were used to optimize the yield of bio-crude produced. Also, we used response surface 

methodology (RSM) to visualize the effect of process variables on product yields. Additionally, the 

models were validated against experimental data from literature, with 91% agreement within the 95% 

prediction interval for the biocrude yield model. Analysis of Variance (ANOVA) showed that the 

selection of operational parameters significantly affects biocrude yield. The optimal biocrude yield was 

23% at 283℃, 200 bar, 54 minutes, and a water-to-biomass ratio of 10:1, with temperature and residence 

time as the significant variables that affect biocrude yield. Sensitivity analysis on the reaction rate 

constants allowed for the identification of significant paths that affect biocrude yield. The workflow 

presented in the study and the predictive models provide an accurate path for modeling various products 

from HTL of kelp. 
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1.0 INTRODUCTION 

The concern over the environmental impact of fossil fuel emissions, the potential for its depletion, 

and price increases have driven significant research efforts toward sustainable alternatives for energy 

generation. Environmental sustainability, energy security, and global warming reduction have increased 

interest in alternative energy sources, which are closely evaluated as potential solutions to meet our 

energy needs more sustainably and responsibly [1,2]. Waste oils, agricultural and municipal waste, and 

specially grown inedible energy crops are among the second-generation feedstocks for biofuel that can 

substantially reduce the use of fossil fuels for transportation and chemicals[3]. 

Macroalgae, also known as seaweed, on the other hand, is an underutilized third-generation feedstock 

and commodity with significant commercial value and versatility, primarily for the production of food, 

cosmetics, and fertilizers[4]. Seaweed has several distinct advantages as a renewable energy source: first, 

it boasts high photosynthetic efficiency, allowing it to quickly produce large quantities of biomass[5]. 

Secondly, the feasibility of cultivation in various locations worldwide and the lack of competition for 

arable land and freshwater with food crops further enhance its potential as a renewable energy source. 

Finally, the potential for producing diverse value-added chemicals and biofuels makes kelp a particularly 

attractive resource. For these reasons, seaweed has become a topic of growing interest in Europe as a 

potential energy source, with an average yield of 15 to 20 dry tons per hectare per year[6,7]. 

Approximately 28 million metric tons of wet macroalgae biomass are produced annually via aquaculture,   

with an estimated value of over 7 billion dollars[8]. 

The conversion of seaweed into biofuels can be achieved via several processes. These processes can 

be broadly classified into biochemical, which include the fermentation of macroalgae to produce 

bioethanol[9], and thermochemical, such as pyrolysis[10], direct combustion[11], and the HTL of 
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macroalgae to produce bio-crude[1]. Biochemical conversion uses biological processes, such as 

fermentation or enzymatic reactions, to convert seaweed into fuels and other valuable chemicals. The 

efficiency of the biochemical conversion of seaweed to bioethanol is affected by several factors, including 

the type of seaweed, the choice of pretreatment, hydrolysis, and the fermentation method [7,12]. 

However, a significant hindrance to achieving high bioethanol yield is the need for microorganisms 

capable of effectively converting the diverse monomeric sugars[12]. On the other hand, thermochemical 

conversion, such as pyrolysis, gasification, combustion, and HTL, involves high temperatures and 

pressures to convert biomass into fuels and other value-added chemicals[13]. Due to its high moisture, 

alkali content, and low energy content, seaweed poses challenges for direct use in combustion, pyrolysis, 

or gasification processes. As a result, pretreatment is necessary to mitigate these issues and make seaweed 

a viable fuel source. HTL, on the other hand, employs water under high temperatures (200-350°C) and 

pressures (5–20 MPa) to transform the organic mass of seaweed into bio-crude, biochar, gas, and water-

soluble compounds, thereby eliminating the need for initial drying of the macroalgae [14]. 

HTL uses water as a solvent and reactant to convert seaweed into useful products. Water has several 

valuable qualities when near its critical point. HTL of seaweed occurs in the subcritical region 

(liquefaction), where water is sustained in liquid form under pressure higher than the saturation 

pressure[15]. Hot compressed (subcritical) water is a suitable medium for effectively converting seaweed 

into four different phases (biocrude, water, gas, or solid char ) of product due to its low viscosity and high 

solubility of organic compounds, among other properties[16–18]. In addition to its properties 

substantially different from water at ambient temperature, hot compressed water has a lower dielectric 

constant (e.g., 78 F𝑚 at 25 °C and 1 MPa to 14.07 F𝑚 at   350℃ and 20 MPa [16,19]), which results 

in increased solubility of hydrophobic chemical molecules, such as free fatty acids [20,21]. 

The products from HTL of seaweed depend on the operating conditions and the chemical composition 

of the biomass[22]. During HTL, the lipid, protein, and carbohydrate fractions decompose into smaller 



4 

molecules in four phases: biocrude, water, gas, or solid char [23], as shown in Figure 1. 

Figure 1. Possible Reaction Pathway for HTL of macroalgae biomolecules (a) Hydrolysis (b) 

Decomposition (c) Dehydration (d) Polymerization (e) Deamination (g) Decarboxylation[24] 

Seaweeds generally contain a high fraction of carbohydrates. A study by Schiener et al. on four 

different species of macroalgae showed that the carbohydrates (cellulose, alginates, mannitol, and 

laminarin) fraction ranges from 63-79%[5]. A study by Galland-Irmouli et al. on the French Atlantic 

Coast macroalgae showed that the protein content, which includes a wide variety of amino acids 

(glutamic acid, aspartic acid, proline, glycine, alanine, valine, methionine, isoleucine, leucine, 

phenylalanine, lysine, and arginine) as building blocks, can range from 9 to 25%[25,29-32]. The biocrude 

produced from HTL of seaweed may contain significant amounts of nitrogen due to its high level of 

proteins[26]. In addition to carbohydrates and proteins, seaweed contains lipids, although less than what 

can be found in microalgae, with a maximum of 4.5% of its dry weight[27]. A variety of fatty acids 

makes up most of the lipid content in seaweed. The two fatty acids that were most commonly found in 

seaweed were palmitic and oleic acid[28]. 



5 

The design and commercialization of an industrial-scale HTL process can be facilitated by the 

accessibility of predictive mathematical models that successfully describe the process[29] and provide 

reasonable estimates of the HTL products for a wide range of seaweed species and HTL operating 

conditions. Biller and Ross[13] used a combination of lipids, protein, and carbohydrates to develop a 

model for estimating biocrude yield from HTL of microalgae at 350℃ and 60 min. While the model 

provides good predictions for some microalgae, it is limited to one process condition (350℃ and 60 min) 

and only estimates the biocrude yield, not accounting for other products (aqueous product, biochar, and 

gas)[13,29,30]. To expand on the limitation of Biller and Ross’s model, Valdez and Savage presented a 

kinetic model with a reaction network to describe the HTL of Nannochloropsis sp. This model provides a 

reasonable estimate of the four phases of products at different operating conditions. Initially, this model 

only applied to Nannochloropsis sp microalgae[29]. Later, this model was further expanded to a more 

general kinetic model for any microalgae species by including the biochemical composition (lipids, 

protein, and carbohydrate) of the microalgae species. While several models have been developed to 

estimate product yields from the HTL of microalgae, to best of our knowledge, two significant attempts 

have been reported for macroalgae. Raikova et al. proposed a biocrude additive model that predicts 

biocrude yield based solely on the lipid fraction of seaweed under a fixed set of process conditions[31]. 

However, this model does not account for the influence of key process parameters such as temperature, 

residence time, and pressure, limiting its applicability to broader HTL scenarios. Similarly, Bach et al. 

developed a linear model to estimate biocrude yield as a function of heating rates. However, this model is 

specific to a single seaweed species (L. Saccharina) and does not capture the influence of other process 

conditions or the yields of other product phases. 

To date, no comprehensive models exist to predict the yields of all HTL product phases (biocrude, 

biochar, aqueous, and gas) across a range of process conditions. This study aims to address this gap. The 

models capture the combined influence of key process variables and the biochemical composition of 

brown seaweed, offering a more comprehensive approach to modeling HTL product distribution. 
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Therefore, in this work, we present novel predictive regression models to estimate the yield of HTL 

products (biocrude, biochar, gas, aqueous) for brown seaweeds. We used model compounds to represent 

the chemical composition of the seaweed species (S. latissima) and performed simulations at various 

process conditions (temperature, residence time, pressure, and water-to-biomass ratio). The carbohydrate 

fraction was represented by cellulose, protein by alanine, and lipid by oleic acid. The criteria for the 

selection of model compounds were: 1) the structural similarity to key chemical linkages found in the 

seaweed (S. latissima) biomass feedstock, 2) similarity to one of the various intermediate HTL products, 

and 3) the availability of kinetic data that accurately depicts the behavior of the compounds under HTL 

conditions. According to previous reports, using model compounds simplifies the process simulation and 

results in product yields similar to those from actual biomass [22,32–34]. 

The design of the simulation conditions followed the three-level central composite design. The results 

obtained from the simulations were used to create multivariate regression models to predict the yield of 

HTL products. This enabled us to understand the effects and interactions of the process variables on 

yields. We statistically analyzed our results using analysis of variance (ANOVA) to identify variables or 

combinations of variables contributing to the predictive model. Several researchers have used traditional 

experimental methods, such as one factor at a time (OFAAT), to explain the effect of temperature, 

residence time, pressure, and water-to-biomass ratio on product yield[1,3–5,26,35–38]. However, this 

method fails to capture the interaction effects of various factors on product yield. The present study 

utilizes response surface methodology to visualize this effect. Finally, the proposed model was optimized 

to obtain the operating conditions that maximize biocrude yield within the studied conditions range. The 

model was further extended to include various brown seaweeds that share a close range of chemical 

composition. The methodology used in this study can be applied to similar operations, and the results 

obtained show the significance of identifying the critical process parameters for optimizing the biocrude 

production from HTL of brown seaweed. 

This article describes several components that contribute to the analysis of the HTL process with the 

goal of maximizing the biocrude yield: 1) the use of kinetic data from the literature to simulate the batch 
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HTL of seaweed; 2) the use of the design of experiments (DOE) in selecting conditions for the 

simulations; 3) the generation of predictive regression models to capture the effect of several operating 

parameters on product yields; 4) validation of the regression models; 5) the use of the regression models 

to maximize the biocrude yield; and 6) sensitivity analysis to identify essential reaction paths to increase 

biocrude production beyond the yields reported in this work. 

2.0 METHODS 

We developed a model to simulate a batch process for the HTL of S. latissima using SuperPro 

Designer v12. SuperPro Designer is a comprehensive and robust process simulation software developed 

by Intelligen, Inc. We simulated the liquefaction process using mixtures of model compounds based on 

the average chemical composition of S. latissima, which consists of 75% carbohydrate (cellulose), 18% 

protein (Alanine), and 7% lipid (oleic acid) on a dry ash-free basis (DAF)[28,39–41]. The DAF allows a 

focused evaluation of the reactive organic components of seaweed, which are primary contributors to 

products formed. Valdez and Savage (2014) proposed a bulk network of possible reaction pathways for 

the HTL of microalgae, as shown in Figure 2. 

Figure 2. Possible reaction pathways for HTL of model compounds[29] 
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These pathways describe how HTL products are formed by considering the independent reaction of each 

model compound (cellulose, alanine, oleic acid) representing the chemical composition of seaweed[30]. 

The solid represents not only the initial biomass that undergoes the HTL process but also the biochar 

formed as a co-product of the process. 

We used experimental kinetic data reported by Obeid et al. [33,34] for the HTL of each model 

compound. Therefore, no new experimental testing was performed in this work. The rate constants (k), 

pre-exponential factors (A), and activation energies (𝑬𝒂) are reported in Table 1. Kinetic data were fitted 

according to this pathway, as shown in Figure 3, and each rate constant is associated with the transition 

from one phase to another. 

Figure 3. Reaction Pathways for Model Compounds adapted from [22,33,34] 

Table 1. Kinetic Data for Model compounds adapted from [22,33,34] 

Compound Path Reaction k [℃](𝑺𝒆𝒄𝟏) 

Temperature (℃) 

LnA 𝑬𝒂 

(KJ/mol) 

Ref. 

250 300 350 
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Carbohydrate 1 Solid to Aqueous 1.69 2.73 3.33 4.8±1.3 18.6±1.0 [33] 

2 Biocrude to Aqueous 3.19 3.97 8.35 7.0±3.4 25.6±2.8 [33] 

3 Aqueous to Biocrude 4.80 4.88 5.73 2.6±0.9 4.7±0.9 [33] 

4 Aqueous to Gas 1.20 1.29 1.40 1.1±0.1 4.2±0.1 [33] 

5 Biocrude to Solid 4.8 18.6 20.4 11.0±6.4 40.0±5.2 [33] 

Protein 1 Solid to Aqueous 12.24 16.99 59.79 12.0±6.1 42.1±4.9 [22] 

2 Biocrude to Aqueous 7.87 59.24 51.48 12.8±11.4 45.4±9.2 [22] 

3 Aqueous to Biocrude 0.85 5.84 4.03 10.2±12.3 43.8±10.0 [22] 

4 Aqueous to solid 2.62 1.13 3.82 2.6±11.9 8.5±9.6 [22] 

5 Aqueous to Gas 0.36 0.38 0.38 -0.8±0.2 1.9±0.2 [22] 

Lipids 1 Solid to Aqueous 33 45.13 60 7.2±0.1 16.1±0.1 [22] 

2 Biocrude to Aqueous 2.14 28.58 28.8 16.7±14.6 67.5±11.8 [22] 

3 Aqueous to Biocrude 12.89 48.19 60.00 11.9±6.0 40.1±4.9 [22] 

4 Biocrude to solid 3.23 3.23 3.30 0.6±18.5 0.1±15.0 [22] 

5 Biocrude to Gas 0.14 0.24 0.17 -0.3±4.4 6.7±3.6 [22] 

A, 𝐸 represent the pre-exponential factor and activation energy, respectively. 

2.1 Process Flowsheet 

The process flow diagram for HTL of model compounds representing brown seaweed (kelp) is 

shown in Figure 4. The macroalgae and water are combined in a mixer to form a slurry and then pumped 

to the HTL reactor. The reactor is heated to the target temperature (240–350℃) and pressure (120-200 

bar) for the reaction, allowing a residence time of 5–60 minutes. The HTL process entails the conversion 

of biomass into four product phases, namely gas, biocrude, biochar, and aqueous phases. 
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Figure 4. A batch system for HTL of model compounds representing brown seaweed (S. latissima) 

Once the desired residence time in the reactor elapses, the reactor is cooled and depressurized to stop the 

HTL process and facilitate the removal of the gas from the resulting product. Subsequently, the remaining 

content is directed to a filter to separate the biochar component. In the subsequent stage, a cyclonic 

separator isolates the desired product, biocrude, from the aqueous phase, predominantly water and certain 

dissolved organic compounds. This separation step ensures the extraction and purification of the valuable 

biocrude component for further processing. The biocrude was modeled as a mixture of furfural, pyridine, 

and Octanoic acid obtained from the HTL of cellulose, alanine, and oleic acid, respectively. The gas 

produced from HTL of seaweed from experiment testing [37] majorly consists of CO. Hence, the gas in 

this work was modeled as CO. The solid biochar was modeled as ash to maintain the physical state as 

solid, while the aqueous product was obtained by difference method. This choice was based on results 

reported in prior studies[22,33,34]. All model compounds selected are predominant compounds in each 

product phase. 

A prior study performed in our lab on the HTL of S. latissima [37] reported similar biocrude 

composition as results reported for the model compounds used in this study [22]. 

The HTL product yields were calculated using equation (1-3) below. 

𝐵𝑖𝑜𝑐𝑟𝑢𝑑𝑒 𝑌𝑖𝑒𝑙𝑑(𝑤𝑡%) = 
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑐𝑟𝑢𝑑𝑒 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑘𝑒𝑙𝑝 
х 100 

(1) 

𝐵𝑖𝑜𝑐𝑟𝑢𝑑𝑒 𝑌𝑖𝑒𝑙𝑑(𝑤𝑡%) = 
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑐𝑟𝑢𝑑𝑒 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑘𝑒𝑙𝑝 
х 100 

(2) 
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𝐵𝑖𝑜𝑐ℎ𝑎𝑟 𝑌𝑖𝑒𝑙𝑑(𝑤𝑡%) = 
𝑚𝑎𝑠𝑠 𝑜𝑓𝑠𝑜𝑙𝑖𝑑 𝑐ℎ𝑎𝑟 
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑘𝑒𝑙𝑝 

𝑥100 
(3) 

2.2 Design of Simulation Runs 

We used the design of experiments (DOE) to select process variables and determine their effects 

on the product yields (biocrude, aqueous, biochar, and gas yield). DOE employs statistical techniques to 

assess data and forecast product composition within the limits chosen for the simulation run design [42]. 

The simulation runs in this work were created using the response surface's central composite design 

(CCD), which involved different levels of the residence time, temperature, water-to-biomass ratio, and 

pressure, recording the impact of these inputs on the product yields, as shown in Table 2. The CCD 

consists of a two-level factorial design with an additional 2k for the axial points, where k is the number of 

independent variables and center points that provide information about the pure error or variability in the 

system [42]. 

Table 2. Simulation Run Design 

Levels -1 0 1 

Temperature (T, ℃) 240 320 400 

Residence Time (Ti, minutes) 5 32.5 60 

Water-to-biomass ratio (WB, g/g) 1 5.5 10 

Pressure (P, bar) 120 160 200 

We conducted the DOE with MATLAB, resulting in 30 runs. The design was implemented using custom 

scripts to systematically vary the levels of the independent variables (residence time, temperature, water-

to-biomass ratio, and pressure) and record the corresponding response variables (biocrude, aqueous, 

biochar, and gas yield). 
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3.0 RESULTS AND DISCUSSION 

3.1 Hydrothermal Liquefaction 

Figures 5(a) and 5(b) shows the results obtained at a single experimental condition. The HTL of 

each model compound resulted in the decomposition of the solid phase via hydrolysis at 320℃, 160 bar, 

and a water-to-biomass ratio of 10:1. Each model compound is rapidly converted to simpler molecules, as 

shown in Figure 5(a). The initial conversion stage involves hydrolysis of cellulose, alanine, and oleic 

acid, forming an aqueous phase. Compounds in this phase then undergo further reactions to produce 

biocrude, gas, biochar, and aqueous products. The downward trend in concentrations of the starting model 

compounds confirms the expected progression of the first conversion stage. As shown in Figure 5(b), the 

concentration of biocrude from cellulose is the highest due to the high carbohydrate concentration of the 

seaweed. Following this is the concentration of biocrude from alanine and then oleic acid. 

Figure 5c shows the effect of temperature, with collected simulation data for the yields of the 

four phases of the products at varying temperatures (250℃-400℃) at a constant residence time (60 

minutes) and water-to-biomass ratio (10:1). The results show that the biocrude yield increases slightly 

with temperature to a maximum of 21% at 300℃. Further increase in the temperature increased the yields 

of gas and solid residue. As the temperature increased above the critical temperature of the water at 

374℃, the biocrude yield dropped. A high yield of aqueous product was formed at lower temperatures 

and decreased as temperature increased, while the gas and biochar yields increased with temperature. 
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(a) (b) 

(c) 

Figure 5. Plots from the simulation using kinetic data: (a) The conversion rate for each model 

compound, and (b) the concentration-time plot for biocrude and gas. (c) effect of temperature on yield of 

products from HTL of S. Latissima using simulation data at constant residence time(60minutes), pressure 

(200bar), and water-to-biomass ratio 10:1 

3.2 Regression Model Fitting 

The results obtained from the simulation for HTL of seaweed at various levels of independent 

variables using CCD are presented in the supplementary material (supplementary table S1). The data was 

used to develop regression models to capture the effect of temperature, pressure, residence time, and 
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water-to-biomass ratio on product yields from the HTL of the brown seaweed (S. latissima). The general 

form of product yields is shown in equation 4, and coefficients of model terms are represented as 

alphabets (a-i) are presented in Table 3. 

𝑌𝑖𝑒𝑙𝑑𝑠(%) = 𝑎 + 𝑏(𝑇) + 𝑐(𝑃) + 𝑑(𝑊𝐵) + 𝑒(𝑡) + 𝑓(𝑇 ∗ 𝑊𝐵) + 𝑔(𝑇 ∗ 𝑃) + ℎ(𝑇 ∗ 𝑡) 

+𝑖(𝑊𝐵 ∗ 𝑡) + 𝑗(𝑇) + 𝑘(𝑡) + 𝑙(𝑇𝑊𝐵) 

(4) 

Where T, t, P, and WB represent temperature, residence time, pressure, and water-to-biomass ratio, 

respectively 

Table 3. Table of coefficients for model terms 

Coefficients Biocrude Gas Aqueous Product Biochar 

a -90.81 +168.90 -191.58 +424.86 

b +0.57 -1.39 +1.74 -2.58 

c +0.0065 +0.46 +0.13 +0.0000021 

d +4.73 -5.55 -1.81 -42.96 

e +0.18 -0.53 +2.11 -3.086 

f -0.0099 +0.026 0 +0.31 

g 0 -0.0019 0 0 

h 0 0 0 +0.0053 

i 0 0 -0.070 0 

j -0.00090 +0.0030 -0.0033 +0.0042 

k -0.0020 +0.0097 -0.024 0.016 

l 0 0 0 -0.00054 

The regression model’s ability to predict the biocrude yield within the range of conditions studied 

was revealed by the coefficient of determination 𝑅 = 0.96 and adjusted 𝑅 = 0.94, which measures the 

percentage (96%) of the response variable's overall fluctuation accounted for by the model. The closer the 

R-squared value to 1, the better the model fits the data, so a value of 0.96 suggests a solid relationship 
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between the independent and the dependent variables. The adjusted R-squared value measures the model's 

performance by accounting for only those independent variables that significantly explain the variability 

in the dependent variable. The predictive model for gas yield has a 𝑅 = 0.96 and adjusted 𝑅 = 0.94 

while the predictive model for the aqueous product has a 𝑅 = 0.91 and adjusted 𝑅 = 0.88. The 

predictive model for biochar has a 𝑅 = 0.76 and adjusted 𝑅 = 0.64. The relatively low R² and adjusted 

R² observed for biochar can be attributed to the model's inability to account for the repolymerization of 

intermediates interactions during HTL, which are known to contribute significantly to biochar formation. 

Next, we conducted ANOVA examinations to determine the statistical significance of the 

suggested model terms. This test, employed in statistical analysis, evaluates the importance of each model 

term and its collective impact on the response based on the p-value. 

The results of the ANOVA analysis for the models can be found in the supplementary material 

(supplementary table S2-S5). Terms with p-values lower than 0.05 are considered statistically significant. 

In contrast, terms with p-values greater than 0.05 are excluded from the model because they do not 

significantly affect the model response. 

The F-value, commonly referred to as the F-statistic is a metric used to compare the variability between 

group means relative to the variability within groups. The regression models generated in this work are 

statistically significant, as shown by their F-values of 167.15, 53.77, 29.74, and 5.7 for biocrude, gas, 

aqueous, and biochar models, respectively. A high F-value for the model provides strong evidence against 

the null hypothesis that all regression coefficients are zero. It also implies that at least one or more 

independent variables (T, t, P, WB) in the model contribute significantly to explaining the variability in 

the response variable (biocrude, gas, aqueous, and biochar yield). 

3.3 Model Validation 

The predictive regression model developed for the yield of products from the HTL of brown 

seaweed (S. latissima) was first validated by examining its predictive performance. We compared the 

predicted yields generated by the regression model against the corresponding actual (kinetic model) 
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values from the simulation shown in Figure 6. Next, we compared experiment yields from several 

literature reports on HTL of brown seaweed with the predicted yields from the regression models at 

similar conditions. These experimental values provided a standard against which we could assess the 

accuracy of our predictions since they reflected actual outcomes of the HTL process (Figure 7). The 

predictive regression model is applicable for brown seaweeds, as it was developed using their specific 

chemical composition (lipid, carbohydrate, and protein content). Applying it to other seaweed types with 

different chemical profiles may reduce its accuracy. 

3.3.1 Validation with Kinetic Model 

As shown in Figure 6, the yields from the predictive models (predicted yield) based on the 

selected variables were plotted against the actual kinetic yields (actual yield) from the simulation in a 

parity plot. The diagonal 45-degree line on the plot represents a perfect agreement between the predictive 

and kinetic models. The statistical analysis shows that the simulated runs fit the selected regression model 

in equation 4 well, with a mean standard deviation of residuals of 1.018, 1.015, 1.101, and 2.181 for 

biocrude, gas, aqueous, and biochar products, respectively. This suggests that the predictive regression 

models appropriately depict the correlation between the studied variable and correctly capture the 

underlying system, with few discrepancies. The mean standard deviation of residuals measures the error 

between the predictive model and the actual kinetic model yield, indicating the predictive model’s 

accuracy in predicting the actual yield of products from HTL of seaweed. 
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(a) (b) 

(c) (d) 

Figure 6. Parity plot for yield of (a) Biocrude (b) Gas (c) Aqueous Product and (d) Biochar. The actual 

yield represents the product yield from the kinetic model, while the predicted yield represents the product 

yield from the predictive model 

3.3.2 Validation with Experimental Results 

The predictive models were developed using model compounds to represent the chemical 

composition associated with one specific species of seaweed (S. latissima). Here, we validate our models 

with experimental yields for HTL of several species of brown seaweed, which typically have high 

carbohydrate and low lipid content. The table showing experimental conditions and HTL product yields 

can be found in the supplementary material (supplementary table S6) provided in this report. 

Figures 7(a) and 7(b) show that the biocrude and gas predictive models performed well by predicting 

yields close to the experimental yield with a residual error between ±3.2 at the same experimental 

conditions. The model performed well for species like S. Latissima, Laminaria saccharina, Ascophyllum 

nodosum, Sargassum tenerrimum, and Fucus ceranoides. The mean residual error measures the mean 

error between the predicted and experimental yield and was found to be 2.82., The standard deviation of 

residuals, which measures how dispersed the data points are from the mean of residuals, was 5.47. 
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It is essential to highlight that despite good agreement between the model predictions and experimental 

data, some deviations still result from intrinsic errors in experimental procedures, variations in feedstock 

properties, or other external factors. 

(a) (b) 

(c) (d) 

Figure 7. Predicted vs. experimental yields:(a) Biocrude, (b) Gas, (c) Aqueous, (d) Biochar with 95% 

predictive interval. This plot compares HTL product yields from the predictive model and experimental 

HTL product yields 

One of these factors is the Maillard reactions, which are synergistic interactions between protein and 

carbohydrate intermediates. This is one among multiple chemical reactions involved in the hydrothermal 
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conversion and may increase the yield of biocrude by up to 25% more than the individual, independent 

reactions of each of the model compounds[43]. In this study, the HTL process is modeled as a set of 

independent reactions without interactions between intermediates of the resulting products. This 

approximation may lead to variations between the predicted and experimental yields. 

We have accounted for these variations using the 95% predictive interval. The 95% predictive interval is 

a statistical measure that provides a range where the experimental yield will fall 95% of the time, based 

on the mean predicted yield and standard error of prediction. As shown in Figure 7(a), 92% of the 

experimental data used in validating our models falls within the 95% prediction interval. While 90% of 

the data falls within the 95% predictive interval in Figure 7(b). The model's strength is supported by the 

large percentage of data points within the predictive interval. The experimental data outside the 95% 

predictive interval may result from the factors we did not account for, like the reactions between 

intermediate products during the HTL process and significant variation between the composition of the 

seaweed species and the one used for our simulation. Future studies will aim to capture these interaction 

effects and variations in the chemical composition of these macroalgae by considering other advanced 

statistical and machine-learning models to capture variations in the chemical composition. 

Figures 7(c) and (d) show the experimental versus predicted yield for aqueous and biochar products. The 

aqueous product model effectively predicted the experimental yields from the literature. Results showed 

that the model accounted for 84% of the data set within the 95% predictive interval. The predictive model 

for the biochar product was less capable of predicting the experimental yield of biochar from the 

literature. The model over-predicts the experimental yield at lower temperatures between 240-300℃ and 

under-predict as well above 300℃ (reported experimental yields provided in the supplementary material 

table S6). 

The regression model predicted 65% of the experimental data within the 95% confidence interval. The 

inability of the models to capture interactions between intermediates during HTL reaction leads to a 

deficiency that is more pronounced for the biochar and aqueous phase. 
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3.4 Response Surface Analysis 

Once the model is validated, the response surface analysis enables one to evaluate and visualize the effect 

of combining multiple variables on product yields. 

3.4.1 Effect of Temperature and Residence Time on HTL Product Yields 

The effect of temperature and residence time on yields at a constant pressure of 200 bar and 

water-to-biomass ratio of 10:1 on HTL can be approximated by a parabolic curve, as shown in Figure 8. 

The yield of biocrude was observed to increase with temperature up to a maximum of about 23% between 

260℃-300℃. As temperature increases beyond this range, the HTL process favors gas production, 

reducing biocrude yield. This result suggests a temperature range in which the biocrude yield is 

maximized (260-300℃). The decrease in biocrude yield as the temperature rises toward the gasification 

temperature suggests further thermal decomposition into smaller molecules at higher temperatures. 

Overall, a long residence time (30-60 minutes) favors the formation of biocrude at low temperatures 

(between 240-330℃), while a short residence time below 30 minutes is preferred for high temperatures 

(above 340℃). Prolonged residence time at high temperatures causes the degradation of the biocrude, 

leading to an increase in biochar and gas formation. At lower temperatures, the macromolecules in the 

macroalgae undergo hydrolysis to form smaller molecules, followed by reactions like dehydration, 

decarboxylation, and deoxygenation. At very high temperatures, the rate of re-polymerization increases, 

leading to an increase in biochar formation while the rate of hydrolysis is reduced [36]. 

Some researchers have reported similar observations. Anastasakis and Ross observed for the HTL of L. 

saccharina, that the biocrude yield reaches a maximum of 19.3% at a temperature of 350℃, with a 

residence time of 15 min[1]. Qu et al. (2003) carried out HTL of L. Cunninghamia and reported a 

maximum yield of 17% for biocrude at 340℃, 30 minutes, and observed a reduction of biocrude away 

from this temperature range[36]. They suggested that this effect is caused by the competition between 

hydrolysis and re-polymerization reactions during HTL. The initial reaction stage involves biomass 

decomposition and depolymerization into smaller compounds. At temperatures above 340℃, the 
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compounds tend to undergo re-polymerization, reducing the biocrude yield. Zhou et al. (2010) found that 

300℃ and 30 minutes are enough to produce the maximum biocrude of 23% from E. prolifera. A 

deviation from this condition reduces the biocrude yield[35]. Yin et al. also observed a peak at 310℃ 

with a biocrude yield of 34% and a decrease in biocrude yield as temperature increases. 

The residence time has a similar effect on the biocrude yield, though not as pronounced as the effect of 

temperature, as shown in Figure 8(a). The biocrude yield increases with residence time for about 40 

minutes at moderate temperatures (250-320℃), after which the yield reaches a plateau. Longer residence 

times at temperatures above 350℃ tend to reduce biocrude yield. Overall, temperature and residence time 

strongly affect the yields of biocrude and its co-products from HTL. According to a literature report, a 

moderate   temperature (300-320 ℃) and sufficient residence time (30-60 minutes) promote the formation 

of high molecular weight, viscous and dense biocrude[44]. 

High temperature and long residence times favor high gas yield from the HTL process, significantly 

beyond 330℃, as shown in Figure 8(b). 

(a) (b) 
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(c) (d) 

Figure 8. Response surface plot obtained from the predictive model showing the effect of residence time 

and temperature on(a)biocrude, (b)gas, (c)aqueous, and (d)biochar at 200 bar and water-to-biomass ratio 

10:1 

The effect of temperature and residence time on aqueous products is depicted in Figure 8(c). As 

temperature increases, the yield of aqueous products increases to a maximum of about 40% at a 

temperature between 300-320℃, reducing as the temperature increases further away from this range. We 

hypothesize that temperatures within the range of 300-320℃ tend to promote hydrolysis and 

depolymerization of the biomass, leading to a high yield of aqueous product. 

Figure 8(d) depicts the effect of temperature and residence time on biochar yield from the HTL of 

macroalgae. Low temperatures between 240-330℃ lead to a low yield of solid residue at residence time 

above 30 minutes, while operating at high temperatures causes cracking of the biocrude molecules, 

causing re-polymerization to promote biochar formation. 

Long residence times lead to biochar formation as temperature increases towards the gasification 

temperature. Velasco Calderón et al. described biochar as a carbonaceous product called humins, formed 

during acid-base condensed phase conversion of biomass intermediates[45]. Jatoi et al., while studying 

the effect of residence time on biocrude yield, observed that the kinetics of HTL strongly affected the 

residence time and that a maximum yield of biocrude can be achieved with sufficient residence time, 
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while excessive long times lower the biocrude yield, leading to the formation of biochar and gaseous 

products[46]. 

3.4.2 Effect of Pressure and Water-to-Biomass Ratio on HTL Yields 

In this section, we varied the pressure and water-to-biomass ratio to verify their effects on product 

yields at 320℃ and 60 minutes. Pressure and temperature must be adjusted to ensure water remains 

liquid, maintains high density, and is effective as a solvent. As shown in Figure 9(a), as pressure 

increases in the range of 120-200 bar, it promotes the production of biocrude between 20-22% with a 

water-to-biomass ratio of 10:1. The effect of pressure on biocrude yield is not as significant as the effect 

of temperature and residence time. Pressure shows a slightly linear relationship with biocrude yield; we 

believe that pressure levels above 113 bar (saturation pressure of water at 320℃) are sufficient to 

maximize the biocrude yield. ANOVA analysis in the supplementary material (supplementary table S2-

S5) shows p-values greater than 0.05 for pressure in all models except the biogas yield model, indicating 

its minimal effect on product yields. 

Since water serves as a hydrogen donor and a solvent for hydrolyzing the high molecular weight 

carbohydrates in biomass, the water loading in the system is a crucial parameter [47]. As shown in Figure 

9(a), the biocrude yield increased linearly with the water-to-biomass ratio, with the maximum biocrude 

yield of about 21% at water-to-biomass of 10:1. A similar result was reported by Anastasakis et al., 

during the HTL of L. Saccharina: the maximum biocrude yield was obtained when 3g of the seaweed 

reacted with 30 mg of water, and any further increase in the amount of water did not significantly increase 

the biocrude yield. An increase in the water-to-biomass ratio increases the yield of these products. 

Pressure has a minimal effect on both gas and aqueous products. At a water-to-biomass ratio of 10:1, an 

increase in pressure decreases the yield of gas, as shown in Figure 9(b), while it increases the yield of 

aqueous product, as shown in Figure 9(c). 
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(a) (b) 

(c) (d) 

Figure 9. Response surface plot obtained from the predictive model showing the effect of water-to-

biomass and pressure on (a) biocrude, (b) gas, (c) aqueous, and (d) biochar at 320℃ and 60 minutes 

residence time. 

3.5 Optimization of Selected Factors to Enhance Biocrude Yield 

Section 3.4 reported the investigation of factors that contribute to the production of biocrude. In 

HTL, one is usually interested in maximizing the yield of biocrude as an alternative fuel. Here, the results 

from the previous section lead to the identification of optimal conditions to maximize biocrude yield. We 

used the simplex search method of Lagaris[48] on MATLAB to iteratively optimize the model by 

maximizing the biocrude yield predictive model in equation (4) as the objective function and locating the 
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optimum biocrude yield, as shown in Figure 10. Similar to linear programming, this approach begins 

with an initial viable solution, which is typically an estimated point in the feasible region, then iteratively 

traverses a set of points that together constitute a simplex. The algorithm converges to a local optimum of 

the objective function by modifying the simplex's shape and location after evaluating the objective 

function at each iteration's vertices. 

(a) (b) 

Figure 10. Numerical Optimization of the predictive model for optimum biocrude yield. 

The optimal biocrude yield was found to be 23% for temperature, pressure, residence time, and the water-

to-biomass ratio of 283℃, 200 bar, 47 minutes, and 10:1, respectively. This combination of variables 

maximizes the yield of biocrude from HTL within the entire range of parameters studied. 

3.6 Sensitivity Analysis 

In this section, we are interested in determining how much single reactive steps from the kinetic 

model affect the biocrude yield. Reaction pathways shown in Figures 2 and 3 include the breakdown of 

macromolecules into biocrude, the biocrude to aqueous product, biocrude to gas, the aqueous product to 

gas transformation, and the subsequent reactions that either promote or inhibit the formation of biocrude. 
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Identifying which reaction pathways that are most sensitive to changes in process conditions is essential 

for maximizing the biocrude yield while minimizing undesirable by-products like biochar or gas. 

The sensitivity analysis is a valuable tool for examining and identifying critical reaction paths that 

significantly affect biocrude yield. This approach quantifies the impact of varying rate constants for 

individual reactions on the overall product yield, allowing us to pinpoint the most critical reactions that 

influence biocrude yield 

The sensitivity coefficient Si,j can be calculated using the equation: 

𝑆, = 
𝜕𝑙𝑛𝐶 
𝜕𝑙𝑛𝑘 

= 

∆𝐶 
𝐶 
∆𝑘 
𝑘 

(5) 

In equation (5), i represents HTL products, j represents one of the reactions in the pathway, 𝐶 , 

∆𝐶 , 𝑘 , ∆𝑘 represents concentration, change in concentration of products, rate constant, and change in 

rate constant. To calculate the sensitivity coefficients, we applied a positive 5% variation to each rate 

constant and then rerun the kinetic model to compute the change in concentration (∆𝐶) for each HTL 

product. 

The previous discussion showed a maximum biocrude yield of 23% can be obtained at 283℃, 200 bar, 54 

minutes, and a 10:1 water-to-biomass ratio. For this reason, we computed the sensitivity coefficient 

around these conditions, and the results are presented in Figures 11 for carbohydrates, proteins, and 

lipids. 

The sensitivity analysis under optimal conditions revealed that the aqueous-to-biocrude reaction with rate 

constant 𝑘 has the most significant influence on the biocrude yield from the carbohydrate fraction of the 

macroalgae, as shown in Figure 11(a). To maximize biocrude yield, it is essential to adjust process 

variables such as reaction temperature, pressure, and residence time to conditions that favor the aqueous 

to biocrude conversion. For instance, increasing the temperature to its optimal value can accelerate the 
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conversion of intermediate products in the aqueous phase to biocrude, while maintaining optimal pressure 

ensures that the aqueous phase remains at a density conducive to biocrude formation. The analysis also 

showed that biocrude production is minimally affected by the biocrude-to-aqueous phase reaction with 

rate constant 𝑘, exhibiting no significant impact on any product phases. This suggests that the rate 

constant 𝑘 is inconsequential to the overall process, and the products in the aqueous phase likely 

originate directly from the hydrolysis of carbohydrates rather than the degradation of biocrude. In 

contrast, the analysis shows that gas formation is sensitive to the aqueous-to-gas reaction, highlighting 

this pathway as a critical driver in producing gaseous products. Biochar formation, on the other hand, is 

primarily governed by the aqueous phase-to-biocrude reaction and the subsequent biocrude-to-biochar 

conversion. These pathways significantly contribute to the accumulation of solid residues during the HTL 

process. The formation of humins, as described by Jatoi et al., is linked to the degradation of biocrude, 

further emphasizing the role of these reactions in char production[46]. 

Figure 11(b) shows that, at optimal conditions, the hydrolysis of the protein to form monomers 

with a rate constant 𝑘 is not a significant reaction, as none of the four products depend on this reaction. 

However, the biocrude yield from the protein fraction strongly depends on the aqueous to biocrude and 

biocrude to aqueous reactions. Therefore, to maximize biocrude production from the protein fraction of 

the seaweed, it is essential to adjust reaction conditions and use catalysis that maximizes the conversion 

of aqueous phase products to biocrude. Additionally, the formation of biochar and biogas are sensitive to 

the aqueous-to-biochar and aqueous-to-biogas reactions. 

The formation of the HTL products does not depend on the reaction that converts the lipid 

fraction to the aqueous phase, as shown in Figure 11(c). The lack of sensitivity indicates that the 

hydrolysis of the lipid fraction does not directly contribute to biocrude formation via the aqueous 

conversion pathway. Instead, biocrude, gas, and biochar production are more sensitive to the reactions 

that convert aqueous into biocrude and biocrude into aqueous-phase products. This suggest that biocrude 

formation from the lipid fraction relies on reactions that convert intermediates in the aqueous phase into 
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biocrude. Therefore, to maximize biocrude yield from the lipid fraction of the biomass, the conditions 

must favor the aqueous to biocrude reaction, or a catalyst must be used to promote this reaction. 

(a) (b) 

(c) 

Figure 11. Sensitivity analysis on reaction kinetic paths from Figure 3 (a) Carbohydrate (b) Protein (c) 

Lipid Fraction 

Overall, the aqueous-to-biocrude reaction plays a pivotal role in biocrude production from HTL 

of all seaweed fractions, indicating that water-soluble compounds are a significant precursor for biocrude 

formation. To optimize this conversion, various studies have highlighted the importance of catalytic 

interventions[49–53]. Specifically, heterogeneous catalysts, such as Pt/C, Ru/C, and Pt/C + Ru/C, have 

been shown to enhance biocrude yields by reducing the loss of the water-soluble organic to the aqueous 

phase[49]. These catalysts promote essential reactions like hydrogenation and decarboxylation, thereby 

facilitating the conversion of aqueous-phase organics into biocrude. 
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4.0 SUMMARY AND CONCLUSIONS 

This study provides new insights into the effect of operating conditions on seaweed product 

yields during HTL. The regression models developed from kinetic data successfully captured the behavior 

of the four product phases (biocrude, gas, biochar, and aqueous phase) under varying HTL conditions. 

Our findings reveal that temperature and residence time are the primary factors affecting biocrude yield, 

with an optimal range identified at moderate temperatures (250-320°C) and residence times of around 40 

minutes. Beyond these conditions, higher temperatures and longer residence times reduce biocrude yield 

and increase gas and biochar formation. The pressure was found to have a minimal effect on product yield 

but remains essential for maintaining water in a liquid state during the process. 

Our study also involved applying response surface methodology to visualize the impact of 

operating conditions on product yield. The model was adjusted to determine the most effective operating 

parameters to optimize the HTL of brown seaweeds. The results showed that the highest biocrude yield of 

23% was obtained at a temperature of 283℃, pressure of 200 bar, residence time of 47 minutes, and a 

water-to-biomass ratio of 10:1. 

Sensitivity analysis showed the critical role of the aqueous-to-biocrude reaction across all macroalgae 

fractions, suggesting that water-soluble compounds (WSP) are the major source of biocrude. This finding 

offers a significant pathway for further optimization in HTL processes. 
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Supplementary Table S1 

Simulation runs from design of experiment with product yields 

Temperatur 
e(T) 

Pressure 
(P) 

Water/Biomass 
(WB) 

Time 
(t) 

Biocrude 
Yield(%) 

Biogas 
Yield(%) 

Biochar 
Yield(%) 

Aqueous 
Product(%) 

240 120 5.5000 
32.5 
000 

11.9000 6.8700 5.8300 75.4000 

240 160 10 
32.5 
000 

20.1700 10.4300 7.6700 61.7300 

240 200 5.5000 
32.5 
000 

11.9400 5.9000 5.8300 76.3300 

400 160 1 
32.5 
000 

0.0100 28.4800 71.5100 0 

320 160 5.5000 
32.5 
000 

12.8000 12.7300 6.7700 67.7000 

320 200 1 
32.5 
000 

3.9700 3.5300 2.2700 90.2300 

400 120 5.5000 
32.5 
000 

1.3000 71.1300 14 13.5700 

240 160 1 
32.5 
000 

3.6700 1.8300 4.0300 90.4700 

320 160 1 5 3 3.3000 31.6000 62.1000 

320 160 1 60 3.8000 6.5700 3.9000 85.7300 

320 120 1 
32.5 
000 

3.9000 4.6600 2.2700 89.1700 

240 160 5.5000 60 12 10.4000 5.4000 72.2000 

240 160 5.5000 5 7.4000 1.9000 46.5000 44.2000 

320 120 10 
32.5 
000 

21.3600 28.2200 11.2600 39.1600 

320 160 10 5 16.5300 21.2100 32.4300 29.8300 

320 200 5.5000 60 12.4600 20.0100 12.6300 54.9000 

400 160 10 32.5 2.2700 74.0300 23.7000 0 
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000 

400 160 5.5000 60 1.5700 71.9300 26.5000 0 

320 160 5.5000 
32.5 
000 

12.8000 12.7300 6.7700 67.7000 

320 160 10 60 20.7300 39.1400 21.4000 18.7300 

320 120 5.5000 5 9.5700 28.8000 32.0300 29.6000 

320 200 10 
32.5 
000 

21.8300 19.2700 11.2700 47.6300 

320 120 5.5000 60 12 26.3400 12.6300 49.0300 

400 160 5.5000 5 1.5700 77.8600 20.5700 0 

320 160 5.5000 
32.5 
000 

12.8000 12.7300 6.7700 67.7000 

320 160 5.5000 
32.5 
000 

12.8000 12.7300 6.7700 67.7000 

320 160 5.5000 
32.5 
000 

12.8000 12.7300 6.7700 67.7000 

400 200 5.5000 
32.5 
000 

3.1000 46.4300 14 36.4700 

320 200 5.5000 5 9.8300 6.9400 32.0300 51.2000 

ANOVA ANALYSIS 

Supplementary Table S2 

Biocrude Model ANOVA Analysis 

Model Terms SumSq DF MeanSq F pValue 
T 273.23 1 273.23 93.509 1.4132e-07 
P 0.80083 1 0.80083 0.27408 0.6088 

W_B 595.58 1 595.58 203.83 9.7661e-10 
t 17.91 1 17.91 6.1294 0.026686 

T:P 0.7744 1 0.7744 0.26503 0.61472 
T:W_B 50.694 1 50.694 17.35 0.00095274 
P:W_B 0.04 1 0.04 0.01369 0.90852 

T:t 5.29 1 5.29 1.8105 0.19984 
P:t 0.01 1 0.01 0.0034224 0.95418 
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W_B:t 2.89 1 2.89 0.98908 0.33685 
T^2 216.89 1 216.89 74.229 5.7183e-07 
P^2 4.6889e-28 1 4.6889e-28 1.6047e-28 1 

W_B^2 0.37362 1 0.37362 0.12787 0.72599 
t^2 16.347 1 16.347 5.5946 0.032987 

Error 40.907 14 2.9219 

Supplementary Table S3 

Gas Model ANOVA Analysis 

Model Terms SumSq DF MeanSq F pValue 
T 9214.7 1 9214.7 289.56 9.4893e-11 
P 340.69 1 340.69 10.706 0.0055638 

W_B 1726.3 1 1726.3 54.248 3.5357e-06 
t 98.499 1 98.499 3.0952 0.10035 

T:P 140.78 1 140.78 4.4238 0.050004 
T:WB 341.33 1 341.33 10.726 0.0055303 
P:WB 15.288 1 15.288 0.48041 0.49957 

T:t 52.056 1 52.056 1.6358 0.22169 
P:t 60.295 1 60.295 1.8947 0.19029 

W_B:t 53.729 1 53.729 1.6884 0.2148 
T^2 2317.3 1 2317.3 72.82 6.4087e-07 
P^2 14.888 1 14.888 0.46784 0.50515 

W_B^2 23.756 1 23.756 0.74652 0.40214 
t^2 345.9 1 345.9 10.87 0.0052947 

Error 445.52 14 31.823 

Supplementary Table S4 

Aqueous Product Model ANOVA Analysis 

Model Terms SumSq DF MeanSq F pValue 
T 11426 1 11426 112.25 4.5448e-08 
P 308.36 1 308.36 3.0294 0.10369 

W_B 4056.1 1 4056.1 39.848 1.9147e-05 
t 337.72 1 337.72 3.3178 0.089966 

T:P 120.67 1 120.67 1.1855 0.29463 
T:W_B 206.5 1 206.5 2.0287 0.17626 
P:W_B 13.727 1 13.727 0.13486 0.71894 

T:t 196 1 196 1.9255 0.18694 
P:Ti 61.858 1 61.858 0.60771 0.44863 

W_B:t 301.54 1 301.54 2.9624 0.10723 
T^2 3033 1 3033 29.797 8.4246e-05 
P^2 8.8225 1 8.8225 0.086674 0.77277 

W_B^2 82.785 1 82.785 0.8133 0.3824 
t^2 2155.7 1 2155.7 21.178 0.00041096 

Error 1425.1 14 101.79 
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Supplementary Table S5 

Biochar Model ANOVA Analysis 

Model Terms SumSq DF MeanSq F pValue 
T 752.4 1 752.4 4.9985 0.042173 
P 8.3333e-06 1 8.3333e-06 5.5362e-08 0.99982 

W_B 5.1352 1 5.1352 0.034115 0.85611 
t 1058.4 1 1058.4 7.0316 0.018965 

T:P 6.5955e-27 1 6.5955e-27 4.3816e-29 1 
T:W_B 661.78 1 661.78 4.3964 0.054659 
P:W_B 2.5e-05 1 2.5e-05 1.6608e-07 0.99968 

T:t 552.96 1 552.96 3.6735 0.075926 
P:t 1.7664e-27 1 1.7664e-27 1.1735e-29 1 

W_B:t 69.472 1 69.472 0.46153 0.50799 
T^2 469.2 1 469.2 3.1171 0.099266 
P^2 46.632 1 46.632 0.30979 0.58659 

W_B^2 212.69 1 212.69 1.413 0.25433 
t^2 1015.9 1 1015.9 6.7493 0.021061 

Error 2107.4 14 150.53 

Supplementary Table S6 

Experimental data obtained from the literature[1,2,11,3–10] 

Temperature 
(℃) 

Pressure 
(bar) Water/biomass Time(minutes) 

Exp. 
Biocrude 

Yield 
Pred. Biocrude 

Yield 

220 120 10 30 9.6 20.74865 
240 120 10 30 11.9 21.89275 
260 200 10 30 18 22.83509 
280 200 10 30 19 22.54239 
300 200 10 30 20.5 21.53129 
320 200 10 30 18.5 19.80179 
300 200 10 5 15 18.88444 
300 200 10 15 18 20.25053 
300 200 10 30 20.9 21.01465 
300 200 10 60 18 20.81002 
250 200 10 15 8.7 20.885515 
275 200 10 15 15 20.25053 
300 200 10 15 18 17.976405 
325 200 10 15 19 14.57978 
350 200 10 15 19 14.909696 
370 200 10 15 15 15.01943 
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350 200 10 18 15.2 15.707382 
350 200 10 25 16 15.65591 
350 200 10 44 6 9.31166 
350 200 10 60 12 15.65591 
350 200 5 60 22 18.52103 
350 200 10 60 23.6 21.26163 
320 200 10 15 21 14.57978 
330 200 10 15 23 17.38688 
340 200 10 15 16.33 20.74499 
350 200 10 15 14.67 19.73389 
350 200 10 15 19.3 15.22558 

350 200 10 15 13 14.32146 
380 200 10 15 19.2 15.60222 
350 200 10 15 17.6 14.57978 
350 200 10 15 9.8 14.32146 
350 200 10 15 17.8 14.32146 
330 200 10 15 20.9 14.57978 
340 200 10 15 16 14.458765 
350 200 10 15 16 14.458765 
360 200 10 15 19.1 14.717085 
350 200 10 15 16.3 21.26163 
260 180 10 15 18.14 22.45372 
280 180 10 15 21.2 18.01095 
300 180 10 15 18.5 18.55717 

Exp. AP 
Yield 

Pred. AP 
Yield Exp. Gas Yield Pred. Gas Yield 

Exp. Biochar 
Yield Pred. Biochar Yield 

45 58.60749 25 5.65285 20 13.60764 
48 62.84009 23 5.70305 17 15.98304 
42 54.27917 21 6.36381 18 17.57036 
40 63.33969 25 8.18841 18 18.37464 

36.5 59.60669 26.5 12.38341 17 18.39084 
35 43.08017 30 29.6 16.5 17.61896 
37 33.57233 27 26 16 30.391575 
40 42.96383 26 22.39 17 18.38874 

36.5 46.93379 27 22 17 18.12138 
32 30.61745 28 30.50633 25 32.886465 
30 58.72344 12 8 24.5 32.25287 
28 49.749785 12 12.12 18 30.393465 
28 54.36944 12.8 13.14277 15 27.30384 
27 45.969315 15 22.319895 12 22.985465 
26 33.42044 16 33.978258 17 18.646065 
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24 20.39424 15 51.035754 10 20.753552 
26 35.31749 14 43.67169 21 16.776565 
30 38.09194 21 23.49539 17 14.666208 
24 23.82587 18 43.67169 18 22.73864 
26 17.27219 27.5 26.69 30 16.84499 
35 47.34729 28 27.47977 26 22.73864 
20 17.27219 39 40.55017 37 28.019015 
25 33.42044 46 47.09217 35 26.538465 

42.9 33.42044 25 34.60077 32 20.914065 
27.7 33.42044 29.4 34.60077 30 18.646065 
31 43.79144 34.7 34.60077 30 31.980465 
30 38.93784 24 24.47977 24.5 22.985465 

27 33.42044 28 29.24397 17.5 26.538465 
21.5 27.23924 32 34.60077 24 24.860265 
23 20.39424 35 40.55017 13.5 22.985465 

39.27 51.76599 35 47.09217 14.5 20.914065 
52.11 54.36944 11.67 9.48301 16.5 18.646065 

46 46.09334 11.9 12.05 32.5 31.979415 
27 28.35128 9.05 13.57 29.17 30.393465 
26 27.506646 16 15.71497 22.5 22.987565 
29 27.64319 7 6.47873 21 22.984625 
30 46.62019 26 30.55069 38 21.48204 
35 46.71719 21 24.64917 17 14.93784 

19 23.53965 18 22.46004 

PT vs Biocrude yield 
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