

1 **Price variation in the Caribbean spiny lobster fishery: Incentives for ongrowing wild-**
2 **caught lobsters in Florida**

3

4 Taryn Garlock, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203

5 Swingle Hall, Auburn, AL, 36849, USA, taryngarlock@auburn.edu

6 Frank Asche, School of Forest, Fisheries and Geomatics Sciences, University of Florida, 136

7 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL, 32611, USA, frank.asche@ufl.edu

8 Casey B. Butler, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation

9 Commission, 2796 Overseas Hwy Suite 119, Marathon, FL 33050, USA,

10 Casey.Butler@MyFWC.com

11 Thomas R. Matthews, Fish and Wildlife Research Institute, Florida Fish and Wildlife

12 Conservation Commission, 2796 Overseas Hwy Suite 119, Marathon, FL 33050, USA,

13 Thomas.Matthews@MyFWC.com

14 Erica Ross, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation

15 Commission, 2796 Overseas Hwy Suite 119, Marathon, FL 33050, USA,

16 Erica.Ross@MyFWC.com

17

18 Garlock, T., Asche, F., Butler, C.B., Matthews, T.R., Ross, E. 2024. Price variation in the

19 Caribbean spiny lobster fishery: Incentives for ongrowing wild-caught lobsters in Florida.

20 Fisheries Research, 273, 106960.

21

22 <https://doi.org/10.1016/j.fishres.2024.106960>

23 **Abstract**

24 The Caribbean spiny lobster, *Panulirus argus*, is historically one of Florida's most valuable
25 commercial fisheries. The creation of a live export market in the 2010s increased the value of
26 this fishery despite declines in total landings and potentially provides an economic opportunity to
27 enhance the value of the fishery. However, the market potential may be limited by a
28 misalignment between fishery production and market demand, as both landings and price have
29 high seasonal variation. We explore the economic incentives for aligning fishery landings with
30 market demand by estimating a hedonic price function to examine the effects of seasonality and
31 product characteristics on the ex-vessel price of spiny lobster. Seasonality and product grade
32 were the most important factors explaining variation in ex-vessel price. The monthly price
33 premiums increased as the season progressed, with the largest increases in price in January and
34 February, with 61 and 63% premiums compared to the price in August when most lobsters are
35 harvested. In addition, live grade lobsters received a 34% premium to whole grade lobsters. The
36 results call attention to the significant potential to increase the revenue of the fishery if lobster
37 harvest was shifted from August and September to January and February, or if aquaculture-based
38 live storage or ongrowing of lobsters landed early in the season could be sold live and later in the
39 season.

40

41 **Keywords:** *Panulirus argus*, hedonic model, ongrowing, aquaculture

42

43

44 **Highlights**

45

46

47

48

- Seasonality and lobster grade are important factors of price determination.
- Regulatory and cultural impediments weaken fishery adaptation to market demand.
- Ongrowing operations can target higher-value markets regardless of seasonality in catch.

49

50 **1. Introduction**

51 The timing of fishery harvests throughout the year has important implications for product form,
52 price, and ultimately revenue generated by the fishery (Larkin and Sylvia, 1999; Grafton et al.
53 2000). While seasonality in landings is an inherent feature of fisheries, it is often amplified by
54 management systems and consumer demand (Homans and Wilen 2005; Birkenbach et al., 2020;
55 Love et al., 2023). Short fishing seasons, aimed at reducing fishing effort, can result in derby
56 fishing, market gluts and weak incentives to develop higher-value fresh markets (Homans and
57 Wilen 2005). Birkenbach et al. (2017) show that the transition of US fisheries to individual
58 fishing quotas (IFQs) extends the fishing season, and Birkenbach et al. (2023) show that the
59 extended fishing season results in higher prices for species with higher paying alternative
60 markets, such as fresh markets, which can then be served. Pincinato et al. (2022) find higher ex-
61 vessel prices for Norwegian whitefish after introduction of IFQs, but that the fishing season was
62 not extended, suggesting that higher prices were the result of higher quality fish.

63 The Caribbean spiny lobster fishery in Florida has recently shifted from supplying frozen
64 tails in the domestic chain restaurant market to live exports, primarily to China. While this
65 transition to a higher quality product has enhanced the value of the fishery, market potential may
66 be limited by the seasonal landing pattern and unit prices for live and frozen spiny lobsters that
67 show strong seasonal variation. Higher prices are typically observed toward the end of the season
68 when landings are at their lowest (Matthews et al., 2019), providing an example of a
69 misalignment between supply and demand (Love et al., 2023). The market for spiny lobster,
70 similar to many seafood commodities, is globally integrated and with prices determined at the

71 global level.¹ Florida produces only 7% of the Caribbean spiny lobster supply and a much
72 smaller share of the world's spiny lobster supply, and thus domestic production only weakly
73 influences market price.

74 In this paper, we explore a misalignment between fishery production and demand in the
75 Caribbean spiny lobster fishery in Florida. We estimate a hedonic price function to examine the
76 effects of seasonality and product attributes on the ex-vessel price of spiny lobster. The results
77 show that seasonality and product grade were the most important factors explaining price
78 variation. We discuss the results considering two alternatives for better alignment of the landings
79 of lobsters to market demand: delaying harvest or ongrowing aquaculture of wild-caught lobster.

80

81 **2. Description of the Spiny Lobster Fishery in Florida**

82 The Caribbean spiny lobster, *Panulirus argus*, is found in tropical and subtropical waters
83 throughout the Caribbean basin, along the US South Atlantic coast and Gulf of Mexico
84 (Holthius, 1991). Its range extends from North Carolina to Brazil, and it supports economically
85 and culturally valuable fisheries across most of its range (Pereira and Josupeit, 2017). Strong
86 international demand for Caribbean spiny lobster results in high market prices and significant
87 international trade (Matthews et al., 2019). In the United States, commercial harvest of the
88 Caribbean spiny lobster is limited to Florida, and it is one of Florida's most valuable commercial
89 fisheries. Since 1990, the fishery had an average annual commercial harvest of 2040 metric tons
90 (Fig. 1) and an annual dockside value of approximately US\$40 million (FWC, 2023). Florida
91 also has a substantial recreational fishery that lands an average of 680 metric tons and

¹ Anderson et al. (2018) show how the market for most species are global with common price determination processes. Asche et al. (2022a) provide a good example in the U.S. by showing how domestic shrimp prices are determined by the price in the global market.

92 contributes significantly to the local economy in south Florida (Leeworthy, 2002; Sharp et al.,
93 2005).

94 The commercial fishery in Florida primarily uses traps to harvest spiny lobster. The
95 number of traps in the early 1990s was estimated at 750,000 and has since been reduced to about
96 450,000 traps (Florida Fish and Wildlife Conservation Commission, unpubl. data). Reduction of
97 traps was achieved through a Trap Certificate Program which was implemented in 1993 to limit
98 fishing effort (i.e., the number of traps) as well as enable individuals to manage their own fishing
99 effort through the transfer/sale of trap certificates (FL Statute 370.142). The trap fishery exploits
100 Caribbean spiny lobsters' highly social behavior (Childress and Herrnkind, 1996, 1997) and uses
101 traps baited with sublegal-size lobsters to attract and capture other lobsters (Butler et al., 2018).
102 The fishery operates with a minimum legal size of 76.2 mm carapace length equivalent to 375 g
103 total weight (Matthews et al., 2003), and most lobsters are harvested between 1.5 to 2 years after
104 settlement when they are about 400 grams (Maxwell et al., 2009, 2013).

105 There is strong seasonality in the landings of spiny lobster, where catch is highly skewed
106 to the start of the season consistent with a race to fish and an overcapitalized fishery. Currently,
107 half of landings occur in the first two months of the season (i.e., August and September)²
108 followed by a sharp decline in landings thereafter (Fig. 2) (FWC, 2023; Ross and Matthews,
109 2023, in review). The decline in landings greatly outpaces the decline in fishing effort as
110 indicated by the declining number of traps used each subsequent month of the fishing season
111 (Matthews, 2001).

112 Historically, the fishery in Florida caught lobsters under 400 g. total weight as early in
113 the fishing season as possible to meet the demand for a low priced, frozen, whole lobster tail in

² The commercial season starts August 6 and runs through March 31 each year.

114 U.S. family-style restaurant chains. However, in recent decades the economic viability of the
115 Florida spiny lobster fishery has become dependent on exports of spiny lobster to China, the
116 main market today (Matthews et al., 2019). Spiny lobsters are exported frozen or live. The live
117 export market began developing in 2010, and by 2022 about 75% of the landings are believed to
118 be exported live³. Live lobsters are more valuable, as the ex-vessel price of live grade lobster was
119 occasionally double or triple the price of whole-grade lobsters which are sold frozen.

120

121 **Data**

122 This study uses ex-vessel data collected from commercial landings reports in Florida's Marine
123 Fisheries Information System ("trip ticket") data (FWC, 2023). Trip tickets are completed at the
124 original sale, which usually occurs when fishers deliver and sell product to wholesale dealers
125 typically referred to as fish houses. A price per pound is given by the fish house. Prices typically
126 vary by live, whole, or unknown grades. Lobsters deemed favorable for the live export market
127 are sold at the higher live price, and lobsters deemed unfavorable for the live export market, such
128 as lobsters that are molting, injured (> 3 missing appendages), or in poor condition, are sold at
129 the lower whole price. Several fish houses do not grade product until after the landings are
130 recorded in the trip ticket system and are thus recorded as unknown grade.

131 We used trip ticket data from August 2010 to March 2022, which covered 12 fishing
132 seasons. The raw data set contained 289,761 records of commercial lobster fishing trips and
133 included data on ex-vessel price, quantity landed, grade, gear, county landed, and date. Records
134 missing the date, and/or price were removed. This reduced the dataset to 215,156 usable

³ Commercial trip ticket data indicates 75% of landings are landed as live grade, and most of this is expected to be exported live.

135 observations (or 178,202 individual trips, as some trips had multiple grades and prices).

136 Descriptive statistics for the dataset can be found in Table 1.

137 Categorical variables for the model were based on date, gear type, and location. The
138 average quantity landed per trip was 86 kg, although this had high seasonal variation and steadily
139 declined over the season. Traps were the primary gear type and accounted for 94% of landings,
140 with smaller shares captured by the dive and bully net fisheries at 4% and 2%, respectively, but
141 there were a few trips with no gear reported (Ross and Matthews, 2023, in review). Spiny
142 lobsters were landed primarily in the Florida Keys, with 90% of the harvest landed in Monroe
143 County and 8% in Dade County. The shares of gear type and county of landing were consistent
144 across all years examined.

145 The development of the live export market is relatively recent, beginning in 2010, and
146 thus the shares of lobster grades have changed substantially since then. In the 2010-2011 fishing
147 season, the share of live-grade lobsters was 14% of total landings and landings with an
148 unreported grade were high (i.e., 70% of total landings). In the 2021-2022 fishing season, live-
149 grade was the most important category, and it comprised 75% of lobster landings.

150

151 **Methods**

152 There is substantial heterogeneity within seafood products that allows producers to benefit from
153 product differentiation, such as product form and size. Hedonic price analysis is a commonly
154 used approach in food market analysis that estimates the marginal value of attributes of
155 differentiated products and can provide insights on consumer preferences and the value of
156 supply-side decisions. Hedonic price functions are commonly estimated for aquatic products at
157 the dockside level using ex-vessel prices (Lee, 2014; Asche et al., 2015; Blomquist et al., 2015;

158 2020; Sogn-Grundvåg et al., 2020, 2021, 2022; Wolf and Asche, 2022; Kehoe et al., 2023;
159 Anderson and Hammarlund, 2023; Pascoe et al., 2023; Pettersen et al., 2023; Bronnmann et al.,
160 2023) as well as other levels in the supply chain and particularly at the retail level (Ankamah-
161 Yeboah et al., 2016; Bronnmann and Asche, 2016; Hilsenroth et al., 2018; Hukom et al., 2020;
162 Asche et al., 2021; Ray et al., 2022; Botta et al., 2023). We estimated a hedonic price function to
163 examine the marginal price effects of product attributes and seasonality on the ex-vessel price of
164 spiny lobsters landed in Florida. The hedonic price equation is given as follows:

165

166 Equation 1:

167

$$168 \ln P_{it} = \alpha + \sum_{j=2}^3 \beta_j (Grade)_{jit} + \sum_{k=2}^4 \sigma_k (Gear)_{kit} + \sum_{l=2}^8 \gamma_l (Month)_{lt} + \sum_{m=2}^4 \delta_m (County)_{mt} \\ 169 + \sum_{n=2}^{12} \theta_n Year_{nt}$$

170

171 where P is the inflation adjusted ex-vessel price per pound of product i at time t . Grade is the
172 quality grade of the lobster (live, whole, or unknown), gear is the type of gear used to harvest
173 lobster (trap, dive, bully-netting, or other), and county is the county where the lobsters were
174 landed (Monroe, Dade, or other). Month is a set of dummy variables indicating the month the
175 landing occurred (August to March). Year is a set of dummy variables indicating each fishing
176 season from 2010-2011 to 2021-2022. The coefficients represent the contributory characteristics
177 of the product price. This model specification assumes the values of each product attribute is
178 independent of the other product attributes. However, we anticipate that the effect of grade on

179 price will vary across months and years. This is accounted for by two additional models with all
180 variables in Equation 1 and interaction effects between month and grade, and year and grade,
181 respectively. The percentage price premiums were calculated as $100 * [\exp(d) - 1]$, where d is the
182 coefficient estimate for the attribute of interest. All analyses were conducted using R software
183 (v3.6.1).

184

185 **Results**

186 The parameter estimates, standard errors, and percent price premiums are reported in Table 2.
187 The model explained the variation in price relatively well with an R^2 of 0.588. Grade and month
188 had the largest impact on price. Live-grade had a 34% premium relative to whole-grade. The
189 unknown-grade had a price increase of 29% relative to whole-grade, suggesting that a large share
190 of sales with an unknown grade are priced similar to the live-grade price. Seasonality was an
191 important factor explaining the variation in price. The monthly price premiums increased as the
192 season progressed, with the largest increases in price in January and February, with 61 and 63%
193 premiums compared to August when most lobsters were harvested. This is indicative of a very
194 strong seasonal component to price, as the seasonal price variation is much stronger than hedonic
195 studies of other seafood products (e.g., Asche et al., 2022).

196 The fishing year variables indicated a fluctuating trend in price across years. The highest
197 price was obtained in the 2014-2015 fishing seasons with a price premium of 43% relative to
198 2010-2011 season and is consistent with anecdotally high prices during this year as a result of
199 new exporters entering the lobster market. The lowest prices were observed from the 2018-2019
200 to the 2020-2021 seasons with prices 7-14% below the price in the 2010-2011 season. The low
201 prices during this period were initiated by a Chinese tariff on U.S. exports of live lobster

202 followed by the COVID-19 pandemic, both of which reduced demand for lobster in China (Love
203 et al., 2021).

204 The effect of gear and location on price variation was comparatively small. Trap and
205 bully-netting gear received 1.7% and 2.4% premiums compared to lobster caught by the dive
206 fishery. The Other gear category received a 22% increase; however, this gear accounts for a very
207 small share of total landings (<1%), and may include bycatch from other fisheries and erroneous
208 data that furthers the inconsequential nature of these results. Lobsters landed in Monroe and
209 Dade counties received 6.8% and 1.9% price increases, respectively, relative to Other counties in
210 Florida.

211 To examine whether the effect of grade varied by month, an interaction effect was
212 included (Table 3). Live and unknown grades show similar patterns of price development, with
213 the live and unknown grades achieving higher premiums relative to whole-grade lobster (Fig. 4).
214 Live-grade can achieve a 42% price increase relative to whole-grade in the month of January, but
215 the price increase is much smaller at the onset of the season through November, underscoring
216 opportunity to increase revenue if a larger share of lobsters is sold live and in January.

217 Fig. 5 shows the estimated yearly premiums by grade. The price development across
218 years is similar for live and unknown grades with some exceptions. The live-grade achieved the
219 highest prices in the 2014-2015 season, whereas unknown-grade achieved the highest price in
220 2021-2022 season. In several years, the unknown-grade achieved higher prices than the live-
221 grade, and the price for live-grade appears to be more negatively impacted by COVID-19 in the
222 2019-2020 and 2020-2021 seasons. However, it is important to note that in recent fishing seasons
223 the unknown-grade constituted less than 10% of landings.

224

225 **Discussion**

226 This is the first study to explore factors leading to price variation in the Caribbean spiny lobster
227 fishery with a focus on the fishery in Florida. The results show the importance of grade and
228 seasonality in price determination and calls attention to the significant potential to increase
229 revenue if the fishery can meet the demand for live spiny lobster later in the season. These results
230 reflect changes in the market demand for lobsters over the last decade, but the conditions in the
231 fishery appear to create impediments to increasing value and sustainability. Impediments to
232 capitalizing on changes in market demand for spiny lobsters includes limitations imposed by
233 fishing regulations, lobster biology, and the established cultural norms in the fishing industry.

234 Seasonality is a natural feature of wild-capture fisheries shaped by the behavioral and life
235 history patterns of organisms and can often be amplified by management inefficiencies
236 (Birkenbach et al., 2017; 2020). Seasonality in harvest can create misalignment between fishery
237 production and market demand (Love et al., 2023). The strong seasonality in the price of spiny
238 lobster combined with seasonality in landings provides an opportunity to increase revenue of the
239 fishery. Ex-vessel prices of spiny lobster varied up to 63% between months, with the highest
240 price premiums in January and February. However, over 80% of commercial landings were
241 before January. The price variation across months in this study is higher than what most hedonic
242 studies find for other seafood products. Guillen and Maynou (2014) show the ex-vessel price of
243 red shrimp varied up to 40% between months, although many hedonic studies find seasonal price
244 increases less than 25% (e.g., Bronnmann et al., 2020; Asche et al., 2022a). Kehoe et al. (2023)
245 show ex-vessel price of stone crabs, which is also a high-value seafood item in Florida, varied up
246 to 6% between months. Using the model results in Table 2, we estimate the potential additional
247 fishery value to be $\$11,751,215 \pm 2,513,545$ per year if lobsters caught within the first four

248 months of the fishing season (August through November) were sold at the average price between
249 December and March and as the same grade (whole vs. live). While this is a crude estimation, it
250 is indicative of substantial opportunity to improve the value of the fishery.

251 Higher prices for spiny lobsters late in the season is in part the result of strong demand in
252 the Chinese market associated with the Lunar New Year. There are multiple studies showing
253 price increases of seafood around major holidays that are largely driven by consumer preferences
254 and seafood availability. Guillen and Maynou (2014) show the strongest price increase in red
255 shrimp occurred in December, which results from high demand around the Christmas and New
256 Year holidays. Asche and Guillen (2012) also find a strong price increase in the Spanish hake
257 market in December, and Love et al. (2023) finds higher seafood consumption during December
258 in the U.S. as well as in March for Lent. The high price of spiny lobster in the Chinese market
259 around the Lunar New Year provides opportunity to increase the revenue of the fishery if spiny
260 lobster landings can be better aligned with the demand.

261 Our analysis shows that seasonality in price may be due in part to seasonal differences in
262 the relative prices of different grades of lobster. Live-grade can achieve a 42% price increase
263 relative to whole-grade in the month of January, but the price increase is much smaller at the
264 onset of the season through November. The primary cause of the low-price differential early in
265 the season is lower market demand, but lobster biology is also a factor. Caribbean spiny lobsters
266 are difficult to ship live when captured at high water temperatures typical of south Florida. The
267 32°C temperature tolerance of Caribbean spiny lobsters (Field and Butler, 1994) is approached in
268 August, September, and October in Florida, greatly limiting the ability to ship live lobsters
269 (personal communication with Elite Sky seafood).

270 The weight of lobsters is an important consideration. Nearly all lobsters landed in Florida
271 are small grade (under 460g). This is solely due to intense fishing pressure resulting in over 85%
272 of caught lobsters between 1 and 2 years of age (Matthews, 2001; Matthews et al., 2009). Larger
273 sized lobsters typically garner a higher price in the live lobster market representing an additional
274 consideration for increasing value in the fishery. Our analysis could not consider size as larger
275 grade lobsters are infrequently captured.

276 The regulatory conditions and fishing culture have impeded the fishery from adapting to
277 the changes in market demand. The spiny lobster fishery is nearly a century old, and the modern
278 fishery and current fishing practices were established in the 1960s and 70s (Robinson and
279 Dimitriou, 1963; Hunt, 1994). The fishing season and size regulations established the conditions
280 that resulted in the derby-like fishery that landed small sized lobsters primarily in August and
281 September that could be frozen for later sale. Transition to individual transferable quota (ITQ)
282 management has benefited other rock lobster fisheries by removing the race to fish and
283 improving product quality and markets served (Gardner et al., 2013; Penn et al., 2015; Linnane
284 et al., 2023). Caputi et al. (2015) show a transition to ITQs in the Australian western rock lobster
285 fishery extended the fishing season from 7.5 to 12 months and increased unit price by about
286 20%. The increase in price was the result of greater control over the timing and size of the
287 harvest, which ultimately allowed fishers to better target periods and products that receive higher
288 prices. While ITQ management has been adopted extensively in places like Iceland and New
289 Zealand, ITQs have been used to a lesser extent in the U.S. and are highly controversial
290 primarily due their potential impacts on employment and distributional concerns (Abbott et al.,
291 2022). In Florida, the cultural and social significance of the spiny lobster fishery may create
292 challenges for adopting new management regimes. In addition, the derby style fishing has

293 allowed the fishing fleet to participate in other fisheries, such as stone crab, mackerel, and other
294 fish typical of many tropical fisheries, later in the season and, thus, changes to the lobster fishery
295 may impact other fisheries which increases the difficulty of adaptation in the lobster fishery.

296 An alternative approach to meet the current market demand without potentially disruptive
297 changes to existing fishery practices is aquaculture, in the form of ongrowing legal-sized wild-
298 caught lobsters. Ongrowing is defined as rearing organisms to a marketable size in aquaculture.
299 Similar practices can be observed for other species like tuna and cod (Shamshak and Anderson,
300 2009; Pettersen et al., 2023). Ongrowing aquaculture of lobsters could be used to provide a
301 higher-value product to the live export market when demand for lobster is at its highest late in
302 the fishing season or during the closed fishing season. Ongrowing operations could include
303 small, legal-size lobsters harvested early in the season held for sale at peak price, or conversion
304 of whole-grade lobsters to live-grade lobsters through rehabilitation.

305 Ongrowing of lobsters includes both advantages and risks requiring further practical and
306 economic assessment. Lobster grow-out operations have the potential to target high value
307 markets, regardless of timing of the catch. However, the high interannual variation in price
308 associated with external factors in the world market and economy poses some risk for investing
309 in ongrowing operations, and further analysis is needed to examine the economic feasibility of
310 ongrowing culture systems and practices. The development of commercial lobster culture is
311 currently in its infancy and the Caribbean spiny lobster, *Panulirus argus*, has received limited
312 attention (Jeff and Davis, 2003; Matthews et al. 2007; Gnanalingam et al., 2018; Mirzaei et al.,
313 2021). The need for economically viable and nutritionally sufficient feeds is a major impediment
314 to commercial ongrowing of adults (Cox and Davis, 2006; Nankervis and Jones, 2022). There
315 are also several major management concerns associated with a lobster aquaculture industry,

316 specifically the possession of sublegal-size, out-of-season, and egg-bearing lobsters. Regulation
317 of these new industry practices must be addressed to develop a reasonable and enforceable
318 regulatory framework to ensure the sustainable management of the industry.

319

320 **Acknowledgements**

321 This work was supported by funding from Atlantic States Marine Fisheries Commission [grant
322 number 22-0602] and the NOAA Saltonstall Kennedy Grant Program (award number
323 NA23NMF4270268).

324

325 **References**

326

327 Abbott, J.K., Leonard, B., Garber-Yonts, B. 2022. The distributional outcomes of rights-based
328 management in fisheries. *Proceedings of the National Academy of Sciences*, 119(2),
329 e2109154119.

330 Andersson, A., Hammarlund, C., 2023. The effect of eco-certification on demand: The case of
331 MSC-certified Norway lobster. *Ecological Economics* 204, 107661.

332 <https://doi.org/10.1016/j.ecolecon.2022.107661>

333 Anderson, J.L., Asche, F., Garlock, T.M., 2018. Globalization and Commoditization: The
334 Transformation of the Seafood Market. *Journal of Commodity Markets*. 12, 2-8.
335 doi.org/10.1016/j.jcomm.2017.12.004

336 Ankamah-Yeboah, I., Nielsen, M., Nielsen, R., 2016. Price premium of organic salmon in
337 Danish retail sale. *Ecological Economics* 122, 54–60.

338 <https://doi.org/10.1016/j.ecolecon.2015.11.028>

339 Asche, F., Bronnmann, J., Cojocaru, A.L., 2021. The value of responsibly farmed fish:
340 A hedonic price study of ASC-certified whitefish. *Ecological Economics*, 188, 107135.

341 Asche, F., Chen, Y., Smith, M.D., 2015. Economic incentives to target species and fish size:
342 prices and fine-scale product attributes in Norwegian fisheries. *ICES Journal of Marine
343 Science*, 72, 733–740.

344 Asche, F., Guillen, J., 2012. The Importance of fishing method, gear and origin: The Spanish
345 hake market. *Marine Policy*, 36, 365–69.

346 Asche, F., Sogn-Grundvåg, G., Zhang, D., 2022a. Large-scale fisheries during the COVID-19
347 pandemic: The case of the oceangoing groundfish fleet in Norway. *Marine Policy*, 144,
348 105223.

349 Asche, F., Oglend, A., and Smith, M.D., 2022b. Global Markets and the Commons: The Role of
350 Imports in the U.S. Wild-caught Shrimp Market. *Environmental Research Letters*. 17,
351 045023.

352 Birkenbach, A.M., Kaczan, D.J., Smith, M.D., 2017. Catch shares slow the race to fish. *Nature*,
353 544, 223–226.

354 Birkenbach, A.M., Cojocaru, A.L., Asche, F., Guttormsen, A.G., Smith, M.D., 2020. Seasonal
355 harvest patterns in multispecies fisheries. *Environmental and Resource Economics*, 75(3),
356 631–655.

357 Birkenbach, A.M., Kaczan, D.J., Smith, M.D., Ardini, G., Holland, D.S., Lee, M.-Y., Lipton, D.,
358 Travis, M.D. 2023. Do Catch Shares Increase Prices? Evidence from US Fisheries.
359 *Marine Resource Economics*, 38(3), 203-303.

360 Blomquist, J., Bartolino, V., Waldo, S., 2015. Price premiums for providing eco-labelled
361 seafood: Evidence from MSC-certified cod in Sweden. *Journal of Agricultural
362 Economics*, 66, 690–704.

363 Blomquist, J., Bartolino, V., Waldo, S., 2020. Price premiums for eco-labelled seafood: Effects
364 of the MSC certification suspension in the Baltic Sea cod fishery. *European Review of
365 Agricultural Economics*, 47, 50–70. <https://doi.org/10.1093/erae/jby047>

366 Botta, R., Garlock, T.M., Asche, F., Camp, E.V., Ropicki, A., 2023. The value of product
367 attributes for farmed oysters: A hedonic price analysis of U.S. restaurant menus. *Journal
368 of the Agricultural and Applied Economics Association*, 2(2), 295-305.

369 Bronnmann, J., Asche, F., 2016. The value of product attributes, brands and private labels: An
370 analysis of frozen seafood in Germany. *Journal of Agricultural Economics*, 67, 231–44.

371 Bronnmann, J., Asche, F., Pettersen, I.K., Sogn-Grundvåg, G., 2023. Certify or not? The effect
372 of the MSC label on the ex-vessel prices for Atlantic cod in Norway. *Ecological
373 Economics*, 212, 107940.

374 Bronnmann, J., Smith, M.D., Abbott, J., Hay, C.J., Næsje, T.F., 2020. Integration of a local fish
375 market in Namibia with the global seafood trade: Implications for fish traders and
376 sustainability. *World Development*, 135, 105048.

377 Butler, C.B., Butler, J., Matthews, T.R., 2018. Starvation reduces attractiveness of live bait
378 lobsters and trap catch in the Caribbean spiny lobster (*Panulirus argus*) fishery in
379 Florida. *Bulletin of Marine Science*, 94, 1171–1184.

380 Caputi, N., de Lestang, S., Reid, C., Hesp, A., How, J. 2015. Maximum economic yield of the
381 western rock lobster fishery of Western Australia after moving from effort to quota
382 control. *Marine Policy*, 51, 452 – 464.

383 Childress, M.J., Herrnkind, W.F., 1996. The ontogeny of social behaviour among juvenile
384 Caribbean spiny lobsters. *Animal Behavior*, 51, 675–687.

385 <https://doi.org/10.1006/anbe.1996.0071>

386 Childress, M.J., Herrnkind, W.F., 1997. Den sharing by juvenile Caribbean spiny lobsters
387 (*Panulirus argus*) in nursery habitat: cooperation or coincidence? *Marine and Freshwater*
388 *Research*, 48, 751–758. <https://doi.org/10.1071/MF97158>

389 Cox, S.L., Davis, M., 2006. The effect of feeding frequency and ration on growth of juvenile
390 spiny lobster, *Panulirus argus* (Palinuridae). *Journal of Applied Aquaculture*, 18, 33–43.

391 Field, J. M., and M. J. Butler, IV., 1994. The influence of temperature, salinity, and postlarval
392 transport on the distribution of juvenile spiny lobsters, *Panulirus argus* (Latreille, 1804) in
393 Florida Bay. *Crustaceana*, 67:26–45.

394 FWC, 2023. Commercial Fisheries Landings in Florida [WWW Document]. URL
395 <https://myfwc.com/research/saltwater/fishstats/commercial-fisheries/landings-in-florida/>

396 Gardner, C., Larkin, S., and Seijo, J. C. 2013. Systems to maximize economic benefits in lobster
397 fisheries. In *Lobsters: Biology, Management, Aquaculture & Fisheries*, 2nd edn, pp. 113–
398 138. Ed. by B. F. Phillips. Wiley-Blackwell Publishing, Oxford, UK.

399 Gnanalingam, G., Butler, M.J., IV, Matthews, T.R., Hutchinson, E., Kilada, R., 2018. Directly
400 ageing the Caribbean spiny lobster, *Panulirus argus* with validated band counts from
401 gastric mill ossicles. *ICES Journal of Marine Science*, 76, 442–451.

402 Grafton, R. Q., D. Squires, and K. J. Fox. 2000. Private Property and Economic Efficiency: A
403 Study of a Common-Pool Resource. *Journal of Law and Economics*, 43(2), 679–714.

404 Guillen, J., Maynou, F., 2014. Importance of temporal and spatial factors in the ex-vessel price
405 formation for red shrimp and management implications. *Marine Policy*, 47, 66–70.

406 Hilsenroth, J., Larkin, S.L., Frazer, T.K., 2018. The price of pretty: characteristics of black
407 Tahitian pearls and their implicit values. *Applied Economics*, 50, 4582–4591.

408 Holthius, L.B., 1991. FAO species catalogue, Vol 13. Marine lobsters of the world. An annotated
409 and illustrated catalogue of species of interest to fisheries to date. FAO Fish Synop No.
410 125. FAO, Rome.

411 Homans, F. R., and J. E. Wilen. 2005. Markets and Rent Dissipation in Regulated Open Access
412 Fisheries. *Journal of Environmental Economics and Management*, 49(2), 381–404.

413 Hukom, V., Nielsen, M., Ankamah-Yeboah, I., Nielsen, R., 2020. A hedonic price study on
414 warm- and cold-water shrimp in Danish retail sale. *Aquaculture Economics and*
415 *Management*, 24(1), 1-19.

416 Jeffs, A., Davis, M., 2003. An assessment of the aquaculture potential of the Caribbean spiny
417 lobster, *Panulirus argus*. *Proceedings of the Gulf and Caribbean Fisheries Institute*.

418 Kehoe, L., Asche, F., Crawly, C., Gandy, R., Chagaris, D., 2023. Costly Crustaceans: A hedonic
419 price analysis of the Florida Stone. *Fisheries Research*, 258, 106541.

420 Larkin, S.L., Sylvia, G. 1999. Intrinsic Fish Characteristics and Intraseason Production
421 Efficiency: A Management-Level Bioeconomic Analysis of a Commercial Fishery.
422 *American Journal of Agricultural Economics*, 81, 29-43.

423 Lee, M.Y., 2014. Hedonic pricing of Atlantic cod: effects of size, freshness, and gear. *Marine*
424 *Resource Economics*, 29, 259–277.

425 Leeworthy, V.R., 2002. Economic impact of the recreational lobster fishery on Monroe County,
426 2001. *National Ocean Service*, Silver Spring, MD.

427 Linnane, A., McGarvey, R., Jones, A., Kimber, N., Feenstra, J.E., Matthews, J.M. 2023.

428 Reflecting on 25 years of quota management in a spiny lobster fishery: Lessons learned

429 from a harvest strategy perspective. *Fisheries Research*, 257, 106516.

430 Love, D.C., Asche, F., Gephart, J.A., Zhu, J., Garlock, T., Stoll, J.S., Anderson, J., Conrad, Z.,

431 Nussbaumer, E.M., Thorne-Lyman, A.L., Bloem, M.W., 2023. Identifying opportunities

432 for aligning production and consumption in the U.S. fisheries by considering seasonality.

433 Reviews in *Fisheries Science and Aquaculture*, 31, 259–273.

434 Love, D.C., Allison, E.H., Asche, F., Belton, B., Cottrell, R.S., Froehlich, H.E., Gephart, J.A.,

435 Hicks, C.C., Little, D.C., Nussbaumer, E.M., da Silva, P.P., Poulain, F., Rubio, A., Stoll,

436 J.S., Tlusty, M.F., Thorne-Lyman, A.L., Troell, M., Zhang, W., 2021. Emerging COVID-

437 19 impacts, responses, and lessons for building resilience in the seafood system. *Global*

438 Food Security, 28, 100494.

439 Matthews, T.R., 2001. Trap-induced mortality of the spiny lobster, *Panulirus argus*, in Florida,

440 USA. *Marine and Freshwater Research*, 52, 1509–16.

441 Matthews, T.R., Maxwell, K.E., Bertelsen, R.D., Derby, C.D., 2009. Use of neurolipfuscin to

442 determine age structure and growth rates of the Caribbean spiny lobster *Panulirus argus*,

443 in Florida, United States. *New Zealand Journal of Marine and Freshwater Research*, 43,

444 125–137.

445 Matthews, T.R., Maxwell, K.E., 2007. Growth and mortality of captive Caribbean spiny lobsters,

446 *Panulirus argus*, in Florida, USA. *Proceedings of the Gulf and Caribbean Fisheries*

447 Institute

448 Matthews, T.R., Spadaro, A.J., Bertelsen, R.D., Yee, L., 2019. Value enhancement of spiny
449 lobster (*Panulirus argus*) for the live-lobster export market. Proceedings of the Gulf and
450 Caribbean Fisheries Institute, 72, 166–167.

451 Matthews, T.R., Hunt, J.H., Heatwole, D.W., 2003. A Comparison of Morphometric
452 Relationships Between Florida and Caribbean Populations of the Spiny Lobster,
453 *Panulirus argus*. Proceedings of the Gulf and Caribbean Fisheries Institute, 54, 156-174.

454 Maxwell, K.E., Matthews, T.R., Bertelsen, R.D., Derby, C.D., 2009 Using age to evaluate
455 reproduction in Caribbean spiny lobster, *Panulirus argus*, in the Florida Keys and Dry
456 Tortugas, United States. N. Z. J. Marine and Freshwater Research, 43, 139–149.

457 Maxwell, K.E., Matthews, T.R., Bertelsen, R.D., Derby, C.D., 2013 Age and size structure of
458 caribbean spiny lobster, *Panulirus argus*, in a no-take marine reserve in the Florida Keys,
459 USA. Fisheries Research, 144, 84–90.

460 Mirzaei, M.R., Ajdari, A., Chakeri, A., 2021. Review on aquaculture of different spiny lobster
461 species. Advanced Aquaculture Sciences Journal, 4(4), 25-38.

462 Nankervis, L., Jones, C., 2022. Recent advances and future directions in practical diet
463 formulation and adoption in tropical Palinurid lobster aquaculture. Reviews in
464 Aquaculture, 14, 1830–1842.

465 Pascoe, S., Danner, L., Gunaratne, T., Pang, T., Schroback, P., Perrin, T., Hilder, P., 2023.
466 Estimating prices for “new” aquaculture species: A hedonic pricing approach.
467 Aquaculture Economics & Management, 27(4), 737-759.

468 Penn, J.W., Caputi, N., de Lestang, S. 2015. A review of lobster fishery management: the
469 Western Australian fishery for *Panulirus cygnus*, a case study in the development and

470 implementation of input and output-based management systems. *ICES Journal of Marine*
471 *Science*, 72, i22-i34.

472 Pereira G, Josupeit H., 2017. The world lobster market. Rome: Food and Agriculture
473 Organization of the United Nations. Available at: <http://www.fao.org/3/a-i6816e.pdf>.

474 Pettersen, I.K., Asche, F., Brønnmann, J., Sogn-Grundvåg, G., Straume, H.-M., 2023. Is capture-
475 based aquaculture viable? The case of Atlantic cod in Norway. *Aquaculture*, 572,
476 739520.

477 Pincinato, R. B., F. Asche, A. L. Cojocaru, Y. Liu, and K. H. Roll. 2022. The Impact of
478 Transferable Fishing Quotas on Cost, Price, and Season Length. *Marine Resource*
479 *Economics*, 37(1), 53–63.

480 Ray, K.D., Lew, D.K., Kosaka, R., 2022. Hedonic price functions and market structure: An
481 analysis of supply-motivated submarkets for salmon in California. *Marine Resource*
482 *Economics*, 37, 135–154.

483 Robinson, R.K., Dimitriou, D.E., 1963. The status of the Florida spiny lobster fishery. *Florida*
484 *State Board of Conservation Technical Series No 42*. 30 p.

485 Ross, E.P., Matthews, T.R., 2023. Exploring the consequences of introducing alternative fishing
486 gear in an effort limited fishery: Casita utilization in the spiny lobster, *Panulirus argus*,
487 fishery in Florida. *Fisheries Research*. In review.

488 Shamshak, G.L., Anderson L., J.L., 2009. Dynamic stochastic adaptive bioeconomic model of
489 offshore bluefin tuna aquaculture. *Aquaculture Economics and Management* 13, 155–
490 175. <https://doi.org/10.1080/13657300902885451>

491 Sharp, W.C., Bertelsen, R.D., Leeworthy, V.R., 2005. Long-term trends in the recreational
492 lobster fishery of Florida, United States: landings, effort, and implications for

493 management. *New Zealand Journal of Marine and Freshwater Research*, 39, 733–747.

494 <https://doi.org/10.1080/00288330.2005.9517349>

495 Sogn-Grundvåg, G., Zhang, D., Dreyer, B., 2020. Fishing methods for Atlantic cod and haddock:

496 quality and price versus costs. *Fisheries Research*, 230, 105672.

497 <https://doi.org/10.1016/j.fishres.2020.105672>

498 Sogn-Grundvåg, G., Zhang, D., Henriksen, E., Joensen, S., Bendiksen, B.I., Hermansen, Ø.,

499 2021. Fish quality and market performance: the case of the coastal fishery for Atlantic

500 cod in Norway. *Marine Policy* 127, 104449.

501 <https://doi.org/10.1016/j.marpol.2021.104449>

502 Sogn-Grundvåg, G., Zhang, D., Henriksen, E., Joensen, S., Bendiksen, B.I., Hermansen, Ø.,

503 2022. Fishing tactics and fish quality: the case of the coastal fishery for Atlantic cod in

504 Norway. *Fisheries Research*, 246, 106167.

505 Wolff, F., Asche, F., 2022. Pricing heterogeneity and transaction mode: Evidence from the

506 French fish market. *Journal of Economic Behavior and Organization*, 203, 67–79.

507

508 Table 1. Descriptive statistics of the trip ticket data for the Caribbean spiny lobster fishery in
 509 Florida from August 2010 to March 2022.

Variable	Share of landings, August 2010 to March 2022	Average inflation- adjusted price per pound (SD)
Grade		
Live	46.4	10.22 (3.90)
Whole	13.9	9.54 (3.69)
Unknown	39.7	7.21 (1.97)
Fishing season		
2010-2011	12.7	8.59 (2.01)
2011-2012	11.9	8.26 (1.63)
2012-2013	8.8	8.08 (3.77)
2013-2014	11.1	10.60 (4.22)
2014-2015	7.1	13.02 (4.81)
2015-2016	8.8	8.07 (2.17)
2016-2017	8.5	9.05 (2.96)
2017-2018	6.0	8.85 (3.04)
2018-2019	9.2	7.50 (2.58)
2019-2020	5.1	6.94 (1.74)
2020-2021	6.0	8.30 (3.32)
2021-2022	5.0	8.53 (2.33)
Month		
August	31.6	7.04 (1.38)
September	20.8	8.63 (3.33)
October	16.5	8.59 (2.66)
November	11.3	8.22 (2.05)
December	6.5	10.25 (3.35)
January	7.4	12.36 (4.32)
February	3.6	12.71 (4.84)
March	2.2	10.93 (4.18)
Average Price	-	9.02 (3.56)

510

511 Table 2. Results of the hedonic price regression for the Caribbean spiny lobster market in
 512 Florida.

	Estimate	Std. error	% Premium
Intercept	1.652 ***	0.003	
Grade			
Live	0.298 ***	0.001	34.7
Unknown	0.255 ***	0.001	29.0
Gear			
Trap	0.017 ***	0.002	1.7
Bully	0.024 ***	0.002	2.4
Other	0.201 ***	0.009	22.3
Month			
September	0.145 ***	0.001	15.6
October	0.148 ***	0.002	16.0
November	0.172 ***	0.002	18.8
December	0.299 ***	0.002	34.9
January	0.480 ***	0.002	61.6
February	0.494 ***	0.002	63.9
March	0.336 ***	0.002	39.9
County			
Dade	0.019 ***	0.003	1.9
Monroe	0.066 ***	0.003	6.8
Fishing season			
2011-2012	-0.007 **	0.002	-0.7
2012-2013	-0.118 ***	0.002	-11.1
2013-2014	0.178 ***	0.002	19.5
2014-2015	0.364 ***	0.002	43.9
2015-2016	0.006 **	0.002	0.6
2016-2017	0.066 ***	0.002	6.8
2017-2018	0.051 ***	0.002	5.2
2018-2019	-0.106 ***	0.002	-10.1
2019-2020	-0.160 ***	0.003	-14.8
2020-2021	-0.073 ***	0.003	-7.0
2021-2022	0.014 ***	0.003	1.4

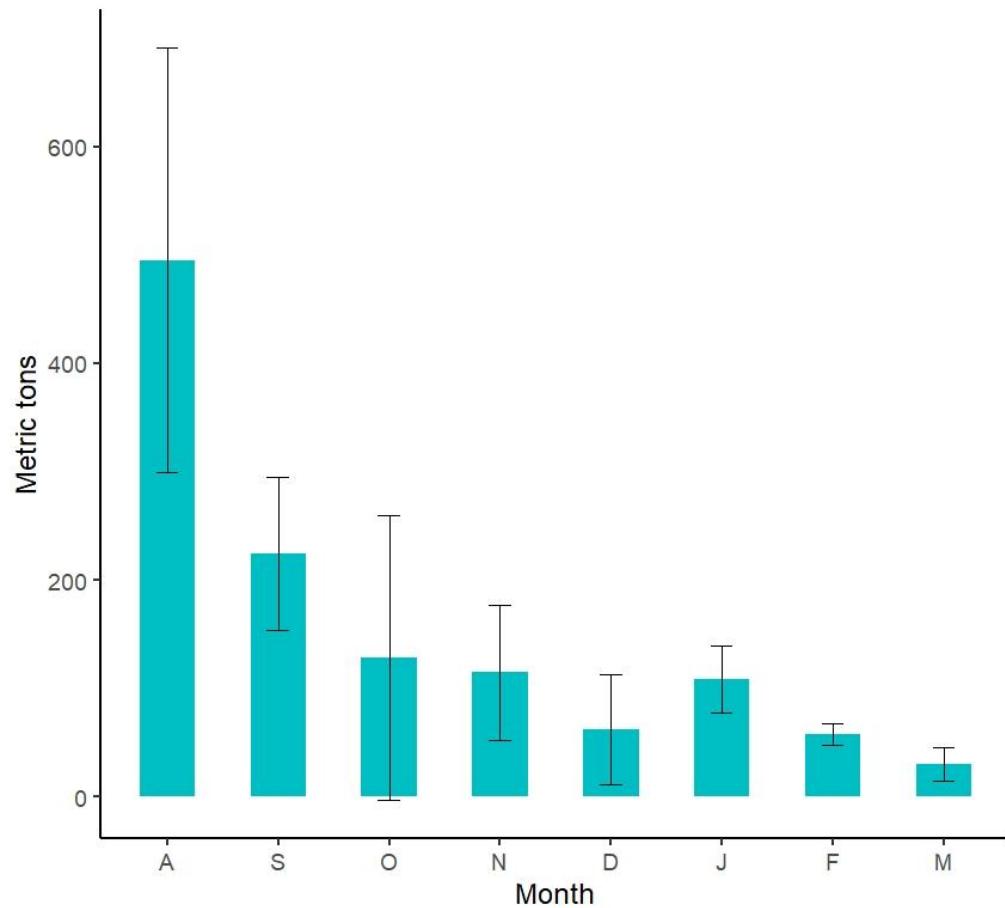
513 Note: The base category contains the attributes: whole grade, dive gear, August, other counties,
 514 and the 2010-2011 fishing season.

515 ** and *** indicate significance at 0.01 and 0.001 levels.

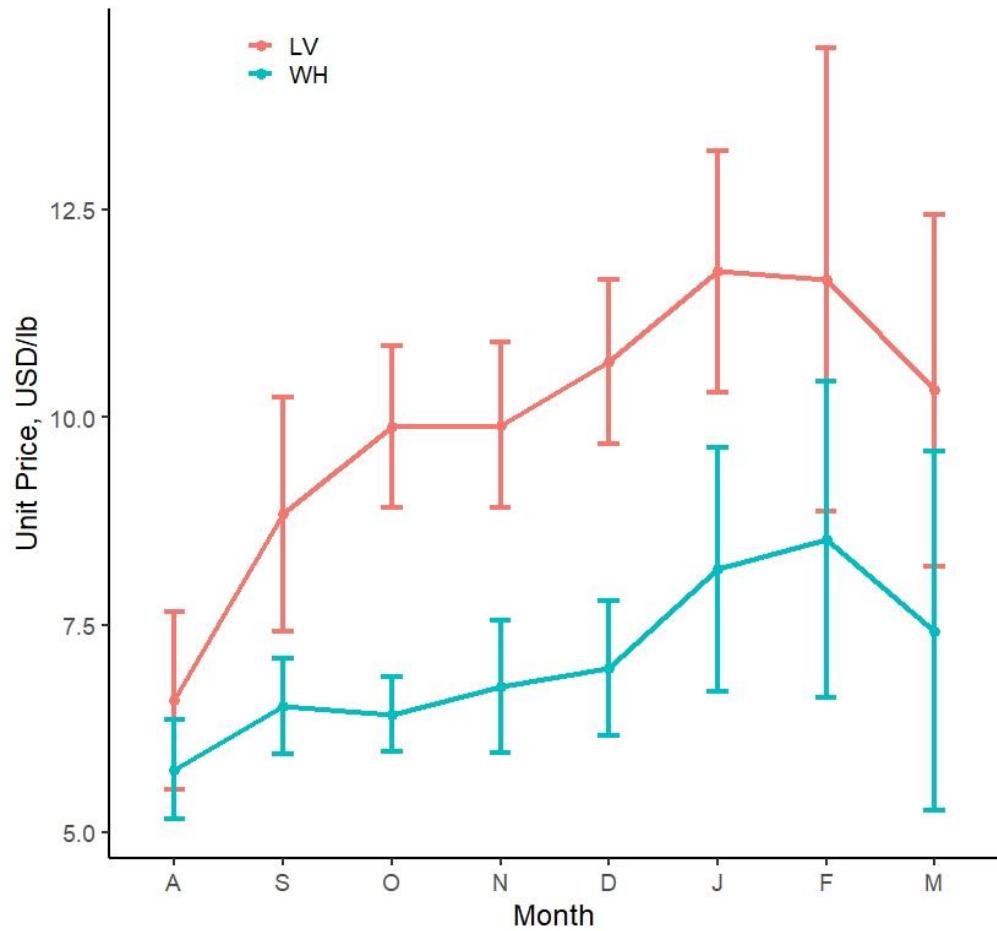
516

517 Table 3. Results of the hedonic price regression with interaction effects for the Caribbean spiny
 518 lobster market in Florida.

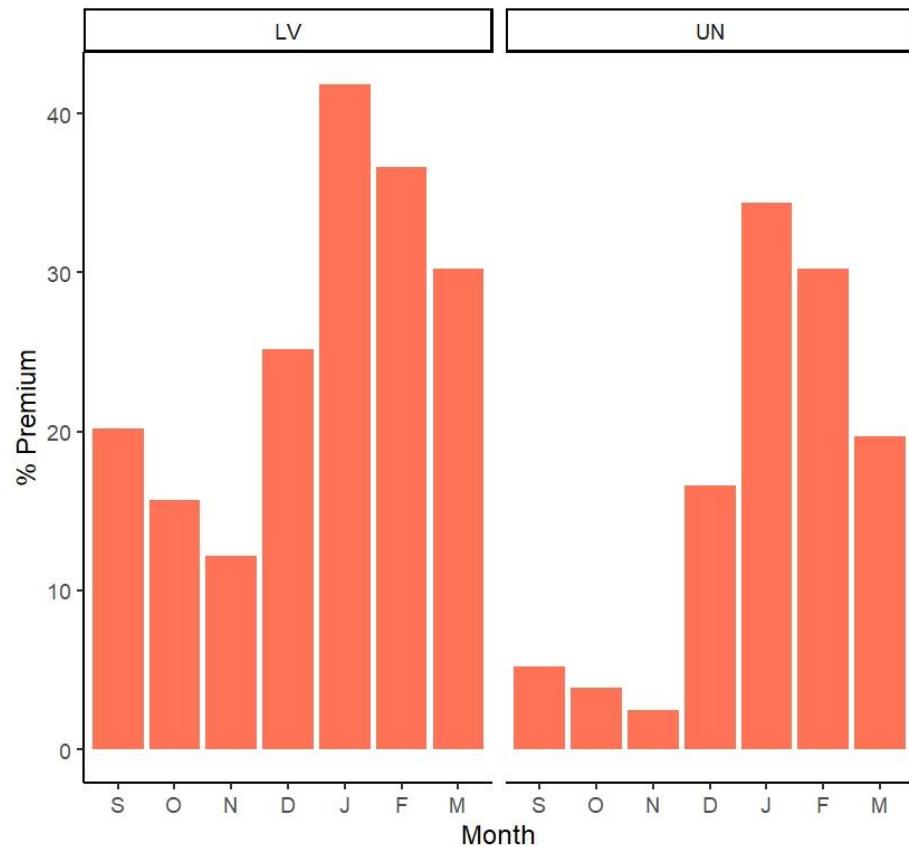
	Month*Grade		Year*Grade	
	Estimate	Std. error	Estimate	Std. error
Intercept	1.739 ***	0.003	1.827 ***	0.004
Grade				
Live	0.147 ***	0.002	0.112 ***	0.005
Unknown	0.172 ***	0.002	0.042 ***	0.004
Gear				
Trap	0.020 ***	0.002	0.018 ***	0.002
Bully	0.023 ***	0.002	0.027 ***	0.002
Other	0.195 ***	0.009	0.196 ***	0.009
Month				
September	0.063 ***	0.002	0.139 ***	0.001
October	0.085 ***	0.003	0.140 ***	0.002
November	0.120 ***	0.003	0.166 ***	0.002
December	0.172 ***	0.003	0.283 ***	0.002
January	0.252 ***	0.00	0.468 ***	0.002
February	0.288 ***	0.004	0.481 ***	0.002
March	0.183 ***	0.004	0.324 ***	0.002
County				
Dade	0.018 ***	0.003	0.013 ***	0.003
Monroe	0.063 ***	0.003	0.069 ***	0.003
Fishing season				
2011-2012	-0.006 **	0.002	-0.075 ***	0.005
2012-2013	-0.121 ***	0.002	-0.297 ***	0.005
2013-2014	0.169 ***	0.002	-0.018 ***	0.004
2014-2015	0.340 ***	0.002	0.075 ***	0.004
2015-2016	-0.001	0.002	-0.146 ***	0.004
2016-2017	0.062 ***	0.002	-0.136 ***	0.005
2017-2018	0.043 ***	0.002	-0.177 ***	0.005
2018-2019	-0.106 ***	0.002	-0.281 ***	0.005
2019-2020	-0.162 ***	0.002	-0.288 ***	0.005
2020-2021	-0.079 ***	0.003	-0.175 ***	0.005
2021-2022	0.014 ***	0.003	-0.202 ***	0.005
R²	0.610		0.610	


519 Note: The base category contains the attributes: whole grade, dive gear, August, other counties,
 520 and the 2010-2011 fishing season.

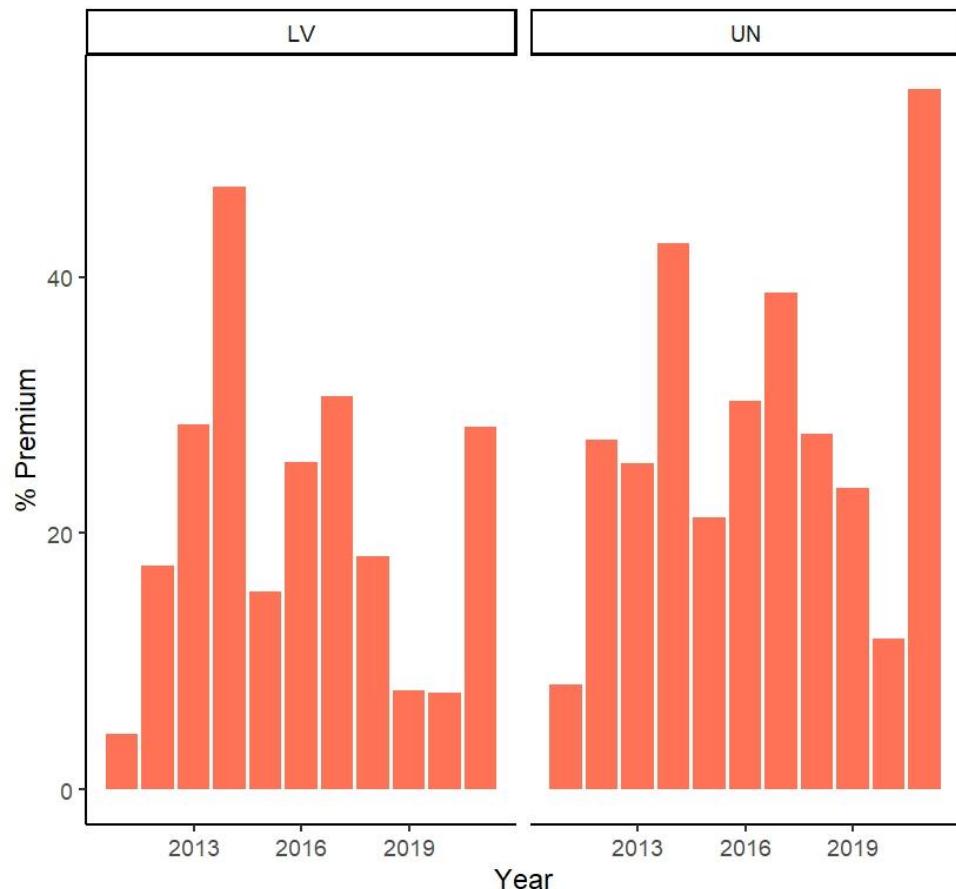
521 ** and *** indicate significance at 0.01 and 0.001 levels.


522

523 Figure 1. Commercial and recreational landings of spiny lobster. Recreational landings are not
524 available for the 2004-2005, 2017-2018, and 2020-2021 fishing seasons (FWC, 2023).


525

526 Figure 2. Average monthly landings of spiny lobster in Florida, 2017-2021.


527

528 Figure 3. Average monthly unit price (\$/lb) of live (LV) and whole (WH) grade spiny lobster in
529 Florida from 2017-2022.

530

531 Figure 4. Monthly price premiums by grade for Caribbean spiny lobster in Florida relative to the
532 reference month, August.

533

534 Figure 5. Yearly price premiums by grade for Caribbean spiny lobster in Florida relative to the
535 reference year, 2010.