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Abstract

Poly- and perfluorinated alkyl substances (PFAS) are a group of chemicals that are widely
used, prevalent in the environment, associated with several toxic effects, and often have
long half-lives. Their persistence and relevant toxicity are the primary causes of environ-
mental and human health concerns, and they are referred to as “forever chemicals” because
of their persistence. Environmental accumulation caused by slow natural biodegradation
and subsequent long environmental half-lives leads to bioaccumulation and makes PFAS
more likely to be chronically toxic with potential transgenerational effects. Ultimately, it
is this persistence that causes the greatest concern because PFAS-contaminated sites need
costly remediation techniques, or else the contaminated areas will not be available for
proper economic development because of social and economic suppression. Non-PFAS,
alternative Aqueous Film Forming Foams (AFFF) that are considered environmentally
friendly, are being heavily considered or currently used for fire suppression instead of
PFAS-based products. The bioaccumulation and toxicity of alternative AFFF are just
starting to be studied. The purpose of this review is to discuss the basic environmental
and human health effects of PFAS and alternative AFFF that propel regulatory changes,
increase clean-up costs, reduce economic development, and drive the development of
novel alternatives.

Keywords: PFAS; PFOS; bioaccumulation; biodegradation; half-life; forever chemical;
regulation; economic; chronic toxicity

1. Background
On 29 July 1967, the USS Forrestal caught fire, killing 134 sailors and injuring 161

more [1,2]. Improper safety measures and the lack of high-quality fire suppressants were
in part to blame. This fire helped usher in the development and use of new Aqueous
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Film-Forming Foams (AFFF) that contained poly- and perfluorinated alkyl substances
(PFAS) [3]. These PFAS-containing AFFF were highly effective at fighting fires and became
widely used in multiple other products, but led to widespread environmental contamina-
tion due to their persistence and toxicity.

PFAS are synthetic chemicals that have been used widely as surfactants and poly-
merization aids, non-stick coatings for cookware, food packaging, finishes for clothing,
upholstery, and as firefighting foams for approximately ninety years [4–6]. PFAS come in
multiple lengths with multiple functional groups. These diverse functional groups may
include carboxylic acids, sulfonic acids, sulfonamide, iodides, ethers, and phosphonic or
phosphinic acids. The two major forms are sulfonates such as perfluorooctane sulfonic acid
(PFOS) and carboxylic acids such as pefluorooctanoic acid (PFOA) [6]. Characterization
may also be based on the number of carbons in the chain, with six-carbon chains or less
typically considered short-chain PFAS and seven carbons or more considered long-chain
PFAS. Chain length is important as it is directly correlated to bioaccumulation [6,7]. With
more than 7 million PFAS structures [8], many with long chemical half-lives, these ‘forever
chemicals’ have raised several human health and environmental concerns, as exposure is
widespread [9,10].

Human PFAS exposure remains prevalent for common PFAS such as PFOS, PFOA,
and perfluorohexane sulfonic acid (PFHxS) despite U.S. and European manufacturing
phase-outs in the early 2000s and listing in the Stockholm Convention [6,11]. Contami-
nated food and water, household dust, and indoor air continue to be important sources.
Furthermore, these chemicals and other PFAS are produced internationally by multiple
countries and imported in consumer goods such as firefighting foams, non-stick cookware,
stain-resistant products, clothing, mattress pads, table cloths, personal care products, and
cleaning products [12], which means the exposure, bioaccumulation, and toxicity risks of
PFAS will continue.

The manufacturing and subsequent persistence of PFAS led to significant contamina-
tion in several areas or hotspots [13,14]. These hotspots affect human and environmental
health, leading to increased healthcare and compliance costs, and adversely impacting
property values and economic development due to potential clean-up costs. Therefore,
PFAS significantly reduce investment in these regions [15–17]. It is the widespread use
and persistence of PFAS that lead to downstream adverse effects on human health, the
environment, and the economy (Figure 1).

Multiple PFAS, including PFOA, PFOS, and long-chain fluorotelomers, have been
used in AFFF as firefighting foams since the 1970s. AFFF are typically used as class B
firefighting foams to extinguish gas, oil, and jet fuel fires (flammable liquids, gases, or
greases), and therefore are commonly available at airports and military bases [18,19]. The
ensuing contamination threatens the health and well-being of the environment, firefighters,
and local communities [19]. Therefore, synthetic fluorine-free foams, also known as “F3”
foams, that are effective at putting out fires are being developed.

In February 2024, the U.S. FDA announced that PFAS-containing grease-proofing
agents that come into contact with food, such as in cookware and food packaging products,
are no longer being sold [20]. In April 2024, the United States Environmental Protection
Agency (USEPA) established enforceable drinking water limits for PFOS, PFOA, hexafluo-
ropropylene oxide dimer acid [GenX (HFPO-DA)], perfluorononanoic acid (PFNA), and
PFHxS, with limits ranging from 4 to 10 parts per trillion (pptr). Specifically, PFOA and
PFOS were capped at 4 pptr; GenX, PFNA, and PFHxS were capped at 10 pptr as a Maxi-
mum Contaminant Level (MCL). This regulation also includes mixtures of two or more of
PFHxS, PFNA, perfluorobutane sulfonic acid (PFBS), and HFPO-DA. Public water systems
have until 2027 to complete initial monitoring and until 2029 to implement solutions to
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reduce these PFAS in accordance with the MCLs [21]. However, in May 2025, the USEPA
announced its intent to rescind its drinking water standards for GenX, PFHxS, PFNA, and
PFBS. The proposed rule redefining PFAS standards should come into effect in the spring
of 2026 [22].

Figure 1. PFAS exposure has negative consequences on the environment and human health, and in
turn negative social and economic impacts related to it’s toxicity and persistence. As toxicologists, we
often consider only the bioaccumulation or toxic responses; however, the novel properties of PFAS
have led to reduced economic investment, repressed property values, expensive remediation and
clean-up costs, and ultimately a search for alternatives. Adverse environmental and human health
effects caused by PFAS are often the result of biomagnification and bioaccumulation (blue). PFAS’s
persistence and toxic effects leads to the need for regulations and novel remediation strategies (green).
In addition, there are social and economic stresses caused by PFAS bioaccumulation and toxicity such
as increased clean up costs, reduced property value, reduced investment, and increased healthcare
costs. This figure was created using Biorender.

The following review examines PFAS persistence, toxicity, costs, and potential alterna-
tives.

2. PFAS Exposure and Bioaccumulation
Decades of widespread use, along with mobility and persistence, have resulted in

PFAS contamination worldwide. Recent studies revealed widespread contamination of U.S.
municipal drinking water supplies with detectable levels of PFAS, with PFOA and PFOS
being most consistently reported [23–25]. Importantly, these and other PFAS have been
measured in the vast majority of biological samples, such as serum and urine collected
from nationally representative studies of U.S. children and adults [26,27]. For example,
97% of human samples contained measurable PFAS in the NHANES study [27,28]; other
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studies found as many as 100% of samples contained PFAS [28]. Such findings present
important public health concerns given bioaccumulation within humans, persistence in the
environment, and their continued production and use in many areas [29–31]. To further
complicate matters, recent studies reveal that exposures do not occur in isolation, but
rather as combinations of substances, indicating that real-world exposures to PFAS occur as
complex mixtures with unknown biological implications [28,32]. For example, some studies
have found that mixtures of PFAS work in a predictable manner that leads to neurotoxicity
and cytotoxicity and follow typical concentration-addition mixture type dose–response
curves [32]. However, other studies found that specific combinations of chemicals (with
both PFAS and other persistent organic pollutants or metals) were more likely to cause
adverse outcomes in children [28]. In addition, other studies found that PFOA antagonized
PFOS’s ability to form reactive oxygen species and cause acute toxicity [33].

In addition to human exposures, the presence of PFASs in tissues of aquatic and
terrestrial species has been documented in studies conducted across every continent,
including remote regions far from direct sources of emission, such as the high Arctic,
Antarctica, and oceanic islands [34,35]. Further, some PFAS compounds (e.g., PFOS) have
the potential to biomagnify with increasing trophic levels in a variety of both freshwater
and marine ecosystems [6,35–43]. The bioaccumulation of PFAS has been noted to be
greater in marine environments compared to terrestrial systems [44]. Some of the greatest
accumulations of PFAS have been shown in marine mammals, compared to aquatic animals
with gills [45,46]. PFAS accumulation within an organism’s tissues may cause adverse
health effects directly, through maternal transfer, and also cause indirect effects to higher-
trophic-level predators, including human consumers of fish and shellfish.

Bioaccumulation potential generally increases with PFAS carbon chain length, and
sulfonic acids are more bioaccumulative than carboxylic acids of the same carbon chain
length [6]. Short-chain carboxylic acids (C < 7) were determined to have log bioconcen-
tration (BCF) values < 1 in fish and thus would not be considered bioaccumulative [44].
Bioaccumulation of both linear and branched isomers of PFOS has been shown in Eastern
oysters, but the branched isomers were more readily eliminated than the linear isomers [47].
Our understanding of bioconcentration and bioaccumulation is crucial as biological per-
sistence is still considered the most prominent toxicology issue in marine and aquatic
toxicology today, with PFOS and other, mostly legacy, PFAS of highest concern [48].

Typical bioaccumulation models based on chemical partitioning into lipids are not
applicable to most PFAS, in part due to their lipophobic properties and in part due to their
affinity for proteins that bind to lipids, making lipid partitioning models inaccurate [49,50].
Fatty acid-binding proteins (FABPs), serum albumin, peroxisome proliferator-activated
receptors (PPARs), organic anion transporters (OATs), and organic anion transport proteins
(OATPs) are some of the proteins that bind PFAS. Of these, FABPs, serum albumin, and
OATs are involved in PFAS’s bioaccumulation [51]. FABPs bind PFAS with high affinity,
and the greater the induction and binding to FABP and serum albumin, the greater the
half-life [52–57]. PPARs are nuclear receptors that respond to fatty acids and modify lipid
uptake, metabolism, and storage, and therefore regulate liver lipid accumulation [58–62].

Both albumin and FABPs bind numerous fatty acids in addition to PFASs. FABPs
even change conformation upon binding [51]. The Posterior Inclusion Probabilities (PIPs)
obtained from molecular descriptor analysis revealed that molecular flexibility, atomic
polarizabilities, and the number of carbon atoms were the primary molecular characteristics
that led to binding of PFASs to (liver) L-FABP [56]. Species differences in L-FABP binding
were also noted, with human, rat, and rainbow trout having stronger binding affinities
than Japanese medaka and fathead minnow [63]. The number of carbons may also have
an effect, as eight-carbon compounds increased lipid synthesis more, while ten-carbon
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PFAS decreased lipid excretion [64]. Albumin binds PFAS at multiple positions, but does
not change conformation as FABP does [51]. Serum albumin binds PFAS in the blood,
inhibiting filtration and excretion by the kidneys [51]. In summary, L-FABP helps transport
and keep PFASs in the liver where they preferentially bioaccumulate. The liver and serum
are typically the tissues with the greatest bioaccumulation because of PFAS binding to
FABP and albumin [6,51,56].

In addition to binding proteins, OATs and OATPs also enhance bioaccumulation.
The four proteins most associated with bioaccumulation in the liver due to enterohepatic
circulation are L-FABP, serum albumin, apical sodium-dependent bile acid transporter
(ASBT), and sodium taurocholate co-transporting polypeptide (NTCP) [65,66] as NTCP
transports PFAS to the bile but ASBT reabsorbs them from the intestines. Once PFAS are
absorbed, most are excreted through the kidney. However, reabsorption is common through
OATP1A1 as well as OATP1B3 and OATP2B1 [67]. Some species and sex differences [45,68]
in bioaccumulation are likely caused by transporters. The half-life of PFOA is only hours
in female rats, but several days in male rats [69], probably because of reduced expression
of OATP1A1 in female rats [70]. The role of transporters in bioaccumulation is not fully
understood. For example, L-FABP protein and fatp1 gene expression were associated
with differences in liver PFOS retention between Cyp2b-null and hCYP2B6-Tg mice [53];
however, the role of fatp1 in PFOS liver absorption has not been studied to our knowledge.

Exposure to mixtures of PFAS will also influence uptake, binding, transformation,
and toxicity. In fish, differential protein-binding interactions between PFOS and PFOA
were observed, where PFOS did not upregulate peroxisome proliferator-activated receptor
alpha (pparα) but did significantly upregulate a downstream product, apolipoprotein A4
(apoa4) [33]. PFOA had the opposite binding pattern and resulted in decreased toxicity
when mixed with PFOS [33].

Environmental exposure conditions such as salinity and temperature may also influ-
ence bioavailability and resulting toxicity of PFAS compounds. Chung et al. [71] reported
that PFOS toxicity was greater at higher temperatures for C. variegatus, and greater at lower
salinities for grass shrimp (Palaemon pugio) and eastern mud snail (T. obsoleta).

3. Bioanalytical Challenges for Identification and Quantitation of PFAS
Exposure studies, both in vivo and in vitro, require quantitation of dosed PFASs.

Biomonitoring studies aim to confidently identify and quantify PFASs that are present in a
biological matrix. However, PFAS identification and quantitation are not straightforward.
Not only are PFAS ubiquitous, but the number of chemicals classified as PFAS is as high
as 7 million [8]. Other factors such as the physiochemical properties of PFAS, the lack of
standard methods, the need for low detection limits, the presence of analytical interferences,
and the ability to biotransform can lower confidence in correct identification and accurate
quantitation. Few standard methods are available for the detection and quantitation of
PFAS, and several that are available are intended for aqueous matrices [72]. Quantitation
can be difficult due to the lack of appropriate, PFAS-free control matrices, limited commer-
cial availability of analytical standards and reference materials, and paucity of commercial
isotope-labeled internal standards.

Quantities of biological samples are often small and prevent accurate quantitation of
PFAS that are present at low concentrations. This is especially true for human biomonitor-
ing, for which both sample volumes are minimal and PFAS concentrations are typically close
to detection limits. PFAS exposure can occur through multiple pathways [73], which makes
the selection of appropriate models for understanding potential health effects challenging,
as does the variety of biological systems impacted by PFAS. Due to the ubiquitous nature
of PFAS, care must be taken to minimize and avoid contaminated laboratory animal feed
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that could influence a toxic response as well as contribute to internal dose measurements
for exposure studies [74,75].

Further complicating the accurate quantitation of PFAS in biological matrices is the
ubiquitous nature of PFAS in common laboratory materials. Care must be taken to min-
imize and avoid contamination of samples from typical analytical chemistry laboratory
sources such as solvents, water, plasticware including pipette tips and 96-well plates, glass-
ware, filters, foil, vials, septa, manifold lids, nitrogen evaporation needles, and analytical
instrumentation. PFAS adhere to both glass and plastics [76], which leads to often conflict-
ing advice on the use of labware such as recommendations to avoid using glass [77,78],
only use polypropylene (PP) [79], use polystyrene (PS) but not PP [80], use glass instead
of PP, PS, and polycarbonate [76], and avoid use of polytetrafluoroethylene (PTFE) [5].
Filters used during sample collection and preparation have been shown to contain PFAS
that can contaminate samples or bind and remove PFAS from the sample [81,82]. Instru-
ment manufacturers offer specialized kits and parts to reduce PFAS contamination that
occurs during separation and/or mass spectrometry analysis due to PFAS-containing in-
strument components. Best practices for laboratories determining PFAS include testing all
solvents and supplies for PFASs prior to use on samples, replacing solvent lines and seals
on liquid chromatographs with PEEK tubing and other PFAS-free substitutes, use of an
in-line delay column, use of blanks to monitor contaminants, and frequently cleaning mass
spectrometer sources.

Some PFAS have properties including varied solubility and air sensitivity that may
make them difficult to handle in the laboratory [83]. PFAS may sublime [8], leach into
extracts during sample preparation [84], or decompose during storage or dosing [85].
Control matrices used for the preparation of calibration curves and quality control samples
may also be a source of potential contamination. Fetal bovine calf serum is used by some
researchers as a control matrix due to the assumption that it is PFAS-free [24,86]. In
other instances, solvent-based standards may be used due to the lack of availability of an
appropriate PFAS-free control matrix [87,88].

Detection of PFAS in biological matrices is hampered by the lack of published methods.
Few standard methods are available for the detection of PFAS, and they are only applicable
to a small number of semi-volatile compounds [72,75,89,90]. For example, most standard
USEPA analytical methods for the detection of PFAS are validated for aqueous samples [72],
target fewer than 25 common PFAS, and employ liquid chromatography–tandem mass
spectrometry (LC-MS/MS) performed on triple-quadrupole mass spectrometry systems. A
few standard methods are available for use with biological matrices such as cells, cell media,
biofluids, or tissues that are relevant to toxicity studies. The USEPA Method 1633 expands
detection to 40 PFAS in fish tissue, along with environmental matrices [91]. A worldwide
inter-laboratory assessment of targeted analyses of 22 PFAS in matrices including human
milk and plasma demonstrated that PFAS measurements between laboratories are com-
parable [90]. The U.S. Center for Disease Control and Prevention (CDC) uses an on-line
solid-phase extraction (SPE) method for the analysis of 17 PFAS in human serum [92].
Researchers may be able to modify standard methods to fit with the matrices they are
interested in, such as human plasma, rodent liver and other organs, milk, and zebrafish
embryos. But in many instances, new analytical methods must be developed and validated.

A literature search using Abstract Sifter with terms including PFAS, rat liver, plasma,
and mass spectrometry yields hundreds of articles, most related to the detection of PFAS
in human matrices for biomonitoring [93]. An LC-MS/MS method with matrix-specific
sample preparation procedures was used for the detection and quantitation of PFAS in milk
from healthy human mothers, as well as liver samples collected postmortem from human
donors [87]. A review of analytical methods for the detection and quantitation of PFAS
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in human matrices provides additional examples [94]. Other recent publications describe
LC-MS/MS methods for the determination of PFAS in rat livers and plasma [95–97]. Huang
et al. [98] included methods for the detection of PFAS in rat plasma, liver, kidney, and
brain for a toxicokinetics study. The detection of PFAS and glucuronide metabolites was
documented in a recent study [99]. Toxicokinetic studies have made use of both LC-MS/MS
and gas chromatography–tandem mass spectrometry for detection and quantitation of
PFASs in plasma, serum albumin, and hepatocyte media [55,99,100].

Analytical interferences from endogenous chemicals in biomatrices can lead to false
identifications or miscalculation of PFAS concentrations [101]. Steroid sulfates have com-
mon tandem mass spectrometry transitions with perfluorohexane sulfonic acid (PFHxS)
that can lead to false identifications or overestimation of concentrations in human serum un-
less alternate transitions were selected, high-resolution mass spectrometry was employed,
or the compounds were chromatographically separated [102]. Similarly, taurodeoxycholic
acid and perfluorooctanesulfonic acid (PFOS) share a common transition that could confuse
identification or quantitation in biomatrices [103]. An interference in a chemical standard
of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA), a novel PFAS observed in
human blood, was identified by Kotlarz after it had contributed to an overestimation of
concentrations in human serum [24].

PFAS are commonly known as “forever chemicals”, but some including perfluorosul-
fonamides and fluorotelomers are able to biotransform to generate metabolites [104]. For
example, PFAS-based fluorotelomer alcohols (FTOH) biotransform to perfluorocarboxylic
acids such as PFOA and perfluorohexanoic acid (PFHxA). The Total Oxidizable Precursors
(TOP) assay can be used to detect FTOH as it oxidizes the unknown precursors and inter-
mediates into stable PFAS [105]. Because of concerns surrounding precursor chemicals,
Europe is considering adding FTOH 6:2 and FTOH 8:2 to the regulatory sum of PFAS of
primary concern in drinking water [106].

Other examples of dosing studies with precursor compounds that yield metabolites
that may be toxic include perfluorohexanesulfonamide (PFHxSA), which is known to me-
tabolize to PFHxS [104]. PFHxS is highly toxic and included in a USEPA national drinking
water standard [107]. Exposure studies evaluating the toxicity of PFHxSA may assume
toxic effects are related to PFHxSA, while being unaware of the presence of PFHxS. Other
recent studies have observed biotransformation of dosed PFAS compounds [99,100,108].
Biomonitoring studies may detect metabolites at higher concentrations than chemical pre-
cursors [109] or may use targeted methods that do not include precursors. Incorporation of
nontarget analysis (NTA) using high-resolution/accurate mass LC-MS/MS into study de-
signs may provide insights into the full distribution of PFAS present in biomatrices [110,111].
Another NTA method that may prove useful is Combustion Ion Chromatography (CIC),
which quantifies total organofluorine content after high-temperature combustion [112]. It
is complementary to LC-MS/MS; however, it does not identify individual PFAS.

4. PFAS and the One Health Concept
The One Health concept aims to balance and optimize the health of humans, animals,

and ecosystems [113]. In the field of toxicology, One Health recognizes that shared en-
vironments allow potential exposure to the same toxic agents and chemical-associated
health risks. This approach is particularly relevant for studies of PFAS exposure and toxic-
ity [48,114–119]. In the context of One Health, biomonitoring studies have demonstrated
that shared environments, food, and water sources can contribute to similarities in human
and animal PFAS exposure profiles. Recent results demonstrate similar adverse system tox-
icology effects across taxa and even common toxicity themes across PFAS classes [120,121].
Key findings from these studies include differences in spatial and temporal trends in PFAS
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contamination and exposure, the prevalence of PFAS within food webs, including livestock
and crops for human consumption, and overlap in adverse health effects between humans
and animals, including three primary targets of PFAS toxicity: the immune system, kidneys,
and liver [73,119,122–129].

5. Human Health Effects and Systemic Toxicity of PFASs
Improved understanding of the health effects of PFAS is a current research priority for

epidemiologists in the environmental health research community. Epidemiological studies
have shown that exposures to some PFAS have been associated with a wide variety of health
effects, including immune suppression, high cholesterol, liver toxicity, fetal growth restric-
tion, and certain types of cancer [6,73,130,131]. Results from observational/epidemiological
studies in human populations are mixed; however, continued research is yielding greater
health concerns [132,133]. PFAS cross the placental barrier, resulting in fetal exposure [134],
with potential developmental sequelae. Recent meta-analyses of studies in human popula-
tions have reported lower birth weight and birth length associated with greater PFAS expo-
sure, as well as greater risks of preterm birth and small-for-gestational-age infants [135,136].
A greater risk of thyroid disease and altered thyroid hormone levels has also been reported
in human studies of PFAS exposure in adults and children [137,138], which could have a
myriad of downstream adverse health impacts. However, contradictory study results and
some methodological concerns also preclude a causal connection at present [139,140]. Other
evidence from human studies suggests adverse effects on metabolism, including diabetes,
lipid homeostasis, body composition/obesity, and vascular health, in association with
greater gestational and postnatal PFAS exposure, but again with mixed results [141–143].
Less common PFAS [144], replacement PFAS [145] and PFAS mixtures [146] are also areas
of concern, but less research has been performed compared to legacy PFAS.

Toxicological evidence is growing as results from a number of experimental studies,
both in vitro and in vivo, indicate adverse human health effects from PFASs [147,148].
Several PFASs and their replacements have been identified as endocrine-disrupting chem-
icals (EDCs) in experimental studies, altering the function of sex steroid and thyroid
hormones [97,137,149,150]. Other studies show binding to PPARs, with potential develop-
mental and metabolic effects [151–153]. Furthermore, a U.S. National Toxicology Program
literature review identified PFOA and PFOS as human immune hazards [154], and a
collaboration of industry and academic experts called for further investigation [155].

PFAS cause a large number of negative effects on multiple organ systems. Toxicology
studies in animal models, cell models, and key molecular initiating events such as PPARα
and sterol regulatory element-binding protein (SREBP/SREBF) activation provide mecha-
nisms for PFAS-mediated metabolic diseases such as fatty liver disease, obesity, increased
cholesterol and LDL, and diabetes [6,52,60,68,145,156,157].

Both legacy and alternative PFAS appear to activate similar pathways [60,145]. For
example, a recent toxicogenomics study indicates that most legacy and alternative PFAS
activate PPARα; many also activate SREBP, constitutive androstane receptor (CAR), and
nuclear factor erythroid 2-related factor 2 (NRF2), and some inhibit signal transducer
and activator of transcription 5b (STAT5b) [60]. These key molecular initiating events
with PPARα activation are central to the disruption of most pathways associated with
obesity, diabetes, high cholesterol, and other metabolic-dysfunction-associated fatty liver
diseases (MAFLDs). The large overlap between legacy and alternative PFAS is interesting.
Evidence from epidemiology studies confirms most if not all of the disease results (see
below), including studies that demonstrate an association between concentrations of PFAS
or PFAS-containing mixtures in mothers and childhood obesity [28,142,158,159]. Overall, it
is not surprising that PFAS bind albumin, fatty acid-binding proteins (FABPs), and PPARs,



Toxics 2025, 13, 732 9 of 28

and disrupt energy signaling given their similar structure to short- and mid-chain fatty
acids (Figure 2) depending on the length of the PFAS [56,160].

Figure 2. The structure of many PFAS shows high similarity to fatty acids, with the replacement of
hydrogens with fluorines. An eight-carbon mid-chain fatty acid is compared to PFOS and PFOA.

New shorter-living, typically short-chain PFAS and PFAS-forming formulations have
been tested recently. There is still much to be learned about the bioaccumulation profiles of
these PFAS-containing compounds, including PFAS-containing AFFF. In addition, they are
not as strictly regulated as legacy PFAS, as total PFAS in drinking water can legally reach
0.5 µg/L [161,162]. A recent study comparing legacy, short-chain, and precursor PFAS
[i.e., substances that can transform into perfluoroalkyl acids (PFAAs)] that form PFOS in
primary human hepatocytes found that the replacement short-chain PFAS and precursor
PFOS were more potent at inducing steatosis and lipogenic gene expression than legacy
PFAS [145]. PFAS precursors are also likely to add to the total PFAS accumulation in human
tissues; however, their role in bioaccumulation is not known.

Other adverse health effects include endocrine disruption, some of it mediated through
nuclear receptors, increased oxidative stress, neurotoxicity, reproductive and developmen-
tal toxicity, pulmonary toxicity, and cancer, of which some of these effects may be elicited
through reduced immune surveillance [6]. For example, PFAS levels have been associ-
ated with cancer in humans, and PFAS have been shown to increase cancer incidence
in laboratory animals [131,163–165]. In the Danish population, the greater the level of
PFAS, especially PFOA and PFOS, the greater the risk of cancer [166]. Concentrations of
PFOS, PFOA, PFNA, and PFHxS are inversely associated with income [167]. In addition,
non-Hispanic Black populations may be exposed to more PFAS and have higher serum
levels of some PFAS than other racial and ethnic groups, and this may manifest itself in
increased cancer risk and other diseases such as hypertension [164,168–171].

The long half-lives of many PFAS allow for bioaccumulation and the time neces-
sary for transgenerational effects to occur. PFAS have been associated with reproductive
problems and developmental delays [96,134,172] that in part may be due to the disrup-
tion of PPARγ signaling [173]. Other toxicity and health issues include cardiovascular
disease, hypothyroidism, neurotoxicity, and many other adverse effects associated with
human PFAS exposure in agreement with PFAS toxicity assessments performed in labo-
ratories [154,174–179]. Immunotoxicity [154,180] and reduced responses to vaccines have
also been measured [181]. In summary, there are a multitude of potential adverse health
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effects that might be caused by PFAS exposure based on laboratory evidence and epidemio-
logical studies.

Figure 3 is a summary figure presenting some possible molecular initiating mecha-
nisms of PFASs and their ultimate systemic effects. Many of PFASs’ negative effects are
linked to their environmental persistence and bioaccumulation, which is also stressed in
Figure 3. OATs and OATPs increase the retention of PFAS in the kidney due to tubular
reabsorption [53,67,69,182]. This can also lead to kidney toxicity and cancer [54,70,183–186].
Proteins such as serum albumin and FABP bind PFOA, PFOS, and other PFASs and increase
their half-lives [56,160,187]. L-FABP also helps transport PFASs to the PPARs, where they
may activate PPARs such as PPARα or potentially inhibit PPARγ [56,188]. Disruption of
PPAR activity is associated with metabolic disease following PFAS exposure, including
altered mitochondrial function, changes in lipid metabolism, and fatty liver disease. These
effects may lead to obesity, diabetes, and cardiovascular disease [6,52,60,159,189–193].

Figure 3. PFOS, PFOA, and other PFAS have multiple effects on several different organ systems. Most
of these adverse effects are complicated or worsened by the bioaccumulation of some PFAS. This
allows for disruption of lipid metabolism and other metabolic pathways, subsequent perturbations
in reactive oxygen species and inflammation, and development, including neurodevelopment, and
immune surveillance.

In addition to metabolic changes, PPARγ disruption by PFASs alters angiogenesis and
placental function [173,193,194]. In turn, PFAS exposure can lead to developmental effects
in children from exposed mothers, including neurotoxicity, immune surveillance issues,
and childhood obesity [96,172,195]. Immune suppression may occur through multiple path-
ways. PFAS can disrupt PPARs and NF-kB, perturb fatty acid metabolism, or induce oxida-
tive stress (reactive oxygen species/ROS) [53,196–198]. These molecular events can cause
changes in cytokine release, B-cell, T-cell, and natural killer cell functions [196,199,200]
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that lead to repression of antibody production, increased asthma, autoimmune disease,
and a reduced response to vaccines [196,199,201–203]. The nervous system and thyroid
are also targets. Enzymes such as thyroid peroxidase (TPO) or tyrosine hydroxylase are
inhibited or down-regulated, leading to reduced thyroid hormone or dopamine release and
signaling [137,204], which can lead to alterations in neurodevelopment, neurotoxicity [205],
and recently reported increases in Attention Deficit/Hyperactivity Disorder (ADHD) and
potentially autism [206,207].

6. Regulation of PFAS
In the United States, the Environmental Protection Agency (EPA) has the authority

to regulate PFAS at the national level through the Toxic Substances Control Act (TSCA),
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and
the Safe Drinking Water Act (SDWA) [208]. Owing to concerns regarding the persistence
and toxicity of long-chain PFASs, the EPA began regulating these chemicals in 2002 with Sig-
nificant New Use Rules (SNURs) requiring manufacturers to provide advanced notification
about the production or import of perfluorooctane sulfonyl fluoride (POSF) and some of its
salts and homologs [208–211]. Shortly thereafter, in January 2006, the EPA implemented the
2010/2015 PFOA Stewardship Program [212]. This program invited eight major companies
in the PFAS industry to commit to reducing PFOA in factory emissions and products by
95% by 2010 and to work toward eliminating PFOA from emissions and products by 2015.
All eight companies, which operate globally, committed to this stewardship program and
to working towards a global phase-out of PFOA and related chemicals. In conjunction
with these phase-outs, the fluorochemical industry has introduced replacement chemistries,
prioritizing shorter-chain PFAS and perfluoroalkyl ether moieties, claiming they are less
bioaccumulative and toxic [209,213]. Through the SDWA, the EPA continues to monitor
concentrations of PFAS in drinking water supplies and has made modifications to lifetime
drinking water health advisories in response to accumulating evidence of toxicity [213].
These modifications include reducing the health advisory levels for PFOS and PFOA, from
70 parts per trillion (pptr) established in 2016 to 0.02 pptr PFOS and 0.004 pptr PFOA in 2022,
and establishing health advisory levels for some of the replacement chemistries, including
HFPO-DA (also known as GenX) and PFBS. Health advisory levels are not enforceable
standards; however, the EPA finalized a National Primary Drinking Water Regulation
(NPDWR) to establish legally enforceable concentrations, known as MCLs, for six PFAS
in drinking water in 2024 [162]. Note however that in 2025, the EPA proposed that it will
keep the MCLs only for PFOA and PFOS and rescind or reconsider the limits for PFHxS,
HFPO-DA, PFNA, and mixtures of these with PFBS (https://www.epa.gov/newsreleases/
epa-announces-it-will-keep-maximum-contaminant-levels-pfoa-pfos, accessed on 18 June,
2025) [214]. With the vast structural diversity of PFAS, consisting of many thousands to
millions of different compounds, regulations could benefit from a change in strategy from
the current approach of regulating a single compound and related substances to regulat-
ing large groups of PFAS based on chemical class (i.e., physiochemical, environmental,
and toxicological properties) [209,215]. This is especially true of PFAS because while six
PFAS are tightly regulated in drinking water, total PFAS concentrations of non-legacy
compounds can reach up to 0.5 µg/L in drinking water, probably due to uncertainty in
their bioaccumulation and human toxicity.

7. Impacts of PFAS on Economic Development, Business, and
Property Value

PFAS are also of concern due to their potential economic impacts. Companies in-
volved in the manufacturing or use of PFAS-containing products may encounter legal

https://www.epa.gov/newsreleases/epa-announces-it-will-keep-maximum-contaminant-levels-pfoa-pfos
https://www.epa.gov/newsreleases/epa-announces-it-will-keep-maximum-contaminant-levels-pfoa-pfos
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responsibilities and lawsuits initiated by affected individuals, communities, and govern-
ment entities seeking compensation for health issues and property harm resulting from
PFAS contamination. Notably, compensation in some states in the U.S., such as Minnesota
(USD 850 million), Alabama (USD 39 million), and Michigan (USD 168 million), highlights
the substantial legal costs associated with defending against or resolving such litigations,
presenting a considerable financial burden to state or federal agencies in addition to the
companies involved [15]. Conversely, state and local governments may also face lawsuits
from manufacturers due to PFAS reduction policies and health regulations related to drink-
ing water. In addition to direct liability and legal costs, companies associated with PFAS
contamination may face reputational damage, leading to reduced sales and market share.

Growing concerns about PFAS may result in restrictions or bans on international trade
in products containing PFAS. For instance, a report released by the US Chamber of Com-
merce in September 2023 revealed that the economic and fiscal impacts of PFAS-containing
goods exported from the United States to the European Union amounted to USD 314 billion
in value and over 500,000 jobs [216]. These could be jeopardized if the European Union
enforces its proposed PFAS ban from February 2023. Consequently, these regulations
can impact industries reliant on the global supply chain for PFAS-containing materials
and products.

Moreover, PFAS contamination can dissuade potential investors, businesses, and
residents from considering locations affected by contamination, potentially negatively
affecting the economic growth and overall economic well-being of a region [16]. Properties
located in proximity to PFAS-contaminated sites may witness a decline in their worth
(Figure 4). Research from Australia demonstrated that property values in Williamtown,
New South Wales, an area contaminated with PFAS, fell by 15% compared to the current
market value had contamination not existed [17,217]. This can result in financial losses
for property owners and local governments, along with potential reductions in property
tax revenues. This may be even more so in some minority communities where PFAS
contamination is greater due to local factories and municipal pollution sources [12,218,219].

.  

Figure 4. PFAS contamination has negative consequences on property values and healthcare costs.
These problems are especially acute in poor or minoritized areas where factories, landfills, testing
grounds, and waste facilities are more likely to be found. This figure was created with Biorender.
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8. PFAS and Healthcare Costs
The health repercussions of PFAS exposure can lead to escalated healthcare costs, as

individuals affected may require medical treatment and monitoring. As an illustration, a
study assessed healthcare expenses in Nordic countries for populations impacted by PFAS
exposure through occupation, drinking water, or background exposure. According to this
study, communities exposed to PFAS in their drinking water due to proximity to chemical
plants or other industries incurred estimated annual healthcare costs ranging from EUR 2.1
to 2.4 million [16]. These expenses can place a strain on healthcare systems and insurance
providers.

Finally, the insurance sector may face increased costs and losses due to PFAS-related
claims, as indicated in a report from the Hinshaw Law Firm [220]. These can subsequently
translate into higher insurance premiums for businesses and individuals.

To tackle these economic challenges, governmental bodies, corporations, and local
communities are collaborating to institute regulations, execute clean-up initiatives, and
innovate new technologies to reduce the adverse effects of PFAS contamination and the
costs linked to it. Nonetheless, the economic consequences of PFAS contamination are
intricate and enduring, demanding continued dedication and resources to effectively
address the issue.

9. Clean-Up and Compliance Costs Due to PFAS
Of course, clean-up costs are also expensive. One of the major economic challenges

associated with PFAS concerns the costs incurred in the remediation of contaminated sites,
encompassing both surface and groundwater. PFAS have prolonged environmental persis-
tence, resulting in costly and time-consuming efforts to cleanse polluted soil, water, and air.
For instance, the endeavor to bring drinking water in Orange County, California, to the
state’s recommended PFAS levels is projected to amount to at least USD 1 billion [15]. In
March 2023, the USEPA introduced new regulations under the SDWA for PFAS, entailing
total annualized expenses ranging from USD 772 million to USD 1.2 billion [221]. These fis-
cal responsibilities can be borne by state and federal agencies, as well as the public through
utility costs. Additionally, these requirements can impose compliance costs on local and
smaller businesses, resulting in investments in novel technologies and processes to mini-
mize PFAS emissions and contamination. This has been an impetus for the development of
alternatives to PFAS.

10. Economic Impacts Lead to PFAS-Free Alternatives—AFFF as
an Example

As mentioned previously, the untimely death of 134 sailors and more injured in July
1967 on the USS Forrestal led to the development and use of PFAS-containing AFFF. These
highly effective foams would be used for years and lead to environmental and clean-
up issues costing billions. The US Department of Defense (DOD) has been funding the
development of fluorine-free foams (F3) since 2017. The DOD released specifications for F3
in January 2023, and was required to stop buying PFAS-containing foam by October 2023
and replace all AFFFs by October 2024 [222]. The U.S. military is currently transitioning to
F3 products.

However, F3 and other green chemistry firefighting foams are not a direct replacement
for PFAS-containing AFFF because they vary in performance for class B fire suppression
across different fuel types [223]. Whatever the military decides and what alternatives the
military deems best, based on its criteria of efficacy, safety, cost, and environmental health
concerns, will affect local municipal and airport fire stations, forest services, chemical



Toxics 2025, 13, 732 14 of 28

plants, oil refineries, oil tankers, and offshore platforms because these military-preferred
foams will most likely become the new standard.

Switching from PFAS is not an easy task. There are several types of new synthetic
firefighting foams to work with and learn, and each type may work differently from
traditional AFFF or other modern non-PFAS synthetic foams. For example, the specific
type of fire or size of the fire may impact the foam’s performance or preferred use. Some
firefighting equipment may need to be modified or completely replaced to handle the new
foams because of different application densities, proportioning rates, viscosities, and flows.
How long the new synthetic foams last under variable storage conditions also needs to
be considered. Lastly, firefighters will need training to learn how to properly use the new
foams [222].

As PFAS-containing AFFF compounds are being phased out due to their toxicity and
bioaccumulative potential, there is an urgent need to assess the bioaccumulation potential
and toxicity of the PFAS-free AFFF replacement products. The Strategic Environmental
Research and Development Program (SERDP) run by the DoD has been studying potential
PFAS-free AFFF. Early data suggest that the PFAS-free AFFF products are predicted to
have a much lower likelihood of environmental persistence and bioaccumulation [224,225].
For example, the toxicity of six replacement products was assessed: BIOEX ECOPOL
A 3%, Fomtec Enviro USP, National Foam 20-391, National Foam AvioF3 Green KHC
3%, National Research Lab (NRL)-502W, and Solberg Re-Healing Foam RF3 3%. These
PFAS-free alternatives were compared to Buckeye Platinum 3% PFAS-containing AFFFs
and showed greater biodegradability. ToxPi 2.3, a free downloadable software package
for prioritizing and visualizing data, was used to rank toxicity [226]. ToxPi indicates
that BIOEX ECPOL was the least hazardous to human and animal health based on the
hazard assessment criteria, and Solberg Re-Healing Foam RF3 3% was the most hazardous
replacement product. Comparatively, the short-chain PFAS Buckeye Platinum 3% was the
second-least hazardous [224].

A recent investigation of the biodegradability of those same six alternative PFAS-free
AFFF formulations (BIOEX ECOPOL A 3%, Fomtec Enviro USP, National Foam 20-391,
National Foam AvioF3 Green KHC 3%, National Research Lab (NRL)-502W, and Solberg Re-
Healing Foam RF3 3%) revealed that most formulations had similar metabolite formation
and were readily degraded within the 28-day trial [227]. Ecotoxicity studies indicate that
F3 may exhibit similar or even greater toxicity to aquatic biota than AFFFs [223]. The acute
toxicity of these six PFAS-free compounds and one PFAS-containing reference compound
was evaluated with 14 freshwater, marine, and terrestrial species. These studies determined
that exposure to some PFAS-free AFFF formulations can result in equal or greater acute
toxicity in aquatic species compared to PFAS-containing AFFF [228]. Species-specific
differences were noted, such as lower toxicity thresholds for estuarine invertebrates such
as the mud snail (Tritia obsoleta) and the sheepshead minnow (Cyprinodon variegatus) than
corresponding freshwater species [228].

Standard chronic toxicity tests with a suite of freshwater and marine species and the
same set of alternative AFFF formulations revealed significant effects on growth (Daphinia
magna, Chironomus dilutus, Pimephales promelas, and Americamysis bahia) and reproduction
(D. magna, Ceriodaphnia dubia, C. dilutus) [229]. While in many cases the PFAS-free AFFF
products exhibited greater toxicity than the reference legacy AFFF, it should be noted that
observed effect thresholds were generally >1 ppm [229]. More comprehensive toxicological
profiles of F3 formulations are needed to determine mechanisms of action and degrada-
tion pathways under variable exposure conditions and to further characterize chronic
toxicity, reproductive toxicity, and endocrine disruption [50,223]. The good news is that
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while these compounds exert greater acute toxicity in some cases, they have much lower
bioaccumulation potential and therefore are less likely to cause persistent effects.

The primary purpose for switching to alternatives is the environmental health issues
and subsequent clean-up costs. There are 714 military installations that are being assessed
for PFAS contamination. As of 30 June 2023, 466 installations have been assessed, of
which 359 of these installations are proceeding with further testing and risk assessments
per CERCLA processes. Sites identified as imminent risks to human health after the
Relative Risk Site Evaluations (RRSEs) will be prioritized. The Department of Defense
(DoD) will take immediate action (provide bottled water, water filters, municipal filtration
systems, etc.) at any site with PFOA or PFOS at drinking water concentrations above
the EPA’s former 70 pptr threshold set in 2016 [230]. The immediate costs of the PFAS
clean-up obligations are estimated at USD 2.02 billion; however, this estimate is expected
to increase as the DoD completes its initial assessments and determines what actions are
required [231]. In 2021, it was estimated that the total costs of PFAS remediation at 50
contaminated military sites would be USD 3.7 billion; however, just 2 years later, and
those estimates had ballooned to USD 31 billion. These are just the costs associated with
military installations [232]. Therefore, it is unaffordable for most municipalities or states
to clean up PFAS from wastewater. For example, Minnesota estimates its PFAS clean-up
costs to approach USD 28 billion over the next 20 years [233]. Sadly, the new short-chain
PFAS are more water-soluble and difficult to destroy, and therefore, it could be 70% more
expensive to mitigate their contamination in water through conventional means such as
activated carbon [233]. Thus, new and potentially more expensive methods may need to be
developed. However, expectations are that some or all of them will have shorter half-lives,
and this could reduce that concern.

Another way to reduce the use of PFAS-based AFFFis to reduce the potential for fires
or limit the number of alcohol- and fuel-based fires. The move to electric vehicles (EVs)
should continue to reduce fires despite the problems associated with certain EV models.
Fires occur most often in hybrids with a frequency of 3475/100,000 vehicles. Fires occur in
gas-powered vehicles at a frequency of 1530/100,000 vehicles, whereas fires occur in EVs at
a frequency of 25/100,000 vehicles. This is an incredible 61X decrease from gas-powered
vehicles [234]. It should be noted that EV fires can burn longer because of the Li-ion
batteries and bring a new set of firefighting challenges. Included in these challenges is
lithium bis ((trifluoromethyl)sulfonyl)imide (HQ-115), a more water-soluble PFAS that is
considered safer than the lithium hexafluorophosphate that it replaced [235]. The USEPA
has made a call for further research on the economic, environmental, and human health
impacts of HQ-115 [236]. Current research data indicates that HQ-115 has hazardous effects
on the kidney, testes, and liver; however, it is not as toxic as PFOA or PFOS [237–239].
Overall, the move to EVs and electric sources of power instead of liquid-ignition fuels
could reduce the reliance on AFFF and alternative foams, providing a different means of
reducing AFFF’ environmental contamination and adverse human health effects.

11. Conclusions
Significant knowledge gaps remain about the fate, exposure, and effects of PFAS,

particularly on human and ecosystem health. There are even more gaps in the knowledge of
the bioaccumulation and toxicity of PFAS-free formulations such as F3. Additional testing of
PFAS alternative products (F3) will be beneficial for ensuring the human and environmental
safety of replacement compounds. Very little research has addressed the chronic toxicity
of the new AFFF on the market, also an area of research needed for legacy and emerging
PFAS [50,223]. In addition, much PFAS research has evaluated exposure scenarios involving
food or water resources; however, consumer products have been understudied and are an
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area that some states in the USA require further information [240,241]. In the USA, there
are several state-specific guidelines that affect policies and provide policy challenges for
drinking water, remediation, AFFF, consumer products, and food packaging [241–243].

Drawing from historical examples in the One Health literature, it will be crucial to
move past conventional interdisciplinary barriers that separate human health, veterinary,
ecological, environmental, and computational sciences to develop novel PFAS control and
remediation strategies and reduce the risks that PFAS pose to human, animal, and ecosys-
tem health [244]. To address these needs, future studies should prioritize the collection
of physiochemical property data, determine effect-based toxicity values in a variety of
matrices, and establish methods to effectively measure the bioaccumulation and biomagnifi-
cation potential of PFAS-containing and PFAS-free AFFF formulations for the development
of predictive models [57,245]. In addition, prospective and longitudinal human studies
are indispensable, with a focus on the complex PFAS mixtures that reflect real-life expo-
sure scenarios, to more definitively assess the health risks of legacy, emerging, and PFAS
alternatives, which can help to prioritize investment in mitigation strategies and ecological
health, sensitive populations, public health, and clinical interventions. These studies may
help enable better regulation of specific classes of PFASbased on their properties, toxicity,
and bioaccumulation.
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