

1 **Vertical Structure of Turbulence in the Lower Atmospheric Boundary**
2 **Layer above a Deciduous Forest in Complex Terrain**
3

4 Temple R. Lee,^a Sandip Pal,^b Tilden P. Meyers,^c Praveena Krishnan,^a
5 Rick D. Saylor,^a and Mark Heuer^{a,d}

6 *^a NOAA/Air Resources Laboratory, Oak Ridge, Tennessee*

7 *^b Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas*

8 *^c NOAA/Air Resources Laboratory, Boulder, Colorado*

9 *^d Oak Ridge Associated Universities, Oak Ridge, Tennessee*

10 *Corresponding author: Dr. Temple R. Lee, temple.lee@noaa.gov*

12

ABSTRACT

13 It is well known that parameterizations developed using observations from flat terrain have
14 difficulty over complex terrain, which motivates a better understanding of turbulence
15 exchanges occurring in these areas. In this work we addressed the question of how the
16 vertical variability of turbulence features evolves over the lowest few hundred meters of the
17 convective and nocturnal boundary layer above a forested ridge as a function of cloud cover
18 and mean wind. We used one year of observations obtained from a WindCube V2.1 lidar
19 installed in eastern Tennessee in the Southeast U.S. coupled with observations from a 60-m
20 micrometeorological tower. The wind lidar has 20-m range gates spanning from 40 m to 300
21 m above ground. We used the lidar's high-frequency observations to derive turbulent kinetic
22 energy (TKE), vertical velocity variance (σ_w^2), vertical velocity skewness (S), and kurtosis
23 (K). We observed the largest decrease in the diurnal wind speed on clear, windy days. Under
24 clear sky conditions, increasing TKE and σ_w^2 yielded positive S throughout the lower
25 convective boundary layer. Under cloudy regimes, the distribution of TKE was height-
26 independent and corresponded with smaller σ_w^2 and near-zero S. Our results provide insights
27 into turbulence processes over forested complex terrain and support the refinement of
28 turbulence parameterizations used in forecasting models.

29

30 **1. Introduction**

31 It has been well-established within the scientific community that the current
32 approaches for representing turbulent exchange processes that were developed using
33 observations from flat, homogenous terrain struggle in areas with complex terrain, diverse
34 land cover types, or both (e.g., Wulfmeyer et al., 2011; Fernando et al., 2015). Despite much
35 progress in mountain meteorology over the past few decades (Whiteman, 2000), large gaps
36 remain in our knowledge of the multi-scale flow interactions occurring over complex terrain.
37 Most of the research and forecast challenges arise because of somewhat limited observations
38 over complex terrain, resulting in the weather phenomena in these areas remaining poorly
39 understood. Furthermore, the proper characterizations of turbulent exchanges within these
40 areas is an essential component for the surface-layer (SL) and atmospheric boundary layer
41 (ABL) parameterization schemes forming the basis for numerical weather prediction (NWP)
42 models. These models are critical for the prediction of a myriad of atmospheric phenomena
43 that include wind gusts, cold air pools, convective- and orographically-induced clouds and
44 precipitation, and other phenomena (e.g., Raupach and Finnigan, 1997; Adler et al., 2021).

45 Other studies have provided evidence of the impact of gentle topography on flow features
46 through the use of observations and simulations (e.g., Finnigan and Belcher, 2004; Patton and
47 Katul, 2009). However, the complexities in the kinematics within the ABL over mountainous
48 regions, in particular near ridges and varying land cover types, pose challenges for the
49 depiction of the aforementioned phenomena as well as for other applications. These
50 applications include the monitoring and assimilating of trace gas mixing ratios into
51 atmospheric transport models, the determination of regionally-representative measurements
52 by exploiting both the local- and regional-scale variability of passive tracers and non-reactive
53 aerosols, etc. (e.g., Lee et al., 2015, 2018; Pal et al., 2017).

54 Traditionally, SL exchange in NWP models have been represented using Monin-
55 Obukhov Similarity Theory (MOST) (Monin and Obukhov, 1954), despite its well-
56 documented limitations (e.g., Businger et al., 1971; Salesky and Chamecki, 2012; Sun et al.,
57 2020). As both the horizontal and vertical resolution of NWP models continues to increase,
58 and NWP models are better able to resolve increasingly fine-scale complexities in terrain and
59 land cover, improved characterizations of turbulent processes over these areas becomes
60 increasingly relevant. Studies of turbulent processes in regions of complex terrain allow the
61 assessment of alternative MOST parameterizations, including the hockey-stick transition
62 hypothesis (e.g., Sun et al., 2012; Van de Wiel et al., 2012; Grisogono et al., 2020; Lee et al.,
63 2025) and SL parameterizations using Richardson-based scaling techniques (e.g., Dyer, 1974;
64 Sorbjan and Grachev, 2010; Lee and Buban, 2020; Lee et al., 2021, 2023; Greene et al.,
65 2022; Lee and Meyers, 2023). Additionally, ridgeline turbulence features are subjected to
66 multi-scale flows and associated dynamical processes which include spatially-coherent
67 turbulence structures, mountain wave and rotor-induced circulations, and synoptic-scale
68 flows (Whiteman, 2000; De Wekker and Kossman, 2015; Rotach et al., 2015; Wharton et
69 al., 2017; Lehner and Rotach, 2018) which are oftentimes poorly represented in NWP
70 models. Therefore, empirical insights into the spatial and temporal variability in turbulence
71 over complex topography, obtained on a routine basis, remain sparse yet are crucial for
72 improving parameterization schemes to resolve sub-grid processes of the coupled mountain-
73 valley-plain atmosphere (e.g., Pal et al., 2016; Pal and Lee, 2019). Knowledge of turbulence
74 characteristics within forests in complex terrain has routinely come from tower-based point
75 observations at single or multiple heights (e.g., Baldocchi and Meyers, 1988a,b; Baldocchi
76 and Meyers, 1989). Additionally lidar-derived high-resolution measurements have been used
77 in recent decades to derive ABL turbulence characteristics (e.g., vertical velocity variance,
78 σ_w^2 , and skewness, S , of the vertical velocity) (e.g., Hogan et al., 2009). A focus of many

79 previous studies has been to contrast turbulence characteristics under clear-sky days with
80 turbulence characteristics on days with cloud-topped ABLs (e.g., Ansmann et al., 2010; Berg
81 et al., 2017; Lareau et al., 2018; Dewani et al., 2023). When differentiating by cloud fraction,
82 Lareau et al. (2018) found that ABL σ_w^2 was largest on days with cloud fractions between 0.3
83 and 0.5 but smallest on clear-sky days, whereas ABL S was smallest on days with cloud
84 fractions exceeding 0.5 and largest on days with low cloud fractions. In contrast to the
85 findings by Lareau et al. (2018), Dewani et al. (2023) found that the largest σ_w^2 typically
86 occurred on clear-sky days and that σ_w^2 decreased as ABL moisture content increased.

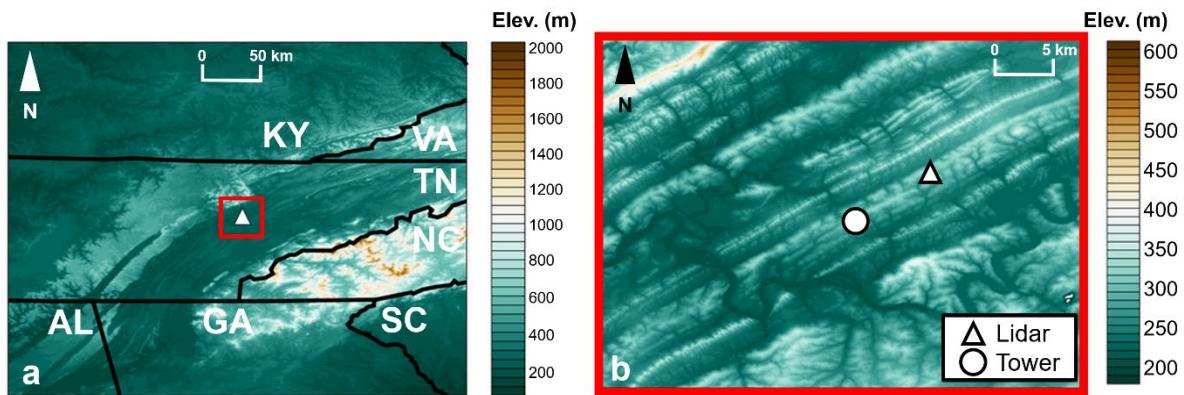
87 The aforementioned studies relied upon traditional surface-based wind and aerosol
88 lidars, which are well-suited for sampling the full ABL depth and characterizing turbulent
89 mixing processes therein (e.g., Pal et al., 2010). However, wind and aerosol lidars, as well as
90 other surface-based remote sensing instruments (e.g., atmospheric emitted radiance
91 interferometers and microwave radiometers), are unable to sample within the lowest ~ 100 m
92 of the ABL due to the partial overlap of the lidar transceiver system (e.g., Wagner et al.,
93 2022). For this reason, other sampling approaches are required to provide better vertical
94 sampling of turbulence near the land surface. Doing so is essential for advancing theories of
95 turbulent exchange between the land surface and the atmosphere. Whereas sonic
96 anemometers installed on micrometeorological towers are one approach to obtain information
97 about near-surface turbulence characteristics, few towers are of sufficient height to fully
98 resolve this vertical gap between the land surface and ~ 100 m above ground level (AGL).
99 Recently, ground-based lidars have shown promise for deriving near-surface wind in addition
100 to turbulence characteristics (e.g., Kumer et al., 2016; Wharton et al., 2017). Furthermore, by
101 being merged with nearby turbulence observations obtained from micrometeorological
102 towers, lidars can obtain details about the turbulence characteristics and structure within the
103 lowest few hundred meters of the ABL over ridgetops (e.g., Wharton et al., 2017).

104 In this work, we used observations obtained from a wind lidar installed in eastern
105 Tennessee in the Southeast U.S. coupled with observations from a nearby 60-m
106 micrometeorological tower to examine:

107 1. how the vertical variability of turbulence features evolves above a low forested ridge
108 as a function of cloud cover and as a function of different mean wind speeds in the
109 lowest part of the convective boundary layer (CBL) and nocturnal boundary layer
110 (NBL)

111 2. how turbulence features (i.e., turbulent kinetic energy, vertical velocity variance,
112 skewness, and kurtosis) vary across subsets of meteorological conditions (i.e.,
113 different radiative and wind regimes)
114 3. differences in the impact of a well-mixed CBL versus a stratified NBL regime on
115 ridgetop turbulence characteristics
116 4. the impact of different flow regimes (i.e., northeasterly versus southwesterly) on
117 ridgetop turbulence characteristics.

118


119 2. Methods

120 *2.1. Site description*

121 We used observations obtained from Chestnut Ridge located in eastern Tennessee in
122 the Southeast U.S. (Fig. 1a). A WindCube V2.1 wind lidar was installed at the location
123 shown in Fig. 1b in May 2023 at 35.9618°N, 84.2865°W, 343 m above mean sea level (MSL)
124 and has been in continuous operation since its installation. In this study, however, we focused
125 on the first full year of measurements, i.e. those obtained between 1 June 2023 and 31 May
126 2024. Within a 5 km × 5 km area surrounding the site, the mean height of the topography is
127 274 ± 26 m. The ridge where the lidar is located is approximately 150 m above the
128 surrounding valley and is one of several ridges that is located within the Tennessee Valley,
129 which is oriented southeast to northeast. The Tennessee Valley is bounded by the
130 Cumberland Mountains, which are about 1000 m MSL, to the north and west, and the Smoky
131 Mountains (with an elevation up to ~ 2000 m MSL) to the south and east.

132 The wind lidar measurements were complemented by long-term observations from a
133 60-m micrometeorological tower also located along Chestnut Ridge (at 35.9311°N,
134 84.3323°W, 371 m MSL) approximately 5 km to the southwest of the lidar. The tower
135 includes 30-min means of wind speed and direction; air temperature; relative humidity;
136 pressure; incoming and outgoing photosynthetically active radiation; incoming and outgoing
137 shortwave and longwave radiation; ground heat flux; and soil temperature and soil moisture.
138 30-min mean heat, water vapor, carbon dioxide fluxes, and turbulence statistics are computed
139 from 10-Hz measurements. Most of the on-site measurements commenced in 2005 when the
140 tower was installed, and details regarding the site and the on-site measurements are
141 documented in previous studies (Wilson and Meyers, 2007, 2012, 2014; Lee et al., 2025).
142 Incoming and outgoing shortwave and longwave radiation were obtained from a
143 Kipp&Zonen CNR1 radiometer installed 36 m AGL, whereas a propeller anemometer
144 installed at 43 m AGL was used to measure wind speed (WS) and wind direction (WD) at a

145 1-Hz sampling frequency and averaged to 30 minutes. Measurements from an RM Young
 146 81000V three-dimensional sonic anemometer installed 43 m were used to obtain the u
 147 (horizontal), v (meridional), and w (vertical) wind components at 10 Hz. The measurements
 148 were used to calculate 30-min mean TKE and σ_w^2 and, along with the WS and WD
 149 measurements from the propeller anemometer, were compared against the lidar observations
 150 to provide confidence in the fidelity of the wind lidar measurements discussed in Section 2.2.

151
 152 **Fig. 1.** (a) The location of the study site (white triangle). The red box in panel (a) denotes the
 153 location of the map in panel (b). The white triangle and white circle in panel (b) indicates the
 154 location of the lidar and micrometeorological tower, respectively.
 155

156 2.2. Wind Lidar Derived Turbulence Quantities

157 The WindCube V2.1 has a pulsed Doppler heterodyne laser and uses 20-m range
 158 gates spanning from 40 to 300 m AGL for a total of 14 range gates, which is comparable to
 159 the dynamic range that has been used in previous studies to examine turbulence
 160 characteristics and structures within the lower ABL (e.g., Wharton et al., 2017; Liao et al.,
 161 2020). The lidar's lowest range gate is located at approximately 1.5 times the adjacent canopy
 162 height (h_c), which was estimated to be around 25 ± 3 m in previous work (Wilson et al.,
 163 2012; Lee et al., 2025). The lidar has a 1-Hz sampling rate and a manufacturer-stated radial
 164 wind speed range of -23 m s^{-1} to $+23 \text{ m s}^{-1}$, wind speed accuracy of 0.1 m s^{-1} , and wind
 165 direction accuracy of 2° . The manufacturer-stated speed uncertainty is 1.4–2.6% between 40
 166 and 80 m, 0.6–1.4% between 80 and 120 m, and 0.6–0.8% between 120 and 135 m.

167 The Doppler beam swinging (DBS) technique (e.g., Strauch et al., 1984; Wharton et
 168 al., 2017; Robey and Lundquist, 2022) is used to obtain wind and turbulence characteristics
 169 over the lowest 300 m of the atmosphere. Five scans are used within the DBS technique,
 170 whereby four beams are emitted 28° off-zenith in each of the four cardinal wind directions
 171 (i.e., north, east, south, and west), and a fifth beam is emitted in the vertical direction (i.e., 0°
 172 zenith angle). To ensure a high-quality dataset from the wind lidar, we removed values when

173 the carrier-to-noise ratio (*CNR*) was less than -23 following previous work (e.g., Wharton et
 174 al., 2017). We used the 1-Hz observations obtained from the lidar to calculate select
 175 turbulence statistics, i.e., σ_w^2 , *TKE*, *S*, and *K*, on 30-min timesteps. *TKE* was computed using
 176 the high-frequency measurements of the *u*, *v*, and *w* wind components derived from the lidar
 177 using the following equation after rotating the wind components into the standard
 178 meteorological convention whereby $u > 0$ m s⁻¹ and $v > 0$ m s⁻¹ indicate southerly and
 179 westerly winds, respectively, and $w > 0$ m s⁻¹ indicates upward vertical velocities. Upon
 180 introducing these corrections, we computed *TKE* as

$$TKE = 0.5(\sigma_u^2 + \sigma_v^2 + \sigma_w^2) \quad (1)$$

181 In the above equation, σ_u^2 , σ_v^2 , and σ_w^2 are the variances in the *u*-, *v*-, and *w*- wind
 182 components, respectively. The skewness (*S*) and kurtosis (*K*) were computed as a function of
 183 the vertical *w* perturbation (*w'*) and the standard deviation in the vertical wind velocity (σ_w):

$$S = \left(\frac{\overline{w'^3}}{\overline{w'^2}} \right)^{3/2} \quad (2)$$

$$K = \left(\frac{\overline{w'}}{\sigma_w} \right)^4 \quad (3)$$

184 The quantity *S* represents the degree of symmetry / asymmetry in the *w* distribution.
 185 Physically, *S* is interpreted as the vertical transport of $\overline{w'^2}$; thus positive (negative) *S*
 186 indicates an upward (downward) transport of *TKE* and $\overline{w'^2}$ (e.g., Hogan et al., 2009). The *K*
 187 profiles are used as an indicator of turbulence intermittency and degree of mixing at different
 188 sampling heights (e.g., Pal et al., 2010; McNicholas and Turner, 2014).

189 As discussed in Wharton et al. (2017), the turbulence quantities derived from the wind
 190 lidar represent a volume-averaged scan because of the divergence in the lidar beam in the
 191 zenith direction, rather than a point turbulence measurement that would be derived using a
 192 sonic anemometer. Furthermore, cross-contamination in the wind components can occur,
 193 affecting σ_u^2 , σ_v^2 , and σ_w^2 (e.g., Sathe and Mann, 2013; Newman et al., 2016; Wharton et al.,
 194 2017) and thus further motivating the need for comparison against turbulence observations
 195 derived from a micrometeorological tower which we do in Section 3.1.

196 After calculating *TKE*, σ_w^2 , *S*, and *K*, we performed additional filtering of these
 197 datasets by removing physically-unrealistic values, i.e. $TKE > 10$ m² s⁻² and $\sigma_w^2 > 5$ m² s⁻²,
 198 following the procedure outlined in Lee et al. (2023). The percent data completion for *TKE*,
 199 σ_w^2 , *S*, and *K* exceeded 90%, as shown in Appendix A, but decreased as a function of height

200 due to clouds and fog. Consequently, the highest lidar range gate, i.e. at 300 m AGL, had a
201 percent data completion of 52% for TKE and $\sim 70\%$ for σ_w^2 , S , and K .

202

203 *2.3. Classification of Meteorological Regimes*

204 *2.3.1. Daytime Radiative and Wind Regimes*

205 To distinguish among different meteorological regimes at the study site during the
206 daytime, we used the 30-min mean observations of shortwave radiation obtained from the 60-
207 m micrometeorological tower near the lidar. The shortwave radiation observations enabled us
208 to classify different radiative regimes. We identified different radiative regimes by computing
209 the clearness index (Fig. 2a). As described and implemented in previous work to help classify
210 different meteorological regimes (e.g., Pal et al., 2014; Lee et al., 2024) the C_{index} , is
211 calculated as

$$C_{index} = \frac{\sum SW_o}{\sum SW_t} \quad (4)$$

212 In the above equation, $\sum SW_o$ is the daily total sum of incoming shortwave radiation (SW_{in})
213 which we measured using the Kipp&Zonen CNR1 radiometer installed the Chestnut Ridge
214 tower. $\sum SW_t$, computed following the procedure described in Whiteman and Allwine (1986),
215 is the sum of the total theoretical maximum incoming solar radiation that could be received
216 on a given day and varies as a function of latitude, longitude, and both by time of day and day
217 of year (e.g., Whiteman and Allwine, 1986; Whiteman et al., 1999).

218 We distinguished among different WS regimes by computing the mean daytime (i.e.,
219 $SW_{in} > 0 \text{ W m}^{-2}$, typically spanning from about 0750 LST to 1730 LST in the winter to about
220 620 LST to 2100 LST in the summer) wind speed (i.e., \overline{WS}_{day}) from the RM Young
221 propeller at the micrometeorological tower. The \overline{WS}_{day} ranged from 0.06 m s^{-1} to 7.2 m s^{-1}
222 during the one-year study period and had a median of 2.13 m s^{-1} (Fig. 2b).

223 After computing the C_{index} and \overline{WS}_{day} , we used the percentiles shown in Fig. 2a and Fig.
224 2b to distinguish among four distinct meteorological conditions. Clear (cloudy) days were
225 identified as those with $C_{index} > 66^{\text{th}}$ percentile ($C_{index} < 33^{\text{rd}}$ percentile), and days with weak
226 (strong) winds as those with $\overline{WS}_{day} < 33^{\text{rd}}$ percentile ($\overline{WS}_{day} > 66^{\text{th}}$ percentile). Sensitivity
227 tests, shown in Appendix B, indicated that our conclusions were unaffected by our choice of
228 percentile. The four different meteorological regimes were as follows, with the number of
229 days (N) within each these classifications is shown in parentheses:

230 I. Clear and weak winds: $C_{index} > 66^{\text{th}}$ percentile, $\overline{WS_{day}} < 33^{\text{rd}}$ percentile ($N = 49$
 231 days)

232 II. Clear and strong winds: $C_{index} > 66^{\text{th}}$ percentile, $\overline{WS_{day}} > 66^{\text{th}}$ percentile ($N = 37$
 233 days)

234 III. Cloudy and weak winds: $C_{index} < 33^{\text{rd}}$ percentile, $\overline{WS_{day}} < 33^{\text{rd}}$ percentile ($N = 37$
 235 days)

236 IV. Cloudy and strong winds: $C_{index} < 33^{\text{rd}}$ percentile, $\overline{WS_{day}} > 66^{\text{th}}$ percentile ($N = 38$
 237 days)

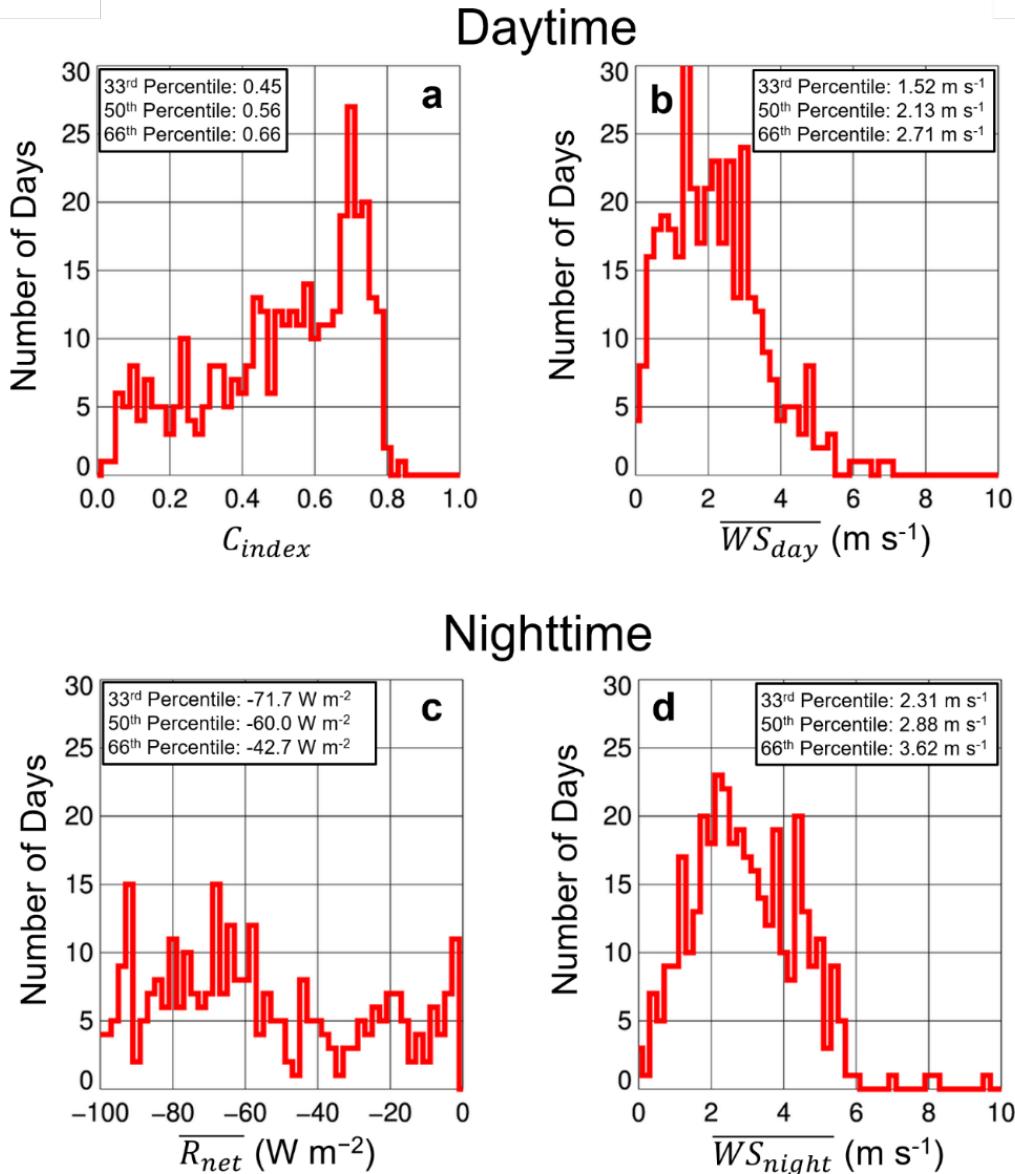
238 After distinguishing among these meteorological regimes, we computed composites
 239 of the mean cycles during the daytime only which we defined as between 0700 LST and 1900
 240 LST for each sampling height. When determining the *WD* means, we first converted each
 241 observed *WD* into its *u* and *v* components, determined the mean *u* and *v*, and computed *WD*
 242 using these means.

243 We further investigated wind and turbulence characteristics within each of the four
 244 aforementioned regimes by determining the *w* frequency distribution and, to further place our
 245 results into the context of previous studies, by computing the mean profiles of the wind and
 246 turbulence quantities.

247

248 2.3.2. Nighttime Radiative and Wind Regimes

249 To distinguish among different meteorological regimes at the study site during the
 250 nighttime, we again used radiation observations from the 60-m micrometeorological tower. In
 251 this instance, we utilized the longwave radiation observations under the premise that more
 252 negative values of net radiation (R_{net}) during the nighttime correspond to clear skies due to
 253 emitted longwave radiation. We defined nighttime hours as those between 0000 and 0400
 254 LST to ensure our results were unaffected by processes occurring during the early-morning or
 255 early evening transition periods around sunrise and sunset, respectively. Across all days in
 256 the study period, the median nighttime R_{net} was -60 W m^{-2} (Fig. 2c). The median nighttime
 257 wind speed (i.e., $\overline{WS_{night}}$) was 2.9 m s^{-1} and ranged from 0.2 m s^{-1} to 9.8 m s^{-1} (Fig. 2d).
 258 Similar to the daytime meteorological conditions, we distinguished among four different
 259 regimes during the nighttime which we defined as follows and that are distributed throughout
 260 the year. As in Section 2.3.1., the number of days within each these classifications is shown
 261 in parentheses:


262 I. Clear and weak winds: $R_{net} < 33^{\text{rd}} \text{ percentile}$, $\overline{WS_{night}} < 33^{\text{rd}} \text{ percentile}$ ($N = 33$
263 days)

264 II. Clear and strong winds: $R_{net} < 33^{\text{rd}} \text{ percentile}$, $\overline{WS_{night}} > 66^{\text{th}} \text{ percentile}$ ($N = 34$
265 days)

266 III. Cloudy and weak winds: $R_{net} > 66^{\text{th}} \text{ percentile}$, $\overline{WS_{night}} < 33^{\text{rd}} \text{ percentile}$ ($N = 38$
267 days)

268 IV. Cloudy and strong winds: $R_{net} > 66^{\text{th}} \text{ percentile}$, $\overline{WS_{night}} > 66^{\text{th}} \text{ percentile}$ ($N = 34$
269 days)

270 As with the different classifications of daytime radiative and wind regimes, we found
271 that our conclusions for the nighttime regimes were largely unaffected by our choice of
272 percentile. This conclusion was based upon sensitivity tests conducted (not shown) across
273 different percentiles. As we did for the daytime cases, to further place our results into the
274 context of previous studies, we determined the w frequency distributions during these
275 different regimes and \overline{WS} , \overline{WD} , \overline{TKE} , $\overline{\sigma_w^2}$, \overline{S} , and \overline{K} vertical profiles between 0000 and 0400
276 LST.

277
278 **Fig. 2.** Histogram of the daytime (i.e., $SW_{in} > 0 \text{ W m}^{-2}$) (a) C_{index} and (b) \overline{WS}_{day} , also when
279 $SW_{in} > 0 \text{ W m}^{-2}$. A binsize of 0.02 and 0.2 m s^{-1} is used in panels (a) and (b), respectively.
280 Panels (c) and (d) show the histogram of \overline{R}_{net} during the nighttime (i.e., 0000–0400 LST) and
281 \overline{WS}_{night} . A binsize of 2 W m^{-2} and 0.2 m s^{-1} is used in panels (c) and (d), respectively. As for
282 panels (a) and (b), the 33rd, 50th, and 66th percentiles are shown in the upper portion of panels
283 (c) and (d).
284

285 2.3.3. Wind Direction Regimes

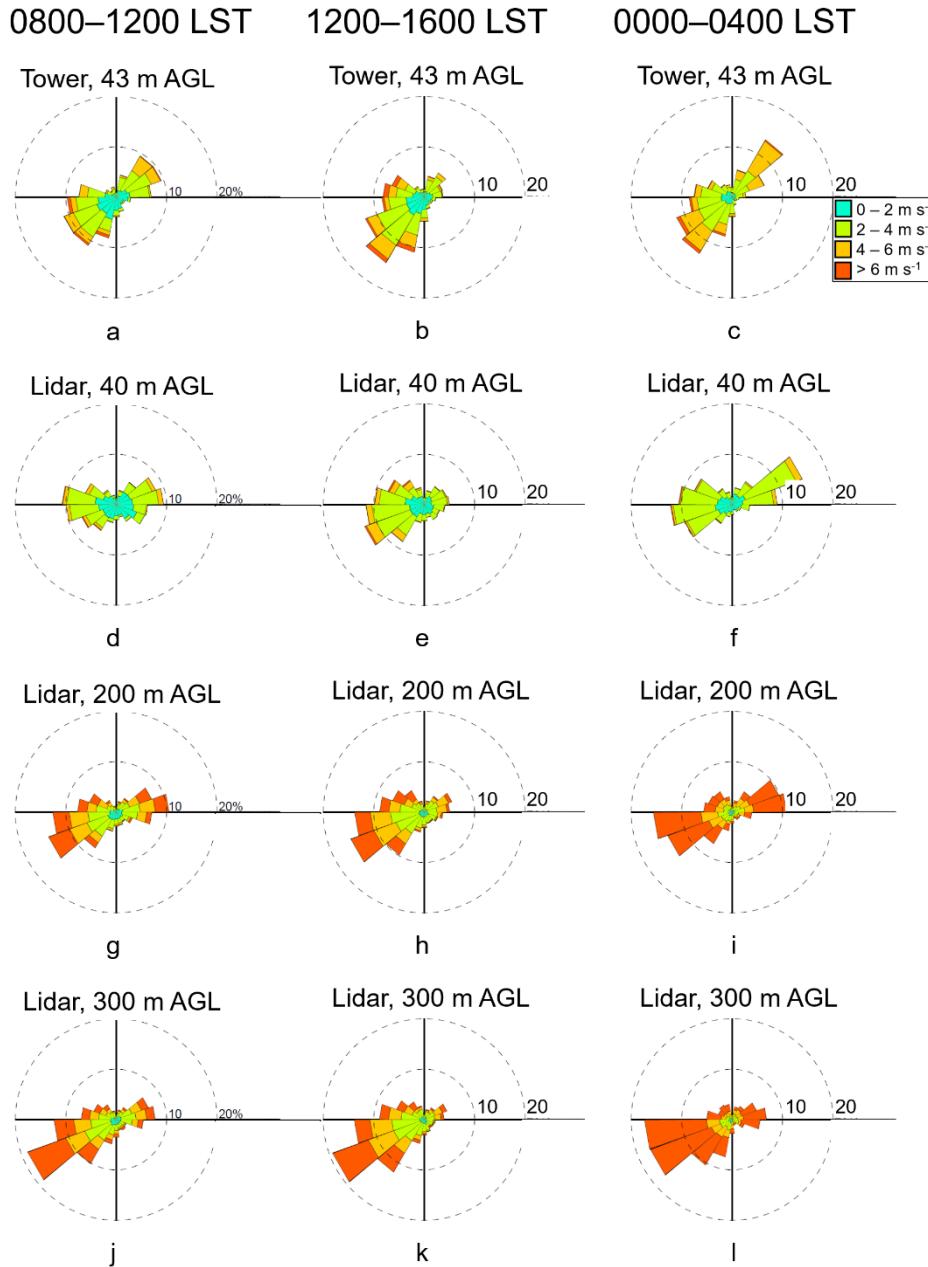
286 To fulfill the fourth objective of this work enumerated in Section 1, we evaluated how
287 turbulence characteristics varied as a function of WD by selecting days with near-constant
288 WD . To this end, we classified a day as having constant WD if at least 90% of the 30-min
289 observations on the given day were from the same direction (i.e., northeast, southeast,
290 southwest, or northwest, which we defined as $0^\circ \leq WD < 90^\circ$, $90^\circ \leq WD < 180^\circ$, $180^\circ \leq WD$
291 $< 270^\circ$, and $270^\circ \leq WD < 360^\circ$, respectively). During the one-year study period, based on

292 this selection criteria, 25 days had constant northeasterly winds, and 45 days had constant
293 southwesterly winds. Three of the days had constant northwesterly winds, whereas
294 southeasterly winds were not observed for at least 90% of the 30-min observations on any
295 day during the study period. Because of the small number of cases with northwesterly winds,
296 we restricted our analyses to days only with constant northeasterly winds and days with
297 constant southwesterly winds.

298

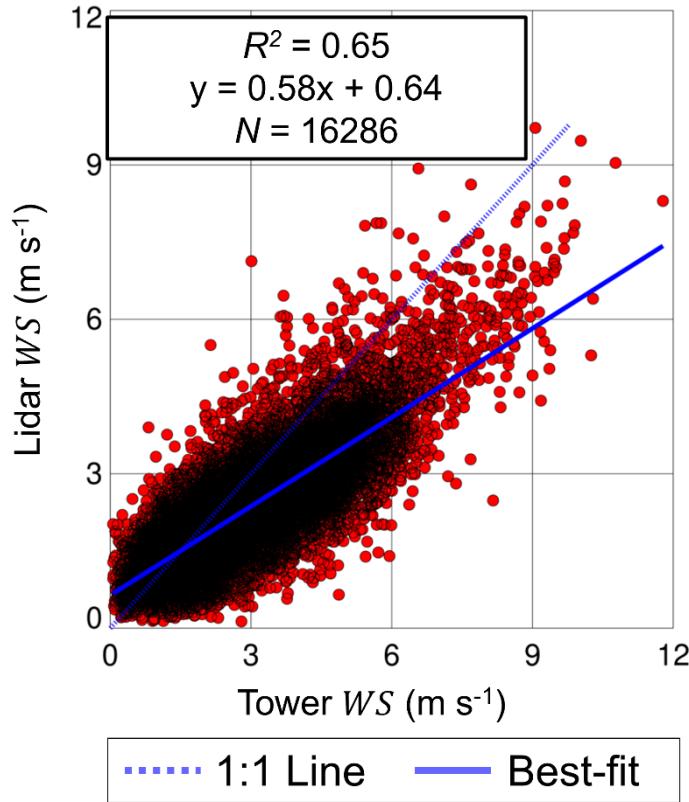
299 3. Results

300 3.1. *Intercomparison between Lidar- and Tower-Derived Wind and Turbulence Observations*


301 3.1.1. *Wind Speed and Wind Direction Intercomparison*

302 To help provide us with confidence in the fidelity of the observations from the wind
303 lidar, we used wind roses to compare the wind speeds and wind directions obtained from the
304 propeller anemometer installed on the micrometeorological tower at Chestnut Ridge with the
305 observations from the wind lidar. The morning (i.e., 0800–1200 LST) and nighttime (i.e.,
306 0000–0400 LST) measurements from the tower's above-canopy measurements and from the
307 lidar's lowest range gate (i.e., 40 m AGL) exhibited a bimodal distribution yielding dominant
308 southwesterly and northeasterly winds which is consistent with previous work from the study
309 region (e.g., Lee et al., 2025). During both the morning and nighttime, southwesterly winds
310 and northeasterly winds were nearly equally prevalent at the micrometeorological tower (Fig.
311 3a, Fig. 3c). When assessing the seasonal variability in the wind speeds, we found that the
312 warm season had slightly weaker mean winds and a larger percentage of daytime
313 southwesterly flows than during the cool season (not shown).

314 Examination of the wind speeds and wind directions obtained from the wind lidar
315 indicated that, although the lidar-retrieved winds at 40 m AGL exhibited a bimodal
316 distribution, there was a stronger westerly and east-northeasterly wind component at this
317 height (Fig. 3d, Fig. 3f). During the afternoon (i.e., 1200–1600 LST), easterly winds were
318 less frequent at the tower than at the lidar's lowest range gate, with southwesterly and
319 westerly winds being much more dominant (Fig. 3b, Fig. 3d). The period from 0800–1200
320 LST is the period when the site experiences morning transition and a growing CBL regime
321 and associated changes in both horizontal wind speed and direction take place on regular
322 basis. For instance, as will be shown in Section 3.2, this is the period associated with a winds
323 speed decrease (i.e., a shift from the NBL to the CBL) and changes from a stratified NBL to a
324 well-mixed CBL regime (i.e., diverse wind directions to similar wind direction at all levels).
325 Consequently, higher discrepancies between lidar and tower observations were also observed

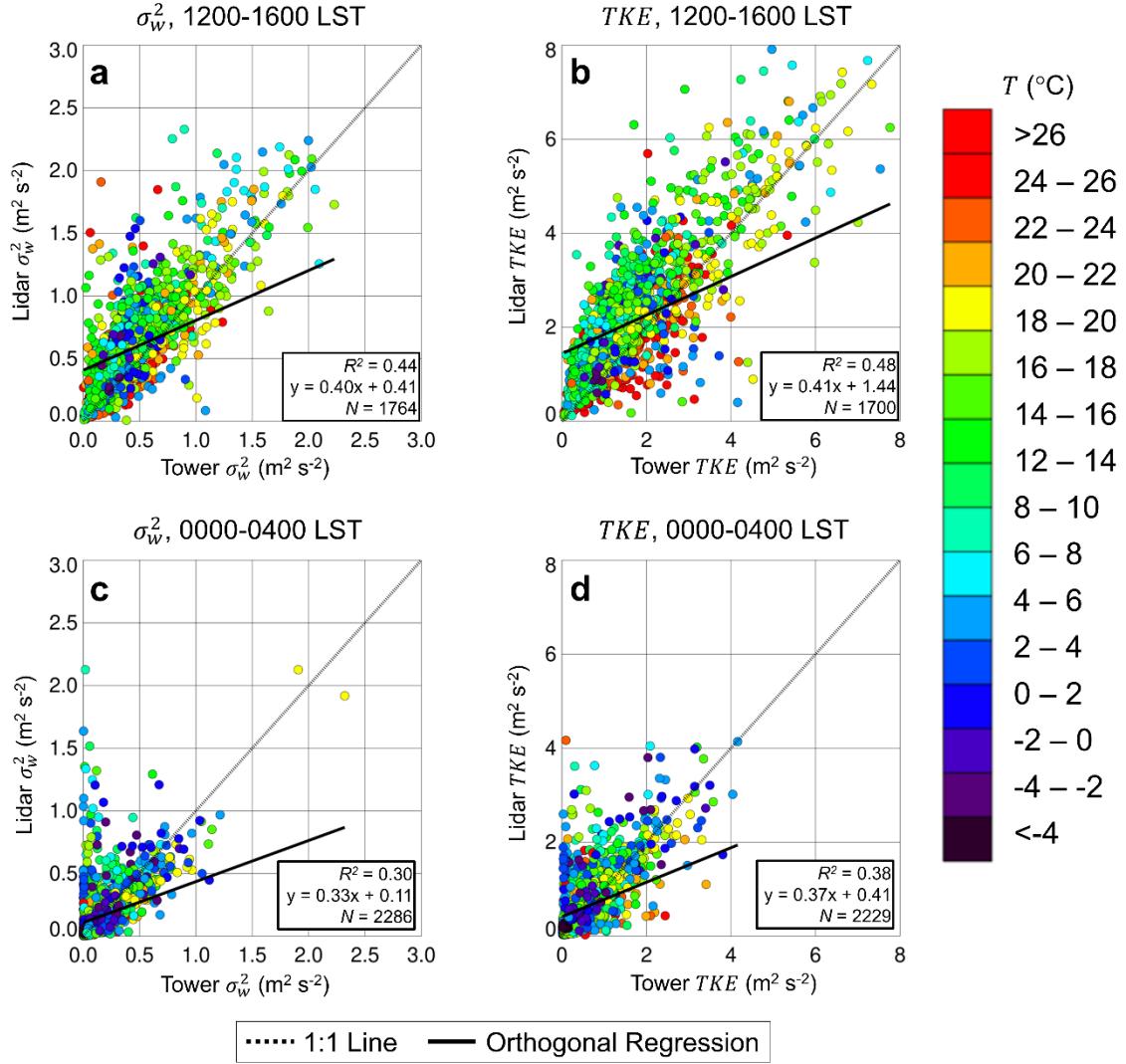

326 during this transition period (e.g., the tower showing the presence of more southwesterly to
327 northeasterly components whereas the lidar showed more easterly and westerly components
328 (cf. Fig. 3a). Overall, there was good agreement between the lidar-derived and tower-derived
329 *WS*, but the lidar underestimates *WS* compared with those from the tower, particularly for
330 higher *WS* (Fig. 4). As a result, the R^2 for the relationship between these quantities, of 0.65,
331 was lower than studies that have been conducted at sites in flat terrain, whereby R^2 was found
332 to be ~ 1 (e.g., Knoop et al., 2021).

333 When evaluating the wind roses for the lidar's upper sampling heights (here, 200 m
334 AGL and 300 m AGL), we found that, irrespective of time of day, southwesterly winds were
335 more common than winds with an easterly component. These southwesterly winds occurred
336 more frequently at 300 m AGL than at 200 m AGL (Fig. 3g – 3l). Overall, the differences in
337 the wind direction that we find between the micrometeorological tower and wind lidar
338 highlight that, even though the two sampling locations are located only about 5 km apart
339 along the same mountain ridge, finescale differences in local topography surrounding the two
340 sites may be responsible for the observed differences in wind speed and wind direction.

341
 342
 343
 344
 345
 346
 347
 348
 349
 350

Fig. 3. (a) The wind rose for winds measured 43 m AGL at the 60-m micrometeorological tower between 0800 and 1200 LST. Same for (b) and (c) but for winds sampled between 1200 and 1600 LST and between 0000 and 0400 LST, respectively. Panels (d) – (f) show winds sampled 40 m AGL from the wind lidar between 0800 and 1200 LST, 1200 and 1600 LST and between 0000 and 0400 LST, respectively. Same for panels (g) – (i) and panels (j) – (l), but for 200 m AGL and 300 m AGL, respectively. A bin size of 20° is used in all panels. Turquoise, light green, orange, and red correspond with winds $< 2 \text{ m s}^{-1}$, $2\text{--}4 \text{ m s}^{-1}$, $4\text{--}6 \text{ m s}^{-1}$, and $> 6 \text{ m s}^{-1}$, respectively. Note that the spatial separation between the micrometeorological tower and the wind lidar is about 5 km.

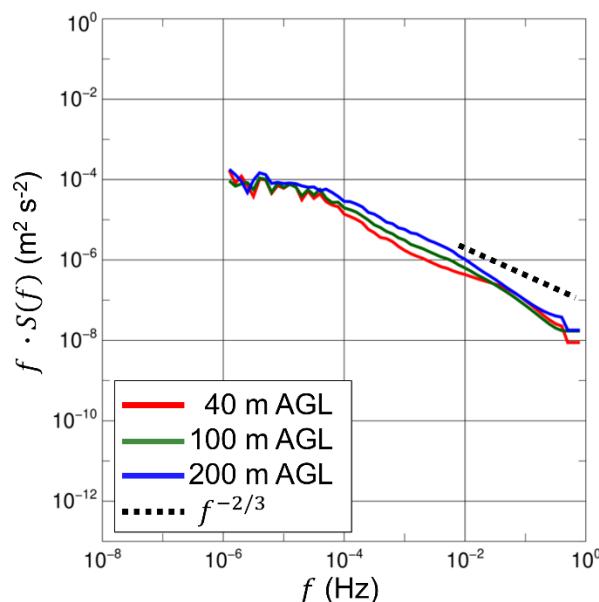
351


352 **Fig. 4.** The relationship between the lidar-derived WS (at 40 m AGL) and tower-derived WS
 353 (at 43 m AGL). The R^2 the best-fit equation (where y and x correspond with the lidar values
 354 and tower values, respectively), and N are shown in a box at the upper right. The dotted and
 355 solid blue lines indicate unity and the line of best fit, respectively.

356

357 3.1.2. Turbulence Intercomparison

358 To obtain additional confidence in the measurements from the wind lidar, we
 359 evaluated the relationship between the σ_w^2 and TKE obtained from the sonic anemometer
 360 installed on the micrometeorological tower and σ_w^2 and TKE derived from the lowest range
 361 gate of the wind lidar using an orthogonal (i.e., Deming) regression. We found that the slope
 362 of the line of best fit (m_b) between lidar-derived and tower-derived quantities during the
 363 afternoon (i.e., 1200–1600 LST, where LST = UTC – 5) for σ_w^2 and TKE was 0.40 and 0.41,
 364 respectively (Fig. 5a, Fig. 5b). During the nighttime (i.e., 0000–0400 LST) m_b between lidar-
 365 derived and tower-derived σ_w^2 (TKE) was lower than during the afternoon as m_b was 0.33
 366 (0.37) (Fig. 5c, Fig. 5d). Furthermore, R^2 was lower during the nighttime than during the
 367 afternoon for both σ_w^2 and TKE . Analogous results (not shown) were found when conducting
 368 these evaluations as a function of different wind direction regimes to distinguish between
 369 times when the wind lidar was upwind (downwind) from the micrometeorological tower
 370 which correspond with northeasterly (southwesterly) winds. Furthermore, there was no clear


371 relationship between the magnitude of observed differences in the tower- and lidar-derived
 372 turbulence characteristics and observed temperature at the micrometeorological tower (cf.
 373 Fig. 5).

374
 375 **Fig. 5.** (a) Wind lidar σ_w^2 versus the micrometeorological tower σ_w^2 and (b) lidar TKE versus
 376 the micrometeorological tower TKE between 1 June 2023 and 31 May 2024 between 1200
 377 and 1600 LST. Same for panels (c) and (d), but for 1200–1600 LST and 0000–0400 LST,
 378 respectively. The dotted and solid black lines indicate unity and the line of best fit computed
 379 using orthogonal regression, respectively. The R^2 the best-fit equation, computed using an
 380 orthogonal regression (where y and x correspond with the lidar-derived and tower-derived
 381 values, respectively), and N are shown in a box on the lower right of each subpanel. Each
 382 point is color-coded by air temperature (T , see legend to the right of the figure). Note that the
 383 tower-derived TKE and σ_w^2 were sampled at 43 m AGL, whereas the lidar-derived TKE and
 384 σ_w^2 were sampled at 40 m AGL.
 385

386 *3.1.3. Power Spectra*

387 To further enhance our confidence in the fidelity in the lidar's observations and in the
 388 turbulence quantities derived from it, we computed the vertical velocity power spectra for
 389 select sampling heights (i.e., 40 m AGL, 100 m AGL, and 200 m AGL) following for
 390 example Brugger et al. (2016). As shown in Fig. 6, the slope at the different sampling heights
 391 is comparable with the theoretical slope of the inertial subrange (i.e., $f^{-2/3}$). Furthermore,
 392 there exists height dependence to the maximum in the power spectrum, which occurs at the
 393 lowest sampling frequencies and is consistent with findings that have been reported within
 394 previous studies that have been conducted over flat terrain including for example
 395 northwestern Minnesota (Kaimal et al., 1976) and Germany's Lower Rhine region (Maurer et
 396 al., 2016).

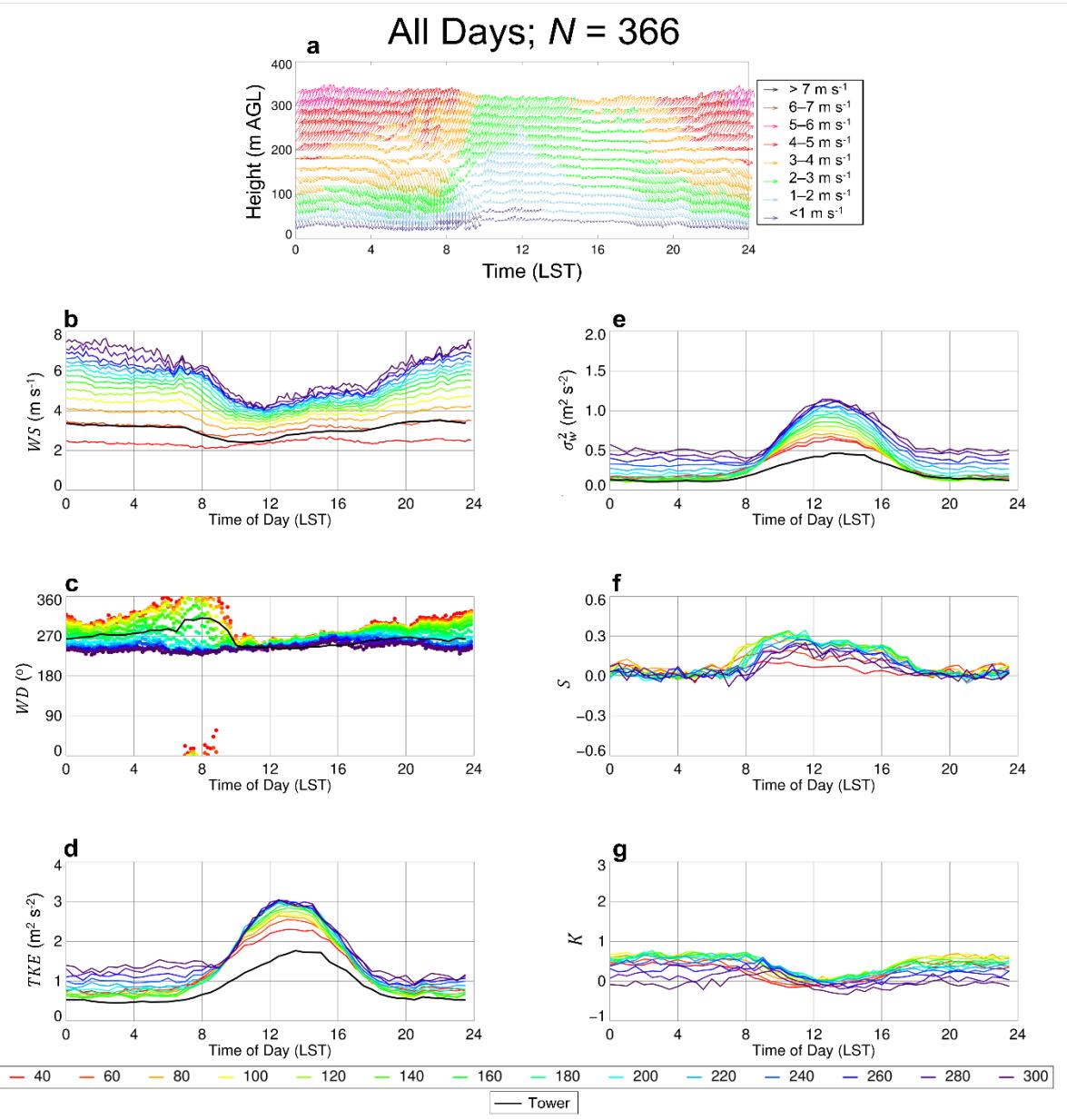
397

398 **Fig. 6.** The binned energy density spectra (S) of w as a function of frequency (f) obtained
 399 from the wind lidar at 40 m AGL (red line), 100 m AGL (green line), and 200 m AGL (blue
 400 line) over the entire 1-year period of interest. Note that both the x- and y-axes have a
 401 logarithmic scale. The black dotted line shows $f^{-2/3}$.

402

403 *3.2. Wind and Turbulence Characteristics Across All Days*404 *3.2.1. Diurnal Evolution*

405 When averaged across all days within the study period, the mean WS was larger
 406 during the nighttime than during the daytime for all sampling heights except for the lowest
 407 sampling height (i.e., at 40 m AGL) where there was on average a small ($\sim 0.5 \text{ m s}^{-1}$) increase


408 during the daytime (Fig. 7a, 7b). The daytime decrease in mean WS was largest at the
409 uppermost sampling heights. For example, at 300 m AGL, the mean WS was around 7 m s^{-1}
410 throughout much of the nighttime, but decreased to a minimum of $\sim 4 \text{ m s}^{-1}$ between 1100
411 and 1200 LST. The larger WS during the nighttime than during the daytime at the majority of
412 sampling heights is a finding consistent with previous studies at other forested ridgetops
413 located in the eastern U.S. (e.g., Lee et al., 2015). During the nighttime, there is a decoupling
414 between the surface layer and overlying residual layer, whereas during the daytime this
415 difference is reduced due to turbulent mixing within the daytime CBL. Despite the generally
416 larger WS during the nighttime than during the daytime, we note a WS increase between
417 approximately 1000 LST and 1600 LST which is a finding that has been well-documented in
418 flat terrain (e.g., Barthelmie et al., 1996; Zhang and Zheng, 2004; He et al., 2013) and arises
419 due to the downward transport of higher momentum air from aloft caused by vertical mixing
420 within the CBL (e.g., Dai and Deser, 1999). During the nighttime, there is a decoupling
421 between the near-surface winds and winds within the overlying residual layer that results in a
422 larger near-surface vertical gradient in the surface wind speeds that is consistent with
423 previous studies (e.g., He et al., 2013).

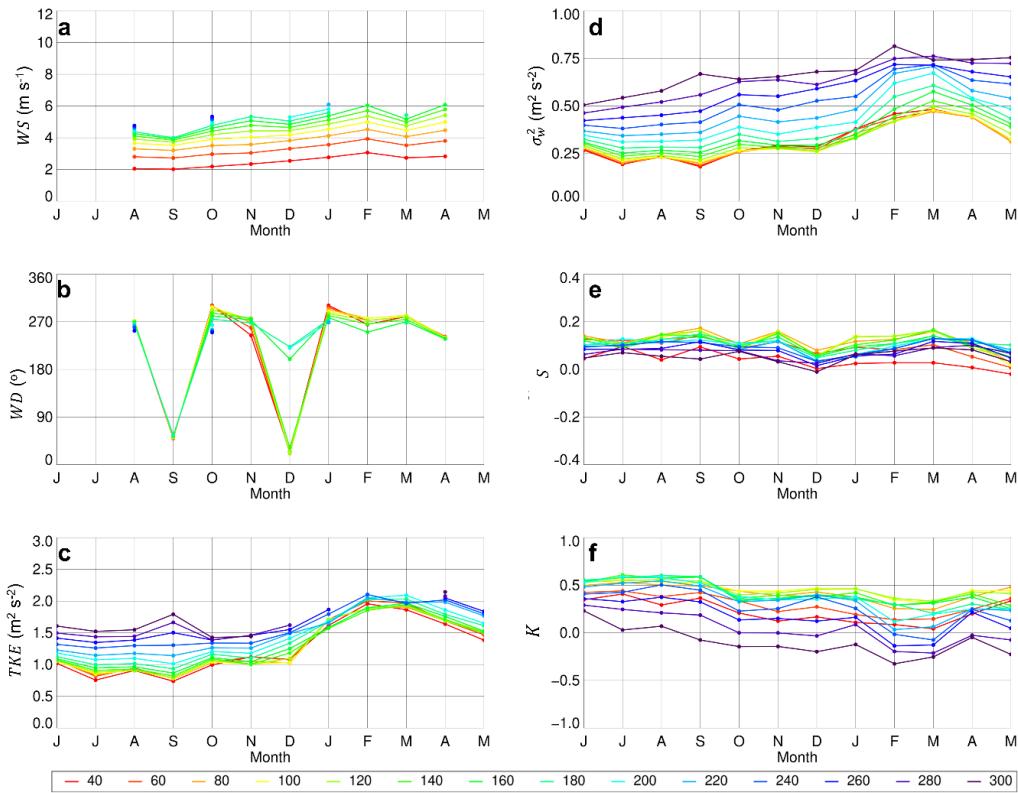
424 The composites of the mean WD revealed that near-surface wind directions were from
425 the northwest during the nighttime but became westerly during the daytime, whereas mean
426 wind directions 300 m AGL were from the west and exhibited little time-of-day dependence
427 (Fig. 7a, 7c). As a result, WD during the nighttime showed considerably more variability with
428 height than WD during the daytime. The vertical WD gradients were smallest between around
429 1000 LST and 1600 LST. This period, combined with the smallest vertical WS gradients, is
430 indicative of a well-coupled and well-mixed ridgeline CBL. Clearly visible NBL stratification
431 features (i.e., varying WS of $2\text{--}8 \text{ m s}^{-1}$ across the different sampling heights) were associated
432 with the northerly/northwesterly to southerly/southwesterly shift in wind from the lower to
433 upper heights sampled by the lidar. Furthermore, after the early morning transition period, all
434 the sampling heights exhibited a westerly wind which most likely indicates the dominant
435 impact of gently-varying topography on the wind fields in the lower altitudes. In contrast, the
436 upper sampling heights were relatively remained unaffected by the local topography, which
437 suggests regional flow features over the lidar at its uppermost sampling heights during the
438 nighttime that are aligned with the mean synoptic flow over the region.

439 Examination of the composites of the mean turbulence characteristics, averaged over
440 the entire study period, revealed that TKE sampled 40 m AGL (300 m AGL) ranged from \sim

441 1.0 m² s⁻² (1.25 m² s⁻²) to 2.5 m² s⁻² (3.0 m² s⁻²) during this same time period (Fig. 7d),
442 whereas σ_w^2 sampled 40 m AGL (300 m AGL) ranged from 0.25 m² s⁻² (0.50 m² s⁻²) during
443 the nighttime to a maximum of 0.75 m² s⁻² (1.25 m² s⁻²) during the early afternoon (Fig. 7e).
444 These findings are characteristic of a well-mixed daytime CBL and stably-stratified NBL.
445 The combined analyses of *TKE* and σ_w^2 during the entire diurnal cycle reveal a clear pattern
446 yielding their higher values in the upper levels compared to lower levels during both day and
447 night except the early morning transition period. However, the associated vertical gradients
448 were found to be strong during the nighttime than during daytime. Nocturnal gradients could
449 be explained by the flow regimes whereas daytime gradients can be attributed to the CBL
450 surface forcing and associated thermal regimes.

451 The composites of *S* were near 0 during the nighttime at all sampling heights and
452 increased during the daytime. The smallest increases occurred at 40 m AGL where daytime
453 values were ~ 0.05 (Fig. 7f). In contrast, the largest increases occurred at the upper sampling
454 heights where daytime values were ~ 0.3 implying a larger proportion of positive vertical
455 velocities than negative vertical velocities, and thus upward transport of *TKE* and $\overline{w'^2}$, at
456 these sampling heights. Furthermore, the composites of *K* was larger during the nighttime
457 than during the daytime, with a nighttime maximum of 1 and daytime minimum of 0,
458 respectively, for the majority of the sampling heights (Fig. 7g). This daytime decrease
459 suggests that the distribution of the vertical velocities becomes less peaked and thus less
460 intermittent, and more uniform, during the daytime (e.g., McNicholas and Turner, 2014). The
461 daytime kurtosis decrease is consistent with previous studies that have used wind lidars to
462 sample turbulence characteristics, including the kurtosis evolution, over flat homogeneous
463 terrain as documented by a study by Berg et al. (2017) using observations from the U.S.
464 Department of Energy's Atmospheric Radiation Measurement site in Oklahoma.

465
466
467
468
469
470
471
472
473


Fig. 7. (a) Wind vectors as a function of time and height, colored by wind speed. (b) The mean diurnal time series of (b) WS observed using the wind lidar over the one-year period of interest. Same for (c), (d), (e), (f), and (g), but for WD , TKE , σ_w^2 , S , and K , respectively. Sampling heights are indicated in the legend at the bottom of the figure. Corresponding values from the micrometeorological tower are shown in panels (b – e), and are indicated with a black line. N is shown at the top of the figure.

3.2.2. Seasonal Evolution

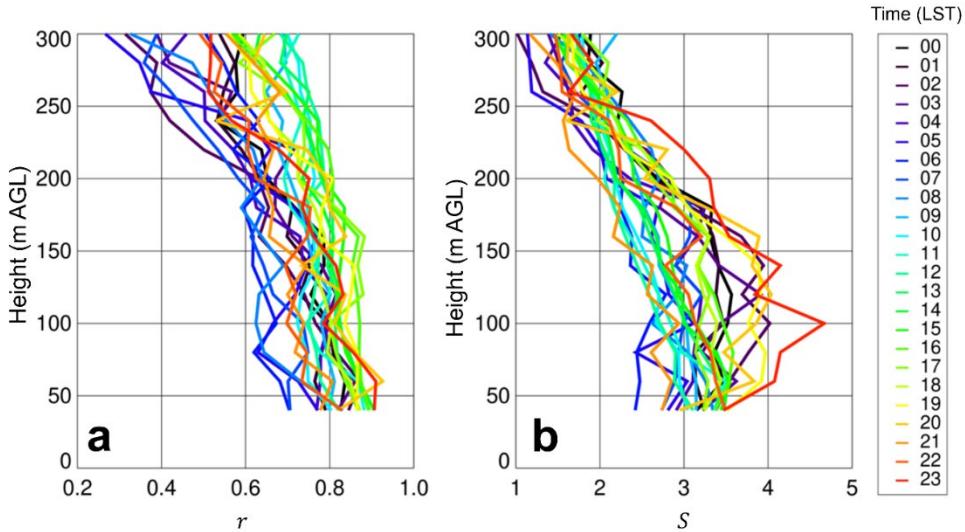
When examining the evolution of turbulence characteristics averaged over the entire diurnal cycle (i.e., 0000–2400 LST) on monthly to seasonal timescales, we found that the mean monthly WS was larger during the cool season than during the warm season, as mean WS at 40 m AGL ranged from a minimum of ~ 2 m s⁻¹ in July to ~ 3 m s⁻¹ in February (Fig. 8a). Consistent with Fig. 3, the mean monthly WD was generally from the west (Fig. 8b).

479 September and December, however, were the exceptions as we observed mean flows from
 480 the northeast during these respective months. We found similar results (not shown) to these
 481 when differentiating by time of day.

482 With larger mean monthly WS , the mean monthly TKE was also larger during the cool
 483 season than during the warm season, ranging from $\sim 1 \text{ m}^2 \text{ s}^{-2}$ at 40 m AGL in June through
 484 September to $\sim 2 \text{ m}^2 \text{ s}^{-2}$ in February (Fig. 8c). Consistent with the seasonal cycle of mean
 485 monthly TKE , mean monthly σ_w^2 ranged from $\sim 0.25 \text{ m}^2 \text{ s}^{-2}$ at 40 m AGL to $\sim 0.50 \text{ m}^2 \text{ s}^{-2}$
 486 during this same time period (Fig. 8d). Mean monthly S ranged between 0 and 0.2 across all
 487 sampling heights and showed little seasonal variability (Fig. 8e), whereas mean monthly K
 488 was slightly larger during the warm season than during the cool season (Fig. 8f). We also
 489 note that, because we are showing the mean values of the turbulence statistics within each
 490 month at each sampling height, we are not fully encapsulating the within-month variability in
 491 these values which is nontrivial and evident by large standard deviations in the turbulence
 492 statistics (not shown) and which may be responsible for the apparent discontinuity in for
 493 example the mean monthly σ_w^2 at the uppermost sampling heights (cf. Fig. 8d).

494
 495 **Fig. 8.** The mean monthly (a) WS observed from the wind lidar over the one-year period of
 496 interest and computed between 0000 and 2400 LST. Same for (b), (c), (d), (e), and (f), but for
 497 WD , TKE , σ_w^2 , S , and K , respectively. Sampling heights are indicated in the legend at the
 498 bottom of the figure. Note that only time periods with $> 75\%$ valid data (i.e., following the

499 removal of instances with low CNR, cf. Section 2) are plotted, resulting in periods data which
500 are most apparent in panels (a) and (b).


501

502 3.2.3. Relationship between σ_w^2 and TKE

503 To examine further the turbulence characteristics across all days in the study period,
504 we quantified the relationship between the lidar-derived σ_w^2 and lidar-derived TKE as a
505 function of height above ground level to determine the relative contribution of σ_w^2 to the total
506 TKE at each of the sampling heights. To this end, we computed the Pearson correlation
507 coefficient (r) and the slope of the line of best fit (S) between lidar-derived σ_w^2 and lidar-
508 derived TKE. The Pearson correlation coefficient has been shown to be useful in helping to
509 better understand the evolution of within- and above-canopy turbulence characteristics (e.g.,
510 Lee et al., 2025). We found that r was largest nearest the surface and decreased with height.
511 Near-surface r was ~ 0.7 during the middle of the night but ~ 0.9 during the afternoon (Fig.
512 9a). At the uppermost sampling heights, the diurnal differences were more pronounced, with
513 nighttime r ranging from ~ 0.3 – 0.5 but daytime values ranging from ~ 0.6 – 0.8 . Furthermore,
514 we found that the slope of the line of best fit between σ_w^2 and TKE as a function of height
515 above ground level was largest between the surface and about 150 m AGL but generally
516 decreased above this height irrespective of time of day (Fig. 9b).

517 The comparatively large daytime values of r indicate σ_u^2 and σ_v^2 are well correlated
518 with σ_w^2 , whereas the smaller values of r indicate that the horizontal wind variances (i.e., σ_u^2
519 and σ_v^2) have a larger contribution to TKE production at the upper sampling heights during
520 the nighttime. The observed vertical variability in r (i.e., higher value in the lower altitudes
521 than in the upper altitudes) strongly suggest the dominant impact of horizontal (vertical)
522 components of wind field in TKE in the upper (lower) altitudes.

523

524
525
526
527
528

Fig. 9. (a) The Pearson correlation coefficient (i.e., r) and (b) slope of the line of best fit (i.e., S) between σ_w^2 and TKE as a function of height above ground level. Colors indicate the time of day in LST, and are shown to the right of panel (b).

529 3.3. *Turbulence Characteristics under Different Meteorological Conditions During the
530 Daytime*

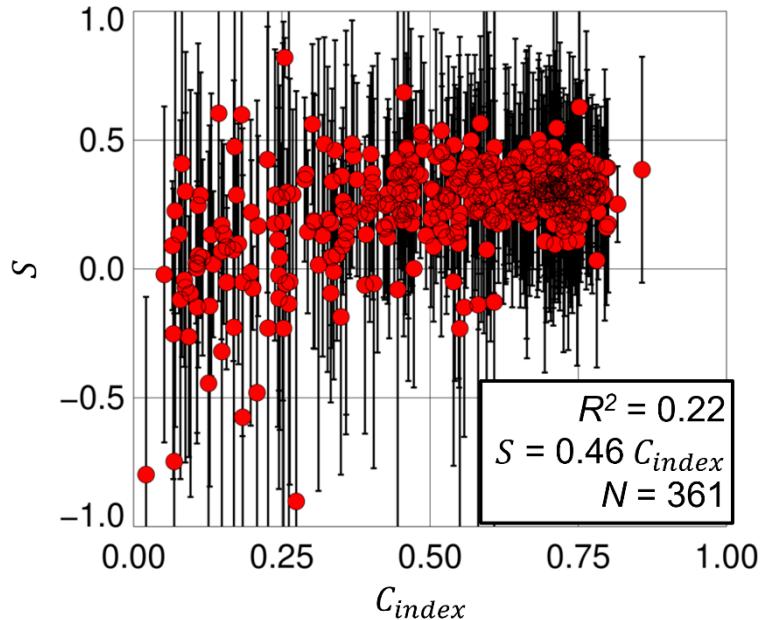
531 3.3.1. *Vertical Velocity Distribution*

532 Discussion so far has focused on the evolution of SL turbulence characteristics
533 irrespective of ambient meteorological regimes. When examining these turbulence
534 characteristics as a function of regime following the procedure outlined in Section 2, we
535 found that the w distributions exhibited positive skewness on the composites of clear days,
536 both for the subsets of days with relatively weak wind speeds and for the subset of days with
537 relatively strong wind speeds across all sampling heights and during both the morning (Table
538 1) and afternoon (Table 2). These results cumulatively suggest that this is an updraft-
539 dominated turbulence regime when updrafts tend to be narrower and more intense than the
540 broader, weaker downdrafts (i.e., Regimes I and II, shown in Tables 1 and 2, and which have
541 positive S implying strong, narrow updrafts surrounded by weak, extensive downward
542 motion). We also note the percentages of both scenarios ($w > 0 \text{ m s}^{-1}$ and $w < 0 \text{ m s}^{-1}$) at all
543 three heights across different regimes (see Table 2 and 3). In contrast, the w distributions had
544 negative S on the composites of cloudy days that was likely caused by cloud-top long-wave
545 radiative cooling (e.g., LeMone, 1990; Moeng and Rotunno, 1990; Hogan et al., 2009;
546 Behrendt et al., 2015), including both the subset with weak wind speeds and the subset of
547 days with relatively strong wind speeds. For brevity, we explored the relationship between S
548 and the C_{index} and found a positive relationship between the vertical velocity skewness and

549 C_{index} at all sampling heights, with the relationship being strongest at 100 m AGL ($R^2 = 0.22$,
 550 $S=0.46C_{index}$, Fig. 10). These results help us to distinguish bottom up from top down sources
 551 of turbulence because vertical transport of $\overline{w'^2}$ by turbulence itself (i.e., w') is reflected
 552 within the S values, and S increase as function of C_{index} . Furthermore, we note that K was
 553 much larger across all sampling heights during both the morning and the afternoon on the
 554 subsets of cloudy days than on the subsets of clear days.

555
 556
 557
 558
 559

Table 1: The mean (\bar{w}), w standard deviation (σ), w skewness (S), w kurtosis (K),
 percentage $w > 0 \text{ m s}^{-1}$, and percent of $w < 0 \text{ m s}^{-1}$ between 0800 and 1200 LST. Regime I, II,
 III, and IV correspond with cases that are clear with weak winds, clear and strong winds,
 cloudy and weak winds, and cloudy and strong winds, respectively.


Sampling Height	Regime	$\bar{w} (\text{m s}^{-1})$	$\sigma w (\text{m s}^{-1})$	S	K	$\% w > 0 \text{ m s}^{-1}$	$\% w < 0 \text{ m s}^{-1}$
40 m AGL	I	0.11	0.63	0.16	0.45	56.0	44.0
	II	0.07	0.87	0.10	0.53	51.9	48.1
	III	0.04	0.62	-1.12	7.31	50.5	49.5
	IV	-0.11	0.86	-0.59	2.29	46.4	53.6
200 m AGL	I	0.13	0.92	0.55	0.99	51.3	48.7
	II	0.08	1.04	0.53	1.29	49.6	50.4
	III	-0.07	0.67	-1.29	12.32	44.7	55.3
	IV	-0.10	0.85	-0.34	4.15	43.3	56.7
300 m AGL	I	0.13	0.97	0.57	1.30	51.9	48.1
	II	0.08	1.08	0.57	1.70	49.8	50.2
	III	-0.06	0.71	-1.49	15.29	46.5	53.5
	IV	-0.10	0.89	-0.32	4.37	44.1	55.9

560
 561

Table 2: Same as Table 1, but for times between 1200 and 1600 LST.

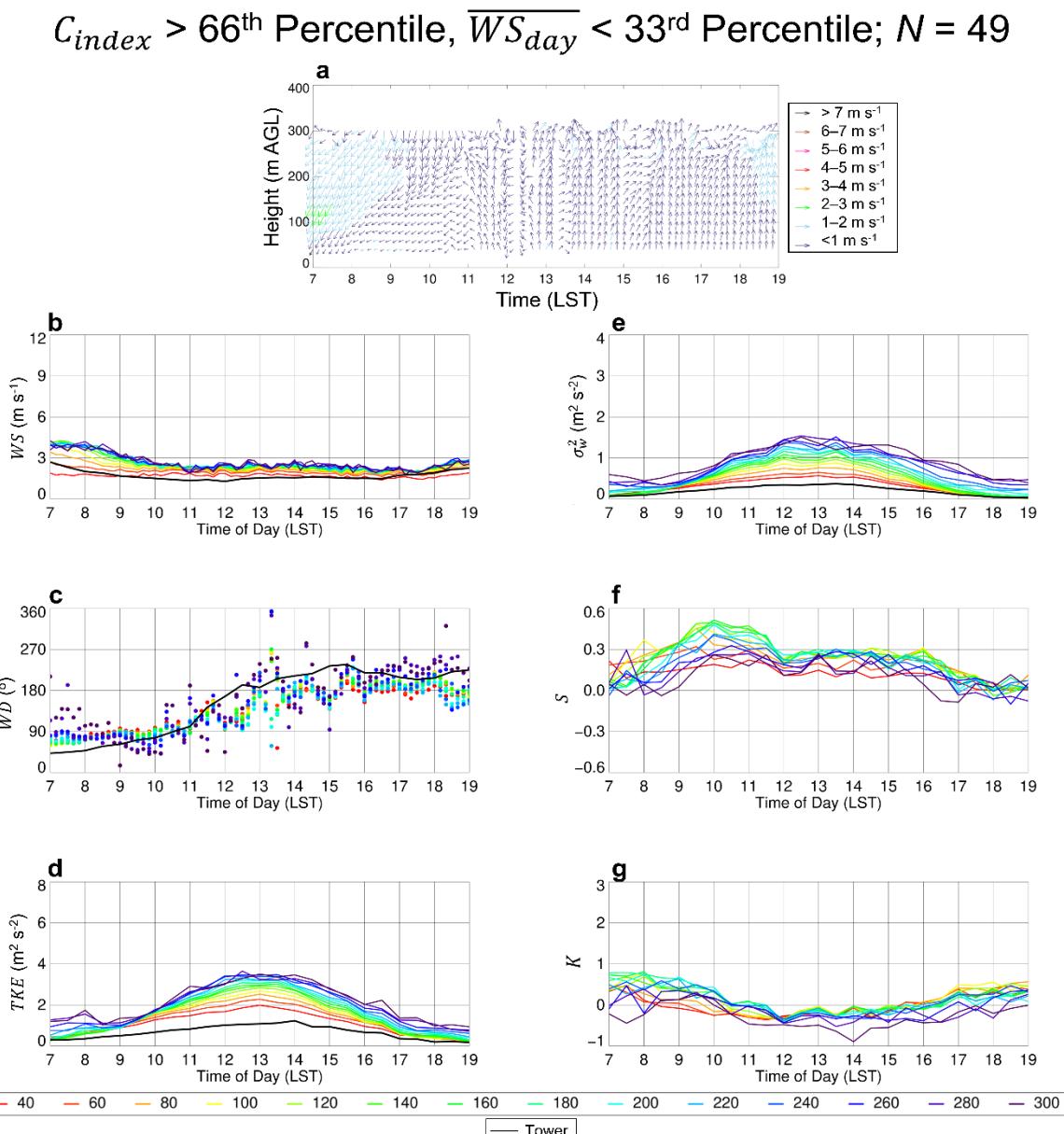
Sampling Height	Regime	$\bar{w} (\text{m s}^{-1})$	$\sigma w (\text{m s}^{-1})$	S	K	$\% w > 0 \text{ m s}^{-1}$	$\% w < 0 \text{ m s}^{-1}$
40 m AGL	I	0.06	0.66	0.12	0.38	52.8	47.2
	II	0.05	0.98	0.03	0.44	51.3	48.7
	III	-0.14	0.75	-1.50	7.08	46.7	53.3
	IV	-0.10	0.92	-0.59	2.33	46.9	53.1
200 m AGL	I	0.06	1.04	0.38	0.39	49.0	51.0
	II	0.12	1.24	0.36	0.42	50.6	49.4
	III	-0.16	0.79	-1.57	9.56	40.0	60.0
	IV	-0.13	1.02	-0.55	3.73	43.7	56.3
300 m AGL	I	0.08	1.19	0.37	0.29	49.2	50.8
	II	0.11	1.43	0.44	0.47	49.4	50.6
	III	-0.12	0.78	-1.20	9.71	43.5	56.5
	IV	-0.13	1.10	-0.55	3.63	44.9	55.1

562

563

564 **Fig. 10.** (a) The relationship between the mean daytime S (red dots; averaged over 0800–
 565 1600 LST at 100 m AGL), and the C_{index} obtained from the nearby micrometeorological
 566 tower. The error bars represent ± 1 standard deviation in S over the averaging period. The R^2
 567 the best-fit equation, and N are shown in a box on the lower right.

568


569 3.3.2. Mean Diurnal Cycles

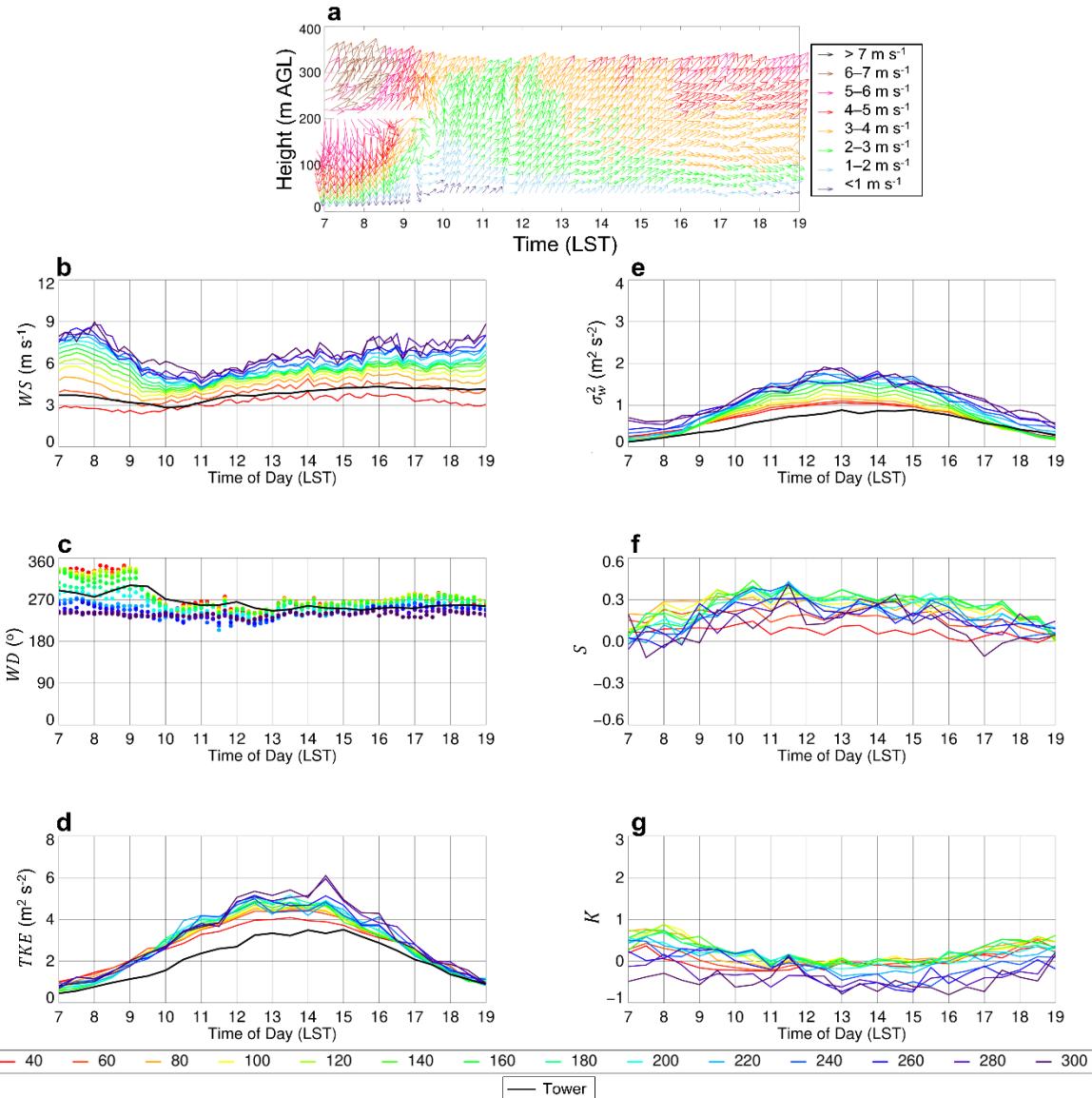
570 3.3.2.1. Clear Days

571 When we examined the mean diurnal cycles of WS observed from the wind lidar on
 572 the composite of days in which the $C_{index} > 66^{\text{th}}$ percentile and $\overline{WS_{day}} < 33^{\text{rd}}$ percentile (i.e.,
 573 clear days with weak wind speeds), we found a small WS decrease during the daytime. The
 574 largest values occurred between ~ 0700 and 0800 LST and ranged from 2 m s^{-1} at 40 m AGL
 575 to 4 m s^{-1} at 300 m AGL (Fig. 11a, 11b). WD exhibited a clockwise shift during the daytime;
 576 between 0700 LST and 1000 LST, winds were easterly at all sampling heights, but between
 577 1000 LST and 1200 LST ranged from southerly to southwesterly (Fig. 11a, 11c).
 578 Corresponding with the lower WS during the afternoon, there was greater WD variability at
 579 the different sampling heights; near-surface winds were typically southerly, whereas the
 580 lidar's uppermost sampling heights winds had a larger southwesterly wind component.

581 Examination of the evolution of both TKE and σ_w^2 for the composites of clear days
 582 with weak wind speeds revealed a broad maximum during the afternoon across all sampling
 583 heights. At 40 m AGL (300 m AGL), the maximum values of TKE were $\sim 2.0 \text{ m}^2 \text{ s}^{-2}$ (~ 3.5

584 $\text{m}^2 \text{s}^{-2}$) at 40 m AGL (300 m AGL) (Fig. 11d), whereas maximum values of σ_w^2 were $\sim 0.5 \text{ m}^2 \text{s}^{-2}$ ($1.5 \text{ m}^2 \text{s}^{-2}$) (Fig. 11e). Mean S was typically positive during the daytime for all sampling heights, with maximum values occurring between ~ 0900 and 1100 LST at 140 – 180 m AGL (Fig. 11f) thus indicating the strongest upward transport of TKE and $\overline{w'^2}$ at these sampling heights. Mean K was typically > 0 at all sampling heights between ~ 0700 and 0900 LST but decreased and became < 0 between ~ 1000 LST and 1600 LST (Fig. 11g) which is suggestive of a decrease in turbulence intermittency here that is consistent with the mean diurnal cycles of K that were previously shown.

592
593 **Fig. 11.** (a) Wind vectors as a function of time and height, colored by wind speed. (b) The
594 mean diurnal time series, between 0700 LST and 1900 LST, of (a) WS observed from the
595 wind lidar for the composite of days in which the $C_{index} > 66^{\text{th}}$ percentile and $\overline{WS}_{day} < 33^{\text{rd}}$
596 percentile (i.e., clear days with weak winds). Same for (c), (d), (e), (f), and (g), but for WD ,


597 TKE , σ_w^2 , S , and K , respectively. The sampling heights are indicated in the legend at the
598 bottom of the figure. The corresponding values from the micrometeorological tower are
599 shown in panels (b – e) and are indicated by the black line.

600

601 Analogous to the subset of clear days with weak winds, the subset of clear days with
602 strong winds also exhibited a WS decrease during the morning. The minimum WS was
603 observed between ~ 1000 LST and 1100 LST, after which WS increased across all sampling
604 heights (Fig. 12a, 12b). Unlike what was observed in the composites for days with weak
605 winds, there was greater WD variability at all sampling heights between ~ 0700 LST and
606 0900 LST, with winds backing from the north-northwest at the lowest sampling heights to
607 west-southwest at 300 m AGL (Fig. 12a, 12c) which is opposite to the pattern found on clear
608 days (cf. Fig. 11). This difference disappeared during the mid-morning, and winds showed
609 only minimal backing for the remainder of the day, as west-southwesterly winds were most
610 dominant.

611 Maximum TKE in the composites for clear days with strong winds ranged from ~ 4
612 $\text{m}^2 \text{s}^{-2}$ at 40 m AGL to $\sim 6 \text{ m}^2 \text{s}^{-2}$ at 300 m AGL during the early afternoon (Fig. 12d) due to
613 considerably larger values of σ_u^2 and σ_v^2 on these subsets of days (not shown). However, σ_w^2
614 was only slightly larger on the composites for clear days with strong winds, as maximum σ_w^2
615 ranged from $\sim 1 \text{ m}^2 \text{s}^{-2}$ at 40 m AGL to $\sim 2 \text{ m}^2 \text{s}^{-2}$ at 300 m AGL (Fig. 12e). The S and K
616 composites were fairly similar. Accompanying the morning wind direction shift was an
617 increase in S and decrease in K after which these values remained fairly constant throughout
618 the daytime (Fig. 12f, 12g).

$C_{index} > 66^{\text{th}} \text{ Percentile}$, $\overline{WS_{day}} > 66^{\text{th}} \text{ Percentile}$; $N = 37$

Fig. 12. Same as Fig. 11 but composite for days in which the $C_{index} > 66^{\text{th}}$ percentile and $\overline{WS_{day}} > 66^{\text{th}}$ percentile (i.e., clear days with strong winds).

619

620

621

622

623

3.3.2.2. Cloudy Days

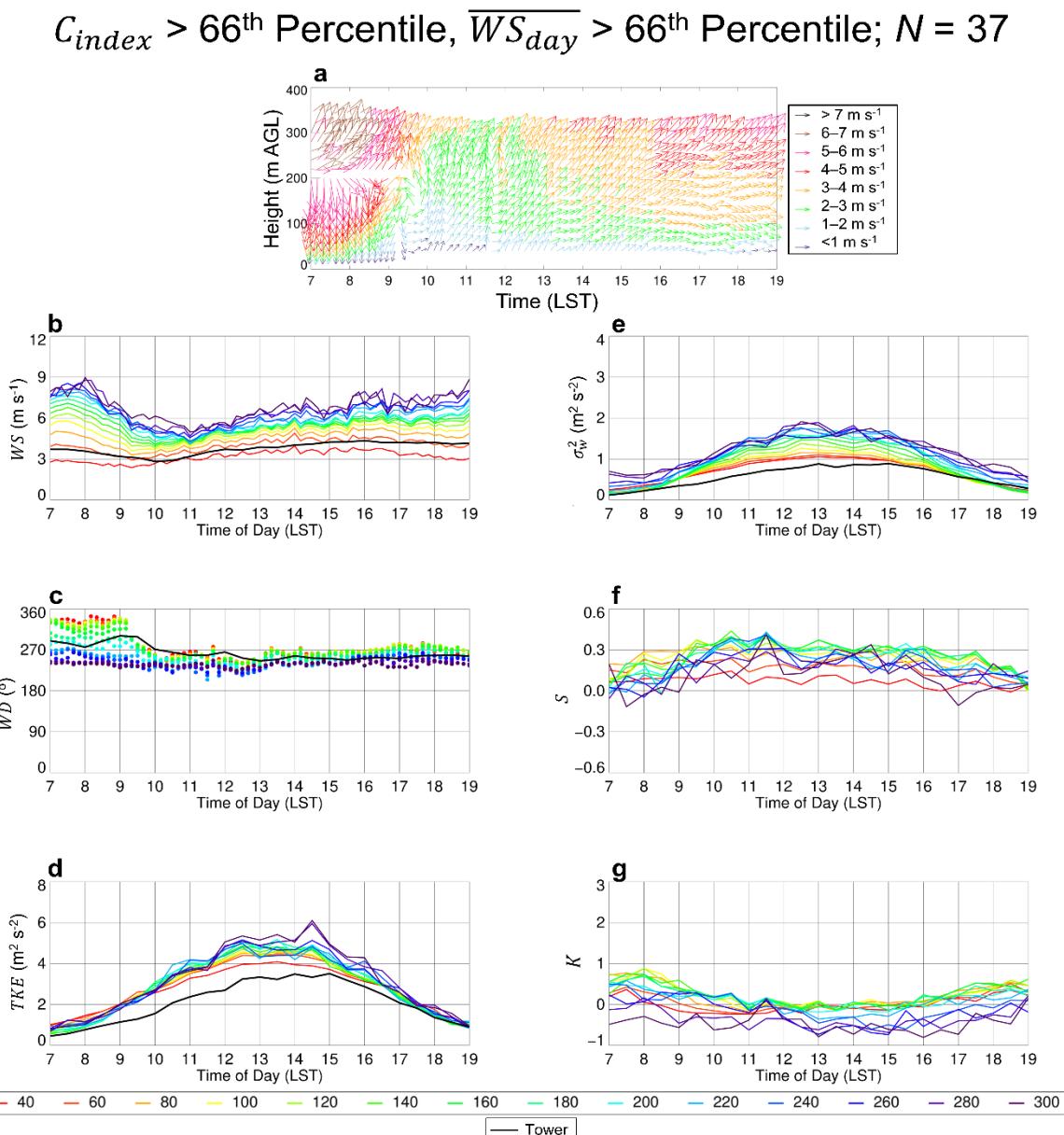
624

625

626

627

628

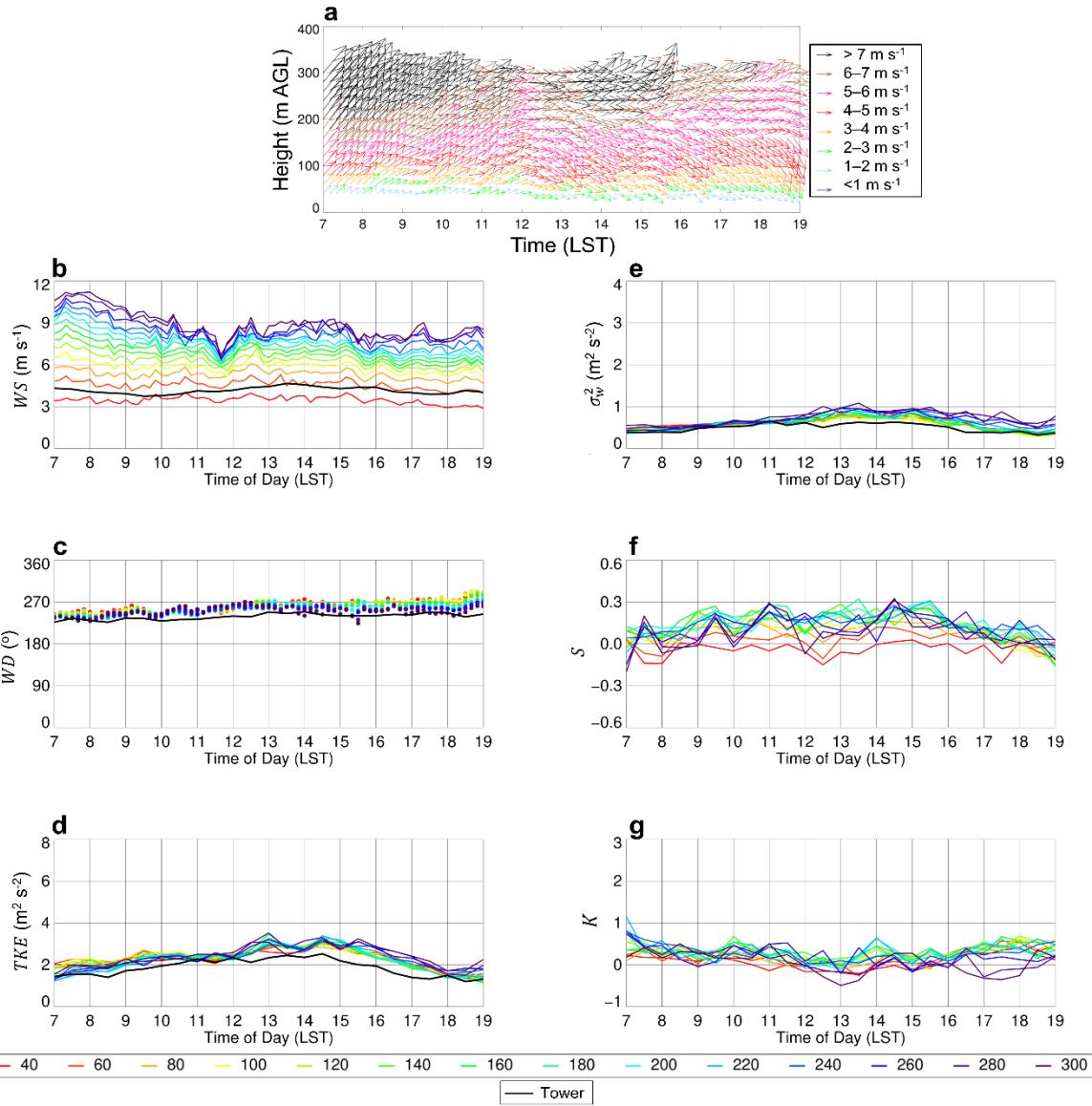

629

630

Whereas maximum WS of $\sim 4 \text{ m s}^{-1}$ at 300 m AGL occurred on cloudy days with weak wind speeds, cloudy days with strong wind speeds had a mean maximum WS of $\sim 10 \text{ m s}^{-1}$ at 300 m AGL between ~ 1500 and 1700 LST (Fig. 13a, 13b). Similar to the cases with clear skies, however, was that there was a clockwise wind shift during the daytime in the WD composites for cloudy skies and weak winds. Between ~ 0700 LST and 1100 LST, southeasterly winds occurred at all sampling heights (Fig. 13a, 13c). Furthermore, during this period, the winds veered with height, as easterly flows were observed near the surface but

631 southerly flows were observed at 300 m AGL. The composites of WD during the afternoon,
 632 however, exhibited little variability with height.

633 When we examined the turbulence characteristics on the subset of cloudy days and
 634 weak wind speeds, we found limited diurnal variability in both TKE (Fig. 13d) and σ_w^2 (Fig.
 635 13e) due to the lack of strong turbulent mixing on this subset of days. Furthermore, vertical
 636 gradients in TKE and σ_w^2 were minimal, with maximum values of $\sim 0.5 \text{ m}^2 \text{ s}^{-2}$ and $2 \text{ m}^2 \text{ s}^{-2}$,
 637 respectively. Similar to σ_w^2 and TKE , the S composites (Fig. 13f) and K composites (Fig.
 638 13g) showed little diurnal variability and vertical variability; mean values of S (K) were
 639 around 0 (0.5) for all sampling heights.



640
 641 **Fig. 13.** Same as Fig. 11 but composite for days in which the $C_{index} < 33^{\text{rd}}$ percentile and
 642 $\overline{WS_{day}} < 33^{\text{rd}}$ percentile (i.e., cloudy days with weak winds).
 643

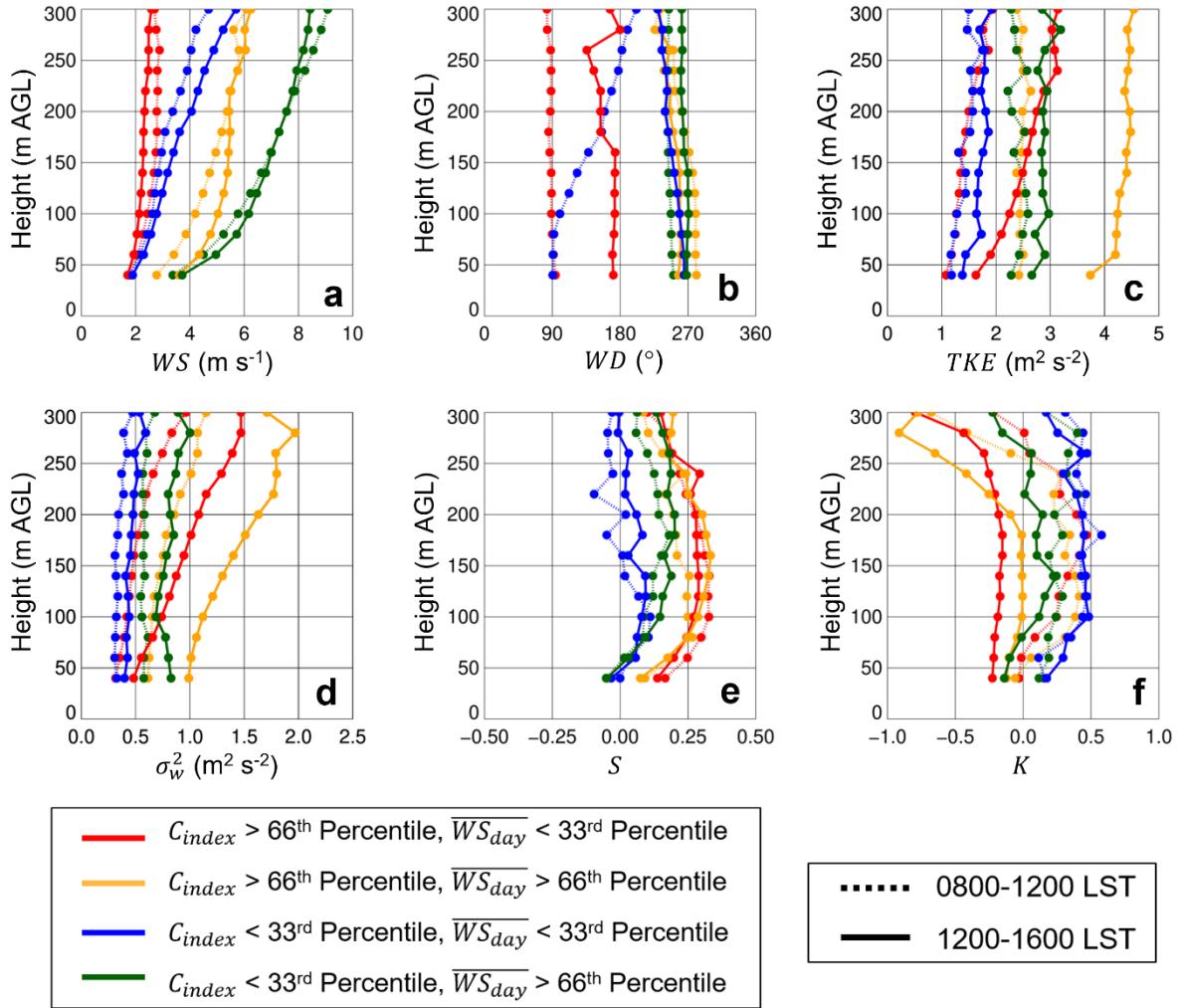
644 The regimes with the cloudy skies and strong winds had the largest mean *WS* of any
645 of the four regimes (Fig. 14a, 14b). Near-surface *WS* were $\sim 3 \text{ m s}^{-1}$ and exhibited little
646 diurnal variability, whereas mean *WS* at the uppermost sampling heights were $\sim 11 \text{ m s}^{-1}$
647 between 0700 and 0800 LST but decreased to $\sim 9 \text{ m s}^{-1}$ between 0800 and 1000 LST and
648 showed relatively little variability for the remainder of the day. The *WD* composite showed
649 westerly winds throughout the diurnal cycle and minimum gradients with height (Fig. 14a,
650 14c).

651 The *TKE* composites showed a small increase during the daytime for the regimes with
652 cloudy skies and strong winds, with values ranging from $\sim 2 \text{ m}^2 \text{ s}^{-2}$ post-sunrise to $\sim 3 \text{ m}^2 \text{ s}^{-2}$
653 around noon (Fig. 14d). The σ_w^2 mean diurnal cycles had maximum values between ~ 1200
654 LST and 1400 LST. During this time period, σ_w^2 ranged from $\sim 0.5 \text{ m}^2 \text{ s}^{-2}$ at 40 m AGL to \sim
655 $1.0 \text{ m}^2 \text{ s}^{-2}$ at 300 m AGL (Fig. 14e). Additionally, the σ_w^2 composites exhibited more vertical
656 variability than *TKE*. The *S* composites (Fig. 14f) showed a small increase, which was more
657 pronounced at the lidar's uppermost sampling heights than near the surface. Similar to the
658 cloudy regimes with weak wind speeds, the *K* composites on the subsets of cases with strong
659 winds and cloudy skies showed little diurnal variability, and the mean values were similar
660 among the different sampling heights (Fig. 14g).

$C_{index} < 33^{\text{rd}}$ Percentile, $\overline{WS}_{day} > 66^{\text{th}}$ Percentile; $N = 38$

Fig. 14. Same as Fig. 11 but composite for days in which the $C_{index} < 33^{\text{rd}}$ percentile and $\overline{WS}_{day} > 66^{\text{th}}$ percentile (i.e., cloudy days with strong winds).

661
662
663
664


665 3.3.3. Composite Profiles

666 In the previous section, we examined the diurnal evolution of the near-surface
667 turbulence characteristics under different radiative and wind regimes that we identified
668 during the daytime. We found that \overline{WS} was larger on the subset of cloudy days than on the
669 subset of clear days, possibly due to smoother flows within this subset of cases. The \overline{WS}
670 increased from $\sim 4 \text{ m s}^{-1}$ at 40 m AGL, both during the morning and afternoon, to $\sim 9 \text{ m s}^{-1}$
671 and 8 m s^{-1} during the morning and afternoon, respectively, at 300 m AGL (Fig. 15a). For the
672 majority of the wind and radiative regimes, \overline{WD} was from the west, but there were exceptions
673 (Fig. 15b). During the mornings with cloudy skies and light winds, winds originated from the

674 east below 100 m but veered southward with an increase in height. Winds were also from the
675 east during clear skies and light winds, but these cases exhibited no veering with height.
676 Unlike the other afternoons, wind directions on the subset of days were generally southerly
677 during the afternoon but otherwise the composite mean vertical profiles were quite similar
678 between the morning (0800–1200 LST) and afternoon (1200–1600 LST).

679 The radiative regime did not affect the \overline{TKE} during the morning, as the profiles on
680 clear days with weak winds were comparable with those on cloudy days with weak winds,
681 with observed values of \overline{TKE} around $1.5 \text{ m}^2 \text{ s}^{-2}$. Mornings with strong winds had \overline{TKE} around
682 $2.5 \text{ m}^2 \text{ s}^{-2}$, irrespective of sky conditions (Fig. 15c). Afternoon profiles had larger variability
683 than the morning. The smallest \overline{TKE} values occurred on cloudy days with weak winds,
684 ranging from 1.5 to $2.0 \text{ m}^2 \text{ s}^{-2}$, whereas \overline{TKE} was oftentimes $> 4.0 \text{ m}^2 \text{ s}^{-2}$ on the afternoons
685 with clear skies and strong winds. Examination of $\overline{\sigma_w^2}$ indicated that σ_w^2 was largest on the
686 subsets of clear days, whereby $\overline{\sigma_w^2}$ increased from $\sim 0.5 \text{ m}^2 \text{ s}^{-2}$ ($\sim 1.0 \text{ m}^2 \text{ s}^{-2}$) at 40 m AGL to \sim
687 $1.5 \text{ m}^2 \text{ s}^{-2}$ ($\sim 2.0 \text{ m}^2 \text{ s}^{-2}$) at 300 m AGL on the subset of days with weak (strong) winds (Fig.
688 15d). On the remaining subsets of wind and radiative regimes, $\overline{\sigma_w^2}$ remained below $1 \text{ m}^2 \text{ s}^{-2}$
689 during both the morning and afternoon. \bar{S} exhibited only small differences between the
690 morning and afternoon across all wind and radiative regimes (Fig. 15e).

691 All regimes had a positive \bar{S} bias that was most positive on the subsets of regimes
692 with clear skies than on cloudy days, whereby the observed \bar{S} was around 0.25 and indicating
693 the strongest upward transport of TKE and $\overline{w'^2}$ (e.g., Hogan et al., 2009) within these
694 turbulent regimes. \bar{K} was positive during the morning across all radiative and wind regime
695 but became negative in the afternoon under clear sky conditions (Fig. 15f). The most negative
696 \bar{K} occurred during the afternoon under regimes with clear skies and weak winds over the
697 lowest 200 m which is suggestive of more turbulence intermittency within this particular
698 meteorological regime (e.g., McNicholas and Turner, 2014).

Fig. 15. The mean vertical profiles of (a) WS , (b) WD , (c) TKE , (d) σ_w^2 , (e) S , and (f) K during the morning (i.e., 0800–1200 LST, dashed line) and afternoon (i.e., 1200–1600 LST, solid line).

3.4. Turbulence Characteristics under Different Meteorological Conditions During the Nighttime

Discussion has so far focused on the evolution of near-surface turbulence characteristics within the daytime CBL under different radiative and wind regimes but has not yet addressed the turbulence characteristics observed within the NBL. To this end, in the present section, we quantify the near-surface turbulence characteristics under different radiative and wind regimes during the nighttime (i.e., 0000–0400 LST).

3.4.1. Vertical Velocity Distribution

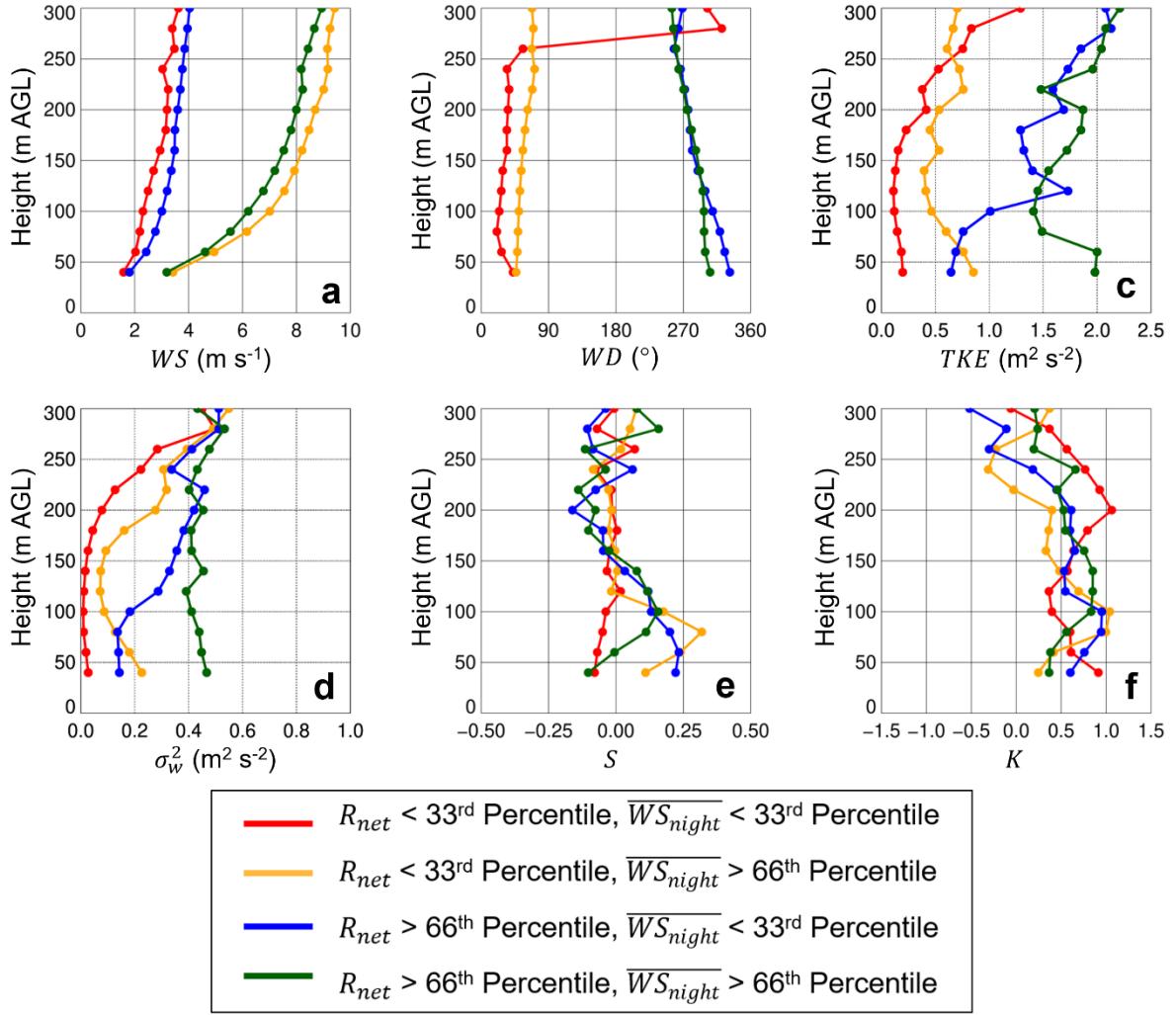
When examining the normalized w distributions from the different sampling heights obtained from the wind lidar under the different radiative and wind regimes during the nighttime, consistent with our findings for daytime conditions, we observed larger skewness

716 on cloudy days than clear days (Table 3). At 40 m AGL, S was -0.08 (0.13) on the subset of
 717 clear days with weak winds (strong winds), whereas S was -2.48 (-1.03) on the subset of
 718 cloudy days with weak winds (strong winds) resulting in a larger percentage of positive
 719 vertical velocities compared to negative vertical velocities. Also consistent with our findings
 720 for daytime conditions was that K was larger on the subsets of cases with cloudy skies than
 721 on the subsets of cases with clear skies.

722

723 **Table 3.** Same as Table 1 but for times between 0000 and 0400 LST.

Sampling Height	Regime	\bar{w} (m s ⁻¹)	σ_w (m s ⁻¹)	S	K	% $w > 0$ m s ⁻¹	% $w < 0$ m s ⁻¹
40 m AGL	I	0.05	0.20	-0.08	4.68	63.8	36.2
	II	0.03	0.48	0.13	2.14	52.8	47.2
	III	-0.07	0.56	-2.48	15.45	49.8	50.2
	IV	-0.10	0.72	-1.03	5.33	47.1	52.9
<hr/>							
200 m AGL	I	0.01	0.33	-0.07	4.65	52.6	47.4
	II	0.00	0.36	0.11	4.56	49.8	50.2
	III	-0.21	0.73	-3.44	19.09	40.8	59.2
	IV	-0.15	0.69	-1.09	9.57	40.7	59.3
<hr/>							
300 m AGL	I	0.02	0.47	0.06	6.99	52.1	47.9
	II	0.01	0.49	-0.09	4.88	52.1	47.9
	III	-0.22	0.80	-3.19	18.79	41.9	58.1
	IV	-0.20	0.74	-1.12	8.22	38.7	61.3


724

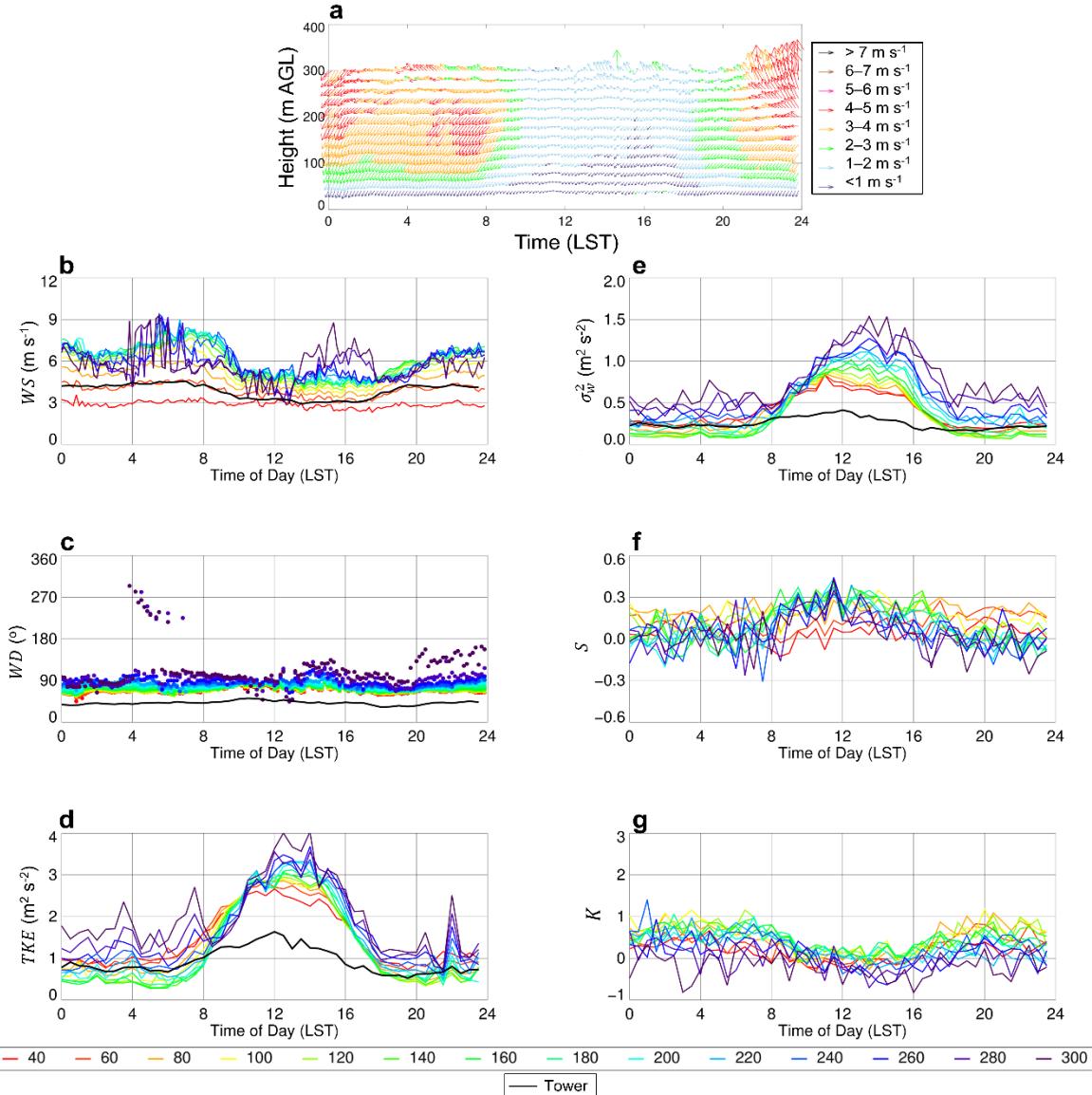
725 3.4.2. Composite Profiles

726 \bar{WS} exhibited the largest increase with height in the lowest 100 m of the lidar profile
 727 during the nighttime (i.e., 0000–0400 LST). Furthermore, \bar{WS} was largest on nights with
 728 clear skies. On these nights, \bar{WS} was > 8 m s⁻¹ above ~ 150 m AGL (Fig. 16a). \bar{WD} was
 729 typically from the northeast under instances with clear skies and independent of wind speed
 730 regime (Fig. 16b). In contrast, instances with cloudy skies were characterized by
 731 northwesterly near-surface flows and winds backing to the west with height.

732 Examination of the \bar{TKE} and $\bar{\sigma_w^2}$ profiles revealed that these quantities were largest
 733 under cloudy skies with strong winds, whereby \bar{TKE} and $\bar{\sigma_w^2}$ were $1.5 – 2.0$ m² s⁻² and ~ 0.4
 734 m² s⁻², respectively, throughout the profile (Fig. 16c, Fig. 16d). Conversely, on the subset of
 735 clear nights with weak wind speeds, $\bar{\sigma_w^2}$ and \bar{TKE} were < 0.1 m² s⁻² and ~ 0.2 m² s⁻²,
 736 respectively, between the surface and ~ 200 m AGL. \bar{S} was slightly positive in the lowest \sim
 737 100 m for all scenarios except for those with clear skies and weak winds. In those scenarios,

738 \bar{S} was < 0 throughout the profile implying the expected downward transport of $\bar{w'^2}$ and TKE .
739 (Fig. 16e). \bar{K} was ~ 0.5 throughout the profiles and did not exhibit large differences as a
740 function of radiative or wind regime, but was lower at the uppermost sampling heights in all
741 of the scenarios (Fig. 16f), implying a larger degree of turbulence intermittency as a function
742 of height across all of the scenarios.

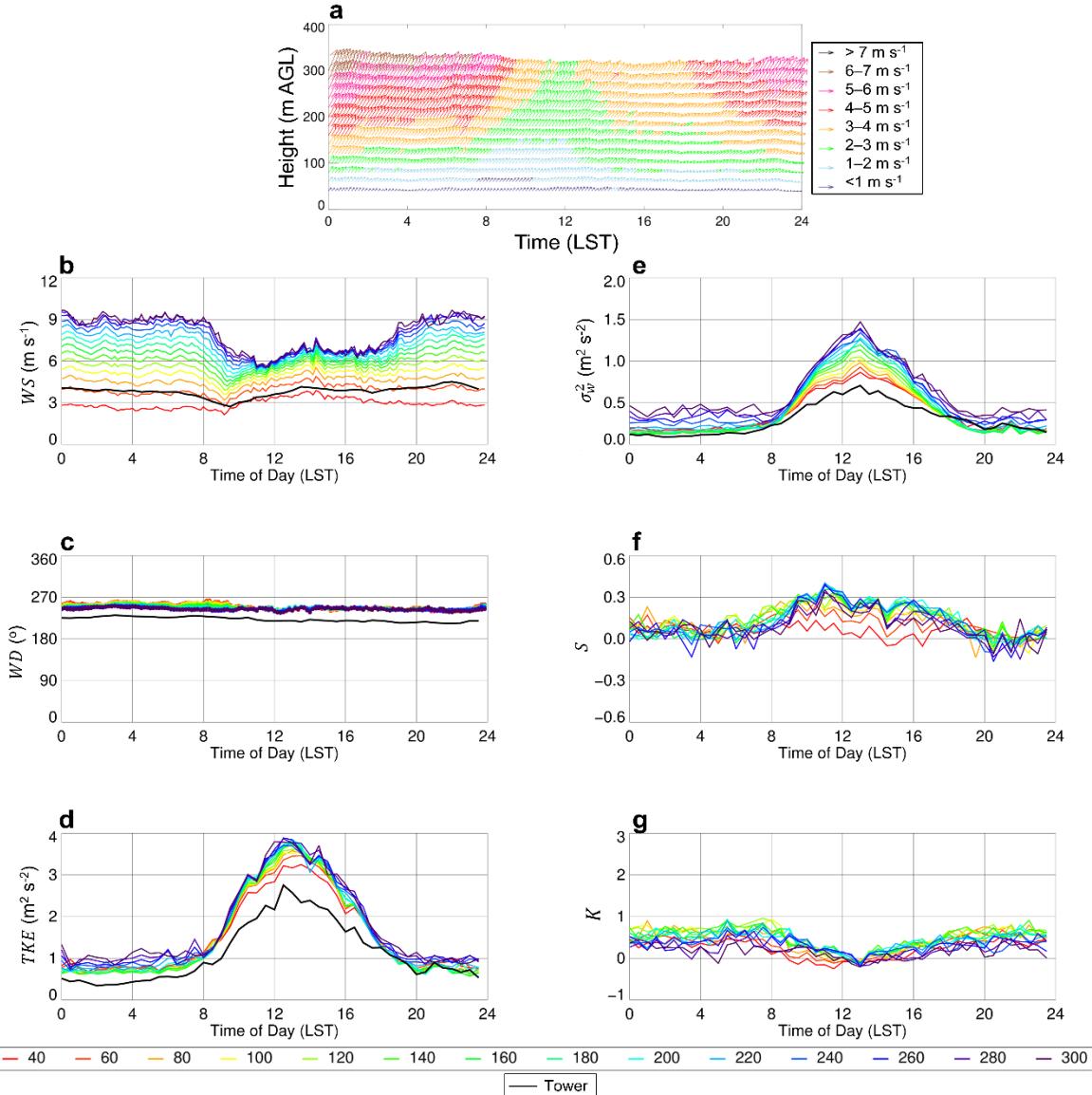
743
744 **Fig. 16.** The mean vertical profiles of (a) WS , (b) WD , (c) TKE , (d) σ_w^2 , (e) S , and (f) K
745 during the nighttime (i.e., 0000–0400 LST).
746


747 3.5. Turbulence Characteristics as a Function of Wind Direction

748 To fulfill the fourth objective of this work, we examined the turbulent characteristics
749 as a function of constant wind directions, following the approach enumerated in Section 2.3.
750 Days with constant northeasterly flows, which oriented down the Tennessee Valley (cf.
751 Section 2.1.), exhibited veering winds with height, as northeasterly flows were present in the
752 lowest sampling heights in the observations from the wind lidar, whereas easterly flows were
753 observed at the uppermost sampling heights (Fig. 17). In contrast to the days with constant

754 northeasterly winds, days with constant southwesterly winds, which were those in which the
755 flow was oriented up the Tennessee Valley (cf. Section 2.1.), were characterized by WD
756 exhibited about 25° of backing with height between about 0000 LST and 0900 LST, after
757 which WD was nearly constant with height (Fig. 18).

758 Whereas WS , TKE , σ_w^2 , S , and K exhibited similar characteristics on the composites
759 of days with near-constant northeasterly winds and on the composites of days with near-
760 constant southwesterly winds, the former exhibited greater hour-to-hour variability than the
761 latter. The hour-to-hour variability was particularly evident during the nighttime at the
762 uppermost sampling heights on days with constant northeasterly flows, whereby down-valley
763 drainage flows may induce transient turbulent bursts during these times that result in TKE
764 nearing $2 \text{ m}^2 \text{ s}^{-2}$. Further investigation of these turbulent bursts will be subject of further
765 study.


Days with Northeasterly Winds; $N = 25$

766
767
768
769
770
771
772

Fig. 17. (a) Wind vectors as a function of time and height, colored by wind speed. (b) The mean diurnal time series of WS observed from the wind lidar for the composite of days with near-constant northeasterly winds. Same for (c), (d), (e), (f), and (g), but for WD , TKE , σ_w^2 , S , and K , respectively. The sampling heights are indicated in the legend at the bottom of the figure. The corresponding values from the micrometeorological tower are shown in panels (b – e) and are indicated by the black line.

Days with Southwesterly Winds; $N = 45$

773

774 **Fig. 18.** Same as Fig. 17 but for the composite of days with southwesterly winds.

775

776 4. Summary and conclusions

777 In this study, we addressed the question of how the vertical variability of turbulence
 778 characteristics evolves in the lowest few hundred meters of the atmosphere over a deciduous
 779 ridgeline forest across different radiative and wind regimes during the daytime convective
 780 boundary layer and nocturnal boundary layer. We found that the wind speed, as well as the
 781 TKE and σ_w^2 , obtained from the lowest sampling height of the wind lidar at $\sim 1.5h_c$, showed
 782 reasonably good agreement with observations obtained from analogous sampling heights at
 783 the nearby micrometeorological tower. This finding provided confidence in our choice to use
 784 the micrometeorological tower's measurements to study varying meteorological regimes in

785 the study region, in addition to helping provide us with fidelity in the wind speed and, in
786 particular, the turbulence measurements derived from the wind lidar. We quantified the
787 turbulence characteristics within the different radiative and wind regimes by computing the
788 composites of the mean diurnal cycles, \bar{w} frequency distributions, and the mean vertical
789 profiles of the wind and turbulence characteristics. We found that the largest decrease in the
790 diurnal wind speed occurred on clear, windy days. Under clear sky conditions, increasing
791 TKE and σ_w^2 yield positive S throughout the lower part of afternoon ABL. Under cloudy
792 conditions we found a mostly height-independent distribution of TKE which were associated
793 with lower σ_w^2 and near-zero S .

794 To the best of our knowledge, this study is the first of its kind to document vertical
795 profiles of turbulence statistics, as well as higher-order statistical moments, in the lowest few
796 hundred meters of the atmosphere above a forested ridgeline and how the quantities varied
797 under different forcings: surface heating under clear skies versus cloudy skies whereby the
798 forcing is driven by radiative cooling at the cloud top. The high resolution observations
799 available from the wind lidar used in this study allowed for turbulent characteristics to be
800 examined at higher vertical resolution than has been previously done in other studies using
801 traditional profiling systems. The observations can further be used to provide the boundary
802 conditions for high-resolution NWP models over complex terrain and aid in their evaluation
803 to allow for the refinement of turbulence and SL parameterizations.

804

805 **Data availability**

806 The observations from the wind lidar and from the micrometeorological tower that were used
807 in this study are available upon request from the corresponding author. The digital elevation
808 model used to aid in the generation of Fig. 1 was obtained from the Parameter-elevation
809 Regressions on Independent Slopes Model (PRISM) climate group at the Northwest Alliance
810 for Computational Science and Engineering and can be accessed from
811 <https://prism.oregonstate.edu/downloads/>.

812

813 **Acknowledgments**

814 We thank the engineers and technicians from the NOAA Air Resources Laboratory
815 Atmospheric Turbulence and Diffusion Division in Oak Ridge, Tennessee who have helped
816 to maintain wind lidar in addition to the instrumentation along the tower at Chestnut Ridge to
817 ensure high-quality datasets from the lidar and tower. We thank the two anonymous

818 reviewers whose feedback help us strengthen the interpretation of the results presented in this
819 manuscript, as well as the anonymous reviewer from the NOAA Air Resources Laboratory
820 for suggested edits to an earlier version of the manuscript. Lastly, we note that the results and
821 conclusions obtained from this work, as well as any views that we have expressed herein, are
822 those of the authors and may not necessarily reflect those of NOAA or the Department of
823 Commerce.

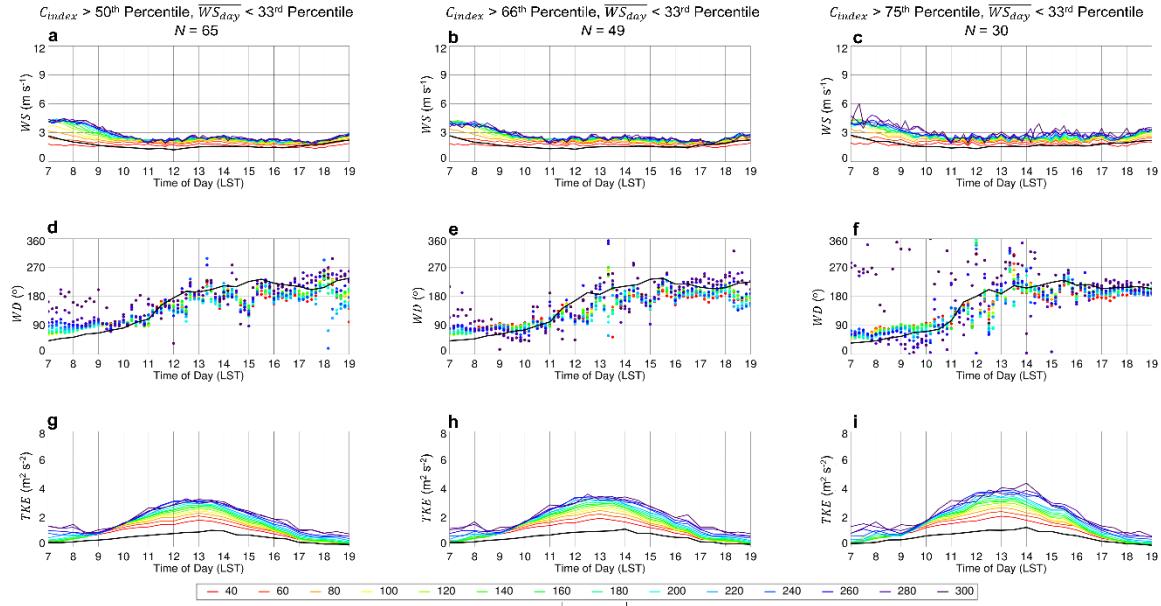
824

825 Appendix A.

826 As shown in Table A1, the percent of data completion, and of high-quality data, from
827 the wind lidar during the 1-year study period decreased as a function of height. The lowest
828 range gate (i.e., at 40 m AGL) had > 90% completion for TKE , σ_w^2 , S , and K . In contrast, the
829 uppermost range gate (i.e., at 300 m AGL) had a data completion of ~ 50% for TKE and ~
830 70% for σ_w^2 , S , and K .

831

832 **Table A1.** Percent data completion of TKE , σ_w^2 , S , and K at each sampling height from the
833 wind lidar during the one-year study period and after filtering periods with $CNR < -23$ in
834 addition to either missing or physically-unrealistic values.


Height (m AGL)	% Complete TKE	% Complete σ_w^2	% Complete S	% Complete K
40	92.9	95.5	95.6	95.5
60	93.2	95.4	95.4	95.3
80	92.9	95.1	95.1	95.1
100	92.3	94.4	94.5	94.5
120	91.6	93.9	94.0	93.9
140	90.5	93.0	93.2	93.1
160	89.3	92.2	92.3	92.3
180	87.5	91.2	91.4	91.4
200	84.7	90.0	90.3	90.3
220	80.6	88.2	88.5	88.5
240	74.8	85.4	85.9	85.9
260	67.5	81.4	82.0	82.0
280	59.5	76.1	77.0	77.0
300	51.9	69.7	70.7	70.7

835

836 Appendix B.

837 To have confidence that the conclusions from this study were unaffected by our
838 choice of different thresholds, we tested a range of these. When we evaluated the sensitivity
839 of our results to varying C_{index} thresholds under weak winds (i.e., those < 33rd percentile), we
840 found a WS decrease and a clockwise WD change during the daytime that was irrespective of

841 our choice for C_{index} (Fig. A1). There was more scatter present in the mean WD for this
 842 subset of cases likely due to a smaller number of cases on days with the $C_{index} > 75^{\text{th}}$
 843 percentile. Furthermore, the TKE diurnal cycles showed consistency under varying C_{index}
 844 thresholds, whereas the maximum daytime values were expectedly when the C_{index} was
 845 largest.

846
 847 **Fig. A1.** The mean diurnal time series, between 0700 LST and 1900 LST, of WS observed
 848 from the wind lidar for the composite of days in which the $\overline{WS}_{day} < 33^{\text{rd}}$ percentile and (a)
 849 $C_{index} > 50^{\text{th}}$ percentile, (b) $> 66^{\text{th}}$ percentile, and (c) $> 75^{\text{th}}$ percentile. Same for (d) – (f) and
 850 for (g) – (i) but for WD and TKE , respectively. The sampling heights are indicated in the
 851 legend at the bottom of the figure. The corresponding values from the micrometeorological
 852 tower are indicated by the black line, and the number of cases (N) used in the composites is
 853 shown at the top of the figure.
 854

855 References

856 Adler, B., Gohm, A., Kalthoff, N., Babić, N., Crosmeier, U., Lehner, M., Rotach, M. W.,
 857 Haid, M., Markmann, P., Gast, E., Tsaknakis, G., & Georgouassis, G. (2021).
 858 CROSSINN: A field experiment to study the three-dimensional flow structure in the
 859 Inn Valley, Austria. *Bulletin of the American Meteorological Society*, 102, E38–E60.
 860 <https://doi.org/10.1175/BAMS-D-19-0283.1>.

861 Ansmann, A., Frunke, J., & Engelmann, R. (2010). Updraft and downdraft characterization
 862 with Doppler lidar: cloud-free versus cumuli-topped mixed layer. *Atmospheric
 863 Chemistry and Physics*, 10, 7845–7858. <https://doi.org/10.5194/acp-10-7845-2010>.

864 Baldocchi, D. D., & Meyers, T. P. (1988a). Turbulence structure in a deciduous forest.
 865 *Boundary-Layer Meteorology*, 43, 345–364. <https://doi.org/10.1007/BF00121712>.

866 Baldocchi, D. D., & Meyers, T. P. (1988b). A spectral and lag-correlation analysis of
867 turbulence in a deciduous forest canopy. *Boundary-Layer Meteorology*, 45, 31–58.
868 <https://doi.org/10.1007/BF00120814>.

869 Baldocchi, D. D., & Meyers, T. P. (1989). The effects of extreme turbulent events on the
870 estimation of aerodynamic variables in a deciduous forest canopy. *Agricultural and*
871 *forest meteorology*, 48, 117–134. [https://doi.org/10.1016/0168-1923\(89\)90011-7](https://doi.org/10.1016/0168-1923(89)90011-7).

872 Barthelmie, R. J., Grisogono, B., & Pryor, S. C. (1996). Observations and simulations of
873 diurnal cycles of near-surface wind speeds over land and sea. *Journal of Geophysical*
874 *Research: Atmospheres*, 101, 21327–21337. <https://doi.org/10.1029/96JD01520>.

875 Behrendt, A., Wulfmeyer, V., Hammann, E., Muppa, S., & Pal, S. (2015). Profiles of second-
876 to fourth-order moments of turbulent temperature fluctuations in the convective
877 boundary layer: first measurements with rotational Raman lidar. *Atmospheric*
878 *Chemistry and Physics*, 15, 5485–5500. <https://doi.org/10.5194/acp-15-5485-2015>.

879 Berg, L. K., Newsom, R. K., & Turner, D. D. (2017). Year-long vertical velocity statistics
880 derived from Doppler lidar data for the continental convective boundary layer.
881 *Journal of Applied Meteorology and Climatology*, 56, 2441–2454.
882 <https://doi.org/10.1175/JAMC-D-16-0359.1>

883 Brugger, P., Träumner, K., & Jung, C. (2016). Evaluation of a procedure to correct spatial
884 averaging in turbulence statistics from a doppler lidar by comparing time series with
885 an ultrasonic anemometer. *Journal of Atmospheric and Oceanic Technology*, 33,
886 2135–2144. <https://doi.org/10.1175/JTECH-D-15-0136.1>.

887 Businger, J. A., Wyngaard, J. C., Izumi, Y., & Bradley, E. F. (1971). Flux-profile
888 relationships in the atmospheric surface layer. *Journal of Atmospheric Science*, 28,
889 181–189. [https://doi.org/10.1175/1520-0469\(1971\)028<0181:FPRITA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2).

890 Dewani, N., Sakradzija, M., Schlemmer, L., Leinweber, R., & Schmidli, J., (2023).
891 Dependency of vertical velocity variance on meteorological conditions in the
892 convective boundary layer. *Atmospheric Chemistry and Physics*, 23, 4045–4058.
893 <https://doi.org/10.5194/acp-23-4045-2023>.

894 Dai, A. & Deser, C. (1999). Diurnal and semidiurnal variations in global surface wind and
895 divergence fields. *Journal of Geophysical Research: Atmospheres*, 104, 31109–
896 31125. <https://doi.org/10.1029/1999JD900927>

897 De Wekker, S. F. J., & Kossmann, M. (2015). Convective boundary layer heights over
898 mountainous terrain—a review of concepts. *Frontiers in Earth Science*, 3, 77.
899 <https://doi.org/10.3389/feart.2015>.

900 Dyer, A. J. (1974). A review of flux-profile relationships. *Boundary-Layer Meteorology*, 7,
901 363–372. <https://doi.org/10.1007/BF00240838>.

902 Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch,
903 S. W., Hacker, J., Pace, J. C., Pratt, T., Pu, Z., Steenburgh, W. J., Whiteman, C. D.,
904 Wang, Y., Zajic, D., Balsley, B., Dimitrova, R., Emmitt, G. D., Higgins, C. W., Hunt,
905 J. C. R., Knievel, J. C., Lawrence, D., Liu, Y., Nadeau, D. F., Kit, E., Blomquist, B.
906 W., Conry, P., Coppersmith, R. S., Creegan, E., Felton, M., Grachev, A.,
907 Gunawardena, N., Hang, C., Hocut, C. M., Huynh, G., Jeglum, M.E., Jensen, D.,
908 Kulandaivelu, V., Lehner, M., Leo, L. S., Liberzon, D., Massey, J. D., McEnerney,
909 K., Pal, S., Price, T., Sghiatti, M., Silver, Z., Thompson, M., Zhang, H., Zsedrovits, T.
910 (2015). The MATERHORN: Unravelling the intricacies of mountain weather.
911 *Bulletin of the American Meteorological Society*, 96, 1945–1967.
912 <https://doi.org/10.1175/BAMS-D-13-00131.1>.

913 Finnigan, J. F., & Belcher, S. E. (2004). Flow over a hill covered with a plant canopy.
914 *Quarterly Journal of the Royal Meteorological Society*, 130, 1–29.
915 <https://doi.org/10.1256/qj.02.177>.

916 Greene, B. R., Kral, S. T., Chilson, P. B., & Reuder, J. (2022). Gradient-based turbulence
917 estimates from multicopter profiles in the Arctic stable boundary layer. *Boundary-
918 Layer Meteorology*, 183, 321–353. <https://doi.org/10.1007/s10546-022-00693-x>.

919 Grisogono, B., Sun, J., & Belušić, D. (2020). A note on MOST and HOST for turbulence
920 parametrization. *Quarterly Journal of the Royal Meteorological Society*, 146, 1991–
921 1997. <https://doi.org/10.1002/qj.3770>.

922 He, Y., Monahan, A. H., & McFarlane, N.A. (2013). Diurnal variations of land surface wind
923 speed probability distributions under clear-sky and low-cloud conditions. *Geophysical
924 Research Letters*, 40, 3308–3314. <https://doi.org/10.1002/grl.50575>.

925 Hogan, R. J., Grant, A. L. M., Illingworth, A. J., Pearson, G. N., & O'Connor, E. J. (2009).
926 Vertical velocity variance and skewness in clear and cloud-topped boundary layers as
927 revealed by Doppler lidar. *Quarterly Journal of the Royal Meteorological Society*,
928 135, 635–643. <https://doi.org/10.1002/qj.413>.

929 Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., &
930 Readings, C. J. (1976). Turbulence structure in the convective boundary layer.
931 *Journal of the Atmospheric Science*, 33, 2152–2169. [https://doi.org/10.1175/1520-0469\(1976\)033<2152:TSITCB>2.0.CO;2](https://doi.org/10.1175/1520-
932 0469(1976)033<2152:TSITCB>2.0.CO;2).

933 Knoop, S., Bosveld, F. C., de Haij, M. J., & Apituley, A. (2021). A 2-year intercomparison of
934 continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw.
935 *Atmospheric Measurement Techniques*, 14, 2219–2235. <https://doi.org/10.5194/amt-14-2219-2021>.

936

937 Kumer, V. M., Reuder, J., Dorninger, M., Zauner, R. & Grubišić, V. (2016). Turbulent
938 kinetic energy estimates from profiling wind LiDAR measurements and their potential
939 for wind energy applications. *Renewable Energy*, 99, 898–910.
940 <http://dx.doi.org/10.1016/j.renene.2016.07.014>.

941 Lareau, N. P., Zhang, Y., & Klein, S. A. (2018). Observed Boundary Layer Controls on
942 Shallow Cumulus at the ARM Southern Great Plains Site. *Journal of Atmospheric*
943 *Science*, 75, 2235–2255. <https://doi.org/10.1175/JAS-D-17-0244.1>.

944 Lee, T. R., De Wekker, S. F. J., Andrews, A. E., Kofler, J., & Williams, J. (2012). Carbon
945 dioxide variability during cold front passages and fair weather days at a forested
946 mountaintop site. *Atmospheric Environment*, 46, 405–416.
947 <https://doi.org/10.1016/j.atmosenv.2011.09.068>.

948 Lee, T. R., De Wekker, S. F. J., Pal, S., Andrews, A. E., & Kofler, J. (2015). Meteorological
949 controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop
950 monitoring site in the Appalachian Mountains. *Tellus B: Chemical and Physical*
951 *Meteorology*, 67, 25659. <https://doi.org/10.3402/tellusb.v67.25659>.

952 Lee, T. R., De Wekker, S. F. J., & Pal, S. (2018). The impact of the afternoon planetary
953 boundary-layer height on the diurnal cycle of CO and CO₂ mixing ratios at a low-
954 altitude mountaintop. *Boundary-layer Meteorology*, 168, 81–102.
955 <https://doi.org/10.1007/s10546-018-0343-9>.

956 Lee, T. R., Buban, M., Turner, D. D., Meyers, T. P., & Baker, C. B. (2019). Evaluation of the
957 High-Resolution Rapid Refresh (HRRR) model using near-surface meteorological and
958 flux observations from Northern Alabama. *Weather and Forecasting*, 34, 635–663.
959 <https://doi.org/10.1175/WAF-D-18-0184.1>.

960 Lee, T. R., & Buban, M. (2020). Evaluation of Monin-Obukhov and bulk Richardson
961 parameterizations for surface-atmosphere exchange. *Journal of Applied Meteorology*
962 *and Climatology*, 59, 1091–1107. <https://doi.org/10.1175/JAMC-D-19-0057.1>.

963 Lee, T. R., Buban, M. S., & Meyers, T. P. (2021). Application of bulk Richardson
964 parameterizations of surface fluxes to heterogeneous land surfaces. *Monthly Weather*
965 *Review*, 149, 3243–3264. <https://doi.org/10.1175/MWR-D-21-0047.1>.

966 Lee, T. R., & Meyers, T. P. (2023). New parameterizations of turbulence statistics for the
967 atmospheric surface layer. *Monthly Weather Review*, 151, 85–103.
968 <https://doi.org/10.1175/MWR-D-22-0071.1>.

969 Lee, T. R., Leeper, R. D., Wilson, T., Diamond, H., Meyers, T. P., & Turner, D. D. (2023).
970 Using the U.S. Climate Reference Network to identify biases in near- and subsurface
971 meteorological fields in the High-Resolution Rapid Refresh (HRRR) weather
972 prediction model. *Weather and Forecasting*, 38, 879–900.
973 <https://doi.org/10.1175/WAF-D-22-0213.1>.

974 Lee, T. R., Pal, S., Krishnan, P., Hirth, B., Heuer, M., Meyers, T. P., Saylor, R. D., &
975 Schroeder, J. (2023). On the efficacy of Monin-Obukhov and bulk Richardson
976 surface-layer parameterizations over drylands. *Journal of Applied Meteorology and*
977 *Climatology*, 62, 855–875. <https://doi.org/10.1175/JAMC-D-23-0092.1>.

978 Lee, T. R., Pal, S., Leeper, R. D., Wilson, T., Diamond, H., Meyers, T. P., & Turner, D. D.
979 (2024). On the importance of regime-specific evaluations for numerical weather
980 prediction models as demonstrated using the High Resolution Rapid Refresh (HRRR)
981 model. *Weather and Forecasting*, 39, 781–791. <https://doi.org/10.1175/WAF-D-23-0177.1>

982 Lee, T. R., Pal, S., Krishnan, P., Wilson, T. B., Saylor, R. D., Meyers, T. P., Kochendorfer, J.,
983 Pendergrass, W., White, R., & Heuer, M. (2025). Turbulence within and above a
984 deciduous montane forest: The Hockey-Stick Transition Hypothesis (HOST) versus
985 Monin-Obukhov Similarity Theory (MOST). *Agricultural and Forest Meteorology*,
986 362, 110342. <https://doi.org/10.1016/j.agrformet.2024.110342>.

987 Lee, T. R., Pal, S., Meyers, T. P., Krishnan, P., Hirth, Heuer, M., Saylor, R. D.,
988 Kochendorfer, J., & Schroeder, J. (2025). The impact of the Bowen ratio on surface
989 layer parameterizations for heat, moisture, and turbulent fluxes over drylands. *Journal*
990 *of Applied Meteorology and Climatology*. <https://doi.org/10.1175/JAMC-D-24-0075.1>.

991 LeMone, M. A. (1990). Some observations of vertical velocity skewness in the convective
992 planetary boundary layer. *Journal of the Atmospheric Sciences*, 47, 1163–1169.
993 [https://doi.org/10.1175/1520-0469\(1990\)047<1163:SOOVVS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1990)047<1163:SOOVVS>2.0.CO;2).

994 Liao, H., Jing, H., Ma, C., Tao, Q. & Li, Z. (2020). Field measurement study on turbulence
995 field by wind tower and Windcube Lidar in mountain valley. *Journal of Wind*
996 *Engineering and Industrial Aerodynamics*, 197, 104090.
997 <https://doi.org/10.1016/j.jweia.2019.104090>.

998

999

1000 Maurer V., Kalthoff, N., Wieser A., Kohler, M., Mauder, M., & Gantner, L. (2016). Observed
1001 spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous
1002 terrain. *Atmospheric Chemistry and Physics*, 16, 1377–1400.
1003 <https://doi.org/10.5194/acpd-15-18011-2015>.

1004 Meyers, T. P. (2016). AmeriFlux BASE US-ChR Chestnut Ridge, Ver. 2-1, AmeriFlux AMP,
1005 accessed 21 October 2024.

1006 McNicholas, C., & Turner, D. D. (2014). Characterizing the convective boundary layer
1007 turbulence with a High Spectral Resolution Lidar. *Journal of Geophysical Research: Atmospheres*, 119, 12910–12927. <https://doi.org/10.5194/10.1002/2014JD021867>.

1009 Moeng, C.-H., & R. Rotunno (1990). Vertical-velocity skewness in the buoyancy-driven
1010 boundary layer. *Journal of the Atmospheric Sciences*, 47, 1149–1162.
1011 [https://doi.org/10.1175/1520-0469\(1990\)047<1149:VVSITB>2.0.CO;2](https://doi.org/10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2).

1012 Monin, A., & Obukhov, A. (1954). Basic laws of turbulent mixing in the surface layer of the
1013 atmosphere. Contributions of the Geophysical Institute Academy of Sciences USSR,
1014 151, e187.

1015 Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A., Chilson, P. B., &
1016 Muschinski, A. (2016). Evaluation of three lidar scanning strategies for turbulence
1017 measurements. *Atmospheric Measurement Techniques*, 9, 1993–2013.
1018 <https://doi.org/10.5194/amt-9-1993-2016>.

1019 Pal, S., Behrendt, A., & Wulfmeyer, V. (2010). Elastic-backscatter-lidar-based
1020 characterization of the convective boundary layer and investigation of related
1021 statistics. *Annales Geophysicae*, 28, 825–847. <https://doi.org/www.ann-geophys.net/28/825/2010/>.

1023 Pal, S., & Lee, T. R. (2019). Advectioned airmass reservoirs in the downwind of mountains and
1024 their roles in overrunning boundary layer depths over the Plains. *Geophysical
1025 Research Letters*, 46. <https://doi.org/10.1029/2019GL083988>.

1026 Pal, S., Lee, T. R., Phelps, S., & De Wekker, S. F. J. (2014). Impact of atmospheric boundary
1027 layer depth variability and wind reversal on the diurnal variability of aerosol
1028 concentration at a valley site. *Science of the Total Environment*, 496, 424–434.
1029 <https://doi.org/10.1175/JAMC-D-15-0277.1>.

1030 Pal, S., De Wekker, S. F. J., & Emmitt, G. D. (2016). Spatial variability of the atmospheric
1031 boundary layer heights over a low mountain region: Cases from MATERHORN-2012
1032 field experiment. *Journal of Applied Meteorology and Climatology*, 55, 1927–1952.
1033 <http://dx.doi.org/10.1175/JAMC-D-15-0277.1>.

1034 Patton, E. G., & Katul, G. G. (2009). Turbulent pressure and velocity perturbations induced
1035 by gentle hills covered with sparse and dense canopies. *Boundary-Layer Meteorology*,
1036 133, 189–217. <http://dx.doi.org/10.1007/s10546-009-9427-x>.

1037 Raupach, M. R., & Finnigan, J. J. (1997). The influence of topography on meteorological
1038 variables and surface-atmosphere interactions. *Journal of Hydrology*, 190, 182–213.
1039 [https://doi.org/10.1016/S0022-1694\(96\)03127-7](https://doi.org/10.1016/S0022-1694(96)03127-7).

1040 Robey, R., & Lundquist, J. K. (2022). Behavior and mechanisms of Doppler wind lidar error
1041 in varying stability regimes. *Atmospheric Measurement Techniques*, 15, 4585–4622.
1042 <https://doi.org/10.5194/amt-15-4585-2022>.

1043 Rotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., & Wagner, J. S. (2015).
1044 On the vertical exchange of heat, mass, and momentum over complex, mountainous
1045 terrain. *Frontiers in Earth Science*, 3, 76. <https://doi.org/10.3389/feart.2015>.

1046 Salesky, S. T., & Chamecki, M. (2012). Random errors in turbulence measurements in the
1047 atmospheric surface layer: Implications for Monin–Obukhov similarity theory.
1048 *Journal of Atmospheric Science*, 69, 3700–3714. <https://doi.org/10.1175/JAS-D-12-096.1>.

1049 1050 Sathe, A., & Mann, J. (2013). A review of turbulence measurements using ground-based
1051 wind lidars. *Atmospheric Measurement Techniques*, 6, 3147–3167.
1052 <https://doi.org/10.5194/amt-6-3147-2013>.

1053 Sorbjan, Z., & Grachev, A. A. (2010). An evaluation of the flux–gradient relationship in the
1054 stable boundary layer. *Boundary-Layer Meteorology*, 135, 385–405. [10.1007/s10546-010-9482-3](https://doi.org/10.1007/s10546-010-9482-3).

1055 1056 Strauch, R. G., Merritt, D. A., Moran, K. P., Earnshaw, K. B., & Van de Kamp, D. (1984).
1057 The Colorado wind-profiling network. *Journal of Atmospheric and Oceanic
1058 Technology*, 1, 37–49. [https://doi.org/10.1175/1520-0426\(1984\)001<0037:TCWPN>2.0.CO;2](https://doi.org/10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2).

1059 1060 Stiperski, I., & Rotach, M. W. (2016). On the measurement of turbulence over complex
1061 mountainous terrain. *Boundary-Layer Meteorology*, 159, 97–121.
1062 <https://doi.org/10.1007/s10546-015-0103-z>.

1063 1064 Sun J., Mahrt, L., Banta, R. M., Pichugina, Y. L. (2012). Turbulence regimes and turbulence
1065 intermittency in the stable boundary layer during CASES-99. *Journal of Atmospheric
Science*, 69, 338–351. <https://doi.org/10.1175/JAS-D-11-082.1>.

1066 Sun, J., Takle, E. S., & Acevedo, O. C. (2020). Understanding physical processes represented
1067 by the Monin-Obukhov bulk formula for momentum transfer. *Boundary-Layer
1068 Meteorology*, 177, 69–95. <https://doi.org/10.1007/s10546-020-00546-5>.

1069 Van de Wiel, B. J. H., Moene, A. F., Jonker, H. J. J., Baas, P., Basu, S., Donda, J. M. M.,
1070 Sun, J., & Holtslag, A. A. M. (2012). The minimum wind speed for sustainable
1071 turbulence in the nocturnal boundary layer. *Journal of Atmospheric Science*, 69,
1072 3116–3127. <https://doi.org/10.1175/JAS-D-12-0107.1>.

1073 Wagner, T. J., Turner, D. D., Heus, T., & Blumberg, W. G. (2022). Observing profiles of
1074 derived kinematic field quantities using a network of profiling sites. *Journal of
1075 Atmospheric and Oceanic Technology*, 39, 335–351. <https://doi.org/10.1175/JTECH-D-21-0061.1>.

1077 Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of flux measurements for
1078 density effects due to heat and water vapour transfer. *Quarterly Journal of the Royal
1079 Meteorological Society*, 106, 85–100. <https://doi.org/10.1002/qj.49710644707>.

1080 Wharton, S., Ma, S., Baldocchi, D. D., Falk, M., Newman, J. F., Osuna, J. L., & Bible, K.
1081 (2017). Influence of regional nighttime atmospheric regimes on canopy turbulence
1082 and gradients at a closed and open forest in mountain-valley terrain. *Agricultural and
1083 Forest Meteorology*, 237, 18–29. <http://dx.doi.org/10.1016/j.agrformet.2017.01.020>.

1084 Whiteman, C. D., & Allwine, K. J. (1986). Extraterrestrial solar radiation on inclined
1085 surfaces. *Environmental Software*, 1, 164–169. [https://doi.org/10.1016/0266-9838\(86\)90020-1](https://doi.org/10.1016/0266-9838(86)90020-1).

1087 Whiteman, C. D., Bian, X., & Zhong, S. (1999). Wintertime evolution of the temperature
1088 inversion in the Colorado Plateau Basin. *Journal of Applied Meteorology and
1089 Climatology*, 38, 1103–1117. [https://doi.org/10.1175/1520-0450\(1999\)038<1103:WEOTTI>2.0.CO;2](https://doi.org/10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2).

1091 Whiteman, C. D. (2000). Mountain Meteorology: Fundamentals and Applications. Oxford
1092 University Press, 355 pp.

1093 Wilson, T. B., & Meyers, T. P. (2007). Determining vegetation indices from solar and
1094 photosynthetically active radiation fluxes. *Agricultural and Forest Meteorology*, 144,
1095 160–179. <https://doi.org/10.1016/j.agrformet.2007.04.001>.

1096 Wilson, T. B., Meyers, T. P., Kochendorfer, J., Anderson, M. C., & Heuer, M. (2012). The
1097 effect of soil surface litter residue on energy and carbon fluxes in a deciduous forest.
1098 *Agricultural and Forest Meteorology*, 61, 134–147.
1099 <https://doi.org/10.1016/j.agrformet.2012.03.013>.

1100 Wilson, T. B., Kochendorfer, J., Meyers, T. P., Heuer, M., Sloop, K., & Miller J. (2014). Leaf
1101 litter water content and soil surface CO₂ fluxes in a deciduous forest. *Agricultural*
1102 *and Forest Meteorology*, 192–193, 42–50.
1103 <https://doi.org/10.1016/j.agrformet.2014.02.005>.

1104 Wulfmeyer, V., Behrendt, A., Kottmeier, C., Corsmeier, U., Barthlott, C., Craig, G. C.,
1105 Hagen, M. Althausen, D., Aoshima, F., Arpagaus, M., Bauer, H.-S., Bennett, L.,
1106 Blyth, A., Brandau, C., Champollion, C., Crewell, S., Dick, G., Di Girolamo, P.,
1107 Dorninger, M., Dufournet, Y., Eigenmann, R., Engelmann, R., Flamant, C., Foken, T.,
1108 Gorgas, T., Grzeschik, M., Handwerker, J., Hauck, C., Höller, H., Junkermann, W.,
1109 Kalthoff, N., Kiemle, C., Klink, S., König, M., Krauss, L., Long, C. N., Madonna, F.,
1110 Mobbs, S., Neininger, B., Pal, S., Peters, G., Pigeon, G., Richard, E., Rotach, M. W.,
1111 Russchenberg, H., Schwitalla, T., Smith, V., Steinacker, R., Trentmann, J., Turner, D.
1112 D., van Baelen, J., Vogt, S., Volkert, H., Weckwerth, Wernli, H., Wieser, A., &
1113 Wirth, M. (2011). The Convective and Orographically-induced Precipitation Study
1114 (COPS): the scientific strategy, the field phase, and research highlights. *Quarterly*
1115 *Journal of the Royal Meteorological Society*, 137, 3–30.
1116 <https://doi.org/10.1002/qj.752>.

1117 Zhang, D. L., & Zheng, W. Z. (2004). Diurnal cycles of surface winds and temperatures as
1118 simulated by five boundary layer parameterizations. *Journal of Applied Meteorology*,
1119 43, 157–169. [https://doi.org/10.1175/1520-0450\(2004\)043<0157:DCOSWA>2.0.CO;2](https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2).