

On the modeling of wave-enhanced turbulence nearshore

Saeed Moghimi^{*a}, Jim Thomson^b, Tuba Ozkan-Haller^a, Lars Umlauf^c, Seth Zippel^b

^a*College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, USA.*

^b*Applied Physics Laboratory, University of Washington, Seattle, USA.*

^c*Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Germany.*

Abstract

A high resolution $k-\omega$ two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Taryay scaling with power of -1.8 (instead of -2) was applicable.

¹ 1. Introduction

² Growing interest in fully coupled three-dimensional (3D) atmosphere-wave-
³ ocean modeling systems motivates improvements to parameterizations and cou-
⁴ pling between model components. Debate continues on whether momentum
⁵ exchange between surface waves and the ocean circulation should be treated as
⁶ a vortex force or radiation stress (Mellor, 2003; McWilliams et al., 2004; Ard-
⁷ huin et al., 2008; Aiki and Greatbatch, 2014; Mellor, 2015). Similarly in recent
⁸ years, the treatment of energy exchange between waves and ocean has been the
⁹ subject of several research activities. A recent modeling study by Gerbi et al.
¹⁰ (2013) shows the effects of white-capping dissipation on a river plume during

^{*}Tel:+1 (541) 737-3402; Fax:+1 (541) 737-2064; Email: moghimi@coas.oregonstate.edu

11 an upwelling favorable wind condition using a three-dimensional coastal ocean
12 model. Carniel et al. (2009) compare two-equation turbulence closure models to
13 investigate the effects of surface wave breaking on surface drifter trajectory in
14 the Adriatic Sea. However, in both of these studies, the effects of the momentum
15 exchange between waves and ocean were not included.

16 Most modeling studies on surface wave breaking effects on turbulence and
17 mixing quantities were conducted using a one-dimensional vertical (1DV) water
18 column model following Craig and Banner (1994). They suggest a turbulent
19 kinetic energy (TKE) balance between diffusion and dissipation, where the sur-
20 face flux of TKE (associated with breaking waves) is prescribed as proportional
21 to the surface wind friction velocity cubed (e.g. Burchard, 2001; Umlauf and
22 Burchard, 2003; Umlauf et al., 2003; Kantha and Clayson, 2004). Raschle et al.
23 (2012) utilized a 1DV Mellor and Yamada (1982) turbulence model to compare
24 three different methods for simulating turbulence induced by surface breaking
25 waves.

26 Most of the research on wave breaking turbulence and water column mix-
27 ing are focused on the deep ocean and lakes. There have been some attempts
28 to investigate these phenomenon in nearshore regions ($3 \text{ [m]} < \text{depth} < 10 \text{ [m]}$),
29 surf-zones and shallow estuaries (e.g. Feddersen and Trowbridge, 2005; Fedder-
30 sen, 2012b; Grasso et al., 2012; Jones and Monismith, 2008b). Feddersen and
31 Trowbridge (2005) present a 1DV model, including a two-equation $k - \epsilon$ tur-
32 bulence closure model, to study the effects of wave breaking turbulence on the
33 mean circulation and turbulence quantities inside the surf-zone. Feddersen et al.
34 (2007) extend their previous investigation from the surf-zone to the nearshore
35 (outer surf-zone) region (depth $> 3 \text{ [m]}$). They use bottom mounted turbulence
36 measurements to show that, to correctly estimate the vertical distribution of
37 the TKE dissipation rate according to Terray et al. (1996), a greater surface
38 flux of energy is needed compared to the open ocean.

39 In this study, we used nearshore measurements of surface TKE dissipa-
40 tion rates from Surface Wave Instrument Floats with Tracking (SWIFT) buoys
41 (Thomson, 2012) to investigate energy transfer from breaking waves to the ocean
42 water column in the vicinity of a tidal inlet. Drawing on the modeling studies
43 in similarly complex nearshore settings (e.g. Newberger and Allen, 2007; Kumar
44 et al., 2012), we utilize coupled wave and circulation models to characterize the
45 spatial variability of the wave and circulation field at the site. The wave and cir-
46 culation models are coupled in a rudimentary fashion such that the effects of the
47 tidal circulation on the wave kinematics and dynamics are included, resulting
48 in a reasonable view of spatially varying wave field. Using this representation
49 of the wave field, we then focus our attention on the effects of wave motions
50 on water column turbulence properties. For this purpose we locally employ
51 a high resolution, two-equation turbulence model of the ocean water column
52 (with several hundred vertical layers) to fully resolve the TKE dissipation rate
53 close to the water surface. We perform a wide range of sensitivity analyses
54 to gain insight into the different physical parameters involved in the modeling
55 procedure (e.g. surface roughness). Traditionally, following Craig and Banner
56 (1994), the wind friction velocity is used in prescribing the surface boundary

57 flux of TKE. However, it may be more reasonable to use the wave dissipation
 58 computed directly by a wave model instead of an approximation based on wind
 59 friction velocity. In this study, we compare two widely used methods for com-
 60 puting these wave related quantities and discuss their impact on the calculation
 61 of a TKE dissipation rate.

62 The structure of this paper is as follows. In Section 2, a brief description of
 63 the momentum and energy exchange between wind, waves and ocean is given,
 64 and the theoretical background and basic definition of parameters for the nu-
 65 matical experiments are discussed. The case study, the modeling system and
 66 observational data are described in section 3. Modeling results of turbulence
 67 quantities and comparison with observational data are shown in section 4. A
 68 more comprehensive discussion about the role of different parameters is pre-
 69 sented in section 5. Finally, the summary and conclusion of this research are
 70 described in section 6.

71 **2. Theory**

72 Understanding and correctly parameterizing the exchange of momentum and
 73 energy between wind, waves and ocean are key to reasonably simulating the
 74 near surface region. Here, our focus is on the effect of surface wave breaking
 75 on turbulence quantities in the water column. We simulate the wave field using
 76 a common nearshore wave propagation model. Here, we assume wind as the
 77 main source of ocean surface momentum. A fraction of the wind momentum is
 78 consumed to generate local surface waves.

79 *2.1. Wave modeling*

80 The surface wave field evolution is described assuming that the waves can be
 81 described by irrotational inviscid linear wave theory. Clearly, breaking waves in
 82 the nearshore zone are not linear, the motions in the active breaking region are
 83 not irrotational, and waves can be dissipated by inviscid effects. However, the
 84 above assumptions are frequently employed with surprisingly successful results
 85 for wave prediction in the nearshore and surf-zones (e.g. Ruessink et al., 2001;
 86 Newberger and Allen, 2007) and the use of a simplified theory allows for progress
 87 over the complex domain of a tidal inlet. Further, we will show that the predic-
 88 tion of local wave quantities is skilled compared to observations. Nonetheless,
 89 as a result of the irrotational and inviscid assumptions, the detailed dynamics
 90 of air-sea energy exchange are not accounted for herein, instead we focus on the
 91 fate of the TKE provided to the water column by breaking wave events.

92 The governing equation for wave action balance (Komen et al., 1994), $\mathcal{N} =$
 93 $E(\omega_{\text{wave}}, \theta)/\omega_{\text{wave}}$, then reads:

$$\frac{\partial \mathcal{N}}{\partial t} + \nabla \mathbf{x} \cdot [(\mathbf{c}_g + \mathbf{U}) \mathcal{N}] + \frac{\partial (c_{\omega_{\text{wave}}} \mathcal{N})}{\partial \omega_{\text{wave}}} + \frac{\partial (c_{\theta} \mathcal{N})}{\partial \theta} = \frac{S^{\text{tot}}}{\omega_{\text{wave}}} \quad (1)$$

94 where E is the wave energy at relative angular frequency ω_{wave} traveling
 95 at an angle of θ , \mathbf{c}_g is the intrinsic wave group velocity vector, \mathbf{U} is ambient

96 current velocity vector and \mathbf{X} is the horizontal geographic coordinate system.
 97 The propagation velocities in spectral space $(\omega_{\text{wave}}, \theta)$ are given by $c_{\omega_{\text{wave}}}$ and
 98 c_θ . The terms on the left hand side of the equation are responsible for local
 99 changes and propagation of the wave energy. The right hand side of the equation
 100 represents source and sink terms associated with wave generation, dissipation
 101 and nonlinear wave-wave interactions, where:

$$S^{\text{tot}} = S^{\text{in}} + S^{\text{nl}} + S^{\text{ds,w}} + S^{\text{ds,br}} + S^{\text{ds,b}}. \quad (2)$$

102 S^{in} is the energy input from wind to the wave field, S^{nl} is the nonlinear wave-
 103 wave interaction, $S^{\text{ds,b}}$ is the dissipation due to bottom friction, $S^{\text{ds,br}}$ is the
 104 dissipation due to depth-induced surface wave breaking, and $S^{\text{ds,w}}$ is the dissipa-
 105 tion due to white-capping.

106 *2.2. Wave-enhanced turbulence*

Surface breaking waves enhance the turbulence in the ocean surface layer by acting as a source of turbulence kinetic energy (TKE) (Kitaigorodskii et al., 1983; Thorpe, 1984). A one-dimensional vertical Mellor and Yamada (1982) turbulence closure model was adapted by Craig and Banner (1994) to account for wave-affected near surface turbulence. They suggested that the surface boundary condition for turbulent kinetic energy, k , could be approximated by a flux boundary condition:

$$F_k^s = -\frac{\nu_{\text{turb}}}{\sigma_k} \frac{\partial k}{\partial z}, \quad (3)$$

107 in which F_k^s is the flux of energy injected to the surface of the ocean due to
 108 surface wave dissipation (Section 2.2.1). Here ν_{turb} is the vertical eddy viscosity
 109 and σ_k is the turbulence Schmidt number (Mellor and Yamada, 1982). z is the
 110 positive upward vertical coordinate with $z = h$ at the surface and $z = 0$ at the
 111 bottom.

112 As it shown in Fig. 1, the breaking layer is the closest layer to the mean
 113 sea surface where the direct injection of the turbulence and bubbles from sur-
 114 face breaking waves is taking place (from surface to depth of z'_b). Here z' is
 115 depth below mean sea surface. In the wave-enhanced layer, the effects of the
 116 turbulence injected by waves on the mixing properties of water column should
 117 be detected. Inside this layer a balance between downward diffusion of the dis-
 118 sipated energy from surface waves and turbulence dissipation is assumed. At its
 119 lower boundary, the wave-enhanced layer smoothly merges into the near-surface
 120 logarithmic boundary layer, where turbulence shear-production balances dissipa-
 121 tion (Umlauf and Burchard, 2003). The offset between the position of model
 122 surface and the mean sea surface will be defined later as a fraction of significant
 123 wave height (See Sec. 5.1).

124 Subsequently, Umlauf and Burchard (2003) introduced a “generic length”
 125 scale two-equation turbulence closure model which compared favorably to the
 126 observed spatial decay rates for grid-generated turbulence that is often consid-
 127 ered a simple representation of the wave-breaking problem. They also showed a

Umlauf et al., 2003), are given as :

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial z} \left((\nu + \nu_{\text{turb}}) \frac{\partial u}{\partial z} \right) = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + f(v + v_s) + F_x^{\text{Out, wave}}, \quad (4)$$

$$\frac{\partial v}{\partial t} - \frac{\partial}{\partial z} \left((\nu + \nu_{\text{turb}}) \frac{\partial v}{\partial z} \right) = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} - f(u + u_s) + F_y^{\text{Out, wave}}, \quad (5)$$

$$\frac{\partial T}{\partial t} - \frac{\partial}{\partial z} \left((\nu' + \nu'_{\text{turb}}) \frac{\partial T}{\partial z} \right) = \frac{1}{C_p \rho_0} \frac{\partial I}{\partial z}, \quad (6)$$

$$\frac{\partial S}{\partial t} - \frac{\partial}{\partial z} \left((\nu'' + \nu''_{\text{turb}}) \frac{\partial S}{\partial z} \right) = 0, \quad (7)$$

$$\frac{\partial k}{\partial t} - \frac{\partial}{\partial z} \left(\frac{\nu_{\text{turb}}}{\sigma_k} \frac{\partial k}{\partial z} \right) = \underbrace{\nu_{\text{turb}} \left(\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right)}_P + \nu'_{\text{turb}} (g \rho_0) \frac{\partial \rho}{\partial z} - \epsilon, \quad (8)$$

$$\frac{\partial \omega}{\partial t} = \frac{\partial}{\partial z} \left(\frac{\nu_{\text{turb}}}{\sigma_\omega} \frac{\partial \omega}{\partial z} \right) + \frac{\omega}{k} \left(c_{\omega 1} \nu_{\text{turb}} \left(\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right) + c_{\omega 3} \nu'_{\text{turb}} (g \rho_0) \frac{\partial \rho}{\partial z} - c_{\omega 2} \epsilon \right) \quad (9)$$

140 where t is time, ρ is averaged density, $f = 2\omega_e \sin(\phi)$ with the Earth rotation's
141 angular velocity ω_e and latitude ϕ , where, $u = u_L - u_s$, $v = v_L - v_s$ are defined
142 as (quasi-)Eulerian velocities (Jenkins, 1987, 1989; Tang et al., 2007). u_L and v_L
143 are Lagrangian mean velocities, u_s and v_s are surface wave Stokes drift velocities
144 and, x and y are the horizontal coordinates.

145 In our approach the model surface layer is situated some distance below
146 the mean sea surface away from the layers most affected by breaking events
147 (See Fig. 14). Note that this approximation is more conservative than most of
148 the wave-circulation coupling studies, particularly those that involved similar
149 boundary conditions applied at the mean sea surface inside the surf-zone where
150 a substantial portion of the water column is considered to be inside the active
151 wave breaking layer (e.g. Newberger and Allen, 2007; Uchiyama et al., 2010;
152 Kumar et al., 2012). It should also be noted that in this research the effects of
153 mean wave horizontal pressure gradient, vortex force (Andrews and McIntyre,
154 1978) and Stokes production terms were not included.

The momentum transfer from breaking waves to the ocean also reads as:

$$F^{\text{Out, wave}} = \frac{1}{c} S^{\text{ds,s}} \quad (10)$$

155 where $S^{\text{ds,s}} = S^{\text{ds,w}} + S^{\text{ds,br}}$ is the surface wave dissipation computed by the
156 wave model (Jenkins, 1989; Melville and Rapp, 1985), and c is wave phase
157 velocity. It is assumed that the surface wave momentum term has a decaying
158 vertical distribution $\exp(-2k_w|z|)$.

The total stress from wind to ocean is defined as τ^{Wind} by:

$$\tau^{\text{Wind}} = \tau^{\text{in, Wave}} + \tau^{\text{in, Turb}} + \tau^{\text{in, Visc}} \quad (11)$$

Here, the $\tau^{\text{in,Wave}}$ is the stress from wind to waves, $\tau^{\text{in,Turb}}$ and $\tau^{\text{in,Visc}}$ are the ocean turbulence and viscous stresses. The momentum received by waves is transferred to the ocean via conservative and non-conservative forces (Uchiyama et al., 2010). To be consistent with the total momentum transfer from wind to ocean, we subtract the momentum gained by the waves from bulk wind drag (Jenkins, 1989; Tang et al., 2007; Bakhoday Paskyabi et al., 2012). Therefore, the final surface stress in the ocean model reads as:

$$\tau^{\text{in,Ocean}} = \tau^{\text{Wind}} - \tau^{\text{in,Wave}}, \quad (12)$$

and the upper boundary condition for the momentum equation is set to:

$$\rho \nu_{\text{turb}} \frac{\partial \mathbf{U}}{\partial z} = \tau^{\text{in,Ocean}}, \quad (13)$$

159 where $\mathbf{U} = (u, v)$ is the current velocity vector.

In the temperature equation, further terms are the specific heat capacity of water C_p , solar radiation I , and reference density ρ_0 . The molecular diffusivities for momentum, temperature and salinity are ν , ν' and ν'' , respectively. The eddy viscosities are given by:

$$\nu_{\text{turb}} = c_\mu k^{\frac{1}{2}} l, \quad \nu'_t = c'_\mu k^{\frac{1}{2}} l \quad (14)$$

and turbulence length scale, l , is defined as:

$$l = (c_\mu^0)^3 \frac{k^{3/2}}{\epsilon} \quad (15)$$

where $c_\mu^0=0.55$ and $\sigma_k=1.96$. The parameters are $\sigma_\omega=2$, $c_{\omega 1}=0.56$, $c_{\omega 2}=0.83$, and $c_{\omega 3}=0.0$ for stable and $c_{\omega 3}=1.0$ for unstable stratification (Wilcox, 1988). The turbulence dissipation rate, ϵ , is defined as:

$$\epsilon = (c_\mu^0)^4 k \omega \quad (16)$$

160 Umlauf et al. (2003) showed that for the two equation turbulence models dis-
161 cussed here, the turbulent kinetic energy, k , and length scale, l , in the wave-
162 enhanced layer are computed by:

$$k = K(-z + h + z_0^s)^a, \quad l = L(-z + h + z_0^s) \quad (17)$$

163 where K , L and a are constant and z_0^s is surface roughness (Section 2.2.1).

164 Umlauf and Burchard (2003) demonstrated that the power laws in Eq. 17 are
165 exact solutions of Eq. 8 and Eq. 9, if a balance between diffusion and dissipation
166 is assumed. With this assumption in mind, we can extend the modeling domain
167 to the wave-enhanced layer (See Fig. 1). They further showed that a and L
168 appearing in Eq. 17 are functions of the model parameters. The upper boundary
169 condition for k , is defined by Eq. 3 for the TKE equation (Eq. 8). Umlauf and
170 Burchard (2003) also demonstrated that, based on the solutions in Eq. 17, using

171 Eqs. 14-16, a flux boundary condition for the ω equation (Eq. 9) can be derived.
172 This boundary condition was also used in all our computations.

173 The surface flux of TKE, F_k^s , can be either parameterized based on surface
174 wind friction velocity cubed (Craig and Banner, 1994; Terray et al., 1996) by
175 $F_k^{s,\text{wind}} = \alpha^s u_*^s$, or directly obtained from an ocean wave model in terms of
176 computed surface wave dissipation terms (Jenkins, 1989), by $F_k^{s,\text{wave}} = \beta^s S^{\text{ds},s}$;
177 where u_*^s is the surface friction velocity and α^s and β^s are constant. From
178 literature, $\alpha^s \approx (100 \sim 150)$ has been used in lakes and open oceans (Craig,
179 1996; Terray et al., 1996). Recently Feddersen et al. (2007) proposed $\alpha^s \approx 250$
180 for nearshore white-capping cases (See Tab. 1). $\beta^s \approx 1$ is proposed for deep
181 water white-capping (Jenkins, 1989; Bakhoday Paskyabi et al., 2012) and $\beta^s \approx$
182 $0.01 \sim 0.15$ for depth-induced breaking (Govender et al., 2004; Huang et al.,
183 2009; Feddersen, 2012a,b).

184 Surface roughness z_0^s (or, more precisely, $L z_0^s$), is the length scale of tur-
185 bulence injected at the top of the wave-enhanced layer. This parameter is an
186 important factor which controls the vertical distribution of the TKE in the upper
187 portion of the water column. However, measuring this parameter is difficult. In
188 various numerical model studies this parameter was adjusted to produce closer
189 results to available observations. Therefore, a relatively wide range of values
190 for z_0^s are proposed. (See Tab. 1). According to Stips et al. (2005), the mag-
191 nitude of z_0^s also depends on the method of observation. For example $z_0^s > H_s$
192 was reported from a fixed tower measurement, but $z_0^s = 0.2$ [m] was calculated
193 with a floating instrument for $H_s = 3.5$ [m] (Gemmrich and Farmer, 1999). In
194 another example, Umlauf et al. (2003) showed that for $z_0^s = H_s$ results from a
195 $k - \omega$ two-equation model compared best against WAVES (Terray et al., 1996)
196 and SWADE (Drennan et al., 1996) datasets.

197 3. Methodology

198 3.1. Case study

199 The New River Inlet (NRI) is a tidal inlet on the Atlantic Coast in southeast-
200 ern North Carolina, USA (NRI; blue rectangle in Fig. 2a). NRI is a relatively
201 shallow tidal channel system. North Topsail Island and Onslow Beach are lo-
202 cated at either side of the inlet entrance. A small amount of fresh water inflow at
203 the upstream river, landward of the inlet entrance, does not create a significant
204 salinity gradient in and around the inlet entrance. The inlet has a maximum
205 tidal range of less than 2 [m] with tidal velocity maxima close to 2 [ms^{-1}] in the
206 main channel. Incoming ocean waves with significant wave heights, H_s , greater
207 than 1.5 [m], are expected during stormy conditions.

208 3.2. Data

209 NRI was the site of an intensive data collection effort in May-June 2012
210 as part of the Data Assimilation and Remote Sensing for Littoral Applications
211 (DARLA) project (Jessup et al., 2011). Observations included SWIFT buoys
212 measurements, tower-based video, infrared, and radar, as well as airborne SAR

Table 1: The values proposed for surface roughness (z_0^s) and α^s in the literature.

Method	proposed range	α^s	specifications
Craig and Banner (1994)	$z_0^s = 0.1m$	$100 \sim 150$	using Mellor and Yamada (1982) turbulence model
Gemmrich and Farmer (1999)	$z_0^s = 0.2m$	***	Micro-structure measurements under large waves ($H_s = 3.5$ m)
Burchard (2001)	$0.2 < z_0^s/H_s < 1$	100	$k - \epsilon$ turbulence model with modified Schmidt number
Terray et al. (1999)	$z_0^s/H_s = 0.85$	100	Craig and Banner (1994) with modified length scale
Umlauf and Burchard (2003)	$z_0^s/H_s \simeq 1$	100	$k - \omega$ via generic length scale model
Kantha and Clayson (2004)	$z_0^s/H_s = 1.6$	100	Assuming fully developed sea
Stips et al. (2005)	$z_0^s/H_s \ll 1$	100	Umlauf and Burchard (2003) for low wind condition in small lake
Feddersen and Williams III (2007)	$z_0^s = 0.2$ m	250	They investigate white-capping type breaking in nearshore region in water depth of 3.5 [m].
Jones and Monismith (2008a)	$z_0^s/H_s = 1.3$	60	$k - \omega$ Shallow wind forced environment with tide

*** Instead of using the surface flux of the turbulence kinetic energy proportional to the cube of the surface friction velocity, they used $F_k^s = c_p u_*^2$ where $c_p = 0.8$ [ms^{-1}] is the effective phase speed of waves acquiring energy from the wind ([Gemmrich et al., 1994](#))

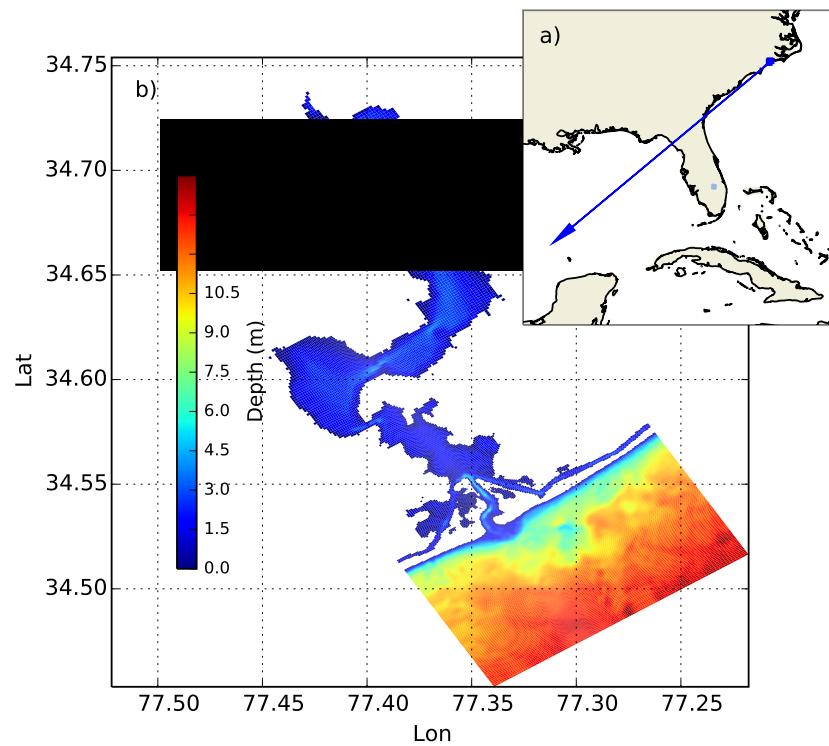


Figure 2: Bathymetry of the New River inlet region. The blue rectangle shows the numerical model grid location. a) The New River located on the Atlantic Ocean coast, b) model domain.

213 and infrared observations. A simultaneous *in-situ* observational campaign for
214 meteorology, current velocity and surface wave characteristics took place.

215 The five-minute averaged observations of TKE dissipation rate measured
216 by SWIFT buoys were compared to model results. SWIFTs measured surface
217 turbulence in a wave-following reference frame with an upward-looking, pulse-
218 coherent Doppler sonar (2 MHz Aquadopp HR), which measured turbulence
219 in a profile beneath the free surface (i.e., within ~ 0.5 m). The second-order
220 structure function was calculated and used to infer the TKE dissipation rate
221 following Kolmogorov's theoretical energy cascade. The SWIFT also measured
222 wave spectra, winds, and mean surface currents (Zippel and Thomson, 2015;
223 Thomson et al., 2014).

224 The second-order structure function was defined as $D(z, r) = \langle [u'(z) - u'(z + r)]^2 \rangle$,
225 where u' is the turbulence fluctuation, z is the vertical location beneath the free
226 surface, r is the along-beam lag distance between velocity measurements, and
227 the angle bracket denotes the burst time average (5 min) (Thomson, 2012).

228 Six SWIFT buoys were operated daily for one month during the exper-
229 iment at NRI. Sampling covered all tidal conditions and a range of wind-wave
230 conditions.

231 We chose SWIFT observations in which the wind speed is greater than 6
232 [ms^{-1}] and the peak wave period is less than 6 [s] to minimize the effects of
233 processes (e.g. swell waves), which are not included in this modeling approach
234 (The method of prescribing surface flux of TKE was originally developed for
235 locally generated wind waves (Craig, 1996; Terray et al., 1996; Greenan et al.,
236 2001)). We also chose water depths greater than 4 [m] to limit the contamina-
237 tion of surface wave dissipation by depth-limited wave breaking. Using these
238 criteria, the majority of SWIFT locations were chosen from 07 and 18 of May
239 2012. Therefore 41 SWIFT locations, each of them with 10 measured turbulence
240 dissipation rates, every 0.04 [m] from 0.02 [m] below the ocean surface were cho-
241 sen. The locations of the selected SWIFT observations, and position of the pile
242 were the meteorological data were collected by Applied Physics Laboratory of
243 University of Washington, and the bottom-mounted pressure gauge and wave
244 buoy were both operated by Woods Hole Oceanographic Institution (Wargula
245 et al., 2014) are shown in Fig. 3.

246 3.3. The model system

247 The model system developed in this study consists of The Regional Ocean
248 Modeling System (ROMS; Shchepetkin and McWilliams, 2003, 2005), the Simu-
249 lating WAve nearshore (SWAN; Booij et al., 1999, 2004) and the General Ocean
250 Turbulence Model (GOTM; Umlauf et al., 2005). The schematic flowchart of
251 the data exchange among the models is presented in 4. ROMS is a free-surface,
252 terrain-following, primitive equations ocean model widely used by the scientific
253 community for a diverse range of applications. We employed ROMS in a two-
254 dimensional depth-averaged mode as the circulation component of the modeling
255 system. ROMS provides the water level elevation and the depth-averaged am-
256 bient current to SWAN and the depth averaged ambient current to GOTM.
257 SWAN is a phase-averaged spectral wave model that solves the action density

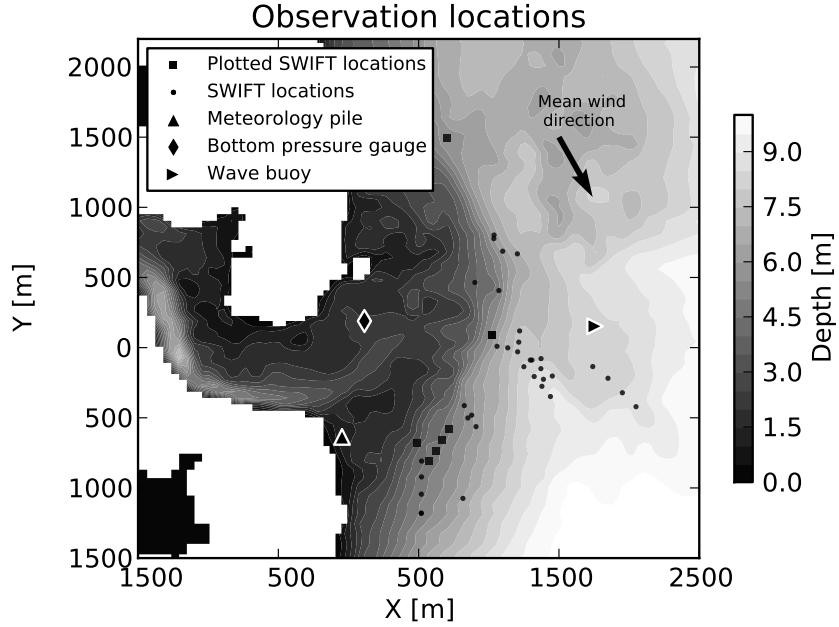


Figure 3: Observation locations at New River Inlet. Circles and rectangles are SWIFT locations ($N=41$). Diamond is the location of bottom mounted pressure gauge. The up- and right-triangles are the locations of the meteorological pile and wave buoys.

equation and generates spectrally-integrated surface wave properties, significant wave height H_s , average wave length λ , mean relative wave period T , mean wave direction $\bar{\theta}$, and orbital velocity at the bottom, as well as the energy input from the wind to the wave field S^{in} , the dissipation rates due to bottom friction $S^{\text{ds},b}$, surface wave breaking $S^{\text{ds},\text{br}}$ and white capping $S^{\text{ds},\text{w}}$ (Booij et al., 2004). These wave parameters are transferred to GOTM to calculate the wave forcing and the boundary conditions for the momentum and turbulence equations. GOTM is a one-dimensional water column model for the hydrodynamic processes related to vertical mixing in natural waters. The key characteristic of GOTM is its ability to calculate vertical turbulence fluxes using different turbulence closure models. In this study, we used a version of GOTM that includes implemented wave effects (Jenkins, 1989). More details about the implementation are given in Bakhoday Paskyabi et al. (2012). GOTM receives waves and depth-averaged velocity information, and calculates momentum turbulent fluxes and the TKE dissipation rate including surface waves and tidal effects. GOTM was executed (i.e., a 1DV ocean model) in a quasi-stationary mode (forced with time dependent boundary conditions) at each SWIFT measurement location. The model results were compared with the SWIFT observations (e.g. TKE dissipation rate profiles) at the same time of the passage of the drifter through each location. It should be noted that all model simulations start at least 2 days before the time of data-model comparison (minimum 2 days of spin up).

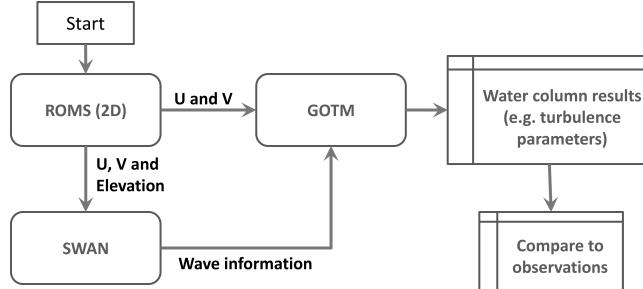


Figure 4: The flowchart of coupling algorithm among models. ROMS (2D) and SWAN models run for the whole domain and time period. GOTM model was executed for each SWIFT observation location separately using information provided by ROMS(2D) and SWAN.

279 *3.4. Model system setup*

280 A variable rectangular grid, with higher spatial resolution at the inlet entrance and lower toward model boundaries, was employed (Fig. 2b). The computational grid, which is identical for both the wave and circulation models, 282 encompasses the estuary, and extends offshore onto the continental shelf to water depths of 15 [m]. Specification of the common model settings for ROMS, 284 SWAN and GOTM are given in Tab. 2.

286 The ROMS simulation was forced by 8 main tidal constituents derived using 287 the Oregon State University Tidal Inversion Software (OTPS; [Egbert and Erofeeva, 2002](#)). The SWAN grid was forced at the open boundaries using boundary 288 spectra from the New River Inlet Buoy (CDIP Station 190), which is located 289 very close to south-east boundary of the model grid. For the offshore boundary 290 a spatially uniform spectra identical to CDIP buoy spectra was applied. For the 291 sides of the domain, boundary spectra were generated using a one-dimensional 292 SWAN model setup for each boundary forced by CDIP information at their 293 offshore boundary points. The local Cartesian coordinate system (x, y) is introduced 294 for presenting the results, where x is directed offshore and y is directed 295 alongshore, respectively (Fig. 3).

296 As previously discussed, the surface roughness in the modeling studies was 297 chosen based on the sensitivity analysis of the model in comparison to available 298 observations. However, considering that the surface roughness reported 299 in literature from floating measurement devices is generally smaller than for 300 fixed measurement devices, and also based on some preliminary analyses of 301 the SWIFT data for the estimation of turbulence length scale, we confined the 302 range of the surface roughness length to $0.1H_s \sim 0.6H_s$. Based on sensitivity 303 analysis reported in A, $z_0^s = 0.6H_s$ was the best choice regarding our available 304 observational dataset.

305 [Burchard \(2001\)](#) proposed to apply the surface flux boundary condition at 306 the base of the wave breaking layer with the thickness of z_0^s . However, based 307 on our observational data set, locating the surface flux boundary condition in 308 the middle of the wave breaking layer resulted in a better model and data 309 comparison. Furthermore, our analysis of the vertical gradient of the TKE 310

Table 2: Settings for ROMS, SWAN and GOTM.

<i>ROMS settings</i>	
Version	3.4
Time step	2 [s]
Quadratic bottom drag coefficient	0.001
Tidal boundary condition	Oregon State University Tidal Inversion Software (OTPS; Egbert and Erofeeva, 2002)
Tidal constituents	k2, s2, m2, n2, k1, p1, o1, q1
Velocity boundary condition	Flather (1976)
Free surface boundary condition	Chapman (1985)
Grid spacing (Fig. 2b)	40 [m] \sim 300 [m]
Grid size	$N_x = 170$ and $N_y = 400$
<i>SWAN settings</i>	
Version	40.91
Number of frequency bins	45 and 90
Number of direction bins	36
Mode	Stationary
Depth-induced breaking	Janssen and Battjes (2007)
Bottom friction	JONSWAP ($\gamma = 0.67$)
Quadruplets wave-wave interaction	Default coefficients
Boundary spectra	New River Inlet Buoy, CDIP Station 190
Wind forcing	Meteorological pile (Fig. 3)
Grid spacing (Fig. 2b)	40 [m] \sim 300 [m]
Grid size	$N_x = 170$ and $N_y = 400$
<i>GOTM settings</i>	
Version	4.1
Number of vertical layers	300
Time step	2 [s]
Simulation period	2 [day]
$z_{0\min}^s$	0.1 [m]

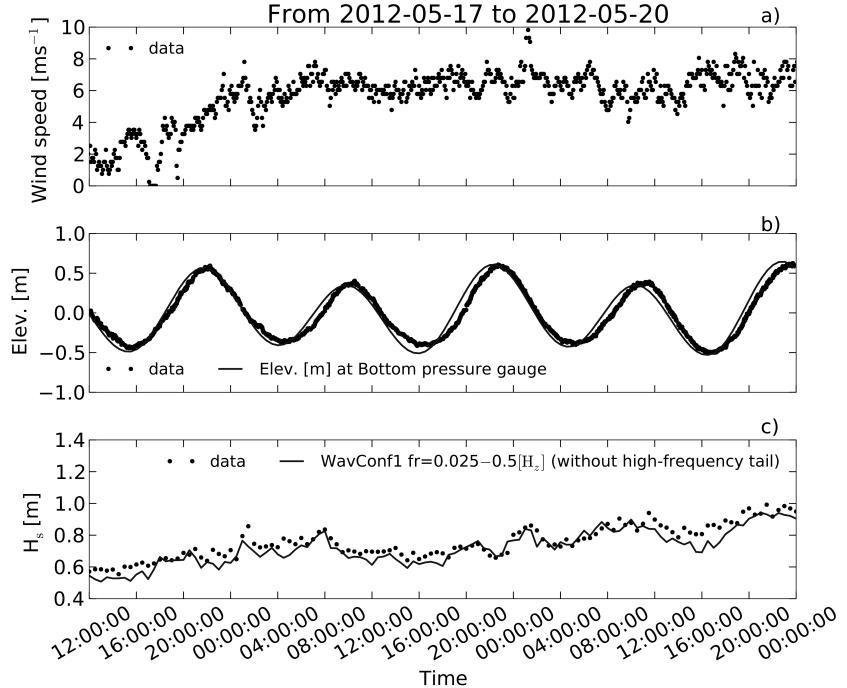


Figure 5: Time series of the wind speed (a), water surface elevation (b), and significant wave height (in which both model and observation wave heights computed from model and measured spectra by integrating over the same frequency range $fr=0.025-0.5[H_s]$) (c). Black dots are the observations, and lines are the model results.

311 dissipation rate data showed that the nonlinear least square fit to the data
 312 below $0.5z_0^8$ distance from mean sea surface agrees closely with the [Terray et al.](#)
 313 (1996) transition layer slope of z'^{-2} (See Sec. 5.1).

314 *3.5. Model system verification*

315 The observations from *in-situ* measurement stations (Fig. 3) were used to
 316 validate ROMS and SWAN modeling results (Fig. 5). Wind speed observa-
 317 tions from the meteorological pile, which were also used for forcing SWAN and
 318 GOTM, are shown in Fig. 5a. The data presented in this figure covers the
 319 period from May 17-20, 2012. The wind speed increased from calm conditions
 320 before May 18, 2012 to an average speed of 6 [ms⁻¹], staying near constant
 321 (with some oscillations) until May 20, 2012. It should be noted that the wind
 322 data is available every 5 minutes, however, the wave model is executed every
 323 half hour. Therefore the half-hourly wind was used to calculate the wind-input
 324 source terms in SWAN.

325 The average wind direction is shown in Fig. 3 by a black vector, which is
 326 directed parallel to the shoreline and slightly towards offshore. This is consistent
 327 with our choice of SWIFT cases in locally generated wind wave conditions. The

Table 3: SWAN wave model configurations.

	WavConf1(SWAN defaults for GEN3 command)	WavConf2 (Mulligan et al., 2008)
Wind input (Exponential)	Snyder and Elliott (1981)	Yan (1987)
White-capping	Komen et al. (1984)	Alves and Banner (2003)

328 surface elevation produced by ROMS shows good agreement in comparison with
 329 observed surface elevation by the bottom mounted pressure gauge (Fig. 5b).

330 Two different configurations of SWAN were studied (Tab. 3). The common
 331 physical parameters for both configurations are given in Tab. 2. For the first
 332 configuration (WavConf1), the default parametrization for the third generation
 333 mode (GEN3) of SWAN, was chosen. In this setting, the method proposed
 334 by [Snyder and Elliott \(1981\)](#) for the exponential wind input source term and
 335 [Komen et al. \(1984\)](#) for the white-capping term were used. For the second
 336 configuration (WavConf2), the physical parametrization proposed by [Mulligan](#)
 337 [et al. \(2008\)](#) was applied. The method proposed by [Yan \(1987\)](#) was adopted for
 338 the exponential wind input term. This method reduces to [Snyder and Elliott](#)
 339 [\(1981\)](#) for low frequencies and to [Plant \(1982\)](#) for the high frequency part of
 340 the wave spectrum. The [Alves and Banner \(2003\)](#) method was selected for the
 341 white-capping term.

342 Each SWAN configuration was executed for two different frequency ranges,
 343 $0.025[\text{Hz}] \sim 0.5[\text{Hz}]$ (normal range) and $0.025[\text{Hz}] \sim 2.5[\text{Hz}]$ (broad range). To re-
 344 solve wave spectrum in the spectral dimension, 45 frequency bins for normal
 345 range and 90 bins for broad frequency ranges were chosen. The simulated sig-
 346 nificant wave height using WavConf2 and frequency range of $0.025[\text{Hz}] \sim 0.5[\text{Hz}]$
 347 are in agreement with the measurement (Fig. 5c).

348 4. Results

349 We carried out a comprehensive sensitivity analysis for different modeling
 350 parameters. The results of this analysis are presented in A. This analysis was
 351 done for the z_0^s in the range of $0.1H_s \sim 0.6H_s$, for the α^s parameter in the range
 352 of $100 \sim 400$, for two different wave configuration of WavConf1 and WavConf2.
 353 Each wave configuration was tested for normal and broad frequency ranges.
 354 Hereafter, comparison of different methods for prescribing surface flux of TKE
 355 using a $k - \omega$ 1DV turbulence closure model for the best parameter set in each
 356 category based on the sensitivity analysis is presented. We compared three cases
 357 as: 1) No surface flux of energy (NoTKE), 2) TKE injection by surface wind
 358 friction velocity cubed with $\alpha^s = 150$ and $\frac{z_0^s}{H_s} = 0.6$ (WIND), and 3) TKE surface
 359 flux from wave model using WavConf2 and frequency range of $0.025[\text{Hz}] \sim 2.5[\text{Hz}]$
 360 and $\frac{z_0^s}{H_s} = 0.6$ (WAVE). It should be noted that the choice of $z_0^s = 0.6H_s$ is also
 361 consistent with previous studies (e.g. [Terray et al., 1996](#); [Soloviev and Lukas, 2003](#)).
 362

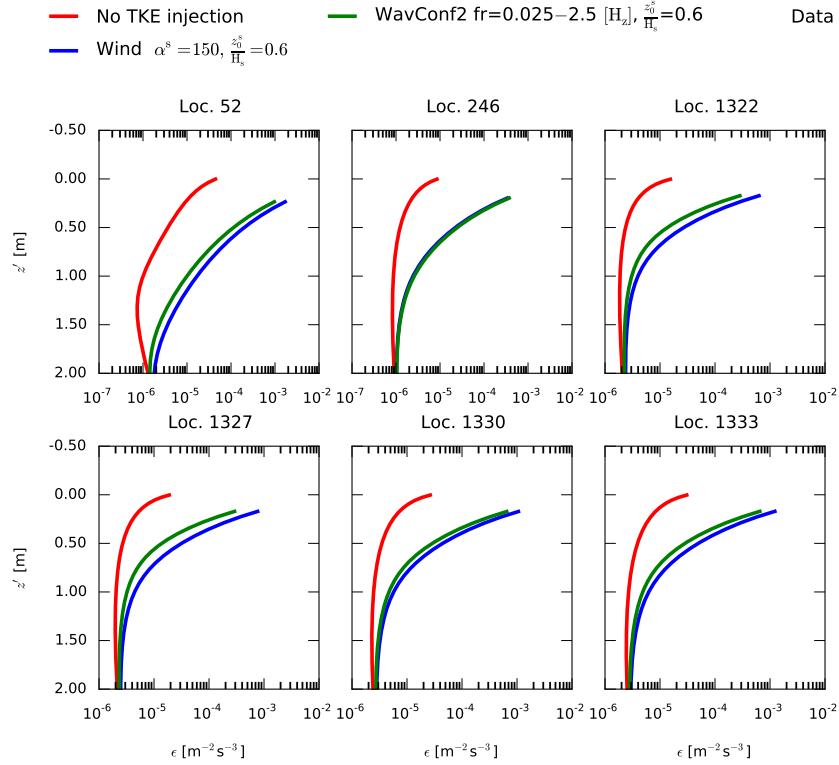


Figure 6: Profiles of the turbulence dissipation rate (ϵ) at the top 2 [m] of the water column. The comparison made for three different TKE surface flux boundary condition results from a $k - \omega$ two equation turbulence closure model and the measured quantity from 5 minute bursts averaged SWIFT observations. The observation locations are shown in Fig. 3 by 6 black rectangles.

363 4.1. General comparison

364 The modeled turbulence dissipation rate, ϵ , of the top 2 [m] portion of the
 365 water column for 6 sample SWIFT locations, is presented in Fig. 6. The WIND,
 366 and WAVE models are in reasonable agreement with the measurements. The
 367 NoTKE case shows low skill and produced the TKE dissipation rates almost
 368 two orders of magnitude smaller than the measurements. All curves converge
 369 to the same value near 2 [m] below the mean sea surface, suggesting injection
 370 of turbulence could enhance the TKE dissipation rate to depths almost 3 times
 371 that of the significant wave height.

372 An example of comparison of the effects of different z_0^s on the vertical profile
 373 of turbulence dissipation rate is presented in Fig. 7. Smaller surface roughness
 374 results in worse agreement between model and data. Also, a model surface offset
 375 of half surface roughness in the case of $z_0^s = 0.6H_s$ seems to be appropriate, as
 376 the model starts at the same level and with the same vertical gradient as the
 377 data.

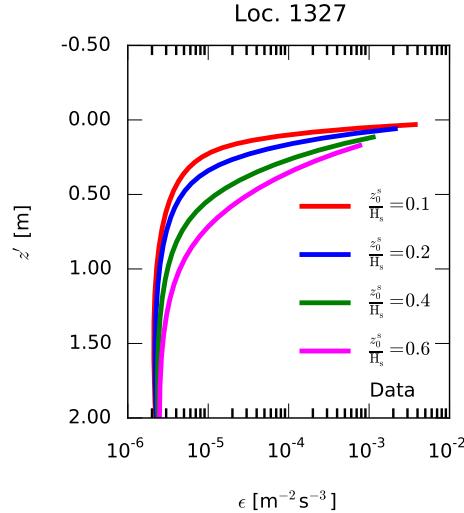


Figure 7: Sensitivity of the turbulence dissipation rate (ϵ) profiles to the choice of z_0^s . The comparison made for four different surface roughness of $\frac{z_0^s}{H_s} = 0.1, 0.2, 0.3$ and 0.4 at location 1327. See description of Fig. 6.

378 The results obtained from WIND and WAVE cases together with their cor-
 379 responding data are presented in the form of a scatter plot in Fig. 8. There
 380 is general agreement between measurements and model results for both WIND
 381 and WAVE cases. Index of agreement for WIND, WAVE and NoTKE cases are
 382 0.84, 0.78 and 0.42, which indicates slightly better performance of the WIND
 383 case. The r-squared values of WIND and WAVE cases are 0.56 and 0.46, which
 384 also show better agreement of WIND in comparison with the observations (See
 385 A).

386 *4.2. Vertical variation of the turbulence dissipation rate (ϵ)*

387 Profiles of the turbulence dissipation rate for all observation locations are
 388 presented in Fig. 9. A positive correlation is shown between wind speed ob-
 389 servations (Fig. 9a), modeled wave height (Fig. 9b) and TKE dissipation rate
 390 data. This is expected because the majority of selected locations are situated
 391 in a locally generated wind wave sea state, and white-capping breaking is an
 392 active sink of energy for surface waves. It should be noted that the masked
 393 areas in the model results correspond to the regions which are not covered by
 394 the model because these points are above the position of the TKE surface flux
 395 boundary condition. Therefore, for the locations with greater wave heights, less
 396 data points for comparison with the modeling results are available.

397 Some of the events in this figure are distinctive. For instance, profile 52,
 398 which was observed at 18:47 May 1, 2012 [UTC], shows coexistence of a relatively
 399 high wind speed and wave height with a high turbulence dissipation rate in the
 400 data and both WIND and WAVE model results (Fig. 9d, e). There is another

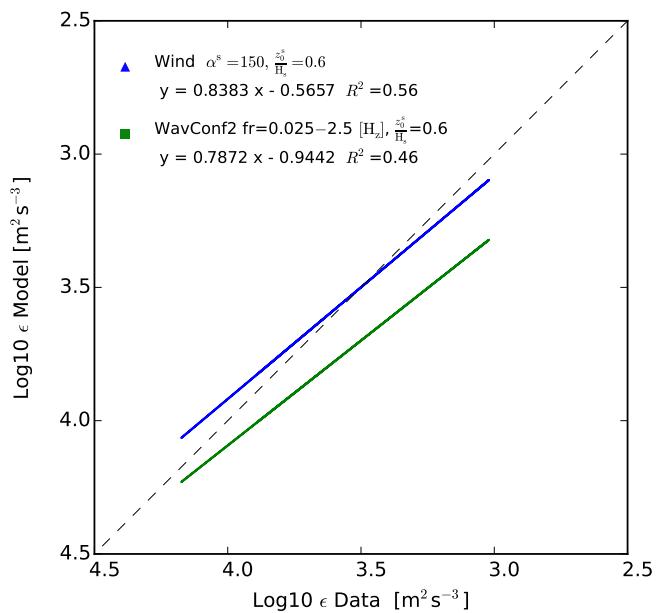


Figure 8: Scatter plot of the measured and modeled turbulence dissipation rate (ϵ) using $k - \omega$ turbulence model. Model results of TKE injection by surface wind friction velocity cubed with $\alpha^s = 150$ and $\frac{z_0^s}{H_s} = 0.6$ are shown by blue triangles and TKE injection by wave model surface dissipation of Wavconf2 with $fr = 0.025 - 2.5 \text{ [Hz]}$, $\frac{z_0^s}{H_s} = 0.6$ are shown by green rectangles.

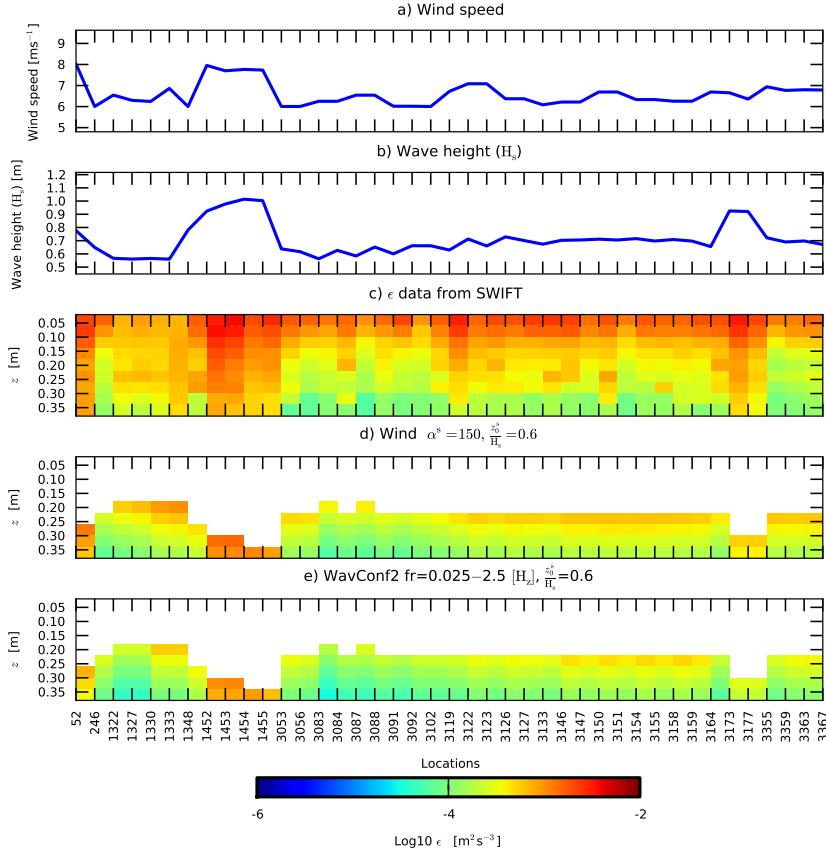


Figure 9: Comparison of measured and modeled turbulence dissipation rate (ϵ) for all SWIFT locations. a) wind speed, b) Significant wave height, c) SWIFT measurements, d) Modeled with TKE injection by surface wind friction velocity cubed with $\alpha^s = 150$ and $\frac{z_0^s}{H_s} = 0.6$ and e) Modeled with TKE injection by wave model surface dissipation of Wavconf2 with $fr = 0.025-2.5 [H_s]$, $\frac{z_0^s}{H_s} = 0.6$.

401 storm event at profiles 1452 – 1455, which occurred around 18:00 May 7, 2012.
 402 A strong correlation between wind speed and wave height again show that locally
 403 generated wind waves are dominant. A very high dissipation rate in the data
 404 represents a large amount of TKE injected by white-capping dissipation. The
 405 SWIFT data and model results are in agreement and a relatively high turbulence
 406 dissipation rate is still evident up to ~ 0.4 [m] below the water surface. In
 407 general both WIND and WAVE model results are in agreement with the SWIFT
 408 measurement.

409 **5. Discussion**

410 *5.1. Terray scaling*

411 Terray et al. (1996) proposed a three layer system for the near-surface turbulence dissipation rate in the presence of locally generated wind waves. They defined the top layer as the breaking zone with direct injection of turbulence from wave breaking with a constant TKE dissipation rate, ϵ_b . They also suggest that the thickness of this layer, z'_b , could be estimated by $\frac{z'_b}{H_s} = 0.6$. Beneath this layer, there is another layer in which the TKE dissipation rate is a function of energy input F_k^s , wave height H_s and z' , as below:

$$\frac{\epsilon H_s}{F_k^s} = \beta_T \left(\frac{z'}{H_s} \right)^\lambda \quad (18)$$

411 in which $\beta_T = 0.3$ and $\lambda = -2$. This layer also will be transitioned to a deeper layer
412 at depth of z'_t where the wall layer scaling is applicable, $\epsilon = \frac{u_*^{s^3}}{\kappa z'}$. Here $\kappa = 0.41$
413 is the von Karman constant.

414 However, Gemmrich and Farmer (2004) showed that their observations with
415 a floating device agrees with Stewart and Grant (1962) who suggested that the
416 dissipation at a fixed distance beneath the wave crest and trough are different,
417 which is not supportive of the existence of the constant dissipation layer pro-
418 posed by Terray et al. (1996). On the other hand, Feddersen (2012a) showed
419 the applicability of Eq. 18 with $\lambda \simeq -2$ in the transitional region, which is almost
420 one significant wave height below the water surface ($\frac{z'_b}{H_s} \simeq 1$).

421 In this study, employment of the 5 minute averaged observational TKE dis-
422 sipation rate profiles seems to be an appropriate choice for comparison with
423 modeling results, since both wave and hydrodynamic models employ wave av-
424 eraged properties. In addition, SWIFT observations contain most of the active
425 wave breaking areas at crests and troughs, which are happening around the
426 mean sea surface. In other words, one can assume that a substantial part of the
427 measured data is situated within the half of z'_0 from the mean sea surface which
428 is not taken into account by the model (the blank regions in Figs. 9d and 9e).

429 The choice of the location of surface flux of TKE, to be situated at the
430 half of the surface roughness length at $z' \simeq 0.3H_s$ was also motivated by our
431 analysis over available data which shows a change in the slope of the turbulence
432 dissipation rate profiles around this distance from ocean surface (e.g. See Fig.
433 7). We also examined the proposed equation by Terray et al. (1996) as:

$$\frac{\epsilon H_s}{u_*^{s^3}} = A' \left(\frac{z'}{H_s} \right)^\lambda \quad (19)$$

434 assuming $F_k^s = \alpha^s u_*^{s^3}$ then $A' = \beta_T \alpha^s$.

435 Non-dimensionalized model-data comparisons following the method proposed
436 by Terray et al. (1996) are given in Fig. 10. The magenta colored line repre-
437 sents the non-linear least square fit over the data in this portion of the water

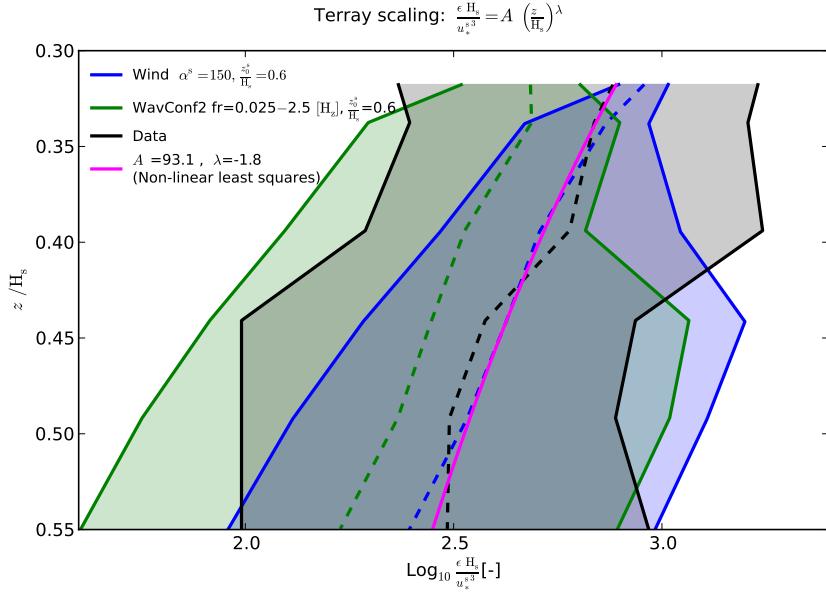


Figure 10: Terray-scaled $\epsilon H_s / u_*^{s,3}$ against z'/H_s for white-capping observation using 216 data points at 41 locations out of a total of 410 observations (see Fig. 3). The model results for TKE injection by surface wind friction velocity cubed with $\alpha^s = 150$ and $\frac{z_0^s}{H_s} = 0.6$ are shown by the blue area, TKE injection by wave model surface dissipation of Wavconf2 with $fr=0.025-2.5 [Hz]$, $\frac{z_0^s}{H_s} = 0.2$ are shown by the green area and the data represents by the gray area. All dash lines are the horizontal average of their corresponding values in the same vertical level. The magenta line is the non-linear least squares fit to the data.

433 column. The best fit resulted in $\lambda=-1.8$, which is also comparable with $\lambda=-2$
434 proposed by [Terray et al. \(1996\)](#). Assuming $\alpha^s = 150$, the $\beta_T = 0.62$ also could
435 be calculated. The model results forced by TKE surface flux calculated directly
436 from wind match with the non-linear least square fit.

437 We also applied the non-linear least square method to the SWIFT data close
438 to the water surface above $z' \simeq 0.3H_s$ (Fig. 11). For this region, $\lambda=-0.53$ and
439 $A'=445$ were calculated. This is contrary to the top layer definition of [Terray](#)
440 [et al. \(1999\)](#), with a constant turbulence dissipation rate. Given the negative
441 gradient in TKE dissipation rate, it seems that the diffusion of the injected
442 energy starts right below the wave averaged water surface.

443 5.2. Wave enhanced region

444 We employed the P/ϵ ratio to investigate the region influenced by wave
445 breaking inside the water column. Here P refers to TKE production due to
446 shear generated by bed or wind shear stresses (Term P in Eq. 8). $P/\epsilon \simeq 0$ is
447 associated with the regions with no shear production, e.g. near the surface,
448 where turbulence is due to the downward diffusion of TKE injected by wave-
449 breaking at the surface ([Umlauf and Burchard, 2003](#)). Time evolution of this

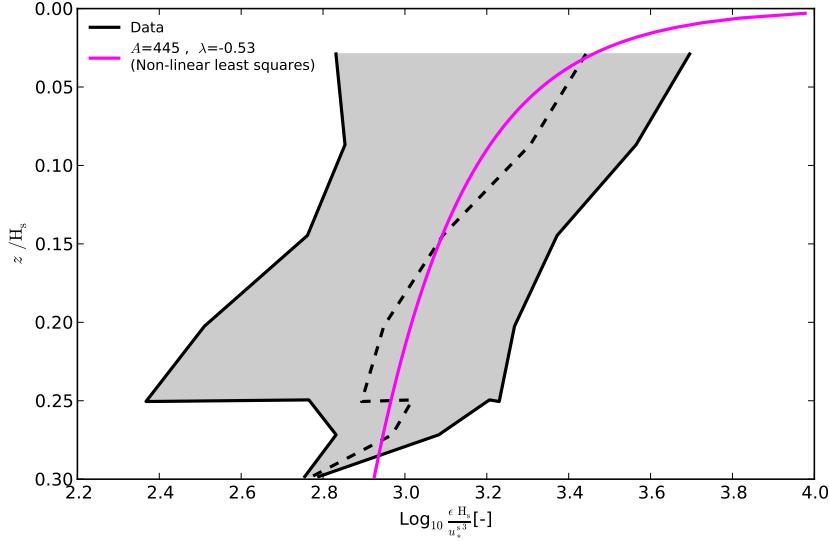


Figure 11: Terray-scaled $\epsilon H_s / u_*^3$ against z'/H_s for white-capping observation using 194 data points at 41 locations out of total number of 410 points (see Fig. 3). The gray area represents the measurements. The dashed line is the average of the data in the same vertical level. The magenta line is the non-linear least squares fit to the data.

450 parameter at profile 3123 from 13th till 18th of May 2012 [UTC] is shown in
 451 Fig. 12. As it is apparent from Fig. 12a, when the surface flux of TKE due to
 452 surface wave dissipation is not included, there are frequent times where shear
 453 production and dissipation rates are in perfect balance throughout whole water
 454 column. However, wave induced surface flux of TKE adds a new region of
 455 $P/\epsilon=0$ starting from the surface towards the bottom, which we define as the
 456 wave enhanced region. Based on the modeling results, the assumption that the
 457 depth of the wave-enhanced layer is almost 3 times of the significant wave height
 458 (for this SWIFT location $H_s \simeq 0.8$ [m]) can be used as a crude approximation
 459 (Figs. 12b, c).

460 *5.3. Effects of wave parametrization*

461 Comparison of the wind input, surface dissipation and significant wave height
 462 for different wave configurations and frequency ranges (See Tab. 3) are discussed
 463 hereafter. The normal frequency range for both wave model configurations
 464 produced similar outcomes for wind input source and surface dissipation sink
 465 terms (Figs. 13a and 13b). For the broad frequency range, the wind input
 466 source term increased similarly for both configurations. However, this was not
 467 the case for the surface dissipation. It seems that the white-capping dissipation
 468 term based on Komen et al. (1984) does not account for the wave dissipation
 469 in the high frequency tail of the spectrum and produces almost the same result
 470 as the normal frequency range. In contrast, surface dissipation computed using
 471 the Alves and Banner (2003) method (Wavconf2) shows an increase with the

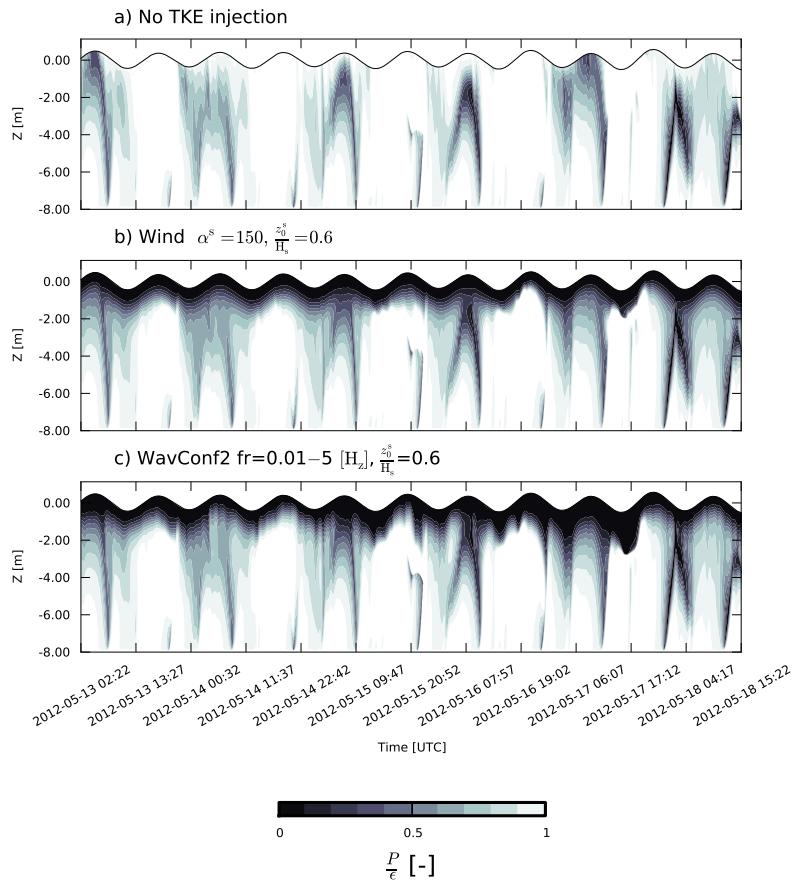


Figure 12: Ratio of shear production of TKE (P) to turbulence dissipation rate (ϵ) at location 3123. Black contour line is plotted for $P/\epsilon=0.99$.

472 same order of magnitude as the increase in the wind input source term. This
473 inconsistency is reflected in the significant wave height magnitude where the
474 wave heights resulting from Wavconf2 for both frequency ranges are the same.
475 However, the wave height resulting from Wavconf1 increased when we switched
476 from normal to broad frequency range (Fig. 13c).

477 The white-capping formulations of [Komen et al. \(1984\)](#) and [Alves and Banner \(2003\)](#)
478 methods are based on different physical assumptions. The first
479 method computes the white-capping dissipation from wavenumber and some
480 of the spectrally integrated parameters, such as the average wave steepness;
481 however, the latter considers the wavenumber-dependent properties of the spec-
482 trum. For instance, employing the [Komen et al. \(1984\)](#) method in situations
483 when energy in the low-frequency part of the wave spectrum is present, could
484 lead to a significant effect on the averaged spectrum properties and results in
485 an underestimation of the white-capping dissipation and overestimation of the
486 wave height. [Mulligan et al. \(2008\)](#) showed that the difference between these
487 white-capping dissipation methods could be significant (up to 3 times) for wind
488 ranges from 5 to 17 [ms^{-1}] and the modified [Alves and Banner \(2003\)](#) model pro-
489 posed by [van der Westhuyzen et al. \(2007\)](#) generally showed a better agreement
490 with their wave energy dissipation observations.

491 To be able to compare surface flux of energy received directly from the wave
492 model to the one generated based on surface friction velocity, an equivalent
493 surface dissipation using $S^{\text{ds}} = F_k^s = \alpha^s u_*^s$ for $\alpha^s=150$ was calculated (Black
494 line in Fig. 13b). Interestingly, the amount of surface dissipation estimated
495 from surface friction velocity (black line in Fig. 13b) and the one reported by
496 the wave model using Wavconf2 (blue line in Fig. 13b) are in agreement. This
497 was implicitly shown by similar turbulence dissipation rates resulting from these
498 methods (See Figs. 8 to 10).

499 The workaround here might be to operate a wave model as usual with a
500 normal frequency range, implement an analytical function to estimate white-
501 capping dissipation at the high frequency tail of the spectrum, and add it to the
502 dissipation calculated by the model at the post-processing step. Later this final
503 value of surface dissipation has to feed into the turbulence model as the surface
504 boundary condition of TKE.

505 To quantify this finding, we investigated the amount of energy seen by
506 SWIFT but not resolved within our model simulations. Using non-linear least
507 square fit coefficient (See figs. 10 and 11), we investigated the energy dissipa-
508 tion in three distinct vertical layers (Fig. 14), where $z' < 0.02$ is the uppermost
509 region not observed by SWIFT (ϵ^{top}), and assuming a constant dissipation rate.
510 The layer $0.02 < z' < 0.3H_s$ is the portion of the water column which was not
511 modeled ($\epsilon^{\text{not modeled}}$). We continued the third layer to $z' \simeq 3H_s$ to account
512 for all turbulence dissipation rates, penetrated all the way to the depth of the
513 wave-enhanced layer ($\epsilon^{\text{modeled}}$). We calculated the ratio of the amount of the
514 turbulence dissipation rate below and above the model origin from the plotted

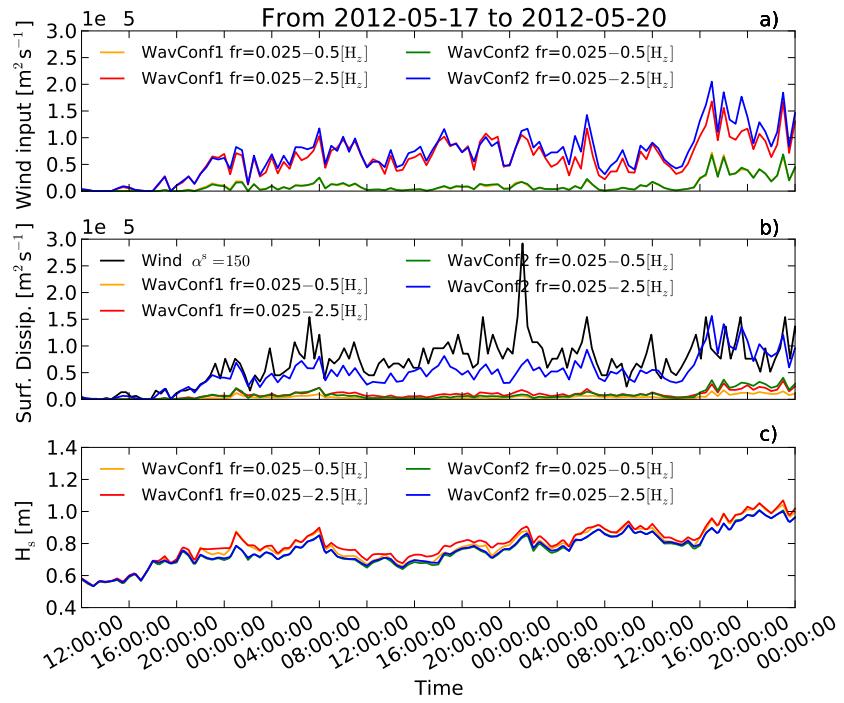


Figure 13: Time series of wave model wind input source term (a), wave model surface dissipation sink term (b) and significant wave height (c). The black line in the bottom panel is calculated for equivalent surface dissipation based on surface flux of TKE from surface shear velocity cubed ($S^{ds} = F_k^s = \alpha^s u_*^s 3$ for $\alpha^s=150$).

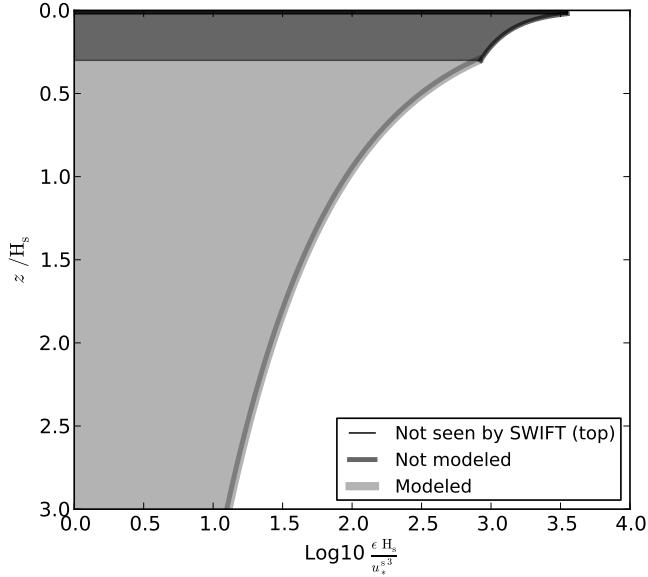


Figure 14: Three regions of turbulence dissipation rate based on SWIFT observations and model results. Top layer where $z' < 0.02$ is the region which was not observed by SWIFT (ϵ^{top}) is shown by black. The beneath layer $0.02 < z' < 0.3H_s$ is the portion of water column which was not modeled ($\epsilon^{not_modeled}$) is shown by dark gray. The third layer which is covered by model and continued further down to $z' \simeq 3H_s$ ($\epsilon^{modeled}$) is shown by light gray .

curves as:

$$\frac{\int \epsilon^{top} + \int \epsilon^{not_modeled}}{\int \epsilon^{modeled}} \simeq 1.8 \quad (20)$$

505 We assume that a substantial part of the measured turbulence dissipation
 506 rate is induced by the injection of energy from dissipated waves, which also
 507 could be supported by the strong correlation between high wind, high waves and
 508 measured turbulence dissipation rates shown in Fig. 9 . We argue that the flux of
 509 energy coming out of the wave field as computed by the wave model is not even
 510 close to being sufficient. Although by changing the physical parametrization
 511 and using a broad frequency range, we were be able to increase the predicted
 512 surface dissipation, but it still appears to be insufficient. Apparently, spectral
 513 wave models so far were parametrized and calibrated in a way to conserve the
 514 total energy budget and produce correct wave heights for a normal frequency
 515 range. In a global sense this means that, the flux of energy going into the
 516 wave field ($F_k^{s, \text{wave, in}} = S^{\text{in}}$) and the flux of energy coming out of wave field
 517 ($F_k^{s, \text{wave, out}} = S^{\text{ds, s}}$) are not necessarily similar to what happens in nature in
 518 terms of energy exchange between atmosphere, wave and ocean.

519 6. Summary and conclusion

520 The primary result of this study was to validate the consistency and ap-
521 plicability of state-of-the-art wave-ocean coupled modeling systems in terms
522 of energy exchange between surface waves and the ocean water column. We
523 setup a modeling system similar to the common fully coupled three-dimensional
524 wave-ocean frameworks. The system consists of the SWAN wave model, the
525 ROMS ocean model in two-dimensional depth integrated mode and GOTM,
526 which is a one-dimensional vertical water column model that includes state-of-
527 the-art two-equation turbulence closure models. Since we computed the water
528 column properties only at observation locations, the system is not computa-
529 tionally demanding and we could test many different configurations and turbulence
530 parametrization. Therefore we were be able to employ a very high resolution
531 $k - \omega$ two-equation turbulence closure model and perform a comprehensive sen-
532 sitivity analysis. Based on the sensitivity analysis, the optimum values for key
533 parameters of a turbulence model, e.g. surface roughness length and white-
534 capping parametrization and wave frequency range, were determined (See [A](#)).
535 From this analysis the optimum roughness length of $\frac{z_0^s}{H_s} = 0.6$ was proposed.
536 Based on our unique data set with very high resolution turbulence dissipation
537 rate profiles close to the ocean surface, we were be able to identify the optimal
538 level for the application of the surface flux boundary condition in our one-
539 dimensional vertical model, which is at the half the surface mixing length below
540 the mean sea surface. This resulted in a good agreement between the modeled
541 turbulence dissipation rate and measurements. Furthermore, in the modeled
542 region, the non-dimensional Terray scaling with power of $\lambda = -1.8$ (instead of
543 $\lambda = -2$), is applicable. The portion of the water column above the modeled re-
544 gion up to the closest SWIFT measurement to the averaged surface is more
545 uniform in comparison to the second layer, however, it does not have constant
546 dissipation rate as suggested by [Terray et al. \(1996\)](#).

547 The wave-enhanced layer thickness, based on a suggestion of [Burchard \(2001\)](#),
548 is almost three times the significant wave height. White-capping, which takes
549 place in the high frequency tail of the wave spectrum, is crucial for generating
550 an amount of wave surface dissipation that can explain the observed turbulence
551 dissipation rate. However, in spite of the agreement between the modeled TKE
552 dissipation rate and SWIFT measurements inside the wave enhanced layer, we
553 argue that the wave model still produced less wave dissipation in comparison to
554 the measurements, referring to the amount of energy seen by SWIFT which is
555 not included in modeling domain.

556 To be able to correctly parametrize and include the energy and momentum
557 input from the surface wave field to the ocean water column, further investiga-
558 tion on wave dissipation sink terms (implemented in wave models) is needed.
559 Having access to high temporal and spatial resolution turbulence dissipation
560 rate measurements, from the ocean surface down to at least 2~3 times of the
561 significant wave height is necessary to minimize the uncertainties and help in
562 developing accurate parametrization of turbulence models.

563 **A. Sensitivity analysis of the modeling parameters**

In order to quantitatively compare results from different cases, the index of agreement (IA) as defined in Willmott (1982), bias and root mean square error (RMSE) were calculated as:

$$\begin{aligned} IA &= 1 - \frac{\sum (X_{model} - X_{data})^2}{\sum (|X_{model} - \bar{X}_{data}| + |X_{data} - \bar{X}_{data}|)^2} , \\ bias &= \frac{1}{M} \left(\sum X_{model} - \sum X_{data} \right) , \\ RMSE &= \frac{1}{M} \sqrt{\sum (X_{model} - X_{data})^2} , \end{aligned} \quad (1)$$

564 where X_{data} are observation, \bar{X}_{data} is observation mean, X_{model} are model results and M is the number of available observations.

566 In the first set of experiments, sensitivity of the modeled turbulence dissipation
567 rate to the surface roughness z_0^s and α^s were investigated. As shown in Fig.
568 1, the model run with $z_0^s/H_s = 0.6$ and $\alpha^s = 150$ produced less erroneous results.
569 The model result with this setting produced almost zero bias, while it shows
570 minimum error of RMSE= 2e-4 [m²s⁻³] and maximum index of agreement as
571 IA=0.85. Additionally, a separate set of cases were examined to study effects of
572 frequency range and wave parametrization within the wave model. The results
573 of this experiment are presented in Fig. 2. From this experiment, it seems the
574 model results using WavConf2 and frequency range of 0.025[Hz]~2.5[Hz] and
575 $\frac{z_0^s}{H_s} = 0.6$ produces the less erroneous results. The model result with this set-
576 ting produced almost zero bias, while it shows minimum error of RMSE= 2e-4
577 [m²s⁻³] and maximum index of agreement as IA=0.78. It is worth mentioning
578 that in almost all cases, the calculated bias is negative. This means that
579 the model calculated dissipation rate is generally smaller than measured ones.
580 There is also a dramatic improvement in increasing the frequency range from
581 normal to broader range in case of WavConf2.

582 **Acknowledgements**

583 This research was supported by the Office of Naval research grant N00014-
584 10-1-0932. L. Umlauf is grateful for the support by the German Ministry for
585 Education and Research (BMBF) via grant 03D0666A (project SECOS). We
586 wish to thank the USACE-FRF staff, for providing bathymetric data. The
587 authors would like to acknowledge Prof. Rob Holman for many constructive
588 discussions. We also thank Prof. Alastair Jenkins for providing GOTM model
589 with implemented wave forcing. We would like to thank Prof. Steve Elgar and
590 Prof. Britt Raubenheimer for providing in-situ measurements, Mr. Joe Talbert
591 and Mr. Alex Deklerk for operation and maintenance of the SWIFT buoys and
592 Mrs. Jean S. Donovan for proofreading of the manuscript.

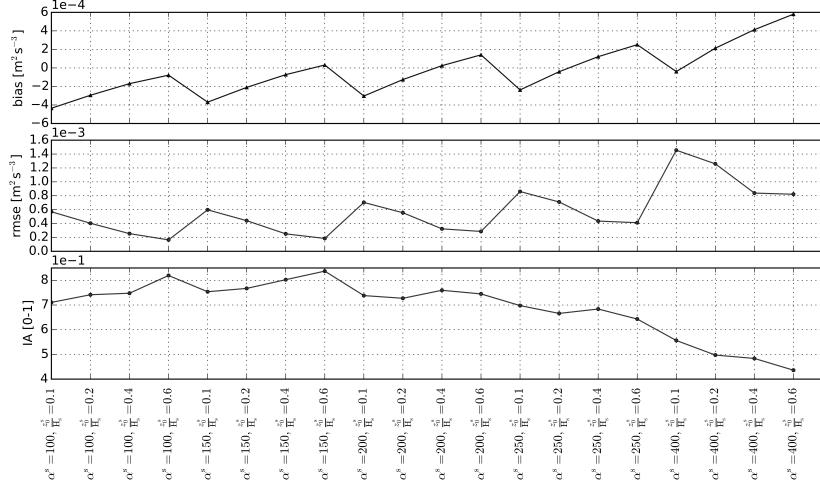


Figure 1: Sensitivity analysis experiment for investigating the effects of the surface roughness (z_0^s) and α^s on turbulence dissipation rate modeling results.

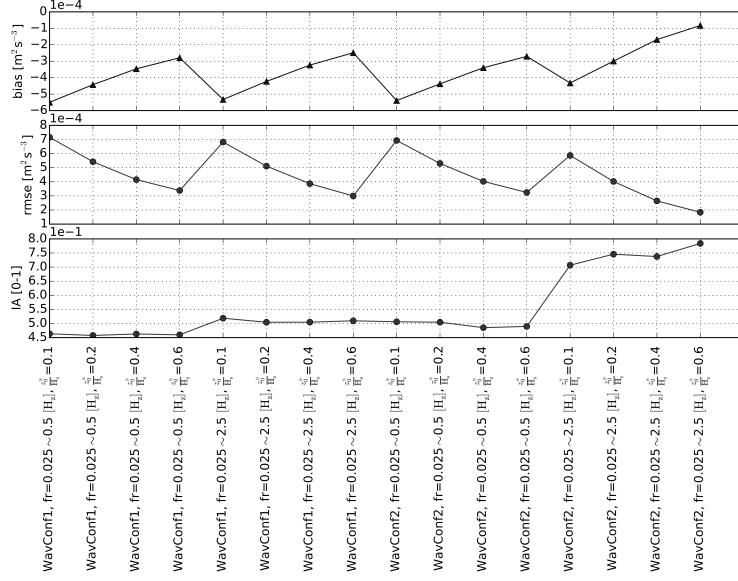


Figure 2: Sensitivity analysis experiment for investigating the effects of the wave model parametrization and spectral frequency range on turbulence dissipation rate modeling results.

593 **References**

594 Aiki, H., Greatbatch, R. J., 2014. A new expression for the form stress term in
595 the vertically lagrangian mean framework for the effect of surface waves on
596 the upper ocean circulation. *Journal of Physical Oceanography* 44 (1), 3–23.

597 Alves, J. H. G., Banner, M. L., 2003. Performance of a saturation-based
598 dissipation-rate source term in modeling the fetch-limited evolution of wind
599 waves. *J. Phys. Oceanogr.* 33 (6), 1274–1298.

600 Andrews, D., McIntyre, M., 1978. An exact theory of nonlinear waves on a
601 lagrangian-mean flow. *J. Fluid Mech.* 89 (04), 609–646.

602 Ardhuin, F., Rasclle, N., Belibassakis, K., 2008. Explicit wave-averaged primitive
603 equations using a generalized Lagrangian mean. *Ocean Modelling* 20 (1), 35–
604 60.

605 Bakhoday Paskyabi, M., Fer, I., Jenkins, A. D., 2012. Surface gravity wave
606 effects on the upper ocean boundary layer: Modification of a one-dimensional
607 vertical mixing model. *Continental Shelf Research* 38, 63–78.

608 Booij, N., Haagsma, I., Holthuijsen, L., Kieftenburg, A., Ris, R., Van Der West-
609 huysen, A., Zijlema, M., 2004. SWAN cycle III version 40.41 user manual.
610 Tech. rep., Delft University of Technology.

611 Booij, N., Ris, R., Holthuijsen, L., 1999. A third-generation wave model
612 for coastal regions. I- model description and validation. *J. Geophys. Res.*
613 104 (C4), 7649–7666.

614 Burchard, H., 2001. Simulating the wave-enhanced layer under breaking surface
615 waves with two-equation turbulence models. *J. Phys. Oceanogr.* 31, 3133–
616 3145.

617 Carniel, S., Warner, J. C., Chiggiato, J., Sclavo, M., 2009. Investigating the
618 impact of surface wave breaking on modeling the trajectories of drifters in
619 the northern Adriatic Sea during a wind-storm event. *Ocean Modelling* 30 (2–
620 3), 225–239.

621 Chapman, D. C., 1985. Numerical treatment of cross-shelf open boundaries in
622 a barotropic coastal ocean model. *Journal of Physical oceanography* 15 (8),
623 1060–1075.

624 Craig, P., 1996. Velocity profiles and surface roughness under breaking waves.
625 *J. Geophys. Res.* 101 (C1), 1265–1277.

626 Craig, P., Banner, M., 1994. Modeling wave-enhanced turbulence in the ocean
627 surface layer. *J. Phys. Oceanogr.* 24 (12), 2546–2559.

628 Drennan, W. M., Donelan, A. A., Terray, E. A., Katsaros, K. B., 1996. Oceanic
629 turbulence dissipation rate measurements in SWADE. *J. Phys. Oceanogr.* 26,
630 808–815.

631 Egbert, G. D., Erofeeva, S. Y., 2002. Efficient inverse modeling of barotropic
632 ocean tides. *Journal of Atmospheric and Oceanic Technology* 19 (2), 183–204.

633 Feddersen, F., 2012a. Observations of the surf-zone turbulent dissipation rate.
634 *J. Phys. Oceanogr.* 42 (3), 386–399.

635 Feddersen, F., 2012b. Scaling surf zone turbulence. *Geophysical Research Letters*
636 39 (18).

637 Feddersen, F., Trowbridge, J. H., 2005. The effect of wave breaking on surf-zone
638 turbulence and alongshore currents: A modeling study*. *J. Phys. Oceanogr.*
639 35 (11), 2187–2203.

640 Feddersen, F., Trowbridge, J. H., Williams III, A., 2007. Vertical structure of
641 dissipation in the nearshore. *J. Phys. Oceanogr.* 37 (7), 1764–1777.

642 Feddersen, F., Williams III, A., 2007. Direct estimation of the reynolds stress
643 vertical structure in the nearshore. *Journal of Atmospheric and Oceanic Tech-
644 nology* 24 (1), 102–116.

645 Flather, R., 1976. A tidal model of the North-west European continental shelf.
646 *Memoires Societe Royale des Sciences de Liege* 10 (6), 141–164.

647 Gemmrich, J., Mudge, T., Polonichko, V., 1994. On the energy input from wind
648 to surface waves. *J. Phys. Oceanogr.* 24 (11), 2413–2417.

649 Gemmrich, J. R., Farmer, D. M., 1999. Near-surface turbulence and thermal
650 structure in a wind-driven sea. *J. Phys. Oceanogr.* 29, 480–499.

651 Gemmrich, J. R., Farmer, D. M., 2004. Near-surface turbulence in the presence
652 of breaking waves. *J. Phys. Oceanogr.* 34 (5), 1067–1086.

653 Gerbi, G. P., Chant, R. J., Wilkin, J. L., 2013. Breaking surface wave effects on
654 river plume dynamics during upwelling-favorable winds. *J. Phys. Oceanogr.*
655 43 (9), 1959–1980.

656 Govender, K., Mocke, G., Alport, M., 2004. Dissipation of isotropic turbulence
657 and length-scale measurements through the wave roller in laboratory spilling
658 waves. *J. Geophys. Res.* 109 (C8).

659 Grasso, F., Castelle, B., Ruessink, B., 2012. Turbulence dissipation under break-
660 ing waves and bores in a natural surf zone. *Continental Shelf Research* 43,
661 133–141.

662 Greenan, B. J., Oakey, N. S., Dobson, F. W., 2001. Estimates of dissipation
663 in the ocean mixed layer using a quasi-horizontal microstructure profiler. *J.*
664 *Phys. Oceanogr.* 31 (4).

665 Huang, Z.-C., Hsiao, S.-C., Hwung, H.-H., Chang, K.-A., 2009. Turbulence and
666 energy dissipations of surf-zone spilling breakers. *Coastal Engineering* 56 (7),
667 733–746.

668 Janssen, T., Battjes, J., 2007. A note on wave energy dissipation over steep
669 beaches. *Coastal Engineering* 54 (9), 711–716.

670 Jenkins, A., 1987. Wind and wave induced currents in a rotating sea with depth-
671 varying eddy viscosity. *J. Phys. Oceanogr* 17 (7), 938–951.

672 Jenkins, A., 1989. The use of a wave prediction model for driving a near-surface
673 current model. *Ocean Dynamics* 42 (3), 133–149.

674 Jessup, A. T., Chickadel, C., Farquharson, G., Thomson, J., Holman, R. A.,
675 Haller, M., Kuropov, A., Ozkan-Haller, T., Elgar, S., Raubenheimer, B.,
676 2011. Darla: Data assimilation and remote sensing for littoral applications.
677 Tech. rep., DTIC Document.

678 Jones, N., Monismith, S., 2008a. The influence of whitecapping waves on the
679 vertical structure of turbulence in a shallow estuarine embayment. *J. Phys.*
680 *Oceanogr.* 38, 1563–1580.

681 Jones, N., Monismith, S., 2008b. Modeling the influence of wave-enhanced tur-
682 bulence in a shallow tide-and wind-driven water column. *J. Geophys. Res.*
683 113 (C3), C03009.

684 Kantha, L., Clayson, A. C., 2004. On the effect of surface gravity waves on
685 mixing in the oceanic mixed layer. *Ocean Modelling* 6 (2), 101–124.

686 Kitaigorodskii, S. A., Donelan, M. A., Lumley, J. L., Terray, E. A., 1983. Wave
687 turbulence interactions in the upper ocean. Part II: Statistical characteristics
688 of wave and turbulent components of the random velocity field in the marine
689 surface layer. *J. Phys. Oceanogr.* 13, 1988–1999.

690 Komen, G., Cavalieri, L., Donelan, M., Hasselmann, K., Hasselmann, S.,
691 Janssen, P., 1994. Dynamics and modelling of ocean waves. Cambridge Uni-
692 versity Press.

693 Komen, G., Hasselmann, K., Hasselmann, K., 1984. On the existence of a fully
694 developed wind-sea spectrum. *J. Phys. Oceanogr.* 14 (8), 1271–1285.

695 Kumar, N., Voulgaris, G., Warner, J., Olabarrieta, M., 2012. Implementation
696 of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment
697 transport (coawst) modeling system for inner shelf and surf zone applications.
698 *Ocean Modelling*, In press.

699 McWilliams, J., Restrepo, J., Lane, E., 2004. An asymptotic theory for the
700 interaction of waves and currents in coastal waters. *J. Fluid Mech.* 511, 135–
701 178.

702 McWilliams, J. C., Sullivan, P. P., Moeng, C. H., 1997. Langmuir turbulence in
703 the ocean. *Journal of Fluid Mechanics* 334, 1–30.

704 Mellor, G., 2003. The three-dimensional current and surface wave equations. *J.*
705 *Phys. Oceanogr.* 33, 1978–1989.

706 Mellor, G., 2015. A combined derivation of the integrated and vertically resolved,
707 coupled wave-current equations. *Journal of Physical Oceanography* (In Press).

708 Mellor, G. L., Yamada, T., 1982. Development of a turbulence closure model
709 for geophysical fluid problems. *Reviews of Geophysics and Space Physics* 20,
710 851–875.

711 Melville, W., Rapp, R. J., 1985. Momentum flux in breaking waves. *Nature*
712 317 (6037), 514–516.

713 Moghimi, S., Klingbeil, K., Gräwe, U., Burchard, H., 2013. A direct comparison
714 of a depth-dependent radiation stress formulation and a vortex force formula-
715 tion within a three-dimensional coastal ocean model. *Ocean Modelling* 70 (0),
716 132 – 144.

717 Mulligan, R., Bowen, A., Hay, A., Van der Westhuysen, A., Battjes, J., 2008.
718 Whitecapping and wave field evolution in a coastal bay. *J. Geophys. Res.*
719 113 (C3), C03008.

720 Newberger, P., Allen, J., 2007. Forcing a three-dimensional, hydrostatic,
721 primitive-equation model for application in the surf zone: 2. application to
722 duck94. *J. Geophys. Res.* 112 (C8), C08019.

723 Plant, W. J., 1982. A relationship between wind stress and wave slope. *J. Geo-
724 phys. Res.* 87 (C3), 1961–1967.

725 Raschle, N., Chapron, B., Arduin, F., Soloviev, A., 2012. A note on the direct
726 injection of turbulence by breaking waves. *Ocean Modelling*.

727 Ruessink, B., Miles, J., Feddersen, F., Guza, R., Elgar, S., 2001. Modeling the
728 alongshore current on barred beaches. *J. Geophys. Res.* 106 (C10), 22451–
729 22464.

730 Shchepetkin, A., McWilliams, J., 2005. The regional oceanic modeling sys-
731 tem (ROMS): a split-explicit, free-surface, topography-following-coordinate
732 oceanic model. *Ocean Modelling* 9, 347–404.

733 Shchepetkin, A. F., McWilliams, J. C., 2003. A method for computing hori-
734 zontal pressure-gradient force in an oceanic model with a nonaligned vertical
735 coordinate. *J. Geophys. Res.* 108, 10.1029/2001JC001047.

736 Snyder, R., Elliott, J., 1981. Array measurements of atmospheric pressure fluc-
737 tuations above surface gravity waves. *Journal of Fluid mechanics* 102 (1),
738 1–59.

739 Soloviev, A., Lukas, R., 2003. Observation of wave-enhanced turbulence in the
740 near-surface layer of the ocean during toga coare. *Deep Sea Research Part I:*
741 *Oceanographic Research Papers* 50 (3), 371–395.

742 Stewart, R., Grant, H. L., 1962. Determination of the rate of dissipation of
743 turbulent energy near the sea surface in the presence of waves. *J. Geophys.*
744 *Res.* 67 (8), 3177–3180.

745 Stips, A., Burchard, H., Bolding, K., Prandke, H., Simon, A., Wuest, A., 2005.
746 Measurement and simulation of viscous dissipation in the wave affected sur-
747 face layer. *Deep Sea Research Part II: Topical Studies in Oceanography* 52,
748 1133–1155.

749 Tang, C., Perrie, W., Jenkins, A., DeTracey, B., Hu, Y., Toulany, B., Smith, P.,
750 2007. Observation and modeling of surface currents on the grand banks: A
751 study of the wave effects on surface currents. *Journal of Geophysical Research: Oceans* (1978–2012) 112 (C10).

753 Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahma, K. K.,
754 Williams III, A. J., Hwang, P. A., Kitaigorodskii, S. A., 1996. Estimates of
755 kinetic energy dissipation under breaking waves. *J. Phys. Oceanogr.* 26, 792–
756 807.

757 Terray, E. A., Drennan, W. M., Donelan, M. A., 1999. The vertical structure
758 of shear and dissipation in the ocean surface layer. In: Banner, M. L. (Ed.),
759 *The wind-driven air-sea interface. Electromagnetic and acoustic sensing, wave*
760 *dynamics and turbulent fluxes.* School of Mathematics, University of NSW,
761 Australia, pp. 239–245.

762 Thomson, J., 2012. Wave breaking dissipation observed with SWIFT drifters.
763 *Journal of Atmospheric and Oceanic Technology* 29 (12), 1866–1882.

764 Thomson, J., Horner-Devine, A. R., Zippel, S., Rusch, C., Geyer, W., 2014.
765 Wave breaking turbulence at the offshore front of the columbia river plume.
766 *Geophysical Research Letters* 41 (24), 8987–8993.

767 Thorpe, S. A., 1984. On the determination of K_v in the near-surface ocean from
768 acoustic measurements of bubbles. *J. Phys. Oceanogr.* 14, 855–863.

769 Uchiyama, Y., McWilliams, J., Shchepetkin, A., 2010. Wave-current interaction
770 in an oceanic circulation model with a vortex-force formalism: Application to
771 the surf zone. *Ocean Modelling* 34, 16–35.

772 Umlauf, L., Burchard, H., March 2003. A generic length-scale equation for geo-
773 physical turbulence models. *Journal of Marine Research*, 235–265.

774 Umlauf, L., Burchard, H., Bolding, K., 2005. The General Ocean Turbu-
775 lence Model (GOTM) – scientific documentation. version 3.2. Tech. Rep. 63,
776 Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany.

777 Umlauf, L., Burchard, H., Hutter, K., 2003. Extending the $k-\omega$ turbulence model
778 towards oceanic applications. *Ocean Modelling* 5, 195–218.

779 van der Westhuysen, A. J., Zijlema, M., Battjes, J. A., 2007. Nonlinear
780 saturation-based whitecapping dissipation in swan for deep and shallow water.
781 Coastal Engineering 54 (2), 151–170.

782 Wargula, A., Raubenheimer, B., Elgar, S., 2014. Wave-driven along-channel
783 subtidal flows in a well-mixed ocean inlet. J. Geophys. Res.

784 Wilcox, D. C., 1988. Reassessment of the scale-determining equation for ad-
785 vanced turbulence models. AIAA Journal 26 (11), 1299–1310.

786 Willmott, C. J., 1982. Some comments on the evaluation of model performance.
787 Bulletin of the American Meteorological Society 63 (11), 1309–1313.

788 Yan, L., 1987. An improved wind input source term for third generation ocean
789 wave modelling. Tech. rep., Koninklijk Nederlands Meteorologisch Instituut.

790 Zippel, S., Thomson, J., 2015. Wave breaking and turbulence at a tidal inlet.
791 Journal of Geophysical Research: Oceans 120 (2), 1016–1031.