

1 **Double trouble for native species under climate change: Habitat loss and increased**
2 **environmental overlap with non-native species**

3

4

5 **Running title:** Climate Change Amplifies Native Species' Risk

6

7 Arif Jan¹*, Ivan Arismendi¹, Guillermo Giannico¹

8

9 ¹Oregon State University, Department of Fisheries, Wildlife, and Conservation Sciences, Nash
10 Hall 104, Corvallis, OR 97331, USA

11 Arif Jan ORCID: <https://orcid.org/0000-0002-2768-3986>

12 Ivan Arismendi ORCID: <https://orcid.org/0000-0002-8774-9350>

13 *Corresponding author: Arif.Jan@oregonstate.edu +1 541 602 7956

14

15 **Abstract.**

16 Climate change and biological invasions are affecting natural ecosystems globally. The effects of
17 these stressors on native species' biogeography have been studied separately, but their combined
18 effects remain overlooked. Here, we develop a framework to assess how climate change
19 influences both the range and niche overlap of native and non-native species using ecological
20 niche models. We hypothesize that species with similar niches will experience both range
21 reductions and increased niche overlap under future climates. We evaluate this using the invasion
22 of smallmouth bass (*Micropterus dolomieu*) and northern pike (*Esox lucius*), and the native
23 salmonids redband trout (*Oncorhynchus mykiss*) and bull trout (*Salvelinus confluentus*) in
24 western North America. Future climate conditions will reduce habitat suitability for native and
25 non-native species, but an increased niche overlap might exacerbate negative effects on native
26 fish. Our framework offers a tool to predict potential species distribution and interactions under
27 climate change, informing adaptive management globally.

28

29 **Keywords:** Biological invasions, salmonids, stream networks, ecological niche, rivers,
30 Smallmouth bass, Northern pike, Trout.

31

32 **Introduction**

33 Global freshwater biodiversity has been disproportionately threatened by climate change and the
34 introduction of non-native species (Parmesan & Yohe, 2003; Sala et al., 2000). Yet, many
35 uncertainties hinge on complex interactions between climate change and biological invasions
36 (Simberloff et al., 2013), particularly when the ecological niches of native and non-native species
37 overlap (García et al., 2020). Ecological niche is defined as an n-dimensional hypervolume that

38 describes the environmental conditions required for a species to thrive (Hutchinson, 1957).
39 Ecological niche models based on the concept of Hutchinson's duality have been used
40 extensively for predicting risks of invasion and climate change by quantifying niches based on
41 the relationships between species distributions and environmental factors (Escobar et al., 2016).
42 Climate change influences the invasion risks and opportunities for non-native species across
43 ecosystems (**Fig. 1**). It also affects native species and their habitats via climate-induced niche
44 shifts and range expansions (Atwater et al., 2017; Cunze et al., 2018; Liu et al., 2023a; Manzoor
45 et al., 2020; Sadir & Marske, 2023). It is still unclear how climate-induced changes may
46 influence the overlap of environmental niches for native and non-native species (Strubbe et al.,
47 2015). These changes in environmental niche overlap could also be expressed as shifts in
48 geographic distributions and thus affect potential ecological interactions between native and non-
49 native species.

50 Elucidating species dynamics in environmental and geographic spaces is crucial for
51 predicting potential invasion outcomes and the conservation of native biodiversity under climate
52 change. Geographic space refers to the spatial representation of physical habitats that species
53 inhabit, whereas the environmental space corresponds to a set of environmental variables
54 representing the ecological niche of a species (Peterson et al., 2011). Environmental space (a.k.a.
55 niche space) can be estimated using ecological niche models (ENMs) that associate
56 environmental variables with observed species occurrences (Cooper & Soberón, 2017). Non-
57 native species often have spatial overlap in their geographic distribution with native
58 species (Escoriza et al., 2021; Freed & Cann, 2009; Guo et al., 2012; Jan et al., 2023) which often
59 leads to the intersection of their ecological niches, indicating potential species interactions
60 (Bradley et al., 2014; Jan et al., 2024.). Over time, the evolving niche dynamics can lead to

61 antagonistic relationships between native and non-native species such as competition or
62 predation that can result in population declines and ultimately, the local extirpation of native
63 species (Haubrock et al., 2020).

64 Factors such as invasion history, dispersal barriers, and species interactions have long
65 influenced the geographic distribution of non-native species (Rato et al., 2024). However, with
66 the forecasted rapid changes in the global climate, these species may also experience shifts in
67 their environmental niches, i.e., the range of conditions and resources they can utilize. As climate
68 change continues to alter these environmental conditions and biotic interactions, species may
69 expand, contract, or shift their realized niches (Escobar et al., 2016; Liu et al., 2023b) (**Fig. 2**).
70 Understanding how climate change affects these environmental niches and, consequently, the
71 geographic distribution of species, is crucial for predicting future ecological interactions between
72 native and non-native species (Rejas et al., 2023).

73 Here, we use a simple framework (**Fig. 2**) to evaluate how climate-induced changes
74 might differentially affect the niche overlap between native and non-native species under climate
75 change and provide insights on predicting ecosystem vulnerability to biological invasions. In this
76 study, we use the term 'environmental niche' as a proxy for the multidimensional representation
77 of environmental attributes influencing species distributions. While not encompassing the full
78 complexity of the true ecological niche, this approach provides a practical framework for
79 projecting potential distributional changes under future conditions. We illustrate our framework
80 using the ongoing invasion of smallmouth bass (*Micropterus dolomieu*) and northern pike (*Esox*
81 *lucius*) on the native habitats of redband trout (*Oncorhynchus mykiss*) and bull trout (*Salvelinus*
82 *confluentus*) in western North America. These non-native species are top predators in their native
83 ranges and have negatively affected native salmonids in invaded systems (Jalbert et al., 2021a;

84 Rubenson & Olden, 2020). First, we examine and contrast the environmental niche overlap
85 among these native and non-native species at present and under a future scenario (2070; SSP2-
86 Shared Socioeconomic Pathway 2-4.5) of climate change. Then, we explore how climate-
87 induced shifts in environmental niches are expressed as geographic distributions and overlap
88 among these native and non-native species.

89 We hypothesized that species with similar environmental niches will exhibit differential
90 geographic overlap in the future. This is because non-climatic environmental factors, such as
91 geophysical templates, may act as additional filters, restricting the use of novel habitats in stream
92 networks. For example, climate change could not only reduce geographic habitat overlap in
93 downstream areas by diminishing habitat suitability (e.g., warmer streams), but also drive both
94 native and non-native species towards similar upstream cold-water refuges potentially increasing
95 species interactions. Climate change, therefore, poses a dual challenge for native species
96 including the increasing risk of losing habitat suitability as well as, increasing the risk of
97 negative interactions with non-native species (e.g., predation and competition). Effective
98 freshwater conservation necessitates targeted policy considerations to achieve biodiversity
99 conservation goals and support ecosystem services that communities worldwide rely upon
100 (Flitcroft et al., 2023). This comprehensive analysis of geographic and environmental dynamics
101 offers critical insights for anticipating and adapting management strategies to the shifting
102 interactions between native and non-native species.

103 **Material and Methods**

104 **Occurrence data for native and non-native species**

105 We aggregated presence records for both native and non-native species from diverse datasets.
106 Specifically, for smallmouth bass and northern pike, we acquired presence records from the

107 Global Biodiversity Information Facility (GBIF) within their native ranges from regions such as
108 the Great Lakes, Ohio, and Upper Mississippi basins (HUC 2-digit watersheds; regions 4, 5, and
109 7) to calibrate our models. The occurrence data from portions of the native range effectively
110 captured the ecological niches of the species, as evidenced by the Gaussian responses observed
111 for all environmental variables. These responses included clear lower and upper limits, as well as
112 optima for each variable, consistent with the theoretical expectations of niche representation
113 (Peterson et al., 2011). Subsequently, we used data from the Pacific Northwest Region (PNW)
114 region (HUC 2-digit watershed; region 17) for model validation. Occurrence data for redband
115 trout and bull trout were sourced from the Oregon Department of Fisheries and Wildlife, Pacific
116 States Marine Fisheries Commission, and GBIF within the Columbia River basin in the PNW.
117 To ensure data quality, we screened all occurrences for potential errors related to any unknown
118 or assumed datum, duplicates, and ambiguous references. Records with geographic uncertainty
119 exceeding 100 m were excluded from our analyses. Please, see the data availability section for
120 more information. URLs of the occurrence data for all species can be accessed at
121 <https://doi.org/10.5061/dryad.w0vt4b935>.

122

123 **Environmental variables**

124 Recent literature advocates for the integration of landscape-scale network and climatic variables
125 with spatially continuous reach-scale topographic stream variables for robust ecological niche
126 modeling within stream networks (Jan et al., 2023). We integrated a suite of climatic,
127 topographic, and network variables identified as key determinants of fish distribution at the basin
128 scale (**Fig. 6**). Stream networks were extracted from the foundational layers of the national
129 hydrography dataset (NHDPlus High Resolution), whereas current and projected climatic

130 variables sourced from the WorldClim Version 2 database (Fick & Hijmans, 2017) at 30 seconds
131 (~1 km²) spatial resolution, were augmented with topographic and network variables at reach
132 scale. We filtered the base hydrography layer from the NHDPlus High Resolution dataset to
133 include only natural flowing water bodies (e.g., stream/river; FCode 33400). Additionally, we
134 applied a flow threshold to retain only streams with a minimum discharge of 0.1 m³ s⁻¹, ensuring
135 the analysis focused on ecologically relevant flow conditions. A detailed methodology of stream
136 network delineation using ArcGIS Pro has been published elsewhere (Jan et al., 2023). Selection
137 of candidate variables was guided by their ecological significance, inter-variable correlations,
138 and their influence on principal components and model performance upon multiple iterations.
139 Variables exhibiting Pearson's correlation coefficients exceeding 0.7 were excluded from the
140 analysis, following recommendations by Dormann et al. (2013). All environmental parameters
141 were assigned to spatially continuous 1-km stream segments using ArcGIS Pro version (3.2.2).

142 For the future environmental variables in 2070, we assumed that topographic and
143 network variables will remain constant, whereas climatic variables were obtained from future
144 climate projections. Our models used the MRI-ESM2-0 (Meteorological Research Institute Earth
145 System Model version 2.0) General Circulation Model (GCM) within the moderate climate
146 change scenario SSP2-4.5 (Shared Socioeconomic Pathway 2-4.5) to develop our final models.
147 The SSP2-4.5 scenario portrays a future scenario where global society adopts measures to
148 combat climate change through the implementation of emission reduction policies, transitioning
149 towards cleaner energy sources, and embracing sustainable practices. The selection of the MRI-
150 ESM2-0 GCM was predicated on its superior spatial resolution compared to alternative GCMs,
151 providing enhanced capabilities for evaluating regional climate attributes and implications.
152 Moreover, this GCM closely aligned with the average temperature and precipitation projections

153 for the Pacific Northwest (PNW) region as outlined in the sixth IPCC report (Roger and Mauger,
154 2021).

155 **Extraction of stream networks: Modelling approach**

156 **Geographic space**

157 Our model selection approach was informed by recent research that evaluated various model
158 types based on their performance metrics, with the top-performing model identified as an
159 ensemble of tuned individual models (Valavi et al., 2021). Notably, down-sampled Random
160 Forest (RF), tuned Maximum Entropy (MaxEnt), and Boosted Regression Trees (BRT) emerged
161 as the top performers in our analysis. In this investigation, we employed an ensemble comprising
162 tuned MaxEnt, BRT, and down-sampled RF models to forecast potential habitat suitability for
163 both native and non-native species. By aggregating suitability scores from MaxEnt, BRT, and RF
164 models based on their Area Under the Curve (AUC) scores, we aimed to enhance predictive
165 accuracy. Given that smallmouth bass and northern pike are non-native species in the PNW, our
166 models were calibrated using data from part of their native ranges before being spatially
167 transferred to the western North America (HUC- region 17) and temporally projected to the
168 future (2070). This enabled us to capture the ecological breadth of non-native species and
169 mitigate the risk of underestimating habitats vulnerable to invasion in western North America.
170 For redband trout and bull trout, models were developed using data in their native ranges and
171 subsequently interpolated to the entire region for both current and future scenarios. To define
172 potentially suitable areas, we applied a threshold to the model output, retaining weight-averaged
173 suitability values above the lower quartile. This thresholding can be thought of as the 25%
174 training percentile in MaxEnt, accounting for a 25% margin of error in occurrence records. This
175 assumption posits that 25% of occurrence records within the least suitable habitats may not

176 represent regions representative of the species' overall habitat. R scripts for ensemble distribution
177 models of all species can be accessed at <https://doi.org/10.5061/dryad.w0vt4b935>.

178

179 **Environmental (Niche) space**

180 To evaluate the overlap between native and non-native species, we utilized the Ellipsenm R
181 package, which quantifies niche overlap in environmental spaces as ellipsoids using the Jaccard
182 index. Modelling ecological niches as ellipsoids in multidimensional space is an approach
183 supported by physiological data. The Jaccard index (J) measures the similarity between two sets
184 by calculating the ratio of their intersection to their union. In the context of ecological niche
185 modeling, this translates to the ratio of the intersection to the union of two environmental niches.

186 The Jaccard index ranges from 0, indicating no overlap, to 1, indicating complete overlap. In this
187 study, we assessed the overlap of environmental niches between native and non-native fish
188 species within their respective environmental spaces. Specifically, we estimated the ecological
189 niches for smallmouth bass and northern pike using occurrence data from both their native
190 habitats and invaded ranges, offering a comprehensive view of their ecological breadth.

191 Conversely, the niche estimation for redband trout and bull trout was based solely on occurrence
192 records from their native ranges under the assumption that these species have likely reached their
193 ecological and geographic limits in their native environments.

194 To estimate the environmental niches of both native and non-native species, we used
195 environmental variables associated to 1000 stream reaches with the highest suitability scores.
196 The robust performance of our ensemble models, as indicated by high Area Under the Curve
197 (AUC) scores, instilled confidence in our niche estimations using variables associated with the
198 top 1000 highly suitable stream reaches. Comparing the niche estimated from species presence

199 data with that derived from the 1000 stream reaches with the highest suitability scores revealed
200 no significant disparities. In projecting niche estimations for the future, we adopted a similar
201 methodology by using the variables associated with the first 1000 stream reaches with the
202 highest suitability scores. Our rationale for this approach was that even under adverse climatic
203 scenarios induced by climate change, if the species were to persist, these 1000 stream reaches
204 would present the highest likelihood of occupancy. During niche estimation within the
205 environmental space, we excluded the lower quartile, representing the 25% least suitable niche
206 space, to enhance the reliability of using environmental conditions that accurately reflected
207 species preferences. This refinement aimed to improve niche estimation by focusing on stream
208 reaches with the highest probability of occupancy in the future.

209 Our approach to estimating future distribution of species was grounded in the
210 environmental associations of their current distribution, operating under the assumption of niche
211 conservatism. However, it is important to note that the environmental niche derived from future
212 distributions should not be interpreted as a definitive ‘future niche’, rather a multidimensional
213 representation of the environmental attributes associated with future distribution. The primary
214 objective of our study was to develop environmental spaces from the variables linked to both
215 present and projected future distribution of species (**Fig. 6**) and to examine the degree of overlap
216 between the environmental spaces for native and non-native species. The focus was on
217 understanding how climate-induced changes in these overlaps might influence ecological
218 interactions between native and non-native species, rather than asserting absolute predictions of
219 the future niche or contributing to the already inconsistent use of terminologies in the field
220 (Peterson & Soberón, 2012; Warren, 2012). R scripts for niche overlap analysis can be accessed
221 at <https://doi.org/10.5061/dryad.w0vt4b935>.

222

223 **Results**224 **Environmental niches of native and non-native species**

225 The niche overlap between native and non-native fishes (**Fig. 3**) will change under a future
226 projected moderate climate scenario (SSP2-4.5, i.e., Shared Socioeconomic Pathway 2-4.5)
227 compared to present conditions. In all our native/non-native species paired comparisons, except
228 for non-native smallmouth bass and native bull trout, the niche overlap increased. Elevation,
229 slope, flow velocity, and temperature variables (e.g., maximum temperature of the warmest
230 month and minimum temperature of the coldest month) were important determinants of niche
231 size for these species (**Figs. S2 and S3**). The niche dynamics analysis showed varying niche
232 sizes among species in the future (**Tab. S1**). Specifically, the niche size of the native bull trout is
233 expected to shrink whereas it will increase for the native redband trout. Temporal changes in
234 niche size occurred despite the overall contraction of the geographic ranges for these native
235 species (**Figs. 4 and 5**). The predicted future reduction of the bull trout's niche is attributed to its
236 confinement to higher elevations. In contrast, redband trout will face a net loss of suitable
237 habitats, but its future distribution is expected to encompass greater environmental heterogeneity
238 compared to current conditions, explaining the anticipated increase in its niche size.
239 Additionally, the niche sizes of smallmouth bass and northern pike will increase slightly in the
240 future, facilitating the expansion and further spread of suitable habitats across our study region
241 (**Figs. 4 and 5**).

242

243 **Geographic distribution of suitable habitats for native and non-native species**

244 Our analyses indicate a substantial range overlap between native and non-native fishes with
245 shifts toward higher elevations in the future (**Figs. 4 and 5**). All species are expected to
246 experience reductions in habitat suitability over time, except for smallmouth bass. The future
247 projected distribution of suitable habitats showed a notable shift towards higher elevation areas
248 with colder stream temperatures for northern pike and, to a lesser degree, for smallmouth bass.
249 This altitudinal range expansion may increase the risk of sympatry with native salmonids.
250 Streams with similar topographic and climatic attributes therefore will potentially represent
251 convergence zones, likely increasing the risk of ecological interactions between these species.

252 For native redband trout and bull trout, as well as non-native northern pike, habitat
253 suitability will decline, particularly at lower elevations (**Figs. 4 and 5**). In contrast, habitat
254 suitability for non-native smallmouth bass at lower elevations is expected to remain unchanged
255 and may even improve at higher elevations. This shift in habitat suitability for these native and
256 non-native fishes explains the observed decrease in niche overlap between bull trout and
257 smallmouth bass. Further, the increase in environmental heterogeneity associated with the future
258 distribution of redband trout will increase its niche overlap with smallmouth bass and northern
259 pike. Statistically significant differences in niche overlap, when compared to null distributions,
260 underscore that habitat ranges will vary according to species-specific preferences (Figures S4
261 and S5 in the supplementary material).

262 Every major basin in our study region contained suitable habitats for the non-native
263 smallmouth bass (**Fig. 4**). Under the future climate scenario, a substantial gain in habitat
264 suitability for this non-native species will occur in middle and higher order streams (**Fig. S6.6**)
265 including the upper Columbia, Puget Sound, Southern Oregon coast, Upper Snake, and Pend
266 Oreille. A slight decline in habitat suitability for smallmouth bass is predicted for the Willamette

267 River basin. Presently, the range overlap between smallmouth bass and redband trout occurred
268 mainly in the Upper Columbia, Spokane region, Lower Snake, Clearwater, Deschutes, and John
269 Day sub-basins. However, climate change will significantly reduce this overlap, primarily
270 remaining in the Middle Snake and Pend Oreille areas. Similarly, the present range overlap
271 between smallmouth bass and bull trout occurred primarily in Pend Oreille, Spokane region,
272 Kootenai, and Upper Columbia sub-basins; but it is projected to shift in the future limited to the
273 Upper Columbia and Kootenai sub-basins. The range overlap between smallmouth bass and
274 redband trout will decrease by 55% in the future, with a shift southward and eastward to higher
275 elevations (average increase of 200 m). The range overlap between smallmouth bass and bull
276 trout will also decrease by 73% in the future, shifting northward and eastward to higher
277 elevations (average increase of 98 m).

278 The present range of the non-native northern pike was located primarily in eastern
279 Washington and Oregon and northwestern Idaho and Montana (**Fig. 5**). Contrary to general
280 expectations for invasive species, there will be a reduction in future habitat suitability for this
281 species, especially in middle and higher order streams (**Fig. S6.6**). Lower order streams in the
282 upper Columbia, Kootenai, Pend Oreille, Spokane, Clearwater rivers, and the mainstem of the
283 Snake River sub-basin will maintain suitable habitats in the future (**Fig. 5**). Conversely, in the
284 northern regions of the upper Columbia and upper Kootenai sub-basins there will be an increase
285 in habitat suitability. Currently, range overlap between northern pike and redband trout occurred
286 in the Upper Columbia, Pend Oreille, Spokane, Lower Snake, John Day, and Deschutes sub-
287 basins. This overlap is expected to persist in the future, albeit with fewer streams supporting both
288 species. Several areas at higher elevations in Kootenai, Upper Columbia, and Pend Oreille sub-
289 basins were projected to become suitable for both species in the future. Similarly, range overlap

290 between northern pike and bull trout occurred mainly in the Upper Columbia, Kootenai, Pend
291 Oreille, and Spokane sub-basins, with some scattered areas in the Clearwater and Salmon basins.
292 This overlap is expected to be restricted to the northern portions of the Upper Columbia and
293 Kootenai basins in the future, primarily due to the reductions in habitat suitability for bull trout
294 in other basins. The range overlap between northern pike and redband trout will decrease by 79%
295 in the future, with a shift northward and westward to higher elevations (average increase of 102
296 m). The range overlap with bull trout will also decrease by 83%, shifting northward and eastward
297 to higher elevations (average increase of 112 m).

298

299 **Discussion**

300 We demonstrate that climate change can lead to the expansion or contraction of ecological
301 niches, affecting the availability and quality of suitable habitats for both native and non-native
302 fishes. Our framework contextualizes observed shifts in environmental niches showing increases
303 and decreases in range overlap among species which could result in unexpected outcomes for
304 native species. Changes in ecological niches due to climate change have been observed across
305 ecosystems (Walther et al., 2002) with consequences for niche overlap between native and non-
306 native species (Bradley et al., 2014; Sorte et al., 2010). One possible outcome of decreasing
307 habitat suitability due to climate change is to push species to occupy the habitats that will remain
308 suitable for them in smaller geographic areas resulting in an increased environmental overlap.
309 These climate-induced changes to niche overlap between native and non-native species will
310 likely result in altered ecological interactions (Alexander et al., 2016).

311 Our model projections indicate a decline in habitat suitability for native salmonids. These
312 species are particularly vulnerable to habitat loss due to rising river temperature and altered flow

313 regimes (Beechie et al., 2013), but see (Armstrong et al., 2021). The habitat ranges of cold-
314 water-dependent salmonids are anticipated to shrink drastically in the future (Isaak et al., 2012).
315 Although suitable habitats for the non-native northern pike will be reduced too, mainly in
316 mainstems and major tributaries, adequate habitats are expected to persist in some areas of the
317 upper Columbia. Additionally, an increase in habitat suitability is foreseen in the northern
318 regions of the upper Columbia and upper Kootenai sub-basins. Given the warm water tolerance
319 of smallmouth bass their geographic range is expected to expand under anticipated climate
320 change scenarios as shown in other studies (Carey et al., 2011; Rubenson & Olden, 2020;
321 Winkowski et al., 2024). These changes threaten the viability of native salmonid populations and
322 point to the pressing need for conservation efforts that take into consideration the evolving
323 habitat dynamics between native and non-native species.

324 The geographic distribution of suitable habitats for native redband trout and bull trout,
325 and non-native smallmouth bass and northern pike will undergo reductions under future climatic
326 conditions, and this will be accompanied by an upward elevation shift. The resulting reduction in
327 range overlap is primarily due to the loss of suitable habitats at low elevations and the
328 convergence of species into colder areas upstream. These findings align with the broader
329 literature that emphasizes the dynamic nature of species distributions in response to climate
330 change (Carim et al., 2022; Rubenson & Olden, 2020), underscoring the importance of
331 considering elevation shifts in conservation planning.

332 Climate change could pose a dual threat to native species by declining their habitat
333 suitability and intensifying predation pressure from non-native species. Cold-water refuges in
334 upstream areas will serve as converging zones for both native and non-native fishes, hence
335 facilitating biotic interactions between them. Predatory interactions toward salmonids have been

336 documented for smallmouth bass and northern pike in basins where these species are in sympatry
337 (Carim et al., 2019; Jalbert et al., 2021b; Rubenson & Olden, 2020). The presence of smallmouth
338 bass and northern pike in our study region represents year-round predation and competition
339 pressures during the early life-history stages of salmonids. This increased interaction could lead
340 to local extinctions of native salmonids similar to patterns observed in southcentral Alaska
341 (Jalbert et al., 2021b). Thus, the dynamics between native and non-native fishes extend beyond
342 mere habitat gain or loss due to climate change and highlights the need for integrated
343 management strategies that address both direct and indirect effects of interactions among species.

344 We acknowledge the inherent limitations and assumptions associated with using
345 ecological niche models to infer implications for species interactions stemming from future
346 quality habitat redistribution. First, our models assume that ecological niches are ellipsoidal; an
347 assumption that finds some support in physiological data (Cobos et al., 2020). Second, the
348 habitat distribution maps generated by our models do not account for dispersal barriers or in the
349 case of non-native species, any suppression or control program. These maps identify areas that
350 could potentially offer suitable habitats for the species, contingent upon their access to them.
351 Nonetheless, our results can inform suppression and eradication programs for non-native species
352 by mapping their suitable habitats. Given the expansive range of these species and the limited
353 management resources, identifying the spatial distribution of available habitats is a critical initial
354 step in predicting the future impacts their potential geographic extent of non-native species (Jan
355 et al., 2023). Our approach is simple and cost-effective for prioritizing habitats for the early
356 detection and monitoring of invasive species and their potential future impacts on native species.

357 In conclusion, our study underscores the intricate and multifaceted impacts of climate
358 change on the interactions between native and non-native species. By employing an ensemble of

359 species distribution models, we demonstrated that predicted changes in climate not only degrade
360 habitat suitability for native species, but also facilitate increased niche overlap with invasive
361 species in some areas. This dual threat - declining habitat suitability and heightened predation
362 pressure - poses significant challenges for the conservation of native species. Local extinctions of
363 native species may happen not just by their inability to adapt to the predicted warming climate,
364 but more so by heightened predation pressure from non-native species (Carim et al., 2022; Crane
365 et al., 2015; Monroe, 2012). Our findings highlight the necessity for adaptive management
366 strategies that account for these complex dynamics, ensuring the protection of vulnerable native
367 species. This framework, adaptable across taxa and ecosystems, provides a robust tool for
368 predicting and mitigating the future impacts of climate change and biological invasions on
369 biodiversity.

370 **Acknowledgment:** We would like to thank Tucker Kirkes for his assistance in creating the
371 Figure 1 for this manuscript.

372

373 **References**

374 Alexander, J. M., Diez, J. M., Hart, S. P., & Levine, J. M. (2016). When climate reshuffles
375 competitors: A call for experimental macroecology. *Trends in Ecology & Evolution*,
376 31(11), 831–841.

377 Armstrong, J. B., Fullerton, A. H., Jordan, C. E., Ebersole, J. L., Bellmore, J. R., Arismendi, I.,
378 Penaluna, B. E., & Reeves, G. H. (2021). The importance of warm habitat to the growth
379 regime of cold-water fishes. *Nature Climate Change*, 11(4), 354–361.

380 <https://doi.org/10.1038/s41558-021-00994-y>

381 Atwater, D. Z., Ervine, C., & Barney, J. N. (2017). Climatic Niche Shifts Are Common in
382 Introduced Plants. *Nature Ecology & Evolution*. <https://doi.org/10.1038/s41559-017-0396-z>

384 Beechie, T., Imaki, H., Greene, J., Wade, A., Wu, H., Pess, G., Roni, P., Kimball, J., Stanford, J.,
385 Kiffney, P., & Mantua, N. (2013). Restoring salmon habitat for a changing climate. *River
386 Research and Applications*, 29(8), 939–960. <https://doi.org/10.1002/rra.2590>

387 Bradley, B. A., Early, R., & Sorte, C. J. B. (2014). Space to invade? Comparative range infilling
388 and potential range of invasive and native plants. *Global Ecology and Biogeography*,
389 24(3). <https://doi.org/10.1111/geb.12275>

390 Carey, M. P., Sanderson, B. L., Friesen, T. A., Barnas, K. A., & Olden, J. D. (2011). Smallmouth
391 Bass in the Pacific Northwest: A Threat to Native Species; a Benefit for Anglers. *Reviews
392 in Fisheries Science*, 19(3), 305–315. <https://doi.org/10.1080/10641262.2011.598584>

393 Carim, K., Eby, L., Miller, L., McLellan, H., Dupuis, V., & Schwartz, M. (2022). Mechanism of
394 northern pike invasion in the Columbia River Basin. *Management of Biological
395 Invasions*, 13(1), 168–190. <https://doi.org/10.3391/mbi.2022.13.1.10>

396 Carim, K. J., Caleb Dysthe, J., McLellan, H., Young, M. K., McKelvey, K. S., & Schwartz, M.
397 K. (2019). Using environmental DNA sampling to monitor the invasion of nonnative
398 Esox lucius (northern pike) in the Columbia River basin, USA. *Environmental DNA*,
399 1(3), 215–226. <https://doi.org/10.1002/edn3.22>

400 Cobos, M. E., Osorio-Olvera, L., Soberon, J., Peterson, A. T., & Barve, N. (2020). *ecological
401 niche's characterizations using ellipsoids. R package*. Available at
402 <https://github.com/marlonecobos/ellipsenm>

403 Cooper, J. C., & Soberón, J. (2017). Creating individual accessible area hypotheses improves
404 stacked species distribution model performance. *Global Ecology and Biogeography*,
405 27(1). <https://doi.org/10.1111/geb.12678>

406 Crane, D. P., Miller, L. M., Diana, J. S., Casselman, J. M., Farrell, J. M., Kapuscinski, K. L., &
407 Nohner, J. K. (2015). Muskellunge and Northern Pike Ecology and Management:
408 Important Issues and Research Needs. *Fisheries*, 40(6), 258–267.
409 <https://doi.org/10.1080/03632415.2015.1038382>

410 Cunze, S., Kochmann, J., Koch, L., & Klimpel, S. (2018). Niche Conservatism of Aedes
411 Albopictus and Aedes Aegypti—Two Mosquito Species With Different Invasion
412 Histories. *Scientific Reports*. <https://doi.org/10.1038/s41598-018-26092-2>

413 Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G.,
414 Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E.,
415 Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013).
416 Collinearity: A review of methods to deal with it and a simulation study evaluating their
417 performance. *Ecography*, 36(1), 27–46. <https://doi.org/10.1111/j.1600-0587.2012.07348.x>

419 Escobar, L. E., Qiao, H., Phelps, N. B. D., Wagner, C. K., & Larkin, D. J. (2016). Realized niche
420 shift associated with the Eurasian charophyte *Nitellopsis obtusa* becoming invasive in
421 North America. *Scientific Reports*, 6 (June), 1–15. <https://doi.org/10.1038/srep29037>

422 Escoriza, D., Sunyer, P., Poch, S., & Boix, D. (2021). Habitat overlap and body condition in
423 aquatic turtles: Are there additive effects between invasive and native species?
424 *Knowledge & Management of Aquatic Ecosystems*, 422, Article 422.
425 <https://doi.org/10.1051/kmae/2021002>

426 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces
427 for global land areas. *International Journal of Climatology*, 37(12), 4302–4315.

428 Flitcroft, R. L., Abell, R., Harrison, I., Arismendi, I., & Penaluna, B. E. (2023). Making global
429 targets local for freshwater protection. *Nature Sustainability*, 6(12), Article 12.
430 <https://doi.org/10.1038/s41893-023-01193-7>

431 Freed, L. A., & Cann, R. L. (2009). Negative Effects of an Introduced Bird Species on Growth
432 and Survival in a Native Bird Community. *Current Biology*, 19(20), 1736–1740.
433 <https://doi.org/10.1016/j.cub.2009.08.044>

434 García, K., Sanpera, C., Jover, L., Palazón, S., Gosálbez, J., Górski, K., & Melero, Y. (2020).
435 High trophic niche overlap between a native and invasive mink does not drive trophic
436 displacement of the native mink during an invasion process. *Animals*, 10(8), 1387.

437 Guo, Q., Sax, D. F., Qian, H., & Early, R. (2012). Latitudinal shifts of introduced species:
438 Possible causes and implications. *Biological Invasions*, 14(3), 547–556.
439 <https://doi.org/10.1007/s10530-011-0094-8>

440 Haubrock, P. J., Pilotto, F., Innocenti, G., Cianfanelli, S., & Haase, P. (2020). Two centuries for
441 an almost complete community turnover from native to non-native species in a riverine
442 ecosystem. *Global Change Biology*, 27(3). <https://doi.org/10.1111/gcb.15442>

443 Hutchinson, G. E. (1957). Concluding Remarks. *Cold Spring Harbor Symposia on Quantitative
444 Biology*, 22, 415–427. <https://doi.org/10.1101/SQB.1957.022.01.039>

445 Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream
446 and river temperatures across the northwest U.S. from 1980–2009 and implications for
447 salmonid fishes. *Climatic Change*, 113(2), 499–524. <https://doi.org/10.1007/s10584-011-0326-z>

449 Jalbert, C., Falke, J., López, J., Dunker, K., Sepulveda, A., & Westley, P. (2021a). Vulnerability
450 of Pacific salmon to invasion of northern pike (*Esox lucius*) in Southcentral Alaska.
451 *PLOS ONE*, 16, e0254097. <https://doi.org/10.1371/journal.pone.0254097>

452 Jalbert, C., Falke, J., López, J., Dunker, K., Sepulveda, A., & Westley, P. (2021b). Vulnerability
453 of Pacific salmon to invasion of northern pike (*Esox lucius*) in Southcentral Alaska.
454 *PLOS ONE*, 16, e0254097. <https://doi.org/10.1371/journal.pone.0254097>

455 Jan, A., Arismendi, I., Giannico, G., & Flitcroft, R. (2023). Habitat overlap among native and
456 introduced cold-water fishes in the Himalayas. *Scientific Reports*, 13(1), Article 1.
457 <https://doi.org/10.1038/s41598-023-41778-y>

458 Jan, A., Giannico, G., Arismendi, I., & Flitcroft, R. (2024). Unveiling climatic niches for deeper
459 insights into invasion potential and enhanced distribution models of freshwater fishes.
460 *Ecology of Freshwater Fish*, e12784. <https://doi.org/10.1111/eff.12784>

461 Jan, A. (2025). R scripts and Data URLs for distribution and niche analysis. Dryad.
462 <https://doi.org/10.5061/dryad.w0vt4b935>

463 Liu, Y., Heberling, J. M., Wang, Z., Soltis, D. E., & Soltis, P. S. (2023b). Niche unfilling
464 dominates the naturalization of species from intercontinentally disjunct genera. *Global
465 Ecology and Biogeography*, 32(11), 1977–1990. <https://doi.org/10.1111/geb.13750>

466 Manzoor, S. A., Griffiths, G., Obiakara, M. C., Esparza-Estrada, C. E., & Lukáč, M. (2020).
467 Evidence of Ecological Niche Shift in *Rhododendron Ponticum* (L.) in Britain:
468 Hybridization as a Possible Cause of Rapid Niche Expansion. *Ecology and Evolution*.
469 <https://doi.org/10.1002/ece3.6036>

470 Monroe, B. (2012). *Northern pike flourish in Columbia River tributary; Washington cracks*
471 [down.https://www.oregonlive.com/sports/oregonian/bill_monroe/2012/02/northern_pike_](https://www.oregonlive.com/sports/oregonian/bill_monroe/2012/02/northern_pike_flourish_in_colu.html)
472 [flourish_in_colu.html](https://www.oregonlive.com/sports/oregonian/bill_monroe/2012/02/northern_pike_flourish_in_colu.html)

473 Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts
474 across natural systems. *Nature*, 421(6918), 37–42. <https://doi.org/10.1038/nature01286>

475 Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche
476 modeling: Getting the Concepts Right. *Natureza a Conservacao*, 10(2), 102–107.
477 <https://doi.org/10.4322/natcon.2012.019>

478 Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura,
479 M., & Araújo, M. B. (2011). *Ecological niches and geographic distributions (MPB-49)*.
480 Princeton University Press.

481 Rato, C., Silva-Rocha, I., & Sillero, N. (2024). What does the future hold for a thermophilic and
482 widely introduced gecko, *Tarentola mauritanica* (Squamata: Phyllodactylidae)?
483 *Biological Invasions*, 26(4), 1061–1074. <https://doi.org/10.1007/s10530-023-03229-7>

484 Rejas, D., Oberdorff, T., Declerck, S., & Winder, M. (2023). The introduced *Arapaima gigas* in
485 the Bolivian Amazon: Trophic position and isotopic niche overlap with native species.
486 *Ecology of Freshwater Fish*, 32(4). <https://doi.org/10.1111/eff.12734>

487 Rubenson, E. S., & Olden, J. D. (2020). An invader in salmonid rearing habitat: Current and
488 future distributions of smallmouth bass (*Micropterus dolomieu*) in the Columbia River
489 Basin. *Canadian Journal of Fisheries and Aquatic Sciences*, 77(2), 314–325.
490 <https://doi.org/10.1139/cjfas-2018-0357>

491 Sadir, M., & Marske, K. A. (2023). Climatic Niche Overlap Models Reveal Niche Partitioning
492 Among Black Widow Spiders and Potential Ecological Impacts of Invasive Brown

493 Widows in North America. *Frontiers of Biogeography*.

494 <https://doi.org/10.21425/f5fbg35943>

495 Sala, O. E., Stuart Chapin, F., Iii, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-

496 Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M.,

497 Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., &

498 Wall, D. H. (2000). Global Biodiversity Scenarios for the Year 2100. *Science*, 287(5459),

499 1770–1774. <https://doi.org/10.1126/science.287.5459.1770>

500 Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp,

501 F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà,

502 M. (2013). Impacts of biological invasions: What's what and the way forward. *Trends in*

503 *Ecology and Evolution*, 28(1), 58–66. <https://doi.org/10.1016/j.tree.2012.07.013>

504 Sorte, C. J. B., Williams, S. L., & Carlton, J. T. (2010). Marine range shifts and species

505 introductions: Comparative spread rates and community impacts. *Global Ecology and*

506 *Biogeography*, 19(3), 303–316. <https://doi.org/10.1111/j.1466-8238.2009.00519.x>

507 Strubbe, D., Beauchard, O., & Matthysen, E. (2015). Niche conservatism among non-native

508 vertebrates in Europe and North America. *Ecography*, 38(3), 321–329.

509 <https://doi.org/10.1111/ecog.00632>

510 Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2021). Predictive performance

511 of presence-only species distribution models: A benchmark study with reproducible code.

512 *Ecological Monographs*, 0(0), 1–27. <https://doi.org/10.1002/ecm.1486>

513 Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-

514 M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate

515 change. *Nature*, 416(6879), 389–395. <https://doi.org/10.1038/416389a>

516 Warren, D. L. (2012). In defense of 'niche modeling'. *Trends in ecology & evolution*, 27(9), 497-
517 500.

518 Winkowski, J. J., Olden, J. D., & Brown, S. (2024). Integrating spatial stream network models
519 and environmental DNA to estimate current and future distributions of nonnative
520 Smallmouth Bass. *Transactions of the American Fisheries Society*.
521 <https://doi.org/10.1002/tafs.10454>

522

523

524 **Figure 1.** Map depicting species examined for ecological or climatic niche overlap to evaluate
525 temporal distribution patterns, niche dynamics, and invasion potential. Understanding these
526 dynamics is vital for forecasting the impacts of climate change and biological invasions on future
527 species distributions. (a) *Pusa hispida* (b) *Phengaris arion* (c) *Hypsugo savii* (d) *Perca*
528 *fluviatilis* (e) *Panthera uncia* (f) *Emberiza schoeniclus* (g) *Amazilia yucatanensis* (h) *Azolla*
529 *filiculoides** (i) *Bombus ruderatus** (j) *Loxodonta africana* (k) *Ochotona sikimaria* (l) *Litoria*
530 *caerulea*. More information about the systematic literature review informing this figure, which
531 depicts the influence of climate-induced niche dynamics on future species distributions and
532 potential interactions, is available in the Supplementary Material. Asterisks denote invasive
533 species. All images are licensed under CC BY 4.0. Map lines delineate study areas and do not
534 necessarily depict accepted national boundaries.
535

536 **Figure 2.** Conceptual framework illustrating the 'double trouble' for native species under future
537 climate change. (a) In environmental space, native species' niches are predicted to contract while
538 non-native niches expand, potentially increasing niche overlap. (b) In geographic space, native
539 species are expected to lose high-quality habitat (red) and shift upstream, reducing overlap
540 (yellow) with expanding non-native species (orange) at higher elevations. Alternative
541 hypotheses, such as native expansion, non-native contraction, or increased overlap, are not
542 shown. This figure highlights the interplay between niche contraction, habitat degradation, and
543 distribution shifts, emphasizing the challenges native species face from both increased
544 competition and reduced habitat availability.
545

546 **Figure 3.** Differential environmental niche overlap ($J = \text{Jaccard index}$) between native and non-
547 native species under the present and future (2070) climatic scenarios. (a) future increase in niche
548 overlap between redband trout and both smallmouth bass and northern pike. (b) future decrease
549 in niche overlap between bull trout and smallmouth bass, and future increase in niche overlap
550 between bull trout and northern pike. Except for the smallmouth bass - bull trout, increase in
551 niche overlaps between other native/non-native pairs support our hypothesis of increased niche
552 overlaps in future between native and non-native species.

553

554 **Figure 4.** Projected changes in the distribution of suitable habitats and habitat overlap for non-
555 native smallmouth bass, and native redband trout and bull trout under present and a moderate
556 climatic scenario in the future (2070). Panels (a), (b), and (c) depict the changes in the
557 distribution of suitable habitats for redband trout, smallmouth bass, and bull trout, respectively,
558 between present and future including areas that increased suitability (gain = blue), decreased
559 suitability (loss = orange), and did not change habitat quality (unchanged = yellow). Changes in
560 overlap of suitable habitats between present and future are shown between smallmouth bass and
561 redband (d) and between smallmouth bass and bull trout (e). Density of overlapped suitable
562 habitats under present and future climatic scenarios are shown between smallmouth bass and
563 redband trout (f), and between small mouth bass and bull trout (g). Map lines delineate study
564 areas and do not necessarily depict accepted national boundaries.
565

566

567 **Figure 5.** Projected changes in the distribution of suitable habitats and habitat overlap for non-
568 native northern pike, and native redband trout and bull trout under present and a moderate
569 climatic scenario in the future (2070). Panels (a), (b), and (c) depict the changes in the
570 distribution of suitable habitats for redband trout, northern pike, and bull trout, respectively,
571 between present and future including areas that increased suitability (gain = blue), decreased
572 suitability (loss = orange), and did not change habitat quality (unchanged = yellow). Changes in
573 overlap of suitable habitats between present and future are shown between northern pike and
574 redband (d) and between northern pike and bull trout (e). Density of overlapped suitable habitats
575 under present and future climatic scenarios are shown between northern pike and redband trout
576 (f), and between northern pike bass and bull trout (g). Map lines delineate study areas and do not
577 necessarily depict accepted national boundaries.
578

579 **Figure 6.** (a) List of variables used in ensemble distribution models and niche overlap analysis.
580 (b) Map illustrating the study area's 2-digit hydrological units, displaying parts of the native
581 range of smallmouth bass and Northern pike on the right and the invaded range on the left.
582 Species occurrence data are indicated by dots, with blue dots representing Northern pike and
583 yellow representing smallmouth bass. Map lines delineate study areas and do not necessarily
584 depict accepted national boundaries.

Figure 1. Map depicting species examined for ecological or climatic niche overlap to evaluate temporal distribution patterns, niche dynamics, and invasion potential. Understanding these dynamics is vital for forecasting the impacts of climate change and biological invasions on future species distributions. (a) *Pusa hispida* (b) *Phengaris arion* (c) *Hypsugo savii* (d) *Perca fluviatilis* (e) *Panthera uncia* (f) *Emberiza schoeniclus* (g) *Amazilia yucatanensis* (h) *Azolla filiculoides** (i) *Bombus ruderatus** (j) *Loxodonta africana* (k) *Ochotona sikimaria* (l) *Litoria caerulea*. More information about the systematic literature review informing this figure, which depicts the influence of climate-induced niche dynamics on future species distributions and potential interactions, is available in the Supplementary Material. Asterisks denote invasive species. All images are licensed under CC BY 4.0

710x581mm (236 x 236 DPI)

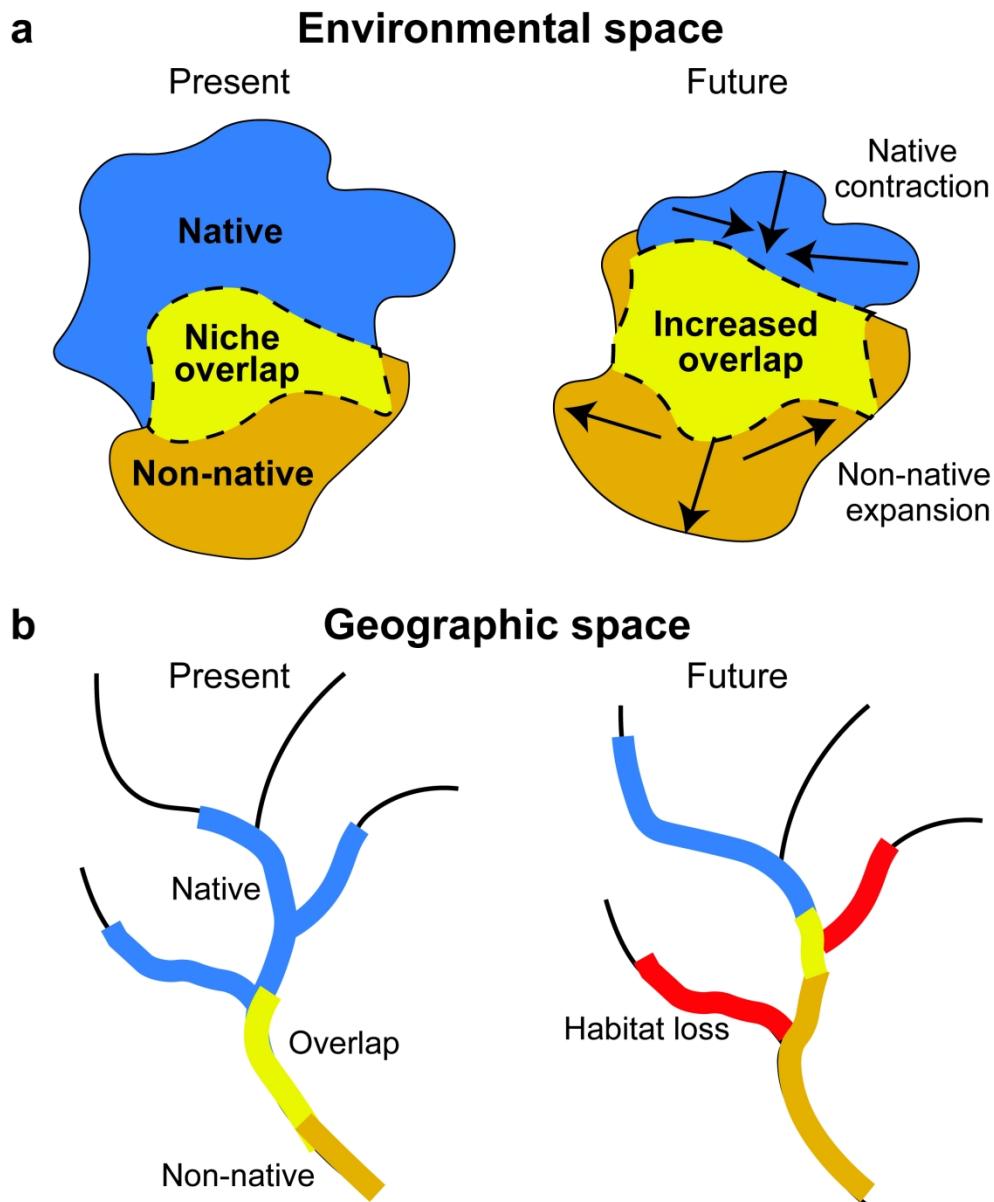


Figure 2. Conceptual framework illustrating the 'double trouble' for native species under future climate change. (a) In environmental space, native species' niches are predicted to contract while non-native niches expand, potentially increasing niche overlap. (b) In geographic space, native species are expected to lose high-quality habitat (red) and shift upstream, reducing overlap (yellow) with expanding non-native species (orange) at higher elevations. Alternative hypotheses, such as native expansion, non-native contraction, or increased overlap, are not shown. This figure highlights the interplay between niche contraction, habitat degradation, and distribution shifts, emphasizing the challenges native species face from both increased competition and reduced habitat availability.

98x119mm (600 x 600 DPI)

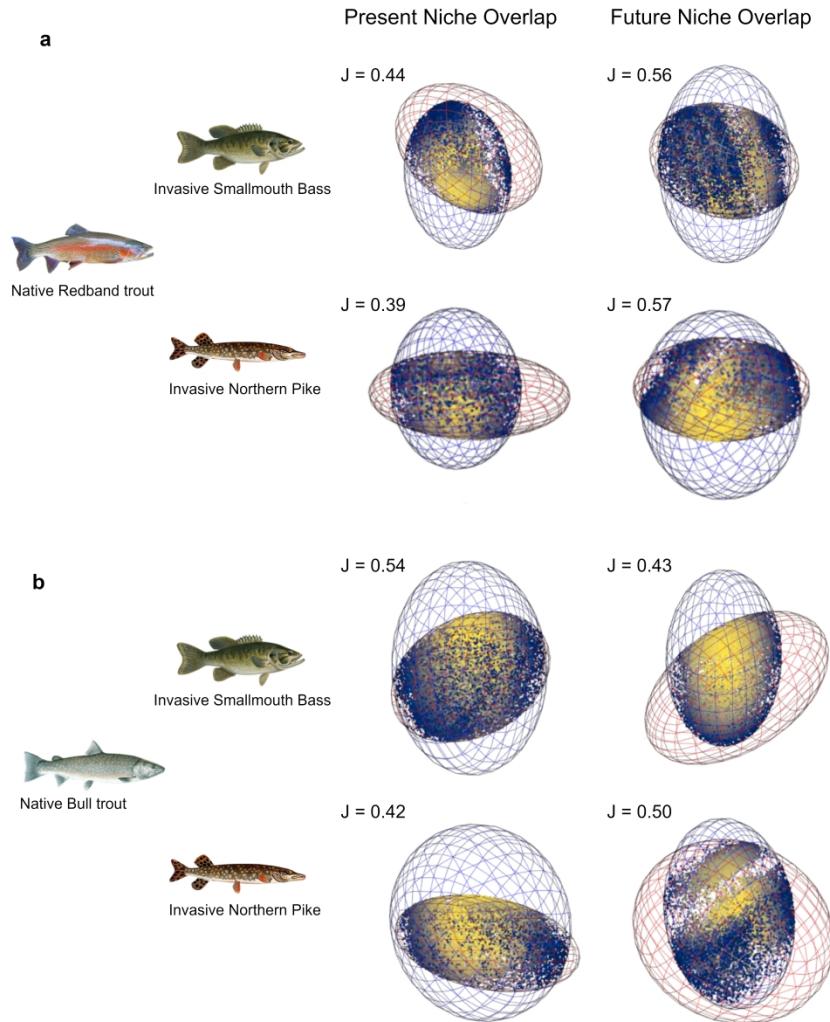


Figure 3. Differential environmental niche overlap (J = Jaccard index) between native and non-native species under the present and future (2070) climatic scenarios. (a) future increase in niche overlap between redband trout and both smallmouth bass and northern pike. (b) future decrease in niche overlap between bull trout and smallmouth bass, and future increase in niche overlap between bull trout and northern pike.

Except for the smallmouth bass - bull trout, increase in niche overlaps between other native/non-native pairs support our hypothesis of increased niche overlaps in future between native and non-native species.

548x710mm (236 x 236 DPI)

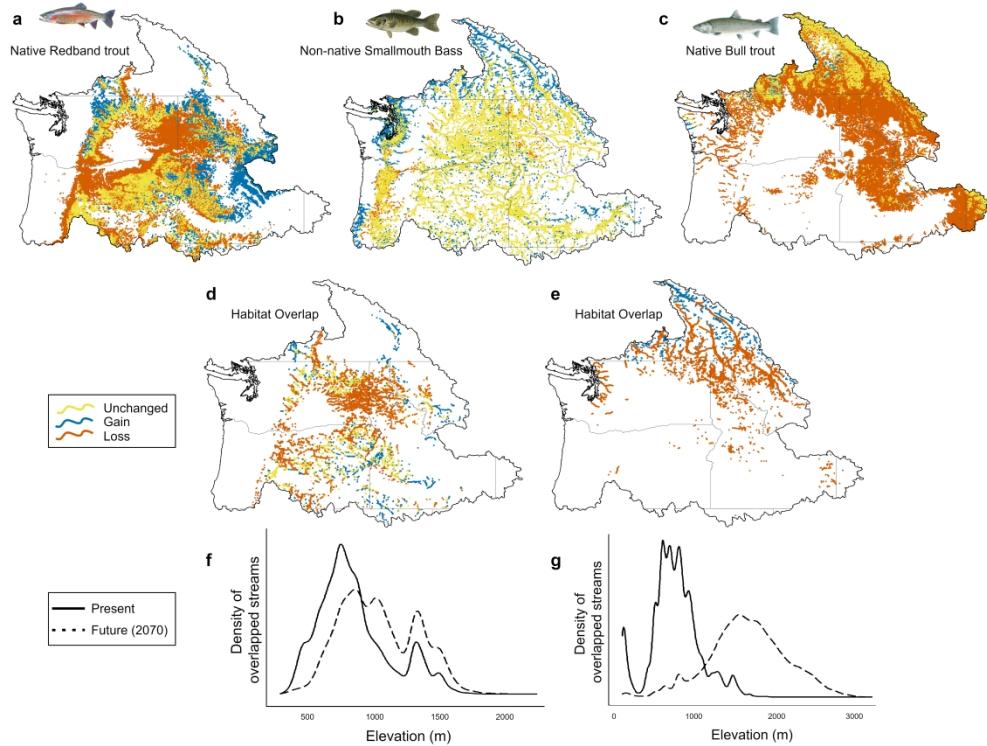


Figure 4. Projected changes in the distribution of suitable habitats and habitat overlap for non-native smallmouth bass, and native redband trout and bull trout under present and a moderate climatic scenario in the future (2070). Panels (a), (b), and (c) depict the changes in the distribution of suitable habitats for redband trout, smallmouth bass, and bull trout, respectively, between present and future including areas that increased suitability (gain = blue), decreased suitability (loss = orange), and did not change habitat quality (unchanged = yellow). Changes in overlap of suitable habitats between present and future are shown between smallmouth bass and redband (d) and between smallmouth bass and bull trout (e). Density of overlapped suitable habitats under present and future climatic scenarios are shown between smallmouth bass and redband trout (f), and between small mouth bass and bull trout (g).

710x548mm (236 x 236 DPI)

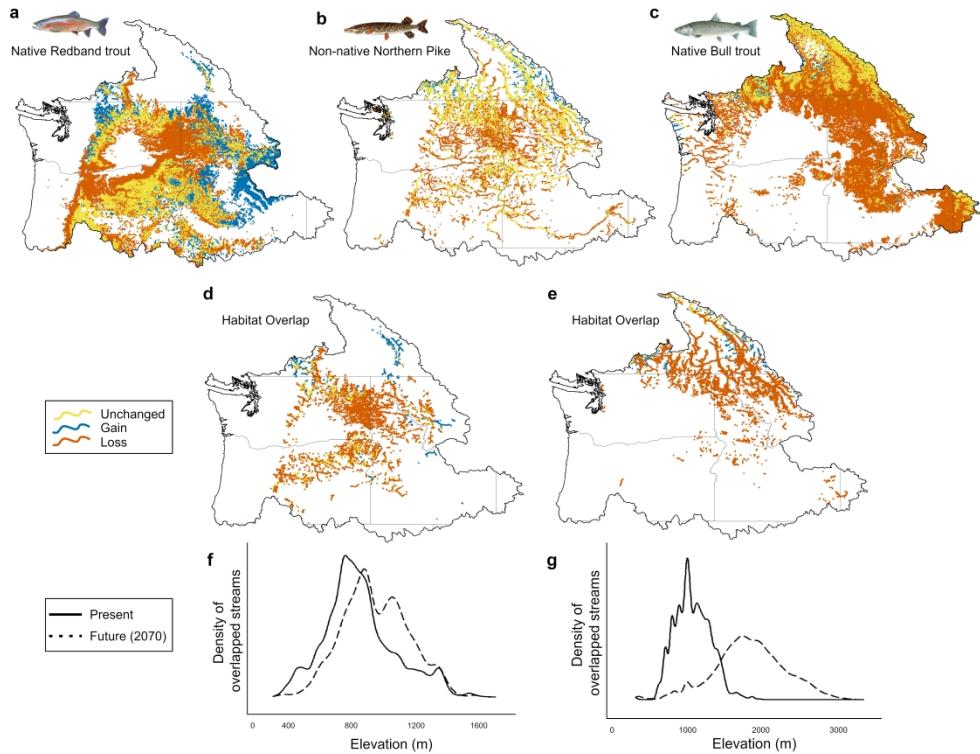


Figure 5. Projected changes in the distribution of suitable habitats and habitat overlap for non-native northern pike, and native redband trout and bull trout under present and a moderate climatic scenario in the future (2070). Panels (a), (b), and (c) depict the changes in the distribution of suitable habitats for redband trout, northern pike, and bull trout, respectively, between present and future including areas that increased suitability (gain = blue), decreased suitability (loss = orange), and did not change habitat quality (unchanged = yellow). Changes in overlap of suitable habitats between present and future are shown between northern pike and redband (d) and between northern pike and bull trout (e). Density of overlapped suitable habitats are shown between northern pike and redband trout (f), and between northern pike bass and bull trout (g).

710x548mm (236 x 236 DPI)

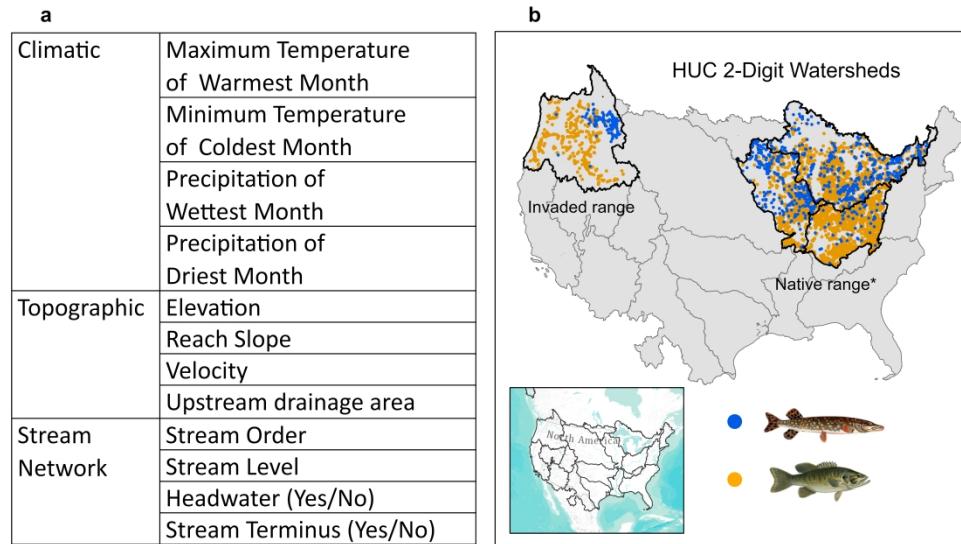


Figure 6. (a) List of variables used in ensemble distribution models and niche overlap analysis. (b) Map illustrating the study area's 2-digit hydrological units, displaying parts of the native range of smallmouth bass and Northern pike on the right and the invaded range on the left. Species occurrence data are indicated by dots, with blue dots representing Northern pike and yellow representing smallmouth bass.

855x484mm (236 x 236 DPI)