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RECENT RESEARCH IN NUMERICAL METHODS
AT THE NATIONAL METEOROLOGICAL CENTER*

ABSTRACT

An account is given of recent investigations into numerical
techniques for solving the primitive meteorological equations.
Although an adequate differencing system had been in use in the NMC
six-layer operational model, occasional failure to complete an
integration due apparently to numerical problems prompted a re-
examination of the question of non-linear numerical stability.

It was noted that the model invariably exhibited an amplifying
temporal computational mode prior to encountering instability.
Simultaneously, experiments in primitive equation integrations over
limited regions of the Northern Hemisphere revealed the development
of two-grid-interval disturbances in space which had been called the
spatial computational mode, and which are related to the lateral
boundary conditions. Parallel inquiries into the nature of these
two phenomena were subsequently combined into an investigation of
the lattice structure of the difference equations. The term lattice
structure refers to the tendency of the difference equations to
yield quasi-independent numerical solutions on distinct subsets of
the basic grid-point lattice. This investigation led to a theory in
which the basic concept is that the interaction of high frequency/
wave number components of undifferentiated coefficients of non-linear
terms with the differentiated variables can give rise to unstable
growth of the numerical solutions. The theory suggested that space-
time filtering of the undifferentiated coefficients would achieve
relative stability, and limited experimental evidence tended to
support this suggestion. An important by-product of the stability
investigation was the realization that advantage could be taken of
the lattice structure to effect significant economies in computation
time by using only one of the quasi-independent subsets of the basic
lattice.

An effort to achieve computational economy by means of semi- /
implicit integration techniques was also undertaken. This development
followed the approach of scientists in Canada and the Sowiet Union.
Treating implicitly the linear terms of the primitive equations which
govern gravitational oscillatioms results in a boundary-value problem
to be solved at each time step, but permits a much longer time step
to be used.

* This paper was presented at the International Conference on
Meteorology held at Tel Aviv, Israel, November 30-December 4, 1970.



These investigations have culminated in a more efficient
differencing system for integrating the primitive equations. The
semi-implicit time integration technique is combined with a spatial-
differencing system based on a staggered arrangement of dependent
variables. Relative numerical stability is achieved by use of space-
time filtering of ccefficients of non-linear terms. In principle,
this system results in an order of magnitude reduction in computing
time for the same order of spatial truncation error. The results of
applying this system to a primitive equation barotropic model are
shown in an experimental integration.

The proposed differencing system may be extended to multi-level
models in which both external and internal gravity modes must be comn-
sidered. Since some of the internal modes have relatively low phase
speeds, implicit treatment of all the internal modes may not be
necessary, so that alternative approaches to the semi-implicit inte-
gration of baroclinic models are possible.

Two alternatives currently under development at NMC are described:
one in which all gravity modes are treated implicitly, and another in
which only the external and the fastest internal mode are treated
implicitly. It is intended that one of these approaches will be used
to develop a high-resolution short-range prediction model to be
integrated over a limited portion of the Northern Hemisphere.



1. Introduction

This paper summarizes and places in perspective, investigations
conducted over the past two years at the National Meteorological
Center into numerical techniques for integrating the quasi-static
system of equations. Originally motivating this effort was a desire
to formulate an atmospheric prediction model with increased spatial
resolution to be integrated over a limited portion of a hemisphere,
with the intent of effecting significant improvements in forecasts
for up to 36 hours. The work of British scientists (Bushby and Timpson;
1967; Benwell and Timpson, 1968; Bushby, 1968) has shown that this
approach has much promise for improving short-range weather forecasts.
However, in order for a technique to be of practical utility, its
routine use must be economically feasible. As the spatial resolution
increases, so also does the time required to perform the computations.
In turn, both the cost of the computations and the delay in distributing
the product to the user increase. These facts led to the realization
that a relatively high-resolution model integrated over an area the
size of North America would probably be doomed to non-implementable
status because of the computation time required. Accordingly, a
primary objective of the effort summarized in this paper has been the
development of more efficient methods of numerical integratiom. Such
methods presumably would not be restricted in applicability to high-
resolution, limited-area models, but also would find use in models
designed for larger-scale, longer-range forecasting. Currently under
development at NMC is a hemispheric eight-layer primitive equation
model formulated in terms of spherical coordinates on a latitude-
longitude grid lattice. The model is destined to be the next operational
model, and is designed to be easily extendible to the entire globe. A
fully global model with reasonable spatial resolution could cbviously
profit from more efficient numerical techniques. In addition, since
hemispheric and global models may be integrated for periods of several
days, the problem of non-linear numerical instability (Phillips, 1959)
is of more concern than in a short-range model. A second but not less
important objective has therefore been to gain understanding of the
problem of numerical stability of non-linear equations, and to develop
devices for maintaining stability.

Subsequent sections of this paper consider four ideas which have
arisen from these studies. The first two have principally to do with
numerical stability; the latter two are associated with effecting compu-
tational economy. A discussion of the results of numerical integratiomns
of a barotropic model using these four concepts occupies the penultimate
section. Finally, an indication is given of alternative ways of
extending the new system to multi-level baroclinic models.



2. Boundary Conditions for Limited-Area Primitive Equation Models

The tendency of centered-time-and-space difference approximations
to first-order differential equations to yield quasi-independent
solutions on distinct subsets of the basic lattice of grid points has
been referred to as the lattice structure of the difference equations.
This characteristic was noted by Richardson (1922), and was later
studied by Platzman (1958), Smagorinsky (1958), Nitta (1962), and
Matsuno (1966). One manifestation of the lattice structure is the
temporal computational mode (Gates, 1959) which appears as a separation
of numerical solutions between adjacent time steps. It results from
specifying initial conditions at two successive time levels as required
by centered-time (second order) differences, whereas the differential
equations require only one such level. A similar phenomenon may occur
on the spatial lattice when centered-space differences are used to
approximate gradients. In this case, an overspecification (with
respect to the requirements of the differential equations) of the
boundary conditions may lead to a separation of numerical solutions at
alternate grid points in space. Matsuno (1966) refers to this as the
spatial computational mode.

To illustrate what is meant by the term lattice structure, consider
a domain of integration described in one space dimension and time, sub-
divided into equal intervals of space 4x and of time At as in Figure 1.
Thus horizontal position is defined by x = jAx, where j = 0,1,2,.....J,
and time by t = nAt, n = 0,1,2,.... . Averaging and differencing
operators may be defined as

rxy
1l
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The simple advection equation

?C+Uf =0 (3)

where U is, for the moment, a constant, may be seen to yield a solutiom
on the points in Figure 1 marked by circles that is completely
independent of the solution on the points marked by triangles. When U



is not a constant, but is calculated as part of the system of
equations, then the solutions may possess some mutual dependence.

It will be noted that each set of points is characterized by the sum
(j+n) either odd or even.

Renewed interest at NMC in the lattice structure of the centered-
time-and-space difference equations was prompted by a series of
experiments with a limited-area, higher-resolution primitive equation
barotropic model (Gerrity and McPherson, 1969). 1In these experiments,
the Euler-backward (Kurihara, 1965) time integration scheme was used,
along with the semi-momentum (Shuman and Vanderman, 1966) spatial
differencing system. No initial balancing was attempted, but gravi-
tational oscillations arising from the initial imbalance were expected
to be damped by the time-integration scheme. A kev feature of the
model was the specification of temporally~constant lateral boundary
conditions.

A 12-hour 500-mb forecast from this model is shown in Figure 2.
It will be observed that the fields of meteorological interest are
completely obscured by very short wave length noise, which appeared
initially at the boundaries and progressed into the interior with
depressing regularity. Yet, beneath this crust of nonsense there
remained meteorological information, as seen in Figure 3, which shows -
the result of passing a simple filter over the noisy field of Figure
2. Curiosity about the origin and nature of this noise led to a
detailed analysis (Gerrity and McPherson, 1970), the highlights of
which are presented in succeeding paragraphs, and eventually to a
more general consideration of the lattice structure, discussed in the
next section.

The analysis of the noise shown in Figure 2 revealed that its
presence was a manifestation of a separation of numerical solutions
on alternate points of the spatial grid lattice. In order to investi-
gate the mechanism for the development of this particular gpatial
computational mode, a very simple one-dimensional analogue was con-
structed. Consider a swimming pool of infinite length but of finite
width illustrated schematically in Figure 4. At either edge in the
finite dimension, there is a lip and a drain and a magical spout such
that if the water level exceeds the lip, the excess is removed by the
drain. If the water level recedes infinitesimally below the lip, the
spout i1s activated to add fluid. The water level is thus kept constant,
and the velocity may be imagined to vanish (neglecting spillover), at
the boundaries.



Ignoring the very complicated processes which occur in the zone
adjacent to the boundaries, the set of limear equations governing the
behavior of the fluid are

au oh
u L g9t - g
TR (4)
oh du
—_—+ =
R 0 (5)

where u is the velocity component normal to the boundaries, h
represents the departure of the height of the fluid surface from its
mean value H, and g is the acceleration of gravity. The boundary
conditions are

u(x =0, X; t) =0 (6)
h(x =0, X; t) =0 N
where the boundaries are at x = 0, X. The solution of the system
(4-7), with the initial conditions ' '
. 21X
u(x, 0) = U sin < (8)
h(x, 0) = 0 (9

where L is the wavelength of the initial disturbance, and U 1is an
amplitude, may be obtained by the method of characteristics (von Mises,
1958; Freeman, 1951). The solutions are shown in Figure 5; the physical
interpretation is as follows: As a perturbation of the free surface

of this swimming pool system approaches the boundary, the wave trough
will cause fluid to be added to maintain the constant height. At time
t = X/2c(c = /gH), the level of the fluid is everywhere equal to or
higher than its initial value. Subsequently, this excess fluid is
extracted by the drain of the pool until at t = X/c the perturbation
has vanished. Thus, requiring conditions at the boundaries to be
invariant with time should lead to absorption of incident gravity waves.

It can be demonstrated that if the region of Figure 5 is divided
into intervals of At and &x such that

>

At
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the analytic solutions of the system (4~9) can be written in a
difference form,

n+tl _ 1 n n gAt on n
u = = s + - - h 10
3 2 (UJ+1 uj-l) 20w 5 j—l) ' (10)
P ol mt o ) - %%i (@ - ) (11)
] j+1 j-1 jt1 j-1

where x = jAx, j = 0,1,2,...,.J, and t = nAt, n = 0,1,2,... . This
form is the first step of the Lax-Wendroff method discussed by
Richtmyer (1962) and others. In contrast, the conventional centered-
time-and-space difference approximations te (4) and (5) are

nt+l - n-1 _ 8At (0 _ 0 (12)
uj uj Ax ( j+1 j-l)
R N T [ - ut ). (13)
] 3 ax o j+1 371 .

The impact of the boundary conditions is different for the set
(10-11) and for the set (12-13). 1In the former (with j = 1, the
point immediately adjacent to the left boundary), the boundary con- '
ditions on both u and h enter into the solutions for each variable;
whereas, in the latter, only the boundary condition on h enters the
solution for u, and only the boundary for u enters the solution for
h. In fact, the solution for u, for example, depends only upon the h-
boundary condition at odd-numbered points and only upon' the u-boundary
condition at even-numbered points; the reverse is true of the solution
for h. The result of thig is shown in Figure 6; if lines are drawn
connecting the points as in Figures 6b and 6d, the result is two-grid-
interval noise, the one-dimensional analogue of Figure 2.

An effective, but not perfect, remedy can be achieved by using
the system (10-11) only at the penultimate points relative to the
boundaries. The imperfection arises from the non-linear nature of the
equations governing an atmospheric model, as well as the fact that
the preceding arguments neglect the earth's rotation. Moreover, there
is a practieal inability to prescribe the stability ratio cAt/Ax as
exactly unity. Nevertheless, experience has shown that the use of the



first step of the Lax-Wendroff method in conjunction with temporally-
constant boundaries is of great assistance in suppressing the spatial
computational mode.

3. The Lattice Structure and Numerical Stability

Although the influence of the spatial computational mode on the
numerical stability of non-linear difference equations had been
recognized by Phillips (1959), the examination of that influence was
not the primary motivation for the noise analysis briefly recounted
in the previous section. However, while the experiments just discussed
were being conducted, concern arose over the occasional failure of the
operational six-layer model (Shuman and Hovermale, 1968) to complete
an integration, due apparently to numerical problems. It was observed
that these occurrences were invariably associated with an amplifying
temporal computational mode. Gates (1959), Lilly (1965), and
Grammeltvedt (1969), among others have also noted the apparent associ-
ation of the temporal computational mode and non-linear instability.
Within the context of the lattice structure, the temporal and spatial
computational modes are seen to possess similar characteristics, and
therefore equally likely to be responsible for the development of
numerical instability during the integration of non-linear equationms.
Accordingly, the main thrusts of the initially separate investigations
of the spatial and temporal computational modes merged into an effort
to understand the influence of the lattice structure on numerical .
stability.

The results of this investigation have been reported in a paper
by Robert, Shumar, and Gerrity (1970), the salient points of which will
be reviewed here. A particular linearization of equation (3) was con-
sidered, in which the advecting coefficient U is composed of four
components:

U= Uo + Ul ei'rrj + U2 ei'im + U3 ei'n(j+n) (14)

where the subscripted U's are constants. The first term is the
customary constant mean wind, the second represents a two-grid-interval
wave in space (spatial computational mode), the third represents a two-
grid-interval wave in time (temporal computational mode), and the
fourth is a constant on each lattice, since (j+n) is odd on one lattice
and even on the other. They derived the stability criterion for this
difference equation,

0% (L)% [(u, £ 02~ (U £U)?) 51 (15)



both sides of which must be satisfied for stability. If U, =0, =0; =0,
the right side of (15) reduces to the familiar Courant-Friedrichs-Lewy
criterion. The duplicity of signs within the parenthetical expressions
results from the two subsets of the basic lattice. It is necessary that
(15) be satisfied for both lattices. The criterion indicates that, for
example, the left side will be violated if the sum of the amplitudes of
the temporal and spatial computational modes exceeds the sum of the mean
plus Uj. ' :

This result is helpful in explaining the relative stability
exhibited by the more successful spatial differencing schemes (Shuman
and Vanderman, 1966; Arakawa, 1966), since those techniques involve
spatial difference approximations which effectively filter out terms
such as U; and U; from (14). The stability criterion then indicates -
that if the amplitude of the temporal computational mode (U,) remains -
small compared to the mean, the computation will be stable. An '
extension of this analysis to a system of equations describing gravi-
tational oscillations also proved helpful in explaining the relative
stability of such integrations. In this case, the stability criterion
involves an Hp, the undisturbed height of the free surface, playing a-
similar role as U, -in (15). The H;, is usually quite large, however, -
and tends to overwhelm the remaining terms; hence the stability of the
gravity wave equatioms. o

Finally, the theory was subjected to a simple test in which the
system of equations for an incompressible, homogeneous fluid in hydro-
static equilibrium and with slab symmetry,

X

—t , =X PR

h +u u, + g.hx.— 0 . _ (16)

X X :

-t p: X

ht+u hX +hux=0 (17)

JE+ Xy * =0 y
P, 18)

was integrated using a white spectrum for initial data. It was antici-
pated that the independent set (16, 17) would exhibit stability, but
that (18) would eventually become unstable, on the basis of experience
and with explanation provided by the theory. This was confirmed by

the integration. It was then predicted that if the term T in (18)
were replaced by

—_— X
s ( u? * + yn-! ) .




thus removing both temporal and spatial computational modes from the
advecting coefficient, the result would be stable. This prediction
also was confirmed.

The principal conclusion of their paper is, therefore, that the
interaction of high frequency/wave number components of undifferentiated
coefficients with differentiated (advected) quantities is a root cause
of non-linear instability, and that the suppression of these components
will achieve relative stability. This is a very important concept, but
the theory is incomplete. It relies on a species of linearization to
explain non-linear behavior; but more importantly, the theory thus far
is restricted to one-space dimension. Robert et al. (1970), therefore,
stress the fact that the theory results in necessary, not sufficient,
conditions for stability; and that the stability discussed is relative
stability.

In the absence of an extension of the theory to two space
dimensions, the invention of specific devices to improve the stability
of atmospheric models has proceeded on an empirical basis. Gerrity
and McPherson (1970) present two filters which suppress high frequency/
wave number components in a field. If, analogous to (14), an advecting
wind field in two dimensions may be represented by

un U+ U e au, w4y fITUHD 4oy i (i)

‘ 3

+ U6 ein(k+n) + U7 eiﬂ(j+k+n) (19)

where the indices j, k, n denote position in the x, y and t dimensions
respectively, then the filter

— %X
ux 097 uhere Ux = % (UM + URTl),

returns a completely filtered field:

——XX
ox XYY 2 U, (20)

The use of this filter requires the presence of all of the quasi-
independent lattices. Another filter, which requires only one lattice,
may be written as

2x2x
b =_% [ -l + Ut

2x2y
+ 2u0 ] (21)

-1 2y2y

where

?ZX E-% [F(x + 8x) + F(x - 4%)].
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Eqn. (21) applied to (19) yields
U=10U,+U, . (22)

This filter has considerable utility in the design of an efficient
differencing system, described in the succeeding sections.

4. A Decoupled Grid Lattice

Two of the four ideas mentioned in the introcuction have been con- -

sidered thus far, both related to numerical stability: the specifi-
cation of temporally-constant lateral boundaries, and the suppression
of non-linear instability by applying space-time filters to the
undifferentiated coefficients of non-linear terms. The third is an
important by-product of the investigation recounted in the preceding
section: the concept of performing the calculations on a deccupled
grid lattice. The quasi~independent solutions which result from the
lattice structure are all of the same order of accuracy. It therefore
appears reasonable to formulate the difference system in such a way
that the lattices are completely decoupled. The numerical solutions
then need be computed on only one lattice. This would afford a con-
siderable potential economy in computation time.

A difference system on a decoupled lattice will be formulated for
a model of an inviscid, homogeneous, incompressible fluid, in hydro-
static equilibrium, with a free surface and a rigid, flat lower
boundary. The governing equations may be written as

9 9 _ (¥ -y im m ) -y duL o

AT RS -REC VNGRS ~E RS DR s @3)

9 9% ._ _ ., om om Yy _ dv _ 3V

ot [ i-) * 3y - ( i.J [ fov dx tu 3y J b X M 3y (24)
38 39

g:+m2(gH +¢J[g—x[ﬁ-)+gy(%H=—m(uax+vay) (25)

where ¢ 1is a geopotential departure from a constant gH,, H; is the
mean height of the free surface, and m 1is the map factor appropriate
to the map projection used. The decoupled grid lattice is depicted
schematically in Figure 7. At any time, the u-component of velocity
is defined midway between adjacent values of ¢ in the x-direction,
and the v-component is defined midway between adjacent values of ¢

11



in the y-direction. Between adjacent time levels, the u- and the y-
components exchange positions, while the geopotential .changes to
maintain the same position relative to the wind components. This
arrangement has been used by Lilly (1965) and Arakawa (1966). 1In
order to compare this with an arrangement in which the lattices are
coupled, consider that the intersections of the dashed lines in
Figure 7 represent the points of a conventional coupled lattice on
which all dependent variables are defined at each time step. It is
evident that the decoupled, staggered arrangement represents an array
of only one-fourth the number of points of the conventional lattice.

It is convenient to define the mesh length Ax for this system as
the distance between adjacent values of the same variable; the form
of the basic averaging and differencing operators, as given by (11)
and (12), remain unchanged. Considering at this point only the partial
tendencies due to the non-linear terms, the difference equations
corresponding to (23-25) are,

% n-1 T
oy rac () -ve) - W -] (26)
e U ~r -y . =S <X
%ﬁ %p L _oae [( i'ltu m -V mx) +ut v+ vy ] 27)
o = o™t - 20w (G 4V, (28)
y

The averaging operators appearing on the undifferentiated co-
efficients in (26-28) involve both space and time filtering and arise

from the arguments of the preceding section. Analogous to (21), they
are

~r _

F =.% (™ KL gV g L Y ) (29)
—S 1 __AX _yy —_—x

Foeg (L7 el Y (30)

where, because of the redefinition of 4x, the superscript 2 appearing
in (21) is deleted. The remaining filters that appear in the con-
tinuity equation are much simpler, but still guided by the arguments

12



presented by Robert, Shuman and Gerrity (1970). They are defined as

ol (Y T | |

F = 5 ( F + F ] (31)
S o

F___%. [ =174 Fn J (32)

The differentiated variables are evaluated at time t = nAt. To
illustrate the two more complicated averaging operators, consider (26)
evaluated for point 5 in Figure 7. The quantity vt may be written
as . .

—r 1 n n n n 1. n_ 1 n-1 n~1 4 ,0-1
= = _ + + = + = v + v + v
Vo v Ve ) ;57 3 ( 7 8

+ vg41] T (33)

since the v"7! occupy the same positions as the u®. Also,

- . 1 (. n~1 n-1 n-1 n-1 1 n-1
u T [ul + u, + u3 + u, ] + 3 u5
+ L (un + ol + ol 4 un] | (34)
g ‘"6 "7 " U8 9
since the uf~l occupy the same positions as the v@,
The differentiated quantities are
. 1 'n . . .
AT (us - ug + uj - ug) : , (35)
1
—X _ —_ (.n n n n
Yy T 2ax (g = uf + g - u}) _ (36)

That this decoupled differencing system is: of comparable accuracy
to conventional coupled systems for equivalent effective mesh lengths
may be seen by noting that a typical gradient term in the semi-
momentum system (Shuman and Vanderman, 1966) has leading terms of
exactly the same form as (35) and (36).

13



5. A Semi-Implicit Time Integration Method

The last of the four significant concepts mentioned in the intro-
duction is the semi-implicit time integration method. Although well
known (Richtmyer, 1957), implicit methods did not find widespread
usage in numerical weather prediction until recently. Marchuk (1965)
applied an implicit method to avoid the linear stability criterion
associated with the Lamb wave and the internal gravity-inertia wave
solutions of the quasi-static equatioms. The method is partly implicit
in that only those terms, e.g., the pressure gradient and divergence
terms, which govern these principally linear phenomena, are approxi-
mated implicitly. The non-linear terms which principally govern the
large-scale low frequency meteorological wave motions are treated
explicitly. As a result, the time step may be much longer than when
conventional explicit methods are used.

The method has subsequently been used by Robert (1968), Kwizak
and Robert (1971), and McPherson (1971). A linear analysis presented
by Kwizak and Robert (1971) confirms the fact that the gravitatiecnal
modes are treated stably irrespective of the time step used. They
compared quasi~hemispheric forecasts from a semi-implicit barotropic
free~-surface model using a one-hour time step with an integration
using the conventional leap-frog scheme and a ten-minute time-step.
Virtually identical five-day forecasts resulted,demonstrating that
truncation error associated with the longer time step is of no conse-
quence. A similar conclusion has been reported by McPherson (1971)
in experiments with a limited-area, fine-mesh model, although the
integrations were not extended so far in time.

The semi-implicit method is employed in the difference approxi-
mations of the linear terms of (23-25). In the previous section, the
non-linear terms were approximated and partial tendencies due to those
terms were formed. The complete difference equations are

n+l

() #oe (et - e (¥ ¢ 67
(v ]n+l .t [¢n+l N @n-l] =V e ( u“) £ (38)
n ity y m m
) —xy n+1 v yo+l u -1
v 0-1
+ (= = 0%
( m )y ] (39)
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where u¥*, v* and .¢* are defined by (26-28). The pressure gradient
terms of the momentum equations and the divergence term in the
continuity equation are averaged over the immediately imminent and
past time levels. This is the essence of the semi-implicit approxi-
mation. It will be observed that there is no spatial averaging of
the pressure gradient terms or the divergence term. Care has been
taken to ensure that the velocity components in the Coriolis terms
are also spatially unaveraged, so as to preserve a reasonable geo-
strophic balance. The velocity components at t = (n+l)At in the
continuity equations can be eliminated using (37) and (38) to obtain
a Helmholtz-type equation in ¢°*!

™ mar)? (gn, + o° y) v2 gntl
—
=0 -m? st (g, + 0" J(u +v) (40)
where * Y

n -
U= 4o () £ - ace”

m X
v=I oo (%n] £ - Ate

Eqn. (40) can be solved by relaxation or other techniques for
®n+1, given appropriate specification of lateral boundary conditioms.
The wind components at t = (ntl)At may then be obtained directly
from (37) and (38). Because this boundary-value problem must be
solved at each time step, the time advantage is not the simple ratio
of the time steps. Kwizak and Robert (1971), using a one-hour time
step in the implicit integration and a ten-minute time step in the
explicit analogue, report an actual advantage of about 4:1.

Combining the decoupled, staggered grid arrangement, which uses
one-fourth the number of points required in conventional schemes, with
the semi-implicit integration technique which offers a 4:1 advantage,
yields a potential reduction in computation time of 16:1.
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6. Results of an Experimental Integration

The results of one integration to 48 hours with the model
described in the preceding sections are presented here. The initial
data were obtained from a solution of the balance equation (Shuman,
1957) on* the NMC quasi~-hemispheric rectangular grid. From this basic
array of geopotential and non-divergent winds, the necessary variables
at the locations indicated in Fig. 7 and also their values at the
alternate set of points, are extracted. The integration begins with
a forward time step. It should be noted that neither divergence nor
its tendency are exactly zero initially, since the differencing system
used in the prognostic model is different from that used in the
solution of the balance equation. Lateral boundary conditions require
that all dependent variables remain constant with time in the boundary
zone (outside the heavy line in the schematic of the grid, (Fig. 7).
The first step of the Lax-Wendroff method, as outlined in Section 2,
is employed at the points immediately adjacent to the boundary =zone.

The 24- and 48-hour forecasts from initial data of February 10,
1969, 1200 GMT are presented in Figs. 8 and 9. Fig. 8a shows the
initial 500-mb height field, and Fig. 8b shows the 500-mb configuration
28 hours later. Comparison of the 24-hour forecast, Fig. 8c, with the
observed pattern indicates that the main features of the flow have been
reasonably well-treated. The deep trough near 80W is seen to rotate
sharply northeastward, undergoing pronounced cyclogenesis. The fore-
cast does not reflect cyclogenesis, of course, but gives an indication
of the northeastward movement of the trough. Relatively short wave-
length features appear to be forecast with approximately correct phase
speed through 24 hours. However, by 48 hours, the shorter waves are
noticeably slow, as seen by comparing Figs. 9a and 9b.

For comparison, mean absolute height error (8h), root-mean-square
height error RMS (8h), root-mean-square vector wind error RMS (8V),
and the S1 skill score (Teweles and Wobus, 1954) were computed for
this case from both this barotropic model and the NMC operational six-
layer baroclinic model. The data are presented in the table below.

It will be noted that, for this one case, the barotropic model

incorporating the new differencing system is roughly comparable to the
baroclinic model.

24 hour 48 hour
§h RMS (8h) RMS (&V) h RMS (8h) RMS(S8h)
Model Meters Meters m sec ! Sl (Meters) (Meters) m sec™! g1
Barotropic 31.3 42.2 9.5 39.7 39.2 56.7 11.4 49.0
Baroclinic 19.8 27.8 - 30.6 35.7 49.8 - 41.0
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The integration shown in Figs. 8 and 9 was extended beyond
48 hours to gain some idea of the numerical stability characteristics
of this differencing system. Fig. 10 displays some aspects of the
extended integration. Presented are kinetic and available potential
energies normalized by their initial values, and mean-square measures
of vorticity and divergence, all plotted at 12-hourly intervals. The
behavior of these quantities is acceptable until 15 days, but there-
after all begin to increase markedly. By 24 days, the model is well
on the way to non-linear instability. This was not unexpected, for
as was indicated in Section 3, the theory of non-linear stability by
which the design of this model was guided is incomplete, and clalms_'
only to apply to relative stability. That this is achieved by use of
the space-time filters on undifferentiated coefficients of non—llnear
terms is demonstrated by an integration of this model without the
temporal aspect of the filtering; instability was encountered in 8 days.

The principal advantage of this differencing system is the
efficiency with which the requisite computations are carried out.
Little effort has been made to optimize the internal efficiency of the
computer program of the new differencing system, especially with
regard to the numerical solution of the Helmholtz equation. A strict
comparison of computation time for this system with that" required by a
conventional explicit centered-time~and-space system has therefore not
been made. However, a rough estimate of the time advantage was
obtained by comparing 72-hour forecasts from the new system and a
primitive equation barotroplc model employlng the semi-momentum space
differencing and the leap-frog method in time; neither model was pro-
grammed for optimum eff1c1ency The former required 80. seconds on the
CDC 6600 computer; the latter required slightly over 1000 seconds.
This is regarded as tending to support the theoretical order-of=-
magnitude reductlon in computlng time afforded by the new system.

7. Extension to Baroclinic Models

~ The results of testing the proposed’ d1fferenc1ng system w1th a
barotropic model are sufficiertly encouraging to warrant its application
- within the framework of a multi-level baroclinic model Extension of
the staggered arrangement of dependent ‘variables and the stablllty con-
trols to a multi-level model offer no obstacles of consequence. .The
principal difficulty is in extending the semi- implicit. time 1ntegrat10n
method; for in a multi-level model, not only the external gravity mode,
but also the internal gravity modes, must be regarded as allowable high
frequency modes. ' ' ' o '
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There are at least two approaches to this problem. One, proposed
by Robert* of Canada, treats the external gravity mode and all of the
allowable internal gravity modes implicitly. Robert uses the o-
vertical coordinate suggested by Phillips (1957), which allows
relatively simple treatment of the lower boundary, but is susceptible
to large truncation errors over very irregular terrain (Kurihara, 1968).
The essence of this approach is a linearization of the surface pressure
about a constant value, and of the temperature about a specified dis-
tribution which is a function only of the vertical coordinate. This
makes possible the linearization of the pressure-gradient terms in the
momentum equations, divergence term in the continuity equation, and
the vertical exchange term in the thermodynamic equations, which
principally govern the gravitational oscillations, Once the linear
parts have been separated, they may be treated implicitly, while
deviations from the linearizations are treated explicitly.

Depending upon the details cf the algebraic manipulatiomns, the
result is a three-dimensional Helmholtz equation, or a simultaneous
system of Helmholtz equations, one per level, which must be solved
at each time step. For a model with many layers, the numerical
solution of this large boundary-value problem might appreciably reduce
the time advantage of the method.

Another approach recognizes that many of the allowable internal
gravity modes are of relatively low frequency, comparable to that of
the meteorological modes. It is only the external gravity mode
(Lamb wave) and those internal modes with small vertical wave numbers
which have sufficiently large phase speeds as to require implicit
treatments with long time steps. Accordingly, the essence of this
approach is to divide the atmosphere into two o0-domaing, one tropo-
spheric, the other stratospheric, separated by a material surface
which represents the tropopause. The linearization is carried out
with respect to the specific volume about a distribution which is a
constant for each o-domain. In a sense, this amounts to treating
certain aspects of the model atmosphere as if it were composed of two
superimposed heterogeneous fluids. The linear terms which principally
govern the external gravity mode and the most rapidly-moving internal
mode may then be treated implicitly so that only these two modes are
computed stably,irrespective of the time step used. Allowable
internal modes which are computed explicitly generally have phase
speeds sufficiently small that relatively long time steps might be
used without violating linear stability.

*Personal communication
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This approach results in a system of only two Helmholtz equations
to be solved simultaneously at each. time step, regardless of the
nunber of layers internal to each o~domain. It is therefore potenti-
allyimore economical than the first one. Also, the use of two o-
domains, similar to that incorporated in the NMC operational six-layer
(Shuman and Hovermale, 1968) model, is not as likely to incur such
large truncation errors as might be the case using Phillips' "o" co-
ordinate.

Both of these approaches are currently being followed at NMC.
Regardless of which one proves superior, it seems reasonably certain
that routine numerical weather prediction can be carried out with an
order-of-magnitude reduction in computer time in the near future.

That this efficiency may be employed to enhance the spatial resolution
of grid lattices, or to refine the modeling of physical processes, or
both, augurs well for imminent improvements in global as well as
short- -range, detalled numerical guldance forecasts.

ACKNOWLEDGMENTS

. " The research summarized in this paper has been conducted in close
collaboration with Dr. Joseph P. Gerrity, Jr., of the National
Meteorological Center. His consistent ability to generate both. ideas
and’ enthusiasm has been essential to the progress reported here. The
author also expresses his gratitude to Drs. J. A. Brown, Jr., and

F. G. Shuman, of NMC for their suggestions during the course of the
work and their critical review of this manuscript. Mrs. Doris Gordon
performed most of the.computer programming, and the typing was done

by Mrs. Mary Daigle.

19



10.

11.

REFERENCES

Arakawa, A., 1966: “Computational Design for Long~Term Numerical
Integration of the Equations of Fluid Motion: 'I. Two-
Dimensional Incompressible Flow," Journal of Computational
Physics, Vol. 1, pp. 119-143.

Benwell, G. R. R., and M. S. Timpson, 1968: "Further Work with the
Bushby-Timpson 10-Level Model," Quarterly Journal Royal
Meteor. Society, Vol. 94, No. 1, pp. 12-24.

Bushby, F. H., and M. S. Timpson, 1967: "A Ten-Level Atmospheric
Model and Frontal Rain," Quarterly Journal Royal Meteor.
Society, Vol. 93, pp. 1-17.

1968: '"Further Developments of a Model for Fore-

casting Rain and Weather," Proceedings of the WMO/IUGG
Symposium on Numerical Weather Prediction, Tokyo, pp. II-75-84.

Freeman, J. C., 1951: '"The Solution of Non-Linear Meteorological
Problems by the Method of Characteristics,"  Compendium of
Meteorology, Am. Met. Soc., Boston, 1951, pp. 421-433.

Gates, W. L., 1959: '"On the Truncation Error, Stability, and Con-
vergence of Difference Solutions of the Barotropic Vorticity
Equations,"  Journal of Meteorology, Vol. 16, No. 5, pp. 556-558.

Gerrity, J. P., and R. D. McPherson, 1969: '"Development of a Fine-
Mesh, Limited-Area Prediction Model," Monthly Weather Review,
Vol. 97, No. 9, pp. 665-669.

1970: "Noise Analysis of a

Limited-Area Fine-Mesh Prediction Model," ESSA Tech. Memo.
WBTM NMC-46, February.

1970: '"Recent Studies in

Computational Stability,”" ESSA Tech. Memo. WBTM NMC-48, May.

Grammeltvedt, A., 1969: "A Survey of Finite-Difference Schemes for
the Primitive Equations for a Barotropic Fluid," Monthly
Weather Review, Vol. 97, No. 5, pp. 384-404.

Kurihara, Y., 1965: '"On the Use of Implicit and Iterative Methods

for the Time Integration of the Wave Equation,"  Monthly
Weather Review, Vol. 93, No. 1, pp. 33-46.

20



12,

13.

14.

15,

16.

17.

18.

19.

20.

21,

22.

Kurihara, Y., 1968: '"Note on Finite Difference Expressions for the
Hydrostatlc ‘Rélation and Pressure—Gradlent Force," Monthly
Weather Review, Vol. 96 No. 9, pp. 654-656,

Kwizak, M., éﬁd A 'RoBert 1970 "Imp11c1t Integratlon of a Grid-
Point Model," Monthly Weather Revzew, Vol. 99 No_l pp. 32-36.

Lilly, D., 1965: "On the Computational Stability of Numerical .
~Solutions. of Tlme-Dependent Non-Linear Geophy51cal F1u1d
Dynamlc Problems, Monthly Weather Rev1ew, Vol 93 ‘No. 1, pp.

Marchuk, G., 1965: Numerical Methods for Solv1ng Weather-
Forecastlng and Climate-Theory Problems - Part 1. Translated
. from Russian by American Meteorological Society, for Air Force
Cambridge Research’ Laboratory, Contract AF 19(628) 3880 Sept.

1965, T-R-520.
Matsuno, T., 1966 ”False Reflectlon of Waves ‘at” the Boundary Due
" to the Use of Finite Differences," J. Meteorol. sc.. Japan,

Vol. 44, No. 2, pp. 145-157.

McPherson R. D ' 197i "Note on .the “Semi- Imp11C1t Integratlon of
a Flne-Mesh Limited-Area Prediction. Model ‘on an Offset Grid,"
Monthly Weather Review, Vol. 99, No. 3, pp. 242-247.

Nitta. T. , 1962: ”The Outflow Boundary Condltron in Numerical Time =

Integratlon of Advective Equations," J. Meteorol.. Soc. Japan,
Vol. 40, No. 1, pp. 13-24, -

:Phillips N. A: 1957: "A° Coordlnate System Hav1ng Some Spec1al

Advantages for Numerical Forecastlng, _ Journal of Meteorology,
Vol. 14, No, 2, pp. 184-185. ' -

_ 1959 "An Example of Non—Llnear Computatlonal
Instability,"' The Rossby Memorial Volume, B. Balln, ed., The
Rockefeller Institute Press, New York, pp. 501-504.

Platzman G 1958. ”The Lattlee Structure of the F1n1te D1fference

Pr1m1t1ve and Vorticity Equations," Monthly Weather Review,
Vol., 86, No. 8, pp. 285-292.

Richardson, L. F., 1922: Weather Prediction by Numerical Process,
London: Cambridge University Press, 1922. Republished in
1965 by Dover Publications, New York.




24,

25.

26.

27.

28.

29.

30.

31.

32.

Richtmyer, R. D., 1957; '"Difference Methods for Initial-Value
Problems," 1st ed., Wiley & Sons; New York, 1957.

and K, W. Morton, 1967: 'Difference Methods
for Initial Value Problems," 2nd ed., Interscience
Publishers: New York, 1967.

Robert, A. J., 1968: '"The Integration of a Spectral Model of the
Atmosphere by the Implicit Method," Proceedings of the WMo/
TUGG Symposium on Numerical Weather Prediction in Tokyo,
Nov. 1968, Section VII, pp. 19-24,

, F. G, Shuman, and J. P. Gerrity, 1970: "On Partial
Difference Equations in Mathematical Physics," Monthly
Weather Review, Vol. 98, No. 1, pp. 1-6.

Shuman, F. G., 1957: '"Numerical Methods in Weather Prediction,
Part I: The Balance Equation," Monthly Weather Review,
Vol. 85, No. 10, pp. 329-332.

and L. W. Vanderman, 1966: '"Difference System and
Boundary Conditions for the Primitive-Equation Barotropic
Forecast," Monthly Weather Review, Vol. 94, No. 5, PP- 329-335.

and J. B. Hovermale, 1968: "An Operational Six-
Layer Primitive Equation Model," Journal of Applied
Meteorology, Vol. 7, No. 4, pp. 525-547.

Smagorinsky, J., 1958: "on the Numerical Integration of the
Primitive Equation of Motion for Baroclinic Flow in a Closed
Region," Monthly Weather Review, Vol. 86, No. 12, pp. 457-466.

Teweles, $., and H. Wobus, 1954: "Verification of Prognostic
Charts," Bulletin of the American Meteorclogical Society,
Vol. 35, No. 12, pp. 455-463.

Von Mises, R., 1958: Mathematical Theory of Compressible Fluid
Flow, Academic Press, New York, 514 pp.

22



4 ZL & tlr 14 }P
/
\
3 ¢ A & — 2
. N\ /
\\\ /
. o Pan
/At 2 4 O /& q 1
/ N
1 A b- Y D
/
AN
\
0 /X o A & A
0 1 2 3 4

x [ AX ——tomw

Figure 1.--Schematic illustrating the lattice structure of the grid used in
centered space-time differencing. Points denoted by circles con-
stitute one complete lattice, entirely independent of that marked
by triangles. The dashed lines are characteristic lines for

(Vg at/ax = 1.
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Figure 2.--Twelve-hour 500-mb height forecast from a limited-area primitive
equation barotropic model using unbalanced initial data and con-
stant boundary conditions.
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Figure 4.--Schematic illustrating the swimming pool physical analog of the
mathematical one-dimensional simulation of the noise problem.
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Figure 5.--Analytic solutions of the one-dimensional, constant boundaries,
linear gravity wave problem, as obtained by the method of char-
acteristics. The solid curves represent the velocity solution
and the dashed curves represent the solution for the height of

the free surface.

27



aaaaaaaa

...... |
o g
W79 weass LG
o e
= :
= 1 ez
i«

vvvvvvv

.......

.......

Figure 6.--Numerical solutions of the one-dimensional, constant-boundaries,
linear gravity wave problem using centered differences in space
and time. Solutiong at each grid point are indicated by dots.
The boundaries of the region of integration are denoted by short,
solid vertical lines, (VgH)At/ix = 1.

a, b: Velocity and hecight, respectively, at time step 5;
¢, d: Velocity and height, respectively, at time step 10;
e, f: Velocity and height, respectively, at time step 20;
g, h: Velocity and height, respectively, at time step 30.
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Flgure 7.--Arrangement of the dependent variables on the decoupled grid. At
adjacent time levels, the wind components exchange locations, and
the geopotentials are located at the crosses. The 1ntersect10ns
of the dashed lines indicate the grid points that would be used
-in conventional, explicit, regular-grid integrations. The heavy
line distinguishes the lateral boundary zone from the domain of
integration.
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Figure 8a.--Analyzed configuration of the 500-mb height field at 1200 GMT
February 10, 1969. Contours are labeled in decameters.
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Figure 8b.--Analyzed configuration of the 500-mb height field at 1200 GMT
February 11, 1969. Contours are labeled in decameters.
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Figure 8c.--24-hour 500-mb height forecast based on initial data of 1200 GMT
February 10, 1969, verifying at 1200 GMT February 11, 1969.
Contours are labeled in decameters.
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Figure 9a.--Analyzed configuration of the 500-mb hei’gh't'f'i"éld at 1200 GMT
February 12, 1969. Contours are labeled in decameters.
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Figure 9b.--48-hour 500-mb height forecast based on initial data of 1200
'GMT February 10, 1969, verifying at 1200 GMT February 12, 1969.
Contours are labeled in decameters.
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Figure 10.--Kinetic energy, available potential energy, mean-square vorticity,
and mean-square divergence, plotted as a function of time for an
extended integration based on initial data of 1200 GMT February
10, 1969. The energies have been normalized by their initial
values.
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