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1. Introduction

NESDIS data holdings continue to grow beyond the economic, operational, and
maintenance capacity of on-premises computing resources. Large data providers like
NESDIS are increasingly turning to cloud computing resources, as demonstrated by the
in-progress implementation of the NESDIS Common Cloud Framework (NCCF), which
will migrate the operational ingest, archive, product generation, product distribution and
access of their data products. While cloud computing solves problems of scaling data
and access to an ever-increasing pool of users, it is also an opportunity to explore how
new techniques can monitor and improve data flows to users within the next-generation
NESDIS ground system. Digital Twins are platforms that can be used to experiment and
develop new systems that are operationally efficient and more user-friendly.

A digital twin is a virtual representation of a physical system and is used throughout
industry to monitor real-time processes, test experimental services, and support
decision-making. This report details our development of a prototype digital twin to model
core processes in the next-generation NESDIS ground system. We used our digital twin
to test how innovations like machine learning (ML)-based anomaly detection and deep
learning data fusion can provide better services to end users. Our prototype Observing
Digital Twin (EO-DT) also explored tools for user engagement that can support NESDIS
management decision-making on next-generation ground systems.

The purpose of building a prototype was to explore and demonstrate key features and
recommend emerging technologies, estimate costs, and to study the value an EO-DT
can provide to NESDIS. In Section 1, we provide an overview of digital twins, some
anticipated benefits of our study goals, and the goals of the prototype EO-DT
demonstrations that informed our recommendations. Sections 2-4 will deep dive into
the tools, techniques, and scientific methods we used to develop our prototype and how
our system can extend into an operational one* see Section 5.1. We also document the
state-of-the-science of other significant data providers’ efforts see Section 5.2, such as
NASA, to build Earth System Digital Twins (ESDT). We also document the associated
costs of the prototype and a proposed operational system* see Section 5.3. A summary
of our recommendations and lessons learned is found in Section 6.

1.1. How Could a Digital Twin Benefit NOAA?

As shown in Figure 1.1, measurements collected by Earth Observing satellites are
processed through a complex pipeline consisting of downlinking, ingesting, archiving,
processing, and finally disseminating the measurements and derived data products. We
call this data pipeline the ground system. Some users, weather forecasters, and other
disaster management professionals need these data in near real-time. The ground
system’s objective is to ensure data is delivered rapidly and towards that objective must
consider bandwidth limitations, efficiently execute millions of lines of code on high-
performance computing platforms to get the job done.
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When the system is operating normally, the data is delivered to the end user on time.
However, what if a satellite sensor malfunctions? Or if there is a bug in a piece of the
code? What if we want to add a new satellite to the data stream? What if the production
team wants to experiment with a new technology? It can be challenging to troubleshoot
problems or make changes to the existing ground system while delivering data to users.
However, a virtualized equivalent environment such as a digital twin can enable rapid
identification of problems and the implementation of solutions without disturbing the
operational ground system.

Figure 1.1. Simplified diagram of core processes in the NESDIS ground system.

These are the core processes that need to be monitored and scaled
to ensure timely data delivery to users.

Ground System

h | Dissemination I

End User
—

Product
Generation

Catalog and Archive Data ]

What is a Digital Twin?

Many definitions of digital twins exist, but they share a common goal of representing a
physical system virtually. A digital twin is a virtual representation of a system updated
from real-time data and uses simulation and ML to help decision-making (IBM, n.d.).
Historically, digital twins were employed in factory settings to mimic assemblies of
products. However, digital twins can also replicate digital assets. This report defines a
digital twin as a virtual model of the physical ground system that is augmented
with real-time data from satellite sensors, computing resources, and user
interaction.

Digital twins are beneficial because they (1) mirror existing processes to support
decision-making and (2) enable research and design of systems and products without
disrupting production. There is often confusion on the difference between digital twins

10
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and simulations. Both utilize models to replicate a system’s various processes;
however, a digital twin is a virtual environment, which makes it considerably richer for
study. While a simulation typically studies one process, a digital twin can run multiple
simulations to simultaneously study multiple processes and their mutual interactions.
For example, a climate model may focus on Earth dynamics but not socio-economic
impact. A digital twin can incorporate both variables to answer “what if” scenarios about
the human impact of climate change.

What are the Benefits of Building a Digital Twin of the Ground System?

NESDIS's product portfolio consists of petabytes of satellite data and continues to
increase daily. Managers of such large data providers often want to know how to
optimize and scale their resources. However, it is not easy to assess the impact of
implementing technological advancements on the operational ground system, which
must be available 24/7 to protect life and property. An EO-DT is a digital twin framework
designed to validate technological advancements (e.g., ML) before changing the
operational ground system. For example, with ML on the digital twin, it is possible to
identify data demand patterns and dissemination bottlenecks, detect anomalies in
satellite sensor data, and automate data quality control (Boukabara et al., 2019). In
addition to optimizing the data flow, ML can facilitate data fusion for research and
assimilation. ML thus has the potential to transform the current NESDIS data portfolio
into a portfolio of analysis-ready data for highly efficient access by end users.

An EO-DT can also use real-time data generated by the ground system to monitor the
dataflow for anomalies, efficiently allocate system resources, and combine datasets.
Interest in satellite data is expected to grow more than all NOAA data assets, and an
EO-DT can ensure that the infrastructure keeps up with future user needs. Furthermore,
the EO-DT could support NOAA management when studying the impacts of employing
ML and new satellite sensors in operations.

This report documents our efforts to build an EO-DT prototype to study the technologies
needed, the associated costs, and the expected benefit to NOAA. Our prototype EO-DT
has two roles, (1) to monitor and optimize the ground system delivery pipeline and (2) to
serve as a development sandbox for enhancements without interrupting the existing
system. Successful new technologies within the EO-DT can then be deployed into the
ground system or integrated as an add-on using two-way communication channels.

While there are many benefits, deploying a fully capable digital twin could be costly and
resource-intensive. Since this is a new area of research at NOAA, some of the
questions we sought to answer through our efforts are:

e How much will it cost to develop a fully capable digital twin?
¢ What are the best commercial and open-source tools to use?

e Can ML improve the performance of some of the ground system components?

11
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What data formats are optimal within the digital twin?

Can the digital twin improve data access to end users?

Can the digital twin meet or exceed the latency requirements?

How can the digital twin enable data fusion and ML?
Study Goals

For the EO-DT project, we built a simplified prototype that enables realistically estimate
costs and a hands-on learning experience to identify strengths and weaknesses of new
approaches and technologies. Our specific project goals were to:

e Rapidly implement a prototype EO-DT of the current NESDIS ground system.

e Build and use functional components that enable a study of the challenges of
developing a fully functional EO-DT and producing realistic cost estimates.

e Explore the strengths and limitations of using pre-built commercial systems to
run the EO-DT. We will recommend which services can be commercially
sourced and which should be custom-built.

e Employ ML to demonstrate use cases where the EO-DT can be used to model
future advancements in the NESDIS ground system.

Our deliverables included (1) the technological assets used for the study, (2) bi-weekly
progress meetings with the government, (3) kickoff, midterm, and final demonstration
meetings, and (4) a final report with the results of the study.

Three Demonstrations to Inform Study

We developed three technology demonstrations to inform this study and to show how
significant components could be built. Each demonstration touched upon one of our
primary study goals.

1.4.1.1. Demo#1: Use real-time data to model current capabilities from satellite
archives, computing resources, and user interaction.

Key to the success of a ground system is its ability to process satellite data and deliver
it rapidly and efficiently to the end-user in a manner that is most compatible with the
user’s workflow. We modeled key components of the existing NESDIS user data
delivery system to accomplish this goal. Users can query data holdings on NESDIS’s
cloud services via a web portal. We built a user interface for searching and visualizing
NESDIS data on the cloud using Amazon Web Services (AWS) (Figure 1.2). We
incorporated a “Keep It Simple” philosophy on the user interface. While users may need
complex features in a fully operational digital twin, we aimed to minimize clutter from the

12
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interface, a la the Google search interface. Google remains visually simple, a design
element that continues to lead to its popularity. Advanced search features are possible
in Google, but these are shown to users after the initial query.

Figure 1.2. Screen capture of the landing page.

Earth Observing Digital Twin Access Portal

i'jak:-hlu Data Producls TN oY Search Rasulls
Starl Date
.|
End Date
|
Bounding Box
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TN TR
Visualize

Eane wert L
e

‘J —

We incorporated a “keep it simple” design approach to not overwhelm users.

Large Presently, users can query the NESDIS archive using the NOAA Comprehensive
Array-data Stewardship System (CLASS) portal (Figure 1.3, top). The user provides a
data product name, geolocation coordinates, and time. A link to an FTP download
location is emailed to a user that could take even hours, depending on the volume of
returned results.

Our user interface reconciles differences in the existing data delivery systems with
those anticipated in the NESDIS Common Cloud Framework (NCCF). More recently,
the NOAA Open Data Dissemination (NODD) has opened public data access to cloud-
based archives for JPSS and GOES data products. This newer access point does not
have an official query portal, so we developed a user-interface with the querying
capabilities of CLASS along with a capability to evaluate new services to users, such as
data fusion.

13
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Figure 1.3. Existing Capabilities and New Capabilities to Evaluate from the
NOAA Comprehensive Array-data Stewardship System (CLASS)

portal
Existing Capabilities to Simulate Cloud Resources Elapsed time = hours to days
° a NESDIS delivers User downloads and further
User requests data native datasets processes before analysis

New Capabilities to Evaluate |

Cloud Resources

EO-DT performs data ) .
G User requests data o fusion on the cloud to ° User can immediately

analyze or visualize data

limit data wrangling

Existing user experience (top) allowed users to query and download data from
the NESDIS archive. Users then spent significant time “wrangling” the data
(combining, regridding, collocating) before they can analyze the results. In
addition to simulate the existing capabilities, the EO-DT can evaluate new
capabilities, such as exploring machine learning methods for data fusion, on
demand cloud services, and novel anomaly detection schemes. These data are in
an “analysis ready” format and the user can more quickly conduct research

A capability demonstrated in our system, which represents a potential enhancement to
the ground system, is that all user requests are processed on-demand (Figure 1.3,
bottom). On-demand means that all backend cloud computing resources required to
process the user request are launched only when the request arrives and are turned off
after the necessary processing. In the past, data archive maintainers like NOAA often
pre-process datasets to speed up data delivery. For example, the VIIRS Aerosol Optical
Depth Level 2 data products are routinely gridded into a Level 3 data product. While
such an approach may be appropriate when there is sufficient and continual demand for
the products, it will be inefficient and incur needless costs for data with sporadic
demands.

Furthermore, pre-processing forces users to work with already defined gridding and
aggregation schemes, which may meet the needs of most, but not all, end users. Users
spend significant time performing data wrangling - transforming and organizing raw data
into a suitable format for further analysis. On-demand processing would reduce the time
users spend data wrangling by allowing users to build custom aggregation schemes. By
processing on-demand, we also can collect data on which datasets a user wants to

14
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aggregate and how they wish to aggregate it and perform a cost-benefit analysis on
whether it is more economical to add such a product to operations or only compute it on
demand. For example, if users repeatedly request certain aggregated data sets, the
system can store those data sets for even faster retrieval.

A key feature of our approach is that we adopted a data-in-place philosophy to reduce
cloud computing costs. We do not make any local copies of NODD data within our
digital twin; instead, we monitor these resources from afar and ingest only the metadata
of the datasets into our query database for cataloging and searching purposes.
Minimally moving data around in, to, and from the cloud reduces costs and processing
time.

1.1.4.2. Demo #2: Explore where new services and ML can enhance the user
experience and limit data wrangling

In our EO-DT prototype, we demonstrated the use of ML for improved sensor anomaly
detection. Currently, sensor data anomaly detection is based on quality flags. ML can
classify images based on complex anomaly scenarios across an entire scene. The goal
was not to remove the data from production but to better communicate to users and
management if a dataset has significant degradation. Some examples are shown in
Figure 1.4.

Figure 1.4. Examples of good quality GOES imagery (left) and imagery that has
anomalies present (right).

Valid/Good data can have: Invalid/anomalous data can have:
* Clouds * Large areas of missing data
Sun Glint * Striping

We demonstrated how we applied a convolutional neural networks (CNN) method
to identify anomalies in imagery data from both GOES and VIIRS. Machine
learning techniques can potentially identify complex anomaly patterns that may

15
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be missed by pixel-level quality flags alone.

In ML, this task is fundamentally a binary image classification problem. We used
Residual Network (ResNet)-18, a convolutional neural network (CNN) that is 18
layers deep, trained on the ImageNet database. We trained ResNet-18 on 2-3 years of
GOES-series ABI and JPSS-series VIIRS L1b data from all channels. Offline validation
showed that our model was 99.2% accurate for ABl and 89% for VIIRS. We installed
our most accurate GOES-16 model into operation and monitored every file for
anomalies.

Figure 1.5 shows the processing workflow for our ResNet-18 model. At run-time, the
model loads pre-trained model weights developed using our 2-3 years of ABI data. The
model is then provided with a real-time, unseen GOES image, and then it provides a
classification, valid (anomaly-free) or invalid (contains anomalies). VIIRS data was used
only for research purposes. More details on this project are provided in Section 3.1. We
also display these ML anomalies on a dashboard to support decision-making for NOAA
management (See Demo #3 and Section 2.5 Data Analytics Dashboard for more
information).

Figure 1.5. Simple overview of how ResNet-18 in operations.

Anomaly
(Invalid)

Normal
(Valid)

ResNet-18 loads an existing pre-trained model and is provided with a real time
images of ABI L1b imagery data (all channels). The ResNet-18 model then
classifies the image as “valid” or “invalid” depending on if the scene is anomaly
free or contains anomalies, respectively.

We aimed to develop a proof-of-concept (Lavin and Renard, 2020) anomaly detection
scheme and document the computing requirements and workflow unique to ML
methods. Our complete development workflow is shown in Figure 1.6. A total of 4,550
randomly selected images from 2-3 years of GOES ABI data were downloaded from the
NODD. One challenge of conducting ML research is the lack of pre-labeled training
data. For that, we classified identifies images like those in Figure 1.4 as “valid” or
“‘invalid” using the quality flags inside the file. The data needed to be reformatted from
netCDF, the native file format of the ABI, to PNG format, which processes more quickly
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in the ML model. The images were converted to greyscale, downscaled from
5000x5000 pixels to 240x240 pixels, and randomized flipping across the horizontal and
vertical axis to improve the accuracy of feature identification.

Figure 1.6. The development workflow for the machine learning anomaly
detection method tested in our demonstration.

Classify
Fetch Training Data Valid vs Invalid Convert to PNG Train Model Validate Deploy
Data

Download GOES-16 Data

Download Random Data for
each Year.

S~ — S

Deploy on AWS

Validate Model Against

" Train ResNet-18 Model
Classify Training Data W New Data

Download GOES-17 Data Convert .nc to .png
Classify "Valid" vs “Invalid" ' Using Transfer Learning, we

Convert Raw Single-Data built our Binary Image
Channels to Grayscale PNG Classification NN off pre-
Images at lower resolution trained Resnet18 Neural
Network

Model was validated with
other test data from GOES
satellites. Evaluation yielded
a 99.1% accuracy EC2

Download GOES-18 Data I
Evaluate and Retrain Model
Download Random Data for Review Model Performance with
each Year. Test Data and Heatmaps to Developed GUI to
Retrain Model . .
e streamline this process

Training required labelling thousands of images and performing image
transformations to improve the training model quality. Because machine learning
models need to be easily updated to accommodate future changes to the data,
our workflow heavily used automation and we developed a GUI tool to facilitate
validation, which requires the data scientist to examine many images. The best
model was then deployed onto AWS and operationally checks all new GOES ABI
L1b data for anomalies.

The train model
processing on an

Download Random Data for flag with
each Year. DQF.percent_good_pixel_gf
attribute in ".nc" file

During the training and validation phases, thousands of images were generated and
required human inspection. Furthermore, it can be challenging to identify why a model
like ResNet-18 chooses a particular image classification. To streamline the testing and
validation process, we developed a Python-based GUI to improve the data inspection
and to incorporate explainable ML to improve understanding (Figure 1.7). Like other
CNNs, ResNet-18 cannot explain “why” it classified an image as valid/invalid. Heatmaps
provide "visual explanations" for decisions from CNN model families. Heatmaps
determine the model attention mechanisms for each convolutional layer (e.g.,
ResNet-18 has 18 layers) using Gradient-weighted Class Activation Mapping (Grad-
CAM). Attention allows a model to focus on different parts of the input data, assigning
varying degrees of importance or relevance to different elements. Our GUI displays
where the ResNet-18 model focused attention on the GOES imagery using the final
layer, the last layer focused before the ResNet-18 model assigned its classification.
Given that numerous models were trained and tested, the GUI can easily swap with
other models to compare and select the best model for anomaly detection.
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Figure 1.7. Demo #2: ML-based data anomaly detection models

.........................

ccccccccccccccccc

By developing our proof-of-concept anomaly detection system, we determined
there are unique considerations for ML models that can be tested and optimized
in the EO-DT. For example, large samples of labeled training datasets can
improve anomaly detection accuracy. The work on our project is a promising
start and, in the future, could lead to multi-label classifications to rapidly
prescreen data sets. We have also determined that NetCDF4 and other NOAA
archive formats are not well-suited for ML research, but data transformations to
ML-friendly formats (like PNG) could be built into a digital twin.

1.1.4.3. Demo#3: Support decision-making related to optimizing NESDIS data
processing

Digital twins can monitor processes in real time and generate a lot of valuable metrics.
Converting this data into information is critical to answering what-if scenarios. An
analytics dashboard can support decision-making by providing a one-stop location for
real-time system monitoring for NOAA management. Examples of analytics include
system performance metrics (e.g., accuracy and reliability) and the timeliness of
different data fusion techniques. These metrics help monitor the data quality
performance of the system regarding completing user requests and performing cost
assessments for current and future additions to the ground system.
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Figure 1.8. Demo#3: Real-time analytics dashboard

* &
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We built a dashboard (Figure 1.8) using Grafana for our demonstration. Grafana is an
open-source analytical and visualization tool that consists of multiple individual panels
arranged in a customizable grid. Grafana could easily make a time series of system
resource usage and data processing requirements, such as data product latency and
the timeliness of the system’s response to user requests. Grafana can display statistics
on user interaction, such as which NESDIS products were accessed, when, and over
what region, alongside data fusion requests were made.

Grafana interfaces seamlessly with AWS CloudWatch, a service that monitors AWS
processes. On-demand, modular cloud resources are easier to monitor than complex
on-premises systems. Our dashboard supports custom scripting monitoring tasks, such
as data processing time and user queries. In our prototype demonstration, we used
Grafana Cloud, where Grafana hosts the portal. While this service was adequate for our
demonstration, we recommend using Grafana hosted on AWS in an operational EO-
DT~

1.2. Digital Twin Framework
Concept of Operations

Our three demonstrations show an interlinked system of processes. This section
emphasizes the primary processes we simulated and describes how they interact. The
NESDIS ground system's existing and planned “real” processes include the downlink,
ingest, product generation, catalog and archive, search, and dissemination. We have
also simulated new services within the digital twin, which we employ to investigate how
an EO-DT can serve as an experimental platform for improving the ground system,
especially those enhancements that leverage ML. Some example enhancements
include ML-based anomaly monitoring (Section 3.1) and data fusion operations

19
Science and Technology Corp.



AR
HH {‘ _‘-7'[ NOAA EO-DT

\. uy /. Contract 1332KP22CNEEP0013
S Science and Technology Corporation

(Section 3.2). We chose these improvements because we prioritize the user experience
at the core of our approach. It is important to note that the objective of our
demonstration was not to achieve flawless replication of the ground system but, instead,
to gather insights for our final report and study recommendations and to create proofs-
of-concept for new services.

Figure 1.9 shows the concept of operations of our EO-DT, both in terms of how we
model existing capabilities (blue) and what new services we explored (red). The left-
hand side shows the key ground system capabilities (the “real” system) and matches
that in Figure 1.1. The right-hand side shows how these processes and new services
flow in our digital twin. Starting from (#1) the top right, data populates the NODD cloud
archives, publicly available datasets on commercial platforms such as AWS. We utilize
the NODD because (i) the data is already in the cloud and thus provides easy and
secure connections to our cloud-based EO-DT and (ii) it is more representative of the
future NESDIS archive that will be available after the NCCF has been fully
implemented. When a new file is available on the NODD, the EO-DT is notified and
retrieves essential metadata about the file (#2), such as the product name, satellite
source, start and end times, computes geolocation, and stores all these metadata in the
enhanced digital twin catalog database (Sections 2.3.1--2.3.2). The satellite data
remains on the NODD and is not duplicated within the digital twin. In (#3),each new
GOES-18 L1b full disc file (all channels) is monitored for anomalies using a ML
approach that we describe in detail in Section 3.1. While we only monitored GOES-18
files operationally, our methodology was tested with VIIRS L1b datasets with promising
results. As described, anomaly detection is an example of a new service that has the
potential to classify complex anomaly patterns to better communicate data quality to
both end users and NOAA management.

Figure 1.9. The concept of operations for the STC EO-DT prototype.
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explore new features, such as ML-based anomaly monitoring, to explore user
experience what if scenarios. Improving the user experience was central to our
approach.

In CLASS, the current operational user interface for data searches allows users to
search and retrieve (order) data based on the product name, date, time, and location
from the NCEI archive. After completing the search, CLASS provides a link to end users
to visualize their ordered data. However, CLASS currently lacks the capability for direct
data visualization.

In the digital twin, we developed a cloud-based portal that serves as a front-end to order
NODD data (#4). The portal also integrates a planimetric (plan) view capability to
display the ordered datasets, offering users a rasterized visual on an open-source
global map (Section 2.3.4).

Working with NOAA project management, we identified data fusion as a critical service
to test in the digital twin. Within our EO-DT prototype, we developed a data fusion
scheme (#5) to perform common transformations to align dissimilar data. Data from the
same NOAA satellite sensor can have varying resolutions, gridding, and temporal
sampling. We developed cloud-friendly code that can be deployed to perform these
transformations rapidly as shown in our demonstration (Section 2.4).

We developed a proof-of-concept for two ML-based data fusion enhancements
(Section 3.2) that can augment our “classical” regridding approach. The two
enhancements address the significant challenges of combining satellite datasets with
other products, models, and in-situ observations, such as (i) the presence of a
significant number of missing values in satellite scenes due to atmospheric clouds and
(i) too coarse of a spatial resolution of satellite data products to be fully exploited for
their target application. Atmospheric clouds can obscure the Earth’s surface from
satellite visible, infrared, and some microwave sensors, thereby affecting their derived
products. To overcome this, we explored gap filling clouds using Long Short-Term
Memory (LSTM), a recurrent neural network (RNN) architecture used in Deep Learning.
We also explored using Enhanced Super-Resolution Generative Adversarial Networks
(ESRGAN), a model that can be trained to leverage LEO and GEO observations to
produce a high-resolution image when only low-resolution data is available. Both ML
techniques showed promise in overcoming these challenges.

Installing new algorithms into the ground system is a critical component of the NCCF. In
our prototype, we demonstrated how an ML-based algorithm could be containerized and
installed (#6). To do this, we installed a version of the multi-instrument inversion and
data assimilation preprocessing system, artificial intelligence version (MIIDAPS-AI)
algorithm. MIIDAPS-AI estimates vertical profiles of temperature and moisture, surface
temperature, surface emissivity, and cloud parameters from multiple instruments
(Maddy and Boukabara, 2021). MIIDAPS-AI is not presently an operational NESDIS
product, but given that there are many ML-based retrievals in development and the
future, it is an important example to study. The NCCF must be able to accommodate the
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different development and operational needs, such as improved automation for
deploying training models that are routinely updated.

Each of the steps described above produces a wealth of actionable real-time data. For
example, user request processing times, products of interest, and computing resource
usage. We developed a visualization system for all these analytics (#7) using a web-
based dashboard. This feature distinguishes a digital twin from a traditional simulation:
we simulate many elements of the whole system and capture data in real-time to
support decision-making.

All the above enhancements were made to demonstrate a user-centered design that
focuses on the simplicity of the user interface to get data of interest as quickly as
possible. While the existing ground system provides invaluable services to the end user,
our prototype explored how new services can be added. Furthermore, we explored
ways to improve support and benefit for the NOAA management user responsible for
the ever-increasing number of satellites, data products, and data volume. The on-
demand resources and 'data in place' approach can reduce operational cloud costs
substantially without compromising performance scalability to meet increasing user
demands.

Finally, we are looking to a future that consists of a federation of digital twins. Through
correspondence with other digital twin efforts at NASA and Destination Earth (DestinE),
the community has a vision of an interconnected set of modular digital twins. Much work
and discussion are centered around interoperability, or how to work together, share
data, and exchange actionable information seamlessly. We describe our interactions
with the community in Section 5.2 and our recommendations for harmonizing efforts.

Ground System Components Modeled in the Digital Twin
1.2.1.1. Downlink and Ingest

In the ground system, data are staged upon receipt to ground stations in Svalbard,
Norway McMurdo Antarctica, and Suitland, MD. Our EO-DT modeled the behavior and
properties of the existing downlink system using CrlS and ATMS Level 1 assets by
monitoring the satellite sensor performance, such as coverage, quality assurance, and
latency, using a Grafana dashboard (Figure 1.10). We tracked these statistics to
monitor for bottlenecks and anomalies in real-time in the dashboard. This one-stop
location makes it easier for a resource manager to respond to problems. For example,
Figure 1.10 a and b show the mean and time series of latency of CrIS and ATMS
products generated on the NODD on 09/27/2023 18-21 UTC. Access to the NOAA
operational system requires strict security, so we used the NODD, which is public, as a
proxy for internal NOAA operations. NESDIS EO-DT project management requested
that the EO-DT have a two-week data window to simulate the real-time data flow to
monitor coverage, latency, and data quality flags for all products. We exceeded this
requirement using our data-in-place approach (See Section 1.1.4). Because we were
only storing metadata, the database requires little storage (< 1GB), so we could retain a
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complete data record from June 2023 through November 2023, when the project was
completed.

As shown in Figure 1.9 (#2), one enhancement we explored is using ML techniques to
detect anomalies in imagery data from the GOES-16/-17/-18 ABI and NOAA-20 VIIRS
L1b products. Figure 1.11a shows the Grafana state timeline of GOES-18 Channel 16
from 09/27/2023 18-21 UTC. State timelines are helpful to visualize whether the data
are classified as valid (anomaly-free) or invalid (contains anomalies) using our ResNet-
18 model (Section 1.1.4.2 and Section 3.1). As described in Section 3.1, our system
classifies each new GOES-18 image from the NODD, and the dashboard displays the
classification. At 20:10 UTC, an anomaly was detected by the model. Upon inspecting
the imagery (Figure 1.11b), a small part of the south pole region was missing from the
full disk image (circled) at 20:10 UTC while the other images were fully filled in. While
quality flags are invaluable to determining whether data meets requirements, ML
techniques can determine problematic data patterns. In our demonstration, we used a
binary classification where valid or invalid were the two states. By building on this work,
it is possible to train a multi-label classification model to not only find invalid images but
also to predict what kind of anomaly patterns are within the image.
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Figure 1.10. The Grafana dashboard showing the real-time latency and quality
information for Suomi NPP, NOAA-20/-21 CrIS and ATMS on the
NODD at 09/27/2023 18-21 UTC.
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and invalid otherwise. CrIS SNPP shows invalid because of ongoing sensor
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Figure 1.11. Grafana state timeline of GOES-18 Channel 16 from 09/27/2023 18-21
UTC.
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(a) Grafana state timeline display showing the quality status of GOES-18 data
using machine learning image classification.

(b) At 20:10 UTC an anomaly was detected, and a visual inspection shows there
was a small data outage in Antarctica (circles). Other images were complete.
The example shown is for GOES-18 ABI channel 16 at 09/27/2023 18-21 UTC.
Imagery Source: CIRA SLIDER.

1.2.1.2. Processing

In our EO-DT, processing encompasses Level 1 and Level 2 product generation and
related services. We worked with the NESDIS EO-DT project management team to run
a version of MIIDAPS-AI (Maddy and Boukabara, 2021) to simulate how our EO-DT
could run and monitor retrieval algorithms. MIIDAPS-AI uses ATMS and GFS as inputs
to predict profiles of temperature, relative humidity, total precipitable water, and cloud
liquid water. Figure 1.12 shows a single granule processed by MIIDAPS-AI, which has
a total processing time of 246s, of which the ML model prediction only took 3 seconds to
run on our system (Section 5.3.1 describes the compute environments used).
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Figure 1.12. Relative Humidity at 850 hPA from MIIDAPS-AI on Sept 7, 2023 00:00
UTC. The ATMS granule was processed on-demand on the EO-DT.

An important enhancement in our EO-DT was data fusion using classical (Section 2.4)
and ML (Section 3.2) combination techniques. Data fusion encompasses several
transformations, such as spatio-temporal gridding, gap filling, quality control, and trend
analysis. In our demonstration, we employed a classical regridding scheme to validate
our cloud architecture and tested ML methods offline. In the future, more complex fusion
schemes can be employed using the same system and on-demand file format
conversions. Our data fusion had a processing time requirement, so that it was within
10 minutes of a global day. Typical regridding processing times for each granule were
typically around 30-60 seconds using a single core but can be scaled using
multithreading and container orchestration to ensure the time requirements are met for
a complete global day. We installed several Python scripts to monitor the data fusion
processing time and displayed them on the dashboard (Figure 1.13). Some essential
statistics are CPU usage, memory usage (MB), and processing time (minutes). By
monitoring the data fusion performance, system administrators can decide how to
allocate cloud resources best to achieve user requirements and accurately estimate
their cost.
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Figure 1.13. The dashboard output of cloud computing resource usage to
perform data fusion on 09/27/2023 18-21 UTC.
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a) shows the mean CPU percentage for each user request
b) shows the total memory usage (MB)

c) shows the processing time (mins). Monitoring resources in real-time allows
management to perform a cost-benefit analysis of using on-demand services
or pre-processing the data.

1.2.1.3. Catalog and Archive

After data products are generated, they are cataloged and archived on NOAA data
archives, such as those maintained by NCEI. Nearly all operational Level 1 and Level 2
products are archived on CLASS. Some Level 3+ datasets are archived on CLASS but
generally must have strong stakeholder justification. Users who access the data via
CLASS can search it because data are cataloged in the archive based on their
metadata. Metadata parameters enable fast searching, so the system does not have to
open each file and examine its contents. This is especially important in determining the
location of a granule.

In our EO-DT, we developed a catalog system that did not require opening individual
files, thus eliminating readers all together. For NESDIS LEO datasets, file names
commonly contain information such as the satellite, sensor, product, and start and end
times. However, associating location information often requires the system to open and
find the geolocation data elements, which adds cost and complexity to maintain
because each data product's content structures are unique and need a custom reader
to parse. Instead of determining geolocation from within the file, we used the two-line
element (TLE) and the file start and end times to determine the approximate location.
Instead of using latitude and longitude coordinates, we used a geohash to identify the
location, which is faster to query in a database (Section 2.3.4).
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Figure 1.14. The dashboard output of the catalog and archive on 09/27/2023 18-21
UTC.
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The top two panels are a timeseries of number of new
a) GOES-derived dataset
b) LEO datasets that appear on the NODD

c) shows a time series of the new data being cataloged and a count of on-demand
computing resources that are invoked.

While not part of the demonstration, we studied some emerging data formats and
compared them with netCDF4 which is one of the most prevalent formats at NOAA
(Section 4.2). Self-describing data formats like netCDF4 offer excellent compression
and are considered a standard in the Earth Sciences. While excellent for archiving,
netCDF4 files are not cloud-optimized, unlike Zarr, an emerging format that is cloud-
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optimized. Cloud-optimized formats enable users to access parts of the data file without
downloading the full file. Other popular cloud-optimized formats include Avro, Parquet,
and ORC, but those are more suitable for time or other point-based data and less
suitable for geospatial data. While netCD4 is not optimized for the cloud, tools are
emerging that will allow users to load only parts of the netCDF file with a slight
performance penalty. Since converting the entire archive to a new format can be
prohibitive, we recommend integrating processing tools with the current netCDF4-based
archive.

1.2.1.4. Search and Dissemination

Presently, users query NESDIS data by visiting www.class.noaa.gov. Users can search
by time and geographic location for data on a geospatial map. A list of available files is
returned, and the user places their order. Once the data are processed, which can take
anywhere from a few minutes to days, an FTP link is sent to the end user for them to
download. In the EO-DT, we developed a web portal (Figure 1.15) that allows users to
query select data products on GOES and JPSS NODD archives, which is available as
drop down menu items in (a). Like CLASS, users can subset their data by (b) time and
(c) location and the interface returns a list of matching products (d). Since the data are
already staged on the cloud, users are not delayed downloading the files. We added
two additional features not available on CLASS: the ability to visualize the data in its
native grid as a ‘quick look’ or (e) to regrid the data to a regular grid (f)

Figure 1.15. Web portal that has the user interface to search the NODD.

Earth Observing Digital Twin Access Portal

Satellite Data Products Search Results o

Start Date

End Date

Users can query the archive by

a) data product and satellite
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b) date and time

c) geolocation bounding box. After clicking “search” in the lower left, the portal
returns a list of filenames

d) that match the query. The user can then visualize the data in its
e) native grid using “quick look”
f) regrid the data to a regular grid of their choice.

After the user hits submit, a new tab opens in their browser, and the data are overlaid
on a map. Figure 1.16 compares SST in the quick look and the regridded (1 km) view.
For the prototype, the quick look displays only the first file in the list, but it could be
improved to allow the user to choose a file of interest. The regridded data combines
both files, and a future feature could allow users to select their desired spatiotemporal
averaging. The data are irregularly spaced in the quick view shown in Figure 1.16
because they occur on the ABI fixed grid. The regridded visualization places everything
on a common, evenly spaced 1.0°x1.0° grid.

Figure 1.16. Comparison of a visualization user interface of the GOES-16 Sea
Surface Temperature product of a single granule

a) single-file quick look

b) regridded two-hour average on Oct 24, 2023 18-19 UTC. Inland pixels are due
to lakes or large rivers

Like the other ground system components, the dashboard monitors real-time user
interaction with the portal. Recall that user requests are all performed on-demand, so
Figure 1.17a shows the number of on-demand invocations of the system when the user
searched the catalog (orange) and requested a visualization (green). Each time the user
clicks the search button, the catalog count will increase, and each time the user selects
submit, the map count will increase. In addition to computing resources, we can see
what products interest the users and where. Figure 1.17b shows a heatmap of regions
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that users searched, where the redder the region, the more interest. Figure 1.17c
shows which data products were searched and how many times. Finally, Figure 1.17d
shows the regridding resolution that was requested.
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Figure 1.17. Figure 1.17 The dashboard showing analytics of how users
interacted with the user interface.

e Number of Search and Map Lambda Invocations (GEO and LEO) ©®©

64

16

N |

18:00 18:30 719:00 19:30 20:00 20:30 21:0

== Map Lambda Total == Search Lambda Total

User Query Locations

Zoom: 36
Center: -109.09254, 30.34727

Products Requested (D Gridding Requested @

NUCAPS 222
- j 10
NOAAZD-AQD 124
sst | : B 35 Ia
TATMS [ 12
GOES18-A0D 4
4

a) shows the number of on-demand invocations of the system when the user
searched the catalog (green) and requested a visualization (orange).

b) shows a heatmap of regions that users searched
c) shows the most popular data products and

d) shows what regridding scheme was requested,
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1.3. Summary

In this section, we provided a high-level overview of the EO-DT and how we designed
our system to achieve our goals, which were to (i) use real-time data to model current
capabilities from satellite archives, computing resources, and user interaction, (i)
explore where new services and ML can enhance the user experience and limit data
wrangling; and (iii) support decision making related to optimizing NESDIS data
processing. We performed a live demonstration for NESDIS and stakeholders, and this
report provides specific project details, technologies used, and lessons learned through
the process. The remainder of the report contains a detailed description of our work so
that others can use our approach and benefit from the lessons we learned about
building a prototype digital twin.
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2. Concept of Operations and Computing
Infrastructure

2.1. Digital Twin Architecture

Speed, safety, and scalability contribute to the rise in popularity of cloud technologies
(Arora, 2019). Our EO-DT* architecture supports a user interface that simulates existing
capabilities on NOAA CLASS and explores new features. The user interface was
designed to support a limited number of simultaneous users but can leverage the
underlying cloud platform for a fully operational EO-DT3. Our multi-tier (front, middle,
and server-side) architecture leverages AWS serverless resources where possible and
is designed to be flexible, maintainable, and scalable.

We evaluated a variety of AWS services during our exploration and determined the
following set to be ideally suited for implementing the EO-DT. EC2, or Elastic Compute
Cloud, allows users to run virtual servers in the cloud, offering scalable computing
capacity. Lambda is a serverless function that runs code that responds to events and
automatically scales based on demand. DynamoDB is a managed NoSQL database
service that provides fast and predictable performance with seamless scalability. S3, or
Simple Storage Service, provides object storage through a web interface and is
designed for online backup and archiving of data and applications. APl Gateway is a
fully managed service that makes it easy for developers to create, publish, maintain,
monitor, and secure APIs at any scale. CloudFront is a content delivery network (CDN)
that distributes content globally with low latency and high transfer speeds. Simple
Notification Service (SNS) distributes notifications to subscribers using a publish-
subscribe model. Simple Queue Service (SQS) provides a message queue service to
store SNS messages awaiting processing by other resources. Lastly, CloudWatch
collects and tracks metrics, set alarms, check logs, and explore changes to cloud
resources.

Figure 2.1 shows a diagram of the cloud architecture of our prototype EO-DT. We used
CloudFront for content delivery and cashing, EC2 instances for computing, S3 for
storage, DynamoDB as a database, Lambda for serverless functions, API gateway for
networking, and SNS/SQS for messaging and notification. We also used a managed
Grafana Cloud dashboard to view system-generated metrics. Below, we describe the
computing processes and the data flows.

Two core processes are persistent. First, a process that include cataloging new data
from the NOAA NODD into our DynamoDB to create a searchable database of available
data for end users. In this process, new data triggers a Lambda function that creates
and writes metadata to the DynamoDB. Second, a process that monitors new Level 1
ABI data for anomalies as the NODD receives new data. These processes are
monitored using CloudWatch, and the anomaly detection output is written to an S3 for
display in the Grafana dashboard.
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Figure 2.1. Cloud architecture of our prototype EO-DT. There are three main data
flows:

JPSS/GOES Open Data

b A
S3 Topic Grafana Cloud

AWS Anomaly Detection™ ¥
\ 4 . _Scripts for
- & Grafana
_—

SNS SQS Ingest
Lambda DynamoDB Producfion EC2
Regridding
Trigger: New updated CSV PUSH
Query/RESP Action: PUSH updated CSV regridded
¢ NetCDF
PUSH o
REQ (—I
_)._) @(_R’?EES%_)(_RESP_) —S e arch==—
Ccsv
User Cloud Front API Gateway Search s
Lambda

IF user REQ 'Gridded'

REQ ma PUSH updated CSV
Trigger: New regridded NETCDF file
Action: PULL regridded NETCDF file

Map Lambda
——PUSH map htm filg=—

1) the metadata from the NODD (JPSS/GOES Open Data) that is stored in a
database (DynamoDB)

2) the user request data, which passes into the APl gateway, triggering a
database search and which returns matching results. The user then can
request a visualization type.

3) the resulting output file, which the user can visualize as a map. If the user
selects ‘data fusion,’ the data are processed on an EC2 before being saved to
an S3 bucket; if the user selects quick look, the data is imported directly from
the NODD. A lambda imports the data and creates an HTML map, which is
delivered as a new tab in the user browser using CloudFront and public S3.

In parallel, the system has several on-demand processes: user data queries, data
fusion, and visualization. The user can access the user interface via a static website
delivered by CloudFront and a public S3 bucket. Their search request is delivered using
the API gateway, which triggers a Lambda to search the DynamoDB and return the files
that match the user's search parameters. Users can select “quick look™ or “gridded” as
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their visualization option. Performing a “quick look” visualizes a file in its native, irregular
grid. Their request is processed through the API gateway, which triggers another
Lambda that opens the user’s requested file, extracts a data variable, and saves it to a
map in a vectorized format. If the user selects “gridded,” the request is again processed
through the API gateway, which is now routed through an EC2 to perform a grid
conversion from the data’s irregular grid to a regular grid of the user’s choosing. The
regridded file is saved to an S3, triggering the map Lambda, which extracts a data
variable and saves it to a map in a vectorized format.

The system has three core data flows: the catalog data, the user request, and the
output file. Metadata from the NODD is parsed by Lambda and stored in the DynamoDB
to create the catalog data, which the user can search. The user request data consists of
data search parameters and a map visualization option. Their search request passes
into the AP| gateway, triggers Lambda to search the database, and returns the
matching files. The user performs a second request to select a visualization type. Their
second request determines how the data will flow through the system. If the user selects
‘data fusion,’ the data are processed on an EC2 before being saved to an S3 bucket. If
the user selects ‘quick look,” the data is imported directly from the NODD. A Lambda
retrieves the data and creates an HTML map, delivered in a new tab in the users’
browser using CloudFront and public S3.

There are also two smaller data flows, the first being the time series of the anomaly
detection system and the second is the system analytics data. Both data flows are
routed into Grafana. The anomaly detection system creates a JSON file with a time
series of every GOES-18 L1b channel and whether the image contains an anomaly
(‘invalid’) or not (‘valid). A second data flow involves system analytics, which consists of
several smaller data streams. We utilize CloudWatch to fully monitor the health of the
cloud resources and access logs to check for errors. We also developed several custom
Python scripts to monitor user request statistics. Grafana is a one-stop interface for
NESDIS management users to access data quality, system performance, and user
engagement with the EO-DT.

Where possible, we leveraged cloud scalability in our design. Managed services, like
Lambda and DynamoDB, automatically scale and can handle thousands of
simultaneous calls. S3 storage is essentially unlimited and expands as the data
holdings grow. The EC2 production environment is not scalable in our prototype design.
However, with containerization and clustering, the resources could auto-scale to
accommodate more simultaneous users.

During the project, we also evaluated several services that we did not ultimately decide
to deploy in the EO-DT. For instance, we explored using TwinMaker, Amazon’s new
digital twin service that provides a framework to integrate data streams from loT
sensors. An appealing characteristic of TwinMaker was that it fully managed the
messaging and data flow within the system, and we could expand to accommodate new
sensors and datasets and remove components if features were retired. However, upon
testing, TwinMaker did not easily ingest NESDIS data sources, which included satellite

36
Science and Technology Corp.



_r,'[ NOAA EO-DT

W Contract 1332KP22CNEEP0013
' Science and Technology Corporation

sensor data, retrieval products, dataset production data, and user inputs. Instead, we
found that a combination of SNS/SQS and Lambda functions carried out many of the
same functions as TwinMaker and were able to leverage Python packages that can
read geospatial data formats.

We also considered using containers and resources such as AWS Fargate, a serverless
compute engine for containers that work with Amazon Elastic Container Service (ECS)
and Amazon Elastic Kubernetes Service (EKS). Fargate would have allowed us to
deploy containerized applications without managing the EC2 instances. We ultimately
decided using EC2 with Python virtual environments was sufficient for the
demonstration. However, if one is built, we recommend Fargate or another container
orchestration approach for an operational EO-DT.

Overall, flexibility, maintainability, and scalability are the key strengths of our
architecture. Our system was tested when the JPSS part of the NODD underwent
reorganization, and our data paths no longer pointed to the files needed to populate the
catalog - as seen in reduced data flow into our catalog database. Fortunately, our SNS
filters are easy to update. The system remained online through this episode, albeit with
a short data outage for some products. Some future improvements of the EO-DT would
include incorporating containerization, adding security measures, and load balancing so
the system can handle more simultaneous users.

2.2. Data Products

For our study, we used twelve data products from NESDIS’ portfolio (Table 2.1)
representing the five earth domains: ocean, atmosphere, land, cryosphere, and space
weather. These products have all undergone maturity review, are deemed mission
critical, and have an active user base. These datasets are derived from a blend of
geostationary and polar orbiting sensors and span processing levels one to three.
These datasets are also helpful for monitoring long-term trends and represent diverse
spatial resolutions and latencies. All these datasets are also available on AWS S3
buckets as part of the Amazon Sustainability Data Initiative and the NOAA Open Data
Dissemination Program, which the prototype system can fetch. There are other data
pathways, such as using NOAA CLASS subscriptions. We chose to use the Cloud
because it represents the future state of NOAA data holdings as part of the NESDIS
Common Cloud Framework (NCCF).

Table 2.1. Datasets used in EO-DT prototype

Product Name Platform Level Resolution Latency Earth System

VIIRS SDR NOAA-20 1 15 km 90 min  All
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Product Name Platform Level Resolution Latency Earth System
ATMS TDR NOAA-20 1 15 km 90 min  All

Crls SDR NOAA-20 1 15 km 90 min Al

ABI GOES-16 1 0.5-2 km 5 min All

Sea Surface Temperature GOES-16 2 2 km 1 hour Ocean

Sea Ice Concentration and NOAA-20 2 15 km 90 min  Cryosphere
Temperature

Active Fire GOES-16 2 2 km 90 min  Land

Aerosol Optical Depth (ADD) NOAA-20 2 2 km 103 min  Atmosphere
NUCAPS temperature NOAA-20 2 50 km 90 min  Atmosphere
profiles

SUV L1b Data Products GOES-16 1 2.5arcsec 5 min Space Weather
GFS N/A N/A 27 km 6 hours  Atmosphere

We incorporated subsets of the above data in different parts of our prototype EO-DT.
We chose to display Sea Surface Temperature, Sea Ice Concentration and
Temperature, Active Fire, Aerosol Optical Depth (AOD), and NUCAPS in the user
interface. We used Level 1 imagery, such as VIIRS and ABI, in our anomaly detection
system. The ATMS TDR and GFS were ingested in the MIIDAPS-AI algorithm. Even if
not explicitly used in a demonstration, all the above data were included in our catalog.

Working with different data is challenging because they each require unique readers.
The DEEVA team at STAR collaborated with us and provided several data readers.
Their code was benéeficial for reading ATMS and CrlS, which are challenging due to
separate data and geolocation files. We used Python packages such as xarray to
simplify opening, reading, and working with Level 2+ data. The GOES products are
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operationally produced on a fixed grid, which must be converted to latitude and
longitude coordinates before regridding and mapping. We internally generated several
geolocation files that we reused when working with the GOES-16 data so that we did
not repeatedly have to perform the conversion, thus saving computing time.

2.3. Serverless Resources
2.3.1. Cataloging

Data users need to be able to query data holdings quickly. The GOES and JPSS S3
buckets are organized by product time but lack native search capabilities. This limitation
implies that users create their own tools to search the archive. To address this, we
created a metadata-based catalog that allows users to query the cloud archive.

One widely recognized method of cataloging is the Spatio-temporal Asset Catalog
(STAC). STAC is a standardized model designed primarily for geospatially focused
catalogs and is compatible with databases like MongoDB, and DynamoDB, as they all
support JSON formatted catalog entries.

We took a pure DynamoDB approach in our prototype for several reasons. First,
DynamoDB is a managed service and easy to deploy. The setup process did not require
expertise in database languages like SQL. Additionally, we did not need complex
querying in our demonstration. Thus, DynamoDB's straight forward and efficient native
querying capabilities met our needs. DynamoDB has not been as extensively examined
for remote sensing and geo data applications, and we wanted to experiment with this
new approach. If needed, DynamoDB could be replaced with a relational database in an
operational EO-DT (if built). While not strictly a STAC catalog, the DynamoDB entries
are structured similarly to STAC. For example, users can efficiently query and retrieve
geospatial data based on specific parameters such as time, geolocation, product, asset
location, and other relevant metadata.

In DynamoDB, each row represents a single file on the NODD. Table 2.2 shows some
example entries in our DynamoDB. For simplicity, we show only five fields: 0bkey,
satellite, geo§, product, and starttime. The DynamoDB is indexed based on
a partition key and a sort key. The DynamoDB needs to have a unique partition and sort
keys for the search to work effectively. However, most of our fields are not unique. The
satellite field is not unique because many products are generated from sensors on
NOAA-20 and GOES-16. The same limitations are true for the products field. Start times
may be shared for multiple products from the same satellite. We will discuss geohash
(geod) in Section 2.3.4, but like the latitude and longitude coordinates it represents,
geohash is not unique. The only unique field is obkey, the address on the S3 bucket for
the product file.
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Table 2.2. Example entries from our DynamoDB.

ObKey satellite = geo5 product starttime

NOAA20/SOUNDINGS/NOAA20 _

NUCAPS-

EDR/2023/07/24/NUCAPS-

EDR_v3r0_j01_s2023072401305

59 €202307240131257_c202307

240338040.nc NOAA 20 z8zep NUCAPS  2023-07-24T01:30:00

NOAA20/SOUNDINGS/NOAA20_

NUCAPS-

EDR/2023/08/31/NUCAPS-

EDR_v3r0_j01_s2023083118482

39_e202308311848537_c202308

312000210.nc NOAA 20 gnyh6 NUCAPS  2023-08-31T18:48:00

NOAA20/VIIRS/NOAA20_VIIRS _
Aerosol_Optical_Depth_EDR/202
3/09/19/JRRAOD_v3r2_j01_s202
309191509277_e2023091915105
23 _¢202309191601326.nc NOAA 20 7sOns AOD 2023-09-19T15:09:00

The fastest searches will query based on the partition and sort keys; querying the other
fields is significantly slower. We needed users to be able to search the table based on
multiple parameters: time, location, and product. A solution is to create Global
Secondary Indexes (GSI), which copies the main table with different partition
combinations and sort keys (Figure 2.2; AWS. (n.d.)). GSI makes a copy of the main
table, once for each different sort key. In our example table above, we would have one
main table (obkey x product)and three GSI tables, obkey x satellite-
obkey x geo5. and obkey x starttime. The results are then combined using
an inner join on the obkey, so only the data with the same obkey in all four tables is
returned.
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Figure 2.2. lllustration of GSI technique. The GSI duplicates the main table with
different partition key and sort key combinations so that the system
can perform multifaceted queries.

v — Y
PK | SK Al A2 PK | SK Al A2 PK ' SK Al A2

Main Table GSI'1 GSI 2 GSI 20

There are some drawbacks to this approach. Copying the table means your costs will
increase for each GSI. Secondly, since each table is searched, the number of tables

read capacity units also increases because you are now reading from multiple tables
instead of one.

We met with the AWS NOAA account team and validated our approach. Toward the
end of the project, we showed our approach to a DynamoDB subject matter expert who
proposed an alternative, faster, and more cost-effective approach using Z-Order
Indexing (Slayton, 2017). This approach would require us to create a new column with
a unique value by combining multiple columns' values and setting that field as the sort
key (Table 2.3). Then, we can use a non-unique field as the partition key.

Table 2.3. Example entries from our DynamoDB using.

Starttime_geo5_product Satellite geo5 Product* starttime

2023-07-24T01:30:00_ NOAA20 z8zep NUCAPS 2023-07-24T01:30:00
z8zep NUCAPS

2023-08- NOAA20 gnyh6 NUCAPS  2023-08-31T18:48:00
31T18:48:00_gnyh6_NUCAPS

2023-09-19T15:09:00_ 7sOns _AOD NOAA20 7sOns  AOD 2023-09-19T15:09:00
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Here, we created a new sort key, starttime_geo5_product, by combining the
values from starttime_geo5_product to ensure the values are unique. The asterisk
(*) indicates the partition key.

To illustrate, let us suppose a user makes the following query:

Search for NUCAPS. from 2023-07-24 00:00:00 UTC to 2023-07-25

00:00:00 UTC~ for a bounding box between 40.0-50.0°N and 1k7.0-
1L&.0°E.

The DynamoDB would then divide the table using the partition and sort keys :
Index: timestamp_lat_long

Key condition: Product = “NUCAPS™ AND timestamp_lat_long BETWEEN
“2023-07-24TO0™ AND “2023-07-25T00"

The pseudocode above will return a much smaller subset of values in the table. Then,
we can further subset the results using the following filters (shown in pseudocode):

latitude BETWEEN 40.0 AND 50.0

AND longitude BETWEEN 1k7.0

AND 1L8.0 AND timestamp BETWEEN 2023-07-24TO0 AND 2023-07-25TO00

While we did not implement this approach, the fact that it uses only one table and fewer
read capacity units indicates it will provide cost savings over the GSI approach.

2.3.2. Geolocation

As described in Section 1.2.2.3, we designed a system that estimates the data location
based on the filename. We leveraged a satellite two-line element (TLE) along with the
start and end times in the file to approximate a data file's position (Figure 2.3a). This
approach is agnostic to the data product because it only requires knowledge of the
satellite name and the observation capture start and end times. There is no longer a
dependency on data-specific readers like HDF libraries or specialized file readers,
making the system more flexible for accommodating new data. A drawback is that the
file position is not exact but is the nadir point of the center of the granule. To address
this, we designed the search to return more results than needed, which can be further
filtered in later processing steps once the file has been opened.

While we store the file’s latitude and longitude values in the DynamoDB, we also
convert the coordinates to a geohash to improve the search speed (Figure 2.3b).
Geohash is a spatial data encoding system representing a rectangular geographical
area as a concise string of letters and digits (AWS, 2020). Geohash facilitates storage
and speeds up the query. Increasing the length of the geohash string can improve the
precision of the area it represents. What makes geohashes particularly useful is their
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hierarchical nature: similar geospatial areas have geohash strings that share common
prefixes (Figure 2.3c). For example, the geohash "dqc" might represent a large area
near Washington D.C. By extending it to "dqcjqf," the area becomes more precise,
pinpointing a specific neighborhood or even a street within that city. This hierarchical
structure enables efficient spatial queries and proximity searches, as areas near each
other often share parts of their geohash strings.

Figure 2.3. The geolocation for new files is catalogued

143013U 17073A 23097.21483361 .00000147 00000-0 90669-4 0 9994

° NOAA-20 Two-Line Element 0 1 00 01 10 11 000 001 010 011 100 101 110 111
243013 98.7476 36.5937 0000841 64.0023 296.1239 14.19534162278909 E\z """ =02 .03 12 E o;;‘_.axfs‘"“""6'1'2""1715”402 103 112 113

’ 3 \ 20 21 30 3 ) m._QZ‘I 030 031 120 121 | 130 131

o Coordinate GeOhaSh PreCISion ° i 22 23 32 33 022 023 032 033 422,,_‘___123 132 133

(larger=more precision) 200 201 210 241 300 301 310 311

dqc 3 202 203 212 213 302 303 312 313

38.9072°N,

i 220 221 230 231 320 321 330 331
77.0369°W daglof g

12 222 223 232 233 322 323 332 333

dqcjgfzby5ghb

a) using the satellite two-line element (TLE) to determine the latitude and
longitude coordinates based on the file start and end times. The coordinates
are then converted to

b) a geohash, which is a concise string representation of the location.

c) shows how the decimal precision of the latitude and longitude coordinates are
expressed by longer geohashes.\

Some popular catalog options like STAC use very precise polygons to describe the
exact granules, which can lead to more accurate search results. These two approaches
are not mutually exclusive. One can design a system that opens a file, reads the
granule information, and stores a polygon in the DynamoDB to follow the STAC
specification. The same DynamoDB can use the TLE/geohash approach to quickly
subset the data. Then, the system can use a Python script in Lambda to perform a
slower but more precise process, like polygon intersection, on a much smaller subset of
the data catalog.

2.3.3. Ingest Lambda

Lambda is helpful because it can process data immediately after it is added to S3 (also
called an event-driven trigger). In our EO-DT, as soon as a satellite data file is
uploaded, the Lambda function parses it, extracts necessary metadata, and stores it in
DynamoDB without any manual intervention or the need to run a constantly active
server. We call this process the Ingest Lambda to distinguish it from other Lambda
functions.
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We wrote our ingest script using Python because it is natively supported in Lambda. We
used the AWS Serverless Application Model (SAM) to develop and deploy the code.
SAM is an open-source tool that streamlines building and deploying serverless
applications on AWS, including Lambda functions. Utilizing SAM for Lambda
deployment means you can define your function, its event sources, and any necessary
AWS resources (like DynamoDB tables) in a single SAM template. When deploying with
SAM command line interface (CLI), it packages your code, uploads the package to
Amazon S3, and uses CloudFormation to deploy your serverless application. The SAM
CLI also offers local testing capabilities, which are used to test our Ingest code in a
Docker environment that simulates the AWS runtime.

The main steps in our ingest code are as follows: (1) parse the filename for a product,
satellite, start time, end time, and creation time; (2) determine the TLE from the satellite
and start time and end time, (3) convert to geohash, (4) add the result to the
DynamoDB. In its entirety, the process takes 10s per invocation. Some minor
challenges in the setup include inconsistency in filename conventions for different
satellite systems. For example, GOES data uses the day of the year to specify the date,
while JPSS uses a year-month-day format. Level 1 JPSS data separates the day from
the time differently than for JPSS data products. As a result, we had to write multiple
filename parsers.

An important consideration is that a satellite’s TLE changes over time to reflect satellite
orbit changes due to drag. So, the TLE table must be updated once a day to reflect
these changes. We learned this lesson quite painfully when our initial testing did not
return results in the specified bounding box when we tested it in March.

Lambda deployment involves zipping the entire contents of a working directory and
uploading, so we included a static copy of the TLE in the package. The query results
were thousands of miles away from our bounding box by September because we were
using an outdated TLE. Because we did not want Lambda to download the current TLE
file every time it was invoked (which may lead to our IP being blocked by the host
website), we wrote a script to download the TLE once a day to our local S3 and
Lambda, then imports it each time it is invoked.

2.3.4. Search and Map Lambdas

AWS API Gateways connect a front-end portal with server-side operations, such as our
user interface. APl Gateway creates RESTful APIs that trigger AWS Lambda functions,
enabling client applications to interact with your backend without the servers' direct
involvement. We chained API gateway with a Lambda function to allow users to search
our DynamoDB. We call this process the search Lambda.
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Figure 2.4. The architecture pattern for an APl gateway to lambda to DynamoDB.

DynamoDB

AWS

Query/RESP

@ Bzl i

User Cloud Front API Gateway Search
Lambda

Search Lambda is triggered by a user request to the API gateway (e.g., when the user
clicks the search button in Figure 1.15). Figure 2.4 shows a simplified diagram of this
part of the architecture. The user portal is represented by CloudFront and S3 icons. The
user’s request (REQ) will contain their desired query parameters, such as the product
name, dates, and bounding box. The API gateway sends a request to search Lambda,
which queries the DynamoDB. The search Lambda handler function ensures the query
is valid, performs the GSI search on the DynamoDB, finds the intersection of the results,
and returns the matching files to the API gateway (RESP). The files are displayed on
the top right-hand side of the website. While not shown in the figure for simplicity, the
search results are saved as a CSV file on an S3 bucket. At this stage, the user is given
a random search ID number to track their requests through the system.

The third and final lambda generates two maps for the user (map Lambda). This
Lambda is invoked through the API gateway when a user requests a map. The user has
two options: display the data as a quick look (Figure 2.5a) or regrid their results and
visualize them (Figure 2.5b). Examples of each are shown in Figure 1.16.
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Figure 2.5. Shows two patterns, one for (a) the native grid “quick look” map
display and another for (b) a regridded map which requires
additional processing on an EC2.
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The quick look architecture is relatively simple. The API gateway sends the user request
for a “quick look” along with the search ID number, thereby invoking the map Lambda.
The Map Lambda opens the corresponding search ID CSV file stored on an S3 bucket
and reads the first filename. Our approach was simplistic in the demo. Note that in an
operational EO-DT, we envision the user will be able to select which files they wish to
display. It is here that we open the files themselves for the first time. Each product
requires a unique reader to parse the file contents. We only extracted one variable for
simplicity, even though numerous fields are in the files. In the future, we imagine the
end user could use the file contents as a search parameter. Because the quick look is
intended to display data rapidly, we downsampled the data at a ratio of 10:1 for some of
the larger files, such as those from the full disk ABI. We selected a Python package
called Folium to generate a vectorized data map. Folium helps quickly create an HTML
file with the data converted to a vectorized format and overlays it on a Leaflet map.
Leaflet (https://leafletjs.com) is a popular, lightweight, open-source JavaScript library for
interactive maps. The leaflet map is uploaded onto the web portal S3 bucket and
automatically loaded as a new tab in the users’ web browser.

Users can also regrid their data to a regular grid. The user has three options for the
demonstration: 1.0°x1.0°, 0.5°x0.5°, and 0.1°x0.1° latitude and longitude. In the future,

we envision users entering custom values or using more complex grids. If “gridded” is
selected, the same map Lambda is triggered, but it does not make a map yet. Instead, it
opens the CSV file, appends the users' grid choice, and copies the file to an S3
directory monitored by our data fusion script for activity. We will describe our data fusion
approach in the next section, Section 2.4. Early in the project, we considered using
Lambda to perform data fusion. However, Lambda has strict size limitations for the
entire package (1GB) and strict processing time limits (<15 minutes to run). The data
fusion processing time may exceed the time limit for large requests. Instead, we
installed the code on an EC2. For a fully operational EO-DT, we recommend creating a
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docker image and deploying using a service like Amazon Elastic Container Service
(ECS) to fully scalable the resources. Once the file is regridded, it is saved to another
S3 directory linked to the map Lambda. If a new file is present, the map Lambda
triggers. Lambda then reads the file and displays the regridded data on the leaflet map,
which is then opened as a new tab on the user’'s browser.

We learned several lessons using our approach. The fine print around the AWS
resources must be factored in early in the design because they impact the architecture
significantly. For example, there is a 6MB size limit on the Lambda response, so large
results need to be uploaded as a file and not delivered to other resources as a
message. Similarly, there are size and timeout restrictions for using Lambda. For simple
processes, Lambda is both efficient and cost-effective. However, more complex code or
code with large dependencies must be deployed using a container or a persistent
service like EC2. We recommend carefully defining your requirements upfront to fully
consider the trade-off between on-demand and persistent resources.

2.4. Classical Methods for Data Fusion

In earth science, spatial regridding is the "process of interpolating from one grid to
another" (NCAR, 2014). More broadly, the concept of combining multiple datasets is
referred to as data fusion, which can be defined as "a process dealing with the
association, correlation, and combination of data and information from single and
multiple sources to achieve refined position and identity estimates." (White, 1991;
Steinberg et al., 1999).

We envision that our data fusion system will enable the user to specify the required
datasets, and then EO-DT will find the data and combine them on a common
space/time grid for analysis and display. If there is sufficient end user justification,
NESDIS generates analysis-ready data via a Level 3 product, where data are typically
merged from multiple satellites and stored on a common, uniform grid. Level 3 data is
essentially “pre-processed” for the end user to save them time. While cloud storage is
relatively inexpensive, for less popular datasets, on-demand processing charges may
be cheaper than maintaining a full data record. The resulting custom datasets may
serve a greater variety of end users, whereas a static Level 3 product may only serve a
few power users.

This section describes our on-demand algorithm for spatial mismatch and gap filling
using classical techniques in the prototype EO-DT. We use the term classic to indicate
data fusion techniques that do not involve ML. We also explored using ML for gap filling
and other challenges, such as leveraging data redundancy from multiple satellite
instruments, in Section 3.2.

2.41. Spatial Regridding

One of the primary challenges of combining satellite datasets is addressing the
mismatch of observations in time and space. We show some examples of the different
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grids and resolution of NESDIS in Table 2.4. Even if from the same sensor, datasets
can have varying resolutions and grids. While humans may be able to visually combine
mismatched observations, software, models, and analysis tools require the datasets to
be on the same grid. Regridding to a common grid makes the data more analysis-
friendly, but at the expense of information loss or distortion. Fine features in the
datasets are smoothed over or lost entirely if the projected grid spacing is too large. The
data can appear noisy if the projected grid is too small. Regridding can be inherently
slow, especially when searching over many pixels for nearest neighbors. Selecting an
appropriate solution is complicated because satellite data footprints often vary
depending on global position and viewing angle, leading to irregular, non-uniform-
spaced horizontal grids (Shea, 2074). GOES data is a regular grid in satellite viewing
angle space (called the fixed grid; NOAA, 2019) but becomes irregular when projected
onto latitude-longitude coordinates. Irregularly gridded satellite data is often combined
with model data on regular, uniform grids. For example, satellite observations are often
combined or assimilated onto the GFS model’s regularly spaced grid. There are many
other possible grids in the Earth sciences (e.g., Equal area, curvilinear, hexagonal,
polar, and meshes), but most spatial data is either in an irregular or regular latitude-
longitude grid.

Table 2.4. Shows the differences in resolution across NESDIS earth
observations data. Level 1 and Level 2 products have different
resolutions, making it difficult for users to combine.

Product Name Platform  Resolution (km) Grid Type

NUCAPS NOAA-20 50 Irregular swath
Aerosol Optical Depth NOAA-20 75 Irregular swath
Aerosol Optical Depth GOES-16 2 Regular viewing angle
Sea Surface Temperature GOES-16 2 Regular viewing angle
Ice Concentration and Extent  GOES-16 2 Regular viewing angle
Active Fire GOES-16 2 Regular viewing angle
ATMS TDR NOAA-20 15 Irregular swath

GFS na 10 Regular grid

When converting a regular grid to a different regular grid, you are taking pixels with
coarser or finer spacing than the target and interpolating them onto the target grid.
Since regular grids have consistent spacing, the relationships between grid points are
predictable. The ratio between source and target grids is often an integer or simple
fraction. For instance, regridding from a 2 km grid to a 1 km grid involves a direct 2:1
relationship, making interpolation straightforward. Python has several fast routines that
perform regular regridding, such as the ndimage and interpolate-griddata
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functions in SciPy (https://scipy.org).

Converting data from an irregular grid to a regular grid is challenging and requires
complex interpolation. Some interpolation methods include inverse distance weighting,
kriging, or natural neighbor techniques, which are more computationally intensive than
nearest neighbors and linear interpolations. For each grid cell in the regular grid, the
algorithm must search for the nearest data points in the irregular dataset. When
irregular data is scattered sparsely across the globe, there are a lot of different
approaches. For example, the data can be binned to a coarse grid and then interpolated
to the target grid. The interpolation method can be bilinear, spline, or nearest neighbor
using piece-wise interpolation. Alternatively, the input data can be distance-weighted to
the target grid points. A drawback is that this type of interpolation can be
computationally intensive and slow.

If the irregular data is dense, data binning routines are appropriate and relatively fast.
Data is averaged in each regular grid data bin. Some data binning routines will allow for
weights, weighing the data in a bin based on how close it is to the grid point. Our
methodology in the EO-DT assumes the measurements are dense, although, in
practice, this is incorrect because there are missing values due to clouds, orbit gaps,
sun glint, and other retrieval errors. We will address this in Section 2.4.2.

Figure 2.6. Shows how average data regridding works with the small dots
representing the satellite measurements, small squares in situ
measurements. The larger squares are the values mapped to the

regular grid.
Regridding
m
. No Data
.. 5 Q’ .‘ \
v.. CDQ .. o
- . ... Measurement
"e ©°_|®_ No Data
o. 7
o L ]
| e °
P e
o. OO . '.
No Data No Data = =
[=)

Regular grid
Measurements

Some of our goals were to write an algorithm that was (1) dataset and grid agnostic and
(2) met a processing time requirement of < 10 minutes to run a global day. The latter is
highly dependent on the instance type running the data, so while we optimized the
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code, this was not a particularly restrictive environment.

Our regridding algorithm gathers all the data within each grid box centered on the grid
point (Figure 2.6) and assigns the average value to the grid point. This average data
regridding works best if many data points are in the fixed grid boxes. Statistics can be
generated on the data inside the bin, which is useful in evaluating the
representativeness of the gridded data. The data in the box can also be weighted so
that some measurements contribute more to the average - this can be important if one
data set adds a significantly more amount of data to the bin than another (e.g., aircraft
versus satellite) or if one set of data is considered more accurate than another.

Our pseudocode for the primary subroutine that grids the data is:

1. We initialize our array with a fill value (-999.0)

newdatali,j] = fill_val
foralliin [0, len(x,,) — 1] and all j in [0, len(v,,.) — 1].

2 Forjin [0, len(y,,:) — 1]

Lf [:yﬂut[j] - d}? = Yin < yout[j] + d}r) and ( dﬂrtﬂl ¥+ flr”_'l',?{li )
for i in ([0, len(x,u:) — 1]):

3. Return newdata

If Xpuell] — dx = x5, < X [1] + dx
_ Y datalk]

1] g where the sum is overvalid ( k)

newdatali, j] = p

Where X, and y;, are the input data coordinates in the native/original grid, data is the

array containing the original data values at those coordinates, X, and Vou: are the
coordinates of the regular new grid, fff ffff _vvv is the placeholder value to indicate
absent or invalid data, d and d are the half the distance between consecutive grid points
in the x and y dimensions of the regular output grid, respectively, and nnnnnnnnnnnnnn
is the returned array containing the regridded data.

Like all other components in the EO-DT, we wrote the regridding code in Python. We
chose to write the regridding subroutine in Cython, a programming language designed
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to combine Python's ease and readability with C's performance. The Cython syntax is
like Python and has built-in support for NumPy, but Cython functions must be compiled
before running and integrating into pure Python scripts. The Cython-enhanced code ran
significantly faster, reducing computing time from 6 minutes to < 1 minute per granule
compared to a pure Python approach.

2.4.2. Gap Filling

Gap filling is the process of filling in missing or corrupted data points within a dataset.
Satellite measurements produce data gaps for various reasons, such as instrumental
malfunctions, data transmission errors, or environmental factors like cloud cover
obstructing the sensor's surface view. These gaps can hinder data analysis, as
continuous data coverage is often essential for understanding environmental trends and
patterns. Our goal is to create a complete and continuous dataset that maintains the
integrity and accuracy of the original observations. Proper gap filling is crucial to ensure
that the resultant dataset is representative and does not introduce artificial biases or
errors into subsequent analyses.

We developed a use case to evaluate two classical gap filling methodologies feasible in
the digital twin. We chose to study wildfire smoke plumes using AOD from ABI and
VIIRS for several reasons. First, wildfire smoke plumes are of interest to multiple
agencies, including the EPA, USGS, and NASA, and are particularly important given the
record fire season in Canada in 2023. Additionally, wildfire smoke presented an
opportunity to merge satellite and model data. While our results center on this use case,
the gap filling techniques we developed can be extended and adapted to other data
products. We did not install a gap filling method in our prototype EO-DT. If installed, our
gap filling methodology could be run within the regridding code, and there would be no
changes to the cloud architecture in Figure 2.1.

AOD is particularly prone to missing values for several reasons. Aerosols reflect
sunlight and AOD is measured in the daytime as an enhancement in the visible and NIR
solar reflectivity. Clouds obscure the surface and prevent AOD measurements. In
addition, sun glint within the field of view will appear as an enhancement in reflectivity
and is indistinguishable from AOD or cloud enhancements. Unlike clouds, the position
of the glint is known, and GOES L2 AOD product is masked over the glint region.
Because of clouds and glint, a large portion of the viewing region is obscured at any
moment. However, AOD measurements from geostationary instruments are made every
15 minutes, and clouds and the glint change locations.

We tested two methodologies, backfilling and inpainting, to handle missing pixels,
using temporal and spatial data for interpolation. Figure 2.7 shows an illustration of
backfilling. The current image (T=0) has missing pixels. The algorithm searches
backward in time to the previous timestep (T=-1), finds a valid pixel, and propagates it
forward to fill the missing pixel. A pixel is missing in T=0 and T=-1 but is available in T=-
2 and propagated forward. The combined data are shown on the right in the backfilled
field.
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Figure 2.7. technique for AOD. Data is brought forward in time to fill in regions
obscured by glint and clouds.

T=-2

Backfilled field

= Cloud

= AOD data

In contrast, inpainting fills missing data from adjacent data or other data sets not
included in the original set (e.g., model predictions). For example, a single missing pixel
or small cluster of pixels could be filled in using neighboring pixels. An advantage of
inpainting is that it does not require a long time series of data but it does require
accurate quality flags; otherwise, neighboring pixels may be filled with inaccurate data.

Figure 2.8 shows the results from the two gap filling approaches algorithm. Figure 2.8a
shows the original scene, and Figure 2.8b shows the backfilled scene with most clouds
removed. Backfilling is quite effective at removing clouds because of cloud motions. If
we assume that AOD is slowly varying over a few hours (Figure 2.8c), backfilling
provides a reasonable approach to generating more complete data fields for an EO-DT
user. The inpainting applied (Figure 2.8d) was less successful. The reason is that the
GOES AOD algorithm often mistakes cloud edges for high AOD regions. Inpainting then
pushes these high AOD regions into the gaps, as seen in the lower left.

When using regridding methods, several caveats must be kept in mind. First, regridding
and gap filling create “new” observations derived through interpolation, extrapolation,
and averaging techniques. Hence, it is important to understand the data's variability
when employing these methods. Second, numerous datasets are accompanied by
quality flags that are pivotal in assembling fused data. The challenge is that these
quality flags are defined differently across multiple datasets without any standard
protocol. For instance, the quality flags for SST are distinct from those for AOD. Finally,
cloud masks help filter bad pixels, but not all products explicitly have them. Surface
observations are especially vulnerable to cloud mask flags. Sometimes, these cloud
masks are integrated into the quality flags, while they exist as separate entities in other
datasets. Any data treatment system must be well-informed about the data screening
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methodologies utilized during the production of Level 2 data. Data fusion is not simply a
spatial process but needs to include temporal variations, especially for rapidly varying
geophysical variables.

Figure 2.8. lllustration of backfilling using combined GOES-16 and NOAA-18

AOD
AOD July 25,2023, 16:00 UT Backfill using previous 12 hours
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5 Inpainting cycles

a) Shows an example image at 16:00 UT with clouds and glint contaminating most
of the field. Using 12-hour backfilling

b) most of the cloud fields are filled in with AOD data.

c) Shows how far back in time (hours) the algorithm had to go to fill in the cloud
field — most of the data are replaced with information only a few hours old.

d) Shows the addition of inpainting.
2.4.3. Summary

We developed a fast, simple regridding method that is agnostic of the data source and
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can be applied to all NESDIS datasets without re-training. We successfully tested and
installed this code into our EO-DT prototype, and it successfully transformed satellite
datasets from an irregular grid to a regular grid at a user’s requested spacing. The code
processed a data granule on one CPU core within 30 seconds to 3 minutes for a 50 km
and 750 m VIIRS granule, respectively. Processing speeds can be improved by utilizing
multithreading and containerization.

While ML-based regridding schemes are popular in the Earth Sciences due to their
ability to learn complex patterns and adapt to varied datasets, classical regridding
methods like the one we discussed here offer several advantages. First, classical
regridding methods, such as bilinear or nearest neighbor interpolation, are deterministic
and have a precise mathematical formulation. They produce consistent results and are
generally more accessible for users to understand and interpret. While slower, many
classical regridding techniques are less computationally intensive than their ML
counterparts, as some ML models require GPU-equipped instances for training.

Our analysis identified several bottlenecks that made data processing and usage
difficult. A primary challenge arose from the unpacking and utilization of typical
NetCDF4 files, which contain numerous variables helpful to an algorithm developer but
may not apply to the average user. Unfortunately, the user must download the entire file
to access only a small part of its contents. For instance, we only needed to access four
variables (AODS550, QCAII, Latitude, and Longitude) out of the 21 geospatial variables in
the VIIRS AOD. We recommend adopting a cloud-optimized file system to expedite the
processes of opening, downloading, and further processing the files. (Section 4.2).
While our cataloging system (Section 2.3.1) offers a solution for geolocating LEO data
products, integrating orbit region and time into the file name could facilitate regional
sub-selection for average users.

As notes earlier, the structure and meaning of quality flags vary significantly across
NESIDS datasets. To use these flags efficiently, we constructed a table defining the
semantics of each quality flag. Harmonizing the meaning and structure of the quality
flags in a digital twin is important to broaden the use of NESDIS’ high-quality data
products.

2.5. Data Analytics Dashboards

A digital twin can quickly produce a lot of information, thus requiring tools to organize
the various data, metrics, and visualization concisely. We wanted to provide a one-stop
location for managers to examine all the data that the EO-DT produces. Data analytics
dashboards have become an increasingly popular way to organize complex data to
produce actionable management insights (Pauwels, 2009; Microsoft (n.d.)). Static
graphics and reports were traditionally the primary way of communicating information to
management. While useful, the increasingly data-driven nature of society means
stakeholders need information at smaller timescales — by the week, day, minute, and, at
times, even on second timescales. These new timeliness requirements mean
communicating analytics must be performed using real-time software tools.
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Furthermore, decision-makers may want to interact with the data, which is impossible
using a static medium. Thus, there has been a proliferation of “at a glance” tools
everywhere, from our personal banking accounts to technology giants like Google,
Amazon, and Microsoft.

In digital twins, dashboards can show the various components of the system in real-
time. In a manufacturing environment, a digital twin dashboard can display all levels in a
factory, from the shop floor to management (Lin and Low, 2021). A dashboard can
quickly identify errors or bottlenecks in the system and enable a fast fix to address the
problem. The main challenges include collecting and combining data sources and
developing user-friendly visualizations.

In creating a dashboard, we could have developed one entirely from the ground up, but
we found that many open-source platforms provide a clean interface and seamlessly
integrate with cloud computing resources. The costs are generally free for under five
users but can accommodate more users for under a few hundred dollars a month. We
evaluated several open-source services, which are shown in . Our selection criteria
included (1) how well the platform interfaced with our EO-DT system and data streams,
(2) if they produced a variety of customizable visualizations, including from geospatial
data, and (3) if the operating costs were within our budget. Since our project focused on
open-source solutions, we did not evaluate commercial platforms, like Tableau or
Microsoft PowerBI.
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Table 2.5. List of dashboard services evaluated and compared for the EO-DT.

Name/Preview Website Strengths Drawbacks
Grafana hitps://

srafana com/ - Many templates and - Setup and learning
plugin for GIS are challenging

- Well documented
online

- Integrates with AWS
services

e 111101111

- Highly customizable

Dashbuilder https-//www dashbuilderorg/ - Does not require - No fully managed
coding expertise version
I - Examples included ML- - Not easily integrated
sl model monitoring with other tools
?f\' : - Not easily
: customizable
- Limited GIS support
Freeboard hitp//freeboard jo/ - Simple to setup and - Fewer data
learn visualization options
- Easily add data - Requires JavaScript
sources knowledge
- Easily shareable - Limited online
community

Most dashboard platforms provide online interactive samples so potential customers
can see if the dashboard meets their needs. While ease of use is important for a digital
twin, we especially wanted to select a system that could handle many different
visualizations. Dashbuilder and Freeboard had many types of bar and line plots, but
Grafana has a more extensive number of plots. We did not need the dashboard to
display raw satellite imagery, but we wanted it to display maps showing satellite
positions and where users queried data products, which requires a map. While none of
the dashboards had more than two visualizations, Grafana’s maps were more
customizable. For the demonstration, we also wanted to quickly deploy the system to
focus on the types of analytics that would be useful for an EO-DT, so a low-cost, fully
managed system was useful for us.

Of the three platforms, we ultimately selected Grafana because of its extensive online
documentation integrations with AWS CloudWatch and S3. Figure 2.9 shows the
simplified architecture for our data to flow into Grafana. Data from CloudWatch flows
directly into Grafana using an access key for security. From there, Grafana can access
the hundreds of possible metrics on AWS resources. We also wanted to monitor how
quickly user requests were processed, so we wrote Python scripts that tracked the
CPU, memory, and run times of specific code. In the future, this process can be
containerized and directly monitored in CloudWatch. We also wanted to observe data
flows on the NODD, so we wrote Python scripts to capture the latency and quality flag
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statistics. Additionally, we monitored our anomaly detection subsystem's runtime and
anomaly classification. These data flows are summarized in Table 2.6.

Figure 2.9. Data flow to the Grafana dashboard,
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There were some challenges to using Grafana. Generally, most dashboard services are
designed for monitoring computer systems since software developers are the most
likely to contribute to the code base. Grafana supports non-traditional visualizations,
such as video and GIS, but these displays are not as mature as those designed for time
series data. However, we felt that an off-the-shelf tool like Grafana was appropriate for
the demonstration and could be used in a fully functional EO-DT (if built). We
recommend that if NOAA builds an EO-DT, the development team gets a clear set of
visualization requirements from the dashboard's various users and allows the system
users to interact with the visualization examples online. If sufficiently complex, such as
requiring very advanced GIS visualization, the dashboard will likely need to be built from
scratch.

Table 2.6. The component being monitored in Grafana, along with the data
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source and the specific metrics that tracked in real-time.

EO-DT Component Data Source Metrics Tracked
Catalog, archive, and CloudWatch - Number of SNS/SQS
processing - Lambda Invocation Sound
- DynamoDB read/write
- CPU/GPU usage
Search and dissemination EC2 and Python Scripts - Data products queries
- Region users searched
- Data fusion latency
Downlink and ingest NOAA NODD and Python - Product latency
Soripts - Data quality
- Anomaly detection

While we chose to use the fully managed Grafana Cloud, Grafana is open-source
dashboards can be self-hosted for free. An advantage of Grafana Cloud is that the
developer only must focus on setting up the dashboard and metrics and less on the
infrastructure to support it. We discuss the differences in cost in Section 5.3.2.
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3. Enhancements using Machine Learning

3.1. Anomaly Detection in Satellite Datasets using Convolutional
Neural Networks

NOAA has developed an extensive data product portfolio to monitor and forecast the
environment. For the data to be useful, end users must be assured of the
“trustworthiness” of the data, a challenge that NESDIS has met using strict statistical
requirements. Data quality assurance is commonly provided to end users globally, using
pixel-by-pixel quality assurance flags in NESDIS products (NOAA, 2019). Requirements
can range from global comparisons with models and ground truth to strict error and
standard deviation values, which can vary by Earth surface type, degree of cloud
contamination, and solar zenith angle, to name a few. For example, the AOD product for
GOES-16 has respective precision and accuracy of 0.25 and 0.05 for 0.1<AOD<0.8
over land globally when compared with AERONET, a network of in situ measurements
(Laszlo and Liu, 2022). Distilling complex information like data quality into concise,
digestible, and actionable information is challenging in big data analytics.

Moreover, it is also essential for the end user to understand data quality on a pixel-by-
pixel and scene-by-scene basis. NESDIS communicates pixel-level quality using data
quality flags, where each pixel is labeled as no retrieval, low, medium, or high quality.
Reasons for the classification can vary from product to product, but for AOD, some
factors include estimated cloud contamination, coastlines, bright surfaces, and high
solar zenith angle. Communicating the uncertainty of datasets is essential for end users
and decision-makers to arrive at correct and actionable conclusions based on the
information they present.

Identifying scene-by-scene data quality is more challenging but possible using deep
learning and real-time analytics within an EO-DT. Scene-based quality control requires
understanding baseline patterns and robust detection of deviating from the norm. We
define dataset anomalies as unexpected and widespread data quality degradation.
While algorithm and sensor level strengths and weaknesses are well known, classifying
regions of anomalous data (and labelling by anomaly type) has not been thoroughly
explored. ML-based solutions are important because simple counts of scene quality
flags alone cannot identify if anomalies are caused by sensor degradation or data
outages due to, for example, solar flares. Thus, utilizing deep learning has the potential
to identify regions of poor or noisy performance and provide correction (Gibert et al.,
2018).

In this section, we develop and demonstrate an anomaly detection system prototype
within a the EO-DT to classify imagery with real-time anomalies. Figure 3.1 shows
examples of anomalous data consisting of stripes or chunks of missing values. As the
GOES and VIIRS satellites produce satellite imagery, the Digital Twin Anomaly Detector
(DTAD) subsystem analyzes Level 1 data. It determines if the imagery is valid using a
pre-trained ML model instead of relying on quality flags. By relying on a pre-trained
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model, the digital twin can adapt to new anomalies as they arise.

On a broader scope, we envision an anomaly detection scheme to process data in real-
time and apply labeling and possibly data correction where possible. In our prototype,
we seek to (1) identify which deep learning techniques and frameworks can meet NOAA
requirements, (2) measure the skill of the approach to progressively more complicated
results, and (3) design the baseline cloud architecture needed to implement such a
system for cost and resource needs.

The DTAD subsystem is configured to perform near real-time classification of
anomalies, which serves as a gatekeeping mechanism for other downstream systems
within the DT service architecture. This prevents the dissemination of images containing
anomalies to end-users.

Figure 3.1. Example of anomalies from GOES-R series L1b data showing
missing data with various patterns.

GOES-16 — Channel 08 GOES-17—- Channel 03

GOES-17- Channel 11 GOES-18-Channel 13
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3.1.1. Methods and Datasets

The DTAD constitutes a comprehensive toolkit developed due to the labor-intensive
task of curating and classifying training data to create a highly accurate ML model.
Within the DTAD framework, a set of utilities were devices to aid in assembling a
dataset that consists of anomalous and non-anomalous satellite imagery. This dataset
was used to train a new ML model using the PyTorch framework. In addition to the data
preparation utilities, DTAD incorporates tools for model validation against new datasets
to ensure performance continues to meet anticipated standards. Finally, the subsystem
is engineered to perform near real-time analysis of data from the GOES and VIIRS
satellites and offer timely classification of newly acquired imagery based on the
presence or absence of anomalies.

Figure 3.2. Overview of the Binary Image Classification training paradigm.

I ResNet-18 I I DTwin
| | I _Model | Anomaly
: : | | (Invalid)
I 4 H H H B I ) —|—<

I I | Normal
| | | (Valid)

The DTAD is a binary image classification system (Figure 3.2) trained using
Convolutional Neural Networks. As a binary image classification system, the DTAD can
answer the question of “Does this image contain anomalies?” with a “Yes” or “No”
answer. Throughout the project, the DTAD was trained to be a multi-label classification
system to try to answer the question “What type of anomaly does this image have?” with
multiple anomaly times, including “blanks” (when the entire scene was black)
“horizontal-stripe noise,” and “missing” (when the entire scene was white) image.

3.1.1.1. Training for GOES ABI Data

The DTAD subsystem initially underwent training utilizing data from the GOES series.
All 16 channels from GOES-16, GOES-17, and GOES-18 satellites were selectively
downloaded from their corresponding S3 storage locations (Figure 3.3). The data was
then split into "valid" (indicative of an anomaly-free state) and "invalid" (denoting the
presence of anomalies) categories, as determined by the evaluation of the image's
quality flags. Images with quality flags attaining a value of 0.989 or higher were
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categorized as "valid", while those registering a value below 0.989 were designated as
"invalid.” We estimated an optimal threshold of 0.989 through iterative experimentation.

Considering we needed thousands of images for optimal classification, the DTAD
subsystem was augmented with a suite of utilities. These tools streamlined the
download of GOES ABI imagery from AWS S3 storage and enabled subsequent
classification based on a given classification criterion, such as 0.989 or 0.999.
Moreover, an auxiliary utility was developed to enhance the efficiency of the iterative
threshold determination process for the quality flag. This tool allows the operator to
input a novel quality flag value, facilitating the immediate reclassification of the image
sets. Concurrently, the utility segregates the images, directing them to their respective
"valid" or "invalid" directories.

Figure 3.3. Overview of the Anomaly Detection Workflow for GOES data.
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Images procured from the GOES satellites were contained within large HDF files. For
enhanced manageability and training feasibility, we downsampled these HDF files into
more compact PNG files in the early stages of the project. To optimize and ensure
better model performance, every image was integrated into the training framework,
undergoing randomized transformations. We used this methodology to prevent
incorporation of external biases in the training dataset. Specific transformations included
converting images to grayscale, arbitrary flipping along horizontal and vertical axes, and
resizing to 250x250 pixels. The data were flipped to prevent overfitting based on
location or semi-persistent features.

Before commencing the training process, the entire dataset undergoes a randomization
procedure, partitioning into an 80% segment for training and a 20% fraction reserved for
testing. Partitioning the data helps guarantee that the data utilized for weight verification
during backpropagation in training is distinct yet remains representative of the
overarching training dataset.

Upon ascertaining the optimal quality flag threshold and standardizing the requisite
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image transformations, the next logical progression entailed initiating the model's
training phase. The desired accuracy for the model’s performance was to predict
images 75% of the time or more correctly.

Early in the project, we had to decide which ML Python package to use for training.
TensorFlow and PyTorch are both free, easily accessible, open-source software
libraries. TensorFlow is older and thus has more online documentation and community
support. PyTorch is a popular tool because of its user-friendly interface and flexible
design. Despite PyTorch's comparatively smaller ecosystem and restricted multi-GPU
support, it was designated as the chosen framework for DTAD. This decision was due
to several factors: PyTorch's seamless integration with Python and its more intuitive
API, the provision of dynamic computational graphs that render it particularly conducive
for intuitive processing and experimental endeavors, its robust foothold within academic
circles, and its native support for the Open Neural Network (ONNX) format.

After segregating the images into their respective directories, labeled as "valid" or
"invalid," we initiated model training. We initially chose to use a convolutional neural
network (CNN) with a custom-trained model. However, the model's accuracy did not
achieve the desired benchmarks. The most proficient model trained under this paradigm
attained an accuracy of 75% in the binary classification of satellite images. Given how
large some of the anomalies were, the accuracy was lower than expected.

We used transfer learning to enhance the accuracy of the model. Instead of building a
CNN model from scratch, we leveraged a pre-existing model and adapted it to our
labeled data. ResNet-18 is a model trained on over a million images from the ImageNet
database, categorizing images into 1,000 distinct object classifications, including items
like keyboards, mice, and pencils (Figure 3.4). The Resnet CNN was selected for
transfer learning due to its ability to address the vanishing gradient problem. Vanishing
gradient occurs during backpropagation when the calculated gradients from the output
layer progressively wane in magnitude as they traverse back toward the input layer.
Vanishing gradients lead to suboptimal learning in the initial layers, resulting in longer
training durations.
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Figure 3.4. Overview of the ResNet 18 model.
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We selected Resnet CNN because it incorporated a distinct neural network component
called a residual block. This block is designed specifically to counteract the vanishing
gradient issue. Within the residual block is a skip connection which circumvents one or
more layers. This architectural design facilitates more streamlined backpropagation,
enhances learning, and accelerates training speed.

The pre-trained ResNet 18 model was trained on GOES-16, GOES-17, and GOES-18
satellites for anomaly classification with an accuracy of 99.2%, much higher than that of
the custom CNN model (Table 3.1).
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Table 3.1  Confusion matrix showing the ResNet-18’s performance classifying
anomalies found in GOES ABI L1b imagery between 04/01/23 -
04/05/2023. Accuracy: 99.2%

Actual Classification, Acutal Classification, Mormal
Anomaly (Invalid) (Valid)

ML Classification, Anomaly 94 14

(Invalid) True Positive False Positive

ML Classification, Normal 19 3,836

(Valid) False Negative True Negative

We initially envisioned installing the DTAD subsystem in a Lambda function. However,
the training model alone was 43 MB, and PyTorch can exceed 100 MB, exceeding the
maximum Lambda deployment size. Owing to this limitation, the DTAD subsystem was
instead deployed on an EC2 instance using a cronjob set to execute every 15 minutes.
In case of an error, the DTAD subsystem records the last checked timestamp, ensuring
that any new files added since its previous run are processed. Consequently, in
scenarios where the system downtime exceeds 15 minutes, it can process all files from
the point of the last operation.

Upon deployment and when tested against real-world data, the model's accuracy
experienced a slight drop, descending from 98.9% to 96.5%. The lower is expected
because there may be anomalies present in unseen data that do not match that in the
training dataset. After installation, we found numerous examples of the DTAD
performing well. Figure 3.5a shows a screenshot of the DTAD installed in the EO-DT
dashboard. The dashboard displays a time series of the GOES-18 ABI Channel 16
state, where green means the data are valid and orange means invalid. At 2023-09-26
20:00 UTC, an anomaly was detected. A subsequent check on the CIRA SLIDER web
portal shows missing data (Figure 3.5b). The detection scheme exceeded our
requirements despite the slight reduction in detection capability when processing
unseen data.
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Figure 3.5 Example of the DTAD installed on the EO-DT
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e shows the DTAD state diagram for GOES-18 ABI channel 16 in the dashboard,
where green indicates valid data and orange is invalid. At 2023-09-26 20:00

UTC, an anomaly was detected.

e the real- time image, indicating an anomaly

(Source: https://rammb-slider.cira.colostate.edu).

3.1.1.2. Training of NOAA-20 VIIRS Data

Leveraging the GOES anomaly model, we developed an analogous strategy for VIIRS
imagery data. However, VIIRS had fewer real-world anomalies, and it was more
challenging to build a training dataset. Instead, we created a synthetic training dataset
that injected noise into images, mimicking real-world anomalies found in MODIS sensor
data (Ren et al., 2010, Rakwatin et al., 2017). Two examples of striping patterns are
shown in Figure 3.6. The "valid" directory was populated with 1,000 unmodified files
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from the NODD VIIRS S3 bucket using synthetic images. Then, the "invalid" directory
was populated with the same batch of 1,000 files altered with artificial noise infused or
rendered entirely in stark white or pitch-black shades.

y -
41
1

Figure 3.6 Examples of synthetic anomalies using noise injected into valid
VIIRS data.

o S-NPP VIIRS M2

(a) Shows stripes in the center of an M12 image (indicated by the yellow arrow),
which the model must distinguish from natural features like clouds. (b) shows
another example for the M11 band, with more closely spaced stripes.

Similar to the approach with the GOES data, we used the ResNet 18 model for the
VIIRS data. However, the resulting model underperformed, attaining only a 50%
accuracy rate. We identified a significant error in our training approach. The images
labeled as "invalid" were the same as the "valid" images that had undergone noise
injection. We recreated the training dataset, but this time, the “invalid” images’ base
image layer was changed to be completely different from the “valid” images. With this
rectification, there was a marked improvement in the model’s accuracy, reaching 89%,
which was better than our goal of 75% accuracy for the model’s performance.

3.1.2. Multi-label Classification

Once the trained binary classification model’s results met our accuracy goals, we
explored using a multi-label classification framework, designed to test if ML between
different types of anomalies in each dataset. Instead of using two labels, we developed
a training dataset where the labels describe the type of anomaly they contained, such
as “valid,” “blank,” “horizontal stripe,” and “missing.” While still simplistic, these labels
could lead to more sophisticated anomaly detection. We again applied ResNet-18, with
the final layer consisting of four distinct outputs corresponding to each of the expected
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labels in the training dataset.

The original dataset contained folders with the folder names corresponding to each
label used for multi-label classification. This data was split into 80% for training and 20%
for testing. After training, the model was evaluated against the test dataset but was
notably suboptimal. When evaluating against the test dataset, the model’s accuracy for
the “valid” label was 0%, and its predictions for “blanks,” “horizontal stripes,” and
‘missing” categories appear to be arbitrary, lacking any discernible pattern. However,
we are optimistic that the model could achieve better results with refinement.

We have several strategies that might enhance model performance. Throughout the
model training iterations, we observed a clear correlation between the quality of the
training data and the model's accuracy. A potential avenue of exploration would involve
leveraging a training dataset comprised of authentic, real-world examples instead of
relying on synthesized data. This approach would better mirror real-world conditions,
akin to the GOES dataset, and could significantly bolster the model's predictive
capabilities. An alternative direction for enhancing the model involves architectural
modifications.

While the Resnet-18 model has 18 layers, the Resnet family encompasses other
variations like Resnet-34, Resnet-50, Resnet-101, and Resnet-152. By experimenting
with these architectures, there could be potential for improved model performance.

Fine-tuning the ResNet-18 hyperparameters may improve model performance. One
hyperparameter to tweak is the learning rate, which determines the step size of each
iteration while moving toward a minimum of the loss function. Smaller learning rates
converge the step size slowly, while larger ones might overshoot the minimum. Another
is to change the batch size of the training dataset as the model could have been given
more training data to increase the accuracy but might also have decreased the model’s
ability to generalize.

Finally, the project could have also explored further Epoch values, which determine the
number of times the learning algorithm will work through the entire training dataset.
Even though the project did tweak with different Epoch values for binary image
classification, it was not a rigorous enough test for multi-label classification. Finally, the
project could have also explored tweaking the Optimizer and trying out different
optimization functions to see if they improve the model’s performance.

3.1.3. Explainable Al with Heatmaps

Explainable Artificial Intelligence (XAl) is the concept of interpretability and transparency
of an Al model. XAl refers to the methods and techniques that allow for a
straightforward, understandable elucidation of the decision-making processes of ML
models, particularly deep learning architectures and other complex models. XAl aims to
demystify black-box models, increasing trust in ML.
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Gradient-weighted Class Activation Mapping (Grad-CAM) is an XAl solution to
understand better how the model is predicting the data it has predicted as “valid” or
“‘invalid” in our DTAD subsystem. Grad-CAM is a technique designed to enhance the
interpretability of CNNs by visualizing which parts of an input image contribute the most
to the network's final decision. This is achieved by creating a heatmap highlighting the
image's most influential regions.

The power of Grad-CAM lies in its ability to bridge the gap between model performance
and human interpretability. Grad-CAM allows for this by visually pointing out the salient
regions in the input data and offers the ability to make better decisions for debugging
and refinement and developing trust with transparency into how the model functions.

Figure 3.7. Invalid image classified by the DTAD subsystem.

1

e shows the synthetic banding artifact added to VIIRS I-band 4. (b) is the
heatmap showing regions of “interest” to the RESNET-18 model. (c) is the
combination of the two images to show that banding

Figure 3.7 shows four examples of “invalid” VIIRS images, their associated heatmaps,
and the combination. On the left, (a) shows an invalid image with synthetic stripes on
the bottom half and (b) the associated Grad-CAM heat map. The redder colors indicate
that the ResNet-18 is assigning more weight to the region of the image. By combining
the two images in (c), we can see that the heatmap coincides with the location of the
stripes. We found the heat maps helpful in refining our approach.

3.1.4. Summary and Lessons Learned

Our study showed a proof-of-concept for anomaly detection using ML. While our
approach labels images as “valid” or “invalid,” our methods can be extended to identify
the type of anomaly that was detected. Transfer learning emerges as a more
straightforward approach to image classification, leveraging pre-trained models to
expedite the learning process and often achieving commendable results. This approach
saves computational resources and significantly reduces the time required for model
training. We also explored how explainable artificial intelligence methods can be
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incorporated into the anomaly detection workflow. In particular, we found heatmaps
useful for understanding what image features contributed to the ResNet-18 model’'s
classification.

In terms of lessons learned, it is evident that models tend to perform better in offline
testing and training than when running in real-time. This underscores that even with
long training periods, there is inherent unpredictability in real-time data, and the models
may confuse natural phenomena as an anomaly and vice versa. Secondly, our analysis
suggests that training ML models with natural GOES-16 anomalies yield better results
than synthetic data with the VIIRS data. For ML-based anomaly detection to advance as
a field, we recommend that NESDIS science teams help create large, labeled
repositories of training data for the community to explore.

3.2. Deep Learning Methods to Enhance Data Fusion in a Digital
Twin

Classical methods of data fusion are described in Section 2.4. Classical data fusion
methods involve coding and well-understood mathematical algorithms. ML methods
embody a slightly different approach. In an ML software system, the ‘machine’ is treated
as a software black box and is trained on observational data. More than one data set
type may be used in training (e.g., AOD and fire locations). The machine ‘learns’ the
behavior of the data. The machine is then tested on data sets withheld from the training.
The tests are evaluated using the root mean square error (RMSE), for example, and if
the error rate is low enough, the ML system can be applied to new data sets confidently.
The advantage of ML systems is that they can often outperform classic techniques
regarding computational speed, taking advantage of GPU architectures. The
disadvantage is that the ML devised scheme inside the black box is hidden from the
user. This means the user often doesn’t know what the ML is “seeing,” and unusual
results are sometimes inexplicably produced. Explainable ML described in the Section
3.1.3 bridges the gap between these classical methods and ML methods.

We used two different ML systems described in Table 3.2. The first, convolutional long
short-term memory (ConvLSTM), was tested with AOD measurements to determine if it
could fill in the AOD gaps produced by clouds (Daniels et al., 2022). The second, the
enhanced super-resolution generative adversarial network (ESRGAN; Ledig et al.,
2017; Wang et al., 2018), was used to produce higher-resolution AOD data sets so that
lower-resolution ABI data could be compared to high-resolution VIIRS measurements.
Table 3.2 provides definitions of the techniques and their analogous, classical
equivalent.
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Table 3.2. Definitions of two ML models that can facilitate data fusion of
satellite observations.

ML Technique Definition Classic equivalent

ConvLSTM This type of recurrent neural network for spatial- Spatial/temporal back Tilling
temporal prediction has convolutional structures  and inpainting

in both the input-to-state and state-to-state

transitions. The ConvLSTM determines the future

state using the inputs and past states and their

local neighbors.

Convolutional - long
short-term memory

ESRGAN ESRGAN is the enhanced| version of the SRGAN. Interpolation using higher
Starting with SRCNN, ESRGAN is a generative order polynomials such as
adversarial network for single-image super- cubic spline.

resolution. It uses a perceptual loss function,

which consists of an adversarial loss and a

content loss, to improve the image iteratively.

Enhanced super-
resolution generative
adversarial network

3.21. Gap filling with ConvLSTM

ConvLSTM integrates structures in both spatial and temporal dimensions, making it
ideal for sequence prediction in multi-dimensional data (Shi et al., 2015). Unlike pixel-to-
pixel straight backfill or inpainting, ConvLSTM focuses on spatial structures. In theory,
ConvLSTM can efficiently handle spatial-temporal data, capturing spatial hierarchies
and temporal dependencies better than classical data fusion methods.

When a sequence of images passes through ConvLSTM layers, filters compress the
data by extracting important features from the pixel time series and their neighboring
ones, thus retaining both the spatial and temporal characteristics. The ConvLSTM
architecture has two network structures, which are the encoding network and the
forecasting network, consisting of stacked with convLSTM layers (Figure 3.8). The
encoding layer is composed of convolutional layers and LSTM cells, which compress
the data into hidden layers and weigh features by their importance. The forecasting
network copies the output state from the corresponding encoding layer and then
decodes the hidden state to predict future values.
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Figure 3.8. Network architecture for the ConvLSTM. The input layer is a 3D
representation of a satellite dataset, e.g., an observation at location
X, y, and time t. In the encoding network, each layer compresses the
input to hidden states (ConvLSTM Layer 1) and hidden state to other
hidden states (ConvLSTM Layer 2). In the forecast network, the
previous hidden state (ConvLSTM Layer 1 and 2) is copied and
decoded (ConvLSTM 3 and 4). Adapted from Shi et al. 2015.
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For our study, we used the “default” ConvLSTM encoder parameters for three layers,
which had 64, 96, and 96 hidden states, respectively. We used a 5x5 filter on cells and
a 3x3 kernel on all layers (see convlstm_encoder_params and
convlstm_decoder_params in https://github.com/ijhhuang96/ConvLSTM-
PyTorch/blob/master/net _params.py).

To test the appropriate use of ConvLSTM, we evaluated its ability to predict AOD in a
region where no data is available but previously available data. For example, imagine a
fire-generated smoke region with high AOD moving from west to east. In this scenario,
an AOD anomaly is observed, and then the region is covered by clouds. Based on the
structure of the AOD field, can we try to predict the air quality below the clouds.

For our evaluation, we trained a ConvLSTM model using GOES-16 AOD. We had to
construct a training dataset that reduced the full disk image (5424x5424 pixels) into
small samples that were 64x64 pixels. Each smaller image consists of 12 timestep
observations of AOD. We needed all the images to be nearly cloud-free, which was
challenging given that the mean cloud fraction of the earth is 60% (King et al., 2013).
Thus, building an extended training dataset was time-consuming. Using a year of data,
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we created 800 training samples (of 12 timesteps each) and validated/tested with 300
samples to refine the model. GOES-16 AOD is generated every 10 minutes, and we
initially used all available observations to train out data. However, scene-to-scene
changes in AOD can be small, so the ConvLSTM predictions were unrealistic. Instead,
we switched to 20-minute timesteps and saw more realistic propagation of AOD plumes.

Figure 3.9. AOD prediction using ConvLSTM. Training data is at the top row.
Images of AOD are separated by hours. Starting with image 5,
ConvLSTM predicts 6-11 (bottom row). Validation is the middle row.
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Figure 3.9 shows an example of AOD prediction of ConvLSTM for a cloud-free scene.
In a, we used two hours (six, twenty-minute timesteps) of 64x64 pixels to predict the
next several timesteps, shown in b. Compared with c, the observed AOD for the next
three timesteps, the predicted results do an excellent job capturing areas of higher
AOD. The model can make predictions further in time, but the results were unrealistic.
Given that we are applying the ConvLSTM model to fill in clouds, not predict AOD, it is
more critical that the next time step (t+1) agrees with the observed values.

We show how a ConvLSTM in the previous example can be used for gap filling in a
digital twin in Figure 3.10. In (1), the GOES-16 ABI data is used to construct a time
series and predict the current time (t+1) in (2). The observed values may contain clouds,
sunglint, or another feature that reduces AOD retrieval quality, leading to missing
values. We manually removed several clouds instead of using scenes with clouds so
that we could evaluate the result. These missing pixels in the observed data can be
filled with the predicted values. In (3) the combined image is compared with the actual
scene for validation purposes. We could repeat this process to evaluate ConvLSTM
offline, and if the results are favorable, the approach could be installed into the EO-DT.

The ConvLSTM shows promise for gap filling. In our evaluation, we ignore advection
and chemistry's effects on longer AOD time scales, so backfilling over a few hours can
approximate the observations. However, incorporating other observations, such as GFS
winds, will likely improve our results. Long-term validation is needed before
incorporating into an EO-DT, which will likely require a multi-year training and test
period using GOES AOD data.
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Figure 3.10. Proof of concept for gap filling in an EO-DT. In 1, a convLSTM model
predicts the next time step (t+1) using the past three-time steps of
AOD (~1 hour of past data). In 2, the predicted AOD is compared with
AOD observed at t+1, regions observed with simulated missing
clouds can be replaced with the predicted values. Results can be
validated using the unmodified t+1 observed values, where the
clouds have not been removed.
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3.2.2. Enhancing image resolution using ESRGAN

A higher-resolution data set often provides more insights into geophysical phenomena.
However, the optics and detector signal-to-noise set the spatial resolution of most
satellite data sets. GEO data sets often cannot match the kilometer-scale granularity
needed for the location of fires or small pollution sources, limiting the potential of these
data.

One approach to overcome this limitation is using super-resolution techniques. Here we
used a variant of SRCNN called ESRGAN (Wang, et al., 2018; Tsang, 2018). Figure
3.11 illustrates how ESRGAN can be applied to the same retrieval algorithm (e.g. AOD)
when available from two different sensors at different times and resolutions. The
ESRGAN model can be trained using collocated AOD from NOAA-20 VIIRS, which has
a higher spatial resolution but has lower temporal resolution, and the lower spatial
resolution/high temporal resolution AOD products from GOES-16/18. Then, the model
could be given a GOES image, which is then downscaled to the resolution of VIIRS,
even if a VIIRS dataset is not present.
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Figure 3.11. lllustrates how super resolution uses a generative adversarial
network (GAN) can be trained to increase the scale when there are
two similar datasets with different resolutions.
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ESRGAN employs deep learning to upscale and improve low-resolution images,
leveraging the adversarial relationship between a generator (creates high-resolution
images) and a discriminator (distinguishes between real and generated images). By
iterating this process, the generator improves its outputs. Training the system produces
a better resolution of coastlines and other geographical features and sharpens the
gradients near the edges of the AOD distribution. Like any interpolation, ESRGAN is
“creating data” and can occasionally produce unrealistic results. Another challenge is
that ESRGAN requires extensive training datasets and GPUs to process the data. As a
result, we used a pre-trained model to evaluate the off-the-shelf version and see if it
was feasible for an EO-DT.
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Figure 3.12. Example for GOES-16 AOD L2 Feb 23, 2023, 14:30 UTC using an off-
the-shelf pre-trained model that doubles the resolution. Grey pixels
are missing values.

(a) shows the zoomed out original GOES-16 AOD image and (b) zooms in on the
finer details. (c) is the same as in a but processed using the SRGAN model. (d)
shows the zoomed in view, where pixels are clearer.

Figure 3.12 shows an example of the pre-trained ESRGAN sharpened resolution of a
sample GOES-16 AOD image. On the left (a and b), the GOES-16 AOD values are
coarse when zooming into the focus region over Florida. The features are sharpened on
the right-hand side (c and d) after processing with the ESRGAN model. The results
show good visual agreement but need further validation with VIIRS AOD and
AERONET before installing into the EO-DT. In the pre-trained model output, the pixel
shapes take on a granular geometry, which may be controlled by developing a custom-
trained model. Overall, ESRGAN shows promise for improving the spatial resolution of
earth observations, especially for products available on different platforms.

A challenge of using this approach is that the ESRGAN will sharpen noise in the
datasets. For example, coastal regions are an area of uncertainty in AOD models
because of bright surfaces and a mixture of land and water scenes, which use different
retrieval models. ESRGAN does not ensure thermodynamic consistency of Al/ML based
and traditional based methods to understand the quality. Thus, it's important to
vigorously validate datasets using in situ and high-quality model data to understand and
apply quality control to the image, otherwise ESRGAN will enhance the underlying
noise. In the future, a large, multi-year training dataset of collocated VIIRS and ABI
would allow us to train a custom ESRGAN model specifically for Earth Science data.
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3.2.3. Summary

Our results suggested that ML systems have the potential to produce excellent data-
fused products, but the approach must be nuanced. Users cannot just submit training
data to an ML package and expect good results. Understanding the physics behind the
data is required, and the ML package may need to be trained using multiple variables.
In our example, AOD predictions in regions where data gaps occur require some
knowledge of the processes that change AOD, such as pollution sources, winds, and
chemistry.

The unique characteristics of ABI data meant that our ML models were continually at
risk of overfitting to specific patterns. This could potentially jeopardize their
effectiveness when introduced to new, unseen data. Another concern revolved around
the need for additional training data. While ConvLSTM shows promise in filling data
gaps, it is evident that supplementary training datasets are essential for generating
satisfactory outcomes. The foundation for selecting this additional training data should
be rooted in a comprehensive understanding of the processes under simulation.

Additionally, despite the remarkable capabilities of ML techniques, ML models tend to
produce artifacts. These anomalies can misrepresent or distort the data. To address
this, rigorous testing of the methods is imperative. Moreover, a post-simulation review of
datasets generated by ML can identify and rectify most of these discrepancies.

Synergistic utilization of both classic and ML techniques will provide superior data
fusion. While classical techniques like backfilling or polynomial resampling provides a
simplified approach to changes in resolution and data gaps, ML can provide superior
results under the right circumstances. That said, ML techniques cannot be applied
haphazardly and must be thoroughly tested before implementation.
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4. Optimizing Data for Interoperability

In this chapter, we explore why knowledge graphs and cloud-optimized data are
essential for data exploitation because these enhancements can improve data
discoverability and usability. Knowledge graphs can semantically represent
relationships between phenomena in the Earth Sciences, such as linking datasets with
certain types of weather phenomena. Knowledge graphs can also connect standard
processes performed on data, such as regridding and gap filling. This structured
representation could also form the basis for an integrated digital twin system. Cloud
storage ensures accessibility and scalability of data, making it more efficient to
disseminate and use datasets. The two enhancements are interlinked because
knowledge graphs can link different twins, and the cloud-optimized formats can facilitate
data exchang

4.1. Metadata and Knowledge Graphs

Much focus is made on the usage and formats of data in a digital twin. However, each
file generates additional data describing the data, which is coined metadata. Most
people are familiar with metadata, thanks to public libraries. A person can find a specific
book in the library because it has properties like a title, author, and publication year. It is
also possible to browse books in a library because they are organized by genre. Each
book is given a main class and then further divided into subclasses. For example, under
the Dewey Decimal System, 500 is for Natural Science and Mathematics, and 520 is for
Astronomy.
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Figure 4.1. lllustration of knowledge graph connecting NOAA satellite assets
(“NOAA-20”), their properties (“global”), and the relationships
between them (“hasDomain”). Knowledge graphs can improve the
searchability and discovery of datasets as well as link to other
databases to create a larger, interconnected federation. Consistent
metadata formats are a key requirement for success.
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Much like a library, it is important for users to find a specific dataset and discover similar
and related datasets. This is where models like knowledge graphs can connect
relationships between datasets using metadata (Figure 4.1). Knowledge graphs
describe the relationship between objects following a subject-object-verb format. For
example, VIIRS could be mapped by (VIIRS. is_a. imager). While this example is
simplistic, we could use knowledge graphs to link concepts like sensors to high-level
data products, like AOD, and then link to natural hazards (wildfires). This can help users
interested in natural hazards access a catalog of data.

Metadata is key to digital twin semantic interoperability because there is no
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centralized warehouse for all Earth observations. Instead, major data providers - NOAA,
NASA, ESA, ECMWF, and CNES - all have their large data warehouse stores. These
stores must operate as a data mesh to leverage all these data sources. Data meshes
treat data as a product and distribute ownership and responsibility across multiple
domain-specific teams. Returning to our library example, a data mesh would be the
equivalent of having access to another library’s book through an interlibrary loan. The
NSF and other international organizations have championed open knowledge, which
they have coined the knowledge commons (McGranaghan et al., 2023).

Libraries successfully share their book collections because they have a common
framework to catalog their items, such as the Dewey Decimal system. The earth
science community is working towards establishing a universal metadata format and
access method across all organizations. A common metadata framework and robust
API can enable a better “handshake” and data exchange between digital twins.

Figure 4.2. Example of a data catalog for fire weather on WIFIRE commons
(https:/Iwifire.ucsd.edu/). Users can browse nearly 3,000 datasets

[ Temperature }

[ Wind }

Search J [ Variable J ’ Meteorological ] [ Humidity }

[ Precipitation }

[ Radiation }

One popular catalog model for geospatial data is STAC. In STAC, specifications are
intended to make data more searchable. The core catalog fields included properties like
the bounding box and the datetime of the scan, identifiers like constellation and
platform, and other information on loading and processing the data. However, data
providers can add hundreds of additional metadata fields using an Asset Object. The
Asset Object could be where NESDIS adds additional data product tags, such as the
thematic area, associated hazard, and even models that can process the data. For
example, VIIRS and ABI AOD could be associated with atmospheric composition
(thematic area), air quality (hazard) and wildfires (hazard), and the HYSPLIT trajectory
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model (simulation). Then, AOD could be linked to online catalogs of wildfire events to
extract dates, geolocations, and even economic costs. Figure 4.2 shows a real-world
example of a knowledge graph-enhanced data catalog, the WIFIRE commons
(https://wifire.ucsd.edu/). Users can search by datasets or variables; their ultimate
selection will provide a list of all available products, their sources, and how to access
them.

Figure 4.3. Simplified illustration of how knowledge graphs can map actions
performed on datasets. This can create greater transparency for
NOAA open science goals and better error and uncertainty tracking
within processes.
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In addition to linking the datasets, knowledge graphs can be used to connect data
workflows, such as extractions, transformations, gap filling, and resolution enhancement
(Berkheimer et al., 2023). Figure 4.3 shows an example where a researcher examines
monthly mean SST using a combination of GOES, Meteosat, and Himawari satellites
and regrid to a 1° cartesian grid. Data could be extracted from a catalog, transformed

into a new grid, and aggregated into a monthly mean. The researcher can also save the
resulting data in their format of choice, GeoTiff.
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If applied to our EO-DT, knowledge graphs can improve data discoverability. Searching
by data product requires users to know the data exists and identify a specific use care
they are interested in. With knowledge graphs, a user could start with the event they are
interested in and find the relevant data products without prior knowledge of what those
products are.

In our EO-DT prototype, users were allowed to regrid their data to a standard grid for
data fusion. With knowledge graphs, users could create workflows using predefined
transformations. Using the STC EO-DT as an example, a user could request data that is
easily compared with the GFS model on a regularly spaced grid. The EO-DT could use
ontology to chain processes, such as regridding to a 1x1 grid and perform gap filling
and combine the result with GFS. The user would see the final product without having to
understand and code the full complexity of the data transformations.

The concept of data workflows is an ongoing area of interest in the Earth Sciences. For
example, Kepler (https://kepler-project.org/index.html) is a software tool that provides a
GUI for scientists to chain containerized processes with limited coding. Keppler has
been used to build a successful workflow for fire weather (Nguyen et al., 2017). While
open source, a drawback is that the software was developed for the pre-cloud era and
would not be viable in a digital twin. One major goal of NASA AIST is the development
of the Analytics Collaborative Framework (ACF) to permit scientists to harmonize data
management and perform analysis. This framework was successfully deployed for an
air quality focused ACF (Huang et al., 2022). The project provides a one-stop sandbox
for scientists to study air quality, with access to relevant datasets from satellites,
models, and in situ. Scientists can use AWS SageMaker to run ML and popular models
like GEOS-Chem. At the time of writing, the ACF can build workflows but only supports
data transformations and does not appear to incorporate knowledge graphs to improve
data or process searchability.

The most fully realized example of using knowledge graphs for EO-DT-like goals was by
Shimizu et al., 2023 via a space weather use case. The authors developed an
ontological framework that links Solar Flare events to power grid disturbances. They
developed a model that initiated a workflow if a Solar Flare Event was detected, which
would respond by pulling together NOAA, SWPC, and GOES satellite observations, use
that data to run a model to estimate ionospheric currents and simulate the geomagnetic
field of the earth and the resulting induced currents. Their study did not combine and
run simulations but defined how a theoretical workflow could be labeled.

Shimuza et al., 2023 developed their ontology though the following questions (1) What
datasets are available to view? (2) What does dataset X contain? (3) In what ways is
dataset X used? (4) What is the result of dataset X transformed by Algorithm A? (5)
What dataset X was used for input to Simulation S? Satellite, in situ, and model data, as
well as algorithms and models, can be better connected by working with science teams
to label their resources better and incorporate that into the existing catalogs.

When people think of interoperable digital twins, they may naively assume that the
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exchange only occurs on a data level. Data exchange between providers like NOAA
and NASA is invaluable, but to truly support interoperability, processes also must be
exchanged. A genuinely interoperable digital twin should be able to pass data from a
NASA digital twin, preprocess the data on a NOAA digital twin, and process it using an
EUMETSAT forecast model. This is a challenging software problem, but the importance
of cataloging data and processes cannot be overlooked

4.2. Cloud Optimized Data Formats

Digital twin data access must meet the needs of two major end users: (1) data providers
who must archive, maintain, and disseminate vast amounts of data, and (2) the
scientific community, who need to access the data in a consistent and analysis-ready
format to ingest the data into models and simulations. The first community requires
compression, stability, and reduced computing costs; the latter requires timeliness,
findability, and ease-of-use in their software ecosystem. System architecture
requirements sometimes clash with the community's needs, as data would be costly to
store in multiple formats or in every conceivable option.

The two formats that serve the data archive community are the netCDF4 and HDF5
formats. HDF was developed in the 1980s as a cross-platform data format to address
big data challenges in the scientific community (Folk, 2010). NetCDF (Network Common
Data Form) is a set of libraries that can read multiple binary formats, including the
netCDF4 format, which builds on HDF5 but with additional data requirements.
Presently, netCDF4 is one of several international standard formats of the Open
Geospatial Consortium.

Other formats, such as GRIB and BUFR, address big data challenges and were
adopted by the WMO for modeling purposes (Caron, 2011). These formats are less
common in newer satellite data products because, among other reasons, they require
local tables to read the contents and thus are not entirely self-contained as netCDF4.
Additionally, these formats are more rigidly organized, which is challenging for Level 2
and higher data products.

NetCDF4 files provide excellent compression, readers/writers are readily available, and
most data is stored in these formats. While these formats are well-understood by more
advanced users, they are not cloud-optimized.

Under previous data access paradigms, users would search and download the data
using data portals, such as NASA’s Earthdata and NOAA CLASS. The NOAA NODD
program allows users to access, analyze, and utilize large datasets directly in the cloud
without local downloads. This approach enhances the user experience, ensuring rapid
data access, seamless integration with analytical tools, and efficient data manipulation
in a cloud-based environment. By shifting towards this cloud-centric model, data archive
communities and researchers benefit from the streamlined process, minimizing the
challenges traditional data access methods pose.
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What makes a data format “cloud-optimized?” For one, cloud-optimized data is
designed to be processed across multiple nodes. The STC EO-DT explores this using
serverless technology, which enables handling of multiple search queries and user data
fusion requests. Under the current paradigms, NetCDF4 metadata is not centrally
located in the file. As a result, users can download the entire file, even if only a single
field is needed (Ambatipudi and Byna, 2023).

Cloud-optimized data keeps metadata in a central location so the user can download
just a chunk of the data (e.g., only GFS u/v vectors, not the entire 20 GB GFS file). It is
more challenging to search and subset when metadata and variables are scattered
across the file.

Chunking is a technique that divides large datasets into smaller, more manageable
pieces called "chunks." Optimizing chunk sizes is crucial for cloud-based data
processing and storage because retrieving many small files concurrently is often faster
than one large file sequentially in a cloud system. With cloud storage solutions like
Amazon S3, you pay for the storage space and the number of read/write requests.
Chunking can reduce the number of requests by ensuring that only the necessary
chunks are accessed. The benefit to the end user is that they have less data to transfer.

Table 4.1 summarizes some of the popular cloud optimized formats and file system
solutions. Zarr is a format for storing chunked, compressed, N-dimensional arrays.
These characteristics make Zarr especially suitable for scenarios where data are
frequently accessed non-contiguously, such as in cloud-based storage systems. Zarr
divides arrays into equally sized chunks, which can be read or written independently.
This is particularly beneficial for parallel and distributed computing. Zarr also stores
metadata related to the array, including information about its shape, data type, and
chunks. This metadata is stored in a human-readable format, typically JSON. As a
result, end users who use the cloud increasingly request that data providers like NOAA
provide their data in Zarr (Abernathey et al., 2018).
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Table 4.1. Comparison of cloud-optimized approaches and data formats

Solution Strengths Weaknesses

“Retrofit” NeF(IDFzL Uses existing computing MCZarr stores are not fully compatible and
Kerchunk standard interoperable with Zarr V2, might be addressed
in Zarr V3.
NCzarr Slower access than using Zarr
Zarr Cloud optimized Must re-process processing/duplicating the
Supports data filters onginal data
0GC endorsed on 6/30/2022 Introducing new format to community
GeoTiff (Cloud- Community Standard Too simple for multi-dimensional/complex data
Optimized) Cloud Optimized datasets
Pargquet, ORC, other Cloud and ML optimized Works best for tabulated data formats
database formats (However, GeoParquet beta available as of Dec
2022)

However, adopting Zarr in the Earth sciences presents its own set of challenges. As
evidenced by the AWS registry of Open Data, out of 479 datasets, only 11 are in Zarr,
whereas 20 are formatted in netCDF (20), HDF (6), or GRIB2 (7). This preference for
traditional legacy formats highlights that it would be costly to reformat archives to Zarr.
Instead, modifying filesystems like NetCDF4 to incorporate the principles underlying
Zarr may be more pragmatic. Fortunately, existing libraries, such as Kerchunk, allow the
creation of virtual Zarr datasets (Sterzinger, 2023). The performance trade-off of this
approach is typically minimal. As illustrated in Figure 4.4, while Zarr processing times
were only slightly faster for single file processes, they were notably quicker — up to
twice as fast — for multifile processes (Augspurher, 2022).

Another popular format, HDF, similarly upgraded the HDF5 library to be cloud-optimized
(Jelenak, 2023). One hurdle for HDF is that the default chunk size is 1MB, whereas
AWS best practices recommend 8-16 MB chunk sizes. Like netCDF, metadata are
spread throughout the file. The metadata can be consolidated in paged aggregation,
combining all the metadata on a single “page” in the file. Unfortunately, this solution
requires the entire archive to be reprocessed.
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Figure 4.4. Benchmark tests for the NASA CMI6 dataset comparing processing
speeds of accessing (1) a Zarr Archive and (2) NetCDF4 archive
using a Zarr-like file system (Kerchunk) [Image credited to
Augspurger, 2022]
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GeoTIFF, Parquet, and ORC are all file formats designed or adapted with specific
optimizations that make them well-suited for cloud-based applications. GeoTIFFs can
be made into cloud-optimized GeoTIFFs (COG) by organizing the file's internal structure
to enhance the efficiency of partial reads. While COGs are great for imagery, they might
not always be ideal for other types of multidimensional remote sensing datasets that
may have multiple variables and time steps. Parquet and ORC are both cloud-optimized
and primarily designed for tabular data. Earth science datasets often consist of multi-
dimensional arrays, which do not map naturally to Parquet's columnar format.

In summary, while newer formats have cloud-specific advantages, legacy formats like
netCDF and HDF remain deeply entrenched in the community's practices and
toolchains. Both Unidata and the HDF group, which manage the two filesystems, are
actively studying and implementing solutions to libraries for these formats to reinforce
their resilience and adaptability as systems evolve to the cloud. Considering this, it is
pragmatic for institutions like NOAA and NASA to continue leveraging these formats.
Transitioning to a new format would not only entail considerable resources for
converting large archives but may also introduce complexities and unforeseen
challenges in the community. Staying the course with netCDF and HDF ensures
stability, continuity, and the ability to benefit from ongoing innovations in their
ecosystems.
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5. Transitioning the Prototype to an Operational
System

The STC EO-DT prototype was a foundation for evaluating the technologies and
services for building a digital twin. NESDIS’s goal for the prototype EO-DT was to
“‘enhance our ability to process, monitor, quality-control, consolidate, fuse, and
assimilate environmental observations.” NESDIS’s prototype goals are operationally
focused and closely aligned with NESDIS' mission, which is to provide secure and
timely access to global environmental data and information from satellites. Following our
assessment, an operational EO-DT can meet these goals and become a basis for a
more extensive Earth system digital twin, especially if combined with other digital twin
efforts.

In this section, we discuss how to scale up our prototype infrastructure, identify
essential milestones for interoperability, and provide an estimate of the cost. Per the
report disclaimer ,NOAA is not planning for activity beyond the demonstration projects.
This section is written for informational purposes only.

5.1. Operational Architecture

Figure 5.1 shows the architecture diagram of our EO-DT when scaled from a prototype
for demonstration to operations. The architecture diagram incorporates many of the
same on-demand processes used in the prototype diagram (Figure 2.1). A fundamental
change is that we replaced our EC2 with containerization to improve scalability. In the
top right corner of the diagram, you can see that the regridding and the anomaly
detection are stored as images in the Elastic Container Registry, which is run using
AWS Fargate and Batch. AWS Batch dynamically provisions an optimal quantity and
type of computing resource for containers based on the requirements of the submitted
job. The container runs on Fargate, which handles the provisioning and managing of
servers. This combination is more straightforward than Kubernetes because you will not
need to choose server types, decide when to scale your clusters, and optimize cluster
packing. AWS step functions are used to manage which batch workflow is run. For
example, if a new SNS indicates a new GOES-16 file is available, the AWS step
function would run the anomaly detection container using batch and Fargate. If the user
ordered a regridded data file, the regridding container would run and save the output file
to the S3.

A benefit of this approach is that it can be expanded to incorporate any number of
processes so long as they can be stored in a container. For example, a scientist can
quickly write code to combine multiple files and save it on a container. A developer
could then easily update the step function and batch for this new process, and Fargate
would automatically manage and provision the resources in the EO-DT.

The alternative to using a serverless combination of Batch and Fargate is a self-
managed service like Elastic Kubernetes Service (EKS). EKS is more cost-effective and
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could be used with AWS Stepwise, but it would require manually provisioning compute
resources. The serverless approach would allow science teams to manage their
operational deployments, whereas using Kubernetes would require an engineer to
oversee the deployment process. So, we recommend the serverless approach if it is
within an organization's budget.

Figure 5.1. The architecture diagram for a fully operational version of the EO-DT
in this project.

JPSS/GOES Open Data

AWS | Elastic Container Service |

! Regridding Anomaly |
Image Detection

. - AWS Step Function Workflow | Image ]
AnomalyDetection. [ |t

R N

Ingest A
SNS  sQs Lar?lbda DynamoDB Batch Fargate

Regridding PUSH
@ o2
NetCDF .
Query/RESP Trigger: New updated CSV file <

Action: PUSH updated CSV

Flrewa\l Flrewa” Application Load Balancer
User

l U i (NOAA Management)
REQ REQ - PR [T AS— ;
_’._> @‘_RESP_).(__RESP_) m a2 < E Grafana :
User : ;
(Stakeholder) | Cloud Front API Gateway Search gs | |
Lambda H !
IF user REQ 'Gridded' H
REQma PUSH updated CSV | g
i EC2 ;
Trigger: New regridded NETCDF file 77T
Action: PULL regridded NETCDF file
m . I
<
Map Lambda ~
s=—==PUSH map htm file===—l Cloud Watch

We recommend adding a Web Application Firewall (WAF) to Cloud Front and API
Gateway for additional security. WAFs can filter which users can access the digital twin
and block or limit access if a user uses the system excessively. In addition to blocking
threats, the firewall can help reduce costs.

Finally, we added Grafana to the operational system. The Grafana dashboard requires
an EC2 instance to run (m6g.4xlarge) and can be accessed by NOAA management
using a public IP address. For added security, we recommend putting the EC2 behind
an Application Load Balancer, which can have WAF rules applied to it. The added
benefit of fully modularizing our system is that it improves transparency. In the
prototype, we wrote python scripts to provide custom monitoring, but in the operational
system, these requests can be monitored by CloudFront. If additional custom scripts are
needed, they can be containerized and added as a stepwise function to execute.
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5.2. Interoperability with External Digital Twins

A major concern of the community is how to leverage the numerous earth science
digital twin efforts worldwide and open them to the scientific community. NASA, ESA,
and EUMETSAT are building digital twins with different goals and unique approaches.
The capabilities of individual digital twin efforts can be improved by seamlessly
exchanging data and information with other digital twins, a process known as
interoperability. Opening the interoperable, federated digital twins to external users
benefits the scientific community by improving the findability, accessibility,
interoperability, and reuse of digital assets (GO FAIR, 2016) and can deliver Analysis-
Ready Data (ARD; Dwyer et al., 2018).

Interoperability between digital twins involves adopting standards, data formats, and
protocols. While there are numerous ways a system can achieve interoperability, some
major ones identified during discussion sessions at the 4th NOAA Al Workshop
(https://www.noaa.gov/ai/events/4th-noaa-ai-workshop-2022 ) include syntactic
interoperability, which is the ability to communicate and exchange data through a
standard data format and communication protocols. Structural interoperability refers
to the different information technology systems and software applications that
exchange, interpret, and present data in an understandable and usable way by the
recipient system or application. Semantic interoperability is the ability to transfer and
interpret meaningful information between digital twins to build knowledge. Other types of
interoperability (for example, legal) are also essential and need to be part of the ongoing
discussion, but specific actions to address them become more relevant as digital twins
reach higher maturity levels.

5.2.1. Major Digital Twin Efforts

There is an explosion of investment in digital twin research in the earth sciences. Here,
we summarize some of the larger efforts, their goals, and their approach. Destination
Earth (DestinE, https://destination-earth.eu) is building a digital twin of the Earth, “a
highly accurate digital model of the Earth to model, monitor and simulate natural
phenomena, hazards and the related human activities.” DestinE is taking a top-down
approach, as in they are planning the complete system from the start and building
components. For example, DestinE is investing in building the core platform,
infrastructure, and functions. Another European effort, the Digital Twins of the Ocean
(DITTO, https://ditto-oceandecade.orq), seeks to “enable users to address “what if”
questions based on shared and relevant data, models, and knowledge” (Bahurel et al.,
2023). Like NESDIS’ approach, DITTO aims to advance specific use case prototypes
within the first two years.

NASA'’s Advanced Information Systems Technology (AIST, https://esto.nasa.gov/earth-
system-digital-twin) program’s Earth System Digital Twin to “integrating diverse Earth
and human activity models, continuous observations, and information system
capabilities to provide unified, comprehensive representations and predictions that can
be utilized for monitoring as well as for developing actionable information and
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supporting decision making.” DestinE and NASA seek to integrate climate and human
activity models and are primarily (but not exclusively) focused on research goals. NASA
is adopting a bottom-up approach to its ESDT by investing in relevant technologies
along thematic lines and building up its capabilities over time (Le Moigne, 2022; Le
Moigne and Smith, 2022). While the differences are subtle, all efforts require close
coordination; otherwise, their development trajectories may eventually diverge.

Despite these differences, these efforts have significant potential to share resources,
particularly those looking to develop from the bottom up. For example, models and
processes used by the EO-DT for data fusion and EO-DT data can be incorporated into
the ESDT to make socioeconomic predictions. Interoperability in digital twins is an
achievable goal. Digital twins are essentially software platforms, and software frequently
integrates with other software. Most importantly, there is consensus in the community
around interoperability and ample opportunities to collaborate.

By attending conferences, workshops, and meetings with leaders in the digital twin
community, we make the following recommendations to encourage interoperability if
NESDIS chooses to build an operational EO-DT. We recommend funding an integration
effort with another digital twin at a similar maturity level (point-to-point integrations). As
major top-down digital twin projects mature, a “middleware” solution may establish the
standards for other digital twins to follow. DestinE'’s core platform or NASA’s IDEAS
framework are viable candidates once they reach a higher maturity level. However, a
focused twin-to-twin effort can provide early lessons learned for future, larger efforts.

Like our project, we recommend starting small, such as developing APIs to exchange
data between digital twins. Then, we recommend building up processes and developing
the ontological interoperability framework.

5.2.2. Connecting with a Sibling Digital Twin

Our recommendations assume that NOAA builds an operational system based on or
like our recommendations in Section 5.1. While building the operational EO-DT, we
recommend that NESDIS identify a partner digital twin effort to work towards
interoperability actively. Several ESDT-related projects are mature or will be completed
within a few years. Below are some existing candidate projects that NESDIS could
closely work with:

e The CNES’ FloodDAM-DT project
(https://www.spaceclimateobservatory.org/flooddam-dt) plans to have an end-to-end
demonstration by June 2024. FloodDAM is an automated service to detect, monitor,
and assess global flood events using ML and computational fluid dynamics. The
team has partnered with JPL to use their IDEAS (Integrated Digital Earth Analysis
System) platform and has reported successful data and process transfer (Huang et
al., 2022; Huang et al, 2023).

e Pixels for Public Health (https://pixels-for-public-health-digital-twin-odu-

95
Science and Technology Corp.


https://www.spaceclimateobservatory.org/flooddam-dt
https://pixels-for-public-health-digital-twin-odu-gis.hub.arcgis.com/

Tl 74> NOAA EO-DT

Contract 1332KP22CNEEP0013
Science and Technology Corporation

gis.hub.arcgis.com/) project focuses on predicting coastal hazards and human
health in Hampton Roads area in Virginia, USA. Their recent work successfully
merges various measurements from satellites, models, and in-situ observations. The
team has an open data portal and several available geospatial models (Allen et al.,
2023).

e The European Commission’s Horizon 2020 Research and Innovation program effort
funds Project lliad (https://www.ocean-twin.eu/digital-twins). Project lliad has a
mature information model for their ocean digital twin (Palma, 2023).

The partnership is intended to understand the technology needed to achieve
interoperability rapidly; it is less important that the sibling effort meet a critical NESDIS
use case or need. The most fruitful partnership will be with a group actively building a
prototype or a mature end-to-end system for a use case. Then, the two groups can
focus on building an ecosystem of tools that leverage both investments. DestinE may
have partnership opportunities, but according to their project timeline (DestinE, 2023),
they plan to incorporate other digital twins around 2027.

5.2.3. Recommended Steps for Interoperability

After identifying a sibling digital twin partnership, we recommend that the two efforts
make small but necessary steps toward interoperability. Their efforts can be a focal
point of digital twin community conversation and a path for developing the architecture,
data formats, software tools, and methodologies for interoperability between other
digital twins.

If an operational EO-DT is built, we recommend the following “action items” to kick-start
the process of interoperability (Figure 5.2):

1. Exchange data between the EO-DT and the sibling DT
2. Run processes between the EO-DT and the sibling DT
3. Run models between EO-DT and the sibling DT

We recommend that these processes be fully automated, as in, there is no help from a
human computer operator.
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Figure 5.2. Three milestones to better understand structural, syntactic, and
semantic interoperability between digital twins. After partnering with
a sibling effort, we recommend that NESDIS work toward exchanging
data, processes, and models.

Action EO-DT Sibling DT Interoperability Goal

L Structural via data formats
1) Exchange .. . .
Syntactic via API calls to find and obtain
Data ‘
— data

Cera— Syntactic via APIs process calls to
2) Exchange .
Proccesses functions
Semantic via metadata, ontology

3) Exchange

o - Syntactic via calls to perform complex
. @ — data fusion
Models

T Semantic via metadata, ontology

As a first milestone, we recommend NESDIS begin by establishing data exchange with
their sibling digital twin effort. To do so, the EO-DT and sibling DT would need to jointly
develop APIs to search for specific data and download it into the other digital twin’s
system. The STC EO-DT already has an API interface that can serve as the starting
point for the exchange. In addition to developing the infrastructure to query and
download the data, the two groups can begin to develop an ontological system and
identify necessary metadata. These early conversations can help pave the way for a
future knowledge graph.

A second milestone is the exchange of processes. We recommend that an operational
EO-DT have a function catalog to complete this milestone. The function catalog would
consist of containerized code with common data transformations, starting with data
fusion operations (e.g., various regridding schemes, ML-based gap filling, and data
combination). These processes can be extended to encompass processes that prepare
data for assimilation, analysis, and decision support. If successful, the sibling DT effort
should be able to download processed data to prepare the data for ingestion into the
other digital twin’s system and vice versa. The key to success in this second milestone
is (1) early identification of the sibling efforts’ processing needs and (2) a high degree of
containerization of processes in the EO-DT. Our proposed operational EO-DT cloud
diagram in Figure 5.1 explicitly containerizes data fusion processes to be easily
updated.

A third milestone is running models on another digital twin. Running models is more
challenging than running a single process because more elements are involved,
including data exchange and additional processing. For example, let us suppose the
sibling digital twin has a microwave sounder that MIIDAPS-AI could use to predict the
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850 hPa air temperature. A successful exchange would allow the sibling DT to send its
data to the EO-DT, process it with MIIDAPS-AI, and return the result. Another example
would be for the EO-DT to send NESDIS data to the sibling EO-DT, have the data
assimilated into their prediction model, and download the result.

Milestones 2 and 3 are also points for collaboration with AIST’s ESDT effort. Several
Pls funded from 2021-2023 are developing useful processes and models that could be
incorporated into the EO-DT. For example, AIST invested in updating the GEOS
Composition Forecast system (GEOS-CF) for real-time use in a digital twin (PI Keller).
AIST also funded a project to harmonize data from heterogeneous sources for deep
learning from multi-sensor, multi-temporal data (Pl Prasad). The EO-DT could also try to
utilize one of the visualization tools, such as the NASA open-source extended reality (Pl
Grubb). We also recommend further investment in ML-based simulations in the EO-DT,
which can help ensure that NESDIS data can be exchanged with an ever-growing
number of ML-based models.

Much like the prototype, connecting with a sibling effort is intended to be a pathfinder
exercise to evaluate the technology and methods needed to make digital twins
interoperable. Given the number of digital twin projects, we foresee a high likelihood of
success in leveraging these many projects. Interoperability will benefit the user
community, improve data exploitation, and ultimately enhance the value of Earth system
digital twins.

5.3. Cost Estimates

One of the challenges of developing cloud systems is that the costs vary depending on
the system usage. Cost calculators are invaluable tools designed to provide users with
an estimated expense for cloud services based on their projected usage patterns.
These calculators, such as the AWS Pricing Calculator, consider several parameters:
the type and number of resources (like EC2 instances or Lambda functions), expected
data transfer and storage (for services like S3), number of requests (pertinent for
services like APl Gateway), and more. Customers receive a detailed breakdown of
potential costs by inputting these parameters, allowing them to budget effectively. For
the services mentioned, costs can vary. EC2 charges are typically based on the type
and duration of instances run, while Lambda incurs costs for each execution and the
compute time consumed. DynamoDB's pricing considers the amount of read and write
capacity units, and S3 costs are contingent on the amount of stored data and requests
made. AP| Gateway generally bills users for the number of API calls made and the
amount of data transferred, while CloudFront's pricing considers data transfer and
requests, factoring in the geographic region. Utilizing cost calculators helps understand
these nuances, enabling businesses to make informed decisions about scaling and
optimizing their cloud infrastructure.

5.3.1. Prototype EO-DT

For our demonstration, we built and tested our EO-DT prototype for up to two

98
Science and Technology Corp.



/f TR
,/ ;— 7= NOAA EO-DT

\
\\\W Contract 1332KP22CNEEP0013
- Science and Technology Corporation

simultaneous users, 100 user requests per month, and 1 GB per user request. Figure
5.3 shows a time series of the STC’s EO-DT prototype monthly costs for the US East-2
(Ohio) region. This time series illustrates that the most cost-intensive resources are
“always on,” such as EC2. However, the costs are much more predictable, as our EC2
instances were consistently $500 a month and another $400 for additional storage. On
the other hand, Lambda was a much smaller fraction of our costs even when invoked
thousands of times a month, between $10-$100. Because of our data-in-place model,
we did not need to duplicate the NODD onto our system, and our S3 costs were
relatively low ($50-$70/month).

Figure 5.3. A time series of the costs of running our prototype EO-DT. The

above does not reflect operational cost, but shows which resources
are the most expensive.

LLtlbL

Apr 2023 May 2023 Jun 2023 Jul 2023 Aug 2023 Sep 2023

Cost ($)

B EC2-Instances [ EC2-Other [l SageMaker [ S3 [ Lambda [ Elastic File System [l EC2 Container Registry (ECR) ([l DynamoDB ([l CloudWatch
B Others

We had two EC2 c5.2xlarge instances with 8 vCPUs and 16GB of memory. The cost for
a Linux system is $0.36 per hour. One of our EC2s was the development environment
and shared by the team for R&D, and the other was the production environment which
is used to run more complex code and operations on the EO-DT, such as the regridding
code (Section 2.4), ML-based anomaly detection code (Section 3.1), and MIIDAPS-AI
(Section 1.2.2.2). Smaller, single-purpose codes were installed in Lambda, such as the
ingest code (Section 2.3.3), the search code (Section 2.3.4), and the geospatial
mapping code (Section 2.3.5).

As shown in Figure 1.13, typical processing required 150MB of memory and our system
had 8GB of memory, so we had more than enough memory for the prototype. Thus, we
selected an “overpowered” EC2 for our use case. This highlights the benefit of using on-
demand resources, which would only run using the needed resources and without
excess.

We estimated the cost assuming up to two simultaneous users, 100 user requests per
month, and 1 GB per user request. Under these usage conditions, the monthly cost for
a prototype EO-DT is estimated to be $1,292 per month (Table 5.1). The fees will

depend on various factors, including your actual system usage. Any potential taxes are
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also not included. Our estimate is the runtime cost on AWS and does not include
development costs to get the system up and running and ongoing maintenance.

While not a run-time component of the prototype EO-DT, SageMaker was particularly
cost-saving because our team could start a GPU-enabled instance for training and
testing ML models and shut them down when idle. The g4dn.xlarge (4vCPU, 4GPUs,
16GB mem) is a general-purpose GPU-enabled instance at $0.558 per hour. Assuming
one data scientist, an always-on EC2 would cost $1,463 a month (not including
storage), whereas SageMaker would cost $117.82 monthly for 160 hours of use (e.g., 8
hours a day for 20 workdays). We utilized Grafana Cloud for the prototype, which was
free for up to three users.

Table 5.1. Detailed cost estimates for a prototype EO-DT assuming up to two
simultaneous users, 100 user requests per month, and 1 GB per user
request. The overall monthly cost is $1292.

Service Description Monthly

Amazon Host for User Interface $0

Cloud front

AWS Lambda | Search Lambda, Map Lambda, Ingest Lambda $96

Amazon Metadata Ingest =$1

Simple

Notification

Service (SNS)

Amazon Metadata Ingest $2

Simple Queue

Service (S0S5)

DynamoDB Metadata Catalog/Stores metadata from NOAA $10

provisioned OpenData

capacity

Amazon EC2 Development EC2s $989

53 Standard Persistent storage for Lambda, Hosting the User $70
Interface, data fusion downloads, map hosting

Amazon Observability for Grafana $3

CloudWatch

Amazon Containers for processes $16

Elastic

Container

Registry

APl Gateway For searching DynamoDB $0

SageMaker Development environment for machine learning $105
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5.3.2 Operational EO-DT

We estimated the cost, assuming up to 100 simultaneous users and an average of
1,000 user requests over a month, 10 minutes per request, and 1 GB per request.
Under these usage conditions, the cost is estimated to be $4,641 per month ($58,155
per year) for an operational EO-DT (Table 5.2a, Table 5.2b). The actual fees will
depend on various factors, including the usage of the EO-DT. Our estimate is the
runtime cost on AWS and does not include development costs to get the system up and
running and ongoing maintenance. Any potential taxes are also not included.

Table 5.2a.

Cost estimates for an operational EO-DT assuming up to 100
simultaneous users and an average of 1,000 user requests over a
month, 10 minutes per request, and 1 GB per request. Estimate
available online until Nov 26, 2024, at
https://calculator.aws/#/estimate?id=2a3a6d9a142aadb1af918c46c06f
dbb90f021454

Upfront cost

Monthly cost Total 12 months cost (Includes
upfront costs)

$2,460

$4.641 $58,155
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Table 5.2b Detailed cost estimates for an operational EO-DT assuming up to 100
simultaneous users and an average of 1,000 user requests over a
month, 10 minutes per request, and 1 GB per request.

Service Description Upfront | Monthly | Annual Configuration Summary
Amazon Host for User na $95 $1.138 Number of requests
CloudFront Interface (HTTPS) (1000000 per

month), Data transfer out
to internet (1 TB per
month), Data transfer out
to origin (.33 TB per
month)

AWS Lambda | Search Lambda na $2 $28 Architecture (x86), Invoke
Mode (Buffered), Number
of requests (28187 per
month), Amount of
ephemeral storage
allocated (512 MB),
Amount of memory
allocated (512 MB)

AWS Lambda | Map Lambda na $400 $4.802 Architecture (x86), Invoke
Mode (Buffered), Number
of requests (1000000 per
month), Amount of
ephemeral storage
allocated (512 MB) ,
Amount of memory
allocated (8,192 MB)

AWS Lambda| | Ingest Lambda na $85 $1,015 Architecture (x86), Invoke
Mode (Buffered), Number
of requests (1000000 per
month), Amount of
ephemeral storage
allocated (4096 MB),
Amount of memory
allocated (512 MB)
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Service

Description

Upfront

Monthly

Annual

Configuration Summary

Amazon
Simple
Notification
Service (SNS)

Metadata Ingest

na

$1

$11

Data transfer Inbound: All
other regions (1 TB per
month), Data transfer
Outbound: Not selected (0
TB per month), Requests
(1 million per month), 3QS
Notifications (1 million per
month), The amount of
outbound payload data
scanned per month (10
GB)

Amazon
Simple Queue
Service (SQS)

Metadata Ingest

na

$0

$0

Data transfer Inbound:
Internet (1 TB per month),
Data transfer Qutbound:
Mot selected (0 TB per
month), FIFO queue
requests (1 million per
month)

Amazon
Simple Queue
Service (SQS)

Metadata Ingest

Nna

$0

50

Data transfer Inbound:
Internet (1 TB per month),
Data transfer Outbound:
Not selected (O TE per
month), FIFO queue
requests (1 million per
month)

DynamoDB
provisioned

capacity

Metadata
Catalog/Stores
metadata from
NOAA OpenData

$2.460

$408

$7.361

Table class (Standard),
Average item size (all
attributes) (16 KB), Write
reserved capacity term (1
year), Read reserved
capacity term (1 year),
Data storage size (100
GB)
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Service

Description

Upfront

Monthly

Annual

Configuration Summary

Amazon EC2

Grafana EC2

na

$362

$4,342

Tenancy (Shared
Instances), Operating
system (Linux), Workload
(Consistent, Number of
instances: 1), Advance
ECZ instance

(mBg 4xlarge), Pricing
strategy (On-Demand
Utilization: 80
%Utilized/Month), Enable
monitoring (enabled),
Data transfer Inbound:
Not selected (0 TB per
month), Data transfer
Outbound: Not selected (0
TB per month), DT Intra-
Region: (0 TB per month)

S3 Standard

Persistent storage
for Lambda

na

$24

$283

53 Standard storage (1 TB
per month), PUT, COPY,
POST, LIST requests to S3
Standard (3000)

S3 Public

Hosting the User
Interface, data
fusion downloads,
map hosting

Na

$116

$1,389

53 Standard storage (1
TB per month), PUT,
COPY, POST, LIST
requests to S3
Standard (3000) Data
transfer Inbound:
Internet (1 TB per
maonth), Data transfer
Outbound: Internet (1
TB per month)

AWS Fargate

Compute
environment for
data fusion
containers

na

$3.002

$36,027

Operating system (Linux),
CPU Architecture (x86),
Average duration (10
minutes), Number of tasks
or pods (100 per hour),
Amount of ephemeral
storage allocated for
Amazon ECS (100 GB),
Amount of memory
allocated (16 GB)
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Service Description Upfront | Monthly | Annual Configuration Summary
Amazon Observability for na $52 $619 Number of Metrics
CloudWatch Grafana (includes detailed and

custom metrics) (100),
GetMetricData: Number of
metrics requested (1000),
GetMetricWidgetimage:
Number of metrics
requested (1000),
Number of other API
requests (1000),
Standard Logs: Data
Ingested (1 GB), Logs
Delivered to CloudWatch
Logs: Data Ingested (1
GB), Logs Delivered to 53:
Data Ingested (1 GBE),
Number of Custom/Cross-
account events (100),
Number of Dashboards
(1), Number of Standard
Resolution Alarm Metrics
(100), Number of High
Resolution Alarm Metrics
(10), Number of Lambda
functions (3), Number of
requests per function
(100 per hour)

Amazon Containers for na $10 $120 Amount of data stored
Elastic processes (e.g., (100 GB per month)
Container regridding,
Registry anomaly

detection)
Step Functions | Handler for AWS na $9 $108 Workflow requests (1000
- Standard Batch per hour), State
Workflows transitions per workflow

(4)

AWS Batch Handler for na $0 $0 No charge

pracesses in ECR
using Fargate
compute
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Service

Description

Upfront

Monthly

Annual

Configuration Summary

Amazon
CloudWatch

Observability for
Grafana

na

$52

$619

Number of Metrics
(includes detailed and
custom metrics) (100),
GetMetricData: Number of
metrics requested (1000),
GetMetricWidgetimage:
Number of metrics
requested (1000),
Number of other API
requests (1000),
Standard Logs: Data
Ingested (1 GB), Logs
Delivered to CloudWatch
Logs: Data Ingested (1
GB), Logs Delivered to S3:
Data Ingested (1 GB),
Number of Custom/Cross-
account events (100),
Number of Dashboards
(1), Number of Standard
Resolution Alarm Metrics
(100), Number of High
Resolution Alarm Metrics
(10), Number of Lambda
functions (3), Number of
requests per function
(100 per hour)

Amazon
Elastic
Container

Registry

Containers for
processes (e.g,
regridding,
anomaly
detection)

na

$10

$120

Amount of data stored
(100 GB per month)

Step Functions
- Standard
Workflows

Handler for AWS
Batch

na

$9

$108

Workflow requests (1000
per hour), State
transitions per workflow
(4)

AWS Batch

Handler for
processes in ECR
using Fargate
compute

na

$0

$0

No charge
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Service

Description

Upfront

Monthly

Annual

Configuration Summary

AWS Web
Application
Firewall (WAF)

Security for User
Interface and API

Nna

$37

$444

Number of Web Access
Control Lists (Web ACLs)
utilized (2 per month),
Number of Rules added
per Web ACL (5 per
month), Number of Rule
Groups per Web ACL (1
per month), Number of
Rules inside each Rule
Group (5 per month),
Number of Managed Rule
Groups per Web ACL (1
per month)

Elastic Load
Balancing

Security for
Grafana
Dashboard

na

$17

$199

Number of Application
Load Balancers (1)

APl Gateway

Searching
DynamoDB,
triggering Data
Fusion

Nna

$2

$24

REST API request units
(thousands), Cache
memaory size (GB) (None),
WebSocket message units
(thousands), HTTP API
requests units
(thousands), Average size
of each request (10 MB),
Average message size (32
KB), Requests (100 per
month), Requests (100
per month)

Data Transfer

Transferring data
out of EQ-DT

na

$20

$240

Data transfer Inbound: All
other regions (1000 TB
per month), Data transfer
Outbound: All other
regions (1000 GB per
month), Data transfer
Intra-Region- (0 TB per
month), Data transfer cost
(20)

The most considerable cost is related to Fargate ($36,027/year), the compute engine for
the data fusion containers. EKS is a cheaper solution, estimated at $17,059/year for ~
600 hours per month using an on-demand c5.2xlarge EC2 and one EKS cluster. While
the runtime costs may be lower, this EKS solution requires more hands-on management
of the EC2 systems by a cloud engineer, whereas Fargate will automatically allocate
resources. These two systems are interchangeable in the architecture plan in Figure

5.1; one would remove AWS Fargate and replace it with EKS.

The three Lambdas have substantially different costs due to their compute

Science and Technology Corp.
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environment's size and frequency of invocation. The Ingest Lambda is run frequently but
only needs 512MB of memory, whereas the map lambda uses 8 GB because the latter
needs to read several large files into memory. If specific processes need high amounts
of memory, they may need to be containerized and managed using Fargate.

There are two pricing options available for Amazon DynamoDB, which are on-demand
capacity mode and provisioned capacity mode. The provisioned capacity mode is more
cost-effective for consistent traffic, which is the case if a steady stream of incoming data
is being ingested. This pricing option incurs a partial upfront cost. In an operational
system, it may be beneficial to briefly use on-demand capacity mode to establish a
baseline and switch to provisional capacity later.

Grafana Cloud is relatively inexpensive (<$200/month) for a limited number of users.
For an operational digital twin, we recommend using the self-hosted Grafana option for
tighter integration with cloud computing resources, improved performance, and allowing
for unlimited users. The minimum computing overhead for a self-hosted Grafana is
small (t4g.nano, 512 MB RAM, 1 CPU), which is roughly $1.50 a month, but we
recommend an upgraded instance (m6g.4xlarge) which would improve the performance
and cost $362 per month.

The final highly variable cost is transferring data from the EO-DT to another system,
such as a scientist's working station or another digital twin. Inbound data into the EO-DT
is free, but 1000 GB of data transfer out of the EO-DT would cost $20. If interoperable
digital twins proliferate and the data transfer rate increases (e.g., from 1 Terabyte to 100
Terabytes), this cost scales linearly from $20 to $2,000 monthly.
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6. Recommendations

In the original BAA, NOAA was interested in exploring how digital twins could (1)
enhance our ability to process, monitor, quality-control, consolidate, fuse, and assimilate
environmental observations; (2) streamline the satellite data ground processing and
dissemination to users and applications; and (3) serve as the next generation ground
enterprise system in operations. The BAA also sought to identify (4) the benefits of
interfacing with the Earth System approach modeling effort in NOAA and (5) the best
approaches for achieving an agile, scalable EO-DT. A complete discussion of the BAA
goals is available online: https://www.nesdis.noaa.gov/events/digital-twin-earth-
observations-eo-dt-using-artificial-intelligence.

Through our demonstration and this study, we found concrete examples of how an EO-
DT can enhance the NESDIS data monitoring, processing, delivery, data fusion, and
quality control. Using on-demand cloud resources, we found that an EO-DT can cost-
effectively scale data processing and dissemination for a next-generation ground
system. We identified commercial and open-source tools we recommend and others we
do not. We also documented the many lessons learned in the process. Overall, we
found that an EO-DT can meet the BAA exploratory requirements and recommend
developing an operational EO-DT".

Section 1.1.2 identified several questions we sought to answer through this project.
Table 6.1 is a high-level summary of our answers and recommendations.
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Table 6.1. Summary of questions in Section 1.1.2 and a shorthand reference.
Shorthand | Question Quick Summary
Cost How much will it cost to develop a | Prototype: $1,292 per month
o ‘o
Rl Eapatis digal Operational: $4,641 per month
Tools What are the best commercial We recommend several serverless AWS
and open-source tools to use? resources, Python scripting and ML
libraries, Grafana Dashboards.
ML Can ML improve the performance | We found ML useful for detecting
of some of the ground system dataset anomalies in our proof-of-
components? concept study.
Formats What data formats are optimal We do not recommend reformatting to
within the digital twin? cloud optimized data formats.
However, we recommend considering
cloud-optimized filesystems.
Access Can the digital twin improve data | We found that scalable, on-demand
access to end users? AWS resources can provide data in
analysis-ready format and reduce data
wrangling.
Latency Can the digital twin meet or We found that scalable, on-demand
exceed the latency requirements? | AWS resources can quickly deliver data
to end users.
Data Fusion | How can the digital twin enable We found that classical methods can
data fusion and ML? be used for gridding operations in
scalable, on-demand cloud resources.
We found that ML techniques can be
used to fill gaps and improve the
spatial resolution of satellite datasets,
making them more useful for data
fusion.

Below is a summary of specific recommendations lessons learned, and where their
detailed discussion can be found in the report. We link the recommendation back to the
shorthand question notation in Table 6.1.

1. Approach to Building an EO-DT

Recommendation: “Keep It Simple” and build incrementally [Cost]

o (Section 1.1.4) We incorporated a “Keep It Simple” philosophy on the user
interface. While users may need complex features in a fully operational digital
twin, we aimed to minimize clutter from the interface.
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e (Section 5.3.1) We estimated the cost assuming up to two simultaneous users,
100 user requests per month, and 1 GB per user request. Under these usage
conditions, the monthly cost for a prototype EO-DT is estimated to be $1,292
per month. Our estimate is the runtime cost on AWS and does not include
development costs to get the system up and running and ongoing maintenance.

e (Section 5.3.2) We estimated the cost, assuming up to 100 simultaneous users
and an average of 1,000 user requests over a month, 10 minutes per request,
and 1 GB per request. Under these usage conditions, the cost is estimated to
be $58,155 per year for an operational EO-DT. Our estimate is the runtime cost
on AWS and does not include development costs to get the system up and
running and ongoing maintenance.

Lesson Learned: On-demand resources are operationally robust once installed.
However, they have a steep learning curve and their limitations need to be considered.
[Tools]

— (Lesson Learned 2c) See “Consider container size and runtime when
choosing Lambda over other containerized services” for an example.

— Lesson Learned: TLEs need to be up-to-date otherwise, the file geolocation
will incorrectly drift over time [Tools]

= (Section 2.3.3) An important consideration is that a satellite’s TLE changes
over time to reflect satellite orbit changes due to drag. So, the TLE table
must be updated once a day to reflect these changes. We learned this
lesson quite painfully when our initial testing did not return results in a
specified bounding box when we tested it in March.

= Lambda deployment involves zipping the entire contents of a working
directory and uploading, so we included a static copy of the TLE in the
package. The query results were thousands of miles away from our
bounding box by September because we were using an outdated TLE.
Because we did not want Lambda to download the current TLE file every
time it was invoked (which may lead to our IP being blocked by the host
website), we wrote a script to download the TLE once a day to our local S3
and Lambda, then imports it each time it is invoked.

Recommendation: Geohash improved processing efficiency in catalog at the expense
of precision [Tools, Latency]

e (Section 2.3.2) Using geohash, there is no longer a dependency on data-
specific readers like HDF libraries or specialized file readers, making the
system more flexible for accommodating new data. A drawback is that the file
position is not exact but is the nadir point of the center of the granule. To
address this, we designed the search to return more results than needed, which
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can be further filtered in later processing steps once the file has been opened.

Lesson Learned: Incorporate flexibility in SNS filters because S3 resources may be
reorganized by large data providers [Tools]

e (Section 2.1) Overall, flexibility, maintainability, and scalability are the key
strengths of our architecture. Our system was tested when the JPSS part of the
NODD underwent reorganization, and our data paths no longer pointed to the
files needed to populate the catalog - as seen in reduced data flow into our
catalog database. Fortunately, our SNS filters are easy to update, and when
we saw the reduced data flow, we could make changes. The system remained
online through this episode, albeit with a short data outage for some products.
Some future improvements would include incorporating containerization,
adding security measures, and load balancing so the system can handle more
simultaneous users.

2. Evaluation of Commercial Software and Services

Recommendation: AWS TwinMaker not recommended for Earth digital twins (at this
time) [Tools]

e (Section 2.1) During the project, we also evaluated several services that we
did not ultimately decide to deploy in the EO-DT. For instance, we explored
using TwinMaker, Amazon’s new digital twin service that provides a framework
to integrate data streams from loT sensors. An appealing characteristic of
TwinMaker was that it fully managed the messaging and data flow within the
system, and we could expand to accommodate new sensors and datasets and
remove components if features were retired. However, upon testing,
TwinMaker did not easily ingest NESDIS data sources, which included satellite
sensor data, retrieval products, dataset production data, and user inputs.
Instead, we found that a combination of SNS/SQS and Lambda functions
carried out many of the same functions as TwinMaker and were able to
leverage Python packages that can read geospatial data formats.

Recommendation: AWS Fargate useful for a robust operational EO-DT (if built) but not
for rapid prototype development [Tools, Latency, Cost]

e (Section 2.1) We also considered using containers and resources such as
AWS Fargate, a serverless compute engine for containers that work with
Amazon Elastic Container Service (ECS) and Amazon Elastic Kubernetes
Service (EKS). Fargate would have allowed us to deploy containerized
applications without managing the EC2 instances. We ultimately decided that
using EC2 with Python virtual environments was sufficient for the
demonstration. However, if one is built, we recommend Fargate or another
container orchestration approach for an operational EO-DT.
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e (Section 5.3.2) The most considerable cost is related to Fargate
(~$3,000/month), the compute engine for data fusion containers. EKS is a
cheaper solution. While the runtime costs may be lower, EKS requires more
hands-on management of the EC2 systems by a cloud engineer, whereas
Fargate will automatically allocate resources.

Lesson Learned: Consider container size and runtime when choosing Lambda over
other on-demand services [Tools]

— (Section 2.1) Early in the project, we considered using Lambda to perform data
fusion. However, Lambda has strict size limitations for the entire package
(1GB) and strict processing time limits (<15 minutes to run). The data fusion
processing time may exceed the time limit for large requests. Instead, we
installed the code on an EC2. For a fully operational EO-DT, we recommend
creating a docker image and deploying using a service like Amazon Elastic
Container Service (ECS) to fully scalable the resources. Once the file is
regridded, it is saved to another S3 directory linked to the map Lambda. If a
new file is present, the map Lambda triggers. Lambda then reads the file and
displays the regridded data on the leaflet map, which is then opened as a new
tab on the user’s browser.

Lesson Learned: Recommend DynamoDB, but utilize Z-order indexing in operational
system instead of the GSI approach in the prototype [Tools, Latency]

— (Section 2.3.1) The fastest searches will query based on the partition and sort
keys; querying the other fields is significantly slower. We needed users to be
able to search the table based on multiple parameters: time, location, and
product. A solution is to create Global Secondary Indexes (GSI), which copies
the main table with different partition combinations and sort keys. GSI makes
a copy of the main table, once for each different sort key.

— (Section 2.3.1) Toward the end of the project, we showed our approach to a
DynamoDB subject matter expert who proposed an alternative, faster, and
more cost-effective approach using Z-Order Indexing. This approach would
require us to create a new column with a unique value by combining multiple
columns' values and setting that field as the sort key. Then, we can use a non-
unique field as the partition key. This approach would be more effective
because it would require fewer queries and copies of the main table.

Recommendation: Use SageMaker for ML development teams [Tools, Cost]

e (Section 5.3.1) While not a run-time component of the prototype EO-DT,
SageMaker was particularly cost-saving because our team could start a GPU-
enabled instance for training and testing machine learning models and shut
them down when idle.
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e (Lesson Learned 4d) Also see “Need on-demand access to GPUs for some
of the newest techniques” for examples.

3. Evaluation of Open-Source Software and Services
Recommendation: Grafana suitable platform for dashboard [Tools]

e (Section 2.5) Grafana met our selection criteria for an EO-DT dashboard,
which included (1) how well the platform interfaced with our EO-DT system and
data streams, (2) if the platform produced a variety of customizable
visualizations, including from geospatial data, and (3) if the platform operating
costs were within our budget. Since our project focused on open-source
solutions, we did not evaluate commercial platforms, like Tableau or Microsoft
PowerBI.

Recommendation: Used Grafana Cloud for demonstration (fully managed service by
Grafana) but recommend migrating to AWS system to support more users and have
complete ownership over the service. [Tools, Cost]

e (Section 5.3.2) While we chose to use the fully managed Grafana Cloud,
Grafana is an open-source dashboard that can be self-hosted for free. An
advantage of Grafana Cloud is that the developer only must focus on setting
up the dashboard and metrics and less on the infrastructure to support it.
Grafana Cloud is relatively inexpensive for a limited number of users. For a full
digital twin, we recommend using the self-hosted Grafana option for tighter
integration with cloud computing resources, cheaper hosting costs, and
allowing for additional users.

4. Machine Learning Improvements to Ground System

Recommendation: Use PyTorch machine learning libraries and packages [Tools, ML,
Data Fusion, Access]

e (Section 3.1.1) Early in the project, we had to decide which ML Python
package to use for training. TensorFlow and PyTorch are both free, easily
accessible, open-source software libraries. TensorFlow is older and thus has
more online documentation and community support. PyTorch is a popular tool
because of its user-friendly interface and flexible design. Despite PyTorch's
comparatively smaller ecosystem and restricted multi-GPU support, it was
designated as the chosen framework for DTAD. This decision was due to
several factors: PyTorch's seamless integration with Python and its more
intuitive API, the provision of dynamic computational graphs that render it
particularly conducive for intuitive processing and experimental endeavors, its
robust foothold within academic circles, and its native support for the Open
Neural Network (ONNX) format.
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Recommendation: ResNet-18 performed better than custom-tuned CNN for anomaly
detection [Tools, ML]

e (Section 3.1.1) After segregating the images into their respective directories,
labeled as "valid" or "invalid," we initiate model training. We initially chose to
use CNN with a custom-trained model. However, the model's accuracy did not
achieve the desired benchmarks. The most proficient model trained under this
paradigm attained an accuracy of 75% in the binary classification of satellite
images, which was lower than expected, given how large some of the
anomalies were.

Recommendation: Classical methods adequate for regridding, but continue to explore
ConvLSTM and ESRGAN techniques to better exploit more satellite observations [Data
Fusion, Access]

e (Section 2.4.1) We developed a fast, simple regridding method that is agnostic
of the data source and can be applied to all NESDIS datasets without re-
training. We successfully tested and installed this code into our EO-DT
prototype, and it successfully transformed satellite datasets from an irregular
grid to a regular grid at a user’s requested spacing. The code processed a data
granule on one CPU core within 30 seconds to 3 minutes for a 50 km and 750
m VIIRS granule, respectively. Processing speeds can be improved by utilizing
multithreading and containerization.

e (Section 3.2.1) We show an AOD prediction of ConvLSTM for a cloud-free
scene. We used two hours (six, twenty-minute timesteps) AOD images to
predict the next several timesteps. The observed AOD and the predicted results
do an excellent job capturing areas of higher AOD. The model can make
predictions further in time, but the results were unrealistic. Given that we are
applying the ConvLSTM model to fill in clouds, not predict AOD, it is more
critical that the next time step (t+1) agrees with the observed values.

e (Section 3.2.2) We show an example of the pre-trained ESRGAN sharpened
resolution of a sample GOES-16 AOD image. In the native resolution image,
GOES-16 AOD values are coarse when zooming into the focus region over
Florida. The features are sharpened after processing with the ESRGAN model.
The results show good visual agreement but need further validation with VIIRS
AOD and AERONET before adopting in an EO-DT. In the pre-trained model
output, the pixel shapes take on a granular geometry, which may be controlled
by developing a custom-trained model. Overall, ESRGAN shows promise for
improving the spatial resolution of earth observations, especially for products
available on different platforms.

Lesson Learned: Training datasets remain a challenge and are very time consuming to
construct [ML, Data Fusion, Access]

117
Science and Technology Corp.



il 2 NOAA EO-DT

Contract 1332KP22CNEEP0013
Science and Technology Corporation

— (Section 3.2.1) We had to construct a training dataset that reduced the full disk
image (5424x5424 pixels) into small samples that were 64x64 pixels. Each
smaller image consists of 12 timestep observations of AOD. We needed all the
images to be nearly cloud-free, which was challenging given that the mean
cloud fraction of the earth is 60% (King et al., 2023). Thus, building an extended
training dataset was time-consuming. Using a year of data, we created 800
training samples (of 12 timesteps each) and validated/tested with 300 samples
to refine the model. GOES-16 AOD is generated every 10 minutes, and we
initially used all available observations to train out data. However, scene-to-
scene changes in AOD can be small, so the ConvLSTM predictions were
unrealistic. Instead, we switched to 20-minute timesteps and saw more realistic
propagation of AOD plumes.

Lesson Learned: Models perform better during the validation period than when
implemented in operations [ML, Data Fusion]

— (Section 3.1.4) It is evident that models tend to perform better in offline testing
and training than when running in real-time. This underscores that even with
long training periods, there is inherent unpredictability in real-time data, and the
models may confuse natural phenomena as an anomaly and vice versa.

Lesson Learned: Real training data better than synthetic [ML, Data Fusion]

— (Section 3.1.4) Our analysis suggests that training ML models with natural
GOES-16 anomalies yield better results than synthetic data with the VIIRS
data. For machine learning-based anomaly detection to advance as a field, we
recommend that NESDIS science teams help create large, labeled repositories
of training data for the community to explore.

Lesson Learned: Need access to GPU-enabled systems for some of the newest
techniques [ML, Data Fusion, Access]

— (Section 2.4.3) While slower, many classical regridding techniques are less
computationally intensive than their ML counterparts, as some ML models
require GPU-equipped instances for training.

— (Section 3.1.1) PyTorch is a popular tool because of its user-friendly interface
and flexible design. Despite PyTorch's comparatively smaller ecosystem and
restricted multi-GPU support, it was designated as the chosen framework for
DTAD.

— (Section 3.2) The advantage of ML systems is that they can often outperform
classic techniques regarding computational speed, taking advantage of GPU
architectures.

— (Section 3.2) ESRGAN requires extensive training datasets and GPUs to
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process the data. As a result, we used a pre-trained model to evaluate the off-
the-shelf version and see if it was feasible for an EO-DT.

(Lesson Learned 2e) Also see SageMaker for a recommended on-demand
solution.

Lesson Learned: Still relying on offline dataset pre-processing and storage for training
models, not fully implementing into memory [Formats, ML, Data Fusion]

(Lesson Learned 5a) See cloud-optimized file system recommendations

5. Data Formats

Recommendation: Keep data in native format (for now), but update the filesystems to
be cloud-optimized [Formats, Access]

(Section 2.4.3) We recommend adopting a cloud-optimized file system to
expedite the processes of opening, downloading, and further processing the
files.

(Section 4.2) While newer formats have cloud-specific advantages, legacy
formats like netCDF and HDF remain deeply entrenched in the community's
practices and toolchains. Both Unidata and the HDF group, which manage the
two filesystems, are actively studying and implementing solutions to libraries
for these formats to reinforce their resilience and adaptability as systems evolve
to the cloud.

Considering this, it is pragmatic for institutions like NOAA and NASA to continue
leveraging these formats. Transitioning to a new format would not only entail
considerable resources for converting large archives but may also introduce
complexities and unforeseen challenges in the community. Staying the course
with netCDF and HDF ensures stability, continuity, and the ability to benefit from
ongoing innovations in their ecosystems.

Lesson Learned: Still need custom readers to open/read data [Formats, Access]

(Section 2.3.4) Note that in a fully functional EO-DT, we envision the user will
be able to select which files they wish to display. It is here that we open the
files themselves for the first time. Each product requires a unique reader to
parse the file contents. We only extracted one variable for simplicity, even
though numerous fields are in the files. In the future, we imagine the end user
could use the file contents as a search parameter. Because the quick look is
intended to display data rapidly, we downsampled the data at a ratio of 10:1 for
some of the larger files, such as those from the full disk ABI.

(Section 2.4.3) Our analysis identified several bottlenecks that made data
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processing and usage difficult. A primary challenge arose from the unpacking
and utilization of typical NetCDF4 files, which contain numerous variables
helpful to an algorithm developer but may not apply to the average user.
Unfortunately, the user must download the entire file to access only a small part
of its contents. For instance, we only needed to access four variables (AOD550,
QCAIl, Latitude, and Longitude) out of the 21 geospatial variables in the VIIRS
AOD.
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7.
7.1

All technological assets and documentation for the STC EO-DT prototype and this study

Appendix

Accessing Digital Resources

are available online: https://qitlab.com/stc-ai.

7.2

7.21

Meeting Summaries

Biweekly Meeting Discussion

October 2022

Checking in with the timeline, STC is currently on schedule and focusing on
setting up the EO-DT infrastructure on AWS and scheduling meetings with the
NASA DT team.

STC completed training on AWS TwinMaker and scheduled a meeting with the
TwinMaker lead application engineer to discuss the project.

STC picked an example use case around fire weather to work towards when
building the EO-DT. In the use case, the user orders and combines multiple
datasets relevant to assessing fire weather, air quality, and the presence of
active fires. This could utilize the active fire, AOD, NUCAPS, and GFS datasets.

STC discussed data access pathways with the DEEVA team. Options included
private FTP feed for the project or public access via AWS, CLASS. DEEVA
team recommends using the public channels. The DEEVA team will follow up
on datasets not in STAR’s portfolio (e.g., SUVI).

STC requests data readers where available, and the DEEVA team will provide
them by the next biweekly.

STC states that the underlying philosophy is to use off-the-shelf tools, including
existing NOAA resources.

November 2022

STC created an architecture map for the DT prototype. Collaborating with the
AWS team to validate the system and get upgrade recommendations.

One challenge of implementing a DT is the data bottleneck. Getting data from
CLASS can be slow, which could impact the processing times of implementing
a full DT.

STC wants to keep the user experience in mind, STC team is concurrently
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examining the end use cases (from both user and management) with AWS
setup and development.

= STC and DEEVA discussed incorporating the MIIDAPS-Al into the DT at a later
time. Not currently routinely run at STAR, but could be run on STC system. Can
schedule a follow up TIM at a later time.

January 2023

e Eric Maddy noted that when benchmarking, test speed performance is better
when batching multiple files along with single-file tests. Performance can
decline exponentially (for example) with increasing file sizes.

February 2023

= Scheduled midterm demo for April 12, 2023. Planned for 1.5 hours (post
mortem: we recommend in the future we schedule for 2 hours), each team
member will talk for 10-15 mins. Will discuss our approach with slides and show
a live, hands-on demo.

= Discussed the value of super-resolution method for achieving fine scales in the
EODT datasets. Can train ABI data to match VIIRS resolution.

» Eric Maddy: Planning to use SR or GAN? Yi - we are evaluating both.

= Beau: Will there be one model or multiple models, depending on the
resolution? Yi - anticipate training one model/resolution scale.

= Ramesh: Will you consider datasets other than AOD?

= Ramesh: How are we implementing agile in this project? Through small,
incremental installations into the digital twin, utilizing CI/CD in GitLab. Stand-
up meetings sprint into our workflow. Feedback from customers (like biweekly
meetings) is also part of the agile process.

= Sid asked if multiple DynamoDBs indicated multiple digital twins. No, to the
user, they only see a single database. If implemented, this would be a backend
solution, not one transparent to the user.

= Discussed different gridding options for queries, such as h3 and geohash. Beau
asked if this was for the data fusion step. STC clarified that this was just a
query-only scheme and it was intended to optimize the system.

= Sid shared some of his vision:

= He is most interested in a flexible system where ML components could
be swapped. Possibly one ML model per sensor/product.
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= Al models do not have to be 100% accurate, 60% is acceptable. The
models are placeholders for a full-blown EODT if implemented by
NOAA. The models can be fine-tuned later.
= Very interested in the infrastructure and feasibility of meeting
requirements. EODT could become the next-generation architecture
and possibly replace the existing ground system. Looking for possible
improvements to the value chain.
= Considers success/wins:
o Demo with a hook into UFS/GFS
o Couples with another digital twin
= Wants STC team to stay in the research loop/NASA activities
e NASA organized around science themes interfaced with DTs that are part of a
federation
e Engage in various activities, e.g., NAS (attended), DestinationEarth meetings
March 2023
e Discussed AGU session on digital twins - followed up with NASA. They already
planned to organize a session.
e Ramesh would look into an AMS session, and NOAA would organize
= Discussed Sid’s abstract submission to EUMETSAT 2023, “Informing
NOAA’s Next-Generation Space and Ground Architectures: Example
Concepts of Hyperspectral Microwave Sensor and Earth System Digital
Twin”
» Preparing for Midterm Review on April 12, 2023
April 2023
e Midterm review and retrospective meeting
May 2023

Clarified that the final report is intended to be the roadmap to building a digital
twin.

Ramesh pointed out that it was not clear that we are not moving any data
around in our plan (data are “in place”). This is advantageous from a file storage
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perspective. STC should highlight this more.
¢ Ryan B. said our plans make sense, and vision is coming together.

¢ Ramesh pointed out that the Grafana cloud is appropriate for the demo, but
NOAA would likely need self-managed Grafana for a full EODT for additional
security. STC confirmed it will include this info in the final report.

e The NOAA team is interested in on-prem versus cloud service costs demo
versus total system costs.

e Ramesh recommends we check back on the STC proposal, ensuring all items
are discussed. If there are unexpected challenges or changes to the plan, they
are interested in the why and the reasons for the changes.

e Had a side discussion on the definition of digital twin: often, the first thing
discussed in a meeting, there are conflicting definitions. Fundamental
similarities are decision support and making sense of a “bewildering” amount
of data.

June 2023

e STC is adding three additional months to Analytics and ML augmentation of the
EO-DT for anomalies/fusion knowledge graph study.

e The anomaly study is complete, and there is additional time to study other
sensors (VIIRS, CrIS).

e Previously concerned about S3 reorganization, NODD reorganization is in
progress, so some of the ingest links have to be updated or may break in the
future.

¢ Ramesh and Beau want to space out the three reviews in September/October/
STC is working to schedule a meeting room for a hybrid format.

e Ramesh and Beau want to review abstracts before submission to AMS/AGU

e Ramesh requested a draft of the final report before the final demonstration.
Noted that the final report is intended to be a road map to building a digital twin,
want to know if NOAA’s needs are met through a digital, the path forward, and
the dead ends.

¢ Ryan Berkheimer discussed interest in learning about the value that knowledge
graphs may have in an operational paradigm. Knowledge graphs are a way to
unlock the metadata within NESDIS data.
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July 2023

e STC showed results from backfilling data. Eric Maddy suggested that we have
some QC to show the age of the pixel. STC implemented this already but did
not include it in the presentation (will show at another meeting).

e Ryan Berkheimer discussed NCEIl's activity in using knowledge graphs and
shared a helpful report on cloud-optimized file formats.

e Ramesh encouraged us to submit AMS abstract to EODT sessions

e Ramesh wanted clarification on the current schedule, as many items have an
Aug 31 due date. STC stated that some tasks (the data fusion step) were bigger
for the demo while others (knowledge graphs, file formats) were smaller and
intended for the final report. The data query task for the demo is nearly
complete. STC has no concerns about the current schedule.

August 2023
e Provided an overview of remaining tasks and their status
e Shows partial demonstration of the user interface for EO-DT to Eric Maddy
September 2023
e Final demonstration
October and November 2023
e Technical report preparation, review, and submission
7.2.2 Kickoff Meeting Discussion

— STC team’s overarching goal is to produce a study with recommendations on
building a fully operational EODT. The STC team will accomplish this by
building a prototype.

— The NOAA team requests EODT demonstrations, and the STC team will
provide two, one at the midpoint and again at the final meeting.

— Sid emphasizes the value of documenting sister DT efforts at
NASA/Destination Earth to ensure an operational NOAA EODT is interoperable
with those efforts.

— Sid reiterates that processing time requirements are not fixed but wants to
ensure the system is fast (in contrast, data can take hours and days to process
in the current ground system).
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— Sid requests that the STC team consider adding NWP to the data fusion
portfolio in the EO-DT to increase gap-filling/augment satellite data products in
the product catalog; STC team agrees.

— The STC team emphasizes that risk is mitigated via good communication with
the customer and leveraging existing services, technologies, and peer-
reviewed methodologies.

— The DEEVA team within NOAA can provide sample files and readers for
various data formats to assist the STC team.

Recommendations and Action Iltems:

e The NOAA team asks what kinds of events will constitute an anomaly. STC
team will use both injected noise and simulated anomalies that have happened
before. Will work with Flavio’s team for these tests.

e In addition to working with Jacqueline, STC will establish a POC within the
European digital twin project.

e Sid recommends that the final report include findings on whether (1) NESDIS’s
goals can be achieved via an EODT and (2) recommendations of what needs
to be done to scale up and allow NESDIS to go from prototype to full operational
model.

e Sid recommends that the web portal incorporate a data visualization
component.

e Beau requests monthly reporting to help keep track of progress during bi-
weekly agile meetings.

7.2.3 Midterm Meeting Discussion
Slide 7: Why is Grafana outside of AWS?
e STC uses the Grafana cloud, but Grafana can be deployed within AWS.

Slide 9: Would like STC to summarize challenges/solutions in the final report, and
how issues would play out in a fully deployed EO-DT

Slide 15: Some clarification about the data ingest step:
e Catalogs the data in table on slide 14

¢ Ingest assumes data integrity, paired with anomaly detection to explore how Al
can enhance NESDIS processing system.
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e The focus is searchability. Data are left in their native formats

e Data ingest does not re-grid to a standard grid, which is completed in the data
fusion step (slides 35-44)

Slide 23: What is the computational cost of running the model?
e Training: 2-3 hours/~4,000 files, running: 10 seconds/file

Slide 23: Does it say where/why the image fails? Would like to see STC continue
to explore the path to trust.

e CNN does not do that, but it is something STC will explore in the future, either
another technique or by pairing with an explainable Al method

Slide 24: How does the confusion matrix stack up against what forecasters see?

e Seems reasonable from STC experience. STC can follow up with NWS users
or validation teams at NOAA

Slide 24: GOES-16/-17/-18: How did the GOES-17 ABI anomalies (which were
obvious) influence detection in GOES-16/-18?

e 60% of the training data was GOES-17 ABI, which was helpful because it
produced many “invalid” images. All satellites were used for training/test.

Slide 24: How is it different if you remove the word “digital twin” from the
workflow?

e The ML-approach in the anomaly detection step is not different but is tailored
to the EO-DT problem at hand/adapted for a specific use case

e The definition of a digital twin and what a digital twin should do varies within the
earth sciences community.

What is the core component/heart of the EO-DT? Would like this to be
emphasized in the final demo

e The data fusion step combines the NESDIS assets. That is the core engine of
the digital twin (slides 35-44)

How can an EO-DT predict and replicate Earth processes? What is quality
control?

e STC was focused on enhancing the user experience and modeling the ground
system (not the earth system). BAA did not call explicitly for an Earth System
Digital Twin (slides 4-5)
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e STC can explore an ESDT through the fire weather/air quality science use case
(slide 8 and slide 38) and include a summary of results in final demonstration
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7.2.4 Final Review Discussion (Q&A)
Q: Why did you use the NOAA NODD instead of the CLASS archive?

A: NODD is more cloud-friendly/represents a better approximation of the ‘future
state’ archive. Better to develop against the NODD.

Q: In addition to collocating the different types of data to the same temporal and
spatial spot, data fusion also should ‘fuses’ or merges the different sources of the
same data into a single value. | get a sense that the merging aspect of the data
fusion in not present in this demo. Am | misunderstanding this aspect?

A: For the demonstration, we did not explicitly merge multiple datasets of the
same type. Instead, we focused on the pre-requisite steps to combining different
types of observations. However, the tools we developed can be updated to
combine data in a fully operational digital twin.

Q: Are there any plans to experiment with pixel-level labels via image
segmentation, so images that are only partially invalid can be more effectively
used?

A: We didn’t explore pixel labels, but the invalid portions could be identified
using multi-label classification. The flagged regions could be combined with
other ML techniques, like ConvLSTM, to fill in invalid regions.

Q: If NOAA implemented an operational EO-DT, what is the biggest thing to
consider if they decide to implement it?

A: We recommend defining the requirements, starting with smaller goals that can
be scaled into bigger project needs. [STC will include more recommendations in
the final report]
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Definitions

ABI

ACF

AERONET

AGU

AIST

AMS

AMSU

AOD

API

ATMS

AVHRR

AWIPS

AWS

BAA

Advanced Baseline Imager

Analytic Collaborative Framework

Aerosol Robotic Network

American Geophysical Union

American Information Systems Technology

American Meteorological Society

Advanced Microwave Sounding Unit

Aerosol Optical Depth

Application Programming Interface

Advanced Technology Microwave Sounder

Advanced Very High Radiometer

Advanced Weather Interactive Processing System

Amazon Web Services

Broad Agency Announcement
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Definitions

CDN

Cl/ICD

CLASS

CLI

CMR

CNES

COG

CONOPS

CONUS

ConvLSTM

CrlS

DAACS

DB

DestinE

DITTO

Content Delivery Network

Continuous Integration/Continuous Development

Comprehensive Large Array-data Stewardship System

Command Line Interface

Common Metadata Repository

Centre National d’Etudes Spatiales

Cloud-optimized GeoTIFFs

Concept of Operations

Continental United States

Convolutional Long short-term memory

Cross-track Infrared Sounder

Distributed Active Archive Centers

Database

Destination Earth

Digital Twins of the Ocean
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Acronym Definitions

DQF Data Quality Flags

DT Digital Twin

DTAD Digital Twin Anomaly Detection

EC2 Elastic Cloud Computing

ECMWF European Centre for Medium-Range Weather Forecasts
ECS Elastic Container Service

EKS Elastic Kubernetes Service

EO-DT Earth Observing Digital Twin

ESA European Space Agency

ESDT Earth System Digital Twins

ESRGAN Earth Super-Resolution Generative Adversarial Networks
ESTO Earth Science Technology Office

EUMETSAT European Meteorological Satellites

Geo Geostationary

GEOS Goddard Earth Observing System
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GEOS-CF

GOES

GOES-R

GradCAM

GRIB

GSI

HDF

HPC

HYSPLIT

IASI

IDEAS

loT

JPSS

JSON

JV

GEOS Composition Forecast system

Geostationary Operational Environmental Satellites

GOES — Series R

Gradient-weighted Class Activation Mapping

GRIdded Binary or General Regularly-distributed
Information in Binary form

Global Secondary Indexes

Hierarchical Data Format

High Performance Computing

Hybrid Single-Particle Lagrangian Integrated Trajectory
model

Infrared Atmospheric Sounding Interferometer

Integrated Digital Earth Analysis System

Internet of Things

Joint Polar Satellite System

JavaScript Object Notation

Joint Venture
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LSTM

MetOp

MIIDAPS-AI

ML

NASA

NCCF

NCEI

NCEP

NESDIS

NetCDF

NOAA

NODD

NoSQL

NSOF

NUCAPS

Long short-term memory

Meteorological Operational Satellite Program of Europe

Multi-Instrument Inversion and Data Assimilation
Preprocessing System, Artificial Intelligence version

Machine Learning

National Aeronautics and Space Administration

NESDIS Common Cloud Framework

National Centers for Environmental Information

National Centers for Environmental Prediction

National Environmental Satellite, Data, and Information
Service

Network Common Data Form

National Oceanic and Atmospheric Administration

NOAA Open Data Dissemination

No Structured Query Language

NOAA Satellite Operations Facility

NOAA Unique Combined Atmospheric Processing System
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OMPS

ONNX

OPPA

OSPO

PDA

REQ

ResNet-18

RESP

RESTful

RMSE

RNN

RO

S3

SAE

SNPP

Ozone Mapping and Profiler Suite

Open Neural Network

Office of Projects, Planning, and Analysis

Office of Satellite and Product Operations

Product Distribution and Access

Request

Residual Neural Network

Response

REpresentational State Transfer (compliant)

Root Mean Square Error

Recurrent Neural Network

Radio Occultation

Simple Storage Service

Systems Architecture and Engineering

Suomi National Polar-orbiting Partnership

Science and Technology Corp.
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SNS

SQS

SRGN

SST

STAC

STAR

TLE

UCAR

VIIRS

VPC

VPN

WBS

XAl

Simple Notification Service

Simple Queue Service

Super-Resolution Generative Adversarial Networks

Sea Surface Temperature

Spatio-Temporal Asset Catalog

Center for Satellite Applications and Research

Two Line Elements

University Corporation of Atmospheric Research

Visible Infrared Imaging Radiometer Suite

Virtual Private Cloud

Virtual Private Network

Work Breakdown Structure

Explainable Atrtificial Intelligence
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Disclaimer

This material is based upon work supported by the Dept of Commerce under Contract
No. 1332KP22CNEEP0012. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the Dept of Commerce.

Delivered to the U.S. Government with Unlimited Rights, as defined in FAR 52.227-14.
Use of this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

*There is no Planning for activity beyond the demonstration projects

138
Science and Technology Corp.



	1. Introduction
	1.1. How Could a Digital Twin Benefit NOAA?
	What is a Digital Twin?
	What are the Benefits of Building a Digital Twin of the Ground System?
	Study Goals
	Three Demonstrations to Inform Study
	1.4.1.1. Demo#1: Use real-time data to model current capabilities from satellite archives, computing resources, and user interaction.
	1.1.4.2. Demo #2:  Explore where new services and ML can enhance the user experience and limit data wrangling
	1.1.4.3. Demo#3:  Support decision-making related to optimizing NESDIS data processing


	1.2. Digital Twin Framework
	Concept of Operations
	Ground System Components Modeled in the Digital Twin
	1.2.1.1. Downlink and Ingest
	1.2.1.2. Processing
	1.2.1.3. Catalog and Archive
	1.2.1.4. Search and Dissemination


	1.3. Summary
	1.4. References

	2. Concept of Operations and Computing Infrastructure
	2.1. Digital Twin Architecture
	2.2. Data Products
	2.3. Serverless Resources
	2.3.1. Cataloging
	2.3.2. Geolocation
	2.3.3. Ingest Lambda
	2.3.4. Search and Map Lambdas

	2.4. Classical Methods for Data Fusion
	2.4.1. Spatial Regridding
	2.4.2. Gap Filling
	2.4.3. Summary

	2.5. Data Analytics Dashboards
	2.6. References

	3. Enhancements using Machine Learning
	3.1. Anomaly Detection in Satellite Datasets using Convolutional Neural Networks
	3.1.1. Methods and Datasets
	3.1.1.1. Training for GOES ABI Data
	3.1.1.2. Training of NOAA-20 VIIRS Data

	3.1.2. Multi-label Classification
	3.1.3. Explainable AI with Heatmaps
	3.1.4. Summary and Lessons Learned

	3.2. Deep Learning Methods to Enhance Data Fusion in a Digital Twin
	3.2.1. Gap filling with ConvLSTM
	3.2.2. Enhancing image resolution using ESRGAN
	3.2.3. Summary

	3.3. References

	4. Optimizing Data for Interoperability
	4.1. Metadata and Knowledge Graphs
	4.2. Cloud Optimized Data Formats
	4.3. References

	5. Transitioning the Prototype to an Operational System
	5.1. Operational Architecture
	5.2. Interoperability with External Digital Twins
	5.2.1. Major Digital Twin Efforts
	5.2.2. Connecting with a Sibling Digital Twin
	5.2.3. Recommended Steps for Interoperability

	5.3. Cost Estimates
	5.3.1. Prototype EO-DT
	5.3.2 Operational EO-DT

	5.4. References

	6. Recommendations
	7. Appendix
	7.1 Accessing Digital Resources
	7.2  Meeting Summaries
	7.2.1 Biweekly Meeting Discussion
	7.2.2 Kickoff Meeting Discussion
	7.2.3 Midterm Meeting Discussion
	7.2.4 Final Review Discussion (Q&A)

	7.2 Acronyms

	Credits
	Disclaimer

