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and Kd490 did not notably decouple at higher spatiotemporal 
resolutions. However, the ability to detect episodic, extreme 
chlorophyll blooms increased significantly with increasing 
spatiotemporal resolution and the locations of these events 
became much more refined at higher resolutions. Finally, the 
high-resolution chlorophyll-a data captured up to 770 epi-
sodic events that were missed by the commonly used 4-km 
8-day resolution data in any given grid cell around Okinawa 
across the 10-year period. High-resolution ocean color data 
can therefore enable us to assign more reliable risk to coral 
reef tracts that could be affected by frequent episodic events, 
and allows us to assess the persistence of such events in 
waters much closer to coastal habitat.

Keywords  Geostationary ocean color · Coral reef · 
Satellite · Chlorophyll-a · Episodic events

Introduction

The world’s coral reefs are unique natural resources, pro-
viding habitat for about 25% of all known marine species 
(Hoegh-Guldberg et al. 2017) including over 4000 spe-
cies of fish (EPA 2022). However, the clear, clean waters 
that are necessary for these systems to thrive are subject 
to threats from both changing climate conditions and 
from human development. Human populations have long 
been concentrated along coasts, but the impacts of human 
activities on coastal ecosystems are particularly evident on 
tropical islands where 90% of people live along the shore-
line (Andrew et al. 2019), creating additional pressures 
on coral reef ecosystems from land-based pollution and 
erosion (Bryant et al. 2001). Efforts to assess the health 
of coral reef environments and the impacts of human 
development and changing climate would benefit from 

Abstract  Satellite ocean color measurements are a valu-
able tool for evaluating water quality parameters relevant 
to coral reef habitats. However, low earth orbiting satellites 
offer a limited number of observations for detecting epi-
sodic, extreme events to which coral reefs are sensitive, and 
the spatial resolution of most sensors is too coarse for fine 
scale processes in optically shallow nearshore environments. 
Here, we assess whether high-resolution satellite ocean color 
measurements from the first geostationary satellite ocean 
color sensor (GOCI) can improve our understanding of 
coral reef habitat conditions and monitoring capabilities 
for potential reef changes. Using ten years (2011–2021) of 
GOCI ocean color measured eight times per day at a spatial 
resolution of 500 m around the Okinawa Prefecture region, 
we found that the high-resolution grid significantly increased 
retention of coastal areas where waters were otherwise 
masked at coarser resolutions (i.e., 4 km) to avoid optical 
reflectance in shallow waters. Contrary to expectation, we 
found that the often highly correlated variables chlorophyll-a 
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increased observational capabilities, particularly those 
informing metrics of water quality from optical proxies 
(Devlin et al. 2015). Here, we analyze the sensitivity of 
remotely sensed assessments of the optical environment 
to varying spatial and temporal data resolutions with the 
objective of demonstrating the potential value of future 
satellite missions to reef-dependent communities.

Coral reef environments rely on specific conditions, one 
of them being relatively shallow waters that are typically 
confined to a narrow coastal band (i.e., a fringing reef). 
Unfortunately, the shallow and coastal nature of these 
systems make them challenging to assess by satellites, 
as the spatial resolutions of most optical sensors that can 
view a given location at a daily cadence are too coarse 
for the collection of data on fine scales appropriate for 
the nearshore environment (Bissett et al. 2004). In these 
nearshore waters where coral reefs inhabit, the optical 
properties of the water column can be influenced by non-
algal particulate matter and colored dissolved organic mat-
ter (CDOM) that do not necessarily co-vary with respect to 
phytoplankton abundance (IOCCG 2000), therefore requir-
ing specific ocean color algorithms to effectively derive 
accurate remotely sensed water quality parameters (Hedley 
et al. 2016). Additionally, most coral reef environments are 
in optically shallow water, where the reflectance of the sea 
floor and suspended sediment may affect the light received 
by satellite sensors and cause data quality issues in ocean 
color measurements (McKinna and Werdell 2018).

One common, but unsatisfying approach to resolve 
the data quality issue is to remove data pixels that are 
within (or partially within) shallow water regions (Gove 
et al. 2013). With the removal of shallow water grid cells, 
the grid cells that lie adjacent to the mask boundary are 
typically the ones used as a proxy to evaluate produc-
tivity and turbidity around shallow reef habitats (Couch 
et al. 2023; Winston et al. 2022). However, coral reef sys-
tems themselves influence the water quality and spectral 
composition of light on the reef ecosystem and result in 
optical properties in reef waters that differ substantially 
from nearby offshore optically deep waters (Russell et al. 
2019). Although water quality will undoubtedly vary at 
fine scales within a coral reef environment, detecting off-
shore productivity along reef margins may help determine 
whether there are (relatively) large-scale events that affect 
water quality enough to extend offshore. While developing 
ocean color algorithms for optically complex and optically 
shallow waters remains an active area of research (Barnes 
et al. 2013; Brando et al. 2012; Doerffer and Schiller 2007; 
Lee and Carder 2002; McKinna et al. 2015; Werdell et al. 
2013), using data of higher spatial resolution could greatly 
decrease the fraction of coastal habitats influenced by opti-
cally shallow water data quality issues.

Coral reefs are sensitive to episodic, extreme events (e.g., 
marine heatwaves, waste water pollution, urban runoff, etc.). 
However, effectively monitoring and detecting these changes 
can be challenging with limited in situ observations. Satellite 
imagery is a power tool to monitor and contextualize these 
events at more synoptic scales, but the technological limita-
tions of satellites can also make it challenging to resolve 
the transient nature of coastal processes. Most optical sen-
sors are onboard polar-orbiting satellites [e.g., the Moderate 
Resolution Imaging Spectroradiometer (MODIS) onboard 
the Terra and Aqua satellites and the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) onboard the Suomi National 
Polar-Orbiting Partnership (Suomi NPP) spacecraft], and the 
ocean color satellite images are available at the daily time 
scale. However, a daily overpass does not equate to daily 
data retrievals, as these images are often obscured by cloud 
cover (Geiger et al. 2021; Gholizadeh et al. 2016). On a 
daily basis, a satellite sensor viewing the Earth will only be 
able to image 15–20% of the global oceans (IOCCG 1999). 
In order to reduce data gaps and generate a more consistent 
time series, it is common practice to aggregate satellite data 
over larger space and time scales (4 km, 8 day average), at 
the expense of potentially smoothing out the small-scale, 
episodic changes in water quality that can have ecological 
ramifications. High temporal resolution satellite observa-
tions can improve the monitoring and detection capabilities 
of extreme events as well as more accurately capture their 
location in coastal regions.

Notably, phytoplankton biomass can be naturally 
enhanced by the presence of the islands or atolls–an 
observation termed the “island mass effect” (Gove et al. 
2016). Understanding the relationship between turbidity 
and chlorophyll-a and their influence on the abundance 
of reef fishes and coral reef recovery is important. High 
empirical correlations exist between chlorophyll-a and 
light attenuation (Kd490) in oceanic waters where the 
light extinction is largely driven by phytoplankton bio-
mass, or so-called Case 1 waters (Morel et al. 2007). The 
rate at which light is attenuated with depth is represented 
by the diffuse attenuation coefficient at 490 nm (Kd490), 
which is directly related to the amount of scattering par-
ticles in the water column and turbidity. Ongoing stud-
ies comparing the occurrence of reef fishes in the Main 
Hawaiian Islands have shown negative relationships with 
chlorophyll-a (Suca et al., in prep.). This runs counter to 
the general expectation that higher primary productivity 
is beneficial to fisheries productivity (Link and Watson 
2019; McClanahan et al. 2019). These results are likely 
due to the substantial contribution of benthic algae and 
invertebrates to reef-based food webs (Choat et al. 2002) 
and the conflation of turbid waters (which include turbidity 
caused by human land use) with chlorophyll-a concentra-
tion. In instances where light attenuation is impacted by 
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other, land-based constituents such as suspended particu-
late matter and/or chromophoric dissolved organic matter, 
the relative contribution from chlorophyll-a can be signifi-
cantly diminished (Abdelrhman 2017). Higher spatiotem-
poral resolution data of both turbidity (proxied by Kd490) 
and chlorophyll-a can potentially allow for differentiation 
of acute, small-scale increases in these parameters from 
river outflow or human land use compared to more persis-
tent, broader-scale increases in chlorophyll associated with 
natural conditions like the island mass effect or oceanic 
processes.

In June 2010, South Korea launched the first geostation-
ary ocean color sensor, the Geostationary Ocean Color 
Imager (GOCI; Choi et al. 2012), onboard the Commu-
nication, Ocean, and Meteorological Satellite (COMS). 
From April 2011 to March 2021, GOCI provided hourly 
imagery in six spectral bands (6 in the visible, and 2 in the 
near-infrared) at a spatial resolution of 500 m. This level 
temporal, spatial, and spectral sampling allowed GOCI to 
effectively monitor small-scale ocean phenomena, such as 
tide-induced sediment re-suspension, diurnal variation of 
ocean optical and biogeochemical properties, and horizon-
tal advection of river discharge (Wang et al. 2013).

GOCI imagery demonstrated potential benefits that 
frequent, high-resolution ocean color monitoring could 
provide worldwide. Future missions, such as NOAA’s 
Ocean Color (OCX) instrument onboard the next genera-
tion Geostationary Extended Observations (GeoXO) satel-
lite series, will continue this work. In the following, we 
explore how future geostationary ocean color imagery may 
improve our understanding of reef conditions by investi-
gating how coral reef monitoring capabilities are affected 
by the temporal and spatial resolution of the ocean color 
imagery.

For this study, we focus on the Ryukyu Island Arc, which 
sits within the GOCI observation domain and is home to 
diverse fringing reefs. The Kuroshio Current runs northeast 
through the Ryukyu Islands, bringing warm oligotrophic 
waters that support coral reef habitats across this region 
(Asanuma et al. 2014; Koba 1992). Here, with the high 
spatial–temporal measurements from the GOCI sensor, we 
assess the sensitivity of detecting satellite-derived ocean 
phenomena around these coral reef habitats to changes in 
data resolution. The goal of this work is to explore ways in 
which geostationary satellite data could improve our under-
standing of reef conditions in areas where in situ measure-
ments are limited, and to evaluate new monitoring capabili-
ties for potential reef changes with the implementation of 
geostationary ocean color satellite sensors. We focus on two 
main areas regarding the utility of high-resolution satellite 
data: (1) the ability to better distinguish differences between 
ocean color variables measured in nearshore habitats that 
are used as water quality indices, (2) the ability to detect 

extreme, episodic events to evaluate the impacts of runoff 
or pollution events near reef habitats.

Data

Ocean color

GOCI-derived ocean color data are collaboratively devel-
oped by the NOAA Center for Satellite Applications (STAR) 
and Korea Institute of Ocean Science and Technology. They 
are produced using the Multi-Sensor Level-1 to Level-2 
(MSL12) ocean color data processing with the Near-Infra-
Red (NIR; (Gordon and Wang 1994) and the NIR reflec-
tance correction algorithm (Jiang and Wang 2014). GOCI-
derived ocean color data have been found to compare well 
with in situ data (Wang et al. 2013) as well as those from 
VIIRS measurements (Wang et al. 2023). For these analyses 
we used ten years of Level-3 ocean color data (2011–2021) 
around the Okinawa Prefecture region (Fig. 1) provided by 
NOAA/NESDIS/STAR with a spatial and temporal resolu-
tion of 500 m and 8× per day, respectively. Level-3 GOCI 
ocean color data is masked for straylight effects from land 
and clouds (Wang and Shi 2006) meaning that some pixels 
very close to shore have been removed.

Bathymetry

We explored several high-resolution bathymetry datasets and 
found that the STRM15+ v2.6 (05/2024) product identifies 
shallow reefs around Okinawa most closely to those repre-
sented in Google Earth satellite imagery. This dataset incor-
porates shipboard soundings from near Japan (Tozer 2019) 
and uses the global locations of warm coral reefs as a proxy 
for shallow bathymetry (UNEP-WCMC 2021). Thus, while 
it is not a perfect match to the satellite imagery presented 
in Google Earth, we feel that this bathymetry dataset offers 
the most accurate representation of seafloor depths for the 
purposes of masking shallow waters (less than ~ 30 m) in 
our study.

Methods

Simulating ocean color grids

In order to present a modeling study that focuses on data 
resolution and hold all other variables that could differ 
between satellite sensors and processing steps constant, we 
chose to simulate spatiotemporally coarsened grids to rep-
licate existing satellite ocean color configurations (such as 
VIIRS and SeaWIFS) rather than using coarser data from 
these existing products. After downloading and cropping 



	 Coral Reefs

the full-resolution (500 m) GOCI data files, we simulated 
coarser 1-day resolution files at 750 m and 4 km by first 
extracting the measurement closest to noon. These values 
were used as the "daily" estimates for generating coarser 
resolution grids. We then simulated new grids to replicate 
existing satellite ocean color spatial resolutions at 750 m 
and 4 km by aggregating and averaging the original 500-m 
pixels. Since each 750-m resolution grid cell represents 2.25 
GOCI cells, we first regridded the 500-m cells to 375 m 
using bilinear interpolation before aggregating and aver-
aging those cells to 750 m. The resulting chlorophyll and 
Kd490 values did not differ significantly when regridding 
with bilinear or nearest neighbor interpolation and did not 
change any of the results. For the grid simulation step, we 
added a "cloud mask" similarly to other satellite ocean color 
products by setting a minimum threshold of 50%. With this 
threshold, a coarsened pixel would only receive a value at 
a given time step if at least 50% of high-resolution pixels 
comprising that coarsened pixel had a non-missing value. In 
other words, any coarsened pixel would only be attributed 
a value if enough of the area comprising it contained data.

After simulating spatially coarsened grids, we masked 
shallow water pixels to remove any potential contamination 
of pixels by seafloor reflectance in shallow waters that is 
often an issue in coral reef environments (e.g., Maina 2011; 
Reichstetter et al. 2015). We used the 30-m isobath plus an 
additional ½ diagonal pixel distance perpendicular to this 
contour as the mask boundary at each spatial resolution fol-
lowing the methods of Gove et al. (2013). All pixels shal-
lower than this boundary were removed from each grid and 
excluded from analyses (e.g., Fig. 1).

Finally, we simulated coarsened temporal resolution 
data by averaging each grid cell across 8-day and monthly 
windows from the daily resolution at 500 m, 750 m, and 
4 km. We focused on the ocean color pixels closest to coral 
reef habitat along the coastal shallow water boundaries of 
Okinawa that encompass similar spatial areas for the anal-
yses that follow. We thus focused on all pixels adjacent to 
the mask boundary at 4 km, the 5 pixels out perpendicular 
to the mask boundary at 750 m, and the 8 pixels out per-
pendicular to the mask boundary at 500 m. The resulting 
grid configurations that were used for subsequent analyses 
are presented in Table 1.

Fig. 1   Map of Okinawa Prefecture region showing GOCI Level-3 mean chlorophyll-a concentration (mg m−3) in March 2021 prior to shallow 
water masking. Inset shows chlorophyll-a concentration around Okinawa Island after the removal of shallow water grid cells

Table 1   Satellite ocean color grid configurations simulated from 
GOCI

Configuration Spatial resolution Temporal resolution

Coarse (e.g., SeaWIFS) 4 km Daily
8-day
Monthly

Moderate (e.g., VIIRS) 750 m Daily
8-day
Monthly

Full GOCI resolution 500 m 8× per day
Daily
8-day
Monthly
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Comparing water quality indices across spatiotemporal 
scales

To evaluate the relationships between chlorophyll (chlor-a) 
and Kd490 derived from satellite ocean color data across 
spatial and temporal scales, we first normalized their distri-
butions via log transformation. We then extracted the full 
10-year time series of these variables for each individual 
grid cell at every spatiotemporal scale and ran a linear 
regression between the two variables for every grid cell at 
every resolution. We assessed the correlation coefficients (r), 
slopes, and p-values to identify changes in the association 
between chlor-a and Kd490 with increasing spatial and tem-
poral resolution. To assess whether changes in correlation 
values across scales were significant, we used Kruskal–Wal-
lis rank-sum tests followed by Dunn tests for multiple pair-
wise comparisons. We further evaluated how these relation-
ships change seasonally and with increasing distance from 
the coastline.

Detecting episodic events across spatiotemporal scales

We focused on the region immediately surrounding Okinawa 
Island to evaluate differences in the ability to detect episodic 
or extreme chlor-a events with increasing spatiotemporal 
resolution ocean color data. Episodic events were defined 
as a chlor-a value greater than a threshold of two standard 
deviations above the monthly mean value for each month to 
account for seasonality, therefore enabling us to distinguish 
sudden events such as typhoons or heavy rainfall from nor-
mal seasonal variations. We used the coarsest resolution data 
(4 km monthly chlor-a) to define these thresholds for defin-
ing events across all spatiotemporal resolutions for consist-
ency. Thus, at a given time point, any grid cell with a chlor-a 
concentration above this threshold value was considered an 
episodic event. In order to avoid over-counting events that 
spanned multiple timepoints at the finest temporal resolution 
(8× per day), episodic events were separated by at least eight 
time points such that a maximum of one event could occur 
per day. We subsequently evaluated and mapped the total 
number of episodic events detected over the 10-year period 
within each grid cell at every resolution.

In addition, we identified the number of episodic events 
that were missed at the 4-km 8-day resolution data (a com-
monly used product for coastal habitats) but that were cap-
tured with the 500-m 8×-per-day resolution data. To do 
this, we identified instances where no anomalous event was 
detected at the 4-km 8-day scale, but was positively detected 
from any point within the corresponding 500-m, 8×-per-day 
sub-grid over the same time period. If any 500-m grid cell 
experienced an event at an 8×-per-day time step, then the 
entire 4-km grid cell was categorized as an extreme event 
for that time step. Unique events were summed for the entire 

8-day window (events spanning multiple 8×/day time steps 
were only counted once). Only events during 8-day time 
windows where no events were detected at the 4-km scale 
were considered to be “missed” events.

Results

Coastal area and days gained from higher 
spatiotemporal resolution ocean color grid

We compared several satellite ocean color spatial cover-
age metrics along the coastal Okinawa region between the 
commonly used 4-km grid and the high-resolution GOCI 
500-m grid. Considering only the grid cells adjacent to 
the shallow water reflectance boundary (i.e., 30-m iso-
bath + ½ diagonal grid pixel), we found that the innermost 
high-resolution grid cells extend 3.8 km closer to the 
shoreline on average compared to the coarser resolution 
(4 km pixels averaged 6.2 km from the shore while 500-m 
pixels averaged 2.3 km from the shore; Fig. 2). Further, 
there was a 71% increase (1280 km2) in area coverage by 
the 500-m grid inside of the 4-km grid boundary along 
nearshore regions most relevant for assessing coral reef 
habitats (i.e., the shallow water boundary). We further 
found that the coastal Okinawa grid cells from the full 
8×-per-day resolution GOCI data had a median value of 
1390 days with observations, compared to just 600 days 
at the once daily resolution where observations were 
taken nearest to noon. Seasonally, we found that highest 

Fig. 2   Increased spatial coverage along Okinawa’s coastal habitat 
from the 500-m GOCI ocean color grid (blue) in comparison with 
a 4-km grid (green). Grid cells are shown for the areas immediately 
adjacent to the shallow water reflectance boundary (30-m isobath + ½ 
diagonal pixel boundary)
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resolution GOCI grid cells had up to ~ 4× more observa-
tions during the summer months compared to the winter 
months across the timeseries (Supplementary Figure S1).

The improved spatial coverage offered by the high-
resolution GOCI grid has the greatest impact on the data 
collected from waters shallower than 100 m (Fig. 3). The 
shallowest 4-km grid cell along the shallow water reflec-
tance boundary is 57 m depth, while the shallowest 500-m 
grid cell is 31 m depth. Thus, the 500-m grid provides sat-
ellite ocean color data coverage closer to potential coral 
reef habitat in nearly all waters surrounding Okinawa 
Island, compared to a 4-km grid that provides data for 
waters of potential coral reef habitat that are confined 
largely to a region southwest of Okinawa.

Comparison of water quality indices 
across spatiotemporal scales

We found that the correlations between chlor-a and Kd490 
across the full 10-year time series were generally high and 
grew significantly stronger at higher spatial resolution grid 
configurations (Kruskal–Wallis and Dunn test, p < 0.001; 
Fig. 4). We further found that the slopes of the relationships 
between chlor-a and Kd490 (i.e., the amount that Kd490 
increased with each step increase of chlor-a) were signifi-
cantly lower (p < 0.001) and had a narrower spread at the 
4 km spatial scale compared to higher resolutions.

Our results showed that the correlations between chlor-
a and Kd490 across the full 10-year time series were 

Fig. 3   Increased coverage of shallow water areas along Okinawa’s 
coastal habitat from the high-resolution GOCI ocean color grid. a 
Maps showing water depth in grid cells adjacent to the shallow water 

reflectance boundary at 4  km and 500  m. b Probability density of 
coastal ocean color grid cells across depth bins at 4-km (green) and 
500-m (blue) resolution
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significantly different across all temporal scales at the full 
500-m spatial resolution (Kruskal–Wallis and Dunn test, 
p < 0.001), with an increasing trend from the monthly scale 
to the daily scale and a slight decrease from the daily to the 
8×/day scale (Fig. 5). The spread of correlation values and 
slopes of the relationships between chlor-a and Kd490 were 
narrowest at the 8×/day scale.

We explored whether the trends in correlations between 
chlor-a and Kd490 were sensitive to seasonality and found 
that every season followed the same general trends: increas-
ing correlations at finer spatial scales and slightly lower cor-
relations at the 8×/day time scale (Supplementary Figure S2, 
S3). Further, we evaluated whether correlations at the grid 
cell level were sensitive to the distance from the coastline 
and found a very weak but significant decrease in corre-
lations at greater distances from shore (p < 0.001; Supple-
mentary Fig. S4). Finally, we evaluated whether correlations 
between chlor-a and Kd490 at the 500 m, 8×/day grid resolu-
tion were sensitive to the timing of extreme, episodic chlor-a 
events and found a small but significant decrease in correla-
tions during non-event timepoints (Supplementary Fig. S5).

Detection of episodic, extreme events in coastal 
Okinawa is sensitive to data resolution

Our results indicate that the number of extreme chlorophyll 
events detected from satellite ocean color data increased with 
increasing spatiotemporal resolution (Figs. 6, 7) during both 
summer and winter months (Kruskal–Wallis rank-sum test, 
p < 0.001). The number of events increased most notably at 
8×/day for both summer (median = 96, Wilcoxon rank-sum 
test, p < 0.001) and winter (median = 36, Wilcoxon rank-sum 
test, p < 0.001). At each spatiotemporal grid resolution, the 
number of events detected was significantly greater during 
the summer compared to winter (Kruskal–Wallis rank-sum 
test, 0 < p < 0.03). Compared to the commonly used 4 km 
8-day grid configuration, the full-resolution GOCI grid 
detected roughly 10 times more events that were spaced at 
least a day apart during summer and winter.

The locations of extreme chlor-a event hotspots around 
coastal Okinawa also changed and became more refined at 
higher spatial and temporal resolution grid configurations 
(Fig. 7). At coarse resolutions (e.g., daily/8-day 4 km) grid 

Fig. 4   Changes in coastal chlor-a and Kd490 correlations (2011–
2021) across spatial scales at the daily temporal resolution. a Box-
plots showing the range of cell-by-cell correlations and slopes values 
across the entire Okinawa Prefecture region at coarse (4 km), moder-

ate (750 m), and full (500 m) resolution grid configurations. b Cell-
by-cell correlation values mapped around nearshore Okinawa Island 
at coarse, moderate, and full-resolution grid configurations
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configurations, hotspots were primarily located between the 
Kerama Islands and southwest Okinawa. However, these hot-
spots became less pronounced at higher spatiotemporal reso-
lution grid configurations, and extreme chlor-a event hotspots 
became particularly well defined within and around the outlet 
of Nakagusuku Bay and along the southwest coast between 
the prefectural capital of Naha and the Kerema Islands. These 
areas did not change substantially between the 750-m and 
500-m daily and 8×/per-day grid configurations.

We identified the total number of episodic chlor-a events 
that were missed at the commonly used 8-day 4-km resolu-
tion grid configuration but that were captured by the full 8×/
day 500-m resolution GOCI data (Fig. 8). The highest reso-
lution chlor-a data captured up to 770 episodic events that 
were missed by the commonly used 4 km 8-day resolution in 
any given grid cell around in the Okinawa Island region. The 
area where the most events were missed was just south of the 
Kerama Islands to the southwest of Okinawa.

Fig. 5   Changes in coastal chlor-a and Kd490 correlations (2011–
2021) across temporal scales at the full 500-m grid resolution. a Box-
plots showing the range of cell-by-cell correlations and slopes values 
across the entire Okinawa Prefecture region at monthly, 8-day, daily, 

and 8×/day time configurations. b Cell-by-cell correlation values 
mapped around nearshore Okinawa Island at monthly, 8-day, daily, 
and 8×/day resolution grid configurations

Fig. 6   Boxplots showing the range of episodic chlor-a events 
detected for each grid cell at every spatial and temporal resolution 
grid configuration across the 10-year timeseries (2011–2021) by sea-
son. Numbers indicate the median number of episodic events detected 
at a given grid configuration for summer (red) and winter (blue)
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Discussion

Enhanced coastal proximity of high‑resolution satellite 
data near coral reef habitat

The distance between the coastline and usable ocean color 
data is much closer with the 500-m resolution data, only 
about 1/3rd of the distance in comparison to the 4-km 
data. Thus, we gain 71% more spatial coverage along the 
“shallow water mask” boundary that provides substantially 
more data in regions most relevant for assessing habitats 
along the deeper margins and immediately offshore of 

coral reefs. While this work utilized a static 30-m isobath 
(+ ½ diagonal grid cell) mask to avoid bottom reflectance 
contamination, additional nearshore coverage may be 
gained using a dynamically determined optically shallow 
water mask for ocean color (McKinna and Werdell 2018). 
We also gain around 2.3 × more days with observations 
around coastal Okinawa with the availability of geosta-
tionary data collecting measurements 8×-per-day as com-
pared to once daily measurements. This is in line with 
other observations where, on average, daily composites 
from GOCI consistently retrieve > 2× spatial coverage 
relative to VIIRS for the sensor’s entire field of regard 

Fig. 7   a Number of episodic 
chlor-a events across the 
10-year time series (2011–2021) 
within each grid cell mapped 
across coastal Okinawa at every 
spatial and temporal resolution 
grid configuration. Red boxes 
indicate zoomed in area around 
Nakagusuku Bay in (b)



	 Coral Reefs

(Wang et al. 2023). This critical increase in observational 
capacity facilitates a much better ability to monitor reef-
adjacent habitat conditions and identify extreme events.

An important distinction to make in comparing polar-
orbiting instruments with geostationary is the relative 
consistency in spatial resolutions. In a polar-orbit, even 
if a satellite nominally observes the Earth at a 750-m 
(VIIRS)/1-km (MODIS) spatial resolution, due to the vari-
ations in a satellite’s viewing angle of the Earth as it col-
lects data, pixels near the edge of a single scan can grow 
by a factor of 2 to 4, respectively (Wolfe et al. 2013). This 
effectively means that, for any given location on Earth, 
two consecutive days of satellite observations will have 
different spatial resolutions, sometimes drastically so. 
Thus, for operational consistency to monitor long-term 
trends, satellite data are usually binned to the lowest com-
mon resolution (e.g., 4 km), and this is the basis for the 
focused comparison of 500-m data against 4-km data in 
this analysis. By contrast, a geostationary sensor observes 
the Earth from the equator, meaning pixel size will grow 
as a function of latitude (Schaeffer et al. 2023), but will 
not change for a given location over the lifetime of the 
mission. This characteristic of a geostationary orbit makes 
it particularly well suited for monitoring applications, 
where coverage and consistency are optimized at the cost 
of losing global coverage. Other polar-orbiting satellites 
are designed to collect data at spatial resolutions at tens 
of meters (e.g., Landsat, Sentinel-2), which would also 
be very useful for coral reef applications, but these sys-
tems trade-off increased spatial information for infrequent 
revisit times, sometimes exceeding weeks before a satellite 
sees the same area twice.

High correlation between satellite ocean color‑derived 
chlorophyll and Kd490 indices along reef habitat 
margins

It remains difficult to differentiate between water clarity and 
phytoplankton productivity from satellite ocean color even 
at higher spatial and temporal scales, in any given season, or 
during episodic high chlor-a events with the linear correla-
tion matrix. The slopes of the linear relationships between 
Kd490 and chlor-a are lower and have a narrower range at 
the lowest spatial resolution. This suggests that because 
slopes are averaged out over space, they become reduced and 
less variable, which is likely why we see lower correlations 
at lower spatial resolutions. In this study we are assessing 
offshore waters along the reef margins where optical prop-
erties still derive largely from phytoplankton. Future work 
focusing on the development of GOCI water quality retriev-
als for shallow reefs where optical properties are influenced 
strongly by suspended sediments and dissolved organic mat-
ter could enhance our ability to differentiate between chlor-a 
and Kd490. This is exemplified by our finding that these 
optical properties begin to decouple during episodic events 
during which high levels of runoff may bring sediments and 
organic matter further offshore (Supplementary Fig. S5).

High empirical correlations exist between chlorophyll-a 
and light attenuation (Kd490) in oceanic waters where the 
light extinction is largely driven by phytoplankton biomass, 
or so-called Case 1 waters (Morel et al. 2007). The differ-
ences between chlorophyll-a concentration and Kd490 meas-
ured from the satellite observations are intrinsically small 
in clear waters when phytoplankton is the main driver of 
turbidity. Their differences become more prominent in tur-
bid waters as well as waters of intermediate transparency 
when more complex algorithms were used to estimate Kd490 
(Wang et al. 2009). In the reef-adjacent waters of coastal 
Okinawa Island, a decoupling between chlorophyll-a and 
Kd490 likely only occurs during short-lived episodic high 
turbidity events, e.g., runoff from land after heavy pre-
cipitations, or industrial/residential discharges. However, 
it remains difficult to distinguish the two satellite-derived 
parameters even during episodic events with the linear cor-
relation matrix (Supplementary Fig. S5). Future work is 
directed to examine the Kd490 and chlorophyll-a concen-
tration during episodic events with different matrixes, as 
well as to combine additional observations, e.g., satellite-
derived variables at the near-infrared band, to better iden-
tify the sources of such events, such as colored dissolved 
organic matter (CDOM), suspended sediments and/or high 
nutrient input. Regardless of causality, it is notable that the 
varying time scales observed in this analysis produced sta-
tistically significant differences, highlighting the importance 
of matching observational scales with the variability of the 
ecosystem (Mannocci et al. 2017).

Fig. 8   Number of episodic chlor-a events across the 10-year time 
series (2011–2021) that were not detected at the commonly used 
8-day 4-km ocean color grid resolution but that were captured by the 
8×/day 500-m full-resolution GOCI grid configuration
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Coastal chlorophyll blooms/events are much more 
frequent and localized than is discernible from coarse 
resolution satellite data

Two areas that appear to experience the highest number of 
episodic extreme chlor-a events around Okinawa are near 
Nakagusuku Bay to the southeast and Naha to the south-
west. Nakagusuku Bay is known to have polluted sediments 
due to large amounts of agriculture in the area. Naha is the 
capital city of Okinawa and holds the highest population 
density within the prefecture (Japan: Administrative Divi-
sion (Prefectures, Districts and Cities)—Population Statis-
tics, Charts and Map, n.d.), and is home to Tomari and Naha 
ports which are known to have polluted sediments due to 
shipping activity to and from these ports (Noah and Oomori 
2006). Thus, heavy rainfall or other events causing runoff 
could lead to significantly enhanced production and turbidity 
around the reefs in the Naha region. However, at the lowest 
spatiotemporal resolutions these events are largely missed 
near Nakagusuku Bay. Knowing the precise areas impacted 
by potential runoff events is essential for targeted monitoring 
and management of reefs that could be negatively impacted 
by frequent exposure to polluted sediments.

Existing satellite grid configurations miss a substantial 
number of episodic events around the Kerama Islands. The 
Kerama Islands southwest of Okinawa are designated as 
Keramashoto National Park, a protected area that attracts a 
significant amount of reef-based tourism. The reefs of Kera-
mashoto are a particularly important habitat for Acropora 
sp., and this region acts as a key source of coral larvae for 
surrounding areas (Abe et al. 2021). Relying on low resolu-
tion satellite ocean color data to assess the water quality 
around Okinawa reefs may lead to completely overlooking 
this critical coral habitat.

The number of ocean color observations obtained by sat-
ellites can vary significantly during different seasons due 
in part to changes in the number of daylight hours. This 
partially explains why we found greater overall detections 
of episodic events during the summer months across all 
spatiotemporal grid resolutions, with ~ 3× more observa-
tions during the summer at the daily and 8×/day temporal 
resolutions despite the impacts from cloud cover during 
the rainy season. As summer is generally the rainy season 
in the Okinawa region, it is also likely that there is a true 
increase in the number of events occurring during the sum-
mer months. Nevertheless, while higher resolution data 
such as GOCI clearly increases the likelihood of capturing 
extreme events, this benefit to monitoring coral reef habitats 
may be significantly greater during the summer months, and 
wintertime monitoring may remain somewhat limited from 
remote sensing alone.

A limitation we encountered in this work was finding that 
the currently available bathymetry products (e.g., NOAA, 

GEBCO, SRTM) all differ slightly and do not identify the 
same shallow reef regions around Okinawa that are observed 
by satellite imagery as shown on Google Earth. Thus, it is 
possible that certain regions with high numbers of episodic 
events are influenced by shallow bathymetry that was inci-
dentally retained during the shallow water masking pro-
cess. However, these potentially contaminated shallow reef 
areas appear to represent only a small fraction of the overall 
region, and the majority of episodic events identified around 
Okinawa are reflective of ocean color properties not influ-
enced by seafloor reflectance. Another challenge of this work 
was having limited access to in situ data to cross-validate the 
episodic events that were detected through satellite ocean 
color data. Future work could incorporate additional data 
sources, such as high-resolution precipitation data, to further 
investigate the timing of and conditions present during these 
episodic events. Nevertheless, high-resolution ocean color 
satellite data allows us to assign much more reliable risk to 
coral reef tracts in the tropical Pacific that could be affected 
by more frequent episodic events. It also allows us to assess 
the persistence of episodic events and manage these regions 
for coral restoration accordingly.

Implications for monitoring and risk assessment in reef 
habitat

Coral reef ecosystem processes, such as nitrogen fixation 
or decomposition, and animal waste products, such as reef-
associated fishes can lead to increases in phytoplankton bio-
mass near island- and atoll-reef ecosystems. This so-called 
island mass effect (IME) is found to be a feature among a 
majority of Pacific island- and atoll-reef ecosystems (Gove 
et al. 2016). High primary productivity is generally expected 
to benefit fisheries production and potentially provides 
favorable conditions for corals. For example, Gove et al. 
(2023) found that enhanced primary productivity supports 
herbivorous fish production, which facilitates coral growth 
by removing fleshy algae, and supports a positive feedback 
that promotes habitat suitability for reef fishes. However, 
we note that it is impossible from our study to differenti-
ate the relative role of benthic-pelagic coupling that leads 
to production overflowing past ~ 30 m depth (such as tidal 
flushing of bays and back-reef) versus terrigenous inputs that 
lead to enhanced production both over the reef (i.e., < 30 m 
of water) and offshore.

The ocean is a relatively dark target as viewed from 
space, making up only ≤ 10%, of the light signal seen from 
a satellite’s perspective above the atmospheric layers. As 
such, ocean color satellite sensors need to be very sensi-
tive in order to collect a usable signal, but not so sensitive 
that the radiance (light) signal saturates the optics. There 
are various trade-offs to consider that impact the potential 
usability of data products depending on the application. In 
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this study, we demonstrate the advantages of a geostation-
ary orbit, which can "stare" at locations longer to build up a 
robust spectral signal with high signal to noise, and revisit 
a location multiple times per day, creating a sequence of 
images to mitigate cloud cover, as well as examine rates and 
fluxes. Having one instrument offer multiple observations 
also holds the advantage of having only one system to cali-
brate, as sensor-to-sensor disparities can create challenges in 
deriving consistent long-term biogeochemical trends (Welch 
et al. 2019). The trade-off with a geostationary orbit is that 
it can only view a particular portion of the globe over a 
mission lifetime, and spatial resolution generally does not 
exceed ~ 250 m due to mass constraints.

By contrast, using the Planet Dove satellite constella-
tion (spatial resolution of 3 m and ~ 1-day revisit time), 
Sakuma et al. (2021) were able to demonstrate the utility of 
using very-high-resolution data for monitoring a short-lived 
sediment plume in coral reef areas of Kumejima Island, a 
small island near Okinawa. Having two orders of magnitude 
increase in spatial resolution at 1–2 day frequency is possi-
ble due to the nature of the Planet Dove constellation, which 
is comprised of "swarms" of nanosatellites with global cov-
erage. While the demonstrated challenges associated with 
cloud cover still persist at this temporal frequency, satellites 
such as these offer a means of adding additional, more local-
ized context to water quality events. The trade-off with nano-
satellite constellations is that they generally exhibit a lower 
signal to noise ratio (3.5× lower than GOCI, and > 10× lower 
than satellites like MODIS and PACE), bringing potentially 
significant uncertainties to more quantitative assessments 
of biogeochemical parameters. This is additionally compli-
cated by absolute radiometric uncertainties that are gener-
ally an order of magnitude higher (5–6% for Planet Dove 
at top of atmosphere) than for advanced satellites designed 
for ocean color (< 0.5% at top of atmosphere; Meister et al. 
2011). Since the contribution of water-leaving reflectance 
to top of atmosphere reflectance is ≤ 10%, a 5–6% top of 
atmosphere radiometric uncertainty effectively translates to 
50–60% uncertainty in water-leaving reflectance. Neverthe-
less, as satellites continue to approach the limits of quantum 
physics, it becomes evident that the most effective means 
of remote monitoring can be achieved by pairing different 
types of observations to leverage their respective strengths 
and weaknesses.

The use of hyperspectral satellite ocean color reflectance 
data can enable discernment of phytoplankton taxonomic 
resolution (Kramer et al. 2022; Cetinic et al. 2024), and the 
potential to assess and validate this capability on global 
scales is underway with the recent launch of NASA’s Plank-
ton, Aerosol, Cloud, and ocean Ecosystem (PACE) instru-
ment (Gorman et al. 2019). Future satellites such as the 
Geostationary Littoral Imaging and Monitoring Radiometer 
(GLIMR, launching ~ 2028) and the Geostationary Extended 

Observations (GEO-XO, launching ~ 2032) mission (Diers-
sen et al. 2023; Lindsey et al. 2024) will further enable high 
spatial (300–500 m), high temporal (6–8× per day), hyper-
spectral information of phytoplankton community composi-
tion, representing the first ocean color geostationary satel-
lites in the Western Hemisphere. These advancements in 
ocean color remote sensing technologies can improve our 
ability to more accurately describe water productivity and 
its relationship with the ecosystem, as well as to potentially 
help disentangle biological and water optical parameters.
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