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1. Introduction

This report is a position paper on the need for software modernization for the Unified Forecast
system (UFS). It is written by the author in his role as Senior Advisor for Advanced Modeling
Systems, and is intended both as an inventory of ongoing activities and to encourage the
development of more formal projects associated with this topic. It is the result of a set of
interviews with key partners inside and outside of NOAA, and as such is informational. It should
not be construed as a fully vetted approach or strategy.

Furthermore, it focuses on traditional physics-based numerical models, not on more recent
data-driven AI/ML models. Even as data-driven models as well as AI/ML post- and
pre-processing tools and code emulators are accelerating toward operational use, it is expected
that the core physics-based models will remain relevant in the foreseeable future. Note that
Al/ML tools for modernization and optimization of the traditional models are relevant for the
present assessment.

The general NOAA UFS strategy for modeling seeks to focus NOAA modeling on a small set
of community models that is sufficiently focussed to create critical mass for its support while at
the same time is sufficiently diverse to broadly cover NOAA's mission. Moreover, it seeks to
unify software approaches for research and operations, and to build a broad modeling
community with partners including but not limited to government, academia, and the private
sector.

NOAA first looked into a community modeling approach with a Unified Modeling Working
Group under the NOAA Research Council' (Link et al. 2017a, b). NOAA first formalized a UFS
approach in a vision document and a roadmap for NOAA operations published in Tolman and
Cortinas (2020a,b)?, which included a formal sign-off of the Assistant Administrators of most
NOAA Line Offices. Since then, the UFS approach has been documented and defined in a set
of four BAMS papers. Jacobs (2021) addresses the power of community modeling. Uccellini et
al. (2022) presents NOAA's support of community modeling through the Earth Prediction
Innovation Center (EPIC). Alves et al. (2023) presents examples of accelerated transition of
research to operations in a UFS approach. Tolman (2025) presents lessons learned for
community modeling. Moreover, the UFS approach is supported in the LEGEND Act (15 U.S.C.
§ 8512a), in the first ever NOAA Modeling Strategy (Morgan et al, 2024), in a NOAA
Administrative Order 201-118 entitled “Software Governance and Public Release Policy”, and in
the SHARE IT act (Public Law No: 118-187).

In the UFS community some initial choices were made to couple component models to each
other with wrappers around these models. This enabled coupled modeling while simultaneously
limiting the impact of the UFS approach on existing community-based component models. In the
selected approach model coupling is executed at the Application Programming Interface (API)
level. This implies that community models are “wrapped” using the Earth Systems Modeling
Framework approach (ESMF, Collins et al. 2005) augmented with an interoperability layer

" Now known as the NOAA Science Council.
2 These documents were developed in 2016-2018. Sign-off and publication were delayed to assure full compatibility
with the burgeoning EPIC effort.
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defined by the National Operational Prediction Capability (NUOPC)?. This approach enables
communication between UFS component models, but is generally not intrusive to the
component models. This has left governance of the individual component models mostly
untouched, with minimal impact on existing communities.

The UFS has reached a level of maturity where many applications are now supported at
least partially by EPIC, where the production suite at NOAA is shrinking in terms of major
applications (23% reduction by summer of 2024), and where we are now developing basic
capabilities as well as targeted operational implementations with much larger teams. Moreover,
environmental component model coupling has reached a level of maturity that virtually all UFS
releases consider coupled modeling approaches. In the context of developing more advanced
modeling techniques, there is a need for upgrading the component models to allow for more
integrated model coupling. Such an approach is aligned with a general need to update
component codes, many of which have seen decades of use and represent older coding
techniques and best practices. Software modernization is also becoming urgent today as
previously established code architectures are not generally optimal for new hardware
architectures and exascale computing. Note that these issues are not unique to the UFS (e.g.,
Govett et al. 2024).

Discussing the need for software modernization is not new. NOAA has had a Software
Engineering for Novel Architecture (SENA) program for decades. For instance, the original
development of WAVEWATCH Il ©® (henceforth denoted as WW3) in the mid 1990s was fully
funded out of this program. This program, however, has mostly been focusing on “one-off”
projects like building the latter model. Only recently has NOAA through SENA focused more
systematically on software modernization, in particular for Exascale computing (Govett et al.,
2024). NOAA code optimization in general has been reactionary for several decades, where the
codes are optimized for the “hardware of the day”, mostly focusing on operational applications.
Moving into the GPU era, there have been some pilot projects world-wide (see more detailed
discussions below) but few if any systematic approaches. With that, NOAA should not do this
alone, but focus on the broader, evolving UFS partnership. This position paper is intended to
encourage and accelerate this process. It is not intended to provide a comprehensive strategy
at this time, but instead outlines a path to such a strategy.

This position paper starts with this introduction, followed by a general framing of the issues
in Section 2. Section 3 documents the sampling / interview strategy used here, pointing to
outcomes of interviews as gathered in Appendix A. A summary and suggested action items are
gathered in Section 4.

3 https://earthsystemmodeling.org/nuopc
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2. Framing issues

Operational and research modeling has been part of NOAA's mission for well over half a
century. Due to the long history, it is unavoidable that at least some of the modeling approaches
are outdated, and could benefit from software modernization. This need for software
modernization is driven by two top level considerations.

The first top-level driver applies to the entire UFS community and focuses on the ongoing
change in hardware architecture. This change mostly revolves around the move from CPU to
GPU processor architecture, and the more general move to exascale computing. From a human
perspective this change is interesting as it comes at the end of over two decades of slowly
changing hardware design. The previous major transition to new hardware occurred nearly 25
years ago as the first massively parallel computers started to replace the previous dominant
High Performance Computing (HPC) vector computers. This architecture change required a
re-factoring and re-write of many codes. The generation of programmers that did this work is
now mostly retired, so that there is limited hands-on experience with systematic code refactoring
at this level and for this purpose.

The second top level driver focuses more on NOAA and considers the transition of NOAA to
a UFS approach to modeling as outlined in the Introduction. Within the UFS, there are two main
reasons for software modernization. The first is the need for a community model to be highly
portable over a wide range of hardware architectures. Portability becomes a much bigger issue
with the recent increase in diversity in hardware as mentioned above. Portability in the newer
environment becomes more difficult as it appears that different hardware architectures imply
different optimal data layouts. From my personal experience with the WW3 wind wave model
(e.g., Tolman 2025), it is both interesting and annoying to see that optimization for GPUs drives
us back to data structures we initially used in the 1990s, but that were abandoned in the stable
parallel compute architecture era. Another reason for software modernization in the UFS is the
need for a next generation coupling approach. The UFS is outgrowing its initial API level
coupling approach as described in the Introduction, and in general requires component models
to become more object oriented so that parts of one model can be called independently in a
coupled model to allow for more closely coupled systems.

The discussion about software modernization has been going on for at least a decade. An
incomplete list of some of the topics and related questions driving this discussion is presented
below (the order of topics does not imply ranking or importance).

e Open source and open science: Since the first internal NOAA assessments of the
need for open source (code is available) and open science (we take code from many
others), the open UFS approach is accepted in NOAA, formalized in law, in a NOAA
administrative Order, and in the NOAA modeling strategy (see Introduction). These
choices are foundational and well established, and are presently not a subject for
discussion.



e Fault tolerance: Exascale computing initially moved to hyper-parallel (CPU) systems,
where failure of a single CPU or parallel process tentatively results in a failure of the
entire model. Fault tolerance seeks to immunize massively parallel codes from such
failure. Between making hardware more fault-tolerant at the operating system level, and
by tentatively relying more on a smaller number of GPUs rather than on monolithic
CPU-only machines to achieve exascale capabilities, discussions more recently have
moved away from focusing on fault tolerance.

e Load balancing: Traditionally, load balancing principles are built into the code stack,
with environmental settings optimized for specific applications on specific hardware.
More advanced techniques consider dynamic load balancing as part of the base code
stack, both for code efficiency and to increase fault tolerance. An example of such an
approach can be found in the Uinta software of the University of Utah.

e Optimization: Code optimization at the software stack level has historically been
performed for the hardware available to its users. Due to the slow development and
relative homogeneity of hardware architecture over the last two decades, performance
optimization has been fairly portable between different computers. The diversity
introduced by the CPU - GPU and hybrid computer architectures has recently reduced
performance portability. In particular, different computer architectures appear to favor
different data layouts. This raises the question if we should maintain different codes for
different processors, or if we should move toward automated custom code generation for
each computer, based on a higher level description of the problem (i.e., using Domain
Specific Languages, DSLs).

e Coupling: The API-level approach to coupling of component models in a more
integrated environmental approach as presently used in the UFS allowed for effective
development of component models and coupling approaches at the same time. At the
present level of maturity of the UFS this coupling approach now starts to seriously
impede load balancing and code optimization. Closer coupling where parts of the
component models can be called outside of a high-level API framework requires a more
object-oriented approach to the architecture of component models.

o Note that a functional plug-compatibility is needed here rather than a formal
object oriented approach. This will require a deliberate focus on data structures
used in the code.

o Note that even in a closely coupled UFS environment it will remain essential for
rapid development and for “downstream” uses of models to still be able to
compile the software stack of component models into a stand-alone application
with relevant input from data rather than from coupled models.

o Note that the term coupling is also used in terms of general software engineering,
in particular in the context of coupling and cohesion in software design®. For the

See, for instance, https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
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UFS, these aspects of coupling have a large impact on the cost of testing code
during development in an open-science workflow.

e Code quality: working in a community environment requires high-quality code following
coding standards, with documentation, and with a well-developed and supported
workflow to contribute code. The latter implies (amongst others) a well developed
development workflow with automated unit / regression testing approach. Note that
some members of the modeling community fear that contributions of a large community
to a code could result in poor general code quality. Many in the community (including the
present author) have experienced the opposite; well-managed community development
with its many eyes on the code and with porting to many compilers and hardware
architectures tends to result in high-quality code with less (hidden) bugs.

o Code Development Workflow: Code development approaches are important for
modern software development. For the UFS, this is presently either left at the
component model team level, or managed by EPIC.

o Security Considerations: Software security has become a significant concern in
modern software development. As the UFS codes are distributed as source codes
rather than executables, security risks have generally not been considered to be
significant, and can be mostly avoided by a requirement that all UFS code is
provided as source code, and that executable contributions are not accepted. More
recently, however, memory leakage of compiled codes has been identified as a
potential security issue®.

e Knowledge and expertise: 25 years ago environmental (weather) modeling was one of
the core applications for HPC, and the physical scientists became the first software
engineers on these systems. Nowadays, models are more complex and the field of HPC
software engineering is more complex, which has resulted in a need for both specialized
software engineers and specialized physical scientists to tackle software as a team. In
such a team approach it is important to maintain thorough scientific understanding of the
codes while rapidly adapting codes to diverse and varied computing platforms and
modern coding practices.

e Knowledge, expertise and optimization: combining the two bullets above, it is
interesting to observe that in the late 1990s optimized codes could perform up to 50% of
the nominal performance of the processor, measured as Floating Point Operations
relative to a standard LINPACK benchmark test. Using this metric present operational
codes at for instance NOAA and ECWMF now operate at only 3-4% of peak
performance of the hardware. Data movement on processors now limits the amount of
compute cycles that can be performed. Architectures moved away from enabling typical
environmental problems (less work on more data) to image processing and Al (more
work on less data).

° See, e.g., https://media.defense.qgov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDE
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o A structural approach to mitigate this historical drop in efficiency requires a
custom processor design for UFS-like models. With environmental modeling now
representing only a minor part of the processor market, it is not realistic to expect
that this is an economically viable approach for the UFS.

o Conversely, the small efficiency of present codes presents an opportunity that
previously did not exist. Increasing the performance from 3-4% to 6-8%
effectively corresponds to a monetary value equivalent to the value of the entire
HPC budget. This implies that a major investment in code optimization is now
much more justifiable than it would have been several decades ago.

Moving away from Fortran: Many of the UFS component models are still written in
Fortran. Historically, Fortran has been used as it resulted in the most efficient HPC
codes. As this no longer seems to be the case, and as the pool of Fortran programmers
as well as compilers seems to shrink, code modernization should address a potential
transition to more modern languages like Python and C++. Our present experience with
hybrid-languages codes in the UFS indicates that language changes can be done
incrementally on a module-by-module basis. Note that there are many Al/ML tools to
help convert code to other languages.



3. Sampling ongoing activities

As mentioned in the Introduction this position paper uses a sampling of opinions and activities
related to, or relevant for, UFS code modernization. The sampling is achieved by informal
interviews / discussions with relevant (potential) partners for the UFS, with an attempt to broadly
cover the intended UFS community. The coverage of the community in this section is intended
to be representative, not complete. Hence, whether or not a specific group has been interviewed
here is not a statement of their importance in the UFS. The order of the interviews in the
subsections below represents the time line of the interviews, some of which were scheduled,
and some of which were meetings of opportunity. These interviews loosely covered all topics
outlined in Section 2, and summaries of the interviews are gathered in Appendix A.

The round of interviews and discussions associated with this report started with ongoing
discussions with the UK Met Office specifically focused on the need to modernize and optimize
the WW3 code, and to assure that associated work done by the UK Met Office would find its
way into the formal code base. This discussion naturally moved toward a tag-up with EMC and
EPIC on the status of software modernization at NOAA, and several meetings of opportunity
with industry partners at the AGU and AMS annual meetings in December 2024 and January
2025. The assessment of the state of development then shifted to invited talks at the UFS
Steering Committee meetings of both the DOE E3SM team and GFDL on their software
modernization efforts. Within NOAA this left the SENA program and NCEP Central Operations
(NCO) as obvious targets for interviews. Finally, interviews were conducted with NOAA's
National Water Center (NWC) considering their recent systematic approach to modernizing the
National Water Model (NWM). The discussions documented in the Appendix are augmented
with outcomes of previous discussions with the NCAR CESM and MMM groups, and with
considerations from previous discussions about alternative programming languages.
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4. Moving forward

The next step in this assessment was to identify common issues and action items by mapping
the opinions and experiences documented in Appendix A to the general issues identified in
Section 2. This is done here in two steps; Section 4.1 presents the above mapping, and Section
4.2 presents suggested action items. Note that as this is a position paper by the author, the
action items do not represent formal decisions or strategies adopted by NOAA.

4.1. Summary of discussions

The experiences and opinions summarized in Appendix A have been summarized here as
follows.

e Open Source and Open Science: There was no disagreement with the statement that
open science is here to stay. Implementing efficient open-science workflows does remain
a work in progress in scientific programming.

e AI/ML: Even though AI/ML as a replacement of traditional physics-based numerical
modeling was placed outside the scope of the present assessment, modernization of the
traditional software will benefit greatly for AI/ML tools developed specifically for this

purpose (See Appendix A.3).

e Fault Tolerance: This is presently not considered a main issue with coding on
supercomputers, with the exception of a need for modern codes to produce clear failure
messages.

e Load balancing: There are two main issues associated with load balancing; one is the
need for code restructuring associated with general code optimization, and the other is
the need for re-assessing coupling approaches for component models used in the UFS.
Both topics will be addressed in the following two bullets.

e Optimization: The interviews and discussions identified three focal areas of
optimization; the first is general code optimization, the second is the selection of the
programming language and the third is the use of utilities in general and Domain Specific
Languages (DSLs) in particular.

Data structures play a crucial role in optimizing code performance, particularly in
complex modeling systems like the UFS. Different hardware architectures, such as CPU
versus GPU, often require specific data layouts for efficient processing. Older codes tend
to use global data structures that are no longer efficient both due to the growing size of
compute domains, and due to the changing requirements for efficiency on evolving
hardware architectures. Systematically re-designing a data structure in an established
model represents a major coding effort, which could justify other major code changes
such as a transition to a new programming language.



Switching from older languages like Fortran to languages such as Python and C++
can improve code efficiency, particularly in advanced modeling systems. The latter
languages often provide better support for new hardware architectures like GPUs,
leading to more efficient code. Moreover, these languages offer access to extensive
libraries and tools that can streamline development and enhance performance. Note that
the benefit from a change in language is likely to be much smaller than the benefit from
going to more suitable data structures, irrespective of the language. Conversely, the
need for a full code rewrite to drastically change data structures could well be considered
as an opportunity to move away from Fortran at the same time.

Experiments of various groups with changing to more suitable data structures and at
the same time changing languages show speed-ups of codes on CPUs in the factor 2-5
range, and for GPUs in the factor 10-30 range, with the understanding that these
numbers are relative to Fortran codes that have not been recently optimized for the
newer hardware. Note that other languages like Julia and Rust have been mentioned,
but have not been used yet in component models relevant for the UFS. Note,
furthermore, that Python and C++ are used in operations, but Julia and Rust are not yet.

Various tools and Domain Specific Languages (DSLs) are emerging to aid in
software modernization, particularly in the context of high-performance computing and
scientific modeling. As with languages, there is no one preferred set of tools. GT4Py is
used by various organizations with Python. DSLs used with C++ are Kokos (DOE),
Psyclone (UK Met Office), DaCe + NDSL (GFDL) as documented in Appendix A. Earthkit
of ECMWEF contains both tools and DSL approaches. Complementary to these
approaches, tools like GitHub Copilot and Codeium leverage Al for code completion and
understanding, while Moderne automates large-scale refactoring and modernization.

Note that the deployment of such tools on NCO's FISMA®-high security computers
introduce unique challenges. Because the UFS is intended to support both research and
operations, it is important to choose tools and DSLs that are both sufficiently
cutting-edge to advance research, while being sufficiently mature to implement on a
FISMA-high operational computer.

Coupling of component models: Coupling modernization for the UFS is a crucial step
towards enhancing its efficiency. The initial ESMF/NUOPC API-level coupling approach,
while effective for initial development, now presents limitations for load balancing and
associated code optimization. Note that this issue is related to the issues with global
versus localized data structures discussed above.

As the UFS matures, a shift towards more integrated coupling of component models
is necessary, enabling component models to interact more directly. This entails moving
away from global API-level coupling and adopting a more functional, object-oriented
approach. Technologies like the Flexible Modeling System (FMS), used within GFDL's
component models, and the Basic Modeling Interface (BMI), employed by the National
Water Model offer examples of closer and more localized component model coupling.

¢ Federal Information Security Management Act
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e Code quality: There appears to be consensus among the interviewed groups that CI/CD
(Continuous Integration/Continuous Deployment) and DevOps approaches have a
profound positive impact on open source code quality. With the UFS being an ecosystem
of many communities, the principles of such approaches rather than a dictate of
associated workflows is appropriate for the UFS.

A key element of such approaches is automating testing as part of the development
workflow, which in turn is strongly associated with the level of coupling and coherence of
code from a general software perspective (see discussion of coupling in Section 2).
Ideally, associated test suites are (automatically) applied at a granular level of the
development. The UFS contributors observed that many codes have been “retrofitted”
with functional regression testing. Such testing is becoming prohibitively expensive.
There appears to be consensus that code management at the UFS needs to transition
rapidly to the much cheaper unit testing (associated with general decoupled coding
practices) as the foundation of the development workflow, whereas there may be value
in retaining more traditional regression tests for occasional testing, and to compare
model options at a foundational physical level.

Software security is crucial for protecting software and data from unauthorized
access and vulnerabilities. It involves secure design, development, and maintenance
throughout the software lifecycle. Traditionally, UFS type software has been considered
“safe” as source codes rather than executables are shared. Note that this view appears
to shift as executable codes generated by the UFS may have security vulnerabilities
associated with memory inconsistencies. In the interviews the latter was mentioned as a
benefit of using the Rust programming language, which is designed around memory
integrity.

e Knowledge and expertise: There is limited consensus on the knowledge and expertise
being an issue in particular in the context of using Fortran. Some organizations see this
as a systemic issue, others see this as a training issue. Concerns about the diminishing
support of the community in particular for upkeep of Fortran compilers is a rising concern
that could become a Continuity of Operations (COOP) issue (see next bullet). In a more
general sense several organizations are concerned about single points of expertise /
failure in particular in the contexts of Artificial Intelligence and Machine learning
becoming an integral part of environmental modeling.

e Moving away from Fortran: Moving away from Fortran is starting to happen, both due
to a reduced performance of its compilers, and due to a potential of losing high-quality
compilers with a shrinking user group for this language. Presently the two predominant
choices of alternative languages are Python using GT4Py, and C++. For both languages
Domain Specific Languages (DSL) have been used for optimization across hardware
solutions. More modern languages like Rust or Julia” or Rust® may be suitable for a
systematic modernization. Julia has seen some recent high-performance applications in

’ https://julialang.org, first released in 2012, version 1.0 released in 2018.
8 https://www.rust-lang.org, sponsored since 2009 by Mozilla, version 1.0 released in 2015.
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environmental modeling (e.g., Silvestri et al. 2024, Wagner et al. 2025). Presently we
are not aware of mature Rust applications in this field, but Rust seems to have tools and
features making it potentially very suitable for environmental modeling. For the UFS it is
important to address the feasibility of using these languages including DSLs in an
operational FISMA-high security environment.

4.2. Action ltems

The present assessment highlights the absence of a single, dominant approach to software
modernization within the UFS community. Moreover, given the diversity of components and
contributors within the UFS ecosystem, a one-size-fits-all approach to software modernization is
not only impractical but potentially detrimental, as it risks stifling innovation and failing to
address the specific needs of individual component models and tools. Finally, the diversity of
programming languages and modernization approaches within the component models and tools
within the UFS is currently not a significant hindrance and effectively fosters innovation. All
these observations necessitate a strategic approach focused on high-level guidance rather than
rigid mandates. Moreover, actions should prioritize facilitating localized efforts by the
responsible "owners" of UFS components.

With this, the following action items and recommendations have been distilled from the
present assessment.

1) The UFS community should not provide a detailed software modernization strategy, but
instead should start tracking modernization efforts in the UFS, preferably as part of the
UFS inventory® that was started in 2024 and that is intended to be updated annually. A
key benefit of this action will be that it identifies which parts of the UFS need additional
attention with respect to software modernization. This inventory can be used by those
who provide resources to the UFS development, operations, and maintenance to
prioritize their efforts and funding.

2) Within the UFS concept, responsibilities for code management and hence modernization
rest with the “owners” of the code, i.e. with the main contributors to component models,
tools etc. Considering the experiences documented in this report, the owners are
strongly encouraged to

a) implement decoupled general software approaches with unit testing as a
foundation in the community open-science workflow used for the specific element
of the UFS,

b) start or accelerate strategically moving away from Fortran,

c) while assuring that other languages and DSLs, middleware and tools approaches
are enabling both cutting edge research and are sufficiently mature for use on

% https://ufs.epic.noaa.qov/wp-content/uploads/2024/08/UIFCW 2024 poster.pdf
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3)

FISMA-high (operational) HPC systems. The latter will benefit from early and
recurring interactions with NCO for NOAA operations.

Note that as the UFS is mostly a coalition of the willing, the UFS governance leadership
can only encourage the owners of parts of the UFS to follow these recommendations.

An integral part of the code modernization needs to be the transition to the next
generation coupling approach for component models. To start this process the UFS
needs to task a Working Group to develop a draft plan, including

a) the selection of a more closely coupled methodology that is rooted in a
community open-source approach,

b) an assessment if this will become the new approach, or an alternative approach
next to the present ESMF / NUOPC approach,

c) and an assessment of the feasibility of formal collaborations, as we had in the
NWS- OAR - NCAR Memorandum of Agreement on coupling infrastructure that
has supported the development of the present coupling capabilities in the UFS.

It has been noted that reducing the close coupling from a general software architecture
perspective and increasing close coupling from a model component coupling perspective
may be conflicting development directions and therefore will require additional
discussion and assessment.

13
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A.

Data Mining

Documentation of the results of the informal interview processes described in Section 3 are
gathered here. Note that the documentation identifies the individuals that were included in this
process. Note that the references presented in the Appendix are gathered with the core
References in the main body of this report.

A1,

UK Met Office

On December 3 2024 | had an open discussion with Andrew Saulter, Christopher Bunney, Juan
Castillo and Christofer Stokes. Whereas the initial request for a discussion came from the UK
Met Office regarding software modernization specifically for WW3 *', a significant part of the
discussion centered on software modernization in general. Key elements of code modernization
at the UK Met Office are:

Next Generation Modelling Systems Programme: this programme is designed to
reformulate and redesign the Met offices weather and climate research and operational
production systems, to allow them to fully exploit future super computer systems (Met
Office, 2018

GungHo Project: The GungHo project highlighted the need for automatic code
generation to develop new dynamical cores suitable for next-generation supercomputers
(Met Office, 2021).

LFRic and PSyclone: The LFRic project, designed for future supercomputers, utilizes
PSyclone to automate the generation of parallel code. This allows the Met Office to
effectively leverage the power of advanced computing systems (Met Office, 2023).

Our discussion went from the above general approaches used by the UK Met Office to a
discussion on some of the topics identified in Section 2 with a focus on Chris Bunney’s code
optimization work in WW3, with the following outcomes:

The UK Met Office does not consider fault tolerance something that needs to be
addressed inside the codes. This does imply that the UK Met Office intends to make an
effort for clear failure messages to be generated by the codes.

A key element of optimizing WW3 at the UK Met Office codes is the selection of the data
layout, in particular the layout of the loop structures, and the use of derived data types.
Using “tiling” in data structures appears to result in code that is efficient across hardware
architectures.

The UK Met Office does most of its fundamental science using Python, although many
incoming scientists tend to have used MatLab for basic science. Most engineering
aspects of coding are done using C++ (similar to NOAA's use of C++ in many

" This discussion was driven by the practical consideration that the UK Met Office had invested a significant effort in
optimizing WW3 for use on GPUs, but that the main developer (Chris Bunney) was moving to other responsibilities at
the UK Met Office.



infrastructure codes). The LFRic codes are still written in Fortran. With this, operational
codes at the UK Met Office are multi-lingual with respect to coding languages. The UK
Met Office expects their scientists and software engineers to be adaptable.

The UK Met Office tends to hire relatively new graduates as software engineers and
often loses them. However, they presently have enough experienced scientists and
software engineers to maintain some continuity of knowledge (including Fortran
proficiency). An identified risk is Al, which will require further diversification of coding
skills - and the thinner they spread themselves the more it carries risks of single points of
expertise.

As is outlined in the first set of bullets in this section, the UK Met Office has been
experimenting with automating code generation. In the discussion it became clear that
the the Met Office and NOAA share concerns with respect to code robustness and
reliability when using automatically generated codes in operations, although this is likely
the way they will go with LFRic.

Circling back to the starting point of the discussions with the UK Met Office, they expressed their
keenness of continuing discussions about WW3 code modernisation. They did note that the
pressures on making the code GPU compatible have reduced a bit recently, but that they would
like to keep some momentum on what has been done so far and what will be needed to make
the code more futureproofed for different architectures.

A.2. Environmental Modeling Center (EMC)

On December 16 2024 | had an open discussion with Jacob Carley and Ed Hartnett from the
Environmental Modeling Center (EMC) . We loosely followed the potential issues described in
the previous section with the following outcomes:

At EMC, regression testing is becoming prohibitively expensive in code management.
With that EMC is moving toward unit testing as a code QC technique that has much less
overhead, in particular for the shared libraries in the production suite (nceplibs). Ed
expressed this as a need to decouple the code base to efficiently move towards unit
testing. Note that in this context, coupling refers to software coupling rather than model
coupling, see the “coupling” topic in Section 2. After our discussion, EMC formally
committed to transition to a unit testing approach.

EMC voiced the intent to go to a “devops” approach to development where the top of the
core repository is deployable code. The top of the code repository would tentatively be
used in all development, whereas tags are used in operations.

For EMC costs of doing development in containers is acceptable as it saves
development and Human Resource costs with portability in particular during
development. This may become more important in the future when we expect some
operational work to move to the cloud.

Acknowledging that a unified workflow is still not well implemented in the UFS, EMC
noted that the Unified Workflow (UW) tools look promising. Since the interview, the EPIC



team working on the UW tools has provided presentations both at EMC and at one of the
UFS open meetings.

e EMC noticed that a large part of the code is still written in Fortran, but that UFS
applications have long been multi-lingual, in particular with other languages being
prevalent in UFS coupling tools and in MET. EMC sees no direct need or urgency in
moving away from Fortran altogether.

e Note that EMC presently has no access to GPUs in operations. This is partially a catch
22, as lack of operational codes able to fully use GPU power is likely feeding into
choices made in NOAA's HPC contracting.

A.3. Involvement with Industry

NOAA's engagement with industry partners generally occurs at professional meetings of
organizations like the American Meteorological Society (AMS), the American Geophysical Union
(AGU), the International Association of Emergency Managers (IAEM), and the National Weather
Association (NWA). Such interactions fosters knowledge and information exchange, and may
lead to collaboration on weather and climate research, technology, and service delivery.

NOAA's engagement with industry includes scientific and engineering support, facilitated
by programs like ProTech®, which provides NOAA with access to a wide range of professional,
scientific, and technical services. This encompasses critical areas such as systems
engineering, IT infrastructure management, and engineering support for complex observing
systems like satellites and radar networks. Critical for software modernization, this also
includes direct support for the development and enhancement of the Unified Forecast System
(UFS) through support services contracts and through the Earth Prediction Innovation Center
(EPIC, see below).

At the December 2024 AGU and January 2025 AMS conferences, | had discussions with
representatives from Booz Allen and AWS as part of the above described process of
continuous engagement. Part of the discussions relevant for the present assessment focused
on the utilization of Al tools providing solutions to automate code analysis, refactoring, and
testing was a key focus, with the aim of accelerating the modernization of complex software
systems like the Unified Forecast System (UFS).

The assessment below provides a short sampling of Al tools relevant for software
modernization. The list is intended to illustrate the large number of tools available, is not
intended to be complete, and is expected to change rapidly. Note that the selection of
specific Al tools for implementation may be influenced by existing contractual agreements
and partnerships.

e Key Challenges and Al Applications:
o Legacy Fortran Code: Al tools can assist in translating and modernizing this
code. Al can also help in parallelizing Fortran code for HPC.
o Optimization for HPC: Al can optimize code for HPC architectures. Machine
learning can create surrogate parts of models or models.

%2 https://www.noaa.gov/acquisition-grants/protech
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o Data Assimilation: Al can improve data assimilation techniques.

o Code Refactoring and Optimization: There are Al-powered code analysis tools.
Generative Al can be used to automate refactoring.

e Examples of Tools and Their Companies:

o GitHub Copilot (Microsoft): Al-powered code completion. Helps understand and
modify legacy code.

o Codeium (Ex-Tabnine): Al-powered code completion and chat functionalities.
Generates and modifies numerical modeling code.

o Moderne (Moderne, Inc.): Automates large-scale code refactoring and
modernization. Migrates legacy codebases to modern architectures.

o Google Colab: A free cloud-based Jupyter notebook environment, allowing for
collaborative coding and data analysis.

o Tools utilizing transformer models: Many companies are creating tools that use
transformer models, that can analyze large code bases, and assist in language
translation. Many large cloud providers, like Amazon(AWS), Google(Google
Cloud), and Microsoft(Azure) are creating Al code assistance tools that utilize
transformer models.

Considering NOAA’'s and my interest in the topic, here is a sampling of Al-Powered Unit Testing
Tools and Techniques:

e Al-Driven Test Case Generation:
o Al, particularly machine learning, can analyze code and automatically generate
test cases that cover various code paths and edge cases.
o This helps to ensure thorough testing and reduces the manual effort involved in
creating test suites.
e Property-Based Testing with Al Assistance:
o Property-based testing involves defining properties that the code should satisfy,
and Al can help to generate test data that verifies these properties.
o This can be particularly useful for testing complex numerical algorithms.
e Mutation Testing with Al Support:
o Mutation testing involves introducing small changes (mutations) to the code and
checking if the test suite detects these changes.
o Al can help to automate the generation of mutations and analyze the
effectiveness of the test suite.
e Static Analysis with Al Enhancement:
o Static analysis tools analyze code without executing it, identifying potential errors
and vulnerabilities.
o Al can enhance static analysis by learning patterns of errors and suggesting more
effective checks.
e Test Code Generation from Natural Language:
o Some emerging tools are using Natural Language Processing (NLP) to generate
unit tests from natural language descriptions of the code's functionality. This can



help to bridge the gap between requirements and test implementation.

Associated with these general testing topics are a small sample of available tools, subject to
the same context and limitations as mentioned with the list of more general tools mentioned
above.

Tools and Technologies:

e Diffblue Cover: This tool uses Al to automatically write unit tests for Java or Python
code, aiming to increase test coverage and reduce the time spent on manual test
creation.

e Parasoft C/C++test: automates the creation and execution of unit tests, helping to
ensure that individual code components function correctly.

e Tools that utilize Large Language Models(LLM's): Many companies are working on
tools that will utilize LLM's to create unit tests based off of code analysis, and natural
language prompts. This is an emerging field, and will likely improve rapidly.

A.4. Earth Prediction Innovation Center (EPIC)

The Earth Prediction Innovation Center (EPIC)* represents a unique initiative, designed to
accelerate advancements in NOAA's operational weather and seasonal forecast systems,
particularly in direct support of the Unified Forecast System (UFS). Established in accordance
with the Weather Research and Forecasting Innovation Act (WRFIA) of 2017 (Public Law
115-25), and further defined by the National Integrated Drought Information System
Reauthorization Act of 2018 (Public Law 115-423), EPIC serves as a hub for collaborative
partnerships between government, academia, and industry (e.g., Uccellini et al. 2022).

EPIC’s present operations were initially defined by two workshops held in 2019. An internal
NOAA workshop in March 2019 laid the groundwork, defining EPIC's scope and exploring its
role in enhancing model development, and culminating in a vision paper (Cikanek et al. 2019).
This was followed by the broader EPIC Community Workshop in August 2019*, which engaged
the "weather enterprise" — including academia, public, and private sectors — in the planning,
development, and strategy for EPIC (WPO, 209). These two meetings still form the foundation
EPIC as outlined on the EPIC web page®.

EPIC now focuses on the following seven investment areas:

External engagement and community.
Software engineering.

Software infrastructure.

User support services.

Cloud-based high performance computing.
Scientific innovation.

Management and planning.

33 https://epic.noaa.gov/about-epic
34 https://wpo.noaa.gov/an-overview-the-earth-prediction-innovation-center-epic-community-workshop
3 https://wpo.noaa.gov/epic
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With this, EPIC supports the “infrastructure” of community modeling, including modernizing
collaboration techniques through providing user support and supporting a CI-CD pipeline. Actual
software modernization is limited to infrastructure software including containerization of
applications and workflow approaches, but generally does not focus on the component models
in coupled UFS applications.

A.5. CICE sponsors meeting and UFS presentation on DoE
E3SM modernization efforts

At the December 16, 2024 CICE consortium sponsors meeting, code modernization was briefly
discussed, with a focus on moving to Python and C++ for performance, as well as due to
concerns with being able to get programmers capable of, and/or interested in, programming in
Fortran.

This discussion led to an invitation for Elizabeth Hunke to provide a presentation on software
modernization at DOE in general and for CICE in particular at a UFS Steering Committee open
meeting. The CICE Consortium: New model developments and plans presentation was given on
March 7, 2025. It focussed mostly on the CICE model from a physical perspective, but also
dealt specifically with code modernization efforts at the Department of Energy (DOE). The latter
part of the presentation focussed on more mature efforts of code optimization of the OMEGA
ocean model and SCREAM atmosphere model, and more on implications for similar ongoing
efforts for CICE®, all within the E3SM model*’. With that the following relevant observations and
conclusions were taken from the presentation

e Code Refactoring: Refactoring existing code for improved memory access patterns and
computational performance is essential for optimal code efficiency.

e Hardware Evolution: Adapting to hardware evolution. For older hardware, it has been
best practice to focus on floating-point operations. For modern hardware, optimization
needs to focus on bandwidth limitations to memory.

e Vectorization: Vectorizing the EVP (elastic-viscous-plastic dynamics) kernel in CICE
and in other parts of the code is essential for better performance.

e C++ Rewriting: DOE is rewriting Icepack/Thermodynamics in CICE in C++ for faster
performance, particularly on GPUs.

e Kokkos Implementation: DOE uses Domain Specific Languages (DSL) and Kokkos
(Trott et al., 2022) for automated low-level code generation for CPUs or GPUs in the
OMEGA ocean model. This experience is expected to inform a similar modernization for
CICE.

e Technical coding issues: The presentation identifies successful technical approaches
such as (i) enabling the entire EVP calculation to be put onto a single node or GPU, (ii)
Saving minimal information needed to reproduce / recalculate all quantities, (iii) using
point-based domain decomposition, and (iv) keeping communications local.

% Note that presently CICE is part of the UFS whereas OMEGA and SCREAM are no.
37 https://eesm.science.energy.gov/
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e Achieved performance improvement: computations were accelerated by a factor 2-5
for CPUs and 30-35 for GPUs (see presentation for details).

A.6. Geophysical Fluid Dynamics Laboratory (GFDL) UFS
presentation

Back to back with the UFS Steering Committee presentation of DOE software modernization
efforts described in the previous section, Rusty Benson of the Geophysical Fluid Dynamics
Laboratory (GFDL) gave the presentation Pace and PyFV3: Performance-portable computing
using GT4py on March 7, 2025.

The presentation emphasizes the need for models to run efficiently on both CPU and
GPU-based supercomputers, especially with the rise of GPU-dominant exascale machines.
GFDL aims to achieve this by developing "Pace," a Python port of the SHIELD weather model
designed for performance-portable computing using GT4Py. The following bullets summarize
the presentation

e PyFV3, PySHIELD and Pace: PyFV3 (Dahm et al., 2022) is the Python port of the FV3*
dynamical core. PySHIELD (Dahm et a., 2023) is the GT4Py port of SHIELD's* physics
parameterizations. Pace (Dahm et al., 2023) is built from PyFV3 and PySHIELD.

e Technology used:

o Python: Python is highlighted as an attractive language for model development
due to its accessibility, extensive libraries, and integration with Al/ML tools.

o GT4Py: a Domain Specific Language (DSL) for weather modeling (e.g., Paredes
et al., 2023).

o DaCe*: a separate compilation framework for data flow optimization, with key
technologies enabling performance portability (Ben-Nun et al. 2019).

o NDSL: The NOAA/NASA Domain Specific Language Middleware simplifies
model development by providing abstractions for common computational patterns
and easing the use of GT4Py and DaCe.

o FMS*: Flexible Modeling System coupling tools used in the GFDL modeling
ecosystem.

o PyFMS: Python interface to the FMS, allowing Pace to integrate into the GFDL
ecosystem.

e Scientific Targets: Initial applications of Pace include large eddy simulations for cloud
studies and high-resolution global studies of tropical cyclones.

e Future Plans: The goal is to achieve science-readiness of Pace, enhance its
components, and bring it fully into the GFDL modeling system. Collaborations with
NASA, ETH Zurich, and NOAA's Global Systems Laboratory are ongoing.

38 https://www.afdl.noaa.gov/fv3

% https://www.gfdl.noaa.gov/shield

40 https://github.com/spcl/dace
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Note that FMS is used inside component models of the UFS, but not as a general coupling tool
in the UFS. It does represent a technology that allows for closer coupling than the present
coupling in the UFS at the API level.

A.7. European Centre for Medium Range Weather Forecasting
(ECMWEF)

NOAA and The European Centre for Medium-Range Weather Forecasts (ECMWF) have had
several informal discussions on software modernization for roughly a decade. For instance, the
topic was discussed in the hallways at the 2016 Annual Seminar of ECMWF, during a personal
visit to ECMWEF in June 2022, and during a ECWMF workshop on wound waves and coupling in
2024. The notes of these meetings and an internet search using Gemini resulted in the following
bullets.

e Focus on Scalability and Performance: ECMWF deals with massive datasets and
computationally  intensive  models, requiring continuous  optimization  for
high-performance computing (HPC) environments. With ECMWEF historically focusing on
a single (coupled) model on a single target hardware architecture, they have been able
to focus on this arguably better than any other weather and climate prediction center.

e GT4Py: ECMWEF is involved in projects using GT4Py (e.g., Paredes et al., 2023), which
allows for the encoding of stencil operators in a hardware-agnostic way. This enables
more concise and maintainable scientific applications. GT4Py then translates these
abstract definitions into high-performance, low-level code. This is a very important part of
their code modernization strategy.

e Languages: GT4Py is being used in projects that are re-writing parts of the Integrated
Forecasting System (IFS) into python (e.g., Ubbiali et al., 2025).

e Earthkit: ECMWF has developed Earthkit (ECMWF, 2024), a Python framework
designed to simplify data access, processing, and visualization. Earthkit promotes code
reusability and componentization, which are key aspects of modern software
practices.This system is designed to allow for greater interoperability between different
parts of their software systems.

e General Modernization Trends: ECMWF, like many other forecast centers, is moving
towards more modular and flexible code structures. This includes adopting modern
software development practices and leveraging advancements in supercomputing. They
are also starting to move away from a focus on in-house model development by
increasing the use of external software, and of open development.

The topics gatherered in Section 2, and the above bullets were shared with Any Brown from
ECMWF who confirmed on May 12 2025 the contents of the above bullets and provided some
additional references. He also shared that ECMWF has recently had more discussions about
moving away from Fortran, but that these discussions have not been shared with the general
public yet.



A.8. Software Engineering for Novel Architectures (SENA)

On March 26, 2025 | had a discussion with Frank Indiviglio about the NOAA Software
Engineering for Novel Architectures (SENA) program. This program has existed for several
decades, and as a fun fact, fully funded the original development of WAVEWATCH IIl from 1993
through ca. 1998. Due to its limited funding, SENA has traditionally focused on specific projects
regarding high-payoff optimization on the “hardware of the day” used at NOAA. More recently,
SENA has been focussing on more systematic approaches dealing with exascale computing
and the transition of CPU to GPU hardware. Examples of the latter are the exascale data and
computing studies of Govett et al. (2024), and efforts to port the the GFDL models to new
computer architectures by converting the code to Python (e.g., Dahm et al, 2022, 2023). With
this, SENA efforts inform the present study though targeted software innovation projects, and
should be considered without NOAA as a resource for UFS software modernization.

Frank Indiviglio did point out that the need to move away from Fortran is not just driven by
the availability of programmers fluent in Fortran. He noted that the number of viable Fortran
compilers becomes smaller and smaller, and that the present Fortran compilers may no longer
result in the most efficient codes on HPC. If the availability of Fortran compilers erodes even
more, this may become a serious Continuity of Operations (COOP) issue for operational
environmental modeling.

A.9. NCEP Central Operations (NCO)

| had a discussion on 5/9/2025 with David Michaud, the director of NCEP Central Operations
(NCO). NCO is responsible for the operational Production Suite of the NWS and broader NOAA,
and as such represents the operational target of many UFS applications. The discussion
followed the topics outlined in Section 2 with the following outcomes (including a review and
additional information provided by Steven Earle).

e Open source and open science: For many years, NCO has been leaning more into the
use of open-source software. A good example of this is the support of NCO for
developers to use Python and some of its tool sets, and incorporating the language and
its tools in operations. Adopting the UFS approach to community-developed operational
applications is a natural extension of this move to more open-source software.

o This has led to the need for maintaining more and more tools and libraries. This
requires additional efforts by NCO, but this is still manageable.

o Note that for operationalizing community-developed applications NCO requires a
commitment of support for the software, which for community models is usually
provided by EMC or other NOAA Line Offices.

o Adoption of community software in operations is complicated by the fact that the
operational computers are considered to be high-security assets under the
Federal Information Security Management Act (FISMA). This implies that there
may be a delay for upgrades to community software to become available for
operations, and this implies that developers should work with NCO early and



often to assure that packages that developers want to use can also be used in
operations.

o All these separate issues strongly favor a continuous discussion between
developers and NCO, starting at early development, rather than at the "handoff to
operations”.

Fault tolerance: With computer architectures apparently moving away from massively
parallel systems with relatively slow CPUs toward hybrid systems with much more
powerful processors like GPUs, and with fault tolerance being addressed more
systematically at the operating system level, NCO does not see fault tolerance of its
biggest model as a significant rising issue.

Load balancing, Optimization, Coupling: With the operational HPC available to NCO
typically used as close to capacity as is consistent with a 99.9% on time product delivery,
code efficiency is of paramount importance. NCO general has some human resources
for code optimization available as part of their HPC contracts. Note that by the nature of
the contracts, the associated code optimization is project driven focusing on the
available HPC hardware and the actual software applications in operations.

Code quality: Operational implementation standards can be found at their web site*2.
Knowledge and expertise: Support of the production suite operates in a three tiered
structure. Tier 1 consists of 24/7 operators with responsibility for managing failure; They
have basic helpdesk knowledge and can execute well documented procedures. If it's
outside that scope then they contact Tier 2 support; this consists of the operations team
that has a more in depth understanding of the systems, applications and their
dependencies. If Tier 2 support is unable to solve the problem then Tier 3 support is
brought in. This support consists of the developers / code managers of the application
with the most robust knowledge of the application.

Moving away from Fortran: As has already been noted in Section 2, the UFS and the
NCO production suite are already inherently multi-lingual with respect to programming
languages used. NCO presently does not have a major issue with finding or training
programmers working with Fortran, but the potential risk of losing access to reliable
Fortran compilers as identified above could become a serious COOP issue for NCO. In
this context there is value in moving away from Fortran, and with the existing
multi-lingual environment, this can be done incrementally until and unless we identify a
hard COOP deadline.

A.10. National Water Center (NWC)

| had a discussion with Fred Ogden from the National Water Center (NWC) on 5/20/2025. The
discussion focused mainly on the modernization efforts for the National Water Model (NWM)
and the selected coupling approach in the new model. There was general agreement on a
needed focus on community modeling, and the reduced focus on fault tolerance. The NWC is

42 https://nws-hpc-standards.readthedocs.io/en/latest
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not yet considering a systematic move away from Fortran The following paragraphs were
provided by Fred Ogden.

Attempts in 2019 to improve the modularity of the WRF-Hydro code used in the National Water
Model (NWM) were impeded by the monolithic nature of the code, and its origins as a research
code. An audit of the code by the GSA 18F group suggested a complete refactoring using
modern coding practices with an emphasis on coupling interfaces and the use of standards.
OWP embarked on creation of what is called the Next Generation Water Resources Modeling
Framework (NextGen Framework) (Ogden et al. 2021). A series of interagency discussions
involving NOAA/USACE/ USGS/USBR/DOE identified use cases. The Basic Model Interface
(BMI) model coupling standard version 2.0 (Hutton et al, 2020) was identified as suitable for
constructing the National Water Model running different models and process modules in
different parts of the country. The Open Geospatial Consortium, WaterML 2.0 Part 3 Hydrologic
Features (HY-Features) conceptual data model was selected as suitable to describe the surface
water hydrologic features of the landscape.

Hydrologic phenomena are often discontinuous in space and time and governed by highly
uncertain processes and exhibit threshold behaviors. Because of this, models to predict the
hydrologic response of a region to atmospheric forcing tend to rely on conceptualizations. The
BMI model coupling standard provides a “thin middleware” standard for model coupling. The
BMI standard consists of approximately 45 function definitions that allow an external driver
program to initialize, step through time and finalize operation of a model code. It also provides
a means for the driver program to access and exchange model states and parameters for
models that use a variety of discretizations. For a model to comply with the BMI standard it
must allow external control of its march through time. Models may retain internal timestepping
for numerical stability and optimal performance, but must provide control to a driver program
through BMI interface at specified intervals.

The BMI interface definition is flexible enough to support a variety of programming
languages. In accordance with interagency discussions, the NextGen Framework supports
codes written in C, C++, Fortran and Python. There are some challenges regarding the BMI
interface with languages that do not support pointers directly, but these can be mitigated using a
number of approaches.

A.11. Additional observations

The interviews and meetings reported on in this Appendix did not occur in a vacuum, but are the
extension of a long ongoing effort, as its subjects have been addressed in many other meetings.
The last sub-section of the Appendix documents some selected relevant outcomes from earlier
and separate discussions.

e NCAR / CESM: The Community Earth System Model (CESM) of the National Center for
Atmospheric Research (NCAR) is closely related to the UFS through its shared
infrastructure that was co-developed using a formal Memorandum of Agreement as
mentioned in the body of the report. With that, the UFS tends to focus on shorter
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“‘weather” forecast time scales, whereas the CESM focuses on longer “climate” forecast
time scales. With that, it could be expected that both the CESM and UFS community
have similar needs and interest with respect to software modernization.

A casual assessment of CESM work presented in professional meetings suggests
that the main focus of the CESM group is not on structural software optimization and
modernization, but on developing new modeling techniques for component models of the
CESM. An example of such work is the development of the PICLES wind wave model
that uses a “particle” description of wave fields rather than the spectral description used
in WW3 (Hell et al. 2023) to reduce the dimensionality of the problem and hence create
much cheaper models for climate applications. It appears to be a fair observation that
CESM uses lower resolution grids for forecasts with much longer forecast horizons, and
therefore is less negatively impacted by the present API level coupling techniques
shared by the UFS and the CESM..

NCAR / MPAS: The Mesoscale and Microscale Meteorology (MMM) Laboratory of
NCAR has developed the Model for Prediction Across Scales (MPAS). The dynamical
core of this model is presently being integrated in the UFS infrastructure for use for
convection allowing weather forecasting. Even at the initial stages of this development, it
is clear that the present coupling techniques in the UFS are inefficient for the target
spatial scales and associated grid size for MAPS applications, contrary to the above
described experiences with the CESM. This implies that MPAS applications in the UFS
are likely to benefit significantly from more integrated coupling techniques. Initial
assessments are that the MPS coupling requires “local” approaches to coupling rather
than the inherent “global” (i.e. considering the entire model grid) approach used in
ESMF.

Computer Languages in Industry: Complimentary to discussions with representatives
from industry addressed in Appendix A.3, the UFS has direct activities with commercial
modeling groups. In a recent discussion with Pieter Smit from SoFar Ocean, he pointed
out that the beggar players in the Al and cloud sectors of HPC are moving to Rust as a
programming language. Due to the inherent support from large industry partners, and
the open-source nature of Rust, this might be another language to consider for the UFS.

Rust is a modern programming language known for its strong emphasis on safety,
speed, and concurrency. It offers memory safety without sacrificing performance, as
Rust achieves speeds comparable to C and C++. Additionally, Rust's ownership system
and thread safety features make it excellent for building reliable and efficient concurrent
https://docs.google.com/document/d/1NIbX6Qlcf3FpkM2mrmp3zdkXNOIS61DWw-gIM2Z
Oe-E/edit?tab=t.0applications, crucial for tasks like system programming, web
development, and high-performance computing.

Rust and C++ share similarities in their performance, suitability for systems
programming, and focus on low-level control. However, they differ significantly in their
approaches to memory safety and error handling. Rust's emphasis on safety and its
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modern features make it an attractive choice for new projects, while C++ remains a

powerful option for existing projects and performance-critical applications.

B. Revision history

The Table below identifies revisions of this document.

Version

Date

Description

1.00

7/14/2025

First version completed
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