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1. Introduction 
This report is a position paper on the need for software modernization for the Unified Forecast 
system (UFS). It is written by the author in his role as Senior Advisor for Advanced Modeling 
Systems, and is intended both as an inventory of ongoing activities and to encourage the 
development of more formal projects associated with this topic. It is the result of a set of 
interviews with key partners inside and outside of NOAA, and as such is informational. It should 
not be construed as a fully vetted approach or strategy. 

Furthermore, it focuses on traditional physics-based numerical models, not on more recent 
data-driven AI/ML models. Even as data-driven models as well as AI/ML post- and 
pre-processing tools and code emulators are accelerating toward operational use, it is expected 
that the core physics-based models will remain relevant in the foreseeable future. Note that 
AI/ML tools for modernization and optimization of the traditional models are relevant for the 
present assessment. 

The general NOAA UFS strategy for modeling seeks to focus NOAA modeling on a small set 
of community models that is sufficiently focussed to create critical mass for its support while at 
the same time is sufficiently diverse to broadly cover NOAA’s mission. Moreover, it seeks to 
unify software approaches for research and operations, and to build a broad modeling 
community with partners including but not limited to government, academia, and the private 
sector. 

NOAA first looked into a community modeling approach with a Unified Modeling Working 
Group under the NOAA Research Council1 (Link et al. 2017a, b). NOAA first formalized a UFS 
approach in a vision document and a roadmap for NOAA operations published in Tolman and 
Cortinas (2020a,b)2, which included a formal sign-off of the Assistant Administrators of most 
NOAA Line Offices. Since then, the UFS approach has been documented and defined in a set 
of four BAMS papers. Jacobs (2021) addresses the power of community modeling. Uccellini et 
al. (2022) presents NOAA’s support of community modeling through the Earth Prediction 
Innovation Center (EPIC). Alves et al. (2023) presents examples of accelerated transition of 
research to operations in a UFS approach. Tolman (2025) presents lessons learned for 
community modeling. Moreover, the UFS approach is supported in the LEGEND Act (15 U.S.C. 
§ 8512a), in the first ever NOAA Modeling Strategy (Morgan et al, 2024), in a NOAA 
Administrative Order 201-118 entitled “Software Governance and Public Release Policy”, and in 
the SHARE IT act (Public Law No: 118-187). 

In the UFS community some initial choices were made to couple component models to each 
other with wrappers around these models. This enabled coupled modeling while simultaneously 
limiting the impact of the UFS approach on existing community-based component models. In the 
selected approach model coupling is executed at the Application Programming Interface (API) 
level. This implies that community models are “wrapped” using the Earth Systems Modeling 
Framework approach (ESMF, Collins et al. 2005) augmented with an interoperability layer 

1 Now known as the NOAA Science Council. 
2 These documents were developed in 2016-2018. Sign-off and publication were delayed to assure full compatibility 
with the burgeoning EPIC effort. 

1 

https://www.noaa.gov/administration/nao-201-118-software-governance-and-public-release-policy
https://www.noaa.gov/administration/nao-201-118-software-governance-and-public-release-policy


 

           
            

            
       

 
               

                
              

            
              

            
               
              
              
            

           
               

    
              

            
               

              
              

            
               
              
               

               
                

              
            

               
               

               
      

   

  

defined by the National Operational Prediction Capability (NUOPC)3. This approach enables 
communication between UFS component models, but is generally not intrusive to the 
component models. This has left governance of the individual component models mostly 
untouched, with minimal impact on existing communities. 

The UFS has reached a level of maturity where many applications are now supported at 
least partially by EPIC, where the production suite at NOAA is shrinking in terms of major 
applications (23% reduction by summer of 2024), and where we are now developing basic 
capabilities as well as targeted operational implementations with much larger teams. Moreover, 
environmental component model coupling has reached a level of maturity that virtually all UFS 
releases consider coupled modeling approaches. In the context of developing more advanced 
modeling techniques, there is a need for upgrading the component models to allow for more 
integrated model coupling. Such an approach is aligned with a general need to update 
component codes, many of which have seen decades of use and represent older coding 
techniques and best practices. Software modernization is also becoming urgent today as 
previously established code architectures are not generally optimal for new hardware 
architectures and exascale computing. Note that these issues are not unique to the UFS (e.g., 
Govett et al. 2024). 

Discussing the need for software modernization is not new. NOAA has had a Software 
Engineering for Novel Architecture (SENA) program for decades. For instance, the original 
development of WAVEWATCH III ® (henceforth denoted as WW3) in the mid 1990s was fully 
funded out of this program. This program, however, has mostly been focusing on “one-off” 
projects like building the latter model. Only recently has NOAA through SENA focused more 
systematically on software modernization, in particular for Exascale computing (Govett et al., 
2024). NOAA code optimization in general has been reactionary for several decades, where the 
codes are optimized for the “hardware of the day”, mostly focusing on operational applications. 
Moving into the GPU era, there have been some pilot projects world-wide (see more detailed 
discussions below) but few if any systematic approaches. With that, NOAA should not do this 
alone, but focus on the broader, evolving UFS partnership. This position paper is intended to 
encourage and accelerate this process. It is not intended to provide a comprehensive strategy 
at this time, but instead outlines a path to such a strategy. 

This position paper starts with this introduction, followed by a general framing of the issues 
in Section 2. Section 3 documents the sampling / interview strategy used here, pointing to 
outcomes of interviews as gathered in Appendix A. A summary and suggested action items are 
gathered in Section 4. 

3 https://earthsystemmodeling.org/nuopc 
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2. Framing issues 
Operational and research modeling has been part of NOAA’s mission for well over half a 
century. Due to the long history, it is unavoidable that at least some of the modeling approaches 
are outdated, and could benefit from software modernization. This need for software 
modernization is driven by two top level considerations. 

The first top-level driver applies to the entire UFS community and focuses on the ongoing 
change in hardware architecture. This change mostly revolves around the move from CPU to 
GPU processor architecture, and the more general move to exascale computing. From a human 
perspective this change is interesting as it comes at the end of over two decades of slowly 
changing hardware design. The previous major transition to new hardware occurred nearly 25 
years ago as the first massively parallel computers started to replace the previous dominant 
High Performance Computing (HPC) vector computers. This architecture change required a 
re-factoring and re-write of many codes. The generation of programmers that did this work is 
now mostly retired, so that there is limited hands-on experience with systematic code refactoring 
at this level and for this purpose. 

The second top level driver focuses more on NOAA and considers the transition of NOAA to 
a UFS approach to modeling as outlined in the Introduction. Within the UFS, there are two main 
reasons for software modernization. The first is the need for a community model to be highly 
portable over a wide range of hardware architectures. Portability becomes a much bigger issue 
with the recent increase in diversity in hardware as mentioned above. Portability in the newer 
environment becomes more difficult as it appears that different hardware architectures imply 
different optimal data layouts. From my personal experience with the WW3 wind wave model 
(e.g., Tolman 2025), it is both interesting and annoying to see that optimization for GPUs drives 
us back to data structures we initially used in the 1990s, but that were abandoned in the stable 
parallel compute architecture era. Another reason for software modernization in the UFS is the 
need for a next generation coupling approach. The UFS is outgrowing its initial API level 
coupling approach as described in the Introduction, and in general requires component models 
to become more object oriented so that parts of one model can be called independently in a 
coupled model to allow for more closely coupled systems. 

The discussion about software modernization has been going on for at least a decade. An 
incomplete list of some of the topics and related questions driving this discussion is presented 
below (the order of topics does not imply ranking or importance). 

● Open source and open science: Since the first internal NOAA assessments of the 

need for open source (code is available) and open science (we take code from many 
others), the open UFS approach is accepted in NOAA, formalized in law, in a NOAA 
administrative Order, and in the NOAA modeling strategy (see Introduction). These 
choices are foundational and well established, and are presently not a subject for 
discussion. 
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● Fault tolerance: Exascale computing initially moved to hyper-parallel (CPU) systems, 
where failure of a single CPU or parallel process tentatively results in a failure of the 
entire model. Fault tolerance seeks to immunize massively parallel codes from such 
failure. Between making hardware more fault-tolerant at the operating system level, and 
by tentatively relying more on a smaller number of GPUs rather than on monolithic 
CPU-only machines to achieve exascale capabilities, discussions more recently have 
moved away from focusing on fault tolerance. 

● Load balancing: Traditionally, load balancing principles are built into the code stack, 
with environmental settings optimized for specific applications on specific hardware. 
More advanced techniques consider dynamic load balancing as part of the base code 
stack, both for code efficiency and to increase fault tolerance. An example of such an 
approach can be found in the Uinta software of the University of Utah. 

● Optimization: Code optimization at the software stack level has historically been 

performed for the hardware available to its users. Due to the slow development and 
relative homogeneity of hardware architecture over the last two decades, performance 
optimization has been fairly portable between different computers. The diversity 
introduced by the CPU - GPU and hybrid computer architectures has recently reduced 
performance portability. In particular, different computer architectures appear to favor 
different data layouts. This raises the question if we should maintain different codes for 
different processors, or if we should move toward automated custom code generation for 
each computer, based on a higher level description of the problem (i.e., using Domain 
Specific Languages, DSLs). 

● Coupling: The API-level approach to coupling of component models in a more 

integrated environmental approach as presently used in the UFS allowed for effective 
development of component models and coupling approaches at the same time. At the 
present level of maturity of the UFS this coupling approach now starts to seriously 
impede load balancing and code optimization. Closer coupling where parts of the 
component models can be called outside of a high-level API framework requires a more 
object-oriented approach to the architecture of component models. 

○ Note that a functional plug-compatibility is needed here rather than a formal 
object oriented approach. This will require a deliberate focus on data structures 
used in the code. 

○ Note that even in a closely coupled UFS environment it will remain essential for 
rapid development and for “downstream” uses of models to still be able to 
compile the software stack of component models into a stand-alone application 
with relevant input from data rather than from coupled models. 

○ Note that the term coupling is also used in terms of general software engineering, 
in particular in the context of coupling and cohesion in software design4. For the 

4See, for instance, https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/ 
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UFS, these aspects of coupling have a large impact on the cost of testing code 
during development in an open-science workflow. 

● Code quality: working in a community environment requires high-quality code following 
coding standards, with documentation, and with a well-developed and supported 
workflow to contribute code. The latter implies (amongst others) a well developed 
development workflow with automated unit / regression testing approach. Note that 
some members of the modeling community fear that contributions of a large community 
to a code could result in poor general code quality. Many in the community (including the 
present author) have experienced the opposite; well-managed community development 
with its many eyes on the code and with porting to many compilers and hardware 
architectures tends to result in high-quality code with less (hidden) bugs. 

○ Code Development Workflow: Code development approaches are important for 
modern software development. For the UFS, this is presently either left at the 
component model team level, or managed by EPIC. 

○ Security Considerations: Software security has become a significant concern in 
modern software development. As the UFS codes are distributed as source codes 
rather than executables, security risks have generally not been considered to be 
significant, and can be mostly avoided by a requirement that all UFS code is 
provided as source code, and that executable contributions are not accepted. More 
recently, however, memory leakage of compiled codes has been identified as a 
potential security issue5. 

● Knowledge and expertise: 25 years ago environmental (weather) modeling was one of 
the core applications for HPC, and the physical scientists became the first software 
engineers on these systems. Nowadays, models are more complex and the field of HPC 
software engineering is more complex, which has resulted in a need for both specialized 
software engineers and specialized physical scientists to tackle software as a team. In 
such a team approach it is important to maintain thorough scientific understanding of the 
codes while rapidly adapting codes to diverse and varied computing platforms and 
modern coding practices. 

● Knowledge, expertise and optimization: combining the two bullets above, it is 

interesting to observe that in the late 1990s optimized codes could perform up to 50% of 
the nominal performance of the processor, measured as Floating Point Operations 
relative to a standard LINPACK benchmark test. Using this metric present operational 
codes at for instance NOAA and ECWMF now operate at only 3-4% of peak 
performance of the hardware. Data movement on processors now limits the amount of 
compute cycles that can be performed. Architectures moved away from enabling typical 
environmental problems (less work on more data) to image processing and AI (more 
work on less data). 

5 See, e.g., https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF 
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https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF


 

             
          

               
          

            
           
             

             
           

               
              

                 
             

             
            

             
      

 
 

 

 

  

○ A structural approach to mitigate this historical drop in efficiency requires a 
custom processor design for UFS-like models. With environmental modeling now 
representing only a minor part of the processor market, it is not realistic to expect 
that this is an economically viable approach for the UFS. 

○ Conversely, the small efficiency of present codes presents an opportunity that 
previously did not exist. Increasing the performance from 3-4% to 6-8% 
effectively corresponds to a monetary value equivalent to the value of the entire 
HPC budget. This implies that a major investment in code optimization is now 
much more justifiable than it would have been several decades ago. 

● Moving away from Fortran: Many of the UFS component models are still written in 

Fortran. Historically, Fortran has been used as it resulted in the most efficient HPC 
codes. As this no longer seems to be the case, and as the pool of Fortran programmers 
as well as compilers seems to shrink, code modernization should address a potential 
transition to more modern languages like Python and C++. Our present experience with 
hybrid-languages codes in the UFS indicates that language changes can be done 
incrementally on a module-by-module basis. Note that there are many AI/ML tools to 
help convert code to other languages. 
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3. Sampling ongoing activities 
As mentioned in the Introduction this position paper uses a sampling of opinions and activities 
related to, or relevant for, UFS code modernization. The sampling is achieved by informal 
interviews / discussions with relevant (potential) partners for the UFS, with an attempt to broadly 
cover the intended UFS community. The coverage of the community in this section is intended 
to be representative, not complete. Hence, whether or not a specific group has been interviewed 
here is not a statement of their importance in the UFS. The order of the interviews in the 
subsections below represents the time line of the interviews, some of which were scheduled, 
and some of which were meetings of opportunity. These interviews loosely covered all topics 
outlined in Section 2, and summaries of the interviews are gathered in Appendix A. 

The round of interviews and discussions associated with this report started with ongoing 
discussions with the UK Met Office specifically focused on the need to modernize and optimize 
the WW3 code, and to assure that associated work done by the UK Met Office would find its 
way into the formal code base. This discussion naturally moved toward a tag-up with EMC and 
EPIC on the status of software modernization at NOAA, and several meetings of opportunity 
with industry partners at the AGU and AMS annual meetings in December 2024 and January 
2025. The assessment of the state of development then shifted to invited talks at the UFS 
Steering Committee meetings of both the DOE E3SM team and GFDL on their software 
modernization efforts. Within NOAA this left the SENA program and NCEP Central Operations 
(NCO) as obvious targets for interviews. Finally, interviews were conducted with NOAA’s 
National Water Center (NWC) considering their recent systematic approach to modernizing the 
National Water Model (NWM). The discussions documented in the Appendix are augmented 
with outcomes of previous discussions with the NCAR CESM and MMM groups, and with 
considerations from previous discussions about alternative programming languages. 
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4. Moving forward 
The next step in this assessment was to identify common issues and action items by mapping 
the opinions and experiences documented in Appendix A to the general issues identified in 
Section 2. This is done here in two steps; Section 4.1 presents the above mapping, and Section 
4.2 presents suggested action items. Note that as this is a position paper by the author, the 
action items do not represent formal decisions or strategies adopted by NOAA. 

4.1. Summary of discussions 
The experiences and opinions summarized in Appendix A have been summarized here as 
follows. 

● Open Source and Open Science: There was no disagreement with the statement that 
open science is here to stay. Implementing efficient open-science workflows does remain 
a work in progress in scientific programming. 

● AI/ML: Even though AI/ML as a replacement of traditional physics-based numerical 
modeling was placed outside the scope of the present assessment, modernization of the 
traditional software will benefit greatly for AI/ML tools developed specifically for this 
purpose (See Appendix A.3). 

● Fault Tolerance: This is presently not considered a main issue with coding on 

supercomputers, with the exception of a need for modern codes to produce clear failure 
messages. 

● Load balancing: There are two main issues associated with load balancing; one is the 
need for code restructuring associated with general code optimization, and the other is 
the need for re-assessing coupling approaches for component models used in the UFS. 
Both topics will be addressed in the following two bullets. 

● Optimization: The interviews and discussions identified three focal areas of 
optimization; the first is general code optimization, the second is the selection of the 
programming language and the third is the use of utilities in general and Domain Specific 
Languages (DSLs) in particular. 

Data structures play a crucial role in optimizing code performance, particularly in 
complex modeling systems like the UFS. Different hardware architectures, such as CPU 
versus GPU, often require specific data layouts for efficient processing. Older codes tend 
to use global data structures that are no longer efficient both due to the growing size of 
compute domains, and due to the changing requirements for efficiency on evolving 
hardware architectures. Systematically re-designing a data structure in an established 
model represents a major coding effort, which could justify other major code changes 
such as a transition to a new programming language. 
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Switching from older languages like Fortran to languages such as Python and C++ 
can improve code efficiency, particularly in advanced modeling systems. The latter 
languages often provide better support for new hardware architectures like GPUs, 
leading to more efficient code. Moreover, these languages offer access to extensive 
libraries and tools that can streamline development and enhance performance. Note that 
the benefit from a change in language is likely to be much smaller than the benefit from 
going to more suitable data structures, irrespective of the language. Conversely, the 
need for a full code rewrite to drastically change data structures could well be considered 
as an opportunity to move away from Fortran at the same time. 

Experiments of various groups with changing to more suitable data structures and at 
the same time changing languages show speed-ups of codes on CPUs in the factor 2-5 
range, and for GPUs in the factor 10-30 range, with the understanding that these 
numbers are relative to Fortran codes that have not been recently optimized for the 
newer hardware. Note that other languages like Julia and Rust have been mentioned, 
but have not been used yet in component models relevant for the UFS. Note, 
furthermore, that Python and C++ are used in operations, but Julia and Rust are not yet. 

Various tools and Domain Specific Languages (DSLs) are emerging to aid in 
software modernization, particularly in the context of high-performance computing and 
scientific modeling. As with languages, there is no one preferred set of tools. GT4Py is 
used by various organizations with Python. DSLs used with C++ are Kokos (DOE), 
Psyclone (UK Met Office), DaCe + NDSL (GFDL) as documented in Appendix A. Earthkit 
of ECMWF contains both tools and DSL approaches. Complementary to these 
approaches, tools like GitHub Copilot and Codeium leverage AI for code completion and 
understanding, while Moderne automates large-scale refactoring and modernization. 

Note that the deployment of such tools on NCO's FISMA6-high security computers 
introduce unique challenges. Because the UFS is intended to support both research and 
operations, it is important to choose tools and DSLs that are both sufficiently 
cutting-edge to advance research, while being sufficiently mature to implement on a 
FISMA-high operational computer. 

● Coupling of component models: Coupling modernization for the UFS is a crucial step 

towards enhancing its efficiency. The initial ESMF/NUOPC API-level coupling approach, 
while effective for initial development, now presents limitations for load balancing and 
associated code optimization. Note that this issue is related to the issues with global 
versus localized data structures discussed above. 

As the UFS matures, a shift towards more integrated coupling of component models 
is necessary, enabling component models to interact more directly. This entails moving 
away from global API-level coupling and adopting a more functional, object-oriented 
approach. Technologies like the Flexible Modeling System (FMS), used within GFDL's 
component models, and the Basic Modeling Interface (BMI), employed by the National 
Water Model offer examples of closer and more localized component model coupling. 

6 Federal Information Security Management Act 
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● Code quality: There appears to be consensus among the interviewed groups that CI/CD 
(Continuous Integration/Continuous Deployment) and DevOps approaches have a 
profound positive impact on open source code quality. With the UFS being an ecosystem 
of many communities, the principles of such approaches rather than a dictate of 
associated workflows is appropriate for the UFS. 

A key element of such approaches is automating testing as part of the development 
workflow, which in turn is strongly associated with the level of coupling and coherence of 
code from a general software perspective (see discussion of coupling in Section 2). 
Ideally, associated test suites are (automatically) applied at a granular level of the 
development. The UFS contributors observed that many codes have been “retrofitted” 
with functional regression testing. Such testing is becoming prohibitively expensive. 
There appears to be consensus that code management at the UFS needs to transition 
rapidly to the much cheaper unit testing (associated with general decoupled coding 
practices) as the foundation of the development workflow, whereas there may be value 
in retaining more traditional regression tests for occasional testing, and to compare 
model options at a foundational physical level. 

Software security is crucial for protecting software and data from unauthorized 
access and vulnerabilities. It involves secure design, development, and maintenance 
throughout the software lifecycle. Traditionally, UFS type software has been considered 
“safe” as source codes rather than executables are shared. Note that this view appears 
to shift as executable codes generated by the UFS may have security vulnerabilities 
associated with memory inconsistencies. In the interviews the latter was mentioned as a 
benefit of using the Rust programming language, which is designed around memory 
integrity. 

● Knowledge and expertise: There is limited consensus on the knowledge and expertise 

being an issue in particular in the context of using Fortran. Some organizations see this 
as a systemic issue, others see this as a training issue. Concerns about the diminishing 
support of the community in particular for upkeep of Fortran compilers is a rising concern 
that could become a Continuity of Operations (COOP) issue (see next bullet). In a more 
general sense several organizations are concerned about single points of expertise / 
failure in particular in the contexts of Artificial Intelligence and Machine learning 
becoming an integral part of environmental modeling. 

● Moving away from Fortran: Moving away from Fortran is starting to happen, both due 

to a reduced performance of its compilers, and due to a potential of losing high-quality 
compilers with a shrinking user group for this language. Presently the two predominant 
choices of alternative languages are Python using GT4Py, and C++. For both languages 
Domain Specific Languages (DSL) have been used for optimization across hardware 
solutions. More modern languages like Rust or Julia7 or Rust8 may be suitable for a 
systematic modernization. Julia has seen some recent high-performance applications in 

7 https://julialang.org, first released in 2012, version 1.0 released in 2018. 
8 https://www.rust-lang.org, sponsored since 2009 by Mozilla, version 1.0 released in 2015. 
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environmental modeling (e.g., Silvestri et al. 2024, Wagner et al. 2025). Presently we 
are not aware of mature Rust applications in this field, but Rust seems to have tools and 
features making it potentially very suitable for environmental modeling. For the UFS it is 
important to address the feasibility of using these languages including DSLs in an 
operational FISMA-high security environment. 

4.2. Action Items 
The present assessment highlights the absence of a single, dominant approach to software 
modernization within the UFS community. Moreover, given the diversity of components and 
contributors within the UFS ecosystem, a one-size-fits-all approach to software modernization is 
not only impractical but potentially detrimental, as it risks stifling innovation and failing to 
address the specific needs of individual component models and tools. Finally, the diversity of 
programming languages and modernization approaches within the component models and tools 
within the UFS is currently not a significant hindrance and effectively fosters innovation. All 
these observations necessitate a strategic approach focused on high-level guidance rather than 
rigid mandates. Moreover, actions should prioritize facilitating localized efforts by the 
responsible "owners" of UFS components. 

With this, the following action items and recommendations have been distilled from the 
present assessment. 

1) The UFS community should not provide a detailed software modernization strategy, but 
instead should start tracking modernization efforts in the UFS, preferably as part of the 
UFS inventory9 that was started in 2024 and that is intended to be updated annually. A 
key benefit of this action will be that it identifies which parts of the UFS need additional 
attention with respect to software modernization. This inventory can be used by those 
who provide resources to the UFS development, operations, and maintenance to 
prioritize their efforts and funding. 

2) Within the UFS concept, responsibilities for code management and hence modernization 
rest with the “owners” of the code, i.e. with the main contributors to component models, 
tools etc. Considering the experiences documented in this report, the owners are 
strongly encouraged to 

a) implement decoupled general software approaches with unit testing as a 
foundation in the community open-science workflow used for the specific element 
of the UFS, 

b) start or accelerate strategically moving away from Fortran, 

c) while assuring that other languages and DSLs, middleware and tools approaches 
are enabling both cutting edge research and are sufficiently mature for use on 

9 https://ufs.epic.noaa.gov/wp-content/uploads/2024/08/UIFCW_2024_poster.pdf 
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FISMA-high (operational) HPC systems. The latter will benefit from early and 
recurring interactions with NCO for NOAA operations. 

Note that as the UFS is mostly a coalition of the willing, the UFS governance leadership 
can only encourage the owners of parts of the UFS to follow these recommendations. 

3) An integral part of the code modernization needs to be the transition to the next 
generation coupling approach for component models. To start this process the UFS 
needs to task a Working Group to develop a draft plan, including 

a) the selection of a more closely coupled methodology that is rooted in a 
community open-source approach, 

b) an assessment if this will become the new approach, or an alternative approach 
next to the present ESMF / NUOPC approach, 

c) and an assessment of the feasibility of formal collaborations, as we had in the 
NWS- OAR - NCAR Memorandum of Agreement on coupling infrastructure that 
has supported the development of the present coupling capabilities in the UFS. 

It has been noted that reducing the close coupling from a general software architecture 
perspective and increasing close coupling from a model component coupling perspective 
may be conflicting development directions and therefore will require additional 
discussion and assessment. 
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A. Data Mining 

Documentation of the results of the informal interview processes described in Section 3 are 

gathered here. Note that the documentation identifies the individuals that were included in this 
process. Note that the references presented in the Appendix are gathered with the core 
References in the main body of this report. 

A.1. UK Met Office 

On December 3 2024 I had an open discussion with Andrew Saulter, Christopher Bunney, Juan 
Castillo and Christofer Stokes. Whereas the initial request for a discussion came from the UK 
Met Office regarding software modernization specifically for WW3 31 , a significant part of the 
discussion centered on software modernization in general. Key elements of code modernization 
at the UK Met Office are: 

● Next Generation Modelling Systems Programme: this programme is designed to 
reformulate and redesign the Met offices weather and climate research and operational 
production systems, to allow them to fully exploit future super computer systems (Met 
Office, 2018 

● GungHo Project: The GungHo project highlighted the need for automatic code 
generation to develop new dynamical cores suitable for next-generation supercomputers 
(Met Office, 2021). 

● LFRic and PSyclone: The LFRic project, designed for future supercomputers, utilizes 
PSyclone to automate the generation of parallel code. This allows the Met Office to 
effectively leverage the power of advanced computing systems (Met Office, 2023). 

Our discussion went from the above general approaches used by the UK Met Office to a 
discussion on some of the topics identified in Section 2 with a focus on Chris Bunney’s code 
optimization work in WW3, with the following outcomes: 

● The UK Met Office does not consider fault tolerance something that needs to be 
addressed inside the codes. This does imply that the UK Met Office intends to make an 
effort for clear failure messages to be generated by the codes. 

● A key element of optimizing WW3 at the UK Met Office codes is the selection of the data 
layout, in particular the layout of the loop structures, and the use of derived data types. 
Using “tiling” in data structures appears to result in code that is efficient across hardware 
architectures. 

● The UK Met Office does most of its fundamental science using Python, although many 
incoming scientists tend to have used MatLab for basic science. Most engineering 
aspects of coding are done using C++ (similar to NOAA’s use of C++ in many 

31 This discussion was driven by the practical consideration that the UK Met Office had invested a significant effort in 
optimizing WW3 for use on GPUs, but that the main developer (Chris Bunney) was moving to other responsibilities at 
the UK Met Office. 
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infrastructure codes). The LFRic codes are still written in Fortran. With this, operational 
codes at the UK Met Office are multi-lingual with respect to coding languages. The UK 
Met Office expects their scientists and software engineers to be adaptable. 

● The UK Met Office tends to hire relatively new graduates as software engineers and 
often loses them. However, they presently have enough experienced scientists and 
software engineers to maintain some continuity of knowledge (including Fortran 
proficiency). An identified risk is AI, which will require further diversification of coding 
skills - and the thinner they spread themselves the more it carries risks of single points of 
expertise. 

● As is outlined in the first set of bullets in this section, the UK Met Office has been 
experimenting with automating code generation. In the discussion it became clear that 
the the Met Office and NOAA share concerns with respect to code robustness and 
reliability when using automatically generated codes in operations, although this is likely 
the way they will go with LFRic. 

Circling back to the starting point of the discussions with the UK Met Office, they expressed their 
keenness of continuing discussions about WW3 code modernisation. They did note that the 
pressures on making the code GPU compatible have reduced a bit recently, but that they would 
like to keep some momentum on what has been done so far and what will be needed to make 
the code more futureproofed for different architectures. 

A.2. Environmental Modeling Center (EMC) 
On December 16 2024 I had an open discussion with Jacob Carley and Ed Hartnett from the 
Environmental Modeling Center (EMC) . We loosely followed the potential issues described in 
the previous section with the following outcomes: 

● At EMC, regression testing is becoming prohibitively expensive in code management. 
With that EMC is moving toward unit testing as a code QC technique that has much less 
overhead, in particular for the shared libraries in the production suite (nceplibs). Ed 
expressed this as a need to decouple the code base to efficiently move towards unit 
testing. Note that in this context, coupling refers to software coupling rather than model 
coupling, see the “coupling” topic in Section 2. After our discussion, EMC formally 
committed to transition to a unit testing approach. 

● EMC voiced the intent to go to a “devops” approach to development where the top of the 
core repository is deployable code. The top of the code repository would tentatively be 
used in all development, whereas tags are used in operations. 

● For EMC costs of doing development in containers is acceptable as it saves 
development and Human Resource costs with portability in particular during 
development. This may become more important in the future when we expect some 
operational work to move to the cloud. 

● Acknowledging that a unified workflow is still not well implemented in the UFS, EMC 
noted that the Unified Workflow (UW) tools look promising. Since the interview, the EPIC 
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team working on the UW tools has provided presentations both at EMC and at one of the 
UFS open meetings. 

● EMC noticed that a large part of the code is still written in Fortran, but that UFS 
applications have long been multi-lingual, in particular with other languages being 
prevalent in UFS coupling tools and in MET. EMC sees no direct need or urgency in 
moving away from Fortran altogether. 

● Note that EMC presently has no access to GPUs in operations. This is partially a catch 
22, as lack of operational codes able to fully use GPU power is likely feeding into 
choices made in NOAA’s HPC contracting. 

A.3. Involvement with Industry 
NOAA's engagement with industry partners generally occurs at professional meetings of 
organizations like the American Meteorological Society (AMS), the American Geophysical Union 
(AGU), the International Association of Emergency Managers (IAEM), and the National Weather 
Association (NWA). Such interactions fosters knowledge and information exchange, and may 
lead to collaboration on weather and climate research, technology, and service delivery. 

NOAA's� engagement�with�industry�includes�scientific�and�engineering�support,�facilitated�
by�programs�like�ProTech32,�which�provides�NOAA�with�access�to�a�wide�range�of�professional,
scientific,� and� technical� services.� This� encompasses� critical� areas� such� as� systems�
engineering,� IT� infrastructure� management,� and� engineering� support� for� complex�observing�
systems� like� satellites� and� radar� networks.� Critical� for� software� modernization,� this� also�
includes�direct�support�for�the�development�and�enhancement�of�the�Unified�Forecast�System�
(UFS)�through�support�services�contracts�and�through�the�Earth�Prediction�Innovation�Center�
(EPIC,�see�below).�

At� the� December� 2024� AGU� and� January� 2025�AMS�conferences,�I�had�discussions�with�
representatives� from� Booz� Allen� and� AWS� as� part� of� the� above� described� process� of�
continuous�engagement.�Part�of�the�discussions�relevant�for�the�present�assessment�focused�
on� the� utilization� of� AI� tools� providing� solutions� to� automate� code�analysis,�refactoring,�and�
testing� was� a�key�focus,�with�the�aim�of�accelerating�the�modernization�of�complex�software�
systems�like�the�Unified�Forecast�System�(UFS).�

The� assessment� below� provides� a� short� sampling� of� AI� tools� relevant� for� software�
modernization.� The� list� is� intended� to� illustrate� the� large� number� of� tools� available,� is� not�
intended� to� be� complete,� and� is� expected� to� change� rapidly.� Note� that� the� selection� of�
specific� AI� tools� for� implementation� may� be� influenced� by� existing� contractual� agreements�
and�partnerships.�

● Key�Challenges�and�AI�Applications:
○ Legacy� Fortran� Code:� AI� tools� can� assist� in� translating� and� modernizing� this�

code.�AI�can�also�help�in�parallelizing�Fortran�code�for�HPC.�
○ Optimization� for� HPC:� AI� can� optimize� code� for� HPC� architectures.� Machine�

learning�can�create�surrogate�parts�of�models�or�models.�

32 https://www.noaa.gov/acquisition-grants/protech 
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○ Data�Assimilation:�AI�can�improve�data�assimilation�techniques.�
○ Code�Refactoring�and�Optimization:�There�are�AI-powered�code�analysis�tools.�

Generative�AI�can�be�used�to�automate�refactoring.�
● Examples�of�Tools�and�Their�Companies:

○ GitHub�Copilot�(Microsoft):�AI-powered�code�completion.�Helps�understand�and�
modify�legacy�code.�

○ Codeium� (Ex-Tabnine):� AI-powered� code� completion� and� chat� functionalities.�
Generates�and�modifies�numerical�modeling�code.�

○ Moderne� (Moderne,� Inc.):� Automates� large-scale� code� refactoring� and�
modernization.�Migrates�legacy�codebases�to�modern�architectures.�

○ Google� Colab:�A� free� cloud-based� Jupyter� notebook� environment,� allowing� for�
collaborative�coding�and�data�analysis.�

○ Tools�utilizing�transformer�models:�Many�companies�are�creating�tools�that�use�
transformer� models,� that� can� analyze� large� code� bases,� and� assist� in� language�
translation.� Many� large� cloud� providers,� like� Amazon(AWS),� Google(Google�
Cloud),� and� Microsoft(Azure)� are� creating� AI� code� assistance� tools� that� utilize�
transformer�models.�

Considering NOAA’s and my interest in the topic, here is a sampling of AI-Powered Unit Testing 

Tools and Techniques: 

● AI-Driven�Test�Case�Generation:�
○ AI,� particularly� machine� learning,� can� analyze� code� and� automatically� generate�

test�cases�that�cover�various�code�paths�and�edge�cases.�
○ This� helps� to� ensure� thorough� testing� and� reduces�the�manual�effort�involved�in�

creating�test�suites.�
● Property-Based�Testing�with�AI�Assistance:

○ Property-based� testing� involves�defining�properties�that�the�code�should�satisfy,�
and�AI�can�help�to�generate�test�data�that�verifies�these�properties.�

○ This�can�be�particularly�useful�for�testing�complex�numerical�algorithms.�
● Mutation�Testing�with�AI�Support:

○ Mutation� testing� involves� introducing�small�changes�(mutations)�to�the�code�and�
checking�if�the�test�suite�detects�these�changes.�

○ AI� can� help� to� automate� the� generation� of� mutations� and� analyze� the�
effectiveness�of�the�test�suite.�

● Static�Analysis�with�AI�Enhancement:
○ Static�analysis�tools�analyze�code�without�executing�it,�identifying�potential�errors�

and�vulnerabilities.�
○ AI�can�enhance�static�analysis�by�learning�patterns�of�errors�and�suggesting�more�

effective�checks.�
● Test�Code�Generation�from�Natural�Language:

○ Some� emerging� tools� are� using� Natural� Language� Processing� (NLP)�to�generate�
unit�tests�from�natural�language�descriptions�of�the�code's�functionality.�This�can�
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help�to�bridge�the�gap�between�requirements�and�test�implementation.�

Associated� with�these�general�testing�topics�are�a�small�sample�of�available�tools,�subject�to�
the� same�context�and�limitations�as�mentioned�with�the�list�of�more�general�tools�mentioned�
above.�

Tools�and�Technologies:
● Diffblue�Cover:�This� tool� uses� AI� to� automatically� write� unit� tests� for� Java� or� Python�

code,� aiming� to� increase� test� coverage� and� reduce� the� time� spent� on� manual� test�
creation.�

● Parasoft� C/C++test:� automates� the� creation� and� execution� of� unit� tests,� helping� to�
ensure�that�individual�code�components�function�correctly.�

● Tools�that�utilize�Large�Language�Models(LLM's):� Many� companies� are�working�on�
tools� that� will� utilize� LLM's� to� create� unit� tests�based�off�of�code�analysis,�and�natural�
language�prompts.�This�is�an�emerging�field,�and�will�likely�improve�rapidly.�

A.4. Earth Prediction Innovation Center (EPIC) 
The Earth Prediction Innovation Center (EPIC)33 represents a unique initiative, designed to 
accelerate advancements in NOAA's operational weather and seasonal forecast systems, 
particularly in direct support of the Unified Forecast System (UFS). Established in accordance 
with the Weather Research and Forecasting Innovation Act (WRFIA) of 2017 (Public Law 
115-25), and further defined by the National Integrated Drought Information System 
Reauthorization Act of 2018 (Public Law 115-423), EPIC serves as a hub for collaborative 
partnerships between government, academia, and industry (e.g., Uccellini et al. 2022). 

EPIC’s present operations were initially defined by two workshops held in 2019. An internal 
NOAA workshop in March 2019 laid the groundwork, defining EPIC's scope and exploring its 
role in enhancing model development, and culminating in a vision paper (Cikanek et al. 2019). 
This was followed by the broader EPIC Community Workshop in August 201934 , which engaged 
the "weather enterprise" – including academia, public, and private sectors – in the planning, 
development, and strategy for EPIC (WPO, 209). These two meetings still form the foundation 
EPIC as outlined on the EPIC web page35 . 

EPIC now focuses on the following seven investment areas: 
● External engagement and community. 
● Software engineering. 
● Software infrastructure. 
● User support services. 
● Cloud-based high performance computing. 
● Scientific innovation. 
● Management and planning. 

33 https://epic.noaa.gov/about-epic 
34 https://wpo.noaa.gov/an-overview-the-earth-prediction-innovation-center-epic-community-workshop 
35 https://wpo.noaa.gov/epic 
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With this, EPIC supports the “infrastructure” of community modeling, including modernizing 
collaboration techniques through providing user support and supporting a CI-CD pipeline. Actual 
software modernization is limited to infrastructure software including containerization of 
applications and workflow approaches, but generally does not focus on the component models 
in coupled UFS applications. 

A.5. CICE sponsors meeting and UFS presentation on DoE 
E3SM modernization efforts 

At the December 16, 2024 CICE consortium sponsors meeting, code modernization was briefly 
discussed, with a focus on moving to Python and C++ for performance, as well as due to 
concerns with being able to get programmers capable of, and/or interested in, programming in 
Fortran. 

This discussion led to an invitation for Elizabeth Hunke to provide a presentation on software 
modernization at DOE in general and for CICE in particular at a UFS Steering Committee open 
meeting. The CICE Consortium: New model developments and plans presentation was given on 
March 7, 2025. It focussed mostly on the CICE model from a physical perspective, but also 
dealt specifically with code modernization efforts at the Department of Energy (DOE). The latter 
part of the presentation focussed on more mature efforts of code optimization of the OMEGA 
ocean model and SCREAM atmosphere model, and more on implications for similar ongoing 

36 37 efforts for CICE , all within the E3SM model . With that the following relevant observations and 
conclusions were taken from the presentation 

● Code Refactoring: Refactoring existing code for improved memory access patterns and 
computational performance is essential for optimal code efficiency. 

● Hardware Evolution: Adapting to hardware evolution. For older hardware, it has been 
best practice to focus on floating-point operations. For modern hardware, optimization 
needs to focus on bandwidth limitations to memory. 

● Vectorization: Vectorizing the EVP (elastic-viscous-plastic dynamics) kernel in CICE 
and in other parts of the code is essential for better performance. 

● C++ Rewriting: DOE is rewriting Icepack/Thermodynamics in CICE in C++ for faster 
performance, particularly on GPUs. 

● Kokkos Implementation: DOE uses Domain Specific Languages (DSL) and Kokkos 
(Trott et al., 2022) for automated low-level code generation for CPUs or GPUs in the 
OMEGA ocean model. This experience is expected to inform a similar modernization for 
CICE. 

● Technical coding issues: The presentation identifies successful technical approaches 
such as (i) enabling the entire EVP calculation to be put onto a single node or GPU, (ii) 
Saving minimal information needed to reproduce / recalculate all quantities, (iii) using 
point-based domain decomposition, and (iv) keeping communications local. 

36 Note that presently CICE is part of the UFS whereas OMEGA and SCREAM are no. 
37 https://eesm.science.energy.gov/ 
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● Achieved performance improvement: computations were accelerated by a factor 2-5 
for CPUs and 30-35 for GPUs (see presentation for details). 

A.6. Geophysical Fluid Dynamics Laboratory (GFDL) UFS 
presentation 

Back to back with the UFS Steering Committee presentation of DOE software modernization 
efforts described in the previous section, Rusty Benson of the Geophysical Fluid Dynamics 
Laboratory (GFDL) gave the presentation Pace and PyFV3: Performance-portable computing 
using GT4py on March 7, 2025. 

The presentation emphasizes the need for models to run efficiently on both CPU and 
GPU-based supercomputers, especially with the rise of GPU-dominant exascale machines. 
GFDL aims to achieve this by developing "Pace," a Python port of the SHIELD weather model 
designed for performance-portable computing using GT4Py. The following bullets summarize 
the presentation 

● PyFV3, PySHIELD and Pace: PyFV3 (Dahm et al., 2022) is the Python port of the FV338 

dynamical core. PySHIELD (Dahm et a., 2023) is the GT4Py port of SHIELD's39 physics 
parameterizations. Pace (Dahm et al., 2023) is built from PyFV3 and PySHIELD. 

● Technology used: 
○ Python: Python is highlighted as an attractive language for model development 

due to its accessibility, extensive libraries, and integration with AI/ML tools. 
○ GT4Py: a Domain Specific Language (DSL) for weather modeling (e.g., Paredes 

et al., 2023). 
○ DaCe40: a separate compilation framework for data flow optimization, with key 

technologies enabling performance portability (Ben-Nun et al. 2019). 
○ NDSL: The NOAA/NASA Domain Specific Language Middleware simplifies 

model development by providing abstractions for common computational patterns 
and easing the use of GT4Py and DaCe. 

○ FMS41: Flexible Modeling System coupling tools used in the GFDL modeling 
ecosystem. 

○ PyFMS: Python interface to the FMS, allowing Pace to integrate into the GFDL 
ecosystem. 

● Scientific Targets: Initial applications of Pace include large eddy simulations for cloud 
studies and high-resolution global studies of tropical cyclones. 

● Future Plans: The goal is to achieve science-readiness of Pace, enhance its 
components, and bring it fully into the GFDL modeling system. Collaborations with 
NASA, ETH Zurich, and NOAA's Global Systems Laboratory are ongoing. 

38 https://www.gfdl.noaa.gov/fv3 
39 https://www.gfdl.noaa.gov/shield 
40 https://github.com/spcl/dace 
41 https://www.gfdl.noaa.gov/modeling-systems-group-fms 
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Note that FMS is used inside component models of the UFS, but not as a general coupling tool 
in the UFS. It does represent a technology that allows for closer coupling than the present 
coupling in the UFS at the API level. 

A.7. European Centre for Medium Range Weather Forecasting 
(ECMWF) 

NOAA and The European Centre for Medium-Range Weather Forecasts (ECMWF) have had 
several informal discussions on software modernization for roughly a decade. For instance, the 
topic was discussed in the hallways at the 2016 Annual Seminar of ECMWF, during a personal 
visit to ECMWF in June 2022, and during a ECWMF workshop on wound waves and coupling in 
2024. The notes of these meetings and an internet search using Gemini resulted in the following 
bullets. 

● Focus on Scalability and Performance: ECMWF deals with massive datasets and 
computationally intensive models, requiring continuous optimization for 
high-performance computing (HPC) environments. With ECMWF historically focusing on 
a single (coupled) model on a single target hardware architecture, they have been able 
to focus on this arguably better than any other weather and climate prediction center. 

● GT4Py: ECMWF is involved in projects using GT4Py (e.g., Paredes et al., 2023), which 
allows for the encoding of stencil operators in a hardware-agnostic way. This enables 
more concise and maintainable scientific applications. GT4Py then translates these 
abstract definitions into high-performance, low-level code. This is a very important part of 
their code modernization strategy. 

● Languages: GT4Py is being used in projects that are re-writing parts of the Integrated 
Forecasting System (IFS) into python (e.g., Ubbiali et al., 2025). 

● Earthkit: ECMWF has developed Earthkit (ECMWF, 2024), a Python framework 
designed to simplify data access, processing, and visualization. Earthkit promotes code 
reusability and componentization, which are key aspects of modern software 
practices.This system is designed to allow for greater interoperability between different 
parts of their software systems. 

● General Modernization Trends: ECMWF, like many other forecast centers, is moving 
towards more modular and flexible code structures. This includes adopting modern 
software development practices and leveraging advancements in supercomputing. They 
are also starting to move away from a focus on in-house model development by 
increasing the use of external software, and of open development. 

The topics gatherered in Section 2, and the above bullets were shared with Any Brown from 
ECMWF who confirmed on May 12 2025 the contents of the above bullets and provided some 
additional references. He also shared that ECMWF has recently had more discussions about 
moving away from Fortran, but that these discussions have not been shared with the general 
public yet. 
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A.8. Software Engineering for Novel Architectures (SENA) 
On March 26, 2025 I had a discussion with Frank Indiviglio about the NOAA Software 
Engineering for Novel Architectures (SENA) program. This program has existed for several 
decades, and as a fun fact, fully funded the original development of WAVEWATCH III from 1993 
through ca. 1998. Due to its limited funding, SENA has traditionally focused on specific projects 
regarding high-payoff optimization on the “hardware of the day” used at NOAA. More recently, 
SENA has been focussing on more systematic approaches dealing with exascale computing 
and the transition of CPU to GPU hardware. Examples of the latter are the exascale data and 
computing studies of Govett et al. (2024), and efforts to port the the GFDL models to new 
computer architectures by converting the code to Python (e.g., Dahm et al, 2022, 2023). With 
this, SENA efforts inform the present study though targeted software innovation projects, and 
should be considered without NOAA as a resource for UFS software modernization. 

Frank Indiviglio did point out that the need to move away from Fortran is not just driven by 
the availability of programmers fluent in Fortran. He noted that the number of viable Fortran 
compilers becomes smaller and smaller, and that the present Fortran compilers may no longer 
result in the most efficient codes on HPC. If the availability of Fortran compilers erodes even 
more, this may become a serious Continuity of Operations (COOP) issue for operational 
environmental modeling. 

A.9. NCEP Central Operations (NCO) 
I had a discussion on 5/9/2025 with David Michaud, the director of NCEP Central Operations 
(NCO). NCO is responsible for the operational Production Suite of the NWS and broader NOAA, 
and as such represents the operational target of many UFS applications. The discussion 
followed the topics outlined in Section 2 with the following outcomes (including a review and 
additional information provided by Steven Earle). 

● Open source and open science: For many years, NCO has been leaning more into the 

use of open-source software. A good example of this is the support of NCO for 
developers to use Python and some of its tool sets, and incorporating the language and 
its tools in operations. Adopting the UFS approach to community-developed operational 
applications is a natural extension of this move to more open-source software. 

○ This has led to the need for maintaining more and more tools and libraries. This 
requires additional efforts by NCO, but this is still manageable. 

○ Note that for operationalizing community-developed applications NCO requires a 
commitment of support for the software, which for community models is usually 
provided by EMC or other NOAA Line Offices. 

○ Adoption of community software in operations is complicated by the fact that the 
operational computers are considered to be high-security assets under the 
Federal Information Security Management Act (FISMA). This implies that there 
may be a delay for upgrades to community software to become available for 
operations, and this implies that developers should work with NCO early and 

9 



 

               
 

           
             
 

           
            
           

              
       

            
                

            
                
            

          
             
              

             
            

               
             

                  
              

        
                 

           
              

             
              

              
             

   
 
 

     
                

             
               

               

   

  

often to assure that packages that developers want to use can also be used in 
operations. 

○ All these separate issues strongly favor a continuous discussion between 
developers and NCO, starting at early development, rather than at the "handoff to 
operations”. 

● Fault tolerance: With computer architectures apparently moving away from massively 
parallel systems with relatively slow CPUs toward hybrid systems with much more 
powerful processors like GPUs, and with fault tolerance being addressed more 
systematically at the operating system level, NCO does not see fault tolerance of its 
biggest model as a significant rising issue. 

● Load balancing, Optimization, Coupling: With the operational HPC available to NCO 
typically used as close to capacity as is consistent with a 99.9% on time product delivery, 
code efficiency is of paramount importance. NCO general has some human resources 
for code optimization available as part of their HPC contracts. Note that by the nature of 
the contracts, the associated code optimization is project driven focusing on the 
available HPC hardware and the actual software applications in operations. 

● Code quality: Operational implementation standards can be found at their web site42 . 
● Knowledge and expertise: Support of the production suite operates in a three tiered 

structure. Tier 1 consists of 24/7 operators with responsibility for managing failure; They 
have basic helpdesk knowledge and can execute well documented procedures. If it’s 
outside that scope then they contact Tier 2 support; this consists of the operations team 
that has a more in depth understanding of the systems, applications and their 
dependencies. If Tier 2 support is unable to solve the problem then Tier 3 support is 
brought in. This support consists of the developers / code managers of the application 
with the most robust knowledge of the application. 

● Moving away from Fortran: As has already been noted in Section 2, the UFS and the 
NCO production suite are already inherently multi-lingual with respect to programming 
languages used. NCO presently does not have a major issue with finding or training 
programmers working with Fortran, but the potential risk of losing access to reliable 
Fortran compilers as identified above could become a serious COOP issue for NCO. In 
this context there is value in moving away from Fortran, and with the existing 
multi-lingual environment, this can be done incrementally until and unless we identify a 
hard COOP deadline. 

A.10. National Water Center (NWC) 
I had a discussion with Fred Ogden from the National Water Center (NWC) on 5/20/2025. The 
discussion focused mainly on the modernization efforts for the National Water Model (NWM) 
and the selected coupling approach in the new model. There was general agreement on a 
needed focus on community modeling, and the reduced focus on fault tolerance. The NWC is 

42 https://nws-hpc-standards.readthedocs.io/en/latest 
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not yet considering a systematic move away from Fortran The following paragraphs were 
provided by Fred Ogden. 

Attempts in 2019 to improve the modularity of the WRF-Hydro code used in the National Water 
Model (NWM) were impeded by the monolithic nature of the code, and its origins as a research 
code. An audit of the code by the GSA 18F group suggested a complete refactoring using 
modern coding practices with an emphasis on coupling interfaces and the use of standards. 
OWP embarked on creation of what is called the Next Generation Water Resources Modeling 
Framework (NextGen Framework) (Ogden et al. 2021). A series of interagency discussions 
involving NOAA/USACE/ USGS/USBR/DOE identified use cases. The Basic Model Interface 
(BMI) model coupling standard version 2.0 (Hutton et al, 2020) was identified as suitable for 
constructing the National Water Model running different models and process modules in 
different parts of the country. The Open Geospatial Consortium, WaterML 2.0 Part 3 Hydrologic 
Features (HY-Features) conceptual data model was selected as suitable to describe the surface 
water hydrologic features of the landscape. 

Hydrologic phenomena are often discontinuous in space and time and governed by highly 
uncertain processes and exhibit threshold behaviors. Because of this, models to predict the 
hydrologic response of a region to atmospheric forcing tend to rely on conceptualizations. The 
BMI model coupling standard provides a “thin middleware” standard for model coupling. The 
BMI standard consists of approximately 45 function definitions that allow an external driver 
program to initialize, step through time and finalize operation of a model code. It also provides 
a means for the driver program to access and exchange model states and parameters for 
models that use a variety of discretizations. For a model to comply with the BMI standard it 
must allow external control of its march through time. Models may retain internal timestepping 
for numerical stability and optimal performance, but must provide control to a driver program 
through BMI interface at specified intervals. 

The BMI interface definition is flexible enough to support a variety of programming 
languages. In accordance with interagency discussions, the NextGen Framework supports 
codes written in C, C++, Fortran and Python. There are some challenges regarding the BMI 
interface with languages that do not support pointers directly, but these can be mitigated using a 
number of approaches. 

A.11. Additional observations 
The interviews and meetings reported on in this Appendix did not occur in a vacuum, but are the 
extension of a long ongoing effort, as its subjects have been addressed in many other meetings. 
The last sub-section of the Appendix documents some selected relevant outcomes from earlier 
and separate discussions. 

● NCAR / CESM: The Community Earth System Model (CESM) of the National Center for 
Atmospheric Research (NCAR) is closely related to the UFS through its shared 
infrastructure that was co-developed using a formal Memorandum of Agreement as 
mentioned in the body of the report. With that, the UFS tends to focus on shorter 
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“weather” forecast time scales, whereas the CESM focuses on longer “climate” forecast 
time scales. With that, it could be expected that both the CESM and UFS community 
have similar needs and interest with respect to software modernization. 

A casual assessment of CESM work presented in professional meetings suggests 
that the main focus of the CESM group is not on structural software optimization and 
modernization, but on developing new modeling techniques for component models of the 
CESM. An example of such work is the development of the PiCLES wind wave model 
that uses a “particle” description of wave fields rather than the spectral description used 
in WW3 (Hell et al. 2023) to reduce the dimensionality of the problem and hence create 
much cheaper models for climate applications. It appears to be a fair observation that 
CESM uses lower resolution grids for forecasts with much longer forecast horizons, and 
therefore is less negatively impacted by the present API level coupling techniques 
shared by the UFS and the CESM.. 

● NCAR / MPAS: The Mesoscale and Microscale Meteorology (MMM) Laboratory of 
NCAR has developed the Model for Prediction Across Scales (MPAS). The dynamical 
core of this model is presently being integrated in the UFS infrastructure for use for 
convection allowing weather forecasting. Even at the initial stages of this development, it 
is clear that the present coupling techniques in the UFS are inefficient for the target 
spatial scales and associated grid size for MAPS applications, contrary to the above 
described experiences with the CESM. This implies that MPAS applications in the UFS 
are likely to benefit significantly from more integrated coupling techniques. Initial 
assessments are that the MPS coupling requires “local” approaches to coupling rather 
than the inherent “global” (i.e. considering the entire model grid) approach used in 
ESMF. 

● Computer Languages in Industry: Complimentary to discussions with representatives 
from industry addressed in Appendix A.3, the UFS has direct activities with commercial 
modeling groups. In a recent discussion with Pieter Smit from SoFar Ocean, he pointed 
out that the beggar players in the AI and cloud sectors of HPC are moving to Rust as a 
programming language. Due to the inherent support from large industry partners, and 
the open-source nature of Rust, this might be another language to consider for the UFS. 

Rust is a modern programming language known for its strong emphasis on safety, 
speed, and concurrency. It offers memory safety without sacrificing performance, as 
Rust achieves speeds comparable to C and C++. Additionally, Rust's ownership system 
and thread safety features make it excellent for building reliable and efficient concurrent 
https://docs.google.com/document/d/1NlbX6Qlcf3FpkM2mrmp3zdkXNOlS6IDWw-glM2Z 
0e-E/edit?tab=t.0applications, crucial for tasks like system programming, web 
development, and high-performance computing. 

Rust and C++ share similarities in their performance, suitability for systems 
programming, and focus on low-level control. However, they differ significantly in their 
approaches to memory safety and error handling. Rust's emphasis on safety and its 
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modern features make it an attractive choice for new projects, while C++ remains a 
powerful option for existing projects and performance-critical applications. 

B. Revision history 
The Table below identifies revisions of this document. 

Version Date Description 

1.00 7/14/2025 First version completed 
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