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Abstract Estimates of the surface wind field in a tropical cyclone (TC) are required in real time by
operational forecast centers to warn the public about potential impacts to life and property. In‐situ aircraft data
must be adjusted from flight level to surface using wind reductions (WRs) since the aircraft cannot fly too low
due to safety concerns. Current operationalWRs do not capture all the variability in the TC surface wind field. In
this study, an observational data set of Stepped FrequencyMicrowave Radiometer (SFMR) surface wind speeds
that are collocated with flight‐level predictors is used to analyze the variability of WRs with respect to aircraft
altitude and TC stormmotion and intensity. The SurfaceWinds fromAircraft with a Neural Network (SWANN)
model is trained on the observations with a custom loss function that prioritizes accurate prediction of relatively
rare high‐wind observations and minimization of variance in the WRs. The model is capable of learning
physical relationships that are consistent with theoretical understanding of the TC boundary layer. Radar‐
derived wind fields at flight level and independent dropwindsonde in‐situ surface wind measurements are used
to validate the SWANNmodel and show improvement over the current operational procedure. A test case shows
that SWANN can produce a realistic asymmetric surface wind field from a radar‐derived flight‐level wind field
which has a maximumwind speed similar to the operational intensity, suggesting promise for the method to lead
to improved real‐time TC intensity estimation and prediction in the future.

Plain Language Summary Extreme tropical cyclone (TC) winds can damage life and property.
Aircraft provide useful data within TCs for forecasters to estimate the speed of damaging surface winds, but due
to safety concerns much of the data comes from aircraft flight level several kilometers above the surface.
Formulas for wind reductions (WRs) are used to reduce flight‐level wind to its expected value at the surface.
However, the actual WRs can vary with TC wind structure and storm motion, such that current operational WRs
are not capable of accurately accounting for these complicating factors. In this study, these factors are analyzed
and the results are used to train a neural network (NN) model with observational data to predict a surface wind
field from aircraft observations and other TC information. The model is called SurfaceWinds fromAircraft with
a Neural Network (SWANN), and it prioritizes accurate predictions of high‐wind values given their importance
to intensity estimation and damage potential. Validation of the model with data from past flights into TCs shows
that SWANN improves on the current operational prediction formula. A test of a recent case shows SWANN is
capable of producing accurate surface wind fields that can assist forecasters in real time.

1. Introduction
Operational forecasting centers such as the U.S. National Hurricane Center (NHC) are tasked with estimating and
forecasting characteristics of the tropical cyclone (TC) surface wind field to warn the public on potential impacts
and hazards. Accurate estimation of the maximum sustained, or 1‐min average, wind speed of the TC at 10‐m
altitude in marine‐exposure conditions (Vmax) is important, yet it is almost never measured directly and
instead must be estimated from remote sensing or proxy in‐situ measurements above the surface. The most
damaging winds are often located at the radius of maximum winds (RMW), typically located within the TC
eyewall. In addition to the maximum wind, forecasters must estimate and forecast the radius of hurricane force
winds (R64; 64 kt, where 1 kt ∼ 0.514 m s− 1), gale force winds (R50; 50 kt), and tropical storm force winds (R34;
34 kt) in quadrants to define the spatial distribution of the TC surface wind field (Sampson & Knaff, 2015). The
intensity and wind radii are critically important for decision making by relevant partners and other users and
therefore require as accurate an estimation as possible.
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The TC surface wind maximum occurs within the turbulent planetary boundary layer (PBL) where reconnais-
sance aircraft cannot safely fly, which makes in‐situ measurements of Vmax difficult to obtain over the open ocean.
In‐situ wind observations are available at flight level along the flight track fromU.S. Air Force Reserve Command
(AFRC) C‐130J Hercules and National Oceanic and Atmospheric Administration (NOAA) WP‐3D (hereafter P‐
3) aircraft. Greater spatial coverage is possible when data from tail Doppler radars (TDRs) aboard the NOAA P‐3
Hurricane Hunter aircraft are used for TDR‐based 3‐dimensional wind analyses in regions where scatterers are
present (Lorsolo et al., 2013). TDR‐based wind analyses cannot produce reliable winds near the surface due to
partial filling of the radar beam by the surface and sea clutter at the lowest levels (DesRosiers & Bell, 2024).
Estimates of surface wind can be obtained from aircraft observations by multiplying the flight‐level wind by a
wind reduction (WR) factor (e.g., Franklin et al. (2003); Powell et al. (2009)), which is the ratio of the surface
wind speed to the flight‐level wind speed. The focus of this study is to develop an improved formulation for WR
using machine learning. Machine learning (ML) is gaining considerable traction for handling large data problems
in atmospheric science (Boukabara et al., 2019). Recent success in accurately reconstructing the wind field
structure of a TC using sparsely sampled data with a neural network (NN) demonstrates ML is a capable tool for
this task (Eusbi et al., 2024).

Franklin et al. (2003) empirically derived WRs using wind profiles along the falling trajectories of Global Posi-
tioning System (GPS) dropwindsondes. Dropwindsondes can record windmeasurements at frequencies of 2‐Hz or
4‐Hz, which may be representative of near‐instantaneous higher gusts, so an average of the lowest 150 m of
observed winds (WL150) is reduced to the surface using the profiles to obtain an estimate of the 1‐min sustained
wind. Advection of dropwindsondes as they fall from aircraft to the surface prevents their profiles from being truly
vertical and makes the exact collocation of in‐situ surface wind observations with flight‐level wind observations
impossible, so a statistical approach was used. The WRs calculated in Franklin et al. (2003) are valuable for
operational Vmax estimation at the NHC. However, these WRs were intended for locally determining Vmax and
significant radii from point measurements of wind, making them incapable of accounting for asymmetries in the
full surface wind field of a TC.

A key mechanism that produces asymmetries in the surface wind field is variation in the frictional surface drag
around the storm due to stormmotion (Shapiro, 1983). TC‐motion‐induced asymmetries in the wind field result in
asymmetric WRs around the TC with lesser reduction to the surface to the left of motion. This asymmetry in WRs
was reasonably reproduced in a linear PBL model constructed by Kepert (2001) that produces an asymmetric jet
due to strong inward advection of angular momentum and supergradient flow in the PBL. Nonlinear effects as
well as vertical advection produce a stronger boundary layer jet and asymmetry that is more consistent with
observed behavior (Kepert & Wang, 2001). The magnitude of storm motion and resulting surface drag asym-
metries can move the surface RMW radially inward with increasing translation speed of a TC (Williams Jr, 2015).
The outward slope of the TC eyewall is also important to inner‐core WRs, as the maximum surface winds are
almost always located radially inward of the flight‐level RMW (Powell et al., 2009). Accurate prediction of WRs
is a challenging, complex, and non‐linear problem, which lends itself well to the strengths of ML over more
traditional approaches.

Despite the challenges, operational estimation of the 2D surface wind field remains an important operational and
research product. Most motion‐induced asymmetry can be captured by first two azimuthal wavenumbers 0 + 1 of
the TC wind field (Uhlhorn et al., 2014), but additional asymmetries from internal dynamics and variations in
surface characteristics can result in higher wavenumber structure. Knaff and Slocum (2024) designed an auto-
mated technique to reduce an observed flight‐level wind field to the surface using an asymmetry‐aware
formulation of the Franklin et al. (2003) WRs employed operationally. Although this method is successful at
producing bulk vortex surface wind field characteristics, its estimates of Vmax are often too low, and its quality
suffers when observational coverage is sparse. Kepert (2023) designed a parametric model capable of capturing
impacts of increased surface roughness over land that increases frictional drag on the winds in the PBL. This
method is an improvement in our understanding of frictional effects in the PBL, but is targeted for model
assimilation into surge and wave models instead of operational intensity and wind radii estimation.

In this study, we utilize the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir‐looking
airborne passive microwave radiometer that measures brightness temperatures (TB) at six different C‐band fre-
quencies (Uhlhorn & Black, 2003; Uhlhorn et al., 2007). Although several other existing and emerging remote
sensing technologies can be leveraged to estimate surface winds in TCs (Knaff et al., 2021), none match the sheer
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quantity of surface wind estimates collocated with flight‐level winds of the SFMR due to its use on the full fleet of
AFRC C‐130J and NOAA P‐3 Hurricane Hunter aircraft over many years. Brightness temperatures recorded by
the SFMR are sensitive to characteristics of the sea surface which changes in response to wind stress. The
generation of sea foam and whitecaps from air mixing with ocean water at the surface (Holthuijsen et al., 2012) is
the major contributor to variations in emissivity sensed by the SFMR, but other factors including sea surface
temperature (SST) and column rain rate also influence the measurements. A geophysical model function (GMF),
trained on dropwindsonde WL150 winds that incorporates SST and other additional information, relates rain rate
and surface wind speed to emissivities. Surface wind speeds are retrieved via an inversion of the GMF forward
model applied to the TB sensed by the SFMR. SFMR surface wind estimates have uncertainties. Dropwindsondes
drift downwind after deployment from the aircraft and measure a surface wind that is not collocated with the TB
footprint, in addition to other uncertainties in emission sources and instrument calibration.

The SFMR GMF has been improved through algorithm updates as well as characterization of its errors. Un-
certainties in the partitioning of the measured emissivity in the retrieval algorithm can result in a high‐wind‐speed
bias in heavy rainfall. Identification of these issues and reformulation of the GMF by Klotz and Uhlhorn (2014)
greatly reduced this bias in the current retrieval algorithm. Sapp et al. (2019) investigated the current SFMR
retrieval algorithm in use since 2016 and found several issues including a 10% low bias in predicted wind speeds
below 45 m s− 1 and low precision below 15 m s− 1. In this study, we use data from the latest version of the retrieval
algorithm with the recognition that some uncertainty and potential low bias still remain.

In addition to retrieval uncertainty, sampling uncertainty is also an issue because the specific location where Vmax
occurs is rarely observed by the SFMR aboard aircraft, which cannot cover the entirety of a storm, resulting in a
low bias of the peak observed wind. An observing system simulation experiment for the SFMR quantified the
undersampling of Vmax in modeled TCs by comparing the maximum winds recorded by the SFMR to the
maximum winds of the modeled TC around the time of a simulated reconnaissance flight (Klotz & Nolan, 2019).
The study found that in larger, weaker TCs of tropical storm intensity (Vmax < 65 kt), the SFMR typically
observed maximum winds less than Vmax by 14% or more. As storms grow more organized and intense with
compact inner cores, the underestimate is less pronounced with peak SFMRwinds being lower than Vmax in major
hurricanes (Vmax ≥ 96 kt) by about 4% or less. In this study, we develop a NN that can be applied using Doppler‐
radar‐derived winds at flight level, which helps to broaden the spatial coverage and reduce undersampling when
TDR measurements are available.

Recent analysis has also discovered large random errors due to calibration errors across different SFMR in-
struments on TC reconnaissance aircraft (Chang & Jelenak, 2024). While these errors are very concerning for
operational real‐time use of individual SFMR units, we take advantage of the large database of past observations
and NN techniques in order to reduce random error through averaging. We will demonstrate that our NN out-
performs the current operational algorithm compared to independent dropwindsonde surface wind estimates
despite all of the instrument, GMF, and sampling uncertainties from the SFMR.

This study provides a new ML algorithm that improves upon current operational WRs by better capturing the
asymmetries and complexities of the flight‐level and surface wind fields, which are critical to accurate surface
wind reduction. The ML‐model‐derived surface wind fields produced by the method described herein can assist
forecasters in real‐time. Section 2 discusses the data and methods. In Section 3, the training data set is analyzed,
different predictive NN methodologies are compared, and performance of the chosen NN model is evaluated.
Discussion of the results and overall conclusions are given in Section 4.

2. Data and Methods
2.1. Aircraft Data

The Extended Flight Level Data set for Tropical Cyclones (FLIGHT+; Vigh et al., 2021) contains TC obser-
vations in a standardized format with flight‐level and SFMR data collected during TC reconnaissance flights from
1997 through 2019 (version 1.3). Earth‐relative and storm‐relative winds are available at 1‐s temporal resolution.
The data are quality controlled and parsed into radial legs flown in toward or out from the TC center. The SFMR
data in FLIGHT+ is reported as the wind speeds retrieved by the operational GMF at the time of a flight, so data
collected prior to 2016 are omitted to ensure all surface wind data utilized in this study is retrieved from SFMR TB
using the most recent operational GMF (Klotz & Uhlhorn, 2014). SFMR data quality control during compilation
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of the FLIGHT+ data set excludes observations collected when aircraft motion or shallow water conditions below
the aircraft would impact the accuracy of the SFMR wind retrievals. The 1‐s temporal frequency of the wind data
results in a large spread of WRs due to gusty surface wind data within the PBL being more turbulent than the
flight‐level winds in the free troposphere (Zhang et al., 2011), among other factors. Extreme WR values may be
due to observational errors and noise, and are not likely to be physically relevant to the relationships that a
predictive methodology needs to learn to estimate surface winds. To remove extreme values, observations with
WRs greater than 0.6 or less than 1.4 are removed from the data before any subsequent preprocessing steps.
SFMR surface wind speeds greater than 90 m s− 1 are also excluded due to being likely erroneous, given both the
rarity of surface winds of this intensity and the limitations of the operational GMF at extreme winds (Klotz &
Uhlhorn, 2014; Sapp et al., 2019).

The SFMR and flight‐level wind data used in this study are then temporally smoothed to 10‐s averages for all data
points where the temporal window surrounding the observation reports values for at least 6 of the 10 s in the
window. Some temporal autocorrelation is therefore present in this time series data, but accepted as a necessary
shortcoming of the training data set to maintain a high volume of observations. To allow a ML method to predict
winds in TCs across spectra of size and motion characteristics, observations are mapped to a normalized polar
coordinate system on a flight‐by‐flight basis with coordinates of θ* and r*. The azimuthal θ* direction is oriented
by setting the TC motion direction to 0°. The TC motion direction is calculated using averages of the Cartesian
zonal and meridional storm motion components, interpolated from wind centers, gathered during the time period
spanning the initial time of the first radial leg to the final time of the last radial leg of a flight. Flights with storm
motion magnitudes greater than 20 m s− 1 are considered anomalous and excluded from the data set as outliers.

To obtain the normalized radius coordinate, r*, the radial distance of an observation from the storm center is
divided by the flight‐level azimuthally averaged RMW calculated by averaging the radii with the maximum wind
speed from each radial leg (r* = r/RMW). RMW values greater than 100 km are typically indicative of weak
storms with poorly defined wind field structure, so any flights with RMWs in excess of this value are not included.
Data in the eye with r* values less than 0.3 are excluded due to the presence of known erroneous SFMR estimates
where the chaotic sea state and resulting white‐cap coverage is not representative of the local wind stress (Uhlhorn
& Black, 2003). An outer bound must be set to ensure the training data are likely to be within the TC environment.
Given the need to forecast values for R34, the outer r* bound is set to 5 which contains the majority (∼92%) of
SFMR observations of 34 kt or greater. Weak winds where SFMR sensitivity to surface emission is poor (Sapp
et al., 2019) must be limited, so SFMR surface wind values below 9 m s− 1 are removed. This condition, paired
with the lower data inclusion bound of 0.6 for observed WR, effectively excludes any data with flight‐level wind
speeds below 15 m s− 1.

The TC intensity itself contains useful information about the radial structure of the TC wind field, with sharper
wind peaks and stronger gradients found near the flight‐level RMW in more intense storms (Martinez
et al., 2017). Historical TC intensity data are available at 6‐hourly synoptic times in the HURDAT2 data set
(Landsea & Franklin, 2013) for storms in the North Atlantic, eastern North Pacific, and central North Pacific
basins, where TC reconnaissance is most common. During each flight in the data set, the TC intensity (reported in
kt) for the closest previous synoptic time is assigned to all observations collected during the flight. By using the
previous intensity estimate, this predictor provides valuable information which would be available in a real‐time
application of surface wind prediction. Typical operational TC reconnaissance flight levels are the 850 hPa
pressure altitude (∼1,500 m) in storms of tropical storm strength or less (Vmax < 64 kt) and the 700 hPa pressure
altitude (∼3,000 m) in storms of hurricane strength or greater (Vmax ≥ 64 kt) (Knaff et al., 2021). Although not all
reconnaissance flights take place at these operational levels, large departures from these pressure altitudes should
be avoided in the training data. Observations with flight‐level pressure values outside of a range from 600 to
900 hPa are therefore removed from the data set. The pressure‐level filter removed all instances of storms below
tropical storm intensity from the data set as weaker systems are often flown at lower levels. One other notable
absence from the data set is Hurricane Dorian (2019) which would provide additional observations of extreme
winds. Data from this storm was excluded due to evidence that the SFMR wind retrievals in this storm were
problematic and inaccurate at high‐wind values (Holbach, 2022).

After quality control, there are 808,215 samples available from model training and evaluation. When training ML
models, it is important to set aside data to verify the model can generalize well and still achieve satisfactory
performance scores on data not seen during training. To reduce spatial and temporal autocorrelation issues
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between the withheld sets and the training set, data from all flights into a single TC throughout its lifetime are kept
together in whichever set they are assigned. The validation set (∼8%) is composed of all observations collected in
Hurricane Michael (2018), which was sampled by aircraft at a range of intensities from tropical storm to major
hurricane (Beven et al., 2019). The testing set (∼13%) consists of observations from Hurricane Matthew (2016),
which was also sampled over a wide range of intensities (Stewart, 2017). The training set (∼79%) is made up of
the other 25 storms in the data set. Each of these data sets contains numerous observations of major hurricane
force surface winds well in excess of 50 m s− 1.

2.2. The Simplified Franklin Wind Reduction Method

The WRs derived from dropwindsonde profiles by Franklin et al. (2003) are still used routinely in NHC oper-
ations and provide the benchmark for this study. Since their publication, NHC has introduced some modifications
that allow forecasters to account, in a limited capacity, for motion‐induced asymmetries. The operational method
provides WRs which are differentiated by the inner core (r* < 2) or outer core (r* ≥ 2), the presence of con-
vection, left or right motion‐relative location, and the pressure level of the observation. A Simplified Franklin
(SF) wind reduction methodology is developed herein to resemble the current methodology at NHC and serve as a
baseline of comparison for new methods evaluated in this study. Given the challenge of systematically deter-
mining the presence of convection, the SF method employed here always uses the WRs recommended for
convection. We note that the operational WRs only deviate for non‐convective areas in the outer vortex, so this
approximation does not affect the inner core estimates. Although the SF method is a simplified version with
respect to the convective assumption, it is also a broadening of the technique for use with a 2‐D wind field versus
point observations for which it was originally intended for.

The recommended SFWR for the 850 hPa (Figure 1a) and 700 hPa (Figure 1e) pressure levels are shown spatially
in the normalized polar coordinate space. The spatial field is notably coarse with sharp changes at the radial and
azimuthal boundaries between different WRs. These WRs are symmetric in the inner core, offering new methods
an opportunity for improvement relative to SF by more accurately accounting for TC eyewall asymmetries.
Figures 1b–1h shows histograms of observed WRs within the TC inner core and the left and right sides of the TC
outer core observed within 25 hPa of each pressure level. The mean WR values (black dashed lines) of the
distributions are relatively close to the SF values (red dashed lines), indicating the SF technique is generally
consistent with the mean of SFMR‐derived WRs; however, the histograms show considerable spread about the
fixed WR values of the SF method and exhibit positive skewness, offering possibilities for improvement to
capture this variability with an approach that employs ML.

Figure 1. (a) Wind reductions (WR = SFMR Wind
Flight − level Wind) recommended at the 850 hPa flight level by the Simplified Franklin

(SF) wind reduction scheme. Histogram of all post‐smoothing observedWR values in the data set with bin increments of 0.05
(b) within the TC inner core (r * < 2) and (c) right side and (d) left side of the outer core (2 ≤ r * ≤ 5) with the recommended
SF WR (red dashed line) and mean WR of the distribution (black dashed line) shown in each. The same are provided for the
700 hPa level (e), (f), (g), and (h).
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2.3. Machine Learning Architecture

An artificial neural network (NN) ML model (LeCun et al., 2015) is implemented using TensorFlow (Abadi
et al., 2016) to capture complex relationships and predict surface winds from flight‐level input features. The NN is
a multi‐layer perceptron that processes input features through successive hidden layers which connect to an output
layer for the desired predictand, which can either be a WR or the surface wind itself. The NN consists of an input
layer, which is the size of the given features, hidden layers which can vary in both number of layers and number of
nodes per layer, and a single‐node output layer. Unless otherwise noted, different techniques tested in this study
use a NN architecture defined by two hidden layers with counts of 30 and 10 nodes respectively. The feed‐forward
network fully connects all nodes in the prior layer to the next layer moving information from the inputs, to the
hidden layer(s), and finally the output. The nodes in each layer are assigned activation functions, which are
applied to transform the incoming numerical information before passing it on to the next layer. Two safeguards
are in place within the NN to prevent overfitting to the training data set, which can result in a model that does not
generalize well to unseen data. A ridge regression (L2) coefficient is set in the hidden layers and the dropout
technique is also applied to randomly drop nodes at a specified rate from the neural network during training
(Srivastava et al., 2014). The L2 regularization penalizes large weights, reducing the influence of individual
features, while dropout prevents the model from over‐relying on specific nodes. Default hyperparameter choices
for the tested methods are 50 epochs, batch size of 256, L2 regularization coefficient of 0.01, dropout rate of 0.2,
rectified linear unit (ReLu) activation functions, and a conservative learning rate of 1 × 10− 4.

The loss function is important to how a NN learns and a common choice is minimizing the mean squared error
(MSE) between the predicted and true values of the training set. In some cases, standard loss functions like MSE
do not meet the needs of the problem and creation of a custom loss function is necessary to ensure the model learns
appropriately (Ebert‐Uphoff et al., 2021). One challenge presented by the current WR problem is the rarity of
extreme‐wind observations. Figure 2 shows a histogram of the SFMR surface wind speeds in the training data set,
which is characterized by a higher concentration at wind speeds below 35 m s− 1. Early tests with a standard MSE
loss function indicated that NNs significantly underestimated high‐wind predictions due to this skewness (not
shown). Since the determination of Vmax in extreme TCs is an important aspect of our use case, a multiplier for the
MSE was developed to increase the penalty for inaccurate predictions of high surface winds in the data set. The
shifted cubic loss function (SCL) is defined as:

Shifted Cubic Loss = MSE × ( (SFMR − Shift)3 + Shift3) (1)

Figure 2. Histogram of observed SFMR wind speeds in the training set in 5 m s− 1 increment bins. Multiplier values for
traditional loss functions from shifted cubic loss (SCL; black line) in relation to the SFMRwind speed of an observation with
tropical storm force (green dashed line; ∼17.5 m s− 1), hurricane force (yellow dashed line; ∼33 m s− 1), and major hurricane
force (red dashed line; ∼50 m s− 1). The shift constant in the SCL function (Equation 1) is set to 17.5 m s− 1.
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where the shift value is subtracted from the SFMR ‘truth’ wind speed value in
m s− 1 and cubed. The cubed shift value is added to this quantity and the full
value is multiplied by the MSE for each observation. The SFMR value makes
the multiplier grow cubicly at high winds. The shift value, in this case set to
the minimum tropical storm force wind value of 17.5 m s− 1, delays the cubic
growth by shifting the inflection point between positive and negative decay
away from zero and extends the relatively flat portion of the function through
the commonly observed wind speed regime (Figure 2; black line). Adding the
cubed shift value again in the multiplier shifts the inflection point upward and
ensures the multiplier stays positive, even when SFMR values are less than
the assigned shift value. The function essentially counters the rapid decrease
of the number of observations at high winds with a rapid increase of loss
penalty value in this region.

The NN is given a set of predictors, or features given in Table 1, with which to
predict either the observed SFMR surface wind speed or WR. The location of

the aircraft is provided in r* and θ* coordinates with both the sine and cosine of θ* given to prevent a jump
discontinuity in predictions where θ* is equal to 0° at the normalized azimuth of storm motion. To capture the
motion‐induced asymmetry, the location information is necessary. The magnitude of the storm motion is also
included which contributes to the magnitude of the motion‐induced asymmetry (Kepert, 2001; Shapiro, 1983) and
WRs (Powell et al., 2009). The flight‐level wind and altitude of the aircraft are provided to inform the model of the
value to be reduced and the height from which to reduce it. The intensity of the TC assessed at the prior synoptic
time provides implicit information on the structure and symmetry of the TC wind field. All input features are
standardized using their means and standard deviations in the training data set, which is required for satisfactory
NN performance. The predictands, either SFMR wind speed or WR, are not standardized nor are they required
to be.

2.4. Model Validation With Dropwindsondes

In this study, we validate with in‐situ measurements from dropwindsondes that the model has never seen and are
not collocated in space with any of the training data due to their drift from the flight track. The Tropical Cyclone
Dropsonde Research and Operations Product Suite data set (TC‐DROPS; version 1.2) contains a large collection
of dropwindsonde profiles collected from 1996 to 2021 (Zawislak et al., 2018). A sustained surface wind is
estimated from dropwindsonde descending profiles by reducing the WL150 mean wind to the surface consistent
with the methodology described in Franklin et al. (2003). Surface wind observations derived fromWL150 values
calculated with TC‐DROPS are also mapped to the normalized polar grid space using storm motion and RMW
information from FLIGHT+.

To obtain the input flight‐level wind, we use the Tropical Cyclone Radar Archive of Doppler Analysis with Re‐
centering (TC‐RADAR; v3k) which is a historical data set of kinematic analyses produced via dual‐Doppler wind
synthesis of TCs observed with TDR between 1997 and 2022 (Fischer et al., 2022). Flight‐level wind fields for
storms of tropical storm strength (altitude = 1.5 km) and hurricane or greater strength (altitude = 3 km) are
transformed to the normalized polar grid space for prediction of a surface wind field by the MLmethod. The wind
fields are smoothed to WN 0 + 1, which was deemed adequate for capturing storm‐scale wind asymmetries
(Uhlhorn et al., 2014). The smoothing is carried out at each radius where 25% of the azimuths report wind data
anywhere within the storm based on recommendations for allowable gap size, described by Lorsolo and
Aksoy (2012). We note that this radar‐derived wind represents a much coarser spatial and temporal footprint than
the 10‐s averaged in‐situ wind used for training. Additionally, the dropwindsondes and TDRwinds are not exactly
collocated in time due to the temporal averaging of TDR winds over the course of the flight. While the wind
features are being verified in the same storm‐relative polar grid space, the presence of transient features in the real
storm will necessarily introduce variability. Despite these discrepancies, the radar and dropwindsonde data sets
allow for 1,151 points for an independent validation of the NN and comparison with the SF method used in
operations.

Table 1
Neural Network Predictors

Predictor Description

r* RMW‐normalized Radius of
Observation

sin (θ*) Sine of the Motion‐relative Azimuth of
Observation

cos (θ*) Cosine of the Motion‐relative Azimuth
of Observation

Vstorm TC Translation Speed

VFL Observed Flight‐level Wind Speed

H Aircraft Altitude

Vmax TC Intensity at Prior Synoptic Time
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3. Results
3.1. Observed Wind Reduction Analysis

We first investigate the radial distribution of WRs in storm‐motion‐relative quadrants to help characterize the
asymmetries the model is expected to learn from the observations and predict. The motion‐relative quadrants are
the front left (FL; 270° ≤ θ*< 360°), front right (FR; 0° ≤ θ*< 90°), rear right (RR; 90° ≤ θ*< 180°), and rear
left (RL; 180° ≤ θ* < 270°). Hexbin plots are utilized to show the density of observations in the data set within
bins defined byWR and r* for each quadrant. The hexbins aremade up of a 15 by 15 array of equally spaced bins in
r* values (0.3–5) andWRvalues (0.6–1.4)whichmakes for a total of 225 possible hex tiles in the plots. The density
count in the analysis is normalized by themaximumvalue in each quadrant, which allows for a common color scale
to better show the variance in each quadrant. The RMW (orange dashed lines) andWRs from the SFmethod (black
lines) are overlaid to provide context of the TC structure and current operational methodology.

Figure 3 shows observations from flights into TCs of tropical storm intensity near the 850 hPa pressure altitude.
The WRs near the RMW are concentrated around 0.8–0.9 in the front quadrants, with slightly lower WRs in the
rear quadrants on average. There is also a weak left‐to‐right asymmetry, with slightly smaller WRs on the right
side on average. There is a large amount of spread with values found anywhere in the allowed range of 0.6–1.4.
Radially, the greatest density of observations is located within 2 r*, likely due to the fact that the RMW is

Figure 3. Hexbin plots with normalized density of observations in bins defined by coordinate pairs of wind reduction
(WR = SFMR Wind

Flight − level Wind) and radial r* locations for flights in tropical storms (Vmax < 33 m s− 1) at the 850 hPa pressure
altitude. Observation densities are given in storm‐motion‐relative quadrants of front left (a; FL), front right (b; FR), rear left (c;
RL), and rear right (d; RR). The recommended SF reduction (black line) and flight‐level RMW (orange dashed line) are shown.
An absence of hexbin tiles indicates no observations are present in that bin.
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typically larger in weaker storms (Fischer et al., 2022), making for a greater physical distance spanned per unit of
r*. The SF method line generally cuts through regions of highWR density, although the line is slightly higher than
the maximum density in the RR quadrant. The decrease in SF WR on the right side at 2 r* appears to be a
reasonable match to the distribution. The left side increase in SF WR is more difficult to justify due to the large
spread of possible values.

There is a more defined negative slope of WR with r* near the RMW in Category 1 and 2 hurricanes observed by
aircraft flying near the 700 hPa pressure altitude (Figure 4). The increasingly symmetric wind field in all four
quadrants is consistent with behavior in observed TCs as they growmore intense (DesRosiers et al., 2022). The SF
WR is generally near the upper end of the maximum density of observed values. The spread ofWRs remains quite
large in all quadrants, but is more concentrated near 0.8–0.9 than in the tropical storm cases.

In storms of major hurricane intensity observed by aircraft near the 700 hPa flight level (Figure 5), there is a well‐
defined negative slope of WR with r* in the right quadrants and a flatter slope in the left quadrants. The bulk of
RMW contraction typically takes place prior to TCs reaching major hurricane intensity (Stern et al., 2015), so the
shrinking of physical space spanned by r* coordinates between Figures 4 and 5 should be minimal. The greater
normalized density in outer‐core observations is likely due to outward expansion of the wind field. Similar to
Category 1 and 2 storms, the greatest density of observed WRs is typically below the SF values throughout most
of the storm. This stems from the original WRs in Franklin et al. (2003) being derived from averages, which are
likely to be higher than the values found in the area of greatest density in a skewed distribution (Figure 1). We also
emphasize that the basis of the SF method is intended for point reductions, and the observations are generally

Figure 4. Same as Figure 3, but for 700 hPa pressure altitude flights into storms of Category 1–2 hurricane intensity (33 m s− 1

≤ Vmax < 50 m s− 1).
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consistent with the SF values for the bulk of observations near the flight‐level RMW. However, within the RMW,
the SF recommendation is too low due to rising WRs likely caused by the outward slope of the TC eyewall with
height (Hazelton & Hart, 2013). Due to this slope, the aircraft is likely to enter the eye and no longer observe
strong winds at flight level while the SFMR continues to observe an ocean surface stressed by strong winds within
the eyewall. This behavior is also noted in Powell et al. (2009), where the SFMR surface wind maximum was
almost always located inward of the flight‐level RMW. An increase in occurrence of higher WRs in the outer core
may be related to the presence of cross swell in the far field of TCs which impacts the surface emissivity sensed by
the SFMR (Holthuijsen et al., 2012).

The observed asymmetries in WRs suggests they are sensitive to both motion and the intensity of the system. An
apparent increase in mean WR near and inward of the RMW should be accounted for with increasing WRs in this
region to accurately place a surface wind maximum inward of the flight‐level RMW. Overall, the variability of
WRs in observed TCs derived from SFMR limits the applicability of fixed WRs such as those recommended by
the SF method. This variability motivates the use of a more sophisticated method for wind reduction which can
learn from and account for relationships present in the observations.

3.2. Neural Network Results

Several different combinations of loss functions and predictands were evaluated to identify the NN method best
suited for wind reduction. The nomenclature for each NN version in this section is the loss function used in
training followed by the predictand the model produces as its output. For example, a model referred to as MSE

Figure 5. Same as Figure 3, but for 700 hPa pressure altitude flights into storms of major hurricane intensity (Vmax ≥
50 m s− 1).
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WR minimizes the mean squared error loss function in training and outputs a
prediction for the WR to be used to relate the flight‐level wind to the surface
wind for the observation. In the case of a model prediction of WR, the NN is
validating its prediction against the corresponding observed WR value. The
different configurations use either a MSE loss or the SCL custom loss
described in the methods section that increases the importance of accurate
predictions in strong winds. The different possible predictands are the SFMR
wind speed, the WR, and the residual error between an observed SFMR wind
value and the predicted wind value from the SF method. A key for model
nomenclature is given in Table 2. Note that for the error model, the predictand
can be positive or negative. For the error NN (MSE ERR), the ReLu acti-

vation function, which limits output to positive values, is replaced by a hyperbolic tangent function, which allows
the NN to produce negative output. The true error values in the data set are also scaled between − 1 and 1 based on
the minimum and maximum values found in the training set. The same scaler is applied to output from the NN to
revert the unitless scaled errors back to values in m s− 1.

Performance of each method is evaluated with the testing set by comparing the true SFMR values to the SFMR
wind speeds predicted by the NNs (Figure 6). For models predicting the WR, the predicted value is multiplied by
the flight‐level wind speed to obtain a predicted SFMR surface wind speed. Error predictions are added to the
surface wind speed predicted by the SF method to obtain a predicted SFMR wind. Converting all predictions to a
common target value allows for a more direct comparison of model accuracy. The MSE ERR, MSE WR, MSE
SFMR, and SCL SFMR methods were all tested using the same NN settings and hyperparameters. The models
generated by all methods, with the exception of MSE ERR, achieved both linear correlations, via r2, and root
mean squared error (RMSE) values that outperform the SF method (Figure 6). TheMSE ERRmethod likely needs
additional dedicated tuning effort due to its differences from the others, but this method was not pursued further in
favor other techniques.

Among the top models, certain tradeoffs are apparent in their performance. The MSE SFMR method was
consistently biased low in the rarely observed major hurricane force (SFMR wind ≥ 50 m s− 1) wind regime. The
MSEWRmethod exhibited decreased low bias at high winds compared to MSE SFMR with similar performance
metrics, but still struggled to predict high winds. The SCL SFMR model, which applies stronger weighting to

Table 2
Key for the Neural Networks Nomenclature

Model name Loss function Predictand

MSE ERR Mean Squared Error Error (SFMR ‐ SF Wind)

MSE WR Mean Squared Error Wind Reduction

MSE SFMR Mean Squared Error SFMR Surface Wind

SCL SFMR Shifted Cubic Loss with MSE SFMR Surface Wind

SCL WR Shifted Cubic Loss with MSE Wind Reduction

Figure 6. Predicted versus observed SFMR wind speeds with linear correlation (r2) and root mean squared error (RMSE)
values from the testing set given for the (a) SF, (b) MSE ERR, (c) MSE WR, (d) MSE SFMR, (e) SCL SFMR, and (f) SCL
WR prediction techniques.
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high‐wind observations in the loss function, is able to more accurately predict high SFMR surface winds, but in a
manner which may be too constrained to noise in the SFMR.

Ideally, a WR model trained on observations should make skillful predictions of SFMR surface winds while also
limiting the spatial variability in WR to produce a subjectively smooth analysis field. A model that has too much
spatial detail in WR would not be desired by forecasters as large variance is likely evidence of a model which
recreates the noise and biases of SFMR observations and departs from boundary layer theory (Kepert, 2001). At
major hurricane force, the SCL SFMR model exhibits the lowest RMSE which demonstrates the effect of
weighting the loss function by high SFMR values, and the other models are comparable in RMSE. However,
when the spatial variance is maximized in all wind speed bins by the SCL SFMR model, which indicates the
model may be learning too much noise from the SFMR instrument (Figure 7b). Conversely, the MSE WR model
exhibits the best performance with respect to variance across all bins among the three. However, that model's
underprediction of high winds is problematic.

To select the optimal model, we would like to balance all three constraints of a low RMSE, low variance, and
accurate Vmax in strong TCs. The SCLWRmethod meets this goal most effectively, and outputs a predicted WR,
but is trained using SCL custom loss. The SCL formulation (Equation 1) for this model solves for MSE with true
versus predicted WR values and multiplies the error by SCL which is still scaled by the SFMR value. The
success of this NN training method prompted a more committed tuning effort to maximize performance.
Hyperparameter tuning was performed with the KerasTuner package in Python (O’Malley et al., 2019). The
number of hidden layers, number of nodes in each hidden layer, ridge regression coefficient, learning rate, and
dropout rate were all allowed to vary, creating a multidimensional search space of the changing hyperparameter
settings. KerasTuner returned an optimal model configuration with one hidden layer containing 20 nodes, a
learning rate of ∼5.1 × 10− 5, a ridge regression coefficient of 0.2, and a large dropout rate of 0.4. The model was

Figure 7. (a) Root mean squared error (RMSE) of predicted SFMR wind speeds versus observed, (b) variance (σ2) of the
predicted WRs, and (c) bias of predicted SFMR for each technique (legend) at SFMR wind speed forces of tropical storm
(TS), Category 1–2 hurricane (HU), and major hurricane (MH) in the testing set.
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allowed to run for 500 epochs with the small learning rate. Training was deemed complete by epoch 94 via an
early stopping condition which monitors when the loss value in the validation set calculated after each epoch
begins to consistently increase. The tuned SCL WR model has lesser accuracy scored by the RMSE of SFMR
winds than the three most competitive models of the five originally tested (Figure 7a), but its variance in
predicted WR is lower and decreases at higher wind speeds (Figure 7b). Furthermore, the model has a minimal
low bias in major hurricane force winds (Figure 7c).

The performance metrics of the SCLWRmodel are slightly lower than those of the other methods with respect to
its surface wind predictions in the testing set (Figure 6e). However, the SCLWR model successfully combats the
low bias at high winds most models struggle with while maintaining considerable scatter about the 1‐to‐1 line at
high winds where SFMR winds are uncertain. The trade‐off with the skill at higher wind speeds is a ∼1–2 m s− 1

high bias at lower wind speeds (Figure 7c). This high bias may be a necessary compromise in creating a model for
surface wind reduction that can be helpful for real‐time Vmax estimation based on observations which may not
contain Vmax. The trade‐off may be acceptable when considering the decrease in SFMR‐based intensity under-
estimation with increasing storm intensity, characterized by Klotz and Nolan (2019), and the low bias in retrieved
SFMR winds below 45 m s− 1 (Sapp et al., 2019). We note that at all wind speeds the SCL WR model is more
accurate than the operational SF method.

To better visually compare the model performance, Hurricane Zeta (2020) was selected from the TC‐RADAR
data set. Reconnaissance aircraft sampled Zeta with TDR at Category 1 intensity with a surface Vmax of 80 kt
(Blake et al., 2021), which is approximately 41 m s− 1. The flight‐level RMW determined via the TDR data is
44 km and the forward motion is ∼7.5 m s− 1 at 344° with respect to 0° set as north. The surface wind fields
produced for the Hurricane Zeta case by the most competitive methods are shown in Figure 8. The SF method
produces the strongest estimate of Vmax, which is within 2 m s− 1 of the intensity assessed by the NHC, but the
wind maximum is located directly below the maximum at flight level which is unlikely due to the slope of the
eyewall with height. The fixed nature of the SF method also maintains the asymmetry of the flight‐level wind to
the surface in the inner core while producing discontinuous transitions at the outer‐core boundaries. TheMSEWR
and SCL SFMR methods show more symmetric surface wind fields with maxima located inward of the flight‐
level RMW. Despite the improved representation of general expected characteristics of the surface wind field,
the maxima predicted by these two methods are much lower than that of the SF method. The Vmax value of the
SCL WR surface wind field is ∼3 m s− 1 off from the operational estimate at this time, which has its own un-
certainties. Although it is slightly weaker than the SF method maximum, the method captures the increased
symmetry of the inner‐core surface winds and inward displacement of the strongest winds from the flight‐level
RMW, which is believed to be a better representation of the TC structure. The Zeta case results also indicate the
method fails to shift the surface wind maximum downwind of the flight‐level wind maximum, a behavior ex-
pected in Kepert (2023). This failure may relate to sampling geometries. Azimuthal offsets may be too chal-
lenging to capture with vertically aligned training data.

Returning attention to the larger sample of cases, an additional evaluation is performed to compare the three most
competitive NN models to the SF method in the ability to estimate the Vmax operationally. For each merged case
from the TC‐RADAR data set, the flight‐level wind field along with other necessary predictors is fed to each
model to generate a surface wind field. The maximum value of that surface wind field is then compared to the
NHC best track intensity at the time of analysis in TC‐RADAR. The comparisons of predicted to actual intensity
are shown for each method in Figure 9 where wind speed values are reported in knots in accordance with
operational procedures. The MSE WR and SCL SFMR models consistently underpredict Vmax with the greatest
errors found in cases of major hurricane intensity. The SCL WR method decreases this bias with greater per-
formance in stronger storms. Performance metrics, shown in each panel of Figure 9, are nearly identical for both
the SF and SCLWRmethods. The similarity in performance indicates the SCLWRmethod offers a more realistic
representation of the surface wind field, as in the Zeta case (Figure 8), while giving comparable intensity esti-
mation performance to the current operational procedure. Based on the above evaluation, we believe the SCLWR
model is found to be the most suitable technique for surface wind reduction and improves upon the SF method that
is similar to operational procedures for surface wind reduction. This model is selected for further detailed
evaluation in the following section.
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3.3. Shifted Cubic Loss Wind Reduction Evaluation

Performance of the model on the FLIGHT+ data set is evaluated with the training, validation, and testing sets in
Figure 10. The SCLWRmodel outperforms the SF technique in both linear correlation and RMSE in the training,
validation, and testing sets. The change in performance between methods for each set is compared through
changes in the scatter plots of predicted versus true SFMR values. Observations are grouped in 5 m s− 1 bins
between 10 and 85 m s− 1 of true and predicted SFMR winds for each method. The bin counts for each method are
subtracted (SCLWR ‐ SF) and normalized across all sets based on the maximum increase and decrease of counts

Figure 8. (a) Flight‐level (FL) wind field at 3‐km altitude from the Hurricane Zeta case in TC‐RADAR collected near 12 UTC
28 August 2020 at Category 1 intensity with the maximum observed wind at FL given. Predicted surface wind fields are
given for the (b) SF, (c) SCL WR, (d) MSE WR, (e) SCL SFMR techniques with the maximum surface wind speed in the
predicted field.
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observed in each set (Figures 10c, 10f and 10i). The SCL WR model exhibits superior performance to the SF
technique via the r2 and RMSE metrics evaluated in the training, validation, and testing sets.

Since the SFMR values themselves have substantial uncertainties, the predicted surface wind values are compared
against dropwindsonde observations from past reconnaissance flights for an independent verification. Since the

Figure 9. True Vmax values versus predictions from the (a) SF, (b) SCL WR, (c) MSE WR, and (d) SCL SFMR. The
maximum wind speed in each TC‐RADAR analysis is shown (colorbar). The linear r2 correlation value, root mean squared
error (RMSE), and bias for each method is provided within each panel.

Figure 10. Predicted versus observed SFMR values with linear correlation (r2) and root mean squared error (RMSE) values
for the (a) SF and (b) SCL WR prediction techniques with a normalized density change (from SF to SCL WR) heat map
(c) for the training, (d,e,f) validation, and (g,h,i) testing sets.
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dropwindsondes are not collocated with the flight track, TC‐RADAR analyses are used to produce 2‐D maps of
flight‐level wind fields at 3‐km altitude in storms of hurricane or greater strength and 1.5 km in storms of tropical
storm strength, roughly corresponding to the 700 and 850 hPa pressure levels, respectively. The TC‐RADAR
analyses are merged across several radial flight legs to produce a single analysis for each flight. The collection
of data over multi‐hour periods increases spatial coverage of the wind‐field analysis but results in temporal
smoothing that reduces the maximum winds. Figure 11 shows the difference in surface wind values from the SF
and SCL WR methods from collocated dropwindsonde WL150 values from TC‐DROPS in the r* and θ* co-
ordinate space for different TC intensities. For each intensity category, the errors are averaged in annular sectors
defined by the θ* bounds of the motion‐relative quadrants (FL, FR, RR, and RL) and the r* bounds of 0.3, 1.5, 3.0,
and 5.0. Errors are expected for both methods due to temporal differences and differences between point mea-
surements and the smoothed predictions from the merged radar inputs. However, it can be seen that the SCLWR
method generally reduces the errors around the TC, especially to the left of the motion where the largest errors in
the SF method tend to be observed. Corrections to left‐of‐motion under predictions are most notable in the inner
core of systems of hurricane intensity or greater within 1.5 r*.

Figure 12 shows the difference with dropwindsondes binned by observed surface wind speed in bins of 15–30,
30–45, 45–60, and >60 m s− 1. The 0–15 m s− 1 bin is excluded since the model is not intended to reduce flight‐
level winds below 15 m s− 1; surface winds below 15 m s− 1 are of lesser interest as the weakest forecast wind
radii are 34 kt, or ∼ 17.5 m s− 1 (Sampson & Knaff, 2015). Both methods show a dependence on wind speed,
with a high bias at lower wind speeds and low bias at higher wind speeds. However, the SCL WR shows a
reduction in RMSE compared to dropwindsonde WL150 in all wind speed bins. The differences are reduced the
most at higher wind speeds, with a near‐zero bias in the 45–60 m s− 1 range for the SCL WR method. The SCL
WR model still underestimates the surface winds of >60 m s− 1, but the sample size is small (42 points). The
RMSE distribution was compared between the methods for each bin using the Mann‐Whitney U two‐tailed non‐
parametric test (Nachar, 2008). The only bin with a failure to reject the null hypothesis at the 95% confidence
level is the 15–30 m s− 1 bin where the difference in RMSE between the two methods is the smallest.

3.4. Evaluation of Real‐Time Utility

These results show promise that the SCL WR method may be able to provide useful estimates of Vmax with a
surface wind field predicted from observed flight‐level winds in real time. To improve the nomenclature, we dub
the SCL WR method for real‐time use as the Surface Winds from Aircraft with a Neural Network, or SWANN
model. An example case from Hurricane Idalia (2023) is used to demonstrate the potential operational capability
of the SWANN product. An aircraft collected TDR observations of Hurricane Idalia around 00 UTC 30 August
2023 at Category 2 intensity as it rapidly intensified in the Gulf of Mexico leading up to its landfall (Cangialosi &
Alaka, 2024). Doppler radar data from the TDR, which are available in real time, are QCed with the method
developed by Gamache et al. (2008). The TDR data are synthesized into a wind field using the Spline Analysis at
Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software (Bell et al., 2012; Foerster &
Bell, 2017), which has been optimized to run at speeds suitable for real‐time analysis (Dennis et al., 2023).

The flight‐level wind field at an altitude of 3 km is smoothed to WN 0 + 1 and then converted to the normalized
polar coordinates of r* and θ* using the flight‐level RMW. The predicted surface wind and WR fields are shown
with the flight‐level winds in Figure 13. The wind field is from one radial aircraft penetration through Idalia which
takes on the order of an hour of flight time rather than the merged analysis which is over the course of several
hours. The flight‐level RMW is given as a dashed line, and the reduction factors have moved the surface wind
maximum 2 km inward of the flight‐level RMW, as is expected with an eyewall that slopes outward with height.
The map of WR shows a left‐to‐right motion asymmetry consistent with boundary layer theory and asymmetric
drag. The SWANNmodel yields a surface wind maxima which is∼2 m s− 1 below the operational estimate around
this time, which is fairly accurate considering the smoothed radar‐derived wind field.

4. Discussion and Conclusions
Tropical cyclone (TC) intensity and impacts depend on the surface wind field within the planetary boundary layer
(PBL). These winds are rarely sampled directly by aircraft due to the dangers of flying in the turbulent PBL, but
the maximum sustained wind (Vmax) and other characteristics of the surface wind field must be diagnosed and
forecast by operational forecast centers such as the NHC. The current NHC operational wind reduction (WR)
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procedure to estimate surface winds from aircraft flight‐level data was derived from descending profile mea-
surements of dropwindsondes in TCs by Franklin et al. (2003). A Simplified Franklin (SF) scheme is developed
and used to interpolate operational WRs as a benchmark for comparison against results with neural network (NN)
machine learning models. The SF WRs are limited by fixed values intended for point‐wise application, which are

Figure 11. Errors (predicted ‐ true; colorbar) of predicted surface winds with collocated surface wind dropsonde observations
averaged in angular sectors of normalized polar coordinate space for the SF method in (a) tropical storms, (c) Category 1–2
hurricanes, and (e) major hurricanes. Errors are also given for the SCL WR NN method (b,d,f). Plotting bounds define the
angular sectors for averaging. A lack of color within an angular sector indicates fewer than 10 dropsonde‐prediction pairs
could be found to produce an average.
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incapable of characterizing complex asymmetric TC wind fields. In the current study we use the SFMRwhich can
deduce surface wind speeds through a geophysical model function (GMF). The GMF needs continued
improvement (Sapp et al., 2019), but the large volume of SFMR data enables new analysis and training of a NN
model which can discern useful relationships for surface wind reduction amidst the large variability of the in-
strument observations.

Our results show that the SF method is broadly consistent with the mean observed WRs derived from SFMR data
collected from the 2016 to 2019 hurricane seasons, but does not adequately capture the asymmetric WRs due in
part to motion and frictional drag in the PBL (Kepert, 2001; Shapiro, 1983). Analyzing the distribution of WRs
with respect to radius in storm‐motion‐relative quadrants in different intensity groups indicates WRs around the
TC should change based on storm motion, intensity, and structure. Our analysis is consistent with Powell
et al. (2009), who recommended wind reduction methodologies depending on inertial stability. Stronger and
intensifying TCs also tend to have more peaked radial wind profiles at flight level (Martinez et al., 2017), which
impact the wind structure in the PBL by driving stronger inflow (Williams, 2015). Inclusion of the most recent
prior intensity estimate for a storm and the radial location of the flight‐level RMW gives the NN additional in-
formation relevant to reducing the inner‐core winds to the surface.

To account for variations in size and storm motion, the observed data are mapped to a polar grid defined by a
radius (r*) normalized by the radius of maximumwind (RMW) at flight level and storm‐motion‐relative azimuths
(θ*). The r*, θ*, and storm motion magnitude predictors give the NNs trained in this study necessary context to
account for motion‐relative asymmetries as well as other sources of variability expected in the TC inner core near
the RMW. Several different NNs were trained and compared to predict surface wind or WRs with standard and

Figure 12. Box and whisker plots of errors (predicted ‐ true) in surface wind predictions compared to dropsonde observations
of surface winds in bins of 15–30 m s− 1 (green; n = 456), 30–45 m s− 1 (orange; n = 413), 45–60 m s− 1 (red; n = 240), and
>60 m s− 1 (magenta; n = 42) for the (a) SF and (b) SCLWR techniques. The boxes represent the interquartile range (25th–75th
percentiles) with the lines indicating the medians; the whiskers extend to the most extreme values within 1.5 times the
interquartile range, and points represent outliers. (c) Root mean squared error values are compared for both methods given as
bars that correspond to each bin.

Figure 13. A pseudo‐real‐time product example of the SWANN model reducing the observed flight‐level wind field in
Hurricane Idalia near 00 UTC 30 August 2023 at Category 2 intensity. The (a) flight‐level wind field at 3‐km altitude,
(b) predicted surface wind field and its maximum value, and (c) predicted WRs are shown with the flight‐level radius of
maximum wind (RMW) given as a dashed circle and storm motion direction (2°) as an arrow.
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custom loss functions. The best performer of the different NN methodologies predicted WR and used a custom
shifted cubic loss (SCL) function. The SCL function increases the loss penalty assessed on prediction errors for
rare, but important, high‐wind observations in the data set. The SCLWRmethod, dubbed the Surface Winds from
Aircraft with a Neural Network (SWANN) model, produced the best balance of high accuracy of the surface wind
compared to SFMR, low variance in predicted WRs, and low bias in high winds. The SWANN method exhibits a
slight high bias at weaker winds below major hurricane force, but this counteracts, to some extent, a low bias of
the SFMR GMF below 45 m s− 1 and the systematic undersampling of Vmax by the SFMR due to the inability to
directly sample Vmax with aircraft during every flight, especially in weaker TCs (Klotz & Nolan, 2019).

Although reducing absolute error compared to observations is generally beneficial, the known shortcomings of
the SFMR training data underscore the dangers of learning the noise and biases of an imperfect observational data
set. In addition to instrument noise, additional variance in WRs is expected due to turbulence in the PBL (Lorsolo
et al., 2010). Smaller‐scale features such as mesovortices can further complicate the problem by locally enhancing
wind speeds near the eyewall of intense TCs (Cha et al., 2020). Despite the noise of the SFMR and physical
variability in WRs, the SWANN model is still able to create a spatial map of WR that is consistent with PBL
theory (Kepert, 2001) and produces physically reasonable and sufficiently smooth wind fields for forecasters. The
adherence to the left‐to‐right asymmetry in basic theory as well as understanding of the eyewall slope provides
evidence that SWANN is capable of finding relevant physical relationships present in the noisy observational data
set. Improvements to the SFMRGMF are likely to continue which can improve the training data for this reduction
method in the future, but additional understanding of sea surface behavior at high wind speeds will also be
necessary (Holthuijsen et al., 2012). The NN trained by Eusbi et al. (2024), which was also tasked with capturing
structural aspects of the TC wind field, was vastly improved by weighting their loss function using the wind speed
magnitude. Their NN also benefited from physical knowledge by incorporating the Navier‐Stokes equations into
their loss function, which is an inventive and novel strategy. Additional constraints derived with the use of
physical equations may be beneficial in a future version of the method.

To test the model on an independent data set beyond the training, validation, and testing sets, radar‐derived flight‐
level wind fields from past reconnaissance flights are reduced to the surface by the SWANN and SFmethods. The
predicted surface winds are compared to collocated in‐situ dropwindsonde measurements of near‐surface winds
from the same flights. Differences between dropwindsondes and the model‐predicted winds shows improvement
by SWANN over the SF method due to the ability of the model to accurately predict higher WRs left of storm
motion. Differences are also reduced within the flight‐level RMW, where WRs must be higher to predict the
surface windmaximum located belowweaker winds aloft due to the outward slope of the eyewall with height. The
SWANNmodel has a lower root mean squared error (RMSE) than the SF method compared to dropwindsondes at
all wind speeds from 15 m s− 1 to >60 m s− 1. The model has a slight high bias at low wind speeds and a low bias at
high wind speeds, but the greatest improvements in RMSE are achieved at the highest winds, which are important
to intensity estimation in strong TCs.

A test case with Hurricane Idalia (2023) while it was rapidly intensifying leading up to its landfall demonstrates
the potential of SWANN for real‐time utility. The predicted surface wind field is weaker, but more symmetric
than the one observed at flight level with a maxima located inward of the flight‐level RMW, consistent with
expectations based on PBL theory and prior observations. The maximum value of the predicted surface wind field
is∼ 2 m s− 1 below the operational intensity estimate at the time of the flight and offers the advantage of predicting
a full surface wind field compared to the method of Powell et al. (2009), which is meant to estimate the singular
value of a maximum surface wind. Recent concerns with the quality of the operational stream of SFMR data,
which led to a cessation of its transmission from NOAA P‐3 aircraft in 2024 (National Hurricane Center, 2024),
may ultimately necessitate a retraining of this method with revised data if issues are found to extend into past
years. Interestingly, the ability of the SWANN model to learn physical relationships for WR from a noisy, but
large SFMR data set could offer a useful substitute for real‐time SFMR in future outages. The success of the
model compared to independent dropwindsonde measurements and the SF method suggests that SWANN may
not be negatively impacted by any systematic biases in the SFMR data set. Some wind‐speed‐dependent bias is
still apparent in both the SF and SWANN methods indicating opportunities for improvement.

SWANN reasonably approximates some basic motion‐induced asymmetric and eyewall‐slope‐related structure
expected in WRs, but the method does not capture other more complex factors which impact WRs. Factors
including, but not limited to, vertical wind shear (VWS), PBL turbulence, baroclinic influence, and mesovortices
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may account for some of the perceived instrument noise in the observational data. Additional physically relevant
predictors like VWS magnitude or information on convective activity could improve the accuracy of the method.
However, additional predictors create dependencies on other data sources, so a balance must be maintained
between added complexity and operational feasibility. Continued care must be taken with the addition of new
predictors and evaluation of observational and instrument uncertainties of the training data. Additional cases,
testing, and model development are recommended for SWANN to better characterize and reduce errors and biases
for real‐time intensity guidance and forecaster support.

Data Availability Statement
Information to access the TC‐RADAR data set is available in Fischer et al. (2022). The FLIGHT+ data set is
available online for users to register and download (Vigh et al., 2021). The TC‐DROPS data set (Zawislak
et al., 2018) is still in development prior to an upcoming official release, but the dropsonde data is publicly
available from the NOAA Hurricane Research Division (HRD) archive (NOAA Hurricane Research Divi-
sion, 2024). A repository containing relevant code to generate and run the model can be found on Figshare
(DesRosiers et al., 2025).
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Erratum
The originally published version of this article contained a typographical error. The unit m s− 1 was mistakenly
written as ms− 1 in several instances throughout the article. The error has been corrected, and this may be
considered the authoritative version of record.
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