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Existing machine learning models of weather variability are not formulated to enable assessment of
their response to varying external boundary conditions such as sea surface temperature and
greenhouse gases. Here we present ACE2 (Ai2 Climate Emulator version 2) and its application to
reproducing atmospheric variability over the past 80 years on timescales fromdays to decades. ACE2
is a 450M-parameter autoregressive machine learning emulator, operating with 6-hour temporal
resolution, 1° horizontal resolution and eight atmospheric vertical layers. It exactly conserves global
dry air mass and moisture and can be stepped forward stably for arbitrarily many steps with a
throughput of about 1500 simulated years per wall clock day. ACE2 generates emergent phenomena
such as tropical cyclones, the Madden Julian Oscillation, and sudden stratospheric warmings.
Furthermore, it accurately reproduces the atmospheric response to El Niño variability and global
trends of temperature over the past 80 years. However, its sensitivities to separately changing sea
surface temperature and carbon dioxide are not entirely realistic.

Machine learning offers an avenue to accelerate existing climate models by
orders of magnitude. This acceleration is achieved by running efficiently on
GPU hardware and by taking relatively long time steps, enabled by the lack
of stability constraints that accompany traditional numerical methods. This
increased efficiency has the potential to dramatically accelerate research
tasks requiring many years of simulation. For example, it would enable
easier exploration of large ensembles and rare events1,2 and allow accurate
separation of forced response versus internal variability3. It would permit
the lengthy simulations necessary for the study of paleoclimate with more
realistic models than intermediate complexity models4. Finally, it would
enable easy interpolation between wide range of climate change scenarios5.
The cheap cost of inference and ability to run on consumer hardware opens
the door of running climate models to a wider range of users. In addition to
acceleration, a machine-learning based climate model emulator is differ-
entiable, making it potentially useful for data assimilation applications6–8.

The extent to which machine learning will lead to more accurate
climate models remains to be seen. While machine learning has demon-
stratedan ability to improveweatherpredictionaccuracy9–13, the typical goal
of climate prediction is to forecast previously unseen conditions, for
example the expected global warming from a doubling of CO2 concentra-
tion. Out-of-sample generalization is a fundamental challenge for machine
learning, potentially necessitating theuseof physics-basedpriors14,15 and the

training of machine learning based climate emulators on output from
physics-based numerical models16. In this study we focus on emulating the
climate of the historical period 1940–2020, including variability and trends.
We demonstrate that our emulator can be skillfully trained on the ERA5
reanalysis17 or on an AMIP-style18 historical simulation with GFDL’s
SHiELDmodel19. SHiELDcanalso simulate perturbedclimates, aswouldbe
needed to train an emulator that could be expected to simulate long-term
climate change20.

For this work, we use the Ai2 Climate Emulator version 2 (ACE2; see
https://github.com/ai2cm/ace), a significant update to theACEatmospheric
model emulator described in refs. 21,22. Briefly, the emulator operates at 1°
horizontal resolution with eight terrain-following vertical layers. It is initi-
alized from a snapshot of atmospheric temperature, humidity and winds
and can stably integrate forward an arbitrary number of 6-h time steps with
a user-specified sea surface temperature (SST) boundary condition. The
main methodological advances of ACE2 over version 1 of ACE are: (1)
addition of CO2 as a forcing variable, (2) ability to emulate observed
atmospheric trends of the preceding 80 years and (3) the exact conservation
of dry airmass and atmosphericmoisture inACE2 simulations. In addition,
ACE2 is trained on twodatasets to demonstrate its general applicability:first
on an AMIP-style18 simulation with GFDL’s SHiELD model19 and second
on the ERA5 reanalysis17.
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This study provides a more multifaceted evaluation of ACE2 than in
our prior work on ACE, which only used annually-repeating climatological
SSTs and sea-ice concentration. We show ACE2’s accurate atmospheric
response to El Niño variability as well as the long-term trends and inter-
annual variability of global mean temperature and total water path. The
ERA5-trained model allows evaluation of weather forecast skill and of
phenomena such as tropical cyclones and the Madden Julian Oscillation,
which are less well represented in the relatively coarse atmospheric models
previously used for training ACE.

Related work includes NeuralGCM13 which showed some 30-year
simulations with reasonable trends and low climate biases. However about
one third of NeuralGCM’s simulations went unstable before reaching 30
years, which limits its current applicability to climate prediction. Atmo-
spheric emulators with long-term stability trained on ERA523–25 and
atmospheric model output21,22,26 have been reported, but none to date
demonstrate the ability to accurately respond to the changing external
forcing of the atmosphere over the last 80 years.

Results
Training period evaluation
We present ACE2 model evaluations initialized in January 1940 and
run forward for 81 years through December 2020, spanning nearly the
full period of ERA5 and SHiELD data. Although this period overlaps
with the training data, which covers 1940–1995 and 2011–2019 (see
“Methods”), ACE2 is only trained to predict two 6-hourly time steps
ahead, and so the long autoregressive rollouts shown here demonstrate
ACE2’s ability to run stably and respond to long-term forcing. We

evaluate ACE2’s inference performance on a held out 10-year test
period in the subsequent subsections.

Figure 1 shows time series of global- and annual-mean variables for
ACE2 and the reference datasets. Both ACE2-ERA5 and ACE2-SHiELD
track the long-term trends of their reference datasets closely, which are
driven largely by the forced SST trends. Differences in 2-meter air tem-
perature betweenERA5 and SHiELD themselves, despite the same SSTs, are
largely from disagreement over high-elevation land and polar sea and land
ice (not shown). Spatial patterns of long-term trends in the referencedataset
are well-matched by ACE2 (Section S1.1 and Fig. S1). Shorter term inter-
annual variability of 2-meter air temperature and total water path is also
reflected in ACE2’s predictions but is slightly muted compared to the
reference datasets. The performance ofACE2 is similar between the training
and validation periods and the held out test period (shaded light gray). In
contrast, the previously trained ACE-climSST21 does not reproduce the
historical moistening trends (Fig. 1c) when forced with AMIP SST; it also
fails to predict historical warming in other temperature variables that is
captured by ACE2 (not shown).

The ACE2-SHiELD and ACE2-ERA5 models chosen by our check-
point selection criteria (best inference performance over 1940–2000, see
Section “Checkpoint selection based on climate skill”) have similar skill in
predicting inter-annual variability, comparable to the noise floor set by the
SHiELD reference variability. Figure 1b, d shows a scalar skill metric (R2) of
the global- and annualmean series, including each of the fourmodels in the
training ensemble for ACE2-SHiELD. e.g., ACE2-ERA5 has a mean R2 of
2-meter air temperature of 0.93, while for SHiELD reference variability the
R2 is 0.97. However, not all members of the training ensemble for ACE2-

Fig. 1 | Global and annual-mean time series of ACE2 and reference datasets over
1940–2020. Global- and annual-mean series for a 2-meter air temperature and
c total water path over 81-year evaluations of ACE2-ERA5 and ACE2-SHiELD. For
each ACE2 evaluation, a three-member initial condition (IC) ensemble of the model
(each initialized 1 day apart) is shown in solid lines, and the reference dataset is
shown in dashed lines (e.g., ACE2-ERA5 vs. ERA5 itself). The validation and test
periods are shaded in dark gray and light gray, respectively. As a baseline, the ACE-
climSST model21 forced with the historical SST is also shown for total water path

(2-meter air temperature was not predicted by this model). The “forced SST” in a is
the prescribed SST averaged over 45°S to 45°N in the SHiELD simulation (ERA5
SSTs are similar though not identical). The R2 of the 81-year series are shown in (b)
and (d). For ACE2-SHiELD, the skill metrics for each of four trained models are
shown. Error bars indicate the range over three IC ensemble members for each
model. The “SHiELD reference” bar in (b) and (d) is the R2 computed between the
two SHiELD ensemble members which differed only in initial condition.
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SHiELD have the same skill; one of the trained models (labeled “-RS3”) has
much poorer skill than the other three.

Climate skill: time-mean biases
We evaluate ACE2’s inference performance on a 10-year simulation forced
by SSTs and CO2 from the test period 2001-01-01 to 2010-12-31. Figure
2a–c shows the zonal- and time-mean of the ACE2-ERA5 and ACE2-
SHiELDpredictions.Eachmodel’s predictions adhere closely to its reference
dataset in zonal- and time-mean, such thatACE2errors aremuch smaller in
magnitude than the difference between the ERA5 and SHiELD datasets
themselves.

The time-mean bias spatial patterns of ACE2-ERA5 and ACE2-
SHiELD are different for surface precipitation and 10-meter wind
speed (Fig. 2d, g, f, i), but for both models the largest precipitation
errors are around the oceanic tropical convergence zones, where time-
mean precipitation is large. The models’ bias patterns are more similar
for 2-meter air temperature (Fig. 2e, h) with larger-magnitude tem-
perature biases over high-latitude land and sea ice. Over ocean regions
the temperature biases are smaller, as expected due to their strong
coupling with the specified SST.

To quantify the magnitudes of the biases above, global time-mean
RMSEs (Eq. (9)) of key surface fields over the 10-year test period are shown
in Fig. 3. The errors of ACE2-ERA5 are computedwith respect to the ERA5
dataset, while the ACE2-SHiELD and ACE-climSST errors are computed
with respect to SHiELD. For all variables, the ACE2 models easily outper-
form thepriorACEmodel (ACE-climSST; ref. 27) and their errors aremuch
smaller than the difference between the SHiELD and ERA5 datasets. To
enable comparison with NeuralGCM, for which the time-mean error of

total water path over a 1-year simulation was reported (c.f. Fig. 4i of ref. 13)
we run an analogous ACE2-ERA5 simulation spanning 2020, a period not
used for training or validation. ACE2-ERA5 has similar error as Neur-
alGCM, about 1.05mm versus 1.09mm, respectively, over this period
(Fig. 3c).

The error magnitudes of ACE2-ERA5 and ACE2-SHiELD against
their reference datasets are similar for 2-meter air temperature.
However, for surface precipitation rate and total water path, ACE2-
ERA5 has a larger error than ACE2-SHiELD, possibly indicating a
particular challenge in emulating moisture variables in the ERA5
dataset, which involves a data assimilation scheme and is natively at
higher horizontal resolution than the SHiELD model. For ACE2-
SHiELD, the error magnitudes are typically only 1.1–1.5 times the
SHiELD reference variability (i.e., the magnitude of differences
between the two SHiELD ensemble members, sampled over different
10-year periods). That is, by this metric, the 10-year mean climate of
ACE2-SHiELD is nearly indistinguishable from that of the refer-
ence model.

The ACE2-SHiELD training ensemble shows non-trivial variability
between models; the selected model (“ACE2-SHiELD”) slightly outper-
forms the other models (“ACE2-SHiELD-RS0”, “-RS1”, “-RS3”) over the
test period (Fig. S9). See Section S1.5 on model selection for more
information.

Atmospheric response to ENSO variability
We compute the atmospheric response to the El Niño-SouthernOscillation
(ENSO; ref. 28) by regressing thepredictedvariables onto theNiño3.4 index
(see Eq. (13)). Maps of the ENSO-regressed surface precipitation rate for

Fig. 2 | Time-mean climate biases of ACE2 over the 10-year test period.
a–cZonal- and time-mean for ACE2 (solid) and its reference datasets (dashed) over
test period spanning 2001-01-01 to 2010-12-31, for selected variables. d–f ACE2-

ERA5 time-mean biases over this time period. g–iACE2-SHiELD time-mean biases
over this time period. Results for a single initialization of each ACE2 model
are shown.
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ACE2-ERA5, ACE2-SHiELD, their reference datasets, and ACE-climSST
are shown for the 10-year test period. ACE2 reliably reproduces the cano-
nical response of surface precipitation to Niño 3.4 variability28 in which
positive Niño 3.4 is associated with increased precipitation in the central
tropical Pacific andwestern IndianOcean, and decreased precipitation over
the maritime continent and tropical Atlantic (Fig. 4). Furthermore, ACE2
clearly reproduces the details of the Nino3.4 regression maps in the
respective ERA5 and SHiELD reference datasets.

In contrast, the previous ACE-climSST predictions show a somewhat
skillful but muted precipitation response to Niño 3.4 when evaluated using
SHiELD forcing (Fig. 4c), demonstrating the value of ACE2 over ACE-
climSST, most notably due to training on datasets with historical SST
variability. The RMSE of the precipitation ENSO regressionmaps for ACE2-
ERA5 (0.46mm/day/K) and ACE2-SHiELD (0.48mm/day/K) are smaller
than that of ACE-climSST (mean 0.64mm/day/K), and are comparable to
the internal variability of this regressionmap in SHiELD(0.54mm/day/K).A
similar result is found for outgoing longwave radiation at top of atmosphere
(Fig. S2). The extratropical teleconnections of the atmospheric circulation to
ENSO over boreal winter are discussed in Supplementary Information

(Figs. S3 and S4). Briefly, ACE qualitatively shows the expected deepening of
the Aleutian low and dipole of precipitation over North America.

Maps of ENSO coefficients for ACE2 rollouts spanning the entire
81-year ERA5/SHiELD period (see Figs. S3 and S4) are qualitatively similar
to those for the 10-year test period, showing that the learned response to
ENSO is robust.

Tropical cyclone climatology
Tropical cyclones are particularly damaging weather phenomena whose
characteristics, such as strength and intensification rate, are projected to
change with global warming29–31. Their accurate representation would be a
valuable feature of climate model emulators to allow the assessment of
changes in these properties as a function of changing boundary conditions.
In this section, we compare the strength, frequency, and location of tropical
cyclone-like features in the ERA5 dataset, the ACE2-ERA5 emulator and,
for comparison, the C96 (approximately 100 km resolution) SHiELD
atmospheric model. However we note the SHiELD atmospheric model at
C96 resolution is not expressly designed or intended to accurately represent
tropical cyclones.

Fig. 3 | Global RMSE between the time-mean of ACE2 and its reference dataset
(ERA5 or SHiELD). The global RMSE of the time-mean (Eq. (9)) for a 2-meter air
temperature, b surface precipitation rate, c total water path and d 500 hPa geopo-
tential height. Error bars indicate the 95% confidence interval based on the IC
ensemble. Also included are NeuralGCM error against ERA5, SHiELD reference

variability, the error of ACE-climSST evaluated against the SHiELD dataset, and the
error of the SHiELD simulations against ERA5. ACE-climSST did not predict
2-meter temperature or 500 hPa height. NeuralGCM13 results are only available for
total water path for a single year (2020), and so we also show 2020-only results of
ACE2-ERA5.

Fig. 4 | Maps of regression coefficients of predicted and reference dataset surface
precipitation against the Niño 3.4 index over the 10-year test period. Single
model initializations are shown. a ACE2-ERA5, b ACE2-SHiELD, c ACE-
climSST evaluated on SHiELD, d ERA5 reference, e SHiELD reference, all for the
10-year test period. Titles of (a–c) indicate the RMSE of the predicted map

against its reference map; the numbers in parenthesis are for the two other
initializations that are not shown. For e, the SHiELD reference variability is
calculated as the RMSE between the regression coefficient maps of the two
ensemble members.
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The features are detected using 1° horizontal resolution data, although
tropical cyclones arenotwell resolved at this horizontal resolution (e.g., their
strength is often underestimated32 or they may be simply not detected). We
use the TempestExtremes package and apply the default setting recom-
mended for detecting tropical cyclones (Section 3.2 of ref. 33), noting that
these defaults were originally tuned for ERA5 at 0.25° resolution. One
exception is that instead of using upper-level geopotential thickness
(Z300 minus Z500) to detect warm cores aloft, we use upper tropospheric
temperature since ACE2 does not directly predict geopotential height.
Specifically, we use T3, which is the mean temperature between about
250 hPa and 400 hPa (seeTables S1 and S2). Instead of requiring a thickness
decrease away from the tropical cyclone center, we require a temperature
decrease of 0.4K.Assuminghydrostatic balance, this is approximately equal
to the 58.8 m2 s−2 thickness decrease suggested in ref. 33.

Figure 5 shows the tropical cyclone tracks detected for ERA5, ACE2-
ERA5 and SHiELD according to the above criteria as well as those in the
IBTrACS database34,35 for the 10-year test period (2001–2010). The number
of cyclones detected per year globally is shown in the title of each panel,
although we note that this quantity is sensitive to the parameters chosen for
the detection algorithm used in Fig. 5b–d. That said, since the same
detection parameters are used for ERA5, ACE2-ERA5 and SHiELD, we can
compare this quantity between these datasets. Globally, ACE2-ERA5
overpredicts tropical cyclone frequency by about 28% compared to its target
dataset ERA5. The SHiELD atmospheric model predicts about 69% more
tropical cyclones that ERA5 at the given resolution, which may be more in
line with the true global frequency of tropical cyclones (Fig. 5a). Regionally,
ACE2-ERA5 closely matches the basin-by-basin frequency of tropical
cyclones in theERA5dataset (Fig. 5).On theother hand, compared toERA5
and IBTrACS, the SHiELDatmosphericmodel has too few tropical cyclones
in the North Atlantic. Overall, this analysis suggests the ACE2-ERA5
emulator accurately captures the regional frequency of tropical cyclone-like
events in the ERA5 dataset.

A possible concernwith our evaluation framework is thatACE2-ERA5
is forced with observed sea surface temperatures that contain a signature of
past tropical cyclones, which can leave behind a coldwake36. Hypothetically,
the machine learning emulator could learn to generate tropical cyclones
based on the prescribed sea surface temperature signature. However, when
we force ACE2-ERA5with a climatological sea surface temperature dataset,
we recover a very similar frequency and distribution of tropical cyclones as
whenwe force it with historical sea surface temperature, showing that this is
not the case (Fig. S6).

The strength of the detected tropical cyclones, as measured by mini-
mum sea level pressure and maximum 10m wind speed, is also accurately

emulated by ACE2-ERA5 (Fig. S7) when compared to the ERA5 dataset.
The SHiELDmodel tends to produce more cyclones with strong (>30m/s)
near-surface wind speeds.

Tropical precipitation variability
Prior work has confirmed that ACE is able to closely replicate the pre-
cipitation variability in a coarse resolution atmospheric model22. Here we
show a brief analysis of tropical precipitation variability focused on ACE2-
ERA5 since the ERA5 dataset contains variability, such as equatorial Kelvin
waves or theMadden-JulianOscillation, which is oftenmissing or too weak
in coarse resolution atmospheric models (c.f. Fig. 17d of refs. 37,38).

Figure6 shows the tropical-meanprecipitationover longitude and time
for the 2007–2008 period, which contained several strong Madden Julian
Oscillation (MJO) events in the observed record39 that are apparent in the
ERA5 dataset, for example during December 2007 (Fig. 6a). The shown
ACE2-ERA5 and SHiELD simulations (Fig. 6b, c) are initialized in 2001 and
1939 respectively, so we do not expect the timing of events to coincide
between the three datasets. However, it is notable that the spatio-temporal
variability of the ERA5 dataset is much more closely captured by ACE2-
ERA5 than it is by SHiELD. For example, relatively small-scale eastward
propagating Kelvin waves40 exist in both the ERA5 and ACE2-ERA5 pre-
cipitation variability, but are less apparent in SHiELD. ACE2-ERA5 does
show some notable differences from ERA5, for example generally being
smoother in longitude and time.

To more explicitly compare the representation of the MJO, the
dominant mode of intraseasonal variability in the tropics41, we compute
a lag-correlation diagnostic which demonstrates the eastward move-
ment of precipitation on the MJO timescale (20–100 days) around the
Indian Ocean and Maritime Continent42. Specifically, we first compute
P20�100day
10�S�10�N, which is the surface precipitation rate averaged between 10°S

and 10°N and bandpass filtered between 20 and 100-day variability. We
then compute the lag correlation of P20�100day

10�S�10�N at all longitudes with that
over the western IndianOcean (80°E and 100°E). Figure 7 shows this lag-
correlation for ERA5, ACE2-ERA5 and SHiELD, in all cases computed
over 2001–2010. This demonstrates the eastward propagation of of the
MJO in ERA5 (Fig. 7a) while the SHiELDmodel lacks coherent eastward
propagation of precipitation variability in this region (Fig. 7c), a fairly
common and longstanding issue of coarse resolution global atmospheric
models38,43,44. However, ACE2-ERA5 shows an eastward propagation of
the MJO consistent with ERA5, both in terms of phase speed and
longitudinal extent. This lends further credibility to the realism of
ACE2-ERA5 emulator’s representation of tropical variability on sub-
seasonal timescales.

Fig. 5 | Climatology of tropical cyclone tracks over
10-year test period. Tracks of tropical cyclone-like
features over the 2001–2010 period for a the
IBTrACS dataset, b ERA5, c the C96 SHiELDmodel
and d ACE2-ERA5. The tracks for (b–d) are deter-
mined based on minima in sea-level pressure along
withmaxima in upper troposphere temperature. See
main text for details. The average number of tropical
cyclones across the globe per year is shown in the
title of each panel, although the IBTrACS dataset is
not directly comparable to the detections in other
panels which use a tracking algorithm applied to 1°
resolution data.
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Polar stratospheric variability
Existing machine learning models for weather prediction either do not
explicitly resolve the stratosphere23,45, do not report on skill in the
stratosphere9,46, or show relatively worse short-term predictive performance
in the stratosphere compared to lower vertical levels10. The uppermost
vertical layer of ACE2 represents a mass-weighted integral of atmospheric
properties (temperature, horizontal winds and moisture) between
approximately 50 hPa and the top of atmosphere (Table S2). Therefore, we
are able to evaluate the representation of large-scale stratospheric processes.
In this section, we focus on comparing polar stratospheric variability in
ERA5 and ACE2-ERA5. The variability in the strength of the stratospheric
polar vortex—asmeasuredby the zonalmeanwindu0 inACE2’s topvertical
layer at 60° latitude—is the dominantmode of sub-seasonal variability in the
stratosphere. It is an important source of sub-seasonal to seasonal
predictability47 and is a strong control on ozone chemistry, resulting in the
ozone hole being most evident in the Southern Hemisphere48.

ACE2-ERA5 reproduces the expected seasonal asymmetry in mean
polar stratospheric vortex strength and variability (Fig. 8). By overlaying the
zonal mean u0 at 60 °N and 60 °S for each of the 10 years from the test
period, we see the expected variability in theNorthernHemisphere exists in
ACE2-ERA5. This includes sudden stratospheric warming events in which
the strength of the vortex rapidly decreases and the zonal-mean flow
reverses. As expected, in the Southern Hemisphere, the average winds are

stronger while also being less variable from year to year.With only ten years
for comparison, it is difficult to quantitatively compare the statistics of
variability between ERA5 and ACE2-ERA5, but the qualitative behavior
shown in Fig. 8 is promising. Longer simulations, which overlap with the
training and validation periods, demonstrate good agreement between the
5th and 95th percentiles of u0 at 60 °S and 60 °N (not shown).

While ACE2-ERA5 shows some variability of near-equatorial strato-
sphericwindsbetweeneastward andwestwardwith approximately the same
magnitude as the observed quasi-biennial oscillation49, the variability is
irregular and does not have the correct period (not shown).

Weather skill
Although accurate weather forecast skill was not a primary objective of this
work, in this section we assess ACE2-ERA5’s medium range global forecast
skill. Figure 9 shows global RMSE averaged over 10-day forecasts initialized
throughout the 2020 period for T2m, T850, Z500 and v10m (see Table S1 for
definitions). As baselines, we use Graphcast10 and the “ERA5 forecasts” as
provided by WeatherBench 2.050, both compared with the ERA5 dataset.
The “ERA5 forecasts” are forecasts using ECMWF’s IFS model, with the
same model version used to produce the ERA5 reanalysis and initialized
from ERA5 snapshots to provide a more direct comparison with models
such as ACE2-ERA5. The ACE2-ERA5 forecasts in Fig. 9 correspond to 48
initializations equally spaced across 2020, while Graphcast and era5-

Fig. 6 | Hovmöller plot of tropical precipitation in
ACE2-ERA5 and the reference datasets. Daily-
mean precipitation rate averaged between 10°S and
10°N over the 2007–2008 period for a ERA5 and
b the 10-year ACE2-ERA5 run initialized on 2001-
01-01 and c the first ensemble member of the
SHiELD AMIP simulation.

Fig. 7 | Lag correlation of P20�100day
10�S�10�N at all longitudes with P20�100day

10�S�10�N averaged

from 80 °E to 100 °E (ref. 42). P20�100day
10 �S�10 �N is the surface precipitation rate averaged

from 10 °S to 10 °N, and then filtered with a 20–100 day bandpass filter. Calculated

over the 2001–2010 period from a ERA5, b the test period run of ACE2-ERA5 and
c the first ensemble member of the SHiELD AMIP run.
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forecasts consist of forecasts initialized at 0Z and 12Z on every day of 2020.
Figure 9 shows that ACE2-ERA5 is slightly behind the ERA5-version of IFS
(e.g., half a day at 5-day lead time for 850 temperature) and further behind
Graphcast by another day. Although there are a variety of differences
between ACE2-ERA5 and Graphcast, we believe the most substantial to be
(1) the different vertical coordinate (ACE2-ERA5 uses a terrain-following
coordinate, Graphcast a pressure coordinate) and (2) the architecture
underlying each model (SFNO and Graph Neural Network respectively).
Preliminary work has found that using a different architecture but keeping
ACE2’s terrain-following vertical coordinate can lead to a significant
increase in weather forecast skill, but not mean climate skill (not shown),
suggesting that the architecture difference is likely the more important one.

Millennial timescale stability
To test the stability of ACE2 models over a longer duration than the length
of the AMIP forcing dataset (about 80 years), we generate a climatological
forcing dataset which can be repeated indefinitely. This is computed by
averaging surface temperature, CO2 and sea-ice fraction from ERA5 over
the 1990–2020period, resulting in a 6-hourly climatology estimate.We then
initialize an ACE2-ERA5 simulation from ERA5 on 2001-01-01 and run it
for 1000 years, forced by the annually repeating climatological dataset. No
signs of instability (i.e., indefinitely growing errors) are seen in this 1000-
year run, and the time-mean climate is nearly identical between different
100-yearperiodsof the simulations.As anexample, Fig. 10 shows theglobal-

mean total water path timeseries for the first 100 and last 100 years of the
simulation. There is no long term drift in total atmospheric moisture, and
the seasonal cycle remains of consistent amplitude throughout the simu-
lation. This is a noteworthy improvement onACE-climSST,where 100-year
simulations showed unrealistic fluctuations in the amplitude of the global-
mean seasonal cycle (c.f. Fig. 10 of ref. 21).

Learning at coarser horizontal resolution
Traditional climate models often achieve improved skill at increasing
resolution, as physical processes aremore accurately represented. However,
this is not necessarily the case for coarse emulators of a climate model
without an explicit representation of atmospheric processes. Here we
compare the performance of ACE2 trained on the SHIELD AMIP dataset
coarsened to 4-degree resolution against the coarsened output of ACE2
trained at 1-degree resolution (as presented in Section “Results”). Ideally, the
climate of the 4-degree ACE2 emulator could be just as skillful as that of the
1-degree emulator, but is this achievable in practice?

With identical training and inference regimes, the time-mean
ensemble-mean biases of 2m air temperature (T2m) and precipitation
have slightly higher magnitudes for the models trained at 4° resolution
comparedwith 1° resolution (Fig. 11). Both have biasesmuch smaller than a
C24 (approximately 400 km resolution) SHiELD baseline simulation. The
largest T2m biases are at high latitudes. T2m biases over open ocean regions
areminimal, as physically expected due to strong coupling of T2mwith SST.

Fig. 9 | RMSE of ACE2-ERA5 during 2020, compared to GraphCast and IFS initialized from ERA5 (“era5-forecasts”). In order to make a fair comparison, for these
ACE2-ERA5 simulations the sea surface temperature and sea-ice fraction are kept fixed at their initial values instead of being prescribed throughout the simulation.

Fig. 8 | Annual cycle of zonal-mean u0 (eastward
wind vertically integrated from ~50 hPa to top of
atmosphere) at (top row) 60 °N and (bottom row)
60 °S for (left column) ERA5 and (right column)
ACE2-ERA5. For ERA5, each of the years from
2001–2010 test period are plotted. For ACE2-ERA5,
a simulation is initialized from ERA5 on 2001-01-01
and run for 10 years. Individual gray lines show each
year, while the bold black line shows the average over
the 10-year period.
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The biases in time-mean precipitation are largest at low latitudes, in regions
of large mean precipitation. We use the C24 SHiELD as a baseline because
coarsening spatial resolution is a common strategy to decrease the com-
putational cost of physics-based atmospheric models. However, ACE2 is
still about 25x more energy efficient than C24 SHiELD and it is about 700x
more energy efficient than C96 SHiELD (Table 3).

The patterns of precipitation variability regressed on ENSO
variability have similar RMSE amplitudes for the 4° emulator and the
1° emulator, and their biases with respect to the C96 SHiELD model

share many of the same spatial structures (Fig. 12). Both have lower
biases with respect to the C96 SHiELD model than the C24 SHiELD
baseline.

This similarity in skill between ACE2 trained at 1° and 4° is encoura-
ging because it suggests that, unlike for physics-based climate models, a
computationally light coarse emulator that might be attractive for paleo-
climate or marine biogeochemistry applications can simulate coarse-scale
climate features almost as well as amore expensive,memory-intensive fine-
grid emulator.

Fig. 10 | The global mean total water path for the first and last 100 years of a 1000-year long simulation with ACE2-ERA5 forced with 1990–2020 climatological mean
sea surface temperatures, land type fractions and CO2. Shown for (blue) monthly mean and (black) annual mean.

Fig. 11 | Single initial condition time-mean biases of T2m and precipitation for
10-year inference using 1° and 4° ACE2-SHiELD models and the C24 (4°)
SHiELD baselinemodel, with respect to the C96 (1°) SHiELDmodel. 1° values are
area-weighted block-coarsened by a factor of 4 prior to computing RMSE.Values are

shown for the same time period and ensemble configuration as in Fig. 4. RMSE is
shown for the ensemble member shown in the map, with values for the other two
members shown in parentheses.

Fig. 12 | Bias of single initial condition ENSO regression coefficient maps of
surface precipitation rate for 3-member 10-year inference using 1 and 4-degree
ACE2 models and a C24 (4°) SHiELD baseline model, with respect to the C96
SHiELDmodel. 1-degree values are area-weighted block-coarsened by a factor of 4.

Values are shown for the same time period and ensemble configuration as in Fig. 4.
RMSE is shown for the ensemble member shown in the map, with values for the
other two members shown in parentheses.
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The 1° and 4°models show a similar ability to reproduce the long-term
trend and interannual variability (Fig. 13). Both models show reduced
interannual variability over shorter timescales. Over the 1940–1975 period
the 1° model is biased low and the 4° model is biased high. This leads to a
better representation of the overall trend in the 1°model, as bothmodels are
biased low during 1996–2020.

We would also note that while we have trained the 4° model with the
same hyperparameters as the 1° model for consistency, coarse model per-
formance benefits from a larger embedding dimension, likely due to the
increased subgrid activity at coarser resolution.

Using CO2 as an input feature
ACE2 uses both global-mean CO2 concentration and spatially-varying SST
as forcing when trained on either ERA5 or SHiELD. During the AMIP
period, historical global-mean SSTs and CO2 both increase with time, and
the physical causality (i.e., gradual uptake of heat by the oceans due to
increased radiative heating from elevated CO2) may be difficult to learn
from 6-hourly changes in the atmospheric and SST states. Here we evaluate

the sensitivities of ACE2 to CO2 specifically, by comparing ACE2 simula-
tions with historical CO2 to those where we set the concentration to a fixed
value (1940 concentration of 307ppm), while retaining increasing SSTs.

Figure 14 shows that both near-surface and stratospheric global-mean
temperature series in ACE2-SHiELD approximately match those in the
reference dataset, when ACE2-SHiELD is forced with both historical SSTs
and CO2. There is both near-surface warming with polar amplification
(Section S1.1) and near-uniform stratospheric cooling. When holding CO2

fixed, ACE2 no longer produces stratospheric cooling, as is expected
physically51. However, it also loses much of the trend of near-surface
warming, which is not expected. This is largely due to lack of warming over
high-latitude land (not shown), despite evidence that such polar amplifi-
cation should be driven largely by SST and sea ice coverage forcing52.

In contrast, a versionofACE2 trainedwith SSTsbutnotCO2 as forcing
has global trends of near-surface warming and stratospheric cooling that
somewhat underestimates these trends in the referencedata, aswell as excess
inter-annual variability of stratospheric temperature. Thus using CO2 as
forcing with AMIP training datasets appears to improve the representation

Fig. 13 | Annual and global mean 2-meter temperature for 81-year inference using 3-member initial condition ensembles of 1 and 4-degree ACE2-SHiELD models.
Values are shown for the same time period and ensemble configuration as shown in Fig. 1.

Fig. 14 | Global and annual-mean time series of 2 m and stratospheric air tem-
perature for ACE2-SHiELD simulations with differing CO2 inputs. Global- and
annual-mean a 2-meter air temperature and b level-0 (stratospheric) air temperature.
Shown for the standard ACE2-SHiELD model (“historical CO2”); the same model but

with CO2 concentrations fixed at the 1940 value (“fixed CO2”); a version of ACE2-
SHiELD trained without CO2 as a feature (“no CO2”); and the SHiELD reference data
withhistorical SSTsandCO2 forcing.Theaverageof 3-member ICensembles are shown.
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of some aspects of CO2-induced trends, while introducing non-physical
relationships in others. We lack SHiELD simulations forced by historical
SSTs and fixed CO2 (and vice versa), but these could be generated to aug-
ment ACE2’s training data and test whether this improves the physical
sensitivities of the emulator.

Discussion
This study demonstrates the feasibility of training a machine learning
emulator to accurately generate atmospheric variability and forced
responses from time scales of days to decades. ACE2 has a realistic global
mean atmospheric response to increased sea surface temperature and CO2.
It generates realistic variability including the atmospheric response to El
Niño, theMadden JulianOscillation, the geographic distribution of tropical
cyclones and stratospheric polar vortex strength variability. By formulating
ACE2 as an autoregressive model which simulates century-long trends
through stepping forward 6 h at a time, we can ensure physical consistency.
Specifically, ACE2 exactly conserves dry air mass and moisture. Further-
more, by simulating climate as the average of explicitly resolved weather,
interpretability is improved. As an example, the mechanisms by which
ACE2 simulates the correct atmospheric response to El Niño could be
explored in a manner analogous to traditional numerical models.

The enormous decrease in computational expense for running ACE2
compared to a similar resolution physics based model (about 750x less
energy cost and 130x faster throughput) opens the door to new use cases.
With proper validation, generation of very large ensembles will allow
accurate estimation of internal variability and the likelihood of extreme
events, with important applications for climate risk estimation. The relative
ease of running ACE2 compared to conventional global atmospheric
models—it is possible with reasonable throughput even on amodernApple
laptop—allows a wider range of users to directly apply climate models to
their questions of interest. Indeed, providing a deep learning emulator with
new releases of physics based models may become standard practice.

Limitations of this work include the particular datasets used. For
example, due to training on data corresponding to the last 80 years, we do
not expect ACE2 to be able to properly simulate the response to strong
climate change (e.g., a doubling of CO2 or significant increase in sea
surface temperature). Indeed, preliminary experiments indicate unrea-
listic patterns of near-surface air temperature response, even to relatively
small magnitude uniform SST perturbations (Section S1.3) with unex-
pected cooling over some land and sea-ice regions and insufficient
warming over ocean.

Furthermore, the SHiELD and ERA5 datasets both have shortcomings
in accurately representing the true past conditions of the atmosphere.
SHiELD is a coarse atmospheric model, and has biases in its global circu-
lation. While the ERA5 dataset involves a data assimilation scheme to
constrain its state to remain close to observations, fields such as the surface
precipitation rate and radiative fluxes are not constrained and exhibit non-
trivial biases with respect to satellite and station observations17,53. In addi-
tion, ACE2 itself does not accurately represent the expected atmospheric
response to increasing sea surface temperature while keeping CO2 fixed
(Section “Using CO2 as an input feature”) suggesting a need to encode the
impacts of greenhouse gases in a more sophisticated manner. Training on
exclusively historical data, a period over which forcings such as CO2,
methane, aerosols and insolation varied simultaneously, makes it difficult
for a global machine learning model to disentangle the effects of these

individual terms. Finally, ACE2 does not exactly conserve global atmo-
spheric energy, because it has a more complex budget equation than dry air
mass or moisture and has significant non-conservation errors in atmo-
spheric models such as SHiELD.

Concurrent work has trained ACE2 on SHiELD simulations spanning
a wider range of CO2 concentrations

20, demonstrating excellent skill for
ACE2 in interpolating between idealized climate scenarios. How best to
combine reanalysis data such as ERA5 with simulation data from future or
past climates for training remains an important open question. In addition,
the ability to simulate additional components of the climate system, such as
ocean and sea ice, is a basic requirement for auseful climatemodel emulator.
We expect progress to continue advancing quickly in the application of
machine learning for climate modeling.

Methods
Versioning nomenclature
We use the following nomenclature to distinguish between versions of the
ACE model. ACE-climSST refers to the first version of ACE21 which was
trained on a dataset produced by forcing an atmospheric model with
annually-repeating climatological SSTs andotherwisefixed external forcing.
In this study, we introduce ACE2, which has an increased parameter count
andupdated loss function, introduceshardphysical constraints onmass and
moisture and uses a new checkpoint selection strategy in training, among
other changes described below. We present results from training ACE2 on
two distinct datasets, described in the next section. To distinguish these
models, we will describe them as ACE2-SHiELD and ACE2-ERA5
respectively.

Datasets
Two datasets are used as targets for emulation (Table 1). The first is output
from the SHiELD atmospheric model19 at C96 (approximately 100 km)
resolution forced by observed sea surface temperatures and greenhouse
gases from the 1940–2021 period. The latter is the ERA5 reanalysis dataset17

from1940–2022.Other than their sources, thedatasets are the same in terms
of variable set (see Table S1) and resolution. ACE2, like ACE, combines the
model-level fields for air temperature, specific total water and horizontal
winds into eight vertical layers. The 2D prognostic variables are surface
pressure, surface temperature over landand sea-ice, 2-meter air temperature
and specific humidity and 10-meter horizontal winds. These latter near-
surfacevariables arenewadditions compared toACE21 andare includeddue
to their human impact relevance and importance for ocean coupling.
Additional variables, used as diagnostics (outputs) only are the top-of-
atmosphere and surface radiative fluxes, surface latent and sensible heat
fluxes, surface precipitation rate and, for convenience, the 500 hPa geopo-
tential height and 850 hPa air temperature. Finally, forcing variables (i.e.,
inputs only) are sea surface temperature, global-mean carbon dioxide
(broadcast to a spatially uniform global field), incoming solar radiation at
the top of atmosphere, land fraction, ocean fraction, sea ice fraction and
surface topography. The use of carbon dioxide as a forcing input is a change
from ref. 21.

The reference data is horizontally interpolated to the 1° Gaussian grid
and the 6 h temporal resolution used by ACE2 and ACE. All flux variables
(e.g., radiative fluxes, precipitation) are time-averaged over the 6-h intervals
in order to enable exact evaluation of atmospheric budgets at the 6-hourly
time resolution.

Table 1 | Datasets used in this study

Name Train period Validation period Test period

ERA5 1940–1995, 2011–2019, 2021–2022 1996–2000 2001–2010, 2020

SHiELD 1940–1995, 2011–2021 1996–2000 2001–2010

ERA5 is a reanalysis product, here coarsened to 1° horizontal resolution17. SHiELD is an approximately 100 km resolution global atmospheric model which was forced by historical sea surface
temperatures19. For the SHiELD dataset, data are available from two ensemble members initialized from slightly different initial conditions on October 1, 1939, doubling the number of samples available.
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SHiELD dataset
To generate multiple physics-based realizations of climate forced by his-
torically observed sea surface temperatures, sea ice, and carbon dioxide, we
make use of the public version of the SHiELD model developed at the
Geophysical Fluid Dynamics Laboratory (GFDL)19. This is GFDL’s devel-
opmental version of the FV3GFS model used in ref. 21. The two models
share a significant fraction of their code, the most notable difference being
that SHiELD computes all microphysical updates every vertical remapping
timestep within the dynamical core, rather than splitting the microphysical
updates between the dynamical core and the physics19,54.

We run SHiELD at two horizontal resolutions, C96 (roughly 100 km)
and C24 (roughly 400 km), with 79 vertical levels; C96 simulation output
forms the basis of our target dataset,while C24 simulation output serves as a
computationally inexpensive physics-based baseline. Other than those
related to horizontal resolution and convection—here we use the latest
versions of both the shallow and deep convection schemes—we configure
the parameters of the model following how they were configured in the
C3072 (roughly 3 km) resolution X-SHiELD runs of ref. 55. Note that no
special tuning was attempted to help the climate of SHiELD better match
observations when run at coarser resolution. However we reduced a para-
meter controlling the strength of the mountain blocking scheme in the C24
configuration to help its climate, particularly the near-surface temperature
over land, bettermatch that of the C96 configuration based on the scheme’s
empirical sensitivity to resolution (J. Alpert and F. Yang, personal com-
munication, August 9, 2019).

At each horizontal resolution, we run two identically forced simula-
tions over 1940–2021, but with different initial conditions. The initial
conditions are generated by running a spin up simulation starting fromGFS
analysis for 2020-01-01 with 1930-01-01 forcing data for 117 months to
1939-10-01, outputting daily restart files from the last month. This roughly
10-year period ismeant to allow themodel to adjust to the historical forcing
after being initialized with present-day atmospheric conditions; the time-
scale is mainly limited by the time it takes stratospheric water vapor to
equilibrate. The restart files from 1939-09-30 and 1939-10-01 represent the
state with which we start the two ensemble members on 1939-10-01, pro-
viding 3 months of spin up time prior to 1940-01-01 to allow the model
states to meteorologically diverge. A similar approach was used to generate
initial conditions in the coupled model ensemble context in56. We run the
simulations until 2021-12-16T12:00:00, the last available time in our
reference SST and sea ice dataset.

The historical SST and sea ice concentration data come from that used
to force historical AMIP CMIP6 simulations18,57,58 and are provided on a 1°
regular latitude-longitude grid as a monthly time series; space and time
interpolation occurs online at the time of prescription within SHiELD. We
prescribe carbon dioxide as a time series of annual and global means, with
dataprior to 2015 coming from that used forCMIP659 anddata after coming
from the NOAA Global Monitoring Laboratory60; in these runs we assume
CO2 is well-mixed (i.e., globally uniform).

Data from these simulations is output on the model native cubed-
sphere grid at 6-hourly intervals. We make use of GFDL’s fregrid tool61

to conservatively regrid themodel state to aGaussian grid. In the case ofC96
data this is a 1° grid, and in the case of C24 data this is a 4° grid. Similar to a
regular latitude-longitude grid, a Gaussian grid provides increased resolu-
tion in the polar regions, which means that with a conservative regridding
approach the original cubed-sphere grid cell edges in these regions are
resolved with high fidelity. As in ref. 21, we perform a spherical harmonic
transform (SHT) round trip on all but the sea-ice fraction, ocean fraction
and land fraction variables in the regridded output to smooth these sharp
boundaries, which otherwise produce artifacts under spherical harmonic
transforms. Finally we coarsen vertically resolved fields from the native 79
vertical layers toACE’s 8 layers (see Table S2) withmass-weighted averages.

ERA5 dataset
We use the ERA5 reanalysis dataset spanning 1940–202217,62. Our version of
the dataset—at 1° horizontal resolution and with 8 terrain-following vertical

layers—is derived from the native dataset on 137 model layers and stored in
terms of spherical harmonic coefficients or on a reduced Gaussian grid,
depending on the variable. It was computed from the version of ERA5hosted
by Google Research (https://github.com/google-research/arco-era5; ref. 63)
with some auxiliary surface flux variables that were missing in the Google
dataset obtained from theNCARResearchDataArchive64. Routines from the
MetView package65 were used for the regridding. To the extent possible, data
was regridded and vertically coarsened to match the SHiELD dataset’s hor-
izontal and vertical coordinate (see Table S2). Unlike the SHiELD dataset, no
spherical harmonic round trip was performed on the ERA5 data because it
did not show evidence of regridding artifacts in the high latitudes. Sensitivity
to the vertical resolution was briefly explored: models trained on the ERA5
dataset with twice the vertical resolution—splitting the existing 8 layers into
two each—were also stable with accurate time-mean climate but did not
demonstrate notably improved performance (not shown).

Architecture
The Spherical Fourier Neural Operator (SFNO) architecture is used66. This
is aneural operator type architecturewell suited todataon the sphere.This is
the same architecture used in ref. 21. The only difference in configuration of
the SFNO from version 1 of ACE is that the embedding dimension is
increased from 256 to 384 for ACE2. In addition, a corrector imposing
physical constraints is included as part of the model architecture, as
described in the next section.

Hard physical constraints
In our previous work, we found global mean surface pressure drifted
unrealistically (c.f. Fig. 9 of ref. 21). Andwhile themodel very nearly obeyed
the column-wise conservation of moisture without an explicit penalty or
constraint, there were still small violations of this budget and the global
meanmoisture budget was violated by up to 0.1mm/day at individual time
steps (c.f. Fig. 11 of ref. 21). Here we describe how we enforce hard physical
constraints to eliminate these budget violations. The following equations
define the budgets which we desire to impose. First, conservation of global
dry air mass:

hpdrys ðt þ ΔtÞi ¼ hpdrys ðtÞi ð1Þ

where pdrys ðtÞ ¼ psðtÞ � gTWPðtÞ is the surface pressure due to dry air,
TWPðtÞ ¼ 1

g

R ps
0 qðt; pÞdp is the total water path,Δt is the forward time step

of the machine learning model and angled brackets 〈〉 represent the area-
weighted global average. Next, the conservation of column-integrated
moisture:

TWPðt þ ΔtÞ � TWPðtÞ
Δt

¼ EðtÞ � PðtÞ þ ∂TWP
∂t

����
adv

ðtÞ ð2Þ

where E(t) is the evaporation rate, computed as LHF(t)/Lv, P is the pre-
cipitation rate and ∂TWP

∂t

��
adv is the tendency of total water path due to

advection, which is directly predicted by the machine learning model (see
also Table S1). Note that all of the terms on the right hand side of Eq. (2)
represent time averages between t and t+Δt. Finally, we have the con-
straints on global moisture:

∂TWP
∂t

����
adv

ðtÞ
� �

¼ 0 ð3Þ

and by implication

TWPðt þ ΔtÞ � TWPðtÞ
Δt

� �
¼ EðtÞ � PðtÞ� �

: ð4Þ

We enforce these physical constraints on the model by including a
physical correctormodulewithin the optimizedmodel. Thismodule applies
the following corrections to ensure the constraints are satisfied:
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(1) Moisture, precipitation rate, and radiative fluxes are all made to be
positive by setting any negative values to zero.

(2) A globally-constant surface pressure adjustment ensures total dry air
mass is conserved:

p0sðtÞ ¼ psðtÞ � hpdrys ðtÞ � pdrys ðt � 1Þi ð5Þ

(3) Precipitation rate is multiplied by a constant to conserve global mean
moisture:

P0ðtÞ ¼ PðtÞ
hPðtÞi hEðtÞ �

TWPðtÞ � TWPðt � 1Þ
Δt

i; ð6Þ

where P0ðtÞ is the corrected precipitation rate at time t, P(t) is the pre-
cipitation prior to this correction, and E = LHF(t)/Lv is the evaporation rate.
(4) Exact conservation of column moisture is attained by deriving

advective flux as residual from the adjusted TWP tendency, E and P:

∂TWP
∂t

����
0

adv

¼ TWPðtÞ � TWPðt � 1Þ
Δt

� ðEðtÞ � P0ðtÞÞ; ð7Þ

where ∂TWP
∂t

��0
adv represents the corrected tendency of total water path due to

advection.

We avoid introducing model bias through these corrections by
applying them before computing the loss. For this reason, these constraints
can be considered to be part of the model architecture. The order of these
adjustments is such that later corrections will not invalidate earlier correc-
tions. These corrections are applied, by necessity, to the data in physical
units instead of in normalized units.

Data normalization
For the inputs and outputs of the SFNO module, data is normalized using
standard scaling. Means and standard deviations are computed over lati-
tude, longitude and time without any area weighting. For normalization
before the loss function is computed, prognostic variables are scaled to
harmonize their typical difference between time steps, i.e., we use “residual”
scaling (see Appendix H of ref. 21). Specifically, for a field a(t, ϕ, λ) which
depends on time, latitude and longitude, the standard deviation of a(t+ Δt,
ϕ, λ)− a(t, ϕ, λ) over time and space is used for normalization. Diagnostic
variables are normalized for the loss function using standard scaling.

For the ERA5 dataset, normalization statistics were computed over the
period 1990–2020 forwhich this reanalysis ismost reliable. For the SHiELD
dataset, they were computed over 1940–2021.

Loss function
The loss function is themean squared error over all outputs. Prognostic
outputs are normalized using residual scaling as described in previous
section while diagnostic outputs are normalized using standard full
field scaling. The loss is summed over two autoregressive forward 6-h
steps. In addition, some variables are given an additional weighting
(Table 2). Variables which were downweighted are ones which showed
signs of overfitting (that is, increasing 6-h RMSE on validation data late
in training) without the downweighting. Variables which are
upweighted are diagnostic variables, whichwould otherwise contribute
relatively little (<0.5%) to the loss function that is averaged across 50
outputs.

Checkpoint selection based on climate skill
Since the loss function used here is based on 12-h forecast skill over two
6-hourly autoregressive steps, it is not guaranteed that a lower loss will lead
to small long-term (e.g., 10-year averaged) climate biases. Since our priority
in this work is accurate representation of climate statistics, we therefore
define a selection criteria to choose a checkpoint with the smallest time-
averaged biases. The criteria is the channel-mean global RMSE of time-
means. Specifically:

α ¼ 1
C

XC

c¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ϕ;λ

wϕ;λ ycðt; ϕ; λÞ � ŷcðt; ϕ; λÞ
� 	2s

ð8Þ

where c is an index for output channel (i.e., the prognostic and diagnostic
variables), wϕ is an averaging weight proportional to area of grid cell cen-
tered at ϕ, λ. The yc(t, ϕ, λ) is the normalized true value at a particular time
and location, while ŷc is the normalized model prediction for the corre-
sponding time, from a simulation initialized at some previous time. The
overbar � is a time- and ensemble-average.

In practice, α is computed once per epoch during training from an
ensemble of eight 5-year long simulations, initialized at evenly spaced
intervals across 1996, the start of the validation period (Table 1). In addition
to choosing a best checkpoint from within a training run, we perform an
ensemble of four training runs which differ only in the initialization of
model parameters. For each training run, we choose a checkpoint based on
minimizing α across epochs. After these training runs were completed, we
found that doing inference runs over a wider span of forcing data led to a
better estimate of the climate skill of a given model. Therefore to choose a
checkpoint across the four training runs, we performed twelve 5-year
inference runs, initialized once every 5 years starting on 1 January 1940,
spanning the training and validation periods, but not overlapping with the
held out test period.Additionally, for this comparisonwedownweighted the
contribution of q0 to the calculation ofα by a factor of 10, since our poor skill
in predicting the time-mean of this variable otherwise dominated α. Then
the checkpoint across the four random seeds was chosen according to this
new criteria. Section S1.5 shows the variability of α through training and
across the four random seeds.

Table 2 |Customweights applied to variableswhencomputing
loss function

Name Weight

T0, T1, u0, v0, q0, q2, q2m, P, ∂TWP
∂t

��
adv

0.5

q1 0.25

DLWRFsfc, USWRFsfc, DSWRFsfc, USWRFtoa 2

ULWRFsfc, T850 5

Z500 10

Output variables which are not listed here are given a weight of 1. Variables are defined in Table S1.

Table 3 | Speed and energy cost of inference with ACE2 and the physics-based SHiELD model

Model Simulated years per day Energy cost per simulated year [Wh] Hardware

ACE2 1500 11.2 1 NVIDIA H100-80GB-HBM

C24 SHiELD 22.1 300 54 cores on 1 AMD EPYC 7H12

C96 SHiELD 11.4 8250 864 cores on 14 AMD EPYC 7H12

ACE2 and C96 SHiELD both have about 1° horizontal resolution while C24 SHiELD has about 4° resolution but is still more than an order of magnitude more energy-intensive than ACE2.
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Evaluation metrics
To evaluate time-mean climate skill, we compute the global RMSE of the
time-mean for an individual variable y as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ϕ;λ

wϕ;λ yðt; ϕ; λÞ � ŷðt; ϕ; λÞ� 	2s
ð9Þ

wherewϕ,λ is an area weight that sums to 1 and ŷ is the predicted value and
theoverline represents a time average. For global- andannual-mean series of
a given output variable, we also compute anR2 of the predicted series against
a reference series of that variable:

R2 ¼ 1� SSerror
SSreference

ð10Þ

where:

SSerror ¼
Xnyears
iyear¼1

ðŷiyear � yiyear Þ
2 ð11Þ

and

SSreference ¼
Xnyears
iyear¼1

ðyiyear � �yÞ2: ð12Þ

Here ŷ and y are predicted and reference variable values, and �y is the
average over the time period. Thus R2 reflects the model’s combined ability
to capture long-termmeans and trends as well as shorter-term inter-annual
variability.

To characterize the atmospheric response to El Niño-Southern
Oscillation (ENSO) we compute a regression coefficient of variables against
the historical Niño 3.4 index28 as computed from the CMIP6 AMIP SST
dataset18,57,58. The coefficient is β1 of a linear regression:

ŷ ¼ β1INi~no34 þ β0 ð13Þ

where INi~no34 is the 3-monthly centered running mean of SSTs in the Niño
3.4 region, after being nearest-neighbor interpolated to the 6-hourly time
frequency of data. This produces a map of the response of a particular
variable to seasonally-varying ENSO states. We compare the predicted
response against a reference dataset response by computing the global area-
weighted RMS difference between the response maps. This also allows for
computing the variability of the SHiELD reference dataset’s atmospheric
response to ENSO, as the difference between the response maps of its two
initial conditions.

Computational cost
Training duration for each model is approximately 4.5 days on eight
NVIDIA H100-80GB-HBM3 GPUs. For each dataset, four models were
trained with the same hyperparameters and differing only in parameter
initialization (see “Checkpoint selection based on climate skill” section
above) quadrupling the overall cost. The cost of doing inference with ACE2
and the referenceSHiELDmodel is shown inTable 3.ComparingACE2and
C96SHiELD,whichhave the samehorizontal resolution,ACE2 is about 100
times faster and 700 times less energy intensive. Even compared to C24
SHiELD,whichhas four times lowerhorizontal resolution,ACE2uses about
25 times less energy and is about 50 times faster.

Data availability
The ERA5 dataset is available from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/). The processed version of the dataset
used to train ACE2-ERA5 is available on a public requester-pays Google

Cloud Storage bucket at gs://ai2cm-public-requester-pays/2024-11-13-ai2-
climate-emulator-v2-amip/data/era5-1deg-1940-2022.zarr (about 1.5TiB).
Similarly, the SHiELD dataset used to train ACE2-SHiELD is available at
gs://ai2cm-public-requester-pays/2024-11-13-ai2-climate-emulator-v2-
amip/data/c96-1deg-shield (about 3 TiB).

Code availability
The code used for data processing,model training, inference and evaluation
is available at https://github.com/ai2cm/ace (ref. 67). The trained ACE2-
ERA5 model checkpoint is available at https://doi.org/10.57967/hf/5377
(ref. 68). The scripts used for submitting experiments and generatingfigures
are available at https://github.com/ai2cm/ace2-paper (ref. 69).
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