
Draft

Multi-month forecasts of marine heatwaves and ocean
acidification extremes

Samuel C Mogen1→, Nicole S Lovenduski1, Stephen Yeager2,
Antonietta Capotondi 3,4, Michael G. Jacox4,5, Steven J. Bograd5, Emanuele Di Lorenzo6,

Elliott L. Hazen5, Mercedes Pozo Buil5,7, Who Kim2, Nan Rosenbloom2

1 Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine
Research, University of Colorado, Boulder, CO, USA

2 NSF National Center for Atmospheric Research, Climate and Global Dynamics Lab,
Boulder, CO, USA

3 Cooperative Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, CO, USA

4 National Oceanic and Atmospheric Administration Physical Sciences Laboratory,
Boulder, CO, USA

5 National Oceanic and Atmospheric Administration Southwest Fisheries Science Center,
Monterey, CA, USA

6 Department of Earth, Environmental, and Planetary Sciences Brown University,
Providence, RI, USA

7 Institute of Marine Sciences, University of California Santa Cruz, Monterey, CA, USA
→ Corresponding author: samuel.mogen@colorado.edu

Abstract

Marine heatwaves and ocean acidification extreme events are periods during which temperature and acidifi-
cation reach statistically extreme levels (90th percentile), relative to normal variability, potentially endanger-
ing ecosystems. As the threats from marine heatwaves and ocean acidification extreme events grow with
climate change, there is need for skillful predictions of events months-to-years in advance. Previous work
has demonstrated that climate models can predict marine heatwaves up to 12 months in advance in key
regions, but forecasting of ocean acidification extreme events has been difficult due to the sparse observa-
tional record. Here we use the Community Earth System Model Seasonal-to-Multiyear Large Ensemble to
make predictions of marine heatwaves and two forms of ocean acidification extreme events, as defined by
anomalies in hydrogen ion concentration and aragonite saturation state. We show that the ensemble skill-
fully predicts marine heatwaves and ocean acidification extreme events as defined by aragonite saturation
state up to 1 year in advance. Predictive skill for ocean acidification extremes as defined by hydrogen ion
concentration is lower, likely reflecting mismatch between model and observed state. Skill is highest in the
eastern Pacific, reflecting the predictable contribution of El Niño-Southern Oscillation to regional variability.
A forecast generated in late 2023 during the 2023-24 El Niño event finds high likelihood for widespread
marine heatwaves and ocean acidification extreme events in 2024.

Alongside long-term alterations to the marine system associated with anthropogenic climate change [1–
], there is increasing concern for short-term extreme events that can have dramatic impacts on marine
cosystems [5–7]. Accurate forecasts of extreme events have the potential to alter management practices in
dvance to plan for, if not mitigate, impacts on marine ecosystems [8]. Marine heatwaves (MHWs), extremes

n ocean temperature, are relatively well-studied and driven by a variety of atmospheric and oceanic dynami-
al processes [9–14]. Marine heatwaves can have profound impacts on marine organisms and ecosystems.
hey have been shown to alter primary productivity [15], stress keystone species [16], and induce dramatic
pecies redistribution [17]. They can also impact regional biodiversity [18] and biogeochemistry [5] in the
urface and subsurface ocean [19].

In contrast, ocean acidification extremes (OAX) are relatively under-studied, due in part to a historically
imited observational record, although recent literature discusses the development, location, and impacts of
AX [20–26]. Previous work has focused on two forms of OAX: high hydrogen ion concentration ([H+])
nd low saturation state of seawater in relation to the carbonate mineral aragonite (!a). !a is the degree
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of saturation of seawater with respect to the mineral aragonite [27]; high values of !a support aragonite
shell maintenance, while low values are associated with aragonite shell dissolution. Calcifying organisms are
negatively impacted during periods characterized by anomalously low !a [28–30]. Both [H+] and !a are
important measures of acidification with differing impacts on, and responses from, marine organisms [23, 31,
32]. For example, pteropods, a type of aragonitic zooplankton, respond to variations in both !a (impacting
shell growth, dissolution, and survival [32–34]) and [H+] (impacting embryonic development [35]). While
extremes in [H+] and !a may co-occur [24], they are commonly driven by different physical processes
[23]. The drivers of extremes in [H+] vary regionally. Subtropical [H+] extremes are generally driven by
increased temperatures while advection of carbon-rich water is the primary control in the tropics and mid-
to-high latitudes (where vertical mixing also plays a role). Extremes in !a are globally driven by enhanced
vertical mixing of carbon-rich subsurface water [23]. As such, while the occurrence of MHW may be regionally
tied to OAX (e.g. co-occurring [H+] extremes and MHW in the subtropics [23]), OAX are also driven by
enhanced vertical mixing and advection (which are often suppressed during MHW).

Initialized Earth system model (ESM) forecasts simulate the evolution of the coupled carbon-climate
system from a baseline state of historical model reconstruction, and have demonstrated skillful seasonal-
to-interannual forecasts of marine stressors, including temperature [36, 37] and ocean acidification [37, 38].
Jacox et al. 2022 [8] skillfully forecast surface marine heatwaves up to one year in advance using the physics-
only North American Multi-model Ensemble (NMME), a collection of global climate model forecasts. They find
that MHW forecast skill is dependent on El Nino-Southern Oscillation (ENSO) state. Similarly, McAdam et al.
2023 [39] used the CMCC Seasonal Prediction System version 3.5 (CMCC-SPS3.5) and found high potential
for predicting subsurface heatwaves. No previous work has examined the forecast skill and predictability of
OAX.

Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble
(SMYLE) to forecast surface ocean MHW and OAX (both [H+] and !a) events. CESM SMYLE generates
forecasts of the short-term evolution of the Earth system, initialized from a reconstruction of the historical
ocean (SMYLE FOSI) [40]. CESM SMYLE has previously demonstrated high forecast skill for biogeochem-
ical (dissolved oxygen, dissolved inorganic carbon) and physical tracers (temperature) in both the surface
and subsurface ocean up to a year following initialization [37, 40]. CESM SMYLE has also demonstrated
high forecast skill for ENSO anomalies, performing similarly to other seasonal forecast systems [40]. Here,
model forecasts are validated with observations over the historical period for extreme events in the surface
ocean at the 90th percentile threshold. We find regions of notably high forecast skill over the historical record,
including in the eastern tropical and northeast Pacific. We use forecasts generated in late 2023 to assess the
likelihood of global MHW and OAX in the coming year, finding high likelihood for widespread marine extremes
throughout 2024.

0.1 Skillful forecasts of MHW and OAX

CESM SMYLE skillfully forecasts surface MHW and OAX (!a) up to a year in advance regionally, while
OAX ([H+]) has generally lower forecast skill (Figure 1). Using the Symmetric Extremal Dependence Index
(SEDI; Methods), we find significant skill relative to 1,000 random forecasts at the 95% confidence interval
1.5 months after initialization for MHW and OAX (!a) globally, with lower global skill in OAX ([H+]) (Figure
1; row 1). Skill degrades with forecast lead-time, though MHW forecasts remain significantly skillful in the
eastern tropical, northeastern, and southeastern Pacific up to 10.5 months after initialization (Figure 1).
Similarly, OAX (!a) skill remains significant in the central tropical, northeast, and south Pacific for up to 10.5
months; with skill noticeably higher in the northeast Pacific than for MHW forecasts. In contrast, OAX ([H+])
skill is globally lower 1.5 months after initialization and further degrades with forecast lead-time, with limited
significant forecast skill in the eastern tropical Pacific at all lead times (Figure 1; 3rd column).

Two other metrics of model skill - forecast accuracy and Brier Skill Score - support results from SEDI
(Figure S1; Methods), with the tropical Pacific exhibiting high skill for MHW and OAX (!a), and generally
lower skill for OAX ([H+]). CESM SMYLE also successfully estimates the typical frequency and intensity
for historical MHW and OAX, but consistently overestimates the duration of these extreme events at a given
location (Figure S2).

MHW forecast skill is comparable to that reported by Jacox et al, 2022 [8], with similar regions (e.g. the
eastern tropical Pacific) demonstrating significant and long-lasting skill for MHW. OAX (!a) skill mirrors that of
MHW, while OAX ([H+]) shows distinct patterns. Regions shown to be skillful in CESM SMYLE correspond
to those that exhibit high correlation in the temporal variability and occurrence of extremes between SMYLE
FOSI, the historical reconstruction used in initializing CESM SMYLE, and observations, including the tropical
and northeast Pacific (Figure S3). MHW and OAX (!a) forecasts are thus expected to demonstrate higher

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

2



Draft

skill because CESM2 can successfully recreate these events in the tropical and northeast Pacific in the FOSI
state estimate.
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Figure 1: Forecast skill (SEDI) for MHW (column 1), ocean acidification extremes (!a) (column 2), and ocean
acidification extremes ([H+]) (column 3) for 20 ensemble members from CESM SMYLE at 1.5 (a-c), 3.5 (d-f),
6.5 (g-i), and 10.5 month lead-time (j-l). Skill scores range from -1 to 1, with skill close to -1 being unskillful,
skill of 0 being no better than random forecasts, and skill of 1 being perfect skill. Dots indicate where skill is
not significantly better than random forecasts at the 95% confidence interval.

0.2 Drivers of skillful forecasts

What is driving high and long-lasting skill in MHW and OAX (!a) and low skill in OAX ([H+])? As noted in prior
work, ENSO imprints on the seasonal-to-multiyear forecast skill for physical and biogeochemical variability,
and has been linked to MHW in regions including the tropical and northeast Pacific [8, 37, 41], although
the ENSO influence in the Northeast Pacific may be mediated by North Pacific decadal variability [42–44].
Further, the highest correlations in the historical occurrence of variability and extreme events between the
SMYLE FOSI model reconstruction and observations (Figure S3), as well as the highest extreme event
forecast skill (Figure 1), occur in regions associated with ENSO-based variability in the tropical Pacific. ENSO
is thus likely an important driver of forecast skill in the tropical and northeast Pacific.

We examine the dominant modes of variability in our variables of interest in the tropical Pacific (region
bounded by latitude 30oS-30oN and longitude 140oE-280oE) to illustrate the relationship between physics and
biogeochemistry, and their linkages to ENSO, using EOF analysis of SMYLE FOSI (Figure 2; Methods). The
dominant modes of variability in tropical Pacific SST and !a anomalies are characterized by a similar spatial
pattern reminiscent of ENSO (Figure 2a,d). Indeed, the first principal components of SST and !a anomalies
are highly correlated with the Nino3.4 index (rSST = 0.84, p < 0.05; r!a = 0.75, p < 0.05). Meanwhile, the
dominant mode of variability in tropical Pacific [H+] anomalies exhibits a different spatial pattern, and its first
principal component has a much lower correlation with the Nino3.4 index (r[H+] = 0.07, p > 0.05) (Figure
2b,f), although we note a higher correlation when lagged by 9-months (r[H+], 9 month lag = 0.65, p > 0.05).

Marine heatwaves induce direct changes in [H+] by altering the carbonate chemistry equilibrium con-
stants [23, 45, 46]. When marine heatwaves are driven by ocean circulation processes (e.g., stratification
of the upper ocean, reduced upwelling), the circulation of inorganic carbon is also affected which can have
an indirect influence on both [H+] and ! +

a [23, 46]. We demonstrate that circulation-driven [H ] variability
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Figure 2: Dominant modes of tropical Pacific variability in SMYLE FOSI from principal component analysis.
The first Empirical Orthogonal Function (EOF) regressed onto anomalies is displayed for (a) SST , (b) !a, (c)
!a,nt, (d) [H+], and (e) [H+]nt variability in the tropical Pacific region. (f) The first Principal Component of
tropical Pacific (red) SST, (blue) [H+], and (blue dashed) [H+]nt variability, and (black dashed) the Niño3.4
index. (g) as in (f) but for (blue) !a and (blue dashed) !a,nt.

is closely tied to Nino3.4 by performing EOF analysis on tropical Pacific nonthermal [H+] ([H+]nt), where
the direct effects of temperature on the equilibrium constants have been removed from [H+]. The leading
EOF of tropical Pacific [H+]nt variability has a spatial pattern similar to that of !a (Figure 2c,d), with the first
principal component more highly correlated with Nino3.4 (r[H+]nt

= 0.71, p < 0.05) than [H+]. In contrast,
!a variability is unaffected by temperature variability, as the first principal component of both !a and !a,nt

are highly correlated with the Nino3.4 index (r!a,nt = 0.73, p < 0.05, r!a = 0.75, p < 0.05). While we do not
attempt to forecast [H+]nt using CESM SMYLE (a forecast of [H+]nt would offer little practical information),
we would nevertheless expect higher SEDI skill score values. As the primary modes of tropical Pacific vari-
ability of SST, !a, !a,nt and [H+]nt exhibit strong spatial and temporal correlations with ENSO, we expect
forecasts made during ENSO events (both El Niño and La Niña) to be more skillful than those made during
neutral conditions. We thus systematically determine the differences in skill when the model is initialized
during (positive or negative) ENSO or neutral ENSO conditions.

In many regions, there is a gain in skill when an extreme event forecast is generated during ENSO (El
Niño or La Niña) conditions, demonstrating the role of ENSO in engendering skillful forecasts of MHW and
OAX as in Jacox et al. 2022 [8] (Figure 3; Methods). MHWs show a gain in skill during ENSO conditions for
the first year of model integration, most notably in the tropical Pacific. Gain in MHW forecast skill increases
for up 10.5 lead-months after initialization, implying that forecast initialization during an ENSO event drives
long-lasting gains in skill. OAX (!a) also demonstrates some regional gains in skill when initialized during
an ENSO event, particularly in the eastern tropical Pacific, California Current, and Gulf of Alaska regions.
Similarly, OAX ([H+]) demonstrate regional gains in skill during ENSO events. Surprisingly, the gain in skill
for OAX ([H+]) manifests more broadly than that of OAX (!a) despite the latter being consistently more
skillful at all lead times (per Figure 1) and the weaker relationship between modeled [H+] variability and
ENSO (Figure 2). Although OAX ([H+]) does exhibit a stronger gain in skill, absolute skill scores are still
relatively low compared to OAX (!a) (as reflected in the magnitude of skill in Figure 1).
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Figure 3: Gain in SEDI forecast skill from forecasts initialized during ENSO events (El Niño or La Niña)
relative to forecasts initialized during neutral ENSO conditions. Gain in skill is displayed for (column 1) marine
heatwaves, (column 2) ocean acidification extremes (!a), and (column 3) ocean acidification extremes ([H+])
at (a-c) 1.5 months lead-time, (d-f) 3.5 months lead-time, (g-i) 6.5 months lead-time, and (j-l) 10.5 months
lead-time. Positive values indicate a gain in forecast skill during ENSO conditions, while negative values
indicate gain in forecast skill during neutral conditions.
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Our analysis shows that the two indicators of OAX are not forecast equally well, and they do not respond
identically to ENSO variability, with OAX defined by extremes in !a exhibiting higher forecast skill than those
defined using [H+]. Both indicators of OAX are important stressors for marine ecosystems - why can we only
predict one? OAX ([H+]) forecast skill is low due to the model’s inability to capture observed [H+] variability.
Figure S4 demonstrate high model predictability, illustrating that forecasts of [H+] extremes have the potential
to be skillful across the global ocean (predictability is determined by verifying CESM SMYLE forecasts against
SMYLE FOSI). However this potential predictability is not realized as forecast skill. As such, improvements in
the model representation of [H+] variability to better match observed variability could increase the forecast
skill of OAX ([H+]). High skill for OAX (!a), in contrast, corresponds to low model bias in !a variability
(Figures S3). Changes in !a during extreme events are primarily driven by variations in [CO3]2→, which in
turn derive primarily from variability in DIC (Figure S5). During OAX (!a), the DIC circulation tendency affects
change in surface ocean DIC, with air-sea CO2 flux and biology playing less important roles in the anomalous
DIC budget. These results inform future studies on the utility of OAX forecasts for marine managers.

0.3 Outlook for extreme events in 2024

Forecasts generated in November of 2023 predict widespread MHW and OAX (!a) events in 2024 (Figure 4).
As these forecasts were generated during El Niño event, we expect forecasts of MHW and OAX (!a) to have
high skill in regions with ENSO-related predictability (as in Figure 1). The 2023-2024 ENSO event represents
an excellent test-bed and application for an initialized ESM to forecast marine extreme events, as we can
expect a forecast generated in late 2023 to be skillful in some regions up to a year in advance. The 2023-24
El Niño in CESM SMYLE is forecast to peak in January, 2024 before declining by June 2024 (Figure 4, panel
a). This forecast is consistent with a suite of available dynamical ENSO forecasts generated in November,
2023, indicating a peak in El Niño centered in January, 2024 with decline in conditions by June, 2024, and
is further consistent with the evolution of the Nino3.4 index derived from observations through March, 2024
(https://stateoftheocean.osmc.noaa.gov/sur/pac/nino34.php) [47].

CESM SMYLE forecasts indicate that MHWs are highly likely in the eastern Pacific in early 2024, before
becoming globally widespread (Figure 4, column 2). In these forecasts, we find a strong signal of ENSO-
driven MHWs (present at the month initialization) in the eastern tropical Pacific that spreads throughout the
tropical Pacific through June 2024. The ENSO-associated teleconnections lead to strong and widespread
MHWs in the Northeast Pacific by June 2024. OAX (!a) are projected to be widespread by the middle of
2024 (Figure 4, column 3). The initial stages of this El Niño event are associated with widespread OAX
events (e.g. in the Indian, and subtropical Pacific), though not in the eastern Tropical Pacific (likely connected
to surface warming in the eastern tropical Pacific suppressing low !a conditions [48]). By December 2024,
we forecast extreme conditions in !a in the Northeast Pacific and equatorial Atlantic. While we limit our
forecast analysis to the 13 months following initialization in November, 2023, a subsequent La Niña event
would likely be associated with strong OAX events in the eastern Pacific (as in the historical record in Figure
S6, which shows an example forecast generated during the 1999-2000 La Niña event with widespread OAX
event in the eastern Pacific).

Managing marine systems in the coming decades will require improved and expanded forecasts that
include marine stressors beyond temperature [49]. The forecasts displayed in Figure 4 should encourage
plans to expand existing operational forecasting systems (e.g., psl.noaa.gov/marine-heatwaves/#forecasts,
and https://www.mercator-ocean.eu/en/category/mhw-bulletin/) to represent marine biogeochemistry, allow-
ing for outlooks on extremes in key ecosystem stressors. Accurate forecasts of marine dynamics and ex-
tremes can better inform contemporary practices of marine managers, especially in a changing climate [8,
50, 51]. While our study does not make concrete policy recommendations, we hope that this work encourages
the inclusion of biogeochemical and carbon cycle models in operational forecasts and seasonal outlooks that
currently only include physical tracers. While OAX are less well-studied than MHW, they are demonstrably
predictable and have potentially dramatic ramifications for ecosystems. Future studies should focus on fore-
casting concurrent extremes, especially those that are dynamically favored to co-occur (e.g. MHW and OAX
[H+]), and examine underlying definitions of extreme events (e.g. potentially using an absolute rather than
statistical definition of an extreme). As operational forecasts of MHW become more mainstream (as at NOAA
Physical Sciences Lab and Mercator Ocean International), the inclusion of biogeochemical extremes would
help better inform the health of marine ecosystems.
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Figure 4: CESM SMYLE forecasts of Niño3.4, MHW, and OAX initialized in November 2023 from 60oS to
60oN. (a) Niño3.4 sea surface temperature anomaly from (solid black) CESM SMYLE and (dashed) observa-
tions, (column 2) likelihood of marine heatwaves as % of model ensemble members at increasing lead-time,
and (column 3) likelihood of ocean acidification extremes (!a) as % of model ensemble members at increas-
ing lead-time; masked by areas significantly skillful in the historical period at given forecast lead-time the
relative to 1,000 random forecasts at the 95% confidence interval.
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Methods

0.4 CESM SMYLE

CESM SMYLE was developed in the CESM2 framework, and includes explicit rendering of marine biogeo-
chemistry with the Marine Biogeochemistry Library (MARBL), configured with three explicit phytoplankton
functional groups (diatoms, diazotrophs, and picophytoplankton), one implicit group (calcifiers), a single zoo-
plankton type, multi-nutrient co-limitation (N, P, Si, Fe), and prognostic marine carbonate chemistry across
62 vertical model levels and nominal 1o horizontal resolution [52–55]. CESM SMYLE was initialized from
the SMYLE Forced Ocean-Sea Ice (FOSI) reconstruction, an ocean-sea ice only simulation forced with the
Japanese 55-year Reanalysis (JRA-55; [56]) momentum, heat, and freshwater fluxes from 1958 to 2019
and atmospheric CO2 concentrations. CESM SMYLE was initialized four times per year (February 1, May
1, August 1, November 1) from 1970-2019 with an integration time of 2 years. A slight perturbation of sur-
face air temperature is included at each initialization to generate 20 ensemble members. More detail on the
Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) hindcast can be
found in Yeager et al., 2022 [40] and Mogen et al., 2023 [37]. Output utilized in this study is saved at monthly
temporal resolution. Alongside the hindcast initializations of CESM SMYLE (1970-2019), we also analyze a
CESM SMYLE forecast initialized in November 2023 from the SMYLE FOSI that was extended using near
real-time updates to the JRA55-do ocean/sea-ice forcing dataset [56]. See Figure S7 for an example of two
initializations of CESM SMYLE (November, 2006; November, 2009) in the hindcast period.

0.5 Observational Products

MHW and OAX events were identified in the observational record based on OceanSODA-ETHZ, which inter-
polates surface ocean partial pressure of CO2 (pCO2; from the Surface Ocean CO2 Atlas) [SOCAT; 57] and
Alkalinity (from the Global Ocean Data Analysis Project) [GLODAP2; 58] observations using machine learn-
ing techniques [59] at nominal 1o horizontal resolution and monthly temporal resolution. Global Alkalinity and
pCO2 estimates are then used to solve the full carbonate system using PyCO2SYS to generate estimates for
all carbonate tracers [60]. Sea surface temperature is from Operational Sea Surface Temperature and Sea
Ice Analysis [61, 62]. OceanSODA-ETHZ includes historical data from 1982-2022, is well validated, and has
been used in prior studies on marine carbonate chemistry [63] and extremes [5].

0.6 Defining Extremes

We calculate statistical extremes using the definition widely adopted in the literature[9, 10, 22]. Figure S8 dis-
plays the relative magnitude of statistical extremes in comparison to seasonal, interannual, and multidecadal
variability. While seasonal variability is prominent in the extratropical oceans, the magnitude of extremes can
be as large, if not larger than the other sources of variability in the tropics and northeast Pacific (Figure S8).
We remove the long-term, anthropogenic trend and the seasonal climatology for SST, !a, and [H+] at each
grid cell in observations and CESM SMYLE as in Jacox et al, 2022 [8]. We choose to remove long-term
anthropogenic warming and acidification trends in our assessment of extreme events in order to account for
shifting baselines in marine ecosystems as suggested by Amaya et al. 2023 [64]. In observations, MHWs
are defined by first removing seasonal climatologies and long-term warming trends (1st order polynomial).
Then a rolling three-monthly threshold is created centered on the month of interest and the 90th percentile
threshold is calculated. In CESM SMYLE, a similar procedure was followed by first removing model climatol-
ogy and long-term trends (along the dimension of year of initialization) from each ensemble member. Then a
rolling three-lead-time (three monthly) threshold was calculated, centered on the lead-time (month) of inter-
est. Values above this threshold were again considered extreme. This methodology was repeated for [H+]
(removing a 2nd order polynomial trend, extreme above the 90th percentile) and !a (removing a 2nd order
polynomial trend, extreme below the 10th percentile). We process the November, 2023 SMYLE Initialization
in the same manner as for November-initialized hindcast. As noted above, !a is most detrimental to marine
organisms when below saturation (!a < 1), but we choose to rely on a statistical definition of extremes
following prior work [23, 65]. The usefulness of statistical definitions of extremes may have a limit in compar-
ison to a threshold based on an absolute value (e.g., assuming organisms have limited adaptability outside
of statistical thresholds, rather than an absolute stress threshold), but they prove useful when assessing skill
across multiple forms of extremes across the global ocean as noted by Gruber et al. 2021 [66]. See Figure
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0.7 Impacts of El Niño-Southern Oscillation

Principal component analysis (PCA) was completed for variables of interest (SST, !a, and [H+]) from SMYLE
FOSI over the hindcast period (1982-2019) in the tropical pacific (30↑S to 30↑N, and 140↑E to 280↑E) by com-
puting eigenvalues/eigenvectors of spatially weighted anomaly covariance matrices. The standardized first
principal components of SST, !a, and [H+] were compared to a 5 month running mean of the Niño3.4 index
(SST anomalies from 5↑S-5↑N and 170↑W-120↑W). The first principal components were then regressed onto
SMYLE FOSI anomalies to illustrate the spatial patterns associated with the leading principical components
(EOFs) for each tracer. Anomaly correlation coefficients were calculated for the first principal component
of each variable of interest and the running Niño index, with significance estimated at the 95% confidence
interval.

In an effort to disentangle the drivers of [H+] and !a variability, the linear impact of temperature on
[H+] was determined using the pyCO2SYS software [60] by varying temperature and holding all other inputs
constant at their climatological mean values. Temperature effects are removed by calculating the [H+] vari-
ability driven by the thermal component ([H+]t) throughout the model historical record and subtracting that
from [H+], leaving the nonthermal component ([H+]nt). Principal component analysis was then repeated for
nonthermal values to determine the dominant modes of variability with the temperature effects removed.

To determine the impact of ENSO state at initialization on model forecast skill, we separate forecasts
by those initialized during El Niño (Nino3.4 SSTa greater than 0.5oC )and La Ninã (Nino3.4 SSTa less than
-0.5oC ) and those initialized during neutral ENSO state (Nino3.4 SSTa between -0.5oC and 0.5oC ). We
then assess skill for these separate forecasts and take the difference in forecast skill at each lead-time to
determine the impact of ENSO-state at initialization.

0.8 Drivers of !a forecast skill

We analyze drivers of OAX (!a), using the model definition of !a:

[CO2→
!a → 3 ]

(1)
[CO3]saturation,aragonite

where [CO ]2→ and [CO ]23 3 satur

→
ation,aragonite

are estimated at each model timestep. Change during extremes
are driven by [CO3]2→, as [CO3]

2
satur

→
ation,aragonite

is largely a function of pressure. The expected changes
in [CO3]2→ during extreme event are decomposed into contributions from temperature, salinity, dissolved
inorganic carbon (DIC), and alkalinity using relationships derived with pyCO2sys [60]. We take the difference
between periods of extreme events and all times, indicating which are the most important terms in driving
changes in !a. We decompose the DIC response to extreme events using model output tendency terms,
including: total DIC tendency, air-sea CO2 flux, and biological flux. Circulation tendency is calculated as the
residual:

DICcirculation,tendency = DICtendency ↑Air Sea F luxtendency ↑Biologicaltendency (2)

As with [CO3]2→ we take the difference between tendency terms during extreme events and all times.

0.9 Skill Analysis

We combine all annual initializations for analysis of skill (relative to OceanSODA-ETHZ) and predictability
(relative to SMYLE FOSI), as previous literature has found little impacts of initialization month on global
ocean biogeochemical forecast skill (e.g. Mogen et al. 2023) [37]. Combining initializations further increased
the number of forecasts being evaluated, increasing the statistical robustness of results. To assess forecast
skill, we follow established methodologies for evaluating relatively infrequent climatic extremes: the SEDI
skill score, Forecast Accuracy, and Brier Skill Score. First, we classify each grid cell at each time into a
2X2 contingency table: true positives (extreme event is forecast and does appear in observations), false
positive (extreme event is forecast but does not appear), false negative (extreme event is not forecast but
does appear), and true negatives (extreme event is not forecast and does not appear). Using this contingency
table, we then calculate SEDI and forecast accuracy. We also calculated the Brier Skill Score based on the
average of the binary forecasts from all ensemble members at a given time.

We follow Jacox et al., 2022[8] in using SEDI as our primary skill metric. As noted in their work, it does not
trend towards a meaningless limit as rarity increases, it is base-rate independent (not influenced by changes
in event frequency), and it is equitable (random forecasts give an expected value of zero, or no skill). SEDI
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scores of greater than zero indicates skill better than random chance, while skill of less than zero indicates
worse than random chance of an event being forecast correctly [8, 67, 68]:

logF logH log(1 F ) + log(1 H)
SEDI =

↑ ↑ ↑ ↑
(3)

logF + logH + log(1↑ F ) + log(1↑H)

where H is the hit rate (rate of true positives to total observed events) and F is the false alarm rate (rate of
false positives to total observed nonevents).

Significance of SEDI forecast skill is quantified using a Monte Carlo simulation with bootstrapping. For a
given grid cell, we randomly sample (with replacement) each SMYLE forecast to generate random forecasts;
skill is then calculated for random forecasts. This process is repeated 1,000 times to generate a distribution
of random forecasts. We then calculate the 95% confidence interval for scores of the random forecast at
each grid cell. Skill scores are considered significant if the forecast exceeds the 97.5th percentile of random
forecast skill distribution.

We use the contingency table to calculate Forecast Accuracy, which is simply the fraction of correctly
forecast events [8]:

true positives+ true negatives
FA = (4)

N
where N is the total number of forecasts being evaluated. For events that occur 10% of the time (as in this
study for all metrics), the forecast accuracy for a random forecast is calculated as 0.82.

We also calculate the Brier Skill Score (BSS). First, the Brier Score (BrS) estimates the mean square
error of the probabilistic forecast:

N
1 ∑

BrS = (fi ↑ oi)
2 (5)

N
i=1

where N is the number of forecasts evaluated, fi is the forecast probability from all ensemble members, oi
is the observed probability (zero or one). The Brier Score is then normalized relative to a reference forecast
where events have a 10% chance of occurring:

BrS
BSS = 1↑ (6)

BrSref

The resulting BSS ranges from one (perfect) to negative infinity, with zero indicating skill no better than
random chance.
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Figure S1: Forecast skill calculated by three different metrics at lead-time 3.5 months. SEDI (as in Figure
1) (row 1), Forecast Accuracy (row 2), and Brier Skill Score (BSS) (row 3) for marine heatwaves (column 1),
ocean acidification extremes (!a), and ocean acidification extremes ([H+])
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Figure S2: Number per month (row 1), duration (row 2), and intensity (row 3) of the average extreme event in
observations and CESM SMYLE for marine heatwaves (column 1), ocean acidification extremes (!a) (column
2), and ocean acidification extremes ([H+]) (column 3) at each location.
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Figure S3: Correlation coefficient between historical (column 1) variability of (a) sea surface temperature, (c)
! +

a, (e) [H ] and (column 2) extremes (b) marine heatwaves, (d) ocean acidification extremes (!a),(f) ocean
acidification extremes ([H+]) in SMYLE FOSI and observations (OceanSODA-ETHZ). Higher correlation
coefficients indicate more similar historical variability or extreme events.
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Figure S4: Comparison of (column 1) model skill (CESM SMYLE relative to observations) and (column 2)
model predictability (CESM SMYLE relative to SMYLE FOSI) for 20 ensemble members from CESM SMYLE
at 1.5 (a-b), 3.5 (c-d), 6.5 (e-f), and 10.5 month lead-time (g-h). Skill scores range from -1 to 1, with SEDI
score close to -1 being unskillful, SEDI score of 0 being no better than random forecasts, and SEDI score of
1 being perfect skill.
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Figure S5: Decomposition of !a to determine drivers of extreme events. (row 1) Decomposition of [CO 2
3] →

into drivers of changes during extremes relative to all times, including effects of (a) temperature, (b) salinity, (c)
DIC, (d) Alkalinity. (row 2) Changes to tendency terms of DIC during extremes relative to all times, including:
(e) total DIC tendency, (f) circulation tendency, (g) air-sea CO2 flux tendency, and (h) biological tendency.
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Figure S6: Forecasts of !a initialized during the August 1999 La Niña event. Anomalies (color) and extremes
(hatching) in (column 1) from an interpolated observational product (OceanSODA-ETHZ), and (column 2)
CESM SMYLE forecasts (a,b) 1.5, (c,d) 3.5, and (e,f) 5.5 months after initialization. Extreme events are
defined in observations (below the 10th percentile) and in CESM SMYLE (below the 10th percentile in a
minimum of 50% of ensemble members).
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Figure S7: Example timeseries of !a anomalies in the central tropical Pacific (0.5oN, 138.5oW) for (black)
SMYLE FOSI and (grey) two November CESM SMYLE initializations (2006a and 2009; with ensemble spread
represented) from 2006-2012. Occurrence of extreme events are indicated for (red lines) SMYLE FOSI and
(bar plot) CESM SMYLE (as a percentage of ensemble members).
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Figure S8: Relative magnitude of anomalies associated with (row 1) trend (per decade), (row 2) seasonal
climatology, (row 3) interannual variability, and (row 4) mean strength of anomaly to generate extreme event
for temperature and !a.
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